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PART I

STATISTICAL PREDICTION OF DYNAMIC
DISTORTION OF INLET FLOW USING MINIMUM
DYNAMIC MEASUREMENT — AN APPLICATION

TO THE MELICK STATISTICAL METHOD



SUMMARI

A simplified explanation to the Melick method of inlet-

flow dynamic distortion prediction by statistical means has,

been included. A hypothetic vortex model is used as the

basis of the mathematical formulations. The main variable*

of this model are identified by matching the theoretical

total pressure rms ratio with the measured total pressure

rms ratio. Data comparisons using HiMAT inlet test data

set indicate satisfactory prediction of the dynamic peak

distortion for cases with boundary layer control device- —-

vortex generators-.

A method of the dynamic probe selection^ an essential

part of this research, has been developed. Validity of the

probe selection criteria has been demonstrated by comparing

the reduced-probe predictions with the 40-probe predictions.

Results indicate that the number of dynamic probes can be

reduced to as few as 2 and still retain good accuracy.
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SYMBOLS

APD amplitude probability density

a radius of vortex core (radius at the point
where maximum velocity occurs)

1 mean vortex core size

b radial weighting factor, see table I

D. diameter of ring j, see table I

erf(x) the error function of x,

erfCx) = -

f frequency, Hz

f" intermediate frequency used to match theoretical
and analytical PSD functions

fc characteristic engine response frequency

real part of the power spectral density function
of the total pressure fluctuations

H function describing filter characteristics

IDC circumferential distortion factor, (see table I)

IDR radial distortion factor, (see table I)

K generic distortion factor

KA2»K9»KRAD combined, circumferential & radial distortion
factors respectively, (see table I)

KD2 distortion factor, (see table I)

generic instantaneous value of K

generic maximum value of K used in the beta
distribution function

ICmax-inst most probable maximum value of

KSS generic steady-state value of K

"K mean value of
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AK difference between K and Kss, AK =
 K"Kss

k normalizing fact9r in beta probability density
function-

m exponent in beta probability density function

N total vortex flux, number per second

n exponent in beta probability density function

OD outer duct diameter,Isee table II

P probability density function.

PSD power spectral density

P^ cumulative probability

P2 probability density function for peak distortion-
factor

p static pressure

pt total pressure

Apt total pressure fluctuation relative to the mean

q dynamic pressure, (q=£pv2)

autocorrelation function of the total pressure
fluctuations

compressor tip or duct radius

/ + Zy2 , shortest distance from probe to vortex

r radius from vortex centerline

rms root mean square

r radius from vortex center line to probe

T period of time over which the maximum instan-
taneous is to be determined

t time

1^2 mean duct velocity

u x component of velocity induced by the vortex
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u^ X component of velocity induced by the vortex
at the probe

v y component of velocity induced by the vortex

VQ tangential component of velocity induced by the
vortex

w z component of velocity induced by the vortex

X,Y,Z fixed coordinate system at the compressor face,
(figure 9)

Xp,Yp,Z_ coordinates of a compressor face pressure probe

XV,YV,ZV location of the x'y'z' coordinate system rela-
tive to the X,Y,Z system, (figure 9>

x,y,z local coordinate system of the vortex, (figure 91)

x'jy'jZ1 coordinate system parallel to the X,Y,Z system
but with the same origin as the x,y,z system,
(figure 9)

0 vortex orientation angle between the y-axis and
the x'-y1 plane, (figure <?>

F(n) denotes the gamma function of n,

TCn) - /o* e'V1 dx, rCn+1) - nFCn),

(figure 3)

Y angle between the x1 and x axes, with the x
axis in the x'-y1 plane, (Eigure ^

9 circumferential coordinate at the compressor face

un nth central moment Ctaken about the mean) of a
statistical distribution

£ dummy variable

p fluid density

a standard deviation or rms of a time-dependent
function

T time delay in the definition of the autocorrela-
tion function

IV



Subscripts

a vortex core size

cir circumferential

1 index of rake of pressure probes-

ins t instantaneous value

j index of ring of pressure probes

K distortion factor

max maximum value

min minimum value

2 mean flow at the compressor face station

AP-J. total pressure fluctuations

rad radial

ss steady-state condition-

v vortex or tangential velocity

« evaluated for all frequencies

Superscripts-

(~) mean value

CA) variable is a function of a number of random
variables



INTRODUCTION

It has long been appreciated that steady-state inlet

flow nonuniformities (flow distortion) may have a significant

effect on the stability of a gas turbine engine and may fur-

ther induce engine stall (surge). Traditionally, steady-

state nonuniformities are measured at the inlet/engine inter-

face (compressor face) by using 40 or more steady-state total

pressure probes. These measurements are combined in such a

way as to produce a single distortion factor according to

different definitions (some common ones are listed in

Table 1). These distortion factors are then correlated with

the surge level.

It was not until recently that attention has been paid

to the effect of dynamic distortion which reveals the time-

variant characteristics of the distortion pattern measured

at the compressor face. This dynamic effect may cause

engine surge while the steady-state distortion is substan-

tially below the surge level. Therefore, determination of

the dynamic effect of inlet flow becomes more important if

high performance inlets are to be attained.

Air flow convecting through the inlet duct is always

unsteady due to flow disturbances generated internal and

external to the inlet. These disturbances include exter-

nally generated turbulence. External turbulence is caused

by atmospheric turbulence, the flow field of the aircraft



upstream of the inlet and by external shock waves when in

supersonic flight. Internally generated disturbulences are

caused by non-uniformities due to change in the contours

of the inlet duct and by shock boundary layer interactions.

Experimentally, this flow unsteadiness is measured at the

compressor face in terms of total pressure fluctuations by

the use of 40 (commonly used) or more high response total

pressure probes (dynamic probes). These unsteady total

pressure data are analyzed deterministically in terras of

time-variant distortion factor throughout the data record-

ing period. The maximum peak distortion factor value of

the dynamic distortion factor is then screened and used as-

a design reference. This method of data analysis is quita

tedious and expensive. There is a real need to develop

methods to predict both the peak dynamic distortion factor-

and the corresponding compressor face total pressure pattern-.

These are important for inlet design and data analysis,

however, they are"dependent upon the statistical character-

istics of the unsteady total pressure data. It is for this

reason that statistical treatments which utilize the random-

ness of the total pressure data have been employed to predict

the peak dynamic distortion factor from limited test data

(e.g., root mean square, rms, level of total pressure fluc-

tuations). Improved efficiency and reduction in cost have

been achieved by this approach. Success of the statistical

approach is made possible due to the fact that probability

density distributions of the time-variant distortion factor



and the time-variant total pressure data are nearly Gaussian

(normal distribution) around their mean values (ref. 4).

This is true for most of the test cases which do not involve

inlet flow of strong interaction. Figure 1 shows the physi-

cal and statistical characteristics of a typical inlet test

data. A time history of the total pressure fluctuations shown

in Figure l(b) is measured by the dynamic probe shown in

Figure l(a). Probability distribution of the total pressure

data is shown to be normal as illustrated in Figure l(b).

The time-variant distortion factor resulting from the com-

bined effect of all 40 probes is illustrated in Figure l(c)

which also shows a normal distribution of the probability

density of the distortion factor.

Three major statistical approaches have been developed

to predict the peak distortion factor and distortion pattern.

The first one, due to Jacocks, uses Gumbel's extreme value

theorem to extrapolate the peak distortion value within a

specified time period from the first short time segment of

deterministic information (ref. 1}. The second approach,

due to Motycka, et al., utilizes a random number generator

for simulating the total pressure fluctuations at each probe.

The simulated values are based on the measured total pressure

rms level and the steady-state value. Time-variant distortion

factors are calculated by using the generated total pressure

data, from which the peak dynamic distortion factor is de-

termined (ref. 2). The third approach, developed by Melick,



et al., assumes that dynamic effect of the inlet flow is

totally attributed to the pressure disturbances caused by

a sequence of convecting vortices with random variables.

The peak distortion factor is determined from this physical

model and its statistical properties. The main variables

of the vortex flow model are identified by matching analyt-

ical and measured total pressure rms levels (ref. 3)«

Although all the three methods produce satisfactory

results, the Melick method is least costly in terms of"

instrumentation and analysis effort. It can be used online

while the test is in progress (ref. 5). This makes the

Melick method a very attractive tool for early analysis in.

the inlet design process.

Also, to minimize costs of dynamic instrumentation and

overall inlet development, it is desired to predict the

dynamic distortion in the early stages of inlet development

using a minimum number of dynamic probes. Each high

response total pressure probe is very expensive. This can

be achieved, in principle, by using the Melick method as

mentioned in ref. 3 and ref. 5. MelickTs method has the

potential to achieve this goal since its peak distortion is

predicted by the average value of total pressure rms levels.

Ideally, a single probe would be sufficient to provide the

same rms level.

Acceptance of the Melick method has been slow due to

a lack of understanding by the inlet test and development



engineers. Thus, the first objective of the present study

is to explain and clarify Melick's Technique. The second

objective.is the development of criteria of dynamic probe

selection (location) based on the steady-state pressure map.

A brief review and discussion of the Melick method is

presented in the first section followed by a series of data

comparisons using HiMAT inlet test data set (ref. 6).

Finally, the last section contains the development of the

criteria for selecting the location of the dynamic probes.

The results of numerical experiments to validate the probe

selection criteria are shown.



THE MELICK METHOD

Vortex Model

Physically, total pressure fluctuations of inlet flow

measured at the compressor face can be interpreted as time-

variant velocity variations on the compressor face. This

time-variant velocity variation can again be expressed ia

terms of time-variant vorticity variation. Therefore, it is-

envisioned that the total pressure fluctuations are caused

by a sequence of time-variant vortices passing through the-

compressor face at a rate of N vortices per second. EacTv

vortex would then create total pressure variations at the

compressor face and generate certain instantaneous (time-

variant) distortion factors, K^nst, at that instant of time

as illustrated in Figure 2. Figure 2(b) shows that the

time-variant total pressure, measured by a probe, due to a

convecting vortex which has a velocity profile as shown ia-

Figure 2(a>.

It is assumed that the instantaneous distortion factor,

Kinst' cause<* by a single vortex is treated as a single dis-

crete event. Thus, there are NT discrete events during the

data recording period T. Each vortex has an arbitrary location,

orientation, and strength. It is further assumed that these

discrete events are random and independent drawings from a

probability density distribution described by a Beta distribu-

tion function (ref. 7). The reason for choosing the Beta dis-

tribution is because it is the only distribution function



that has one bounded positive variable and the ability to

modify the probability distribution by varying two simple

parameters. Figure 3 shows the general characteristics of

the Beta distribution function including the effects of the

parameters, mx and nx, on the shape of the distribution.

The variable of the distribution, x, is shown to be bounded

within the interval of 0. and 1. The shapes of the dis-

tribution are skewed to the left in Figure 3 when n is

greater than m . An opposite skew would result if n is
JV Jt

less than m . When nx and n^ are identical, a Gaussian

(normal) distribution can be obtained.

Using the Beta distribution, the probability density

function of the instantaneous distortion factor, K^nst, is given

max

where K̂ ns1.. is rescaled (normalised) by its upper bound,

^maxj a:id % ^s a function of m^ and n.. through the gamma

function as shown in Figure 3. Equation (1) involves three

unknowns, Kiuax, m^ and n^, which require three equations

for solutions. These three equations can be obtained by

using statistical moments analysis for P (i.e., the first

moment, the second moment and the fourth moment, ref. 3).

The first and second moments of P are related to the mean,

K, and variance, d^, of the instantaneous distortion factor,
Kinst» respectively. The fourth moment (Kurtosis) of P is



assumed to be zero since the distribution of P has been

shown (ref. 4) to be nearly Gaussian (normal distribution)

for most experimental data. The parameters, K and o*£, can

be obtained from an analytical expression of K^nst and its

statistical moments. These can be derived from the vortex

flow model with the main variables, a (mean vortex size) and

N (vortex flux) being identified by matching analytical and

measured total pressure rms levels. This will be discussed

in detail later. Assume, for the moment, that K and 0*^

are already obtained and the distribution of P is known.

Figure 4 shows some illustrations of the distributions of

P with various values of K and d^. Note that the variable

of P, Kinst, has been normalized by K and d. That is,

(la)

Equation (la) is the essence of the Melick method,

from which the peak distortion (i.e. near the right end of

Figure 4) can be extrapolated by using the statistical

characteristics of the peak values. Unknowns of this model

must be related to the inlet flow conditions in order to

rescale the analytical model close to the experimental

measurements.

It is of primary importance that the peak value of

^inst amonS tne NT events be determined from the distribu-

tion of P. Before this peak value can be found, conditions



for the occurrence of the peak value must be determined. The

peak value implies the largest value of Kin among the

whole population of NT events. In other words, it is the

only single event that can exceed a certain distortion

level. This corresponds essentially to the situation in

which the deterministic peak distortion factor is found.

Therefore, the probability of one single event that exceeds

a certain distortion level needs to be defined. This can be

described by a cumulative probability of P above a certain

distortion level. Equation (2) defines this cumulative

probability of P as P,. Results are illustrated in Figure

5 for various values of K and d^. Note again that Kinst has been

normalized by K and 0%,.

K-Ku , _ , _
— = (Prob. of

<*

(2)

Siace it is required that only one event, caused by

one vortex, can create a peak distortion above a certain

level, the whole population is therefore required to have

only one event with probability P and (NT-1) events with

probability (1-P̂ ). This is like the Bernoulli test. The

overall probability for the condition of only one peak dis-

tortion above a certain level is therefore described by the
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Bernoulli (binomial) distribution function given by

equation (3) (ref. 7) and is illustrated in Figure 6.

P2 = P l C l - P i ' = NTP! d-Pi) (3)

From equation (30 , the objective peak distortion cor-

responds to the condition when ?2 is maximum for a fixed NT,,

(i.e., the most probable condition for the peak dynamic dis-

tortion to occui} . This condition is found to be PI-^/NT

when ?2 reaches its maximum. This is obtained by letting;

the first derivative of ?2 (equation 3), with respect to

P^, equal zero. This can be seen clearly when. Figure 4 and

Figure 6 are combined with the aid of Figure 5 to produce

Figure 7. For example, when NT=10 and K/oy=4, Figure 6 shows

that at maximum P2, P]_= 0.1 approximately. Using this valua

of P^ in Figure 5, the corresponding value of (Kinst-K)/6

can be obtained and shown in Figure 7. In this wayK the

distribution curves of Figure 6 can be transformed into

Figure 7 through the aid of Figure 5. In Figure 7, P de-

scribes the general population of Kj_nst> and ?2 describes

the probability of the peaks of Kinst. The peak dynamic

distortion factor is therefore chosen to be the most probable

value of Kinst among the population of their peaks, ?2, for

given values of NT, R and o^ as shown in Figure 7. Results

of Figure 7 are generalized and expressed in terms of K, oV

and NT and are illustrated in Figure B. From Figurs B, the

most probable maximum value (peak value) of distrotion
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factors can be obtained easily for given values of K, d^

and NT.

In Melick's original formulation, confidence levels of

the predicted peak distortion factors were not determined.

However, with the help of Figure 7, confidence levels can

be determined easily from the distribution of ?£. Note

that the variance of P2 decreases as NT increases. In

most practical applications, NT and KA% are large (—10

and -"10 respectively) such that they fall within the shadded

band of Fifure $.

Matching Model to a Particular Test Case

Up to this point, prediction of the peak distortion

factor for a particular case has been accomplished for given

values of the mean and rms values of the instantaneous

distortion factor, K and o^, and the number of vortices, NT,

within data recording period T. It remains to be shown

how K, 0*5 and N (vortex flux) can be obtained. From the

test data, total pressure rms values are measured at the

compressor face. Therefore, it is intended to derive an

analytical expression for the total pressure fluctuations

based on the hypothetical vortex flow model. The main vari-

ables of the vortex flow model, (mean vortex size (a) and

vortex flux (N)), are then identified by matching the ana-

lytical and measured total pressure rms levels. In addition,

relations between the analytical total pressure fluctuations
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and the statistical properties of distortion factor, the mean

value (K) and rms value (d̂ ), are established so that K and

dft can be determined.

Development of the vortex flow model originates from,

Melick's hypothesis that the cause of the total pressure

fluctuations is totally attributed to the convecting vor-

tices at the rate of N vortices per second. For simplicity,

a one-dimensional incompressible steady vortex flow solu-

tion is used for the basis of mathematical development. The

basic equation for the velocity profile as a function of

distance from the center of the vortex is given by equation

(4). (See Figure 2 for definition of terms)

C4>
9max

where a is designated as vortex size at a radius r=a such

that Vfl=7a • V- represents the strength of the vortexB » max ' max
which is the maximum swirling velocity around the axis of

the vortex. This basic model does not describe the real flow

situation but it is desirable to keep the selected model as

simple as possible so that the final expressions will not

involve too many variables and therefore become overly com-

plex. Since test; data are eventually used to identify the

main variables, simple expressions do not lose too much in

accuracy.

An expression of total pressure fluctuations can be
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derived from the 1-D vortex model by the use of incompres-

sible Bernoulli's equation and the spatial relationship

between the vortex and the dynamic probe as shown in

Figure 9. The final expression of the total pressure fluc-

tuation caused by a single arbitrary vortex on an arbitrary

compressor face probe is given by equation (5). (The devel-

opment of this equation is shown in the Appendix.)

where

[-max

and rp represents the time-variant distance between the

probe and the axis of the vortex.

The subscripts p and v refer to the positions of the

probe and the vortex respectively. The other variables are

shown in Figure 9 and are described in the symbol section.

From this expression (equation 15H and experimental values of

total pressure rms levels, three separate branches of develop-

ment are undertaken to determine the mean vortex size (a), the

vortex flux N, K and the standard deviation of the distortion

factor, o*£.

Determination of Mean Vortex Size

First, the total pressure rms expression is derived

from equation (5) through autocorrelation function and power

spectral density (PSD) function transformations (rsf. 9) as
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shown in detail in the Appendix. In order to do these

developments, probability density functions for the variables

shown in equation (5) need to be defined to account for the

effect of fluctuating data. The Beta distribution function is

used for the main variables, a and V9max> and a uniform-

(constant) distribution is used for those spatial variables

describing location and orientations of the vortex (r ,r and

£). The final expression of the analytical total pressure

rms relation is given by equation (6).

• **
_ (filtered rms level)z - crf(7.0S^ a) (6)

(unfiltered rms level)2 U 2

Equation (6) states that the square of the ratio of filtered'

to unfiltered total pressure rms levels can be expressed by

an error function of (f/a)/U2 where £' is the applied filter

cut-off frequency and U^ is the mean flow velocity at the

compressor face. Using this equation, the mean vortex sise

a can be found for given values of f' U2 and the ratio of

filtered and unfiltered rms levels measured by each dynamic

probe. It is preferred to choose a certain value of f/ so

that the ratio of the rms level of equation (6) is about

0.5. This is because equation (6) corresponds to a one-

point curve-fit. An rms ratio of 0.5 assures the best fit

over the high and low frequency spectra of the PSD function.

Equation (6) is a numerical approximation derived from

equation (5) by assuming that all of the vortices have the
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same size, which is the mean value, I, of the distribution.

Validity of this assumption is examined by comparing the

exact vortex size distribution given by the Beta function

and the simplified solutions of the autocorrelation function

in terms of percent error as function of ma and na (the

parameters of Beta distribution function for vortex size a).

This is shown in Figure 10 along with the range in which the

experimental data fall.

Determination of Vortex Flux

To determine the vortex flux , N, a statistical moments

analysis (the second and the fourth moments) is applied to the

amplitude probability density (APDl function of the total

pressure fluctuations shown in equation (5)« Since the APD"

function, for most experimental data, is shewn to be nearly

Gaussian (ref. 4), both the first moment (mean) of APD func-

tion and the 4th moment (Kurtosis) of APD function are

assumed to be zero. Using the 2nd and 4th moments of APD

function, one simple expression for N is approximated numer-

ically by further assuming that Ve^ax/tV^, ** !• Equa-

tion (7) showns the result of this development (see Eqn. 17

Appx. A) .
N = o.254

Ca/RT)
2 CV9̂ )2 (a/RT)

where R^ denotes the radius of the inlet duct at the com-

pressor face station. The validity of the simplified

assumption is also examined and illustrated in Figure 11,
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along with the range in which typical experimental data

falls. The implications of the discrepancies between theo-

retical and experimental results will be discussed later.

Determination of 1C and a~.
Jfc-

Using statistical moments analysis, the mean value and

the rms value of the instantaneous distortion factor, if and

o^, can be expressed analytically by using the expression of

the total pressure fluctuations (equation (5)). From this,

K[ and ov can be obtained for given values of the mean vortex

size a", steady-state distortion factor Kss, and the total

pressure rms level.

This is done by substituting equation (5) into the

appropriate distortion factor equation of Table 1 and then

substituting these into expressions of the first and second

statistical moments of the instantaneous distortion factor

(Kinst) as shown in the Appendix. Results of the expres-

sions of "K and a£ are solved numerically in terms of a", KSS

and total pressure rms level as shown in Figure 12(a)

through (f) for several distortion factors of Table 1.

These figures show that ^ and cr^ depend on the value of a",

K-s and the measured total pressure rms level
 tfApt/q2- For

given values of a" (found from equation (6)), Kss and rms

level, K and a^ can be obtained directly from 12(a) through

(f). Using these in equation C?), the value of N is
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calculated and the peak distortion factor can then be

obtained from Figure 3.

Details of the above development are shown in the

Appendix.
Contribution of Errors

in n and m to the Final Results

Two major simplifying assumptions in the Melick method

has been examined and shown in Figures 10 & 11. One of the

assumptions is that the vortex size concentrates on its mean

size, a. The other one is that V^max/(
vemax^ ecluals to one.

There is no way that these assumptions can be justified

by direct comparison with the test data. However, for engi-

neering application purposes, it is possible to judge the

validity of these assumptions approximately by using the-

mean values of the Beta distribution function of the cain

variables, mean vortex size la) and mean vortex strength

^9max^' Since the mean value of the Beta distribution func-

tion is a function of its parameters (m and n) only, values

of the parameters can be resolved from the mean values

predicted in MelickTs program by the test data. These

parameters then can be used in Figure 10 and Figure 11 to

judge the validity of the two major assumptions. Equations to

do this are (Sa) and (8b) which give the relationship between

the mean values of the two main variables and the parameters

of their Beta distribution function.

m
 m; * \ 2 C8a)

[i, = mv * 1 (8b)
nv
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For values of a/R̂  and Vê /̂tlg calculated in Melick's

program, relationships of their parameters (ou vs. na and

my vs. nv) can be obtained fron equations (3a) and lob).

For example, from test data, the calculated values of a/Rm is

ranging from .12 to .16 and the calculated values of "V̂  Ĵ imâ c <-
is ranging from .06 to .10, errors due to the two major assump-

tions of the Melick method can be approximated as shown by

the shaded area in Figure 10 and Figure 11. Results show that

a/R,p is over-estimated by about 15 percent and N is under-

estimated by about 500 percent. The 500 percent error is due

to the fact that VQmax/(Vema.x)
2 is assumed to be 1.0 instead

of 5.0 as indicated by test data. The error in a"/R.p is

acceptable for engineering applications but the error in N is

alarming at the first glance. However, the prediction of the

peak distortion factor is not sensitive to the value of N.

This can be seen clearly in Figure B which has a very small

slope indicating that large changes in N and T can occur

without seriously affecting the value of K̂ înst' A1so, the

value of dg is always an order of magnitude less than S which

further reduces the effect on ̂ niax-insf For most of the test

data, the value of NT is between 10* and 10s. A 500 percent

error in N can cause only about 2 percent error in the pre-

diction of the peak distortion factor. This 2 percent error

is then negligible. This is why the prediction of the peak

distortion factor by the Melick method is good even with

such ?ross error in N.



19

Effect of Engine Response Characteristics

Depending on its size and inertia, an engine can only

respond to distortions below a certain frequency. Since the

engine compressor does not respond to turbulence above this

frequency level, pressure measurements should be filtered so

that high frequency distortions beyond the engine's response

capability do not produce meaningless results. That is, high

frequency components are of no concern because the engine

can't respond to them, even if they produce distortions in

excess of that required to cause a surge. This filtering

effect can be accomplished by using a third-order Butterworth

filter, which is commonly used to simulate the character-

istics of present gas turbine engines (ref. 10). The general

filtering process is shown schematically in Figure 13 which

shows an input time-dependent function Y(t), as passed through

a filter H(f), produces an output signal T'(t) with lower

magnitude. By properly selecting the filter characteristics,

this filtering process eliminates the pressure or distortion

factor fluctuations at frequencies beyond the response charac-

teristics of the engine. Filtering has the effect of reducing

the total pressure rms level. The lower the cut-off fre-

quency the lower the rms level. This is seen in Figure 14

which shows the ratio of the filtered and unfiltered rms as

a function of the normalized cut-off frequency, fca/U_. From

Figure 14, the ratio of filtered to unfiltered rms level car-

be found for the given value of fca/U2 to account for the
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engina response characteristics.

Special Treatment for Some Distortion Factors

Some distortion factors, such as K^? and APFkS", are a

combination of other indices and must be generated withirt

the Melick program. It is assumed that these indices are-

independent statistically. Prediction of the peak distor-

tion values of these indices is done by finding the peak:

distortion values of the individual components independently

and then combined into the indices. This approach is based

on the assumption that the individual components reach their-

peak values at the same time which may not be the case in-

the real situation for two statistically independent indices,

This assumption assures the prediction of the objective peak

distortion factors will always be conservative.

To illustrate this, K. is defined as:
A^£

(9)

where the b factor is a constant. This means Kg and

are independent in equation (9). The peak value of

therefore, corresponds to the peak values of Kg and K

simultaneously. The peak distortion values of Kg and

are determined independently in Melick's program and then

combined to obtain the peak value of K^2 '°7 using equation

(9).
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Melick Mapping Methods

A very simple method for determining the compressor

face peak distortion nap is included in the Melick program.

It assumes that the linear vortex of size a is oriented

along the mean shear line (a straight line) between the

steady-state high and low pressure regions. The direction

of rotation of this vortex tends to enhance both the low

and high pressure regions so that the distortion level can

be magnified. The peak distortion map is then obtained by

adjusting the strength of the mean vortex until the predict-

ed peak value of the distortion factor is reached.

In reality, the core of the distortion-influence vor-

tex may not be a straight line. This is why the Melick map-

ping method is not too accurate in predicting dynamic peak

distortion patterns. Other methods of adding the vortex

effects need to be investigated to improve the prediction.

The Melick method so developed provides a simple and

low cost way of predicting the peak dynamic distortion. The

validity of the method is illustrated in the next section.



DATA COMPARISONS

In this section, the accuracy of the Melick method in pre-

dicting peak dynamic distortion factor and pattern will be~

demonstrated by direct comparison with the HiMAT inlet test re-

sults. In ref. 6, an experimental investigation of a subscale

HiMAT model with forebody, canard and inlet is described.

These tests were conducted by NASA in the NASA Lewis 8T x 6*

supersonic wind tunnel (ref. 6). The HiMAT model has an

under-fuselage inlet with a high-divergence S-shape duct. At

the compressor face, there were 40 steady-state total pres-

sure probes and LQ high response total pressure dynamic

probes installed on the compressor face station as illus-

trated in Figure 1. Steady-state total pressure, dynamic

fluctuating total pressure and filtered and unfiltared rms

total pressure levels were recorded from the compressor face-

instrumentation during the test. In the present investi-

gation, data obtained in these tests were analyzed by two

different methods to determine, by direct comparison, the

validity of the results predicted by the Melick technique.

First, the fluctuating total pressure data were digi-

tized and screened, on distortion factor APRS, through tne

Dynamic Data Editing and Computing (DYNADEC) System of

Marous and Sedlock (ref. 10), from which the measured peak

dynamic distortion factors and patterns were obtained de-

terzninistically. Results obtained from this system are

22-
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designated as measured results. Second, the filtered and

unfiltered total pressure nas levels were used in Melick's

statistical method for predicting the peak dynamic distor-

tion factors and patterns for the same length of data run

and are designated as predicted results. Steady-state

distortion factors and patterns are also included in both

measured and predicted outputs.

Because of the high curvature and divergence angle of

the inlet duct, boundary layer separation is observed.

Fluctuating total pressure data from the tests shows a down-

ward spiking characteristics for most of the test cases with

a clean inlet duct (i.e., without vortex generators). This

is believed to be caused by intermittent boundary layer

separation and reattachaent (ref. 6). The spiking phenomenon

of the total pressure data, as illustrated in Figure 15,

shows random downward spikes bounded approximately by the free

stream total pressure at the high end and the local static

pressure at the low end (ref. 6). Because of the spiking

phenomenon, those cases without vortex generators resulted

in more than one peak distortion pattern as shown in the

DYNADEC results. A typical example is shown in Figure 16 (a).

In order to prevent the inlet performance from, being

jeopardized by potential stall due to the spiking phenomenon,

a set of vortex generators was installed annularly on the wall

of the inlet duct down stream of the cowl in order to trip

the boundary layer and prevent flow separation (ref. 6).
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Spiking data was not present for most of the test cases with

vortex generators, indicating good control of the boundary

layer.

In the DYNADEC system, peak dynamic distortion of the

HiMAT data set were screened on the distortion factor APRS

which is a function of IDC and IDE as given by the follow-

ing equation.

APRS = Kc IIDC) b + Kr IIBRJ (10)

Kc is the circumferential sensitivity factor, Kr represents

the radial sensitivity factor and b factor is a function of

IDR at the tip of the compressor blade (IDRtip). This APRS is

not predicted in Melick's program. In order to make compari-

sons possible between measured and predicted peak distortion,.

APRS needed to be computed from the predicted IDC and IDR..

It was found the maximum value of APRS occurs at the instant

when IDC is very close to its maximum and IDR is near Its-

minimum value. This is due to the characteristics of the-

b factor, however, the Melick program does not predict

minimum instantaneous distortion factor. A study was there-

fore taken to determine the minimum IDR following Melick's

approach. The concept of the prediction of the minimum

IDR is similar to that of finding the maximum IDR. This is

illustrated in Figure 17 which shows that the maximum value

and the minimum value of the predicted instantaneous distor-

tion factors are symmetric to the mean of the whole popula-

tion, K. Results were then used for computing the peak value
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of APRS. However, note that the Melick program does not

have the capability to predict peak distortion pattern

based on PRS. Therefore, the predicted distortion pattern

are still based on the maximum IDC*.

The range of the test conditions in the data base are

listed in Table 2. Data comparisons were made by comparing

distortion factors and patterns. The first part was the

comparison of distortion factors. The steady-state values

obtained from both systems are identical for every case as

would be- expected. Comparisons of the measured and predicted

peak dynamic distortion factors, APRS, for cases with and

without vortex generators are illustrated in Figure 18(a) and

13(b) respectively. Figure lS(a) shows satisfactory agree-

ment between measured and predicted results. Most of the

predicted data shown in Figure 18(a) are about 20 percent

above the measured results, which are on the conservative

side of the data prediction. This is desirable for an inlet

design purpose. On the other hand, large discrepancies are

revealed in those cases without vortex generators, which is

shown in Figure 18(b). This is because the Melick method

can not adequately deal with inlet flow when intermittent

separation induced spiking occurs. An improved method is

needed to handle the effect of flow separation. An attempt

was made to use data measured by those probes that were locat-

ed in the low pressure region (i.e., where high turbulent

fluctuations in terms of rms level was observed) to make the
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predictions of the no-vortex-generators cases close to the

measured ones, however, no consistent result was obtained.

The second part of the data comparison was concentrated

on the distortion patterns. Again, the steady-state distor-

tion patterns from both sources were exactly the same. For

cases without vortex generators, peak distortion patterns

were not comparable when the spiking phenomenon was observed.

A typical example is shown in Figure 16. Comparisons of

the measured and the predicted peak distortion patterns for

some representative cases v/ith vortex generators (without

spiking) are shown in Figure 19(a) through 19(n). Although

the predicted peak distortion patterns are based on maximum

IDC, instead of APRS, good agreement of most of the compari-

sons are shown. This may be due to the fact that IDC is the

dominant term in APRS.

In some cases, Figure 19U), 19(d) , 19(j), and 191m)-

for instance, discrepancies between measured and predicted

patterns are the most apparent. It may be possible to ia-

prove the pattern prediction by changing the axis of the

main influence vortex from a straight line to a more realis-

tic coutour line as discussed previously. More effort is

required to improve the prediction.



METHOD OF PROBE SELECTION

Development of Probe Selection Criteria

In principle the Melick method requires only one dynamic

total pressure rms measurement providing it is located at a

point that represents an average rms level for the whole com-

pressor face (i.e., 40-probe average). If the number of

probes required to provide this average rms level can be mini-

mized, the cost of test instrumentation and perhaps the flow

blockage of the inlet can be reduced greatly.

If it is assumed that dynamic effects of the inlet flow

are somehow related to the steady-state total pressure pattern,

a basic rationale of dynamic probe selection can be established

based on the steady-state pattern. This basic assumption

provides a foundation for this investigation.

Since the peak dynamic distortion factor from the Melick

method is based on the average values of total pressure rms

level and mean vortex size, a, at the compressor face, an

examination of the total pressure rms levels at the compressor

face should reveal any similarity between the steady-state

and dynamic characteristics of the inlet. The relationship

between the steady-state total pressure and the rms levels

are examined by plotting radial variations of both values as

shown in Figure 20(a) through 20(f). It has been found that

the rms levels have an inverse relationship to the steady-

state values. Thac is, when the steady-state total pressures

27



are high, the dynamic content of the flow is low and vice

versa. It is further noted that when the rms value crosses

the average value (rms/rmŝ o = 1) the steady-state total

pressure also crosses the mean value (Pt/^t4o= ^• This

observation suggests the possibility of establishing a cri-

terion for selecting apriori the location of dynamic probes

that will be close to the mean rms level of the duct. Never-

theless, the rms levels do not represent the entire dynamic

effect because another variable, mean vortex size a4 also

has an important effect on dynamic behavior.

Two approaches were taken to establish probe selection

criteria. The first approach was done by searching for com-

binations of dynamic-probe subsets which produce average values

of rms level and mean vortex size equivalent to the 40-probe

average values. This approach was found to be too complex

because of the difficulty in handling two variables in conjunc-

tion with a multiplicity of combinations of the dynamic probes,

A second approach was employed by examining local con-

tributions of dynamic effect to the peak dynamic distortion

factor directly. In order to do this, the Melick program

was modified so that the peak distortion factor could be

predicted by using dynamic data measured by each individual

probe. Results were tnen compared with the peak distortion

factor predicted by all ^.0 probes lia.Q-probe value). Radial

variations of these local contributions to peak distortion

factor IDC are also plotted on Figure 20. Similarities
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between the trend of the rms levels and the distortion fac-

tor variations are remarkable as seen in Figure 20. The

single-probe distortion factor variations can be interpreted

as variations of overall dynamic effect (including the effect

of rms level and mean vortex size a) over the compressor face.

Only IDC was used throughout the development since IDC

is the dominant term in computing APRS which is the basis

for comparison with the DYNADEC results. Results of the

present investigation are also applicable to other distortion

factors since the influence of the dynamic component to every

distortion factor is the same in the Melick method.

In order to find the key probes, the line of perfect

agreement between the single-probe value (of peak distortion

factor) and the 40-probe value were plotted on the steady-

state pressure map which is the basis of dynamic probe selec-

tion. Figure 21(a) through 21(1) show this comparison for a

number of operating conditions. Note that only the steady-

state average pressure contour and the dynamic average line

were plotted in Figure 21. This was done for most of the

HiMAT test cases with and without vortex generators and

covered the whole range of the test Mach number, angles of

attack and sideslip. The results show that the lines of

perfect agreement (dynamic average lines) coincide fairly

well with che steady-state average total pressure lines

except in regions of high and low pressure. In other words,

the average turbulence line, i.e., the line of perfect
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agreement, is in general in the vicinity of the average

steady-state total pressure region. This implies that

dynamic probes selected close to the steady-state average

line would give the prediction of a peak distortion factor

very close to that of the 40-probe prediction. It would be

preferred that the predicted value always be on the conser-

vative side, i.e., slightly higher than the 4-0-probe value.

This occurs for dynamic probes located on or outboard

(toward the low pressure region) of the steady-state average

line. On the other hand, agreement between steady-state and

dynamic average lines do not hold consistently for regions

of particular high and low pressure on the steady-state

pressure map. This can be examined in Figure 19, Figure 20

and Figure 21. Using the results of the above analysis,

general criteria for the selection of the dynamic probe

locations can be drawn.

General Criteria:

(1) The dynamic total pressure probes that are on or

just outside (larger radius) of the steady-state

average total pressure line should be selected.

(2) Probes selected should avoid very high and low

steady-state pressure regions.

Accuracy of the Criteria

The accuracy of the above criteria has been tested by

using the HiMAT test data and satisfactory results were
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obtained for engineering application purposes. One example

of dynamic probe selection is shown in Figure 22 for test

point 194S (M=0.9, <x=7° and 0=0° ). The steady-state average

pressure contour is shown in Figure 20(c) and the associated

selected dynamic probes are also illustrated according to the

general criteria of dynamic probe selection. The selected

circumferential & probes are: nos. 1, 7, 12, 20, 24, 30, 32

and 37. The peak distortion factor (IDC) predicted by these i

probes is 0.0470 which is +l+.73% higher than that predicted

by 40 probes. When only four probes out of the selected &

probes are used (i.e., nos. 1, 12, 24, and 32) the predicted

peak IDC is +1.12% higher than the 40-probe value. If the

number is further reduced to 2 probes (nos. 12 and 32}, the

predicted peak IDC is +5*10% higher than the 40-probe value.

Following the same procedure, results of some typical cases

with vortex generators are tabulated in Table 3. Results

show that the accuracy for using eight probes circumferen-

tially located near the mean steady-state pressure is within

5 percent, whereas selecting the wrong probe could cause

errors of i20 percent as illustrated by the single-probe

worst cases. Table 3 also presents satisfactory results for

using 2 and 4 probes. The results in Table 3 also fall in

the histograms of Figure 23. Figure 23 shows a histogram of

all of the probe selection data analyzed with and without

vortex generators. With vortsx generators, which are repre-

sentative of conventional low divergence ducts with moderate
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bends, the results are generally conservative compared to

the 40-probe result. This is especially true of the 2-probe

results. However, without vortex generators (a typical high

divergence duct with, bends or obstructions) the results are

still conservative but the 2-probe result is the least con-

servative.

Pragmatically, the locations of the dynamic probes are

preferred to be fixed during the test so that a sequence of

test runs can be conducted without stopping to relocate

instrumentation on the model. Steady-state total pressure

contours can be obtained from prior developmental test data,

an analytical prediction or the intuition of an experienced

inlet/propulsion engineer. In some cases it may be possible

to run some initial tests and then install the dynamic

instrumentation later in the wind tunnel test sequence.

Once the general shapes of the steady-state pressure maps

are obtained, fixed locations of the dynamic probes can then

be determined by applying the general criteria.

The above method of utilizing fixed dynamic probes has

been examined by using the HiMAT data set (with-vortex-

generators cases). Two fixed probe locations were determined

from the general shapes of the steady-state average pressure

contours shown in Figure 21. Probes no. 12 and 32 are the

most promising candidates because they avoid the extreme

high and low pressure regions and they usually lie on the

low pressure side of the generalised steady-state average
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pressure contour. Note that these lie on the opposite side of

the approximate line of symmetry connecting the regions of

high and low pressures. Generally, this cross-line-of-

symmetry combination performs surprisingly well since thesa

two probes usually satisfy the general criteria (1) and (2),

especially that of avoiding high and low pressure regions.

Results of the fixed 2-probe cases are also included in

Table 3 and Figure 23 and are comparable with the other

results.

In order to make sure that the general criteria are

also valid for other inlet test data, numerical experiments,

of the general criteria were conducted by using 3 data sets

of Melick's test cases for an internal compression super-

sonic inlet. Results and test conditions of this study are

listed in Table 4. Although Melick's test cases do not pro-

vide all the 40-probe data (only 14 dynamic probes were used>,

results of the selected 3 or 4 probes show satisfactory

agreement indicating that the criteria are also good for

other types of inlets. However, other sources of data

should be examined before this criteria can be fully vali-

dated.

The general criteria provides a way for selecting cor-

rect locations of the dynamic total pressure probes by simply

looking at the steady-state total pressure map. Probe reduc-

tion becomes possible without significant loss in accuracy.

The number of probes can be reduced to as few as 2 instead of



40. Thus, a great deal of savings in instrumentation and

analysis costs can be achieved.



CONCLUSIONS

A simplified description of the Melick method in pre-

dicting peak dynamic distortion at the compressor face of a

gas turbine engine has been accomplished. The main variables

of the assumed inlet flow vortex model have been identified

by matching analytical and measured total pressure rms

levels. Statistical properties of the instantaneous distor-

tion factor are then related to the main variables, from

which the most probable peak value of the instantaneous dis-

tortion factor can be extrapolated. The accuracy of the

Melick method has been demonstrated by using a HiMAT inlet

test data set and comparing it to the measured results of

DYNADEC.

The criteria for dynamic probe selection have been

established through a sequence of comparisons between a

steady-state total pressure map and turbulence behavior at

the compressor face. Instead of using A-0 dynamic probes, 2

probes will suffice in the early stages of inlet testing

with errors of approximately 5 percent compared to the

40-probe results.

The Melick method cannot properly deal with turbulence

caused by severe intermittent flow separation and does not

predict better peak distortion patterns than Motycka's method

does. However, the pattern prediction can be improved with

suitable modifications in the computer program.

35
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Another analytical flow model and/or modified statis-

tics are required to handle the effect of intermittent flow

separation. On the other hand, other methods of construct-

ing the peak distortion, pattern from the effect of mean

vortex flow field may be proposed for better prediction of

the peak dynamic distortion map.

A logical extension of the current work would be to

predict the rms dynamic total pressure fluctuations directly

from, the steady-state pressure maps so that dynamic total pres-

sure measurements would not be needed. This would allow the

Melick technique to be used as a design tool to predict the

dynamic distortion before the first developmental tests

were run.
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APPENDIX

Vortex Flow Model ,'

As described in the main text the total pressure fluctua-

tions of inlet flow is attributed to the existence of random

vortices convecting down the inlet duct. For sim-

plicity, the total pressure fluctuations caused by a one-

dimensional vortex flow is considered. Then the effect of

many random one-dimensional vortices will be considered by

integrating over all possible values of the variables.
.

The tangential velocity of one-dimensional, steady,

incompressible vortex is given as:

Ir/a) e
(1)

where VQ is the tangential velocity at radius r and VQ

represents the maximum VQ at radius a. The size and the

strength of the vortex are defined to be "a" and Vaymax
In reality, the effect of vortex decay due to viscous

dissipation results in decreased strength and increased size.

However, in the present analysis the vortex size and strength

are assumed to be constant because the time required for the

vortex to travel through the inlet duct is very short and the

vortex decay rate is rather small.

The total pressure fluctuations caused by the vortex

can be superimposed on the steady-state total pressure com-

ponent to form the time-variant actual total pressure as
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indicated by the following equation.

PT = Pt + APt

where, by the incompressible Bernoulli's equation,

PT - Ps + *P(02 + llx)
2 (3a)

where pT represents the time-variant actual total pressure,

Pt is the steady-state total pressure, p^ is the total

pressure fluctuations, ps. is the local static pressure, U2

is the mean stream velocity at the compressor face station

and Ux is the perturbed velocity caused by the vortex.

By substituting (3a) and (3b) into (2) and dividing
2

through by the mean dynamic pressure q=£pU2« An expression

for the total pressure fluctuations is obtained:

APt _ APt 2UX £x,2

iPUg". «2 = U2 V U>

Since Ux is assumed to be much less than U?, the second term

on the right hand side of (4) can be neglected.

— *— (5)~

Before equation (5) can be used for further development, an

expression of U needs to be derived. This can be done

easily by relating Ux to 7g of the one-dimensional vortex

through the geometric relationship between the vortex and

the pressure probe location. This is illustrated in

Figure 9.
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For simplicity, all vortices are considered to be effec-

tive only when they are crossing the measuring plane and the

pressure probe is located at the center of the duct. After

a prolonged mathematical development involving geometric

transformations, the following expression for Ux is obtained.

where

(Y_,Zp) represents the probe location.

(Y ,Zy) is a point on votex axis which has the shortest

distance to the probe

-if/2 £ Y <. ir/2

-if <. 8 <. if

With equations (6a) and (6b), equation (S) can be

written in function form:

Next, the vortex model will be used to develop an

expression for the power spectral density (PSD) function so

that test data can be compared. To do this an autocorrelation

function will be formulated by the use of equation (7).

Finally, randomness of the variables will be taken into



account in the formulation by employing the probability

density functions for the variables from the physical consid-

eration of the vortex size, the vortex strengtht the vortex:

orientation and the vortex locationfc etc.

The autocorrelation function of the total pressure fluc-

tuations due to a single vortex is defined as:

,.(t)At^

<*» A

where R and Apt represent the functions that involve the

V»T, P) and R*' - (Yv-Yp)random variables (a, *Q , R V»T, P) and R*' - (Yv-Y)
2

(zv-zp)
2.

After the probability density function for the variables

are used in equation (3) and assuming that there are N

vortices per second of vortex flux traveling down the inlet

duct, a complete autocorrelation function of the total

pressure fluctuations can be obtained as shown in equation (9V.

all possible values
(9)

where P ( a ) , P(Vemax) , P (R Y ) , P(T) and P ( p ) represent the

probability density functions for the vortex size a, the

vortex strength VQ , the vortex location Rv and the vortex



orientation Y & £ respectively. Here, it is assumed that all

the variables are independent.

The probability density functions for RV) f and £ are

assumed to be distributed uniformly (i.e. constant). Beta

distribution function is employed to describe both a and

beta distribution function is given as:

- KEl5)
m(l-5)n , for 0 *S *1

& and o,n 2 0

With these assumptions, equation (9) can be normalized

and solved numerically in one of two ways. The first is a

complete numerical integration which shows that the results

depend on the parameters ma and na. The second is by as-

suming a delta function for P(a) instead of using the beta

distribution function. The latter results in a single curve

which is independent of raa and na, and is dependent only on the

mean size of the vortices, 5. For simplicity, the results of

the second integration will be used for further development

in the analysis.

With this numerical solution of the autocorrelation

function, a PSD function can be obtained easily through a

Fourier transformation. Since only the real part of the

transformation is comparable to test data, the real part of

the PSD function is shown in the following equation.

QAP /qlf) - ̂ J ̂Pt/q U)cos(2lCfT)dT (11)



Equation (11) can be normalized and solved numerically.

The numerical results are approximated by an exponential

function and the final expression is given by:

*APt/qa

Equation (12) is then integrated over part of the fre-

quency spectrum. The left hand side of equation (12) becomes

a ratio of the filtered and unfiltered mean square value of

the total pressure fluctuations. The integration of the right

hand side of equation (12) results in an error function which

is described by equations (13a) and (13bK

or,

&} U3b)
UV

Equation (13b) is the key equation for finding the main

variable a. The ratio on the left is measured in the inlet

test for a selected filter Cut-off frequency f'. The mean

flow velocity at the compressor face, U2, is also measured

in the test. 3. can be solved by using equation (13b) with



the measured data at each probe. This is done on a probe by

probe basis and then an average value is taken.

APD Function Analysis for

Finding the Vortex Flux tt

Having found a, the vortex flux N remains to be identi-

fied. To find solution for N, statistical moments of the

amplitude probability density (APD) function are employed.

Since experience with test data indicates that the ampli-

tude distribution of the total pressure fluctuations is

nearly Gaussian, its kurtosis (the 4th moment) is assumed to

be zero. It will be shown that the second and the fourth

moment of the APD function can be used for solving N and

First, the nth moment of the APD function is defined

as:

all possible values

P(T)P(?)

Relations between ;in and the statistical properties of inlet

fluctuating pressure data can be described by equations (15).



mean * p ~ 0 (15a)
mean square » yu » O (15b)

1 C

skewness - ̂ /lua) * (15c)

kurtosis - Uu - 3.0 (I5d)

Equation (14) is solved numerically and normalized for

the second and the fourth moment of the APD function, u2 &

Results are approximated as follows.

(16a)

'..75Jf(a/RT)
2 (i6b)

Using equations (16a), (16b) and assuming that the kurtosis

is zero, the following expression is obtained.

maY
N = 0.254. U7)

The last term of the above equation is assumed to be

1.0, which is accurate to within 20 percent when mv>4+.4n .

Therefore, equation (17) becomes:

N = 0.254



Equation (18) is the solution for vortex flux N since

3 is already solved in equation (13b) and U2 and H^ are known

values. VQ__V is then obtained by an algebraic solution of^ulcl JC

equation I16a).

Distortion Factor Determination

Up to this point, the main variables of this vortex

flow model have been identified using the key equations and:

the experimental data. The next part of the development is

to establish relationship between these variables and the

dynamic distortion factor of the inlet. The main variable*

of the vortex model (a and N) are useful for predicting the

statistical properties (mean and standard deviation) of the

distortion factor. From this the extreme (peak) value of the

dynamic distortion can be determined by extrapolation.

Relation Between Total Pressure

Fluctuations and the Distortion Factors

Typical distortion factors for the inlet flow are

defined in table I. These may be used to discribed the var-

iation of pressures at any instant of time. The time-variant

total pressures can be characterized in terms of the vortex

flow model variables, a and N, decribed previously.



Following the same analysis as for the APD function, the mean

and the standard deviation of the instantaneous distortion

factors, K and oV, are found to be functions of a, the steady-

state distortion factor (KgsJ and the total pressure rms

level. These parameters are already known at this point so

that K and <5R can be obtained explicitly. See Figures 12 (a)

through (f) for illustrations.

After K and dj, are obtained, probability distribution

function for the population of the instantaneous distortion

factors is defined from which the most-probable peak distor-

tion factor can be picked. The peak value is found to be a
4ft

function of K, d,,, N and the data record length T, which are

again known values from the previous analysis.

Now, relations between the total pressure contour

measured at the compressor face and the distortion factors

are linked by the definitions listed in table I. Since the

total pressure and the distortion factors are time-variant,

it is more appropriate to used the instantaneous notation.

Instantaneous distortion factor with the random variables
^

involved is denoted as K^nst which is a function of the in-

stantaneous pressure contour by the definitions of table I

as indicated in equation (19).

(19)
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t in equation (19) is obtained from equation (7) and

the steady-state total pressure data, P s s»
 ars assumed for

several typical distortion patterns. Statistical moment
/\

analysis for K^n t is taken so as to relate the mean value

K and the standard deviation o*K to the main variable a. The
J\

nth moment of K^nst is defined in equation (20).

all possible values

dtdadV0 d f d T d e (20^

The probability density functions used in the analysis remain

the same as those used in the APD function moments analysis.

Only the first two moments of equation (20) are needed for

finding K and d^ through the aid of the following relations.

AK - X- K s s (21a)

The results of this analysis are solved and approximated

numerically, and are shown in Figures 12(a) through (f) for

different distortion factors listed in table I. It is shown

that oV and AK are functions of a and K__. For some of the
*\ 55

distortion factors, the results are functions of a only. After

a and Kss are fed into these figures, o*K and AK can be de-

termined. Then K is calculated from equation (21a) for the

given value of K3g.
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Table 2. Range of test conditions and data bases of
HiMat inlet testing model

Mach no.

Angles of attack, a

Angles of sideslip, 6

rms filter frequency, f*

Engine cut-off frequency, fc

Data recording time, T

Vortex generators

0.4 ~ 1.

-10 deg -

0 deg -*

36

' +25 deg

-10 deg

1000 hz

500 hz

30 see

with and without
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Table 4. Numerical experiments of the general criteria of
dynamic probe selection for three Melick's test
cases of an supersonic internal compression inlet

Case no.

1

2

3

Test condition

M

2.5

1.6

2.5

a

5

5

5

6

0

1

0

Totally 14 dynamic
probes

peak K^

1.1638

1.1636

0.7438

worst
single
probe
(%)

+35.81
-15.65

+16.58
-19.13

+25.67
-14.91

Available selected
probes

probe no.

18,21,22,
38

4, 17,21,
38

4, 20,24

Error
based on
14-probe
value (%)•

-Z.56-

-2.97

+4.94



(a) HiMat Test Model

,45°

U 30°,

Compressor Face
Ins trumentat ion
• Steady-state
Probe
Dynamic Probe

I8o"
(b) Total Pressure: W* Apt(i,j) fluctuating

\*K /I.A../1 . .A ..A~p tiv«vr v'V" •'vv*'irv"Ŷ 'n

Pt

Time-sec

Nearly Normal
Distribution

steady state

S3

(c) Distortion Factor(resulting from a combination of all probes):

Nearly Normal
Distribution

Time-sec Kinsf

Figure 1. Illustration of a typical inlet test model and the physical and
statistical total pressure data and distortion factor
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(a)

Compressor Face

Dynamic Probe

Velocity Profile

:ax

Static Pressure
Distribution

-P/Pr-0-

(b)

APt

Time

Figure 2. Inlet vortex flow model and perturbation of velocity and
static pressure and the time variant total pressure
fluctuation caused by a single 1-D vortex
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P(x)

"be.**. *
4,34, .125

8,26, .25

4,14, .25

2,8, .25

Beta Distribution Function:

POO = Kx(x)mx(l-x)Ilx

Whgr"' m^H-r

5,9, .375 gamma function:
T(n) = (n-D!

, for n =4,4, .5

0 .2 .4 .6 .8 1.0
x-

Figure 3. Illustration of the characteristics of Beta distribution
function-

Figure 4. Probability density function of the instantaneous distortion
factor, K Note that the results have been normalized
by K and
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-3 -2

Kinst~^
Cfc

Figure 5. Probability distribution of the cumulative probability
function of P~

•NT=2

Figure 6. Probability distribution of the peak distortion condition



P or P2

P2,NT=10
P2,NT=100

.ost-prob-max value
for NT=10a

-most-prob-max
value for NT=10

Figure 7. Probability density function of Kinst and the peak distortion
value, P and P2 respectively

Figure 8. Most probable maximum(peak) instantaneous distortion factor
as a function of NT, K and a
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•Experimental data—
60

Erro'r=lO% 5%

Figure 10. Error of the mean vortex size assumption as a function
of ma and na

VJWx _5

CvSmax)2 ~

-Experimental data

3 1.5 1.2

Error < 202
(assumed)

1.05-

10 20 30

Figure 11. Error in vortex flux, N(assuming VQ /(VQ )2=1.), as
- . ,. . TnrtX ulHX

a function of my and nv
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Figure 12. Distortion factor rms level and mean instantaneous value
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PART II

INLET FLOW DYNAMIC DISTORTION
PREDICTION — WITHOUT RMS MEASUREMENTS



SUMMARY

A two-equation turbulence model, k-c model, is used in

the prediction of inlet flow dynamic distortion of jet

aircraft based on steady state total pressure measurements

only. This turbulence model is solved at the compressor

face station by using a finite difference scheme. Total

pressure rms level of the inlet flow is predicted by the

turbulence model. The Melick statistical method is then

employed to estimate the peak dynamic distortion based on

the analytically predicted total pressure rms level.

A statistical method is developed for the estimation of

boundary conditions for the turbulent equations.

In order to solve the set of nonlinear, coupled

turbulent equations, an implicit formulation is utilized

such that a set of discretized finite difference equations

can be arranged into tridiagonal matrix equations for

efficient numerical iterations.

Results of the prediction compare well with

experimental measurements of subsonic, transonic and

supersonic inlets under various flight conditions. The

present method can be used in the preliminary inlet design

phases to reduce the design costs.
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Q Circumferential coordinate (radian)

u Absolute viscosity (slugs/ft-sec)
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l/t Turbulent viscosity, = C kVc (ft*/sec)
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d Standard deviation
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p Analytically predicted result

s Static condition

ss Steady state value

t Total or stagnant condition
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(n) Indicate condition after the nth numerical
iteration.

* Indicate solution of equations (22) & (23)

' Time variant component

(over bar) Time averaged value or compressor face
average value
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2. INTRODUCTION

Distortion of inlet flow plays an important role in

determining the stable operating region of turbojet or

turbofan engines, especially for highly maneuverable

military aircraft. Time variant or dynamic distortion

heightens this problem by creating peaks superimposed on top

of the steady state distortion as illustrated in the

adjacent figure. Thus, the occurrence of stall surge or

other engine instabilities can not be readily predicted.

Traditionally, time variant total pressures of the

inlet flow measured in the test are analyzed by several

methods. These methods can be classified into two-

categories .

In the first category, time variant total pressures

measured by high response total pressure probes over the

compressor face are recorded in the test for a specified

period of time. Then, these data are screened in the

Dynamic Data Editing and Computing System (DYNADEC)

deterministically based on a certain distortion factor

(ref.l), (definitions of some distortion factors are given

in Table 1). From the screening procedure, a maximum

instantaneous peak distortion pattern corresponding to a

maximum instantaneous peak distortion factor is determined

(refs. 1,2). This is the most accurate method, but it is

also the most costly and time consuming method. It will be

the basis for data comparisons in this work.



ILLUSTRATION OF SOME FEATURES OF THE TIME VARIANT TOTAL

PRESSURES AND DYNAMIC DISTORTION:
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In the second category, the peak dynamic distortion is

predicted using some form of statistical analysis (refs. 3,

4, 5, 6, 7, 8) which is more economic than the DYNADEC

approach. There are three major statistical approaches.

The first one, due to Jacocks, et al., uses Gumbel's extreme

value theorem to extrapolate the peak dynamic distortion

within a specified time period from the first short time

segment of deterministic information (ref. 4). The second

approach, due to Motycka, utilizes a random number generator

to simulate the total pressure fluctuations at each probe

based on the measured steady state total pressures and the

measured total pressure rms levels. Time variant distortion

factors are calculated using the generated instantaneous

total pressures, from which the peak dynamic distortion is

determined (ref. 5). The third approach, developed by

Melick, et al., is a modeling approach that postulates that

the dynamic effects in the inlet flow is totally attributed

to the pressure disturbances caused by a sequence of

convecting vortices in the inlet duct. The peak dynamic

distortion is determined from this physical model and its

statistical properties. Filtered and Unfiltered total

pressure rms levels are used to identify main variables of

the vortex flow model (ref. 3, 6). Among all the methods in

this category, the Melick method is the most efficient in

terms of numerical analysis whereas it is not as accurate as

the Motycka method in predicting the peak dynamic distortion

patterns (ref. 7).



Since the forementioned approaches require measurements

in the time variant total pressures using high response

total pressure probes, design of high performance inlet is

costly in terms of instrumentation, analysis and testing

time. Thus, it is highly desirable to develop analytical

means for predicting peak dynamic distortions without

dynamic measurements.

There are analytical methods of predicting steady state

distortions but not the dynamic peak distortions. Also,

these analytical methods are limited to qualitative

predictions only, since the total pressure losses through

the inlet duct can not be well predicted. A summarized

review of the current analytical methods is included in

reference 9. Reference 10 provides an application of the

time marching finite volume method to the prediction of

steady, quasi-invicid inlet duct flows.

The present work makes the first attempt ever to

predict the peak dynamic distortion based on the steady

state total pressure measurements at the compressor face

station. Once the approach of the present work is

successful, it would be highly encouraging to extend the

present analysis to a pure dynamic distortion predicting

technique in the future research, without any experimental

measurement, by incorporating the present analysis in an

existing steady state distortion prediction code. This

would allow early identification of possible dynamic

distortion problems before the first wind tunnel model is



built.

In the present work, an analytical method of predicting,

the dynamic peak distortion, based on the steady state total

pressure measurements, is proposed and evaluated. First,

axial velocity distributions of the inlet flow are

calculated from the measured steady state total pressures.

A two-equation turbulence model, k-e model, is then employed

to solve for turbulent kinetic energy distributions over the

compressor face using the calculated velocity distributions

and statistically estimated boundary conditions. The total

pressure rms levels are computed from the predicted

turbulent kinetic energy. Finally, the dynamic peak

distortions are estimated by the Melick program using the

predicted total pressure rms levels.

In solving the turbulent equations which are coupled

and nonlinear, a finite difference scheme is used to

discretize these equations such that tridiagonal matrix

equations are obtained for successive line relaxation

iterations. Effects of the relaxation factor on the

convergence of the numerical scheme are examined from which

an optimum computational scheme is determined.

Sensitivity study of the variables and parameters of

the turbulent equations to the final results is also

included to reveal how the solutions vary with the variables

and parameters.

Results of the present method are compared with those

of the DYNADEC for five inlet data sets. These data sets



cover a range of Mach numbers from 0.6 to 2.5, a range of

angles of attack from -10 degree to 25 degree and a range of

angles of sideslip from 8 degree to -10 degree. Inlet

configurations involved in these investigations are

illustrated in Figures 1 through 5.

Major objectives of the present study are: (1) to

provide an efficient tool for the preliminary inlet design

and development in which only the steady state total

pressure measurements are required; (2) to demonstrate that

the peak dynamic distortions can be predicted by using the

k-e turbulence model; and (3) to suggest possible future

studies in improving the analysis of the inlet flow dynamic

distortion.



3. METHOD OF APPROACH

In the present analysis, a semi-empirical approach in

predicting dynamic peak distortion of the inlet flow, based

on compressor face steady-state total pressure measurements,,

is developed under the following major assumptions: (1)

turbulent characteristics of the inlet flow, at the

compressor face station, can be represented by an

incompressible, high Reynolds number, two-equation

turbulence model -- k-e model (ref. 11); (2) the inlet flow-

near the compressor face is dominated by the axial velocity

component such that secondary flow (flow components that are

not parallel to the inlet duct) effect can be neglected;

(3) streamwise variation of the turbulent characteristics is

small and can be ignored from the turbulence model; and (4)

boundary (near-wall) total pressure rms level is

proportional to the total pressure loss near the wall of the

inlet duct so that a statistical correlation between the

measured steady-state total pressures and the boundary total

pressure rms level can be developed using the HiMAT data

set.

Assumption (l) is justifiable based on the following

reasons: (a) compressibility effect on the turbulent

characteristics of the inlet flow can be neglected since the

flow near the compressor face station is always at

low-subsonic speed; (b) the k-e turbulence model is well

tested for many types of turbulent flow such as turbulent



boundary layer along a flat plate (refs. 11, 12, 13, 14, 15,

16), turbulent flow inside rectangular channel or circular

pipe (refs. 17, 18, 19, 20), free-shear turbulent flows

(refs. 21, 22, 23) and other applications (refs. 24, 25);

(c) although the accuracy of the k-e model is comparable to

other two-equation turbulence model, such as the one

developed by Rotta and Vollmers (refs. 26, 27), it is found

that the k-e model is more efficient numerically.

Despite the fact that assumptions (2) and (3) may not

be realistic from a theoretical point of view, for some

inlet configurations and flight conditions, these two

assumptions are imposed because there is normally no flow

direction or streamwise turbulence information available.

It will be shown later that assumption (4) makes a

major contribution to the present analysis. Assumption (4)

is made in order to develop a reliable method for estimating

the boundary conditions for the turbulent model.

Note that the present analysis does not take into

account the effect of boundary layer bleed immediately

upstream of the compressor face since turbulent structure of

the inlet flow would be quite different in that case.

Therefore, it is expected that the present model may not be

suitable for inlet flow with strong boundary layer bleed.

Based on these four assumptions, developments of the

mathematical formulations and the method of estimating the

boundary conditions are described in the following two

sections.



3.1 Mathematical Formulations

Partial differential equations of the k-e turbulent

model suitable for incompressible high Reynolds number

turbulent pipe flow (ref. 12) can be written as:

.ak . rak . wak 1 3 , Sik1 ak x . 1 s /Sjk1 ak x .
u + V - * = - ( r - ) + ( - ) +

where u, v and w are time-averaged velocity components in

axial, x, radial, r, and circumferential, 9, directions

respectively, k represents turbulent kinetic energy, e is

turbulent kinetic energy dissipation rate, |i=. is radial

velocity gradient, ^ is circumferential velocity gradient

and the five empirical constants are:

\ ' l'Q

d£ = 1.3

C^ = 0.09

C£l - 1.45

C£2 = 2.0

Detailed derivations of equations (l) and (2) are included

in Appendix A.

Using assumptions (2) and (3), the left hand side of

equations (1) and (2) can be eliminated. This results in:



(3)

•nr = 0 (4)

In equations (3) and (4), the radial and

circumferential velocity gradients are required as inputs

which can be obtained from the measured steady-state total

pressures. First, the axial flow velocity at each pressure

probe location is computed from the steady-state total

pressure measurement by the following equation:

where U^ is face-average flow velocity, p and p are total

and static density respectively, P. and P are total and
<— o

static pressure respectively and 7 = 1.4. Derivation of

equation (5) is described in more detail in Appendix B.

A cubic spline interpolation subroutine is then

employed to calculate and interpolate the radial and

circumferential velocity gradients at every computational

nodal point on the compressor face. An artificial smoothing

10



routine is also used to account for large velocity

variations near the wall.

After the solution of turbulent kinetic energy i3

obtained from equations (3) and (4), total pressure rtns

level is computed from the turbulent kinetic energy using

equation (6).

Note that rms has been normalized by the face-average total

pressure (in psi), P^?- Appendix C describes the detailed

derivation of equation (6). This equation is only an

approximation since the relation of isotropic turbulence haa

been assumed in the derivation.

3.2 Boundary Conditions

In this section, a statistical correlation between the

boundary total pressure rms level and the steady-state total

pressure is obtained by applying assumption (4) to the HiMAT

data set. Assumption (4) can also be expressed in the

following equation:

11



where rms, = (rms) c ,b v 'nng-5-average'

C, stands for a correlation factor and (P..?)*, anc* rmsh

been normalized by P 0 and P ~ respectively. P\Q and P ~

are free stream and face-average total pressure respectively

(in psi).

Obviously, C, is not a constant due to the fact that

different turbulent structures of the inlet flow are

produced in different flight conditions. Thus, a different

proportion of the turbulent kinetic energy in the total

energy loss is expected for different turbulent structures.

Nevertheless, by examining the HiMAT inlet data set, there

is a fairly consistent relation between the turbulence level

and the face-average total pressure loss, (1-P f-o)- From

this clue, a statistical analysis between C, and the

face-average total pressure loss is done from which a second

correlation between C, and d'?*.?) ̂ s extracted from the

HiMAT data set.

Figure 6 shows a linear regression of login^k on

for the HiMAT inlet data at subsonic and- «

transonic speed. Data at supersonic speed will be handled

differently, as will be discussed later, for the effect of

inlet shock system. From Figure 6, the equation of a

regression line is obtained. This is expressed by equation

(8).

nor FILMEP

12



-0.9393 + (-0.2587) Iog(l - P) (8)'10

or,

Ck- 0.115 (1 - P̂ )'
0'2587 (9)

It is shown clearly from Figure 6 that the regression line

has a negative slope. This reveals the fact that the higher

the turbulent level of the inlet flow the higher the total

energy that is dissipated through turbulent mixing and

redistribution up stream of the compressor face.

Tests of this regression line on other inlet data is

also illustrated in Figure 6. It can be seen that this

regression line, equation (8), represents the inlet flow

turbulent characteristics of other inlet configurations-

equally well.

The same analysis is applied to supersonic cases of the

HiMAT data set without accounting for the effect of inlet

shock system. This is shown in Figure 7, which reveals

discrepancy between equation (8) and the test data. The

reason for this discrepancy is that the total pressure loss

through the inlet shock system is due to the shock

compression process which is not responsible for the major

part of the generation of turbulent kinetic energy.

In order to obtain a consistent correlation between C^

13



and the steady-state total pressure for supersonic cases,

equation (7) is revised to be:

rms.
(10)

t2

where P ^, normalized by the free stream total pressure,

stands for the total pressure recovery through the inlet

shock system. If P .. is not measured in the test, it can be

estimated from a set of curves of maximum total pressure

recovery for 2-dimensional oblique shock and conical shock

systems as shown in Figure 8 (ref. 28).

Again, a correlation between C, and the face-average

total pressure loss after inlet shock system, (^tl'^tZ^' ^or

HiMAT inlet data at supersonic speed, is shown in Figure 9.

Corrections for the effect of inlet shock system are

obtained from the curve of one 2-dimensional oblique shock

in Figure 8. A revised version of equation (8) is also

shown in Figure 9. Equation (11) is the revised version of

equation (8).

-0.9393 + (-0.2587) logl0(Ptl- P̂ ) (11)

14



or,

0.115 (Ptl- P̂ )"' (12)

In Figure 9, equation (ll) represents higher value in

C, than the data points. This is due to the fact that the

shock correction curves given in Figure 8 is the least

amount of correction that a inlet can possibly attain under

any flight condition. In reality the total pressure

recovery through an inlet shock system is lower than that

obtained from Figure 8 such that the mean of the data points

in Figure 9 would be very close to equation (11). However,

it is feasible to use equation (ll) and Figure 8 for the

estimation of C, since a slight over estimation of C, can be

attained. This means that the boundary rms level would be

slightly over estimated which is desirable for a

conservative design process.

The validity of equation (11) is tested using other

inlet configuration of Melick's supersonic test cases as

shown in Figure 9. The correction for the effect of the

inlet shock system is also accounted for by using Figure 8.

Good correlation between equation (11) and the test data is

shown clearly in Figure 9.

Conclusion of the statistical study described in this

section can be summarized by the following equations which

are combinations of equations (7) and (9), and equations

(10) and (12).

15



For subsonic and transonic cases:

o.ii5 (i - p^r0-2587. ci

For supersonic cases:

0.115 (Pa- Pt2)-°'
2587 . [Ptl- (Pt2)b]

Also, equation (6) can be written as:

f

Using equations (13), (14) and (15), boundary conditions for

the turbulent kinetic energy, k, of the k-e model can be

estimated.

Note that the estimated boundary rms level is an

average value near the wall rather than a circumferential

distribution as the actual measured rms level would be. It

is not only that there is no consistent rule for estimating

the circumferential rms level distribution but that the use

of an average boundary rms level predicts almost the same

face-average rms level as that predicted by using the exact

boundary rms level distribution. This will be described

16



later in more detail in section 5.2.

Boundary condition for the turbulent kinetic energy

dissipation rate, e, is also required in order to solve

equations (3) and (4). This boundary condition can be

obtained by applying a wall function approach (ref. 11, 12,

17, 18) to the k-equation, equation (3). The wall function

approach states that the turbulent energy generation term,

the third term of equation (3), and the turbulent energy

dissipation term, the last term of equation (3), are almost

equal near the wall. The following equation supplements

this statement.

Using equation (16), the boundary condition for the

turbulent kinetic energy dissipation rate can be estimated.

3.3 Interfacing with the Melick Method for Predicting

Peak Dynamic Distortions

Besides the compressor face steady-state total

pressures and the face-average total pressure rms level, a

ratio of the filtered to unfiltered mean square (ms) levels

and the corresponding cut-off frequency are required as

inputs for the prediction of dynamic peak distortion factors

by using the Melick method (refs. 3, 6). Unless this ms

17



ratio and the cut-off frequency are determined

experimentally, an approximation is suggested here. It is

learned by examining, the available test data sets that the

ratio of filtered to unfiltered ms levels is around 0.5 at a

cut-off frequency ranging from 800 hz to 1000 hz. This

corresponds to fairly constant frequency response of the

turbulent characteristics of the inlet flow. Also, it is

mentioned in reference 3 that the prediction of dynamic peak

distortion is not very sensitive to the ms ratio and the

cut-off frequency. In the present analysis, an ms ratio of

0.5 at a cut-off frequency of 1000 hz are used for every

data set. It will be shown from the results that this

approximation is reasonable.

18



4. NUMERICAL SCHEME

Since equations (3) and (4) are coupled and nonlinear,

a finite difference numerical scheme is used to discretize

these two equations (refs. 29, 30, 31). A computational

grid system and a set of finite difference equations are

arranged in such a way that an implicit numerical scheme is

obtained. A set of tridiagonal matrix equations are also

attained for efficient successive iterations. A relaxation

factor and grid size parameter are determined in the

analysis of numerical convergence in section 4.3.

4.1 Grid System

A grid system based on the locations of total pressure

probes on the compressor face is illustrated in Figure

10(a). Figure 10(a) shows a 40-probe compressor face

instrumentation configuration. For better finite difference

approximation, finer grids are used by dividing the space

between probes into N equal spaces. N , an integer, is
o o

designated as the grid size parameter. In this way, smaller

grid size can be attained near the wall where larger

variation in turbulent characteristics is expected (ref.

18). Total number of non-boundary grid points of the grid

system can be calculated by the following relation.

TO. (N )'. Nr - Mp <17>
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where TN denotes the total number of non-boundary grid

points, N is the grid size parameter, N and N represent

the number of rings and the number of rakes of the total

pressure probes respectively.

4.2 Finite Difference Formulations

In this section, a set of discretized difference

equations are derived by applying central difference scheme

to equations (3) and (4). Referring to Figure 10(b), the

central difference equations, in radial (r) and

circumferential (9) directions, for any variable $ about

point p can be written as (ref. 30):

Ari

Note that an irregular grid spacing has been assumed in the

radial, r, direction.

Applying equations (18) and (19) to equations (3) and

(4), by changing $ to k and e respectively, the following

finite difference equations can be obtained.

20



where

+ Ai,3

Bi,2 'i, j+ Bi,3

—;

' Di

'i,j-l

A.

B.

(20)

(21)

B.1,2
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B.1,3 r

Note that equations (3) and (4) can not be applied to

the point at the center of the inlet duct where r=0. This

problem can be handled by rewriting equations (3) and (4) in

Cartesian coordinates. The central differencing technique

is then applied to the new equations about point p and the

surrounding points n, e, s and w shown in Figure 10(c).

Equations (20) and (21) are then written for all points

on a radial line, as shown in Figure 10(a), from point 0 to

point n+1. From this, two tridiagonal matrix equations are

obtained for efficient line relaxation iterations. These

two matrix equations are expressed as:
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\
\

•2.J

(23)

Dn - Bn,3

Equations (22) and (23) can be solved easily by the routine

described in Appendix D.

In order to start the implicit iterative numerical

scheme, initial guess of the values of k and e for every

non-boundary grid point must be given. Initially, the

boundary values of k and e, estimated from equations (13),

(14), (15) and (16), are assigned to every grid point to

start the iteration.

A relaxation factor, f , is then used to control the

convergence of the numerical scheme (ref. 31) • Effect of

the relaxation factor on the rate of convergence will be
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presented in the next section. Using the relaxation factor,

f , the updated solutions of k and e are obtained from the

following relations:

k(nfl) . k(n) + £ k* . k(n) } (24)

. e(n) } (25)

J. y.

where k" and e" are solutions of equations (22) and (23),

and superscripts (n) and (n+l) stand for the old and new

values respectively.

4.3 Numerical Convergence

Numerical convergence of the finite difference scheme

described in the previous section depends on two factors:

the relaxation factor, f , and the grid size parameter, N .

To study the effect of f and N on the rate of convergence

of the numerical scheme such that an optimum numerical

scheme can be determined, a relative percent error of each

iteration is defined as:

(26)

where TN is the total number of non-boundary grid points and



the sign, , stands for the summation over all non-boundary

grid points.

Steady-state total pressure data used in this study is

obtained from the HiMAT data set.

To determine the value of f , the relative percent

error, E , at the end of the 30th iteration for several

values of f and boundary rms levels, rms-, , is computed and

presented in Figure 11. It is seen clearly from Figure 11

that E is decreasing with the increase in f , until f

exceeds a boundary beyond which the numerical scheme becomes

divergent. The boundary for divergent and the rate of

convergence depend also on the boundary rms level, rms,.

From this a value of f =1.0 is selected for relatively good

characteristics of convergence and allowing a margin to the

divergent boundary for safety operation of the numerical

scheme.

To determine the grid size parameter, N , the relative
O

percent error in 30 iterations, E , for several values of

N is computed and illustrated in Figure 12. f and rms,
O

are fixed at values of 1.0 and 0.011 respectively. It is

shown in Figure 12 that E stays at almost a minimum value

beyond N =4. For efficient numerical scheme in terms of
&

computing time and good characteristics of convergence, N =4
5

is chosen for successive computations.
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5. SENSITIVITY STUDY

Prediction of the face-average total pressure rms level

and the dynamic peak distortion by using the present

analysis depends on the following factors: (l) the measured

steady-state total pressure profiles; (2) the estimated

boundary rms level; and (3) the empirical parameters of the

k-e turbulence model. In the following sections, effects of

these factors on the prediction will be examined from which

the sensitivity of these factors on the present approach can

be identified.

5.1 On the Velocity Distributions-

Study included in this section will concentrate only on

the effects of radial variations of the flow velocity.

In Figure 13(a), five radial steady-state total

pressure profiles, which are equivalent to the velocity

profiles, are assumed. These total pressure profiles cover

a range of boundary layer characteristics from a favorable

boundary layer, profiled^ to a separated boundary layer,

profiled). Note that profile (4) stands for the boundary

between separated and non-separated boundary layer profiles.

To predict the dynamic distortion, in this study, a constant

boundary rms level, rms, =0.02, is used for each pressure

profile.

Results of the prediction using the present analysis,

based on the assumed five steady-state total pressure
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profiles are illustrated in Figure 13(b). In Figure 13(b),

only prof ile (I) produces lower rms level near the center of

the inlet duct. The rms level is heightened near the duct

center as the total pressure profile is close to the

separated flow.

Figure 13(c) shows the predicted face-average rms

level, rms , and the dynamic contribution to a distortion

factor, K.OJ for the five total pressure profiles. It is

shown clearly that the profile with a favorable boundary

layer, prof ile (l\ produces the lowest rms and dynamic
P

contribution to K.^ while the separated flow, profile(5X

predicts the highest rrns and dynamic contribution to K.--

This study shows that: (l) the present method is

sensitive to the measured steady-state total pressure

profiles; and (2) the dynamic contribution to the peak

distortion can be minimized by designing the inlet contour

or using boundary layer treatment devices, (e.g. vortex

generators,) so that a favorable boundary layer profile can

be attained.

5.2 On the Boundary Conditions

In this section, effects of the distribution and

magnitude of the boundary rms level, rms, , on the prediction

are presented. Steady-state total pressure data used in

this investigation is obtained from an inlet test case, with

the test condition shown on the top of Figure 14 (data point

1948,) of the HiMAT data set with vortex generators.
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First, the effect of the boundary rms distribution on

the predicted rms distributions on the compressor face is

illustrated in Figure 14. In Figure 14, the circular symbol

stands for the measured rms levels, the solid line is the

result of the prediction using a constant boundary rms level

estimated by equation (13) and the dashed line represents

the result of the prediction based on the actual measured

boundary rms level, which is not a constant

circumferentially. The indicated number of degrees on the

upper left corner of each of the eight figures in Figure 14

denotes the angular position of the pressure rakes on the

compressor face. The measured and predicted face-average

rms levels, rms, are also shown in the upper portion o-f

Figure 14.

It is shown clearly in Figure 14 that the use of the

actual rms-, distribution improves the prediction, especially

for the pressure rake at 180 degree. However, a discrepancy

in the prediction of face-average rms level, rms, is not

very significant.

In Figure 14, discrepancies between the measured and

predicted rms distributions can be seen clearly. This is

due mainly to the inevitable assumptions of the theoretical

model, assumptions (2) and (3), in which the effects of the

secondary flow and the axial variations of k and c are

omitted.

Note that the computed value of rms using the constant

rms, is slightly over-predicted over the measured rms and
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the one computed using the actual rms, distribution is

under-predicted. The same result is obtained for several

test cases of the HiMAT data set. From this, the use of the

estimated constant rms, in the present analysis is feasible

in the inlet design process-

Next, effects of the magnitude of rms, on the predicted

value of face-average rms level, rms , and the dynamic peak

distortion factor, K^ peak' are Presente<^ ^n Figure 15(a)

and Figure 15(b) respectively. It is shown in Figure 15

that rms and K.- Deak
 are very sensitive to the variation

of rms, . This means that good predictions of the

face-average rms level and the dynamic peak distortion

depend on a good estimation of the boundary rms level.

Validity of the present analysis may largely be attributed

to the statistical estimation of the boundary rms level,

rms, .D

5.3 On the Parameters of the Turbulence Model

Effects of the values of the five empirical constants,

o, , d£, C , C ., and C 2* on the predictions of face-average

rms level, rms , and dynamic peak distortion factor,

K.2 Deav>
 are investi§ated i° this section. This is done by

varying one of the parameters while keeping the other

parameters at constant values. Results of this study is

illustrated in Figure 15.

It can be seen clearly from Figure 15 that the

predicted face-average rms level and the dynamic peak
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distortion factor are not sensitive to the changes in the

five parameters of the turbulence model. Therefore, an

accurate estimation of the boundary rms level is far more

crucial than any adjustment in the empirical constants of

the turbulence model.
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6. NUMERICAL RESULTS AND DISCUSSIONS

In the following sections, numerical predictions by the

present analysis and data comparisons with five inlet data-

sets are included. The five inlet data sets consist of

experimental results of subsonic, transonic and supersonic

inlet configurations under various flight conditions. Inlet

configurations and some measured results of these data sets-

are illustrated in Figure 1 through Figure 5. Three aspects

of data comparisons v/ill be included. They are-:

face-average total pressure rms level comparison; peak

dynamic distortion factors comparison; and detailed rms

level distributions on the compressor face comparison-.

6.1 The HiMAT Inlet Data Set

Reference 34 describes an experimental investigation of

a subscale HiMAT model with forebody, canard, inlet duct and

optional boundary layer control devices, vortex generators.

The HiMAT inlet tests were conducted by NASA in the NASA

Lewis 8'x6T supersonic wind tunnel facility. The HiMAT

model has an under-fuselage inlet with a high-divergence

S-shape subsonic diffuser. At the compressor face station,

there were 40 steady-state total pressure probes and 40

dynamic high response total pressure probes installed in an

8-rake, 5-ring configuration as illustrated in Figure 1.

Using the present analysis, face-average total pressure

rms levels and peak dynamic distortions are predicted based
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on the steady-state total pressure measurements of the HiMAT

data set. Comparisons of the analytically predicted and

experimentally measured rms levels and peak dynamic

distortions> for the HiMAT inlet model without vortex

generators, are shown in Figure 16. Reasonably good

accuracy of the present method in predicting the

face-average rms levels is revealed from Figure 16.

However, Figure 16 also shows that the present analysis

underpredicts the peak dynamic distortion factors for most

cases of the HiMAT data set without vortex generators.

Since these test cases contain incipient or intermittent

separated flow, under-prediction of the Melick statistical

method can be expected (refs. 3, 34). Note, in Figure 16,

the measured peak dynamic distortion factors, APRS (defined

in Table 1,) are the DYNADEC results (ref. 1).

Figure 17 illustrates comparisons of the peak dynamic

distortions, in terms of IDC , predicted by the present
fflcL X

analysis and the Melick method based on measured rms levels

for the HiMAT data set without vortex generators. It is

shown in Figure 17 that predictions of the present analysis

compare well with the Melick predictions. Note that the

peak dynamic distortion factors of Melick1s prediction,

IDCmax,Melick's-prediction' are obtained from the Melick

statistical predictions using 40 total pressure rms

measurements.

Figure 18, (a) through (c), presents comparisons of the

predicted and measured rms level distributions at the
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compressor face for three test cases selected from the HiMAT

data set (without vortex generators.) Discrepancies between

the predicted and measured rms level distributions can be

observed in Figure 18. Since the HiMAT inlet model has a

short S-shape inlet duct with large streamwise curvature,

substantial secondary flow components can be expected (ref.

17). The presence of the secondary flow violates

assumption (2) of the theoretical model. Therefore, some

discrepencies in the prediction of the rms level

distributions should be expected. However, the face-average

rms level is predicted well which is responsible for the

good prediction of peak dynamic distortion using the Melick

statistical method.

In Figure 19, comparisons of the predicted and measured

face-average rms levels and peak dynamic distortion factor

are presented for test cases of the HiMAT data set with

vortex generators. The predictions shown in Figure 19 are

more accurate than those cases without vortex generators,

Figure 16. For these cases with vortex generators, boundary

layer of the inlet flow is controled by the vortex

generators successfully (ref. 34), which results in better

predictions of the Melick statistical method.

Figure 20 illustrates comparisons of the peak dynamic

distortions, in terms of IDC , predicted by the present
fuel /w

analysis and the Melick method based on measured rms levels

for the HiMAT data set with vortex generators. It is shown

in Figure 20 that predictions of the present analysis
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compare well with the Melick predictions. Note that the

peak dynamic distortion factors of Melick' s prediction,

IDCmax, Melick' s-Prediction>
 are obtaine<* from the Melick

statistical predictions using 40 total pressure rms

measurements.

Data comparisons of the rms level distributions are

illustrated in Figure 21, (a) through (c). These cases are

selected from the HiMAT data set with vortex generators. As

for the previous cases, discrepancies in these comparisons

can be observed. Further study is needed to improve the

prediction of rms level distributions on the compressor

face.

6.2 The Melick Test Cases

Configuration of a supersonic mixed compression

axisymmetric inlet model, used to supply the test cases for

Melick' s computer program, is illustrated in Figure 2 (ref.

35). This inlet model consists of a center body with fixed

cone angles. Free stream Mach numbers of the test are 1.6

and 2.5 with total pressure recovery through the inlet shock

system assumed to be 0.995 and 0.9 respectively for this

type of inlet. Three test cases are available for data

comparisons.

In Figure 22, comparisons of the analytically predicted

and experimentally measured face-average rms levels and peak

dynamic distortion factor are illustrated for the three test

cases. Good predictions by the present method are shown
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clearly in Figure 22. Note the measured face-average rms

level, rms , is an average of 14 total pressure rms

measurements and the peak dynamic distortion factor of

Melick's prediction, «A2>Melick,s_prediction> is obtained

from the Melick statistical prediction using the 14 total

pressure rms measurements. For these test cases, there are

no DYNADEC results available for data comparisons.

The compressor face rms level distributions are

predicted and compared with the measured results. This is

shown in Figure 23, (a) through (c). Again, discrepancies

in these comparisons can be seen in Figure 23. Although

this inlet model is axisymmetric, substantial secondary flow

components can still be expected with an inlet angle of

attack or sideslip angle.

6.3 Subsonic Inlet

Configuration of a subsonic full scale short S-shape

inlet model, which is very much like the HiMAT inlet model,

is shown in Figure 3. Center line of the engine is tilted

as shown in Figure 3. Free stream Mach number of the test

is subsonic. There are six test cases available for data

comparisons. These data were provided by the Air Force

(AFFDL), Wright-Patterson Air Force Base, Ohio.

Comparisons of the predicted and measured results are

illustrated in Figure 24, Figure 25 and Figure 26, (a)

through (f). Reasonably good accuracy of the present

analysis in predicting the face-average total pressure rms
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levels and the peak dynamic distortion factors is shown in

Figure 24. Mote the measured peak dynamic distortion

factor, IDC , is obtained from the DYNADEC system (ref.
iu3 Xmi).

It is seen from Figure 24 that the present method

slightly underpredicts the peak dynamic distortion factor

for some cases. This is due to the limitation of the Melick

statistical method that it can not properly predict the peak

dynamic distortion for inlet flow with separated boundary

layer (ref. 3). Unfortunately, every case of this subsonic

inlet test data set contains separated boundary layer at the

compressor face station. Further study is required to

improve the Melick statistical method to handle the

separated flow conditions.

Good comparisons of the predictions of the present

analysis and the Melick method based on rms measurements are

illustrated in Figure 25.

Similar comparisons of the rms level distributions of

the six test cases are shown in Figure 26, (a) through (f).

6.4 Transonic Inlet

Configuration of a transonic subscale long S-shape

inlet model is illustrated in Figure 4. Six test cases of

this inlet model are available for data comparisons. These

data were also provided by the Air Force (AFFDL).

Comparisons of the predicted and measured results are

shown in Figure 27, Figure 28 and Figure 29, (a) through
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(f). Good accuracy of the present method in predicting the

face-average total pressure rms levels and the peak dynamic

distortions is shown clearly in Figure 27. In contrast to

the results described in the previous section, or Figure 24,

the present analysis overpredicts the peak dynamic

distortions slightly, which is illustrated in Figure 27.

Since every case of this data set retains attached boundary

layer at the compressor face station, better prediction of

the peak dynamic distortions, by the Melick statistical

method, can be expected. This results in Figure 27. Note

the measured peak dynamic distortion factor, KAO , is
A2m

obtained from the DYNADEC system.

Figure 28 illustrates good comparisons of the

predictions of the present analysis and the results of the

Melick predictions based on total presure rms measurements.

Also, slightly improved predictions of the rms level

distributions are obtained since a long S-shape inlet duct

produces less streamwise curvature effect which incurs

smaller amount of secondary flow components which is closer

to the theoretical assumptions of the present analysis.

Results of the predictions of rms level distributions for

the six transonic cases are illustrated in Figure 29, (a)

through (f).

6.5 Supersonic Inlet

Configurations of four supersonic inlet testing models

are illustrated in Figure 5. These inlet models are
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designated as A-l, A-2, B-3 and B-4. There are thirteen

test cases of the supersonic inlet models available for data

comparisons. These data were also provided by the Air Force

(AFFDL) (ref.36). Data included in this data set are the

steady-state total pressures and the peak dynamic

distortions which were screened based on K.-. There is no

information about the measured rms level available for data

comparisons. Inlet configurations of the four models are

described in more detail in the following paragraphs.

The inlet model, A-l, is a two-dimensional fuselage

side-mounted external compression inlet. The compression

surface consists of three variable ramps including, an

articulated first ramp to allow a variable capture area.

There is also a variable fourth ramp. A large slot at the

throat between the trailing edge of the third ramp and

leading edge of the fourth ramp provides for bypass flow and

choking control.

The A-2 inlet design is a 180 degree axisymmetric,

fuselage side-mounted, external compression inlet. The

center body consists of a first cone fixed at 18 degree with

a variable radius second cone that has a range from 12

degree to 30 degree.

The B-3 inlet is identical with A-2 except that it is

located beneath the wing of a flat-bottomed blended body

fuselage. The subsonic diffuser length is constrained by

the location of the inlet and engine beneath the wing with

the resultant decrease in diffuser length and increase in
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diffuser divergence angle.

The 8-4 inlet is identical with A-l except that it is

also located beneath the wing in much the same position as

B-3 inlet. The diffuser length is constrained by the inlet

and engine locations as well.

Results of the prediction of the peak dynamic

distortion are computed by the present method and compared1

with the measured results. This is shown in Figure 30 for

IDC and KA0. Since the measured peak dynamic distortionsmax A2 f /

of these test cases were screened based on K-^J better

comparisons are shown in Figure 30 for peak K.2* Note that

most of the test cases are underpredicted slightly. This is

because most of these test cases have separated boundary

layers at the compressor face station. This causes the

Melick statistical method to underpredict the peak dynamic

distortions.

Finally, accuracy of the present analysis in predicting

the face-average rms level and peak dynamic distortion-

factor is summarized in Figure 31. Figure 31 is presented

in terms of percent error of the prediction compared to the

measured data of all available test cases of the five

forementioned inlet test data sets.

In Figure 31, three histograms of the percent error in

predicting the face-average rms level and peak dynamic

distortion factor are presented. If the normal probability

distribution is assumed for these three histograms then the

mean and standard deviation for the histogram of rms level
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are 15.5% and 15.2% respectively. The mean and standard

deviation for the histogram of peak dynamic distortion

factor, for test cases without separated flow, are 19.51%

and 15.57% respectively. The mean and standard deviation

for the histogram of peak dynamic distortion factor, for

test cases with separated flow, are -3.31% and 17.86%

respectively. The distribution of the rms histogram

represents the statistical characteristics of the boundary

condition estimation technique of the present analysis,

equations (13) and (14). The distributions of the peak

distortion factor histograms represent the combined

statistical characteristics of the rms level prediction

technique and the Melick statistical method. In Figure 31,

the peak distortion factor histograms show that the present

analysis has nearly 93% of chance to overpredict the peak

distortion factor, by about 19.51%, for inlet flow without

boundary layer separation which is the feature of the

conventional type of inlet. This is a good design

characteristics. Nevertheless, for inlet flow with

separated boundary layer, the present analysis has more than

55% of chance to underpredict the peak dynamic distortion

factor, by about -3.31%, which is not a feasible design

characteristics. Further study is required to improve the

Melick statistical method to handle the separated flow

condition.

This result can be used as an inlet design reference in

using the present method. In other words, this information
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can be used in inlet design process in using the present

analysis to see how accurate the present analysis can be in

predicting the face-average rms level and peak dynamic

distortion factors.

One final comment about the prediction of peak dynamic

distortion of the inlet flow using the present analysis is

that the present method, owing to the characteristics of the

Melick statistical method, will underpredict the peak

dynamic distortion for separated flow. If it is found from

the steady state total pressure measurements that the flow

is separated then the peak distortion factor histogram for

separated flow, in Figure 31, can be used as design

reference for the predictions of the peak dynamic distortion

factors.
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7. CONCLUSIONS

An analytical method in predicting total pressure rms

level and peak dynamic distortion, based on steady-state

total pressure measurements, has been developed. The total

pressure rms level is predicted by a two-equation turbulence

model -- k-e model. The Melick statistical method is then-

used to estimate the peak dynamic distortion based on the

predicted total pressure rms level and the steady-state

total pressure measurements.

A finite difference scheme has been used to solve the

two-equation turbulence model. A statistical correlation

between the measured steady-state total pressures and total

pressure rms level near the wall has been developed using

the HiMAT inlet data set. Thus, boundary conditions of the

turbulence model can be estimated from the steady-state

total pressure measurements-.

A central differencing scheme has been applied to the

turbulence model to discretize the equations of the

turbulence model. Thus, an implicit line relaxation

formulation is obtained. The finite difference equations

have been arranged into a set of tridiagonal matrix

equations for efficient numerical iterations.

Numerical convergence of the finite difference scheme

has been investigated in order to determine a relaxation

factor and grid size for the numerical scheme. Sensitivity

study has also been included to see how sensitive the
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present analysis is to the input data and empirical

parameters of the turbulence model.

Accuracy of the present analysis has been demonstrated

through data comparisons for subsonic, transonic and

supersonic inlet models at various angles of attack and

sideslip. Five sets of inlet test data have been used for

this purpose. Results of the data comparisons have shown

that the present method predicts good results of the

face-average rms level and peak dynamic distortion factor.

Around 20% of accuracy in predicting peak distortion factors

is attained for subsonic, transonic and supersonic inlet

test cases without separated flow. Further research is

required to improve the present analysis to handle the

separated flow conditions.

As far as the prediction of peak dynamic distortion

factor is concerned, the present analysis can be used as an

efficient preliminary inlet design tool without total

pressure rms measurements. Only the steady-state total

pressure measurements are required to predict the peak

dynamic distortion factor.

A logical extension of the current work would be to

predict the dynamic distortion of the inlet flow directly

from an analytical point of view so that no experimental

information would be required in the prediction. This would

require a flow field calculation external to the inlet duct

and a compressible turbulent flow computation along the

subsonic inlet duct. This approach would require a large
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computational effort with long computing time, but it would

be an inlet design tool that would provide early estimates

of peak dynamic distortion prior to the time when inlet

models and test data are available.
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APPENDIX A

Derivation of k-e turbulence Model

The continuity and momentum equations for

incompressible flow can be written in tensor notation as

following:

(Al)

3u. su. ap au.

' - 8- + <" (A2>

where u. and P represent velocity components and pressure of

the flow respectively, p and u denote flow density and flow

viscosity repectively.

For turbulent flow, the velocity components and the

pressure can be decomposed into a time-averaged component

and a time dependent component. This is given in the

following relations.

ui = Qi "*" ui ' P = P + P'

Substituting these relations into equations (Al) and (A2)

and taking time averaging of the resultant expressions, the

following time-averaged equations of equations (Al) and (A2)

can be obtained.

(A3)
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a sj j u - - r T3EJ

Subtracting eauation (A3) from equation (Al) and subtracting,

equation (A4) from equation (A2), the following time

dependent equations are obtained.

(AS)

3u! 3U 3U.f

Multiplying equation (A6) by u! and then taking time

averaging, equation (A7) is obtained.

(A7)

Taking summation of equation (A7) for all i=l, 2, 3 and

using equation (A5) and the definition of turbulent kinetic

energy, k=(l/2)£ uT1 , equation (A8) is obtained.

(A3)

T i
(I) Diffusion (II) Production XlH) Dissipation

rate
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where f = —
P

u
and u! --4 = -s,. (-i.) - (—i)1 have been used.

-L ^^i -i '

The following empirical approximations were suggested by

Launder (ref. 16).

(III) H

where V = C'Jk L is the well known Kolmogorov-Prandtl

expression for turbulent viscosity. Also, from dimensional

analysis, e can be written as:

Thus, the following relation is obtained.

where C =0.09 and CD=0.08 are empirical constants.

Using these approximations, equation (A8) is written

as:

D| . _|_ (5i JsL 2JL.) ̂  k[c | (!i). . |] (A 9)
xj °k 3xj u * 3xj

It is sheerly empirical that an equation for e was
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suggested by Launder. It is assumed that the e-equation

have the same form as the k-equation with different

empirical constants. This results in the following

relation.

f H> * *d ^ * <5 - l <A10>

where o =1.3, C£l=1.45 and C 2
=2.0 are additional empirical

constants-

Finally, equations (A9) and (A10) can be rewritten in.

cylindrical coordinates for steady pipe flow:

c c*
r ak . _ 3k , w 3k 1 3 , u Is? ak N 1 3 / u k1 sk xU + V + ( r ) ^ ( ) +

(A12)
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APPENDIX B-

Measured Steady State Total Pressure

and Velocity Distributions

Relationship between the measured steady state tota-1

pressure and the axial mean flow velocity is derived under

the following assumptions:

1. The flow is ideal gas.

2. The flow is adiabatic-.

3. The flow is steady.

4. There is no static pressure variation in the

direction normal to the wall.

5. Loss in the total pressure measurement is

accounted for by a recovery factor, r.

Under these assumptions, total energy of the flow-

without turbulence at the instrumentation station is picked

up by the total pressure probe. Effect of turbulence will

be considered later. The following equation describes this

relation.

Et = E! (Bl)

where E stands for the total energy of the flow after the

flow stagnates and E.. denotes the total energy of the flow

just before entering the total pressure probe. For

adiabatic flow,
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Et = CpTt ' El = CpTs

where C is the specific heat of the flow at constant

pressure, T and T are total and static temperatures

respectively and g function stands for rotational energy of

the flow inside the boundary layer. Assume that g is very

small and can be neglected since the measurement is not made

very close to the wall. Also, V denotes the absolute

velocity of the flow at the total pressure probe location.

The equations of state of the ideal gas are:

where "V^l. 4. After substituting these relations into

equation (Bl), the following equation is obtained.

-I + ̂ V , uhere V - u'̂ -h/ (B2)

Considering loss in the total pressure measurement, a

recovery factor, r, is introduced for the total pressure

probe. That is,

p
r »-Jii , where P . is the indicated total

pressure.

Equation (B2) becomes:
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p..

The effect of turbulence is accounted for by the following,

relations:

wpt > wp; ' pt-pt+pt * PS-PS+P;

u =• u + u' v = v + v' w =* w + w'

where the pressure, velocity and density terms are replaced

by their time-averaged terms plus time-variant fluctuation

terms. Substituting these relations into equation (B2), a

time-averaged equation and a time-variant equation can be

obtained. They are:

P
_i+ % (Q'+ v* + w1) +% (JTr+F7* S") (B4)
3

P«
(B5)

Notice that it has been assumed that p' and p' are small and

can be neglected in obtaining equation (B5). Introducing

the definition of turbulent kinetic energy,

k=(u11 +vfi +w'z )/2, and considering the loss in the total

pressure measurement, equation (B4) results in:
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Since Q»v and u»w, the above equation can be further

simplified by neglecting v and w.

or.

5 \ o
)

where 1)2 is the compressor face average flow velocity.

Since k/U^ is very small, equation (B6) can be approximated

by-:

(87;>

where r=1.0 for most of the total pressure probe used in

experiment.
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APPENDIX C

Total Pressure rtns Level

and Turbulent Kinetic Energy

Relationship between total pressure rtns level and

turbulent kinetic energy is derived in this section by the

use of equation (B5) derived in APPENDIX B. Assumptions

stated in APPENDIX B are also employed here. Equation (B5)

is:

JL̂ ssgj.̂ .* (uu'+vv' + w1) +% (u"+ v"* w")

It is further assumed that the fluctuations of the static

pressure makes only a small contribution in the above

equation and can be neglected. Taking root mean square

(rms) on both sides of the above equation, the total

pressure rms level can be written as:

ppss Pt( "̂1) / [(Ou'+ vv' + ww') + h (u11* v"-t- w?
t f **

Since u»7 and Q»w and neglecting the higher order terms, the

above expression can be simplified as:

-1) ,-= -
^' (ci)

For isotropic turbulence (i.e. for flow away from the wall),
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u11 can be written in terms of k ( re f . 12). That is:

IT1" - (2/3) k

Substituting this relation into equation (Cl), an expression

in relating total pressure rms level, rms , and turbulent

kinetic energy, k, can be written as:

p (7-1)

T

Equation (C2) is an approximation for flow which is not very

close to the wall.
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APPENDIX D

Solution of Tridiagonal Matrix Equation

A typical tridiagonal matrix equation can be written

as:

AX - F (Dl)

where

X »

'al cl \
\ 0\

b2 a2 c2 \

\ - • • \
\. . N

\* \
\ • • \

\ • • • \
\ b_ .. a,, 1 c_ ̂. n-l n-i n-i

0 \
\ b a„ \ n n f

f N

'*l

*2
«

•

•

•

\

F = ^

fl

f2
•

•

•

•

. f n

The tridiagonal matrix, A, can be decomposed into two

matrices, U and V. That is:

A = UV (D2)
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or.

*i *T>
\ 0

b2 *2 °2X

\ \

\b, a-, cV
\. . .\
\ . . .

o \. .

=«

P!\
\ o

b2 P2^
\ \

\ . . \
\ ^

0 N
v. • \

\bn >0

'\ rl \
\ - \ °1 -y*

\ \
\1 r3x
\. . \

\1 r
0 \ ^

\1

where

pi = ai"biri-l' i = 2' 3' **' ---- ' n

ri * '̂i'''55!' i = 2' 3' 4' ---- ' n

Using relation (D2), equation (Dl) can be written as

UVX = F

Letting VX = G, the above relation becomes

UG = F (D3)

Thus, solution for G can be obtained from the following

recursion formula:

fl/pl

s 2' 3' 4' ---- ' n
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(a) HiMAT Inlet Test Model:

vortex generators

— compressor face
instrumentation

Section A-A:

315

Steady State
& Dynamic
Total Pressure
Probe
90°

(b) Range of Test Conditions:

Mach No. = 0.4 — 1.36
Angles of Attack » -10° —• +25°
Angles of Sideslip = 0° —' -10°

With and Without Vortex Generators

Figure 1. Illustration of HiiMAT Inlet Test Model and Test Conditions
(ref. 34)
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(a)Supersonic Mixed Compression Axisynmetric Inlet Model:

conical shocks
compressor face
instrumentation

(b) Test Conditions and Measured nns of 3 Melick's Test Cases:

Case No.

1
2
3

Mach No.

2.5
1.6
2.5

oc

5
5
5

ft

0
1
0

rms
(14-probe average)
.0126
.0194
.0173

Figure 2. Illustration of the Inlet Test Model of Melick's Test Cases
and some Test Results (ref. 35)
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(a) Subsonic Full Scale Inlet Model:

compressor face
ins trunentation

(b) Test Conditions and Sane Measured Results:

Data pt.

20.40
54.30
81.40
111.30
112.30
137.50

Mach No.

subsonic
subsonic
subsonic
subsonic
subsonic
subsonic

Pt2

.887

.853

.925

.868

.873

.926

rmstn

.0336

.0478

.0337

.0537

.0475

.0360

IDCmax, peak

.225

.326

.127

.319

.329

.144

Figure 3. Illustration of a Subsonic Inlet Test Model and some Test
Results (unpublished data from Air Force Flight Dynamics
Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio)
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(a) Transonic .15 scale Inlet Model:

XXX////

M
compressor face
ins trumentation

(b) Test Conditions and Some Measured Results:

Data pt.

464.12
465.11
473.12
485.10
487.80
498.12

Mach No.

transonic
transonic
transonic
transonic
transonic
transonic

?t2
.860
.912
.928
.891
.857
.913

rrasen

.0422

.0281

.0217

.0414

.0493

.0299

KA2, peak

.303

.522

.565

.819
1.025
.777

Figure 4. Illustration of a Transonic Inlet Test Model and some Test
Results (unpublished data from Air Force Flight Dynamics
Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio)
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(a) Configurations of four .25 scale Tailor-Mate Model:

A-l

A-2

conical shocks

B-4

oblique shocks
B-3

conical shocks

(b) Test Conditions and Some Measured Results:

Inlet

A-l

A-Z

B-4

B-J

Data pt.

182/1
189/3
216/3
243/3
246/3
247/2
433/3
43 //3
1534/4
640/2
643/3
695/1
1334/2

Mach No.

2.2
2.2
l.b
2.2
2.2
2.2
2.2
2.2
0.9
2.2
2.2
l.bo
0.9

a

D
13
10
3
13
13
u
3
20
3
13
0
25

ft
4
0
4
4
0
4
0
0
b
-4
0
-3
4

Pt2

.S33
,829
.894
.768
.666
.379
.814
.872
.918
.945
.935
,84o
.933

^̂
.150
.076
.086
.078
.111
.163
.090
.125
.0/4
.092
.078
.136
.121

KA2,peak
1.384
1.020
.900

1.123
1.446
1.̂ 72
1.254
l.Jll
.59/
.88/
.738

1.2/1
.649

Figure 5. Illustration of four Supersonic Inlet Test Model and some
Test Results (ref. 36)
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(a)
0)

(n+1

Fine Grids

•Steady State
Measurements

(b)

Figure 10. Schematic Illustration of Computational Grid System for
Finite Difference Scheme
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(relative -05

% error
in 30 .04
iterations)

.03

.02

.01

0

0.011

0.007

divergent

chosen for successive computations

j divergent
.8 .9 1.0 1.1 1.2

relaxation factor, f

Figure 11. Study of Numerical Convergence

(relative
% error
in 30 .02
iterations)

.01

fr- 1.0
- 0.011

chosen for successive computations

4 6 8
grid size parameter, N

g

Figure 12. Effect of Grid Size on the Accuracy of Computation
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(a) Assumed four total pressure profiles:

1.0

0.9

0.8
ID PROBE LOCATION OD

(b) Resultant rms distributions:

nns

PROBE LOCATION

(c) Comparisons of Dynamic Contributions:

Profile rms. Dynamic Contribution

.0195

.0217

.0257

.0283

.0326

.1720

.2382

.3407

.4880

.6688

Figure 13. Effect of Radial Total Pressure Distributions (equivalent to
velocity distributions) on the Predicted nns Distributions
and Dynamic Peak Distortions
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Data point: 1948

.02

rms
.01

©-•©

a=7°,

.02

rms
.01

180c

© Experiment
Prediction with constant
Prediction with measured rms.

rms
.0107
.0110
.0099

OD

rms
.02

.01

0

45C

0
0

©

_J i i i

rms
.02

.01

0

225;

rms
.02

.01

n

90°
m •

0 0 © ^j®
*^^~-— . T-^ «* "
©

i i i i i

rms
.02

.01

0

270°

•

0 ®--—^
© ' '

1 1 0 1 1

rms
.02

.01

0

1355

rms
.02

01

n

315°
.

0
<§f*£f-J ®

Q
i i i i i

Figure 14. Effect of Boundary rms Distributions on the Prediction

76



(a) On rms level:
% change

in rms

-HO

% change
in parameter

Parameter
rmsb

-10 A

(b) On Peak Distortion: % change

*10
% change
in parameter

Figure 15. Sensitivities of the predicted rms level and peak distortion
to several parameters of the computational scheme
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rms.

-03r

.02.

.01.

0
0 .01

j.ine Of perfect agreement

Symbol Mach no.
A 0.6
o 0.9
a 1.2
V 1.36

.02 .03.
rmsm

APRS

.121

.08

.04

0

+20% line of perfect agreement

-20%

.04 .08 .12

APRSm

Figure 16. Comparisons of the Predicted and Measured rms Levels and
Peak Distortion Factor for HiMAT Inlet Model without
Vortex Generators (ref. 34, see Figure 1)
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.15
IDCmax

P

.10

.05

+20% -Line of perfect agreement

Symbol Mach no.
A 0.6
© 0.9
a 1.2
^ 1.36

.05 .10 .15
IDC'max, Melick's prediction

Figure 17. Comparisons of peak distortion factors predicted by the present
analysis and Melick's statistical method based on the total
pressure rms measurements for HiMAT inlet data set without
vortex generators (ref. 34, see Figure 1)
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Data point: 1633

nns

.04

.02

A

0°

• •

0 0
• •

© © w

i i i t i

rms
.04

.02

0

45

MQ= 0.6, cx= -5°, 3 = 0°

© Experiment
Prediction

nns

.04

.02

r\

180°

•

^-— — •0
0 9 9 ©

rms
.0146
.0170

probe location

rms
.04

.02

0

225°
•

- ^.
0 0 © ©I i T i i

rms
.04

.02

0

90°
• «

_.._-

0 © 9 9 ,

rms
.04

.02

0

270°

•

s-

© © © ©i i i i i

rms
.04

i

.02!

0

135°

© 0 © Qi T i i

rms

(a)

.04

.02

0

315°

m ^
0

© ©
_ — -"
Q Q

1 t i l l

Figure 18. Comparisons of the Predicted and Measured rms Distributions
for HiMAI Inlet Model without Vortex Generators
(ref. 34, see Figure l)
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Data point: 1600

rms

.04

.02

0

0°

.

© " 0
. .

©
0
i t i l l

rms

MQ= 0.9, a= 7°, 0 = -5<

rms

.04

'.02

0

180c

9 9 9 ? .

© Experiment
Prediction

rms
.0142
.0166

probe location OD

.04

.02

r\

45°

'

O
0
t 1 1 1 1

rms

.04

'.02

0

225c

9 9 9 9

rms
.04

j

.02

0

90C

© 9 9

rms
.04

.02

n

270°

0
9 9 9 9 ,

rms
.04

.02

n

135°
• «

0 0 0 ©
i i T i i

.04
rms

.02

(b)

315C

0

Figure 18 . Continued
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Data point: 1734

rms
.02

.01

0

rms

.02

'.01

0

0
i i i

MQ= 1.36, <x-_j-3°, 0 = -

rms

0 Experiment
Prediction

rms
.0122
.0180

.02

.01

°i

180°

_^^^-

Q-
© © 0 ©
i i i i t

-^ TY>-nVwa "\ rv*> *a t- T n-n ^*-

©
©

rms

.02

.01

n

225°

©•
0 0 © ©
i t t t t

rms
.02

.01

n

90°
^.

•"•" © 0

• «

© © ©
i i i i i

rms
.02

.01

A

180°
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© ©
t i i i i

rms

.02

'.01

0

135C

©-
© © © ©

rms

(c)

.02

.01

n

315°
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. ©

Q
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Figure 18. Concluded.
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.015

rms

.010

.005

line of perfect agreement

APRS.

.12

.08

.04

Symbol Mach no.
A 0.6
e 0.9

V 1.36

0 .005 .010 .015
rms

•20A ,. ine of perfect agreement

-20%

.04 .08 .12

APRSm

Figure 19. Comparisons of the Predicted and Measured rms Levels and
Peak Distortion Factors for HiMAT Inlet Model with
Vortex Generators (ref. 34, see Figure 1)
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.15

IDC

.10

.05

+20% line of perfect agreement

,-20%.
Symbol

A

.05 .10 .15
IDC

Mach no.
0.6
0.9

1.36

'max, Melick's prediction

Figure 20. Comparisons of peak distortion factors predicted by the present
analysis and the Melick mehtod based on the total pressure rms
measurements for the HiMAT data set with vortex generators
(ref. 34, see Figure 1)
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Data point: 2436 M = 0.6, <x= -5°, 3 = 0°

rms

rms

rms

.02

.01

o

0°
» m

^(j fit

i t t t i

w

.02
rms

.01

n

180°
• •

— — — — "^ ~"~~~"°-
0 © © © ®
i i i i i

"iSiis m probe location OD

® Experiment .0102
Prediction .0111

.02

.01

0w

.02

.01

n

45°

- © Q Q

— — -. — -^ .©
t i i i i

90°
. .

© .— ̂©
-r- ' Ŝ̂ 3

1 1 1 1 1

.02

rms
.01

nV

.02
rms

.01

o

225°
-

— -"" Q ©'

O ©
i t Q i i

270°
.

- . — a Si— -®-
©

135C

rms
.02 •

.01

0

315e

.02
rms

.01 -

(a)

Figure 21. Comparisons of the Predicted and Measured rms Distributions
for HiWAT Inlet Model with Vortex Generators
(ref. 34, see Figure l)
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Data point: 1972
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Figure 21. Continued
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Data point: 2362 1.36, cx= 15°,

.02

rms
.01

0

.02

rms
.01

0

.02

rms
.01

0

.02

rms
.01

n

0°

• «

© 0 ©

i i i i i

0 Experiment
Prediction

45°
-

* © 0.

©

90°
•

©
1 l l l l

m «

' "'

© © 0

u

.02

rms
.01

0
rms
.0095
.0104

.02

rms
.01

0

.02

rms
.01

0

.02

rms
.01

. . 0

180°
• •

©
Q © © ©
i i i i i

•D probe location ®®

225°

- — --r*
® <f © , ,

270°

.

©

315°

0 0 °-
0

Figure 21. Concluded.
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rms
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.01
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t20% line of perfect agreement

r20%
Symbol Mach no.
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rmstn
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K•A2.

1.0

0.5

0 line of perfect agreement

0.5 1.0 1.5
K"A2 , Melick's prediction

Figure 22. Comparisons of the Predicted and Measured rms Levels and
Peak Distortion Factor for Melick's Test Cases
(ref. 35, see Figure 2)
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Data point: Melick's case 1, MQ= 2.5, ct= 5°, /3 = 0°
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Figure 23. Comparisons of the Predicted and Measured rms Distributions
for Melick's Test Cases (ref. 35, see Figure 2)

89



Data point: Melick's case 2, MQ= 1.6, a= 5°, 3 = 1°
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Figure 23. Continued
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Data point: Melick's case 3, Mo=2.5, oc= 5°, 3 = Oe
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Figure 23. Concluded.
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Figure 24. Comparisons of the Predicted and Measured rms Level and
Peak Distortion Factor for the Subsonic Inlet Model shown
in Figure 3, (unpublished data)
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Figure 25. Comparisons of peak distortion factors predicted by the present
analysis and the Melick method based on the total pressure rms
measurements for the subsonic inlet data set
(unpublished data)
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Data point: 20.40 Subsonic Inlet
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Figure 26. Comparisons of the Predicted and Measured rms Distributions
for the Subsonic Inlet Model shown in Figure 3.
(unpublished data)
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Data point: 54.30 Subsonic Inlet
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Data point: 81.40
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Data point: 111.30 Subsonic Inlet
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Data point: 112.30 Subsonic Inlet
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Data point: 137.50 Subsonic Inlet
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Figure 26. Concluded.
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Figure 27. Comparisons of the Predicted and Measured rms Level and
Peak Distortion Factor for the Transonic Inlet Model shown
in Figure 4. (unpublished data)
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analysis and the Melick method based on the total pressure rms
measurements for the transonic inlet data set
(unpublished data)
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Data point: 464.12 Transonic Inlet
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Data point: 465.11 Transonic Inlet
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Data point: 473.12 Transonic Inlet
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Data point: 485.10 Transonic Inlet
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Data point: 487.80 Transonic Inlet
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Data point: 498.12 Transonic Inlet

rms
.04

*

.02

0

© Experiment
Prediction

rms
.04

.02

0

45'

rms
.04

'.02

0

180

rms
.0299
.0356

10 probe location OD

rms
,04

.02

0

225°

© "©^

0 © ©-

• i i f i

.04
rms

.02

90C

I i i

rms
.04

.02

n

270°
-

0-
0 © © ©
i t t t i

.04
rms

.02

135C

rms
.04

i
.02

0

315

Figure 29 . Concluded.

107



.15

IDCmax
P

.10

.05

o +20%

.05 .10 .15

line of perfect agreement

20%

Symbol Mach no.

© 0.9
O 1.6
*> 2.2

K'A2.

1.5!

1.0

0.5-

•20% ^-line of perfect agreement

-20%

0.5 1.0 1.5
K•A2tn

Note: The measured data was screened on K,.- for peak distortion

Figure 30 . Comparisons of the Predicted and Measured Peak Distortion
Factors for four Tailor-tMate Supersonic Inlet Models
(ref. 36, see Figure 5)
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For peak distortion factor:
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Figure 31. Accuracy of the Present Method in Predicting rms Levels
and Dynamic Peak Distortion Factors
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