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PART 1

STATISTICAL PREDICTION OF DYNAMIC
DISTORTION OF INLET FLOW USING MINIMUM
DYNAMIC MEASUREMENT -- AN APPLICATION

TO THE MELICK STATISTICAL METHOD



SUMMARY

A simplified explanation to the Melick method of inlet.
flow dynamic distortion prediction by statistical means has
been included. A hypothetic vortex model is used as the
basis of the mathematical formulations. The main variables
of this model are identified by matching the theoretical
total pressure rms ratio with the measured total pressure
rms ratio. Data comparisons using HiMAT inlet test data
set indicate satisfactory prediction of the dynamic peak
distortion for cases with boundary layer control device --=

vortex generators.

A method of the dynamic probe selection, an essential
part of this research, has been developed. Validity of the
probe selection criteria has been dermonstrated by comparing
the reduced-probe predictions with the 40-probe predictions.
Results indicate that the number of dynamic probes can be

reduced to as few as 2 and still retain good accuracy.
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SYMBOLS

amplitude probability density

radius of vortex core (radius at the point
where maximum velocity occurs)

mean vortex core size
radial weighting factor, see table I
diameter of ring j, see table I

the error function of x,
2 _r2
erf(x) = 7= [Xe &% &

frequency, Hz

intermediate frequency used to match theoretical
and analytical PSD functions

characteristic engine response frequency

real part of the power spectral density function
of the total pressure fluctuations

function describing filter characteristics
circumferential distortion factor, (see table I)
radial distortion factor, (see table I)

generic distortion factor

Ka2,Kg,Kprap combined, circumferential & radial distortion

factors respectively, (see table I)
distortion factor, (see table I)

generic instantaneous value of K

generic maximum value of K used in the beta
distribution function

most probable maximum value of Kinst
generic steady-state value of K

mean value of Kjpst

ii



AKX

difference between K and Kgg, 4K = K-Kg

normalizing factor in beta probability density
function

exponent in beta probability density function
total vortex flux, number per second

exponent in beta probability density function
outer duct diameter, (see table I)

probability density function

power spectral density

cumulative probability

probability density function for peak distortion
factor

static pressure

total pressure

total pressure fluctuation relative to the mean
dynamic pressure, (q=3pv?}

autocorrelation function of the total pressure
fluctuations

compressor tip or duct radius

ngz + sz , shortest distance from probe to vortex
radius from vortex centerline

ToOot mean square

radius from vortex center line to probe

period of time over which the maximum instan-
taneous is to be determined

time
mean duct velocity

x component of velocity induced by the vortex
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ux

X,Y,Z

Xp,Ypolp
Xy Yy, Zy

X,¥,2

x',y',z!

r'(n)

X component of velocity induced by the vortex
at the probe

y component of velocity induced by the vortex

tangential component of velocity induced by the
vortex

z component of velocity induced by the vortex

fixed coordinate system at the compressor face,
(figure 9)

coordinates of a compressor face pressure probe

location of the x'y'z' coordinate system rela-
tive to the X,Y,Z system, (figure 9}

local coordinate system of the vortex, (figure ¥
coordinate system parallel to the X,Y,Z system

but with the same origin as the x,y,z system,
(figure 9)

vortex orientation angle between the y-axis and
the x'-y' plane, (figure 9}

denotes the gamma function of n,

r'(n) ='km e~ Xgn-1 dx, C(n+1l) = nI'(n),
(figure 3)

angle between the x’

and x axes, with the x
axis in the x'-y'

plane, figure 9
circumferential coordinate at the compressor face

nth central moment (taken about the mean) of a
statistical distribution

dummy variable
fluid density

standard deviation or rms of a time-dependent
function

time delay in the deflnltlon of the autocorrela-
tion function

iv




Subscripts

a vortex core size

cir circumferenti;l

i index of rake of pressure probes

inst instantaneous value

j index of ring of pressure probes

K distortion factor

max maximum value

min minimum value

2 mean flow at the compressor face station
Ap¢ total pressure fluctuations

rad radial

ss steady-state condition

v vortex or tangential velocity

® evaluated for all frequencies
Superscripts

) mean value

") variable is a function of a number of random

variables




INTRODUCTION

It has long been appreciated that steady-state inlet
flow nonuniformities (flow distortion) may have a significant
effect on the stability of a gas turbine engine and may fur-
ther induce engine stall (surge). Traditionally, steady-
state nonuniformities are measured at the inlet/engine inter-
face (compressor face) by using 40 or more steady-state total
pressure probes. These measurements are combined in such a
way as to produce a single distortion factor according to
different definitions (some common ones are listed in
Table 1). These distortion factors are then correlatad with
the surge level.

It was not until recently that attention has been paid
to the effect of dynamic distortion which reveals the time-
variant characteristics of the distortion pattern measured
at the compressor face. This dynamic effect may cause
engine surge while the steady-state distortion is substan-
tially below the surge level. Therefore, determination of
the dynamic effect of inlet flow becomes more important if
high performance inlets are to be attained.

Air flow convecting through the inlet duct is always
unsteady due to flow disturbances generated internal and
external to the inlet. These disturbances include exter-
nally generated turbulence. External turbulence is caused

by atmospheric turbulence, the flow field of the aircraft



upstream of the inlet and by external shock waves when in
supersonic flight. Internally gzsnerated disturbulences are
caused by non-uniformities due to change in the contours

of the inlet duct and by shock boundary layer interactions,
Experimentally, this flow unsteadiness is measured at the
compressor face in terms of total pressure fluctuations by
the use of 40 (commonly used) or more high response total
pressure probes (dynamic probes). These unsteady total
pressure data are analyzed deterministicélly in terms of
time-variagt distortion factor throughout the data record-
ing period. The maximum peak distortion factor value of

the dynamic distor?ion factor is then screened and used as
a design reference. This method of data analysis is quits
tedious and expensive. There is a real need to develop
methods to predict both the peak dynamic distortion factor
and the corresponding compressor face total pressure pattern,
These are important for inlet design and data analysis,
however, they are dependent upon the statistical character-
istics of the unsteady total pressure data. It is for this
reason that statistical treatments which utilize the random-
ness of the total pressure data have been employed to predict
the peak dynamic distortion factor from limited test data
(e.g., root mean square, rms, level of total pressurs fluc-
tuations). Improved efficiency and reduction in cost have
been achieved by this approach. Success of the statistical
approach is made possible due to the fact that probability

density distributions of the time-variant distortion factor



and the time-variant total pressure data are nearly Gaussian
(normal distribution) around their mean values (ref. 4).
This is true for most of the test cases which do not involve
inlet flow of strong interaction. Figure 1 shows the physi-
cal and statistical characteristics of a typical inlet test
data. A time history of the total pressure fluctuations shown
in Figure 1l(b) is measured by the dynamic probe shown in
Figure 1(a). Probability distribution of the total pressure
data is shown to be normal as illustratsd in Figure 1(b).
The time-variant distortion factor resulting from the com-
bined effect of all 40 probes is illustrated in Figure 1l(c)
which also shows a normal distribution of the probability
density of the distortion factor.

Three major statistical approaches have been developed
to predict the peak distortion factor and distortion pattern.
The first one, due to Jacocks, uses Gumbel's extreme value
theorem to extrapolate the peak distortion value within a
specified time period from the first short time segment of
deterministic information (ref. l1}). The second approach,
due to Motycka, et al., utilizes a random number generator
for simulating the total pressure fluctuations at each probe.
The simulated values are based on the measured total pressurs
rms level and the steady-state value. Time-variant distortion
factors are calculated by using the generated total pressure
data, from wnich the peak dynamic distortion factor is de-

termined (ref. 2). The third approach, developed by Melick,




et al., assumes that dynamic effect of the inlet flow is
totally attributed to the pressure disturbances caused by
a sequence of convecting vortices with random variables.
The peak distortion factor is determined from this physical
model and its statistical properties. The main variablss
of the vortex flow model are identified by matching analyt-
ical and measured total pressure rms levels (ref. 3}.
Although all the three methods produce satisfactory
results, the Melick method is least costly in terams of
instrumentation and analysis effort. It can be used online
while the test is in progress (ref. 5). This makes the
Melick method a very attractive tool for early analysis ia
the inlet design process.

Also, to minimize costs of dynamic instrumentation and
overall inlet development, it is desired to predict the
dynamic distortion in the early stages of inlst development
using a minimum number of dynamic probes. Each high
response total pressure probe is very expensive. This can
be achieved, in principle, by using the Melick method as
mentioned in ref. 3 and ref. 5. Melick's method has the
potential to achieve this goal since its peak distortion is
predicted by the average value of total pressure rms levels.
Ideally, a single probe would be sufficient tc provide the
same rms level.

Acceptance of the Melick method has been slow due to

a lack of understanding by the inlet test and development



engineers. Thus, the first objective of the present study
is to explain and clarify Melick's Technique. The second
objective.is the development of criteria of dynamic probe
selection (location) based on the steady-state pressure map.
A brief review and discussion of the Melick method is
presented in the first section followed by a series of data
comparisons using HiMAT inlet test data set (ref., 6).
Finally, the last section contains the development of the
criteria for selecting the location of the dynamic probes.
The results of numerical experiments to validate the probe

selection criteria are shown.



THE MELICK METHOD

Vortex Model

Physically, total pressure fluctuations of inlet flow
measured at the compressor face can be interpreted as time-
variant velocity variations on the compressor face. This
time-variant velocity variation can again be expressed in
terms of time-variant vorticity variation. Therefore, it is
envisioned that the total pressure fluctuations are caused
by a sequence of time-variant vortices passing through the
compressor face at a rate of N vortices per second. Each
vortex would then create total pressure variations at the
compressor face and generate certain instantaneous (time-

variant) distortion factors, K at that instant of time

inst?
as illustrated in Figure 2. Figure 2(b) shows that the
time-variant total pressure, measured by a probe, due to a
convecting vortex which has a velocity profile as shown im
Figure 2(a}.

t is assumed that the instantaneous distortion factor,
Kinst’ caused by a single vortex is treated as a single dis-
crete event. Thus, there are NT discrete events during the
data recording period T. Each vortex has am arbitrary location,
orientation, and strength. It is further assumed that these
discrete events are random and independent drawings from a
probability density distribution described by a Beta distribu-

ticn function (ref. 7). The reason for choosing the Beta dis-

tribution is because it is the only distribution function



that has one bounded positive variable and the ability to
modify the probability distribution by varying two simple
parameters. Figure 3 shows the gensral characteristics of
the Beta distribution function including the effects of the
parameters, m, and Dy,
The variable of the distribution, x, is shown to be bounded

on the shape of the distribution.

within the interval of 0. and 1. The shapes of the dis-
tribution are skewed to the left in Figure 3 when n. is
greater than m . An opposite skew would result if n. is
less than @ . When n, and m, are identical, a Gaussian
(normal) distritution can be obtained.

Using the Beta distribution, the probability density

function of the instantaneous distortion factor, Kj .., is given
as:
K; - K/ Kiicp VK
P =P ( 1nst) - K ( Kinst (l- inst ) (1)
IEmax K i:ma.x I:rnax

where Kj o+ 1s rescaled (normalized) by its upper bound,
Kmax, and Kg is a function of my, and e through the gamma
function as shown in Figure 3. Equation (1) involves three
unknowns, K., Og and ng, which require three equations
for solutions. These three equations can be obtained by
using statistical moments analysis for P (i.e., the first
noment, the second moment and the fourth moment, ref. 8).
The first and second moments of P are related to the mean,

b’ : 2 : : :
K, and variance, dg, of the instantaneous distortion factor,

Kinsts respectively. The fourth moment (Kurtosis) of P is



assumed to be zero since the distribution of P has been
shown (ref. 4) to be nearly Gaussian (normal distribution)
for most experimental data. The parameters, K and dg, can
be obtained from an analytical expression of Kinst and its
statistical moments. These can be derived from the vortex
flow model with the main variables, 3 (mean vortex size) and
N (vortex flux) being identified by matching analytical and
measured total pressure rms levels. This will be discussed
in detail later. Assume, for the moment, that K and SK.

are already obtained and the distribution of P is known.
Figure L shows some illustrations of the distributions of

P with various values of K and dg. Note that the variable
of P, Kinst, has been normalized by X and dg. That is,

/Kinst'ﬁ
P = P(

o (1a)

Equation (la) is the essence of the Melick method,
from which the peak distortion (i.e. near the right end of
Figure 4) can be extrdpolated by usirg the statistical
characteristics of the peak values. Unknowns of this model
aust be related to the inlet flow conditions in order to
rescale the analytical model close to ths experimental
measuresments.

It is of primary importance that the pezk value of
Kinsty among the NT events be determined from che distribdu-

tion of P. Before tnis peak value can be found, conditions



for the occurrence of the peak value must be determined. The

peak value implies the largest value of K among the

inst
whole population of NT events. In other words, it is the
only single event that can exceed a certain distortion
level. This corresponds essentially to the situation in
which the deterministic peak distortion factor is found.
Therefore, the probability of one single event that exceeds
a certain distortion level needs to be defined. This can be
described by a cumulative probability of P above a certain
distortion level. Equation (2) defines this cumulative
probability of P as Pl. Results are illustrated in Figure

5 for various values of K and ¢

K Note again that K. has been

normalized by K and SOy

K -K Ki ..-K K-K
inst inst
P, = P,| ————=——] = (Prob. of > )
1 1( ok ) Ik Ik
ggax-i
9k Kinst-K Kinst-K
= P d (2)
- g
KdK o‘K K
K

Since it is required that only one event, caused by
one vortex, can create a peak distortion above a certain
level, the whole population is therefore required to have
only one event with probability Pl and (NT-1) events with
probability (l-Pl). This is like the Bernoulli test. The
overall probatility for the condition of only one peak dis-

tortion above a certain level is therefore described by the
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Bernoulli (binomial) distridbution function given by

equation (3) (ref. 7) and is illustrated in Tigure 8.

- NT-1

p, = (NIT) p;(1-pNTL = NT Ry (1-Py) (3
From equation (3), the objective peak distortion cor-

responds to the condition when P, is maximum for a fixed NT,

(i.e., the most probable condition for the peak dynamic dis-

tortion to occud. This condition is found to be P1=1/NT
when P, reaches its maximum. This is obtained by letting
the first derivative of P2 (equation 3), with respect to

Py, equal zero. This can be seen clearly when Figure 4 and
Figure 6 are combined with the aid of Figure 5 to producs
Figure 7. For example, when NT=10 and K/6K=h, Figure 6 shows
that at maximum P, P;= 0.1 approximately. Using this valus
of P, in Figure 5, the corresponding value of (Kinst-’x{)/dK
can be obtained and shown in Figure 7. In this way, tha
distribution curves of Figure 6 can be transformed into
Figure 7 through the aid of Figure 5. In Figure 7, P de-
scribes the general population of Kjphoe, and P2 dsscribes
the probability of the peaks of Kj,o+. The peak dynamic
distortion factor is therefore chosen to be the most probable
value of Kinst among the population of their peaks, Py, for
given values of NT, K and dg as shown in Figure 7. Results
of Figure 7 are generalized and expressed in terms of K, dx
and NT and are illustrated in Figure 8. From Figurzs 8, the

most probatle maximum value (peak value) of distrction
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factors can be obtained easily for given valuss of K, dy
and NT.

In Melick's original formulation, confidence levels of
the predicted peak distortion factors were not determined.
However, with the help of Figure 7, confidence levels can
be determined easily from the distribution of P;. Note
that the variance of P, decreases as NT increases. 1In
most practical applications, NT and K/dx are large (~lOs
and ~10 respectively) such that they fall within the shadded
band of Fifure &,

Matching Model to a Particular Test Case

Up to this point, prediction of the peak distortion
factor for a particular case has been accomplished for given
values of the mean and rms values of the instantaneous
distortion factor, K and dx, and the number of vortices, NT,
within data recording period T. It remains to be shown
how K, dx and N (vortex flux) can be obtained. From the
test data, total pressure rms values are measured at the
compressor face. Therefore, it is intended to derive an
analytical expression for the total gressure fluctuations
based on the hypothetical vortex flow model. The mzin vari-
ables of the vortex flow model, (mean vortex size (3) and
vortex flux (N)), are then identified by matching th2 ana-
lytical and measured total pressure rms levels. In addition,

relations between the analytical total pressure fluctuaticns
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and the statistical prorerties of distortion factor, the mean
value (X) and rms value (dy), are established so that K and
dgk can be determined.

Development of the vortex flow model originates from
Melick's hypothesis that the cause of the total pressurs
fluctuations is totally attributed to the convecting vor-
tices at the rate of N vortices per second. For simplicity,
a one-dimensional incompressible steady vortex flow solu-
tion is used for the basis of mathematical development. The
basic equation for the velocity profile as a function of
distance from the center of the vortex is given by equation

(L). (See Figure 2 for definition of terms}

Yo .z CALS (4}

Ve

max
where a is designated as vortex size at a radius r=a such

that V, v represents the strength of the vortex
8 8 max

=8 nax"
which is the maximum swirling velocity around the axis of

the vortex. This basic model does not describe the real flow
situation but it is desirable to keep the selected model as
simple as possible so that the final expressions will not
involve too many variables and therefore become overly com-
plex. Since test data are eventually used to identify the
main variables, simple expressions do not lose too much in

accuracy.

An expression of total pressur= fluctuations can be
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derived from the 1-D vortex model by the use of incompres-
sible Bernoulli's equation and the spatial relationship
between the vortex and the dynamic probe as shown in
Figure 9. The final expression of the total pressure fluc-
tuation caused by a single arbitrary vortex on an arbitrary
compressor face probe is given by equation (5). (The devel-

opment of this equation is shown in the Appendix.)

.A..I_)E = EEE = f(UZ’Vemax’a,Y yA Y

sZys »Y,B8,t) (5)
v v
q, g,

Z
p’P
where

Y._Y .1 -5 [(*p, )2-
UX:Vemax [- —P—a-lsinY + ..E;_‘icos Ycosﬁ] e%[( /a) 1]

and rp represents the time-variant distance betwzen the
probe and the axis of the vortex.

The subscripts p and  refer to the positions of the
probe and the vortex respectively. The other variables are
shown in Figure 9 and are described in the symbol section.
From this expression (equation (5)) and experimental values of
total pressure rms levels, three separate branches of develop-
ment are undertaken to determine the mean vortex size (3), the
vortex flux N, K and the standard deviation of the distortion

factor, dg.

Determination of Mean Vortex Size

First, the total pressure rms expression is derived
from equation (5) through autocorrelation function and power

spectral density (PSD) function transformations (ref. 9) as
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shown in detail in ths Appendix. In order to do these
developments, probability density functions fcr the variables
shown in equation (5) need to be defined to account for the
effect of fluctuating data. The Beta distribution function is
used for the main variables, a and Vg .., and a unifora
(constant) distribution is used for those spatizl variables

describing location and orientations of the vortex {r_, vy and

p,
B). The final expression of the analytical total pressure

rms relation is given by equation (6}«

g2a , £
Pt/qz

. (filtered rms level)zz= erf(7.98ﬁ;;) (6}
GZAPt/qz (unfiltered rms level) z

Equation (6) states that the square of the ratio of filtasred
to unfiltered total pressure rms levels can be expressed by
an error function of (£’3)/U, where £/ is the applied filter
cut-off frequency and U, is the mean flow velocity at the
compressor face. Using this equation, the mean vortex size
i can be found for given values of f] U, and the ratio of
filtered and unfiltered rms levels measured by each dynamic
probe., It is preferred to choose a certain value of f/ so
that the ratio of the rms level of equation (6) is abcut
0.5. This is because equation (6) corresponds to a one-
point curve-fit, An rms ratio of 0.5 assures the best fit
over the high znd low frequency spectra of the PSD function.
Equation (6) is a numerical approximation derived from

equation (5) by assuming that all of the vortices have the
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same size, which is the mean value, 3, of the distribution.
Talidity of this assumption is examined by comparing the
exact vortex size distribution given by the Beta function
and the simplified solutions of the autocorrelation function
in terms of percent error as function of m, and n, (the
parameters of Beta distribution function for vortex size a).
This is shown in Figure 10 along with the range in which the

experimental data fall.

Determination of Vortex Flux

To determiﬁe the vortex flux , N, é statistical moments
analysis (the second and the fourth moments) is applied to the
amplitude probability density (APD)] function of the total
pressure fluctuations shown in equation (5). Since the APD
function, for most experimental data, is shcwn to be nearly
Gaussian (ref. 4), both the first moment (mean) of APD func-
tion and the 4th moment (Kurtosis) of APD function are
assumed to be zero. Using the 2nd and 4th moments of APD

function, one simple expression for N is approximated numer-

ically by further assuming that Vg, /( } = 1l. Equa-

2
Vo max
tion (7) showns the result of this development (see Eqn. 17

Appx. A). 2
N o= 0.25¢ 22/3T, (Phax) | o p54U2/RT (7)
(@/R7)* (Vopay)? (Z/RT) 2

where Ry denotes the radius of the inlet duct at the com-
pressor face station. The validity of the simplified

assunption is also examined and illustrated in Figure 11,
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along with the range in which typical experimental data
falls. The implications of the discrepancies between theo-

retical and experimental results will be discussed later.

Determination of X and T

Using statistical moments analysis, the mean value and
the rms value of the instantaneous distortion factor, X and
Ok, can be expressed analytically by using the expression of
the total pressure fluctuations (equation (5)J}. From this,
X and og can be obtained for given values of the mean vortex
size 3, steady-state distortion factor Ksg, and the total
pressure rms level.

This is done by substituting equation (5) into the
appropriate distortion factor equation of Table 1 and then
substituting these into expressions of the first and second
statistical moments of the instantaneous distortion factor
(Kinst) as shown in the Appendix. Results of the expres-
sions of X and ox are solved numerically in terms of 3, Kgq
and total pressure rms level as shown in Figure 12(a)
through (f) for several distortion factors of Table 1.

These figures show that K and oy depend on the value of a,
Ky and the measured total pressure rms level Q'Apt/qz. For
given values of ¥ (found from equation (6)), Kgg and rms
level, K and og can be obtained directly from 12(a) through

(£). Using these in equation (7), the value of N is
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calculated and the peak distortion factor can then ke
obtained from Figure 8.
Details of the above development are snown in the

Appendix.
Contribution of Errors

in n and m to the Final Results
Two major simplifying assumptions in the Melick method
has been examined and shown in Figures 10 & 11. One of the

assumptions is that the vortex size concentrates on its mean

size, a. The other one is that ngax/(ngaxf'equaIsto one.

There is no way that these assumptions can be justified
by direct comparison with the test data. However, for engi-
neering application purposes, it is possible to judge the
validity of these assumptions approximately by using the
mean values of the Beta distribution function of the main
variables, mean vortex size (3) and mean vortex strength
(v%max)' Since the mean value of the Beta distribution func-
tion is a function of its parameters (m and n)} only, values
of the parameters can be resolved from the mean values
predicted in Melick's program by the test data. These
parameters then can be used in Figure 10 and Figure 11 to
judge the validity of the two major assumptions. Equations to
do this are (8a) and (8b) which give the relationship between
the mean values of the two main variables and the parameters
of their Beta distribution function.

8/Rp = —fa -1 (8a)

mg + N, + 2

/Gy = By * 1 (8b)
My + Dy + 2

Vemax
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For values of I/Ry and ngax/Uz calculated in Melick's

program, relationships of their parameters (m; vs. na and

m, Vs. ny) can be obtained from equations (3a) and (8bv).

For example, from test data, the calculated values of a/Rp 1s
ranging from .12 to .18 and the calculated values of'vgmax/vz
is ranging from .06 to .10, errors due to the two major assump-
tions of the Melick method can be approximated as shown by

the shaded area in Figure 10 and Figure 1l1. Results show that
2/Rp is over-estimated by about 15 percent and N is under-

estimated by about 500 percent. The 500 percent error is due

to the fact that ngax/(vgmaxf is assumed to be 1.0 instead
of 5.0 as indicated by test data. The error in 3/Rp is
acceptable for engineering applications but the error in N is
alarming at the first glance. However, the prediction of the
peak distortion factor is not sensitive to the value of N.
This can be seen clearly in Figure 8 which has a very small
slope indicating that large éhanges in N and T can occur

without seriously affecting the value of K Also, the

max-inst’
value of dy is always an order of magnitude less than K which
further reduces the effect on K; . jno¢+ For most of the test
data, the value of NT is betwsen 10“ and 10°. A 500 percent
error in N can cause only about 2 percent error in the pre-
diction of the peak distortion factor. This 2 percent error
is then negligible. This is why the prediction of the peak
distortion factor by the Melick method is good even with

such gross error in N.




19

Effect of Engine Response Characteristics

Depending on its size and inertia, an engine can only
respond to distortions below a certain frequency. Since the
engine compressor does not respond to turbulsnce above this
frequency level, pressure measurements should be filtered so
that high frequency distortions beyond the engine's response
capability do not produce meaningless results. That is, high
frequency comronents are of no concern because the engine
can't respond to them, even if they produce distortions in
excess of that required to cause a surge. This filtering
effect can be accomplished by using a third-order Butterworth
filter, which is commonly used to simulate the character-
istics of preseat gas turbine engines (ref. 1C). The general
filtering process is shown schematically in Figure 13 which
shows an input time-dependent function Y(t), as passed through
a filter H(f), produces an output signal Y'(t) with lower
magnitude. By properly selscting the filter characteristics,
this filtering process eliminates the pressure or distortion
factor fluctuations at frequencies beyond the response charac-
teristics of the engine. Filtering has the eflact of reducing

the total pressure rms level. The lower the cut-off fre-

D

quency the lower the rms level. This is seen in Figurs 14
which shows the ratio of the filtered and unfiltered rms as
a function of the normalized cut-off frequency, fci/UZ. From
Figﬁre 1L, the ratio of filtered to unfiltered rms level can

be found for the given value of fCE/UQ to account for the
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engins response characteristics.
Special Treatment for Some Distortion Factors

Some distortion factors, such as KAZ and APRS, are a
combination of other indices and must be generated within
the Melick program. It is assumed that these indices are
independent statistically. Prediction of the peak distor-
tion values of tnese indices is done by finding the peak
distortion values of the individual components independently
and then combinad into the indices. This approach is based
on the assumption that the individual components reach their
peak values at the same time which may not be the case in
the real situation for two statistically independent indices.
This assumption assures the prediction of the objective peak
distortion factors will always be conservative.

To illustrate this, K,, is defined as:

A2
Kpg = Kg + bKpyup (9)

where the b factor is a constant. This means Ky and KRAD
are independent in eguation (9). The peak value of Kp3,
therefore, corresponds to the peak values of Ky and Kpgup
simultaneously. The peak distortion valuss of Ky and KraD
are determined independently in Melick's program and then

combined to obtain ths veak value of Kyp by using equztion

\9).
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Melick Mapping Methods

A very simpls method for determining the compressor
face peak distortion map is included in the Melick program.
It assumes that the linear vortex of size 3 is orientsad
along the mean shear line (a straight line) between the
steady-state high and low pressure regions. The direction
of rotation of this vortex tends to enhance both the low
and high pressure regions so that the distortion level can
be magnified. The peak distortion map is then ovtained by
ad justing the strength of the mean vortex until the predict-
ed peak value of the distortion factor is reached.

In reality, the core of the distortion-influence vor-
tex may not be a straight line. This is why the Melick map-
ping method is not too accurate in predicting dynamic peak
distortion patterns. Other methods of adding the vertex
effacts need to be investigated to improve the prediction.

The Melick method so develoced provides a simple and
low cost way of predicting the peak dynamic distortion. The

validity of the method is illustrated in the next section.



DATA COMPARISONS

In this section, the accuracy of the Melick method in pre-
dicting peak dynamic distortion factor and pattern will be
demonstrated by direct comparison with the HiMAT inlet test re-
sults. In ref. 6, an experimental investigation of a subscale
HiMAT model with forebody, canard and inlet is described.
These tests were conducted by NASA in the NASA Lewis 8' x 6°¢
supersonic wind tunnel (ref. 6). The HiMAT model has an
under-fuselage inlet with a high-divergence S-shape duct. At
the compressor face, there were 40 steady-state total pres-
sure probes and LO high response total pressure dynamig
probes installed on the compressor face station as illus-~
trated in Figure 1. Steady-state total prsssure, dynaamic
fluctuating total pressure and filtered and unfiltered rms
total pressure levels were recorded from the compressor face
instrumentation during the test. In the present investi-
gation, data obtained in these tests were analyzed by two
different methods tc determine, by direct comparison, the
validity of the results predicted by the Melick technigque.

First, the fluctuating total pressure data were digi-
tized and screened, on distortien factor APRS, through tne
Dynamic Data Editing and Computing (DYNADEC) System of
Marous and Sedlock (ref. 10), frem which the measured peak
dynamic distortion facters and patteras were obtained de-

terministically. Results obtained from this system are
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designated as measured results. Second, the filtered and
unfiltered total pressure ras levels wers used in Melick's
statistical method for predicting the peak dynamic distor-
tion factors and pattarns for the same length of data run
and are designatsd as predicted results. Steady-state
distortion factors and patterns are z2lso included in both
measured and predicted outputs.

Because of the high curvature and divergence angle of
the inlet duct, boundary layer separation is observed.
Fluctuating total prassure data from tiiz tests shows a down-
ward spiking characteristics for most of the test cases with
a clean inlet duct (i.e., without vortex generatcrs). This
is believed to be caused by intermittent boundary layer
separation and reattachment (ref. 6). The spiking phenomenon
of the total pressure data, as illusctrated in Figure 15,
shows random downward spikess bounded approximately by the free
stream total pressure at the high end and the local static
pressure at the low end (ref. 6). Because of the spiking
phenomenon, those cases without vortex generators resultad
in more than one peak distortion pattern as shown in the
DYNADEC results. A typical example is shown in Figure 16 (a).

In order to prevent the inlet performance from being
jeopardized by potential stall due to the spixing pnenomenon,
a set of vortex generators was installed annularly on the wall
of the inlet duct down streazn of the cowl in ¢order to trip

the toundary layer and prevent flow separation (ref. 5).
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Spiking data was not present for most of the test cases with
vortex generators, indicating good control of the boundary
layer.

In the DYNADEC system, peak dynamic distortion of the
HiMAT data set were screensd on the distortion factor APRS
which is a function of IDC and IDR as given by the follow-
ing equation.

APRS = K_ (IDC) b + K. (IDR] (10}

K. is the circumferential sensitivity factor, K. represents
the radial sensitivity factor and b factor is a function of
IDR at the tip of the compressor blade (IDRtip). This APRS is
not predicted in Melick's program. In order to make comparti-
sons possible betwesn measured and predicted peak distortion,
APRS needed to be computed from the predicted IDC and IDR.
It was found the maximum value of AFRS occurs at the instant
when IDC is very close to its maximum and IDR is near its
minimum value. This is due to the characteristics of the

b factor, however, the Melick program does not predict
minimun instantaneous distortion factor. A study was there-
fore taken to determine the minimum IDR following Melick's
approach. The concept ¢f the prediction of the minimum

IDR is similar to that of finding the maximum IDR. This is
illustrated in Figure 17 which shows that the maximum value
and the minimum value of the predicted instantaneocus distor-
tion factors are symmetric td the mean of the whole popula-

tion, X. Results were then used for cemputing the peak value
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of APRS., However, note that the Melick program does not
have the capability to predict peak distortion pattern
based on PRS. Therefore, the precicted distortion pattsarn
are still based on the maximum IDC.

The range of the test conditions in the data base are
listed in Table 2. Data comparisons were made by comparing
distortion factors and pattearns, The first part was the
comparison of distortion factors. The steady-state values
obtainad from both systems are identical for every cass as
would te expected. Comparisons of the measured and pradicted
peak dynamic distorticn factors, APRS, for cases with and
without vortex generators are illustrated in Figure 18(a) and
18(b) respectively. TFigure 18(a) shows satisfactory agree-
ment between measured and predicted results. Most of the
predicted data shown in Figure 18(a) are about 20 percent
above the measured results, which are con the conservative
side of the data predicticn. This is desirzble for an inlet
design purpose. On the other hand, large discrepancies ars
revealed in those cases without vortex generators, which is
shown in Figure 18(b). This is because the Melick method
can not adequately deal wica inlet flow when intermittent
separation induced spiking occurs. An improved method is
needed to handle the effect of flow separation. An attempt
was made to use data measured by those probes that were locat-
ed in the low pressure region (i.e., where high turbulent

fluctuations in terms of rms level was observed) to make the
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predictions of the no-vortex-generators cases close to the
measured ones, however, no consistent result was obtainad.

The second part of the data compariscn was concentrated
on the distortion pattarns. Again, the steady-state distor-
tion patterns from both sources were exactly the same. For
cases without vortex generators, peak distortion pattsrns
werzs not comparable when the spiking phenomenon was observed.
A typical example is shown in Figure 1é. Comparisons of
the measured and the predicted peak distortion patterns for
some representative cases with vortex generators (without
spiking) are shown in Figure 19(z2) through 19{n}. Although
the predictad pezk distortion patterns are tased on maximum
IDC, instead of APRS, good agreement of most of the compari-
sons are shown. This may be due to ths fact that IDC is the
dominant term in APRS.

In some cases, Figure 19(a), 19(d), 19(j), and 1S(m}
for instance, discrepancies between measured and predicted
patterns are the most apparent. It may be possible to iz
prove the pattern prediction by changing the axis of the
main influence vortex from a straight line to 2 more realis-
tic coutour line as discussed previously. More effort is

required to improve the prediction.




METHOD OF PROBE SELECTION
Development of Probe Selection Criteria

In principle the Melick method requires only one dynamic
total pressure rms measurement providing it is located at a
point that represents an average rms level for the whole com-
pressor face (i.e., 4O-probe average). If the number of
probes required to provide this average rms level can be mini-
mized, the cost of test instrumentation and perhaps the flow
blockage of the inlet can be reduced greatly.

If it is assumed that dynamic effects of the inlet flow
&re somehow related to the steady-state total pressure pattern,
& basic rationale of dynamic probe selection can be established
vpased on the steady-state pattern. This basic assumption
provides a2 foundation for this investigation.

Since the peak dynamic distortion factor from the Melick
method is based on the average values of total pressurs rms
level and mean vortex size, 3, at the compressor face, an
examination of the total pressure rms levels at the compressor
face should reveal any similarity between the steady-state
and dynamic charactaristics of the inlet. The relationship
tetween the steady-state total prassure and the rms levels
are examined by plotting radial variations of both wvalues as
shown in Figurs 20(a) through 20(f). It has been found that
the rms levels have an inverse reldtionship to the stesady-

state valuss. That is, when the steady-state total pressures
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are high, the dynamic content of the flow is low and vice
versa. It is further noted that when ths rms value crosses
the average value (rms/rms, = 1) the stsady-state total
pressure also crosses the mean value (Pt/PC+°= 1). This
observation suggests the possibility of establishing a cri-
terion for selecting apriori the location of dynamic probes
that will be close to the mean rms level of the duct. Never-
theless, the rms levels do not represent thes eatire dynamiec
effect because another varizble, mean vortex sizes a, zlso .
has an important effect on dynamic behavior.

Two approaches were taken to establish probe selection
criteria. The first approach was done by searching for com-
binations of dynamic-probe subsets which produce average values
of rms level and mean vortex size equivalent to the 40-probe
average values. This approach was found to be too complex
because of the difficulty in handling two variables in conjunc-
tion with a multiplicity of combinations of the dynamic probes.
A second approach was employed by examining local con-
tributions of dynamic effect to the peak dynamic distortion
factor directly. In order to do this, the Melick prcgram
was modified so that the peak distortion factor could be
predicted by using dynamic data measured by each individual
probe. Results were tien compared with the peak distortion
factor predicted by all 4C probes (4Q-prote value). Radial
variations of these local contributions to peak distortion

factor IDC are also plotted on Figure 20. Similarjities
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between the trend of the ras levels and the distortion fac-
tor variations ar2 r=markable as seen in Figure 20. The
single-probe distortion factor variztions can be interpreted
as variations of overall dynamic effect (including the effect
of rms level and mean vortex size I) over thz2 compressor face.

Only IDC was used throughout thz development since IDC
is the dominant term in coaputing APRS which is the bacis
for comparison with the DYNADEC results. HResults of the
present investigation are also applicable to otner distortion
factors since the influence of the dynamic component to every
distortion factor is the same in the Melick method.

In order to find the key probes, the lins of perfect
agreement between the single-probe value (of peak distortion
factor) and the 4O-probe value were plottad on the steady-
state pressure map which is the basis of dynamic prote selec-
tiocn. Figure 21(a) through 21(1l) show this comparison for a
number of operating ccnditions. Note that only the steady-
state average pressure contour and the dynamic average line
were plotted in Figure 21. This was done for most of the
HiMAT test cases with and without vortex generators and
covered the whole rangz of ths test Mach aumber, angles of
attack and sideslip. The results show that the lines of
perfact agreement (dynamic average lines) coincide fairly
well with the steady-state average total pressure lines
except in regions of high and low pressure. In other words,

the average turbulsnce line, i.e., the line of perfact
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agreement, is in generzl in the vicinity of the average
steady-state total pressure region. This implies that
dynamic probes selectad close to the steady-state average
line would give the prediction of a peak distortion factor
very close to that of the LO-probe prsdiction. It would be
preferred that the predicted value always be on the conser-
vative side, i.e., slightly higher than the L4LO-probe value.
This occurs for dynamic probes located on or outboard
(toward the low pressure region) of the steady-state averzg
line. On the other hand, agreement beastween steady-state and
dynamic average lires do not hold consistently for regions
of particular high and low pressure on the steady-state
pressure map. This can be examined in Figure 19, Figurs 20
and Figure 21. Using the results of the above analysis,
general criteria for the selection of the dynamic probe
locations can te drawn.

General Criteria:

(1) The dynamic total pressure probes that are on or
just outside (larger radius) of the steady-state
average total pressure line should be selected.

(2) Probes selected should avoid very high and low

steady-state pressure regions.
Accuracy of the Criteria

The accuracy of the above criteria has been tested dy

using the HiMAT test data and satisfzctory results were
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obtained for enginesering application purposes. One example
of dynamic probe selection is shown in Figure 22 for test
point 1948 (M=0.9, =7’ and g=0°). The steady-state average
pressure contour is shown in Figure 20(¢) and the associated
selected dynamic probes are also illustrated according to the
general criteria of dynamic probe szlection. The selected

circumferential 8 probes are: nos. 1, 7, 12, 20, 24, 3G, 32

and 37. The peak distortion factor {IDC) predicted by these 8

probes is 0.0470 which is +4.78% higher than that predicted
by 40 probes. When only four probes out of the selected 8
probes are used {i.e., nos. 1, 12, 24, and 32) the predictasd
peak IDC is +1.12% higher than the 40-probe value. If thsa
number is further reduced to 2 proves (nos. 12 and 32}, the
predicted peak IDC is +5.10% higher than the 40-prote value.
Following the same procedure, results of some typical cases
with vortex generators ars tabulated in Table 3. Results
show that ths accuracy for using eight probes circumferen-
tially located near the mean steady-state pressurz is within
5 percent, whereas selecting the wrong probe could cause
errors of *20 percent as illustrated by the single-probe
worst cases. Table ] also presasnts satisfactory results for
using 2 and 4 probes. Ths results in Table 3 also fzll in
the histograms of Figurs 23. Figure 23 shows a histcgram of
all of the probe selection data analyzzd with and withcut
vortex generators. With vertex gsnerators, wnich ars repre-

sentative of coavantional low divargencs ducts with modarats
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tends, the results ars gensrally conservative comparad to
the LO-probe result. This is espscially true of the 2-probs
results. However, without vortex gesnerators (a typical hi
divergsncs duct with bends or obstructions) the ressults are
still conservative but the 2-probe result is the least con-
servative.

Pragmatically, the locations of the dynamic probes are
preferred to be fixed during the test so that a sequance of
test runs can be conducted without stopping to relocate
instrumentation on the model. Steady-state total grassure
contours can be obtained from prior developmental test data,
an analytical prediction or the intuition of an experienced
inlet/propulsion engineer. In some cases it may be possible
to run some initial tests and then install the dynamic
instrumentation later in the wind tunnel test ssquance.

Once the gesneral shapes of the steady-state prassurs maps
are obtainad, fixed locations of the dynamic probes can then
be cetermined by applying the gsneral critsria.

The above method of utilizing fixed dynamic probes nas
been examined by using the HiMAT data set (with-vortex-
generators cases). wo fixed probe locations were determined
from ths general sheapes of the steady-state average pressure
contours shown in Figure 21. Probes no. 12 and 32 are the
most promising candidates because they avoid the extirzsme
high and low pressure regions zand they usually lis on ths

low prassure side of the generzlized stesady-stat
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pressure contour. Notz that these liz on the opposite side of
the approximate line of symmetry connecting the regions of
high and low pressures. Generally, this cross-line-of-
symmetlry combination performs surprisingly well since thesas
two probes usually satisfy the general criteria (1) and (2},
especially that of avoiding high znd low pressurz2 regions.
Results of the fixed 2-probs cases are also included in

Tatle 3 and Figure 23 and are comparable with ths other
results,

In order to make sure that thes general criteria are
also valid for other inlst test data, numerical experiments
of the general criteria were conducted by using 3 data sets
of Melick's test cases for an internal compression super-
sonic inlet. HResults and test zonditions of this study are
listed in Table 4. Although Melick's test cases do not pro-
vide all the 40-probe datz (only li dynzmic probes wers used},
results of the selected 3 or 4 probes show satisfactory
agreement indicating that the criteria ars also good for
other types of inlets. However, other sources of data
should be examined before this criteria can be fully vali-
dated.

The general criteria provides a way for selecting cor-
~ect locations of the dynamic total pressure probes by simply
looking at the steady-state total prassurz map. Probe reduc-
tign cecomes possible without significant loss in accuracy.

The nuntar of proctes can %e raduced to as few as 2 instead of



L0, Thus, a great deal of savings in instrumentation and

analysis costs can be achieved.
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CONCLUSIONS

A simplified description of the Melick method in pre-
dicting peak dynamic distortion at the compressor face of a
gas turbine engine has been accomplished. The main variables
of the assumed inlet flow vortex model have been identified
by matching analytical and measured total pressure rms
levels. Statistical properties of the instantaneous distor-
tion factor are then related to the main variables, from
which the most probable peak value of the instantaneous dis-
tortion factor can be extrapolated. The accuracy of the
Melick method has been demonstrated by using a HiMAT inlet
test data set and comparing it to the measured results of
DYINADEC.

The criteria for dynamic probe selection have been
established through a sequence of comparisons between a
steady-state total pressure map and turbulence behavior at
the compressor face. Instead of using 40 dynamic probes, 2
probes will suffice in the early stages of inlet testing
with errors of approximately 5 percent compared to the
LO-probe results.

The Melick method cannot properly deal with turbulence
caused by severe intermittent flow separation and does not
predict better peak distortion patterns than Motycka's method
does. However, the pattern prediction can be improved with

suitable modifications in the computer program.
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Another analytical flow model and/or modified statis-
tics are required to handle the effect of intermittent flow
separation. On the other hand, other methods of construct-
ing the peak distortion pattern from the effect of mean
vortex flow field may be proposed for better prediction of
the peak dynamic distortion map.

A logical extension of the current work would be to
predict the rms dynamic total pressure fluctuations directly
from the steady-state pressure maps so that dynamic total pres-
sure measurements would not be needed. This would allow the
Melick technique to be used as a design tool to predict the
dynamic distortion before the first developmental tests

were run.
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APPENDIX
Vortex Flow Model

As described in the main text the total pressure fluctua-
tions of inlet flow is attributed to the existence of random
vortices convecting down the inlet duct. For sim-
plicity, the total pressure fluctuations caused by a one-
dimensional vortex flow is considered. Then the effect of
many random one-dimensional vortices will be considered by
integrating over all possible values of the variables,

The tangential velocity of one-dimensional, steady,

incompressible vortex is given as:

- -1/2 (r/a)2-1)
Vg Vemx(r/a) e [ (1)

where Vg is the tangential velocity at radius r and Vemax
represents the maximum Vg at radius a. The size and the
strength of the vortex are defined to be "a" and Vemax'

In reality, the effect of vortex decay due to viscous
dissipation results in decreased strength and increased size,
However, in the present analysis the vortex size and strength
are assumed to be constant because the time required for the
vortex to travel through the inlet duct is very short and the
vortex decay rate is rather small.

The total pressure fluctuations caused by the vortex
can be superimposed on the steady-state total pressure com-

ponent to form the time-variant actual total pressure as
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indicated by the following equation.
Pp = P, + AP, (2)
where, by the incompressible Bernoulli's equation,

Pp = Pg + $p(U, + U_)? (3a)
P, = P + ipug (3b)

where Pp represents the time-variant actual total pressure,
p, is the steady-state total pressure, p, 1s the total
pressure fluctuations, Ps.- 1s the local static pressure, U2
is the mean stream velocity at the compressor face station
and Uy is the perturbed velocity caused by the vortex.

By substituting (3a) and (3b) into (2) and dividing
through by the mean dynamic pressure q2=§pU§. An expression

for the total pressure fluctuations is obtained:
APy APy _ 20Uy . (Ux)2
q U U
3pUz . %2 2 2
Since U, is assumed to be much less than U,, the second term

(&)

on the right hand side of (4) can be neglected.
APt~ 22U,
=~ (5)
Q2 U2

Before equation (5) can be used for further development, an

expression of Ux needs to be derived. This can be done
easily by relating U, to Vg of the one-dimensional vortex
through the geometric relationship between the vortex and
the pressure probe location. This is illustrated in

Figure 9.
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For simplicity, all vortices are considered to be effec-
tive only when they are crossing the measuring plane and the
pressure probe is located at the center of the duct. After
a prolonged mathematical development involving geometric

transformations, the following expression for U, is obtained.

U= vemax[Y “Tv s:LnT-i-.LﬁcosYcosa] éﬁrp/a)z-l] (6a)
where
(: ) = (—2—)2 Iy YD) +( Zv ZE?- E-UzTcosYcosp
5—cosYcosB-—351nif (6b}

,Zp) represents the probe location _
(Y,,Zy) is a point on votex axis which has the shortest
distance to the probe
-t/2 <y £ n/2
-T < B8 <
With equations (6a) and (6b), equation (5) can be

written in function form:

AP, , 20U
.-Ei =“ﬁ§ = f(Uz,vemax,a 1Tg0241T5:25, 758, t) (7)

Next, the vortex model will be used to develop an
expression for the power spectral density (PSD) function so
that test data can be compared. To do this an autocorrelation
function will be formulated by the use of equation (7).

Finally, randomness of the variables will be taken into

.




account in the formulation by employing the probability
density functions for the variables from the physical consid-
eration of the vortex size, the vortex strength, the vortex
orientation and the vortex location, etec.

The autocorrelation function of the total pressure fluc-

tuations due to a single vortex is defined as:

Rapy/a, Tr% Toaax By ,8) = R(T)=
Jﬂ (t) ——&(t+f)dt (8}

where R and A%t represent the functions that involve the
random variables (a, Vg __, Ry, 7, B) and R3'= (Yv’Yp)Z-*
(2y-25)°.

After the probability density function for the variables
are used in equation (8) and assuming that there are N
vortices per second of vortex flux traveling down the inlet

duct, a complete autocorrelation function of the total

pressure fluctuations can be obtained as shown in equation (9}.

RAPt/qZ(T) "jjjjj ﬁApt/qz(T) NP(a)P(Vgp,, )

all possible values
P(R,)P(T)P(B) dadvemaxdﬂvdfdﬁ (9)
where P(a), P(Vg ), P(Ry), P(7) and P(P) represent the
probability density functions for the vortex size a, the

vortex strength vemax’ the vortex location R, and the vortex
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orientation Y & 8 respectively. Here, it is assumed that all
the variables are independent.

The probability density functions for Ry, v and B are
assumed to be distributed uniformly (i.e. constant). Beta

distribution function is employed to describe both a and

vemax‘ The beta distribution function is given as:
P(E) = K_(E)®(1-E)" for O <E €1
& ’ and m,n 2 0 (10)

With these assumptions, equation (9) can be normalized
and solved numerically in one of two ways. The first is a
complete numerical integration which shows that the results
depend on the parameters m, and n,. The second is by as-
suming a delta function for P(a) instead of using the beta
distribution function. The latter results in a single curve
which is independent of my; and ny, and is dependent only on the
mean size of the vortices, 3. For simplicity, the results of
the second integration will be used for further development
in the analysis.

With this numerical solution of the autocorrelation
function, a PSD function can be obtained easily through a
Fourier transformation. Since only the real part of the
transformation is comparable to test data, the real part of

the PSD function is shown in the following equation.

QAPt/qgf) = Qljaapt/qz(T)cos(thf)dT (11)




Equation (11) can be normalized and solved numerically.
The numerical results are approximated by an exponential

function and the final expression is given by:

G - 2
LPt/qy N 9.0(§/U2)e'63'6(fa/U2}

2 (12)
dAPt/Qn,

Equation (12) is then integrated over part of the fre-
quency spectrum. The left hand side of equation (12) becomes
a ratio of the filtered and unfiltered mean square value of
the total pressure fluctuations. The integration of the right
hand side of equation (12) results in an error function which

is described by equations (13a) and (13b}.

-

1)
APt/q - - _?.
5————-—2 24r = 9.05%:3 83.6(£a/Up}" 4¢ (13a)
ag 2

Q AP /q, 0

or,

2
dap £ ‘.
—3—2132L= erf(7.98§§) (13b)

GAP t/qz

Equation (13b) is the key equation for finding the main
variable a. The ratio on the left is measured in the inlet
test for a selected filter cut-off frequency f“. The mean
flow velocity at the compressor face, U, is also measured

in the test. X can be solved by using equation (13b) with

L
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the measured data at each probe. This is done on a probe by

probe basis and then an average value is taken.

APD Function Analysis for

Finding the Vortex Flux N

Having found a, the vortex flux N remains to be identi-
fied. To find solution for N, statistical moments of the
amplitude probability density (APD) function are employed.
Since experience with test data indicates that the ampli-
tude distribution of the total pressure fluctuations is
nearly Gaussian, its kurtosis (the 4th moment) is assumed to
be zero. It will be shown that the second and the fourth
moment of the APD function can be used for solving N and
Tomax:

First, the nth moment of the APD function is defined

o 155115 s rn e

all possible values

ass

P(T)P(B) dtdadvemadeVdeﬁ (14)

Relations between p, and the statistical properties of inlet

fluctuating pressure data can be described by equations (15).




mean = py =0 (15a)
mean square = b, = g2 (15b)
skewness = )13/(112)1'5 (15¢)
kurtosis = pk/u% - 3.0 (15d)

Equation (14) is solved numerically and normalized for
the second and the fourth moment of the APD function, B, &

R,- Results are approximated as follows.

L) = 1.20/F(3/R.)2 (16a)
(NRp/Up)(Vg__ /U ) 1.20[T(a/Ry)
B
L T, = 2
= 2.,75/5(3/Rqp) (16b)
(NRp/U, (Vg JU,)" [iaren

Using equations (1léa), (16b) and assuming that the kurtosis

is zero, the following expression is obtained.

UZ/ Rp l___ gmax (17)

N = 0.251&(_57}1_1‘)—2 (?g;x—)z

The last term of the above equation is assumed to be
1.0, which is accurate to within 20 percent when my,> 4+ .40, .

Therefore, equation (17) becomes:

Us/RT (18)

N = 0.254
(3/Rp)?

L6
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Equation (18) is the solution for vortex flux N since
3 is already solved in equation (13b) and U, and Bp are known
values. Vémax is then obtained by an algebraic solution of

equation (1l6a).

Distortion Factor Determination

Up to this point, the main variables of this vortex

flow model have been identified using the key equations and
the experimental data. The next part of the development is
to establish relationship between these variables and the

dynamic distortion factor of the inlet, The main variables
of the vortex model (3 and N) are useful for predicting the
statistical properties (mean and standard deviation) of the

distortion factor. From this the extreme (peak) value of the

dynamic distortion can be determined by extrapolation.

Relation Between Total Pressure

Fluctuations and the Distortion Factors

Typical distortion factors for the inlet flow are
defined in table I. These may be used to discribed the var-
iation of pressures at any instant of time. The time-variant

total pressures can be characterized in terms of the vortex

flow model variables, 3 and N, decribed previously.




Following the same analysis as for the APD function, the mean

and the standard deviation of the instantaneous distortion

factors, K and o, are found to be functions of 3, the steady-

state distortion factor (K, ] and the total pressure rms
level. These parameters are already known at this point so
that K and of can be obtained explicitly. See Figures 12(a)
through (f) for illustrations.

After K and dxlare obtained, probability distribution
function for the population of the instantaneous distortion
factors is defined from which the most-probable peak distor-
tion factor can be picked. The peak value is found to be a
function of i, dK’ N and the data record length T, which are
again known values from the previous analysis.

Now, relations between the total pressure contour
measured at the compressor face and the distortion factors
are linked by the definitions listed in table I. Since the
total pressure and the distortion factors are time-variant,
it is more appropriate to used the instantaneous notation.
Instantaneous distortion factor with the random variables
involved is denoted as ﬁinst which is a function of the in-
stantaneous pressure contour by the definitions of table I

as indicated in equation (19).

ﬁinst = £(Bipee) = flpgg*an,) = £(t,3,7 _,Ry,7,8) (19)

PR g o e o <ty
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ap, in equation (19) is obtained from equation (7) and
the steady-state total pressure data, Pgs» are assumed for
several typical distortion patterns. Statistical moment
analysis for ginst is taken so as to relate the mean value
K and the standard deviation dx to the main variable 3. The

nth moment of ﬁinst is defined in equation (20]).

X = ijjjjj[kinst(t)]nP(a)P(Vemax)P(Rv)P(Y)P(ﬁ)

all possible values

dtdadvgmaxd&,drd 8 (20}

The probability density functions used in the analysis remain
the same as those used in the APD function moments analysis,
Only the first two moments of equation (20) are needed for

finding K and ¢ through the aid of the following relations.

ok =R - Kgg (21a)
o = (K2 - x2)% (21b)

The results of this analysis are solved and approximated
numerically, and are shown in Figures 12(a) through (f) for
different distortion factors listed in table I. It is shown
that dy and &K are functions of a and Kss’ For some of the
distortion factors, the results are functions of a only. After
a and Kgs are fed into these figures, dy and 8K can be de-
termined. Then K is calculated from equation (2la) for the

given value of Kss'
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Table 2. Range of test conditions and data bases of
HiMat inlet testing model

Mach no.

0.4 ~ 1.36

Angles of attack, o

=10 deg ~ +25 deg

Angles of sideslip, B

0 deg ~ -10 deg

rms filter frequency, f' 1000 hz
Engine cut-off frequency, f, [ 500 hz
Data recording time, T 30 sec

Vortex generators

with and without
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Table 4.

Numerical experiments of the general criteria of

dynamic probe selection for three Melick's test
cases of an supersonic intermal compression inlet

gtV

Case no. Test condition | Totally 14 dynmamic | Available selected
probes probes
M a 8 peak KAZ worst probe no. | Error 3
single based on
probe l4-probe
(%) value(ZY ¢
1 2.5 15 0 1.1638 +35.81 18,21,22, | -Z.56 {
-15.65 38 3
2 1.6 t5 1 1.1636 +16.58 4, 17,21, | -2.97
-19.13 38
3 2.5 15 0 0.7438 +25.67 4, 20,24 | +4.94 [
-14.91 g
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(a) HiMat Test Model: o

45° Compressor Face

Instrumentation
] * Steady-state
g . Probe
70

90" x Dynamic Probe

135°

5

App(i,3) fluctuating

: -——L Nearly Normal
Pt ‘§::::::i:>, Distribution
ifsteady state

Time-sec Pt(l,jf‘Pss

(b) Total Pressure:

(c) Distortiom Factor(resulting from a combination of all probes):

Nearly Normal

Kkf vvvvvv 'R TR e r ‘ B ~ [ Distribution

KTS T Kinst
Time-sec Kinst'K

Figure 1. Illustration of a typical inlet test model and the physical and
statistical total pressure data and distortion factor
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)
%ﬁzzz ——— /Compressor Face
Y 5

) Dynamic Probe

Va/V

T

a r

+
J//\\ Velocity Profile

Static Pressure

(b)

APe

Figure 2.

T
<:::: Yo Distribution

s NV

-

-p/Pr=0

Inlet vortex flow model and perturbation of velocity and
static pressure and the time variant total pressure
fluctuation caused by a single 1-D vortex
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8 r 3
E%LS%L_TTZS Beta Distribution Function:
P(x) = Ky(x) X(1-x)"%
6 I where,
8,26, .25 %= m%%z-
P(x)
_ _ (mxinxt+2)
4,14, .25 Kye = e DT (ot D)
n
4r 2,8, .25 mat ) it
5,9, .375 gamma function:
I'(n) = (n~1)!
.l 4,4, .3 , forn = 1,2,
1 L [ ]
0O .2 A .6 .8 1.0
x
Figure 3. 1Illustration of the characteristics of Beta distribution

function

i/O’K
®(Gaussian)

-3

Figure 4.

-2 -1 0 - 1 2 3
Kinst-K
9%
Probability density function of the instantaneous distortion
factor, Kinge- Note that the results have been normalized



Figure

Figure

K/GK
1.0 Z(Gaussian)
4
9k 2
.8}
Y A S
.6k
St
LA L
3t
2k
AL
0 [
-3 -2 -1 0 1 2 3
Kinst X
Or
5. Probability distribution of the cumulative probability
function of P
NT=100
4 /
-4 NT=10 NT=2
3r increase
NT
2%
.1t
0 1 1 1
0 .2 L4 .6 .8 1.0
Py
6. Probability distribution of the peak distortion condition
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P,i/oK=4

P,,NT=100

=

increase NT

1 2 3
most-prob-max value
for NT=100

most-prob-max
value for NT=10

Figure 7. Probability density function of Kinst and the peak distortion
value, P and Py respectively
> R./O'K = 5 — i
=774
% T X |
LN\ N
/, 8 h
44¢¢ / 6 3
1y & >
1 /;/,
:
'Téf A
16 g» 6 3 h‘ Gaussian
S, 7,
3 /A
L
2.5L&LL .
102 103 10" 10% 10
NT

Figure 8.

Most probable maximum(peak) instantaneous distortion factor
as a function of NT, K and oy
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,—Experimental data

¥ ! l Bz "37. 4
Error=107 5% , -52
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Ry
20
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L L
105 5 10
Figure 10. Error of the mean vortex size assumption as a function

of my and ng4

Experimental data

Figure 1ll. Error in vortex flux, N(assuming ngax/(vé

a function of my and ny
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Figure 12.
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¥(t) H(f) ¥7(t)

= = | —7 >—

Time log(£) Time
Input Signal Filter Qutput Signal

Figure 13. Illustration of the filtering effect for engine respond
characteristics

N
(98]

fc(E/Uz)

Figure 14. Effect of filter cut-off frequency on distortion factor rms
level



Pt(i,j)

e — — — ———_—— — — — — — — free-stream

total pressure

—_— e\ — — —— local static
pressure

dovmward spiking pressures

Figure 15.

Time-sec

schemetical illustration of total pressure spiking
phenomenon

(a) Measured distortion pattern(DYNADEC)

measured peak no. 1

measured peak no. 2

(b) Predicted distortion pattern(Melick's)

Figure 16.

Data Pt.: 1574

Mach No,: 0.9

Angle of Attack: 15 deg
Sideslip Angle: O deg

Typical measured and pridicced discortion pattern for
data with spiking phenomenon
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P ,E/aK=4
P, ,NT=100

PZ,NT=100

‘=:>increase NT

increase NT

L
-3 Zi -2 -1 0 _ 1 2 [_ 3
most-prob-min K:Lnst:_K most-prob-max value
value for NT=100 a for NT=100

Note: P represents the probability density function
for the minimum peak condition

Figure 17. 1Illustration of the method of finding the minimum peak
distortion value

06 +20%

[~ line of perfect -06 = line of perfect
agreement . agreement
APRS . APRS
(predicted) ° ® (predicted) 402
/ /.— ’

.03F %«'-‘ .03k e

0 ! A 0 ] -]

Q .03 .06 0 .03 .06
APRS (measured) APRS (measured)
(a) With Vortex Generators (b) Without Vortex Generators

Figure 18. Comparisons of predicted and measured peak distortion
value, APRS



67

gready-state Measured(DYNADEC}
Peak

Data Point: 2436
Mach no. = 0.6
angle of Attack = -5 deg

gideslip Angle = 0 deg

Predicted(Melick)
Peak (a)

Figure 19. Comparisons of measured and predicted peak distortion maps
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Steady-state Measured (DYNADEC)
Peak

Data Point: 2437
Mach no. = 0.6
Angle of Attack = 0 deg

Sideslip Angle = -5 deg

Predicted(Melick)
Peak (b)

Figure 19. Continued



Steady-state

Predicted (Melick)
Peak

Figure 19.

Continued

(o)
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Measured (DYNADEC)
Peak

Data Point: 2433
Mach no. = 0.6
Angle of Attack = 15 deg

Sideslip Angle = 0 deg
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Steady-state Measured (DYNADEC)
) Peak

Data Point: 1968
Mach no. = 0.9
Angle of Attack = -10 deg

Sideslip Angle = -5 deg

Predicted (Melick)
Peak (d)

Figure 19. Continued
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Steady-state Measured (DYNADEC)
Peak

Data Point: 1948
Mach no. = 0.9
Angle of Attack = 7 deg

Sideslip Angle = 0 deg

Predicted(Melick)
Peak (e)

Figure 19. Continued
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Steady-state Measured (DYNADEC)
Peak

(&)

Data Point: 1964
Mach no. = 0.9
Angle of attack = 7 deg

Sideslip Angle = -5 deg

Predicted (Melick)
Peak ()

Figure 19. Continued



Steady-state

Predicted(Melick)
Peak

Figure 19. Continued

(g)

Measured (DYNADEC)
Peak

Data Point: 1972
Mach no. = 0.9
Angle of Attack = 10 deg

Sideslip Angle = -10 deg
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Steady-state Measured (DYNADEC)
Peak

Data Point: 1956
Mach no. = 0.9
Angle of Attack = 20 deg

Sideslip Angle = 0 deg

Predicted(Melick)
Peak (h)

Figure 19. Continued



75

Steady-state Measured (DYNADEC)
Peak

Data Point: 1960
Mach no. = 0.9
Angle of Attack = 20 deg

Sideslip Angle = ~5 deg

Predicted (Melick)
Peak (1

Figure 19. Continued



Steady-state

Predicted(Melick)
Peak

Figure 19. Continued
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Measured (DYNADEC)
Peak

Data Point: 2361
Mach no. = 1.36
Angle of Attack = ~4 deg

Sideslip Angle = -4 deg




Steady-state

Predicted(Melick)
Peak

Figure 19.

Continued

(k)
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Measured (DYNADEC)
Peak

Data Point: 2363
Mach no. = 1.36
Angle of Attack = 0 deg

Sideslip Angle = -5 deg



Steady-state

Predicted(Melick)
Peak

Figure 19.

Continued

(1)

78

Measured (DYNADEC)
Peak

Data point: 2358
Mach no. = 1.36
Angle of Attack = 4 deg

Sideslip Angle = 0 deg
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Steady-state Measured (DYNADEC)
Peak

Data Point: 2369
Mach no. = 1.36
Angle of Attack = 15 deg

Sideslip Angle = 0 deg

Predicted(Melick)
Peak (m)

Figure 19. Continued
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Steady-state Measured (DYNADEC)
Peak

Data Point: 2362
Mach no. = 1.36
Angle of Attack = 15 deg

Sideslip Angle = -4 deg

Predicted (Melick)
Peak (n)

Figure 19. concluded
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PART II

INLET FLOW DYNAMIC DISTORTION
PREDICTION -—-- WITHOUT RMS MEASUREMENTS



SUMMARY

A two-equation turbulence model, k-e model, is used in
the prediction of inlet flow dynamic distortion of jet
aircraft based on steady state total pressure measurements
only. This turbulence model is solved at the compressor
face station by using a finite difference scheme. Total
pressure rms level of the inlet flow is predicted by the
turbulence model. The Melick statistical method is then
employed to estimate the peak dynamic distortion based on
the analytically predicted total pressure rms level.

A statistical method is developed for the estimation of
boundary conditions for the turbulent equatious.

In order to solve the set of nonlinear, coupled
turbulent equations, an implicit formulation is utilized
such that a set of discretized finite difference equations
can be arranged into tridiagonal matrix equations for
efficient numerical iterationms.

Results of the prediction compare well with
experimental measurements of subsonic, transonic and
supersonic inlets under various flight conditions. The
present method can be used in the preliminary inlet design

phases to reduce the design costs.
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1. LIST OF SYMBOLS

Discription

Tridiagonal matrix
Specific heat at constant pressure

Correlation factor between boundary rms
level and boundary total pressure loss

Empirical constant of turbulence model
Empirical constant of turbulence model
Empirical constant of turbulence model

Empirical constant for Kolmogorov-Prandtl
expression

Empirical constant for the expression of e

Relative percent error of each numerical
iteration

Column matrix
Relaxation factor of the numerical scheme
Column matrix

Circumferential distortion factor,
(see Table 1)

Combined distortion factor, (see Table 1)
Turbulent kinetic energy (ft/sec®)
Turbulence mixing length (ft)

Logarithmic function with base 10

Free stream Mach number

Mean square value of time variant total
pressure (psi?)

Grid size parameter, (number of divisions
between locations of total pressure probes)

Number of rings of total pressure probes
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Greek

f

<X ™

Number of rakes of total pressure probes
Pressure, in pound per square inch (psi)
Nondimensional pressure

Gas constant, =1545.33 ft-1bf/lbmole-"R

Radial coordinate (ft) or recovery
factor of total pressure probe

Root mean square of time variant total
pressure (psi)

Compressor-face-average rms level,

=,/N_]:N- Z Z(rmsi’j)z

L' p 1

Air temperature (°R)

Total number of non-boundary grid points

Compressor face average mean flow velocity
(ft/sec)

Axial component of flow velocity (ft/sec)

Mean square value of axial velocity
fluctuations (ft*/sec?)

Radial component of flow velocity (ft/sec)

Circumferential component of flow velocity
(ft/sec)

Column matrix

Axial coordinate (ft)

Angle of attack (degree)

Sideslip angle (degree)

Specific heat ratio

Turbulent kinetic energy dissipation rate

(ft*/sec?)
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subscripts
0

1
2
b

S8

Circumferential coordinate (radian)
Absolute viscosity (slugs/ft-sec)

u/p (ft*/sec)
Cpk7e (ft* /sec)

Kinematic viscosity,

Turbulent viscosity,
Air density (slugs/ft’)

Standard deviation

Empirical constant of turbulence model
Empirical constant of turbulence model

Arbitrary variable

Free stream condition

Inlet throat flow condition
Compressor face flow condition
Boundary value, (i.e. near the wall)
Radial index or tensor index
Circumferential index or tensor index
Experimentally measured result
Analytically predicted result

Static condition

Steady state value

Total or stagnant condition



Superscripts

(n)

~ (over bar)

Indicate condition after the nth numerical
iteration

Indicate solution of equations (22) & (23)
Time variant component

Time averaged value or compressor face
average value

vi



2. INTRODUCTION

Distortion of inlet flow plays an important role in
determining the stable operating region of turbojet or
turbofan engines, especially for highly maneuverable
military aircraft. Time variant or dynamic distortion
heightens this problem by creating peaks superimposed on top
of the steady state distortion as illustrated in the
adjacent figure. Thus, the occurrence of stall surge or
other engine instabilities can not be readily predicted.

Traditionally, time variant total pressures of the
inlet flow measured in the test are analyzed by several
methods. These methods can be classified into two
categories.

In the first category, time variant total pressures
measured by high response total pressure probes over the
compressor face are recorded in the test for a specified
period of time. Then, these data are screened in the
Dynamic Data Editing and Computing System (DYNADEC)
deterministically based on a certain distortion factor
(ref.1), (definitions of some distortion factors are given
in Table 1). From the screening procedure, a maximum
instantaneous peak distortion pattern corresponding to a
maximum instantaneous peak distortion factor is determined
(refs. 1,2). This is the most accurate method, but it is
also the most costly and time consuming method. It will be

the basis for data comparisons in this work.



ILLUSTRATION OF SOME FEATURES OF THE TIME VARIANT TOTAL
PRESSURES AND DYNAMIC DISTORTION:
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In the second category, the peak dynamic distortion is
predicted using some form of statistical analysis (refs. 3,
4, 5, 6, 7, 8) which is more economic than the DYNADEC
approach. There are three major statistical approaches.

The first one, due to Jacocks, et al., uses Gumbel's extreme
value theorem to extrapolate the peak dynamic distortion
within a specified time period from the first short time
segment of deterministic information (ref. 4). The second
approach, due to Motycka, utilizes a random number generator
to simulate the total pressure fluctuations at each probe
based on the measured steady state total pressures and the
measured total pressure rms levels. Time variant distortion
factors are calculated using the generated instantaneous
total pressures, from which the peak dynamic distortion is
determined (ref. 5). The third approach, developed by
Melick, et al., is a modeling approach that postulates that
the dynamic effects in the inlet flow is totally attributed
to the pressure disturbances caused by a sequence of
convecting vortices in the inlet duct. The peak dynamic
distortion is determined from this physical model and its
statistical properties. Filtered and Unfiltered total
pressure rms levels are used to identify main variables of
the vortex flow model (ref. 3, 6). Among all the methods in
this category, the Melick method is the most efficient in
terms of numerical analysis whereas it is not as accurate as
the Motycka method in predicting the peak dynamic distortion

patterns (ref. 7).



Since the forementioned approaches require measurements
in the time variant total pressures using high response
total pressure probes, design of high performance inlet is
costly in terms of instrumentation, analysis and testing
time. Thus, it is highly desirable to develop analytical
means for predicting peak dynmamic distortions without
dynamic measurements.

There are analytical methods of predicting steady state
distortions but not the dynamic peak distortioms. Also,
these analytical methods are limited to qualitative
predictions only, since the total pressure losses through
the inlet duct can not be well predicted. A summarized
review of the current analytical methods is included in
reference 9. Reference 10 provides an application of the
time marching finite volume method to the prediction of
steady, quasi-invicid inlet duct flows.

The present work makes the first attempt ever to
predict the peak dynamic distortion based on the steady
state total pressure measurements at the compressor face
station. Once the approach of the present work is
successful, it would be highly encouraging to extend the
present analysis to a pure dynamic distortion predicting
technique in the future research, without any experimental
measurement, by incorporating the present analysis in an
existing steady state distortion prediction code. This
would allow early identification of possible dynamic

distortion problems before the first wind tunnel model is



built.

In the present work, an analytical method of predicting
the dynamic peak distortion, based on the steady state total
pressure measurements, is proposed and evaluated. First,
axial velocity distributions of the inlet flow are
calculated from the measured steady state total pressures.

A two-equation turbulence model, k-e model, is then employed
to solve for turbulent kinetic energy distributions over the
compressor face using the calculated velocity distributions
and statistically estimated boundary conditionms. The total
pressure rms levels are computed from the predicted
turbulent kinetic energy. Finally, the dynamic peak
distortions are estimated by the Melick program using the
predicted total pressure rms levels.

In solving the turbulent equations which are coupled
and nonlinear, a finite difference scheme is used to
discretize these equations such that tridiagonal matrix
equations are obtained for successive line relaxation
iterations. Effects of the relaxation factor on the
convergence of the numerical scheme are examined from which
an optimum computational scheme is determined.

Sensitivity study of the variables and parameters of
the turbulent equations to the final results is also
included to reveal how the solutions vary with the variables
and parameters.

Results of the present method are compared with those

of the DYNADEC for five inlet data sets. These data sets



cover a range of Mach numbers from 0.6 to 2.5, a range of
angles of attack from -10 degree to 25 degree and a range of
angles of sideslip from 8 degree to -10 degree. Inlet
configurations involved in these investigations are
illustrated in Figures 1 through 5.

Major objectives of the present study are: (1) to
provide an efficient tool for the preliminary inlet design
and development in which only the steady state total
pressure measurements are required; (2) to demonstrate that
the peak dynamic distortions can be predicted by using the
k-e turbulence model; and (3) to suggest possible future

studies in improving the analysis of the inlet flow dynamic

distortion.



3. METHOD OF APPROACH

In the present analysis, a semi-empirical approach in
predicting dynamic peak distortion of the inlet flow, based
on compressor face steady-state total pressure measurements,
is developed under the following major assumptioms: (1)
turbulent characteristics of the inlet flow, at the
compressor face station, can be represented by an
incompressible, high Reynolds number, two-equation
turbulence model -- k-e¢ model (ref. 11); (2) the inlet flow
near the compressor face is dominated by the axial wvelocity
component such that secondary flow (flow components that are
not parallel to the inlet duct) effect can be neglected;

(3) streamwise variation of the turbulent characteristics is
small and can be ignored from the turbulence model; and (4)
boundary (near-wall) total pressure rms level is
proportional to the total pressure loss near the wall of the
inlet duct so that a statistical correlation between the
measured steady-state total pressures and the boundary total
pressure rms level can be developed using the HiMAT data
set.

Assumption (1) is justifiable based on the following
reasons: (a) compressibility effect on the turbulent
characteristics of the inlet flow can be neglected since the
flow near the compressor face station is always at
low-subsonic speed; (b) the k-e turbulence model is well

tested for many types of turbulent flow such as turbulent



boundary layer along a flat plate (refs. 11, 12, 13, 14, 15,
16), turbulent flow inside rectangular channel or circular
pipe (refs. 17, 18, 19, 20), free-shear turbulent flows
(refs. 21, 22, 23) and other applications (refs. 24, 25);
(¢) although the accuracy of the k-e model is comparable to
other two-equation turbulence model, such as the one
developed by Rotta and Vollmers (refs. 26, 27), it is found
that the k-e model is more efficient numerically.

Despite the fact that assumptions (2) and (3) may not
be realistic from a theoretical point of view, for some
inlet configurations and flight conditions, these two
assumptions are imposed because there is normally no flow
direction or streamwise turbulence information available.

It will be shown later that assumption (4) makes a
major contribution to the present analysis. Assumption (&)
is made in order to develop a reliable method for estimating
the boundary conditions for the turbulent model.

Note that the present analysis does not take into
account the effect of boundary layer bleed immediately
upstream of the compressor face since turbulent structure of
the inlet flow would be quite different in that case.
Therefore, it is expected that the present model may not be
suitable for inlet flow with strong boundary layer bleed.

Based on these four assumptions, developments of the
mathematical formulations and the method of estimating the
boundary conditions are described in the following two

sections.



3.1 Mathematical Formulations

Partial differential equations of the k-e turbulent
model suitable for incompressible high Reynolds number
turbulent pipe flow (ref. 12) can be written as:

gk gk, T3k 15 _L_l_ki a_lg uk‘ak)

Ux"Vee '@ rar g € )+ ?'ae(dke 38

+Q Lyl By - (1)
EL L l_a.(EEK_ ey, 1.2.(5&59_%)4.
Usx Y EtT® T x T3F 38 6 e

+C€1C k[(QU)z 1 ( )z] <2>

where 4, ¥V and W are time-averaged velocity components in
axial, x, radial, r, and circumferential, 6, directions
respectively. Kk represents turbulent kinetic energy, e is
turbulent kinetic energy dissipation rate, g% is radial
velocity gradient, g% is circumferential velocity gradient

and the five empirical constants are:

O = 1.0

6, = 1.3

C. =0.09
u

Cel = 1.45
CeZ = 2.0

Detailed derivations of equations (1) and (2) are included
in Appendix A
Using assumptions (2) and (3), the left hand side of

equations (1) and (2) can be eliminated. This results in:
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In equations (3) and (4), the radial and
circumferential velocity gradients are required as inputs
which can be obtained from the measured steady-state total
pressures. First, the axial flow velocity at each pressure
probe location is computed from the steady-state total

pressure measurement by the following equation:

E_,,Il Y Pe .
Q5o T TR R )

where U2 is face-average flow velocity, Pe and p are total
and static density respectively, Pt and Ps are total and
static pressure respectively and 7= 1.4. Derivation of
equation (5) is described in more detail in Appendix B.

A cubic spline interpolation subroutine is then
employed to calculate and interpolate the radial and
circumferential velocity gradients at every computational

nodal point on the compressor face. An artificial smoothing

10



routine is also used to account for large velocity
variations near the watlt.

After the solution of turbulent kinetic energy is
obtained from equations (3) and (4), total pressure rms
level is computed from the turbulent kinetic energy using

equation (6).

Pr (v -1) R .
~ = Q7 k/3)+K

PtZ

Note that rms has been normalized by the face-average total
pressure (in psi), §t2‘ Appendix C describes the detailed
derivation of equation (6). This equation is only an
approximation since the relation of isotropic turbulence has

been assumed in the derivation.

3.2 Boundary Conditions

In this section, a statistical correlation between the
boundary total pressure rms level and the steady-state total
pressure is obtained by applying assumption (4) to the HiMAT
data set. Assumption (4) can also be expressed in the

following equation:

(zms)

Ck=l‘(Pt2y

g ~ 0 - Neraege (7)

rirg - 5 - average L-(Pg hy
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where rms, =
b (rms)rlng-S-average’

(PtZ)b - (PtZ)ring-S-average’

Ck stands for a correlation factor and (Ptz)b and Tmsy have
been normalized by ﬁtO and §t2 respectively. ﬁtO and §t2
are free stream and face-average total pressure respectively
(in psi).

Obviously, Ck is not a constant due to the fact that
different turbulent structures of the inlet flow are
produced in different flight conditions. Thus, a different
proportion of the turbulent kinetic energy in the total
energy loss is expected for different turbulent structures.
Nevertheless, by examining the HiMAT inlet data set, there
is a fairly consistent relation between the turbulence level
and the face-average total pressure loss, (1-Pt2). From
this clue, a statistical analysis between Ck and the
face-average total pressure loss is done from which a second
correlation between Ck and (1-Pt2) is extracted from the
HiMAT data set.

Figure 6 shows a linear regression of l°g10Ck on
1°g10(1'Pt2) for the HiMAT inlet data at subsonic and
transonic speed. Data at supersonic speed will be handled
differently, as will be discussed later, for the effect of
inlet shock system. From Figure 6, the equation of a

regression line is obtained. This is expressed by equation

(8).
PRECEDING-PAGE-BLANK NOT FILIMED
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log, oGy = =0.9393 + (-0.2587) log,4(1 - P,) (8)
or,

¢, =0.115 (1 - Ptz)'o'2587 (9)

It is shown clearly from Figure 6 that the regression line
has a negative slope. This reveals the fact that the higher
the turbulent level of the inlet flow the higher the total
energy that is dissipated through turbulent mixing and
redistribution up stream of the compressor face.

Tests of this regression line on other inlet data is
also illustrated in Figure 6. It can be seen that this
regression line, equation (8), represents the inlet flow
turbulent characteristics of other inlet configurations
equally well.

The same analysis is applied to supersonic cases of the
HiMAT data set without accounting for the effect of inlet
shock system. This is shown in Figure 7, which reveals
discrepancy between equation (8) and the test data. The
reason for this discrepancy is that the total pressure loss
through the inlet shock system is due to the shock
compression process which is not responsible for the major
part of the generation of tdrgulent kinetic energy.

In order to obtain a consistent correlation between Ck
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and the steady-state total pressure for supersonic cases,

equation (7) is revised to be:

sy
=~ (P

- 10
% Pu 22 b (10)

where Ptl’ normalized by the free stream total pressure,
stands for the total pressure recovery through the inlet
shock system. If Ptl is not measured in the test, it can be
estimated from a set of curves of maximum total pressure
recovery for 2-dimensional oblique shock and conical shock
systems as shown in Figure 8 (ref. 28).

Again, a correlation between Ck and the face-average
total pressure loss after inlet shock system, (Ptl-PtZ), for
HiMAT inlet data at supersonic speed, is shown in Figure 9.
Corrections for the effect of inlet shock system are
obtained from the curve of one 2-dimensional oblique shock
in Figure 8. A revised version of equation (8) is also
shown in Figure 9. Equation (11) is the revised version of

equation (8).

log,,C, = =0.9393 + (-0.2587) log,((P,- P\,) (11)
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or,

-0.2587
2y (12)

¢ = 0.115 (Pcl'

In Figure 9, equation (11) represents higher value in
Ck.than the data points. This is due to the fact that the
shock correction curves given in Figure 8 is the least
amount of correction that a inlet can possibly attain under
any flight condition. In reality the total pressure
recovery through an inlet shock system is lower than that
obtained from Figure 8 such that the mean of the data points
in Figure 9 would be very close to equation (11). However,
it is feasible to use equation (11) and Figure 8 for the
estimation of Ck since a slight over estimation of Ck can be
attained. This means that the boundary rms level would be
slightly over estimated which is desirable for a
conservative design process.

The validity of equation (11) is tested using other
inlet configuration of Melick's supersonic test cases as
shown in Figure 9. The correction for the effect of the
inlet shock system is also accounted for by using Figure 8.
Good correlation between equation (11) and the test data is
shown clearly in Figure 9.

Conclusion of the statistical study described in this
section can be summarized by the following equations which
are combinations of equations (7) and (9), and equations

(10) and (12).
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For subsonic and transonic cases:

-0.2587
ms, = 0.115 (1 - Py) 1= (R (13)
For supersonic cases:
- - -0.2587 14
mmsy, = 0.115 (P ;- P,) [Py (B (14)

Also, equation (6) can be written as:

=2 -3 ?
k%'%— /%1_+[ms tZ'Y]z (15)

Using equations (13), (14) and (15), boundary conditions for
the turbulent kinetic energy, k, of the k-c model can be
estimated.

Note that the estimated boundary rms level is an
average value near the wall rather than a circumferential
distribution as the actual measured rms level would be. It
is not only that there is no consistent rule for estimating
the circumferential rms level distribution but that the use
of an average boundary rms level predicts almost the same
face~-average rms level as that predicted by using the exact

boundary rms level distribution. This will be described
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later in more detail in section 5.2.

Boundary condition for the turbulent kinetic energy
dissipation rate, €, is also required in order to solve
equations (3) and (4). This boundary condition can be
obtained by applying a wall function approach (ref. 11, 12,
17, 18) to the k-equation, equation (3). The wall function
approach states that the turbulent energy generation term,
the third term of equation (3), and the turbulent energy
dissipation term, the last term of equation (3), are almost
equal near the wall. The following equation supplements

this statement.

kf@&‘-)* L& (16)

Using equation (16), the boundary condition for the

turbulent kinetic energy dissipation rate can be estimated.

3.3 Interfacing with the Melick Method for Predicting
Peak Dynamic Distortioms
Besides the compressor face steady-state total
pressures and the face-average total pressure rms level, a
ratio of the filtered to unfiltered mean square (ms) levels
and the corresponding cut-off frequency are required as
inputs for the prediction of dynamic peak distortion factors

by using the Melick method (refs. 3, 6). Unless this ms
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ratio and the cut-off frequency are determined
experimentally, an approximation is suggested here. It is
learned by examining the available test data sets that the
ratio of filtered to unfiltered ms levels is around 0.5 at a
cut-off frequency ranging from 800 hz to 1000 hz. This
corresponds to fairly constant frequency response of the
turbulent characteristics of the inlet flow. Also, it is
mentioned in reference 3 that the prediction of dymamic peak
distortion is not very sensitive to the ms ratio and the
cut-off frequency. In the present analysis, an ms ratio of
0.5 at a cut-off frequency of 1000 hz are used for every
data set. It will be shown from the results that this

approximation is reasonable.
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4. NUMERICAL SCHEME

Since equations (3) and (&) are coupled and nonlinear,
a finite difference numerical scheme is used to discretize
these two equations (refs. 29, 30, 31). A computational
grid system and a set of finite difference equatiouns are
arranged in such a way that an implicit numerical scheme is
obtained. A set of tridiagonal matrix equations are also
attained for efficient successive iterations. A relaxation
factor and grid size parameter are determined in the

analysis of numerical convergence in section 4.3.

4.1 Grid System

A grid system based on the locations of total pressure
probes on the compressor face is illustrated in Figure
10(a). Figure 10(a) shows a 40-probe compressor face
instrumentation configuration. For better finite difference
approximation, finer grids are used by dividing the space
between probes into Ng equal spaces. Ng’ an integer, is
designated as the grid size parameter. In this way, smaller
grid size can be attained near the wall where larger
variation in turbulent characteristics is expected (ref.
18). Total number of non-boundary grid points of the grid

system can be calculated by the following relation.

™ = (Ng)*. NNy (17)

19



where TN denotes the total number of non~boundary grid
points, Ng is the grid size parameter, Nr and Np represent
the number of rings and the number of rakes of the total

pressure probes respectively.

4.2 Finite Difference Formulations

In this section, a set of discretized difference
equations are derived by applying central difference scheme
to equations (3) and (4). Referring to Figure 10(b), the
central difference equations, in radial (r) and
circumferential (8) directions, for any variable ¢ about

point p can be written as (ref. 30):

Tk SRS U5 ke 5 (N o NS Lo U e 45 PP
T oArg g tar o Ar g Ar;qFar Ary
0. .. - .
3¢ i, i+l i, j-1
EY- T A6 (19)

Note that an irregular grid spacing has been assumed in the
radial, r, direction.

Applying equations (18) and (19) to equations (3) and
(4), by changing ¢ to k and e respectively, the following

finite difference equations can be obtained.
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Note that equatioms (3) and (4) can not be applied to
the point at the center of the inlet duct where r=0. This
problem can be handled by rewriting equatioms (3) and (4) in
Cartesian coordinates. The central differencing technique
is then applied to the new equations about point p and the
surrounding points n, e, s and w shown in Figure 10(e).

Equations (20) and (21) are then written for all points
on a radial line, as shown in Figure 10(a), from point O to
point n+l. From this, two tridiagonal matrix equations are
obtained for efficient linme relaxation iteratioms. These

two matrix equations are expressed as:
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Equations (22) and (23) can be solved easily by the routine
described in Appendix D.

In order to start the implicit iterative numerical
scheme, initial guess of the values of k and e for every
non-boundary grid point must be given. 1Initially, the
boundary values of k and e, estimated from equations (13),
(14), (15) and (16), are assigned to every grid point to
start the iteration.

A relaxation factor, fr’ is then used to control the
convergence of the numerical scheme (ref. 31). Effect of

the relaxation factor on the rate of convergence will be
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presented in the next section. Using the relaxation factor,
fr’ the updated solutions of k and e¢ are obtained from the

following relations:

o) o @)y £ [ SR GV (24)

(o) | () £ SR Y ] (25)

where k" and e are solutions of equations (22) and (23),
and superscripts (n) and (n+l1l) stand for the old and new

values respectively.

4.3 Numerical Convergence

Numerical convergence of the finite difference scheme
described in the previous section depends on two factors:
the relaxation factor, fr’ and the grid size parameter, Ng‘
To study the effect of fr and Ng on the rate of convergence
of the numerical scheme such that an optimum numerical
scheme can be determined, a relative percent error of each

iteration is defined as:

* e(n)l
()

le 1 - 1007 (26)

where TN is the total number of non-boundary grid points and
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the sign, Z; stands for the summation over all non-boundary
grid points.

Steady-state total pressure data used in this study is
obtained from the HiMAT data set.

To determine the value of fr, the relative percent
error, Er’ at the end of the 30th iteration for several
values of fr and boundary rms levels, rmsy, is computed and
presented in Figure 11. It is seen clearly from Figure 11
that Er is decreasing with the increase in fr’ until fr
exceeds a boundary beyond which the numerical scheme becomes
divergent. The boundary for divergent and the rate of
convergence depend also on the boundary rms level, rmsy .
From this a value of fr=1‘0 is selected for relatively good
characteristics of convergence and allowing a margin to the
divergent boundary for safety operation of the numerical
scheme.

To determine the grid size parameter, Ng’ the relative
percent error in 30 iterationms, Er’ for several values of
Ng is computed and illustrated in Figure 12. fr and rmsy
are fixed at values of 1.0 and 0.011 respectively. It is
shown in Figure 12 that Er stays at almost a minimum value
beyond Ng=4. For efficient numerical scheme in terms of
computing time and good characteristics of convergence, Ng=4

is chosen for successive computations.
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S. SENSITIVITY STUDY

Prediction of the face-average total pressure rms level
and the dynamic peak distortion by using the present
analysis depends on the following factors: (1) the measured
steady-state total pressure profiles; (2) the estimated
boundary rms level; and (3) the empirical parameters of the
k-e turbulence model. In the following sections, effects of
these factors on the prediction will be examined from which

the sensitivity of these factors on the present approach can

be identified.

5.1 On the Velocity Distributions

Study included in this section will concentrate only on
the effects of radial variations of the flow velocity.

In Figure 13(a), five radial steady-state total
pressure profiles, which are equivalent to the velocity
profiles, are assumed. These total pressure profiles cover
a range of boundary layer characteristics from a favorable
boundary layer, profile(:l to a separated boundary layer,
profile(ﬁ) Note that profile(:)stands for the boundary
between separated and non-separated boundary layer profiles.
To predict the dynamic distortion, in this study, a constant
boundary rms level, rmsb=0.02, is used for each pressure
profile.

Results of the prediction using the present analysis,

based on the assumed five steady-state total pressure

26




profiles are illustrated in Figure 13(b). In Figure 13(b),
only profile(:)produces lower rms level near the center of
the inlet duct. The rms level is heightened near the duct
center as the total pressure profile is close to the
separated flow.

Figure 13(c) shows the predicted face-average rms
level, ?ﬁEP, and the dynamic contribution to a distortion
factor, KAZ’ for the five total pressure profiles. It is
shown clearly that the profile with a favorable boundary
layer, profile(:} produces the lowest f_§p and dynamic
contribution to Kao while the separated flow, profile(S),
predicts the highest fﬁgp and dynamic contribution to KAZ‘

This study shows that: (1) the present method is
sensitive to the measured steady-state total pressure
profiles; and (2) the dynamic contribution to the peak
distortion can be minimized by designing the inlet contour
or using boundary layer treatment devices, (e.g. vortex
generators,) so that a favorable boundary layer profile can

be attained.

5.2 On the Boundary Conditions

In this section, effects of the distribution and
magnitude of the boundary rms level, rms,, on the prediction
are presented. Steady-state total pressure data used in
this investigation is obtained from an inlet test case, with
the test condition shown on the top of Figure 14 (data point

1948,) of the HiMAT data set with vortex generators.
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First, the effect of the boundary rms distribution on
the predicted rms distributions on the compressor face is
illustrated in Figure 14. 1In Figure 14, the circular symbol
stands for the measured rms levels, the solid line is the
result of the prediction using a constant boundary rms level
estimated by equation (13) and the dashed line represents
the result of the prediction based on the actual measured
boundary rms level, which is not a constant
circumferentially. The indicated number of degrees on the
upper left corner of each of the eight figures in Figure 14
denotes the angular position of the pressure rakes on the
compressor face. The measured and predicted face-average
rms levels, rms, are also shown in the upper portion of
Figure 14.

It is shown clearly in Figure 14 that the use of the
actual CmS, distribution improves the prediction, especially
for the pressure rake at 180 degree. However, a discrepancy
in the prediction of face-average rms level, rms, is not
very significant.

In Figure 14, discrepancies between the measured and
predicted rms distributions can be seen clearly. This is
due mainly to the inevitable assumptions of the theoretical
model, assumptions (2) and (3), in which the effects of the
secondary flow and the axial variations of k and e are
omitted.

Note that the computed value of rms using the constant

rmsy is slightly over-predicted over the measured rms and
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the one computed using the actual rmsy distribution is
under-predicted. The same result is obtained for several
test cases of the HiMAT data set. From this, the use of the
estimated constant rmsy in the present analysis is feasible
in the inlet design process.

Next, effects of the magnitude of rmsy on the predicted
value of face-average rms level, fﬁEp, and the dynamic peak
distortion factor, KAZ,peak’ are presented in Figure 15(a)
and Figure 15(b) respectively. It is shown in Figure 15
that E—EP and KAZ,peak are very sensitive to the variation
of rms,,. This means that good predictions of the
face-average rms level and the dynamic peak distortionm
depend on a good estimation of the boundary rms level.
Validity of the present analysis may largely be attributed
to the statistical estimation of the boundary rms level,

rme.

5.3 On the Parameters of the Turbulence Model
Effects of the values of the five empirical constants,

Ors Og> Cu, Cel and C_,, on the predictions of face-average

rms level, rmsp, and dynamic peak distortion factor,
KA2,peak’ are investigated in this section. This is done by
varying one of the parameters while keeping the other
parameters at constant values. Results of this study is
illustrated in Figure 15.

It can be seen clearly from Figure 15 that the

predicted face-average rms level and the dynamic peak

29




distortion factor are not sensitive to the changes in the
five parameters of the turbulence model. Therefore, an
accurate estimation of the boundary rms level is far more

crucial than any adjustment in the empirical constants of

the turbulence model.
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6. NUMERICAL RESULTS AND DISCUSSIONS

In the following sections, numerical predictions by the
present analysis and data comparisons with five inlet data
sets are included. The five inlet data sets consist of
experimental results of subsonic, transonic and supersonic
inlet configurations under various flight conditions. Inlet
configurations and some measured results of these data sets
are illustrated in Figure 1 through Figure 5. Three aspects
of data comparisons will be included. They are-:
face-average total pressure rms level comparison; peak
dynamic distortion factors comparison; and detailed rms

level distributions on the compressor face compariso=.

6.1 The HiMAT Inlet Data Set

Reference 34 describes an experimental investigation of
a subscale HiMAT model with forebody, canard, inlet duct and
optional boundary layer control devices, vortex generators.
The HiMAT inlet tests were conducted by NASA in the NASA
Lewis 8'x6' supersonic wind tunnel facility. The HiMAT
model has an under-fuselage inlet with a high-divergence
S-shape subsonic diffuser. At the compressor face station,
there were 40 steady-state total pressure probes and 40
dynamic high response total pressure probes installed in an
8-rake, 5-ring configuration as illustrated in Figure 1.

Using the present analysis, face-average total pressure

rms levels and peak dynamic distortions are predicted based
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on the steady~-state total pressure measurements of the HiMAT
data set. Comparisons of the analytically predicted and
experimentally measured rms levels and peak dynamic
distortions, for the HiMAT inlet model without vortex
generators, are shown in Figure 16. Reasonably good
accuracy of the present method in predicting the
face-average rms levels is revealed from Figure 156.

However, Figure 16 also shows that the present analysis
underpredicts the peak dynamic distortion factors for most
cases of the HiMAT data set without vortex generators.

Since these test cases contain incipient or intermittent
separated flow, under-prediction of the Melick statistical
method can be expected (refs. 3, 34). Note, in Figure 16,
the measured peak dynamic distortion factors,¢ﬁPRSm (defined
in Table 1,) are the DYNADEC results (ref. 1).

Figure 17 illustrates comparisons of the peak dynamic
distortions, in terms of IDCmax’ predicted by the present
analysis and the Melick method based on measured rms levels
for the HiMAT data set without vortex generators. It is
shown in Figure 17 that predictions of the present analysis
compare well with the Melick predictions. Note that the
peak dynamic distortion factors of Melick's prediction,

IDC are obtained from the Melick

max,Melick's-prediction’
statistical predictions using 40 total pressure rms

measurements.

Figure 18, (a) through (c), presents comparisons of the

predicted and measured rms level distributions at the
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compressor face for three test cases selected from the HiMAT
data set (without vortex generators.) Discrepancies between
the predicted and measured rms level distributions can be
observed in Figure 18. Since the HiMAT inlet model has a
short S-shape inlet duct with large streamwise curvature,
substantial secondary flow components can be expected (ref.
17). The presence of the secondary flow violates

assumption (2) of the theoretical model. Therefore, some
discrepencies in the prediction of the rms level
distributions should be expected. However, the face-average
rms level is predicted well which is responsible for the
good prediction of peak dynamic distortion using the Melick
statistical method.

In Figure 19, comparisons of the predicted and measured
face-average rms levels and peak dynmamic distortion factor
are presented for test cases of the HiMAT data set with
vortex generators. The predictions shown in Figure 19 are
more accurate than those cases without vortex generators,
Figure 16. For these cases with vortex generators, boundary
layer of the inlet flow is controled by the vortex
generators successfully (ref. 34), which results in better
predictions of the Melick statistical method.

Figure 20 illustrates comparisons of the peak dynamic

distortions, in terms of IDCm , predicted by the present

analysis and the Melick method based on measured rms levels
for the HiMAT data set with vortex generators. It is shown

in Figure 20 that predictions of the present analysis
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compare well with the Melick predictions. Note that the
peak dynamic distortion factors of Melick's prediction,

IDC are obtained from the Melick

max,Melick's-prediction’
statistical predictions using 40 total pressure rms
measurements.

Data comparisons of the rms level distributions are
illustrated in Figure 21, (a) through (c). These cases are
selected from the HiMAT data set with vortex generators. As
for the previous cases, discrepancies in these comparisons
can be observed. Further study is needed to improve the

prediction of rms level distributions on the compressor

face.

6.2 The Melick Test Cases

Configuration of a supersonic mixed compression
axisymmetric inlet model, used to supply the test cases for
Melick's computer program, is illustrated in Figure 2 (ref.
35). This inlet model consists of a center body with fixed
cone angles. Free stream Mach numbers of the test are 1.6
and 2.5 with total pressure recovery through the inlet shock
system assumed to be 0.995 and 0.9 respectively for this
type of inlet. Three test cases are available for data
comparisons.

In Figure 22, comparisons of the analytically predicted
and experimentally measured face-average rms levels and peak
dynamic distortion factor are illustrated for the three test

cases. Good predictions by the present method are shown
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clearly in Figure 22. Note the measured face-average rms
level, fﬁ%m, is an average of 14 total pressure rms
measurements and the peak dymamic distortion factor of
Melick's prediction, KAZ,Melick's-prediction’ is obtained
from the Melick statistical prediction using the 14 total
pressure rms measurements. For these test cases, there are
no DYNADEC results available for data comparisons.

The compressor face rms level distributions are
predicted and compared with the measured results. This is
shown in Figure 23, (a) through (¢). Again, discrepancies
in these comparisons can be seen in Figure 23. Although
this inlet model is axisymmetric, substantial secondary flow

components can still be expected with an inlet angle of

attack or sideslip angle.

6.3 Subsonic Inlet

Configuration of a subsonic full scale short S-shape
inlet model, which is very much like the HiMAT inlet model,
is shown in Figure 3. Center line of the engine is tilted
as shown in Figure 3. Free stream Mach number of the test
is subsonic. There are six test cases available for data
comparisons. These data were provided by the Air Force
(AFFDL), Wright-Patterson Air Force Base, Ohio.

Comparisons of the predicted and measured results are
illustrated in Figure 24, Figure 25 and Figure 26, (a)
through (f). Reasonably good accuracy of the present

analysis in predicting the face-average total pressure rms
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levels and the peak dynamic distortion factors is shown in
Figure 24. DNote the measured peak dynamic distortion

factor, IDC is obtained from the DYNADEC system (ref.

max_’
m

1).

It is seen from Figure 24 that the present method
slightly underpredicts the peak dynamic distortion factor
for some cases. This is due to the limitation of the Melick
statistical method that it can not properly predict the peak
dynamic distortion for inlet flow with separated boundary
layer (ref. 3). Unfortunately, every case of this subsonic
inlet test data set contains separated boundary layer at the
compressor face station. Further study is required to
improve the Melick statistical method to handle the
separated flow conditioms.

Good comparisons of the predictions of the present
analysis and the Melick method based on rms measurements are
illustrated in Figure 25.

Similar comparisons of the rms level distributions of

the six test cases are shown in Figure 26, (a) through (f).

6.4 Transonic Inlet
Configuration of a transonic subscale long S-shape
inlet model is illustrated in Figure 4. Six test cases of
this inlet model are available for data comparisons. These
data were also provided by the Air Force (AFFDL).
Comparisons of the predicted and measured results are

shown in Figure 27, Figure 28 and Figure 29, (a) through
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(£). Good accuracy of the present method in predicting the
face-average total pressure rms levels and the peak dynamic
distortions is shown clearly in Figure 27. In contrast to
the results described in the previous section, or Figure 24,
the present analysis overpredicts the peak dynamic
distortions slightly, which is illustrated in Figure 27.
Since every case of this data set retains attached boundary
layer at the compressor face station, better prediction of
the peak dynamic distortions, by the Melick statistical
method, can be expected. This results in Figure 27. Note
the measured peak dynamic distortion factor, KAZ , 1is
obtained from the DYNADEC system. "

Figure 28 illustrates good comparisons of the
predictions of the present analysis and the results of the
Melick predictions based on total presure rms measurements.

Also, slightly improved predictions of the rms level
distributions are obtained since a long S-shape inlet duct
produces less streamwise curvature effect which incurs
smaller amount of secondary flow components which is closer
to the theoretical assumptions of the present analysis.
Results of the predictions of rms level distributions for
the six transonic cases are illustrated in Figure 29, (a)

through (£).
6.5 Supersonic Inlet

Configurations of four supersonic inlet testing models

are illustrated in Figure 5. These inlet models are
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designated as A-1, A-2, B-3 and B-4. There are thirteen
test cases of the supersonic inlet models available for data
comparisons. These data were also provided by the Air Force
(AFFDL) (ref.36). Data included in this data set are the
steady-state total pressures and the peak dynamic
distortions which were screened based on KAZ' There is no
information about the measured rms level available for data
comparisons. Inlet configurations of the four models are
described in more detail in the following paragraphs.

The inlet model, A-1, is a two-dimensional fuselage
side-mounted external compression inlet. The compression
surface consists of three variable ramps including an
articulated first ramp to allow a variable capture area.
There is also a variable fourth ramp. A large slot at the
throat between the trailing edge of the third ramp and
leading edge of the fourth ramp provides for bypass flow and
choking control.

The A-2 inlet design is a 180 degree axisymmetric,
fuselage side-mounted, external compression inlet. The
center body consists of a first come fixed at 18 degree with
a variable radius second cone that has a range from 12
degree to 30 degree,

The B-3 inlet is identical with A-2 except that it is
located beneath the wing of a flat-bottomed blended body
fuselage. The subsonic diffuser length is constrained by
the location of the inlet and engine beneath the wing with

the resultant decrease in diffuser length and increase in
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diffuser divergence angle.

The B-4 inlet is identical with A-1 except that it is
also located beneath the wing in much the same position as
B-3 inlet. The diffuser length is constrained by the inlet
and engine locations as well.

Results of the prediction of the peak dynamic
distortion are computed by the present method and compared
with the measured results. This is shown in Figure 30 for
IDCmax and KAZ' Since the measured peak dynamic distortions
of these test cases were screened based on KAZ’ better
comparisons are shown in Figure 30 for peak KAZ' Note that
most of the test cases are underpredicted slightly. This is
because most of these test cases have separated boundary
layers at the compressor face station. This causes the
Melick statistical method to underpredict the peak dynamic
distortions.

Finally, accuracy of the present analysis in predicting
the face-average rms level and peak dynamic distortion
factor is summarized in Figure 31. Figure 31 is presented
in terms of percent error of the prediction compared to the
measured data of all available test cases of the five
forementioned inlet test data sets.

In Figure 31, three histograms of the percent error in
predicting the face-average rms level and peak dynamic
distortion factor are presented. If the normal probability
distribution is assumed for these three histograms then the

mean and standard deviation for the histogram of rms level
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are 15.5% and 15.27% respectively. The mean and standard
deviation for the histogram of peak dynamic distortion
factor, for test cases without separated flow, are 19.51%
and 15.57% respectively. The mean and standard deviation
for the histogram of peak dynamic distortion factor, for
test cases with separated flow, are -3.317% and 17.86%
respectively. The distribution of the rms histogram
represents the statistical characteristics of the boundary
condition estimation technique of the present analysis,
equations (13) and (14). The distributions of the peak
distortion factor histograms represent the combined
statistical characteristics of the rms level prediction
technique and the Melick statistical method. In Figure 31,
the peak distortion factor histograms show that the present
analysis has nearly 937 of chance to overpredict the peak
distortion factor, by about 19.51%, for inlet flow without
boundary layer separation which is the feature of the
conventional type of inlet. This is a good design
characteristics. Nevertheless, for inlet flow with
separated boundary layer, the present analysis has more than
55% of chance to underpredict the peak dynamic distortion
factor, by about =-3.31%, which is not a feasible design
characteristics. Further study is required to improve the
Melick statistical method to handle the separated flow
condition.

This result can be used as an inlet design reference in

using the present method. In other words, this information
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can be used in inlet design process in using the present
analysis to see how accurate the present analysis can be in
predicting the face-average rms level and peak dynamic
distortion factors.

One final comment about the prediction of peak dynamic
distortion of the inlet flow using the present analysis is
that the present method, owing to the characteristics of the
Melick statistical method, will underpredict the peak
dynamic distortion for separated flow. If it is found from
the steady state total pressure measurements that the flow
is separated then the peak distortion factor histogram for
separated flow, in Figure 31, can be used as design

reference for the predictions of the peak dynamic distortion

factors.
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7. CONCLUSIONS

An analytical method in predicting total pressure rms
level and peak dynamic distortion, based on steady-state
total pressure measurements, has been developed. The total
pressure rms level is predicted by a two-equation turbulence
model -- k-e¢ model. The Melick statistical method is then
used to estimate the peak dynamic distortion based on the
predicted total pressure rms level and the steady-state
total pressure measurements.

A finite difference scheme has been used to solve the
two-equation turbulence model. A statistical correlation
between the measured steady-state total pressures and total
pressure rms level near the wall has been developed using
the HiMAT inlet data set. Thus, boundary conditions of the
turbulence model can be estimated from the steady-state
total pressure measurements.

A central differencing scheme has been applied to the
turbulence model to discretize the equations of the
turbulence model. Thus, an implicit line relaxation
formulation is obtained. The finite difference equations
have been arranged into a set of tridiagomal matrix
equations for efficient numerical iteratioms.

Numerical convergence of the finite difference scheme
has been investigated in order to determine a relaxation
factor and grid size for the numerical scheme. Sensitivity

study has also been included to see how sensitive the
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present analysis is to the input data and empirical
parameters of the turbulence model.

Accuracy of the present analysis has been demonstrated
through data comparisons for subsonic, transonic and
supersonic inlet models at various angles of attack and
sideslip. VTFive sets of inlet test data have been used for
this purpose. Results of the data comparisons have shown
that the present method predicts good results of the
face-average rms level and peak dynamic distortion factor.
Around 207 of accuracy in predicting peak distortion factors
is attained for subsonic, transonic and supersonic inlet
test cases without separated flow. Further research is
required to improve the present analysis to handle the
separated flow conditions.

As far as the prediction of peak dynamic distortion
factor is concerned, the present analysis can be used as an
efficient preliminary inlet design tool without total
pressure rms measurements. Only the steady-state total
pressure measurements are required to predict the peak
dynamic distortion factor.

A logical extension of the current work would be to
predict the dynamic distortion of the inlet flow directly
from an analytical point of view so that no experimental
information would be required in the prediction. This would
require a flow field calculation external to the inlet duct
and a compressible turbulent flow computation along the

subsonic inlet duct. This approach would require a large
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computational effort with long computing time, but it would
be an inlet design tool that would provide early estimates
of peak dynamic distortion prior to the time when inlet

models and test data are available.
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APPENDIX A

Derivation of k-e turbulence Model

The continuity and momentum equations for

incompressible flow can be written in tensor notation as

following:
su,
"3
Ju. Ju.; Su.
i i 3P i
P 5t * vy BT (a2)

where uy and P represent velocity components and pressure of
the flow respectively. p and u denote flow density and flow
viscosity repectively.

For turbulent flow, the velocity components and the
pressure can be decomposed into a time-averaged component
and a time dependent component. This is given in the

following relationms.

u, = 4, + u; , P=5+pP'

Substituting these relations into equations (Al) and (A2)
and taking time averaging of the resultant expressions, the
following time-averaged equations of equations (Al) and (A2)

can be obtained.

| &

20 (a3)

Q
®



o [st—+a?’7j (@3, +upud)] = =S+ v =g (as)

Subtracting eauation (A3) from equation (Al) and subtracting
equation (A4) from equation (A2), the following time

dependent equations are obtained.

Ju!
aX.
3
u  sul G au' TN
sty —t+y'—L.2 ,____ i
F’[a;t"“jx."""'ax. U 3“< 3)] 3. H3IE (46)
J ] ] 1 1
Multiplying equation (A6) by u} and then taking time
averaging, equationm (A7) is obtained.
ot u?
37 1 - 7 L T ui -
PR o uj;x ad
'71 —T
--( )"_‘.xu‘a‘.xi (a7)
135

Taking summation of equation (A7) for all i=1, 2, 3 and
using equation (A5) and the definition of turbulent kinetic

energy, k=(1/2)) u.', equation (A8) is obtained.

]. ’

3k k > -l—rﬁi BY;
EL ST S N P L SR SR ) I SR ) V(LY

3t ex, Ix, X, | P sx. (a8)
I J3 ~— > ,
(1) Diffusion (1D P‘:oduc.ticn \‘~(III) Dissipaticn

rate
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where =2
2]

Iuj ll r
and ul Txl' (—2—) - (:x —)? have been used.

The following empirical approximations were suggested by

Launder (ref. 16).
(1) ~ 39— qtai) with 6, =1.0

aﬁ]_
' ul) =y —
= uj “j) Yesx

(III) = ¢

where b% = CLJE"L is the well known Kolmogorov-Prandtl
expression for turbulent viscosity. Also, from dimensional

analysis, e can be written as:

Thus, the following relation is obtained.

D
Vo= Gpae=c s

where Cu=0'09 and CD=O.08 are empirical constants.
Using these approximations, equation (A8) is written
as:
Dk:._a_(ik_._ k[C k ﬁ)l -5;] (A9)
Dt~ 3x g © ax k

j 5 HE 9%y

It is sheerly empirical that an equation for e was
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suggested by Launder. It is assumed that the e-equation
have the same form as the k-equation with different
empirical constants. This results in the following
relation.

=.._§_(C_uk_
3x; 9 <

Iw

+elcy ¢ X (axl) -, £l (a10)

St

X; xj
where d€=1.3, C€1=1.45 and C92=2'O are additional empirical
constants.

Finally, equations (A9) and (A10) can be rewritten in

cylindrical coordinates for steady pipe flow:

-3k -3k+w3k 1 3 ( Lllé 3k) 15 ( lezék)

Xt iETr® T oke T8 '@;E"g

s Xyl 3y - (A11)
~ae+-s_e+iae,l.e_(c_u£r=_e)+_1_3.(C_u.ki£)+
U X"V ' T® Tor s, e ot T a0 s, €9

(A12)

+C Qe[ (B ye (33 1-
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APPENDIX B
Measured Steady State Total Pressure

and Velocity Distributions

Relationship between the measured steady state totat
pressure and the axial mean flow velocity is derived under
the following assumptions:

1. The flow is ideal gas.

2 The flow is adiabatic.

3. The flow is steady.

4 There is no static pressure variation in the

direction normal to the wall.

5. Loss in the total pressure measurement is

accounted for by a recovery factor, r.

Under these assumptions, total energy of the flow
without turbulence at the instrumentation station is picked
up by the total pressure probe. Effect of turbulence will
be considered later. The following equation describes this

relation.

e =By (B1)

where Et stands for the total energy of the flow after the
flow stagnates and E; denotes the total energy of the flow
just before entering the total pressure probe. For

adiabatic flow,
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E, =C.T, , E, = Cst + V/2 + g(curl V)

1

where Cp is the specific heat of the flow at constant

pressure, Tt and Ts are total and static temperatures
respectively and g function stands for rotational energy of
the flow inside the boundary layer. Assume that g is very
small and can be neglected since the measurement is not made
very close to the wall. Also, V denotes the absolute

velocity of the flow at the total pressure probe location.

The equations of state of the ideal gas are:

P P
t S
T25sxw, T E;ﬁ and

=} 0

e 4
71

where 7=1.4. After substituting these relations into

equation (B1), the following equation is obtained.

P P
Xt X s 2 g2
7I5, 715, +5v wvhere V? = @l+t+w? (B2)

Considering loss in the total pressure measurement, a
recovery factor, r, is introduced for the total pressure

probe. That is,
r= s , where Pti is the indicated total

pressure.

Equation (B2) becomes:
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; P
Y o_ti__ Y s 2
¥ T, ~ 71 p, + % (U+ v+ W) (B3)

The effect of turbulence is accounted for by the following
relations:

a2 P - ! = 3 ! =
P=P*PL , P=PrPL , p=BrPL s PgTPRgtAg

u=3a+u |, v +v W= Wrw

where the pressure, velocity and density terms are replaced
by their time-averaged terms plus time-variant fluctuation
terms. Substituting these relations into equation (B2), a
time-averaged equation and a time-variant equation can be

obtained. They are:

Y Y S L (W PER) 45 (AT (B&4)
7Ip, 7T pg

P! Pl
L B X S (e aw') + k(U v e w'?) (BS)

Notice that it has been assumed that pL and pg are small and
can be neglected in obtaining equation (B5). Introducing
the definition of turbulent kinetic energy,
k=(u'*+v' > +w'* )/2, and considering the loss in the total

pressure measurement, equation (B4) results in:
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Since @>>% and @>%, the above equation can be further

simplified by neglecting ¢ and @&.

Y Ptl 04 P +%0
r-1 o =¥ ps
or,
§] 5 k
U‘z‘/[% U‘ \7_ )(rpt/i PS) -2 U‘;‘l (BS)

where U2 is the compressor face average flow velocity.

Since k/UE is very small, equation (B6) can be approximated

by:

where r=1.0 for most of the total pressure probe used in

experiment.
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APPENDIX C
Total Pressure rms Level

and Turbulent Kinetic Energy

Relationship between total pressure rms level and
turbulent kinetic energy is derived in this section by the
use of equatiom (BS) derived in APPENDIX B. Assumptions
stated in APPENDIX B are also employed here. Equation (BS)

is:

,Y—-Ez’y-—s-+(&u'+‘7v'+ﬂw')+}i(u”+v”+w”)

It is further assumed that the fluctuations of the static
pressure makes only a small contribution in the above
equation and can be neglected. Taking root mean square
(rms) on both sides of the above equation, the total

pressure rms level can be written as:

s = ‘P?zpt(::-l),/[(m'*- o'+ wv) +% <u|z+ v'ie wrz)]z

Since U>>%¥ and U>>% and neglecting the higher order terms, the

above expression can be simplified as:

~ (Cc1)

For isotropic turbulence (i.e. for flow away from the wall),
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12

u'? can be written in terms of k (ref. 12). That is:

ot = (2/3) &

Substituting this relation into equation (Cl), an expression
in relating total pressure rms level, rms, and turbulent

kinetic energy, k, can be written as:

p.$r-1)

ms =~ L —— J@nE + e (c2)

Equation (C2) is an approximation for flow which is not very

close to the wall.
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APPENDIX D

Solution of Tridiagonal Matrix Equation

A typical tridiagonal matrix equation can be written

as:
AX = F (D1)
where ra . N\ 3
1 1°Q
N o
b » l
a c, N\
2 2 2 N
\ * . Ll \
\. L - \
A= \* . . ~
\. . o N -
\o - . \
N\ b._ a__ c :‘
\n 1 n-1 n lk
0 N
N
. \Pxq %n
rxlw ’fl‘
*2 )
X = ﬁ . P F a W .« P
\XnJ \Ena
The tridiagonal matrix, A, can be decomposed into two
matrices, U and V. That is:
A= UV (D2)
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or,

r - 7 - r -
N P\ 1 1\
al b ] N 0 1 N 0 \\ ) N 0 ’
% 3 D, PA SR AN
AN N N N \,1 AN
\b\3 33 C3 N = AN 33 p3\ \\ r3 AN
3 L3 . \ - \ - \
.. N\ AN N1 rn_ﬂ
VR 0 N\ | © \
\ a3y | NG| N\t

where p; = a;, r; = cl/p1
Py = ai-biri-l’ i=2,3 4, ...., n

£, = ci/pi, i=2,3, 4, ...., n

Using relation (D2), equation (D1) can be written as:

Letting VX = G, the above relation becomes:
UG = F (D3)

Thus, solution for G can be obtained from the following

recursion formula:

gl = El/pl
g; = (fi - bigi-l)/pi’ i=2,3,4, ...., n
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Can Solve
0 tained rom he

xn = gn

xi ) gi r,
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(a) HiMAT Inlet Test Model:

| |
ail
Tnlet Diffuser [ /\/ IL
. i |
M \_ K \mass flow
0 vortex generators plug
L compressor face
instrumentation
Section A-A: 0°

Steady State
& Dynamic
Total Pressure
Probe

Q

270°

225°

180°

(b) Range of Test Conditionms:

Mach No. = 0.6 -~ 1.36

Angles of Attack = -10° —~ +25°
Angles of Sideslip = Q° ~ -10°
With and Without Vortex Generators

Figure 1. l(ill\éxstrai):ion of HiMAT Inlet Test Model and Test Conditions
ref. 34
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(a)Supersonic Mixed Compression Axisymmetric Inlet Model:

]

conical shocks

Lc:ompl:'essor face
instrumentation

(b) Test Conditions and Measured rms of 3 Melick's Test Cases:

Case No. | Mach No. | o« | B ms
(14-probe average)
1 2.5 5 0 .0126
2 1.6 5 1 .0194
3 2.5 5 0 .0173

Figure 2. Illustration of the Inlet Test Model of Melick's Test Cases
and some Test Results (ref. 35)
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(a) Subsonic Full Scale Inlet Model:

/)
N
campressor face
instrumentation
m)
M
o
>
(b) Test Conditions and Scme Measured Results:
Data pt. { Mach No. Pt2 ms IDCmax, peak
20.40 subsonic .887 .0336 225
54,30 subsonic .853 .0478 .326
81.40 subsonic .925 .0337 127
111,30 subsonic .868 L0537 .319
112.30 subsonic .873 0475 .329
137.50 subsonic .926 .0360 L1464

Figure 3. Illustration of a Subsonic Inlet Test Model and some Test

Results (unpublished data from Air Force Flight Dynamics
Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio)
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(a) Transonic .15 scale Inlet Model:

M <==::Z;;;;;;;;;’;;;e

instrumentation

_G'. +

(b) Test Conditions and Some Measured Results:

Data pt. Mach No. Pt2 ms KAZ, Kk |
464,12 transonic 360 0422 . 303
465.11 transonic 912 .0281 .922
473.12 transonic .928 .0217 .565
4385.10 transonic .891 0414 .819
487.80 transonic .857 .0493 1.025
498.12 transonic .913 .0299 A7

Figure 4. Illustration of a Transonic Inlet Test Model and some Test
Results (unpublished data from Air Force Flight Dynamics
Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio)
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(a) Configurations of four .25 scale Tailor-Mate Model:

CIE
Sy

<~z

conical shoc
3

B

ks

B-4
; obli?tgocks
B-3

=

; conical shocks

(b) Test Conditions and Some Measured Results:

Inley Data pt. {Mach No.| & | B Pt2 T'Dcmax KAZ, ]
CA-1]132/1 L.d ] [ L8331 .130 1.336
138Y/3 .2 15 0 8291 076 1.020
216/3 1.6 10 [ .394 | .036 L)
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043/ 3 Z.2 |15 9] L9331 .0/8 . /33
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Figure 5. Illustration of four Supersonic Inlet Test Model and some
Test Results (ref. 36)
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(a)

Fine Grids

(b) (c)

Figure 10. Schematic Illustration of Computational Grid System for
Finite Difference Scheme
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Figure 11. Study of Numerical Convergence
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Figure 12. Effect of Grid Size on the Accuracy of Computation
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(a) Assumed four total pressure profiles:
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(b) Resultant rms distributions:
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Figure 13. Effect of Radial Total Pressure Distributions (equivalent to
velocity distributions) on the Predicted rms Distributions
and Dymamic Peak Distortions
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(a) On mms level:
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(b) On Peak Distortiom: % change
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Figure 15. Sensitivities of the predicted tms level and peak distortion
to several parameters of the computational scheme

77



.03r *20% line of perfect agreement
ms.
P ~20%,
Symbol Mach no

.04 A 0.6
e 0.9
E 1’2
v 1.36

O 3

O 1 [ -]

0 01 02 .03
rms
m
J12r F20% ~ line of perfect agreement
-20%
APRS
P
.08
) o
004‘- o @A
A @
C 1 1 1
0 04 .08 .12
APRS

Figure 16. Comparisons of the Predicted and Measured rms Levels and
Peak Distortion Factor for HiMAT Inlet Model without
Vortex Generators (ref. 34, see Figure 1)

78




.15 . +20% line of perfect agreement

IDC
m3%p 207
10 ® Symbol  Mach no.
- A 0.6
© 0.9
g 1.2
v
osl 1.36
O [ I 1
0 .05 .10 .15
IDC

max, Melick's prediction

Figure 17. Comparisons of peak distortion factors predicted by the present
analysis and Melick's statistical method based on the total
pressure rms measurements for HiMAT inlet data set without
vortex gemerators (ref. 34, see Figure 1)
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Figure 18. Comparisons of the Predicted and Measured rms Distributions
for HiMAT Inlet Model without Vortex Generators
(ref. 34, see Figure 1)
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Figure 19. Comparisons of the Predicted and Measured rms Levels and
Peak Distortion Factors for HiMAT Inlet Model with
Vortex Generators (ref. 34, see Figure 1)
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Figure 20. Comparisons of peak distortion factors predicted by the present
analysis and the Melick mehtod based on the total pressure rms
measurements for the HiMAT data set with vortex generators
(ref. 34, see Figure 1)
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Figure 22. Comparisons of the Predicted and Measured rms Levels and
Peak Distortion Factor for Melick's Test Cases
(ref. 35, see Figure 2)

-

88




OO
.02} ]
s (o]
LO1F o -
o [l 1 ' & 1 1
© Experiment
—  Prediction
45°
.02} i
s Q\______‘
01p >
0 1 1 L 1
900
021 -
rms ——
L1k -
O 1 4 1 1 1
135° o
024 -
rrns __——\_—
01p o o -
0 1 a3 L "
Figure 23.

Data point: Melick's case 1, M=

for Melick's Test Cases (ref. 35, see Figure 2)

89

= 2.5, a=5°, pB=0°
180°
.02L -
rms N
01k ° 4
O“ 2 1 i 1 1
s D probe location  ©
0126
.0129
225°
.02} 1
s \
01 -
o I 13 1 1 ) &
270°
L0240 N
rms _—
01k -
O ] EN I (|
315°
L2k -
ms
LO1fk o ° o -
o [ i 1 1 1
(a)

Comparisons of the Predicted and Measured rms Distributions




Data point: Melick's case 2,

00
Q4L
s
Q2
(0]
0 L L
0] Experiment
~~—  Prediction
45°
.04
ms
02 o
O 1 1
900
04
Tms /—\
.02r
0 1 1
135°
04y
ms —_/\
02k
(o]
o ] 1
Figure 23. Continued

=

.01%4
.0266

(b)

90

=1.6, aoa=5°, B=1°
180°
044
—OQ\Q
o2k °©
0 1 1 1 1 1
ID  probe location Q
225°
04L
\
02%
0 1 1 1 1 1
270°
o4
0200 T——
0 ) 1 L 1
315°
041
—_—_—
.02- ° ° Q
O 1 b .




Data point: Melick's case 3, Mg=2.5, ®=5°, B =0°
o° 180°
o)
02k o i 02¢ ° 4
ms - ms g
L1k - 01k -
0 ) 3 PO 1 - 0 1 1 ? ) 1
) ms ID probe location oD
o] Experiment .0173
—. Prediction .0163
45° 225°
02k 4 021 -
\_____ \___.—
™ms © ™ms
01} - 01k -
O 1 { 1 1 1 O [l [l 1 1 |
90° 270°
.02 e 02¢ <4
\__’-—"—\ \___—___
ms ms
O1p - O1pk .
0 Y 1 i 1 y 0 1 1 1 1 !
135° 315°
.02t © . .02} )
—_—2 o O p—
ms ms
01k - L1k i
0 1 'y L1 I 0 'S 1 ) 1
(c)
Figure 23. Concluded.

91




.06 *20% line of perfect agreement

~20%
Symbol  Mach no.

.04 A Subsonic

.02

Figure 24. Comparisons of the Predicted and Measured rms Level and
Peak Distortion Factor for the Subsonic Inlet Model shown
in Figure 3. (unpublished data)
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Figure 25. Comparisons of peak distortion factors predicted by the present
analysis and the Melick method based on the total pressure rms
measurements for the subsonic inlet data set
(unpublished data)
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Figure 27. Comparisons of the Predicted and Measured rms Level and
Peak Distortion Factor for the Transonic Inlet Model shown
in Figure 4. (unpublished data)
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Figure 28. Comparisons of peak distortion factors predicted by the present
analysis and the Melick method based on the total pressure rms
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(unpublished data)
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Figure 29. Continued
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Data point: 485.i0
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Figure 29. Continued
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Data point: 498.12
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Note: The measured data was screened on KAZ for peak distortion

Figure 30 . Comparisons of the Predicted and Measured Peak Distortion
Factors for four Tailor-Mate Supersonic Inlet Models
(ref. 36, see Figure 5)
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For peak distortion factor:
(with non-separated flow)

mean = 19.51%

For rms level: opdf = 15.57%
80 - mean = 15.5%
drms = 15.2%

For peak distortion factor:
(with separated flow)

mean = -3.31%
o] = .867
odf 17.86%

7, error
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Figure 31. Accuracy of the Present Method in Predicting rms Levels
and Dynamic Peak Distortion Factors
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