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PART I 

RGVIEW AND EVALUATION OF RECENT DEVELOPMENTS 
I N  MERLICK INLET DYNAMIC FLOW DISTORTION 

PREDICTION 



SUMMARY 

A brief review of developments in the Melick method 

of inlet flow dynamic distortion prediction by statistical 

means is provided. These developments include the general 

Melick approach with full dynamic measurements, a limited 

dynamic measurement approach, and a turbulence modelling 

approach which requires no dynamic rms pressure fluctua-tion 

measurements. These modifications are briefly evaluated 

by comparing predicted and measured peak instantaneous 

distortion levels from provisional inlet data sets. 

A nonlinear mean-line following vortex model is pro- 

posed and evaluated as a potential criterion for improving 

the peak instantaneous distortion map generated from 

the conventional linear vortex of the Melick method. T h e  

model is simplified to a series of linear vortex segments 

which lay along the mean line. Maps generated with this new 

approach are compared with conventionally generated maps, 

as well as measured peak instantaneous maps. 

Results of the developments and modifications discussed 

compare well with experimental measurements, both in the 

prediction of peak instantaneous distortion levels, and tne 

peak instantaneous maps. Inlet data sets include subsonic, 

transonic, and supersonic inlets under various flight 

conditions. The methods discussed can be used in preliminary 

inlet design phases in the interest of reducing development 

costs. 
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INTRODUCTION 

a V E  Inlet turbulence and other flow nonuniformities h- 

long been known to significantly affect the operational 

stability of gas turbine engines, especially in high per- 

formance military aircraft. This inlet flow distortion is 

traditionally measured at the compressor face of the engine 

with an array of total pressure probes mounted on rakes, 

The time-averaged steady-state pressures at each of the 

probe locations are processed and combined in such a way as 

to generate various steady-state distortion factors and an 

engine face pressure contour map [see Table 1 and Figure 1 ,  

respectively). These then correlate to engine surge margins, 

The distortion problem is intensified by the time v a r -  

iant component of the total distortion level. Random Fluc- 

tuations in the total pressure measurements can generate 

instantaneous distortion levels which can induce engine 

surges even when the steady-state component is well below 

compressor stall margins. It becomes important, therefore, 

to be able to predict the most probable peak instantaneous 

(dynamic1 distortion level early in the inlet design eFFort, 

One method of determining the dynamic distortion level 

of an inlet is to use an array of high response total pres- 

sure probes,with an extensive inventory of support instru- 

mentation and computational equipment to record time hista- 

ries of the pressure fluctuations for each of the probes- 

These data are then screened, using the Dynamic Data Editing 

and Computing [oYNADEC] system, to determine an experimental 

peak distortion level using the same definitions as the 

steady-state case. This method is generally quite accurate, 

compared to statistical methods described later, but it is 

also extremely expensive in terms of instrumentation and 



computational requirements. In order to reduce the cost o f  

inlet distortion tests, several statistical methods have 

been developed to predict the dynamic distortion companent, 

given the steady-state distortion and limited dynamic data 

(ref. 1, 2, 3). 

Of the many statistical methods of predicting dynamic 

distortion levels, the most efficient is Melick modeilimg 

approach. In the Melick method, it is postulated that the 

dynamic disturbances in the inlet flow can be modelled by 

the pressure disturbances resulting from a series of r-andom- 

ly distributed vortices convecting through the inlet duct, 

Filtered and unfiltered root mean square (rms) total p r e s -  

sure fluctuation levels are used to identify the main v a r i a -  

bles in this vortex flow model (ref. 2, 3, 4 ) .  

The main advantages of the Melick method include law 

cost relative to other techniques, as well as the fact that 

it can be used online, while the test is in progress. It 

has been shown that further cost reduction can be attainea 

by reducing the quantity of dynamic data (ref. 2, 3 ) .  In 

fact, Chen (ref. 33 has derived and demonstrated a new tech- 

nique for predicting the peak distortion levels with o n l y  

the steady-state distortion data, that is, with no dynamic 

data. 

One of the main disadvantages of the Melick modeLLin~ 

approach is it is not as accurate as some methods in ?he 

generation of the peak dynamic distortion patterns in the 

engine face contour map. This is due primarily to a 1irnita.-  

tion in the vortex flow model, namely, the use of a single 

linear vortex in the generation of the peak instantaneous 

pressure array. More specifically, the peak instantan~aus 

pressure array is computed by placing a linear vortex along 

a portion of the mean pressure line in such a way to ampliFy 

the distortion pattern pressures (fig. 3). The size and 

strength of this vortex is determined as a function of the 

most probable peak instantaneous distortion level. It has 



been suggested t h a t  a  new concept  i n  v o r t e x  m o d e l l i n g  c o u l d  

improve t h e  accuracy  o f  t h e  p r e d i c t e d  peak dynamic distor- 

t i o n  p a t t e r n  ( r e f .  2 ) .  

I t  i s  apparent  t h a t  t h e  mean p ressu re  l i n e  i n  d i s t o r -  

t i o n  p a t t e r n s  i s  n o t  g e n e r a l l y  s t r a i g h t .  I n  most cases, t%e 

mean l i n e  can be seen t o  a r c  ac ross  t h e  engine face ,  Fre- 

q u e n t l y  f o r m i n g  a  d i s t o r t e d  r i n g .  One p o s s i b l e  s o l u t i o n  t s  

t h e  v o r t e x  m o d e l l i n g  problem i s  t o  r e p l a c e  t h e  s i n g l e  

s t r a i g h t  v o r t e x  o r i e n t e d  a l o n g  a  p o r t i o n  o f  t h e  mean line 

w i t h  a  cu rved  m e a n - l i n e - f o l l o w i n g  v o r t e x .  T h i s  n o n l i n e a r  

v o r t e x  ( o r  v o r t e x  r i n g ,  where a p p l i c a b l e )  c o u l d  p r o v i d e  a 

more a c c u r a t e  a m p l i f i c a t i o n  o f  t h e  p ressu re  l e v e l s  i n  t n e  

v i c i n i t y  o f  t h e  v o r t e x .  

I n  t h e  p r e s e n t  work, t h e  concept  o f  r e p l a c i n g  t h e  

l i n e a r  v o r t e x  model o f  t h e  t r a d i t i o n a l  M e l i c k  model w i t h  3 

n o n l i n e a r  m e a n - l i n e - f o l l o w i n g  v o r t e x  i s  proposed and 

eva lua ted .  F o r  the purposes o f  demons t ra t i ng  t h e  concept ,  

t h i s  new model i s  s i m p l i f i e d  by b r e a k i n g  t h e  v o r t e x  i n t o  

a  s e r i e s  o f  v o r t e x  segments, one segment f o r  each o f  t h e  

probe r a k e s  ( f i g .  4 ) .  The r a d i u s  and s t r e n g t h  o f  t hese  

v o r t e x  segments i s  r e t a i n e d  f rom t h e  o r i g i n a l  M e l i c k  dynamic 

da ta  match ing  process .  

The r e s u l t s  o f  t h e  p r e s e n t  method a r e  compared t o  t h e  

o r i g i n a l  s i n g l e  l i n e a r  v o r t e x  model, as  w e l l  as t h e  DYNADEC 

r e s u l t s ,  f o r  a v a r i e t y  o f  da ta  s e t s .  These da ta  i n c l u d e  

example subson ic ,  t r a n s o n i c ,  and superson ic  i n l e t  c o n f i g u -  

r a t i o n s  a t  v a r i o u s  ang les  of a t t a c k  and s i d e s l i p .  

Ma jor  o b j e c t i v e s  o f  t h i s  s t u d y  a r e :  1)  t o  r e v i e w  some 

of t h e  r e c e n t  developments i n  dynamic d i s t o r t i o n  p r e d i c t i c n  

w i t h  t h e  M e l i c k  method as a  f o u n d a t i o n ;  23 t o  demonstrate 

t h e  u t i l i t y  o f  a  new t o o l  f o r  i m p r o v i n g  t h e  accuracy oF peak 

i ns tan taneous  d i s t o r t i o n  con tou r  maps; and 3 )  t o  e v a l u a t e  

p r e s e n t  and r e c e n t  developments i n  M e l i c k  dynamic d i s t o r t i n ?  

a n a l y s i s .  



1. REVIEW OF BASIC CONCEPTS 
AND DEVELOPMENTS 

A. The Melick Vortex Model 

The Melick convecting vortex model is a tool used to 

statistically determine the most probable peak instantaneous 

distortion level, given the steady-state distortion and the 

root mean square (rms) total pressure fluctuation level a-2 

the engine face. It is formulated around the observation 

that the total pressure fluctuations exhibit random charac- 

teristics, with a near-normal (Beta/Gaussian) distribution 

(fig. 2). From Bernoulli's flow relationships, it is easily 

seen that these total pressure fluctuations can be expressed 

in terms of perturbations in the steady-state flow velocZty, 

These velocity perturbations can in turn be modelled by 

time-variant vorticity (fig. 51. Thus the Melick method 

envisions the total pressure fluctuations as being totally 

attributed to a series of random vortices (random in size, 

strength, location, and orientation) convecting through the 

inlet duct (ref. 2 ) .  

According to the Melick model, as a vortex passes 

through the inlet duct, it would create a fluctuation in 

the steady-state pressure level at all locations in the 

measurement plane, that is, the engine face. This pressure 

fluctuation would give rise to an instantaneous distortion 

level, computed from any of a variety of distortion factors 

(table 1). Given the properties of an arbitrary vortex, the 

resulting velocity pert~.rbations can be determined from 

simple flow relationships (fig. 5). The pressure fluctuatlnl 

can again be determined from the velocity perturbation, 

resulting in an instantaneous distortion level. 



r Oi3Eil-'- It is shown in reference 2 that the statistical p- 

ties of the convecting vortices of the Melick model are 

directly related to the statistical properties of the pres-. 

sure fluctuations. Specifically, the mean vortex size can 

be determined from the root mean square total pressure fluz- 

tuation level. This is accomplished by computing the r m s  

fluctuation level resulting from an assumed vortex size a r d  

strength, and then comparing the measured rms level. T h e  

vortex size is then adjusted until the analytical and ex- 

perimental rms levels match. 

Once evaluated, the mean vortex properties are then 

used to compute the mean instantaneous distortion level, 

which leads to the determination of the most probable maxi-. 

mum instantaneous distortion level. The mean instantaneous 

distortion is found analytically from the steady-state dis- 

tortion level and the rms total pressure fluctuation level, 

along with the mean vortex size (ref. 2). The peak instan- 

taneous value is then statistically extrapolated given the 

mean instantaneous value, the rms level, and certain statis- 

tical parameters (ref. 2 ) .  The maximum instantaneous distar- 

tion level can be computed for a variety of confidence 

levels, though the "most probablerT (a 50% confidence level] 

is used in most analyses (fig. 6). 

The newly computed maximum instantaneous distortion 

level is then used to produce the peak dynamic distortion 

contour map. First, the mean vortex is modified to accorno- 

date the peak dynamic distortion level. This is done by 

increasing the strength of the vortex until it produces 

an rms fluctuation level, and consequently a distortion 

level, which matches the maximum instantaneous distortion 

level. When this new vortex strength has been established, 

the resulting pressure disturbances are computed for each 

of the probe locations, and added to the steady-state pres- 

sures. The maximum instantaneous pressure array is then 

used to generate the peak dynamic distortion map (ref. 2 ) .  



6. The Minimum Dynamic Measurement Approach 

One of the benefits of the Melick approach to dynamic 

distortion prediction is it's low cost relative to other 

methods. Traditionally, the Melick method requires steady- 

state total pressure measurements, along with rms total 

pressure fluctuation measurements at forty probe locations 

across the engine face. In the derivation of the mean i n -  

stantaneous distortion level, the mean value (face-average) 

rms level is used. The actual number of high-response 

dynamic probes is not important - just the mean rrns value 
is of interest. In principle, therefore, the Melick method 

requires only one dynamic rms total pressure measurement, 

provided an average value is indicated. In the interest oF 

further reducing instrumentation cost, and inlet blockage 

during a test run, it is desireable to minimise the number 

of dynamic probes used while retaining the accuracy OF the 

results. Proper placement of a minimum number of dynamic 

probes is necessary in order to obtain an accurate repse- 

sentation of the average rrns level, and the resulting peak 

dynamic distortion prediction. 

Chen (ref. 2) provided a criterion for the selection sf 

dynamic probe locations which yield reasonable accuracies 

in mean rms level determination. It was observed that there 

exists an inverse relationship between the rms total pres- 

sure fluctuation level and the magnitude of the total pres- 

sure. In other words, high rms pressure fluctuations tend 

to occur in regions of low total pressure, while low rrns 

levels occur in high pressure regions. Furthermore it was 

noted that average rms levels tend to occur near regions aF 

average pressure. This implies that dynamic probes placed 

near the steady-state mean pressure line would give rrns 



total pressure fluctuation levels nearly equal to the face- 

average value. 

Since it is preferred to remain on the conservative 

side in dynamic distortion prediction, that is it would be 

more desireable to overpredict rather than underpredict t p e  

true peak dynamic distortion in any simplifications, it is 

suggested that the preferred dynamic probe location sha~ld 

be at or outboard of the mean pressure line [ref. 2). This 

will allow in most cases an rms level slightly higher t h a r  

the average value obtained in a 40-probe analysis. In any 

case, dynamic probe locations selected should avoid regions 

of very high and very low steady-state pressures. 

The accuracy of this criterion is shown herein and i~ 

reference 2. It was shown that using 2 probes selected 

according to the fTconservative sidev' criterion yielded 

distortion factor errors generally within 5% of the 40-prcoe 

prediction. Naturally, if dynamic probes were selected such 

that the average rms value were exactly equal to the 40- 

probe average, there would be no error. Conversely, the 

selection of improper probes can lead to very large errors, 

Consequently, the careful selection of locations for the 

placement of dynamic probes is extremely important f o r  the 

accuracy of the results. 

C. The Turbulence Modelling Approach 

Because of the sensitivity of the predicted peak dis- 

tortion level to the indicated mean rms level, which In t ~ r n  

is sensitive to the location of the probes relative to the 

mean total pressure line, it is desireable to develop an 

approach which includes the benefits of both the full (40-  

probe) dynamic data method and the minimum dynamic data 

approach. In response to this need, Chen (ref. 3) developed 

a turbulence modelling approach which produces an accurate 

prediction of the peak instantaneous distortion with no 



requirement for dynamic rms total pressure fluctuation data, 

In this turbulence modelling approach, the rms total 

pressure fluctuation levels are simulated from information 

derived from the steady-state total pressure measurements, 

First, the axial velocity distribution (relative flow velo- 

city at each steady-state probe location] is calculated F r o m  

the steady-state measurements. A set of turbulence modelling 

equations is then employed to compute the turbulent kinetic 

energy distribution, and the turbulent kinetic energy 

dissipation rate. These terms represent the turbulence 

levels required to generate the steady-state distortion, 

The rms total pressure fluctuation levels are then evaluated 

from the turbulent kinetic energy and the turbulent kinetic 

energy dissipation rate. These simulated rms levels are them 

used to compute the mean vortex properties, the mean instan- 

taneous distortion level, and the peak dynamic distortian i n  

the same manner as the original Melick model (ref. 3). 

The advantages of the turbulence modelling approach are 

obvious. There is no need for rms total pressure fluctuation 

levels to be measured - hence no high-response dynamic 
probes are needed. Instrumentation costs are reduced con- 

siderably from the fully instrumented 40-probe case. I n  

addition, there is no need for concern over where to mast 

effectively place a minimum number of dynamic probes. The 

turbulence modelling approach, when coupled with the Melick 

vortex model, is an efficient tool for determining the most 

probable peak instantaneous distortion level, given the 

steady-state measurements. 

The accuracy of the turbulence model is demonstrated in 

reference 3. It is shown that this approach is at least as 

accurate as the fully instrumented case in comparison ta tne 

OYNADEC results for a variety of inlet configurations and 

operating conditions (ref. 3). 



2. A MODIFIED VORTEX MODEL 

A. Introduction 

Although the original Melick vortex modelling approach 

(including the modifications summarized in the previous 

section) is shown to be reasonably accurate in the predic- 

tion of peak instantaneous distortion levels, it is not as 

accurate as some methods in the generation of peak instan- 

taneous distortion maps (ref. 2, 5). It is therefore 

desireable to develop some modification to the Melick vor- 

tex model which can improve the accuracy of the peak inster-7- 

taneous map. 

It has been suggested (ref. 23 that the fault in the 

Melick peak instantaneous mapping method may lie in one OF 

the vortex modelling assumptions. This modelling approach 

produces the peak instantaneous pressure distribution by 

superimposing a linear vortex along the mean shear line of 

the steady-state distortion pattern (fig. 3). The induced 

flow velocities produced by this vortex, whose properties 

are determined from the rms total pressure fluctuation 

levels, result in an amplification of the total pressure 

distribution. Both high and low pressure regions are en- 

hanced by this vortex so that the distortion level is magpi- 

fied. 

In reality, the mean shear line of most steady-state 

distortion patterns is not a straight line, but is instead 

curved. In fact, often the mean line forms a distorted ring, 

This suggests that the core of the peak instantaneous v o r t e x  

should not be a straight line, but should follow the curves 

of the mean shear line. This will be the basis of the pre- 

sent study. 



6. Method of Approach 

In the present analysis, a new vortex modelling ap- 

proach designed to improve the accuracy of Melick peak 

instantaneous distortion maps is developed. In this new 

approach, the linear vortex model of the original Melick 

method (fig. 3) is replaced by a vortex which can have a 

nonlinear core (fig. 4). This is a justified modification 

because the mean shear line (the borderline between rela- 

tively high and low pressure regions) is generally non- 

linear (fig. 4 ) .  

There are three general methods in modelling a vortex 

with a nonlinear core. The first and most complex method 

would be to formulate a mathematical expression for a curve 

which fits the desired shape of the vortex core - that is 
the mean shear line. This expression could be in terms of 

2-dimensional cartesian or polar coordinates, derived f r o m  

a least-squares (or other nonlinear) analysis, or perhaps 

from an infini,te series expansion. This method has t h e  

potential of being extremely accurate as far as modelling 

the vortex is concerned, but would not be very efficient L q  

terms of the computational effort. 

A second approach to modelling a nonlinear vortex core 

might be form a finite element model. The nonlinear v o r t e x  

would be divided up into a series of linear vortex sesinen%s 

which would lie along the mean line. The number of segments 

used would depend on amount of curvature in the mean shear 

line and the desired resolution. This method, depending on 

the number of divisions selected, could be as accurate as 

the least squares/infinite series method, with considerably 

better computational efficiency. 

It is clear that these two methods have.the capability 



of achieving very high resolution in the calculation oF the 

vorticity effects, and in the generation of the peak instan- 

taneous distortion map. This high resolution capability is 

not necessarily useful, however. It should be kept in mind 

that the peak instantaneous map is generated by calculating 

the effect that the vortex has upon the total pressure 

readings obtained at the steady-state probe locations. Pres- 

sures at locations between probes are then interpolated f r o m  

these new "readings". Consequently any vortex action which 

occurs between probe locations is ignored, prior to tt-e 

interpolation process. This limitation in the useable resal- 

ution of the vortex model is the basis of the simplifica- 

tions of the third modelling approach. 

The third approach to modelling a nonlinear vortex car-e 

is similar to the finite element model, but includes some 

important simplifying assumptions. First, the vortex is 

divided up into eight segments, each associated with one 

of the probe rakes (fig. 4). Each vortex segment is consi- 

dered the dominant contributer to the pressure disturbances 

occurring on the rake associated with that vortex segment, 

It is assumed that each vortex segment affects the pressure 

only on the rake associated with it. The position of the 

vortex segment relative to it's associated rake is assumed 

to be at the probe nearest to the mean pressure line where 

it crosses the rake. The orientation of each vortex segrne~t 

is assumed to be perpendicular to it's associated rake, and 

coplaner with the measurement plane. Each of these simoii- 

fying assumptions are illustrated in figure 4, and are d i s -  

cussed separately. 

The first assumption involves the division of the non- 

linear vortex into eight linear sub-vortices, or vortex 

segments. Traditionally, there are eight rakes mounted at 

45 degree intervals around the measurement plane (fig. T ) ,  

Since all probes on a rake are affected by the induced 

flow velocity caused by the local vorticity, it makes sense 



to divide the probes into rake-groups, and to determine the 

dominant vortex activity associated with that group. Thero- 

fore, in this study the nonlinear vortex system is divided 

into a set of linear vortex segments, with each segment 

acting as the dominant vortex activity for one of the rakes, 

Eight rakes each require one vortex segment, for a total nF 

eight sub-vortices. Each vortex segment is considered by 

definition to affect only the probes on it's respective 

rake, and induced vortex activity on adjacent rakes is can- 

sidered by definition negligible. 

The next assumption involves the definition of the La- 

cation of each of the vortex segments. It is assumed that 

the vortex segment is placed directly over the probe loca- 

tion nearest to the mean shear line as it crosses over o r  

passes near to the rake. In addition, it is assumed that 

the vortex segment is oriented perpendicular to the rake, 

These two simplifying assumptions are illustrated in F i g ~ r - ~  

3. It is suggested that these simplifications introduce 

only small errors into the analysis, while they allow cor- 

siderable improvement in computational efficiency. In any 

case, the error produced by these simplifications will 

always be less than the error produced in the original 

Melick single linear vortex model. 

Finally, it is assumed that the vortex properties as 

derived in the Melick linear modelling approach are still 

valid in the segmented modelling approach. These properties 

include: 1 )  the mean vortex radius, and 2) the vortex 

strength. These terms were derived as a function of the 

rms total pressure fluctuation level, and the most probable 

peak instantaneous distortion level. 

Each of these assumptions and simplifications are made 

in the interest of providing a straightforward model and a 

simplified analysis. None of the assumptions are expected to 

introduce significant error into the analysis. The nature 

of the model and the analysis is intended to be preliminary, 



in the interest of determining whether further research is 

warranted in this modelling approach. 

In the following section, the development of the mathe- 

matical formulations is presented based on the simplifying 

assumptions. 

C. Mathematical Formulations 

In the Melick approach to peak instantaneous distortinn 

prediction, there are two distict sections: 1) the deveiop- 

ment of the most probable peak instantaneous distortion 

level; and 2) the generation of the peak instantaneous m a p ,  

Since the present analysis is concerned primarily with the 

latter of these two sections, the first section will be 

presented only in summary form. Details on the derivation 

of the peak instantaneous distortion level may be found in 

reference 2. 

A s  described in section I.A., the random total pressire 

fluctuations measured at the compressor face are attributed 

to the convection of a series of random vortices through t5e  

measurement plane. The pressure fluctuations are to be 

expressed in terms of velocity perturbations introduced by 

these vortices. The velocity profile of a one-dimensional 

steady and incompressible vortex is given as (fig. 53: 

- 2 
r -%[[r/aI - 1 1  

v~ - "T 
- e a 

max 

where: VT is the tangential velocity at any radius r 

v~ is the maximum vortex swirling velocity at r=a; 
max a measure of vortex strength. 

r is the independant variable: radius 

a is the radius at the point of maximum swirling 
velocity - also called the vortex size 

e is the exponential 



The total pressure fluctuations produced by the vartex 

are superimposed onto the steady-state total pressure to 

form a time variant instantaneous pressure: 

where: PT is the instantaneous total pressure 

P~ is the steady-state total pressure 
SS 

dPT is the pressure fluctuation produced by the 
vortex 

From the incompressible Bernoulli equation: 

where: PS is the static pressure 

f is the flow density 

U is the steady-state flow velocity 

VT is the vortex-induced velocity 

Let q = x ~ ' u ~  be the steady-state dynamic pressure. Then 

substituting ( 3 )  into ( 2 ) ,  we obtain: 

- dPT - PT - PT 2  = % P [ U  + VT) - XPU 2  

SS 

2  2  2  
= % P C U + 2 U V  + v  - u )  

T T 

Second order terms have been neglected for V much less than 
T 

U. 



Substituting (1 )  into (41,  we obtain: 

2 
= 3 vT r e -XCEr/a) - I 1  

d P ~  Ua max 

Equation (5) represents the total pressure fluctuation Level 

produced by the convection of an arbitrary vortex through 

the inlet duct in terms the relative size and strength oF 

the vortex, and the position of the probe relative to the 

vortex. 

In the Melick analysis, in order to determine the m o s t  

probable peak instantaneous distortion level, the mean vo-- 

tex size must be determined. This parameter is shown ( R e f  2 ;  

to be a function of the rms total pressure fluctuatio~s: 

I 

C fa rms(fl l 2  = erf (7.98 -) 
dP, U 

rms 

The quantity on the left hand side of equation (6) is the 

square of the ratio of the root mean square total pressure 

fluctuation level filtered at cut-off frequency f, to the 

unfiltered rms level. These quantities may be measured, 

or simulated as developed in reference 3. Using equation 
- 

[6), the mean vortex size, a, can be solved for iteratively 

in terms of the filtered and unfiltered rms levels, the 

filter frequency, and the flow velocity, all of which are 

known quantities. 

The mean vortex size is then used to generate the mean 

instantaneous distortion level, E: (Reference 21 

where: 
kss 

= the steady-state distortion level determined 
from the steady-state total pressure data and 
table 1 



Since dPT is a function of the vortex properties, can  be 

be determined from them: 

E = f(pT , q , ~ , a , ~ T  I 
ss max 

where: PT , q, and U are measured quantities 
SS 

- 
a is computed from equation (61  

v~ is then determined, using equation ( 5 ) :  
max 

2 
- U ~ ~ P T  eX[[r/a) - 11 

v~ - -  
max 2qr 

- 
For r = a, equation ( 9 )  is simplified to: 

U 
v~ = x -  

max 9 dP ~ r m s  

Equation ( 8 )  then becomes: 

Since q and U are constants, equations (7) and (11) are seen 

to be identical. 

The most probable peak instantaneous distortion level 

is then statistically extrapolated as a function of the mean 

instantaneous distortion level, the rms total pressure Fluc- 

tuation level, and a set of statistical parameters (ref=, 23: 

k 
max = f[k,dpT ,statistical parameters) ("i; 

rms 

The vortex strength is then adjusted to match the change Fr-om 



t h e  mean i n s t a n t a n e o u s  d i s t o r t i o n  l e v e l  t o  t h e  maximum in- 

s tan taneous d i s t o r t i o n  l e v e l :  

v = ",- 
+ f'kmax - i ; )  T m a x / ~ k  max 

Once t h e  most p robab le  peak i ns tan taneous  d i s t o r t i o n  

l e v e l  and t h e  v a l u e  o f  VTmax has been determined,  the 

v a l u e  f o r  t h e  peak i ns tan taneous  t o t a l  p ressu re  can be de- 

te rmined:  

where dPT i s  o b t a i n e d  f rom e q u a t i o n s  ( 5 )  and (13): 

pk 

The o n l y  v a r i a b l e  i n  e q u a t i o n  (151 above i s  t h e  r a d i u s ,  r, 

Us ing  t h e  s i m p l i f i c a t i o n s  and assumpt ions g i v e n  i n  sec.tj.crr: 

Z . B . ,  t h e  v a l u e  o f  r can be de termined on a  rake-by- rake  and 

probe-by-probe b a s i s .  S u b s t i t u t i n g  (15 )  i n t o  (14)  produces 

t h e  f o l l o w i n g  r e l a t i o n s h i p  ( l e t  V = V 1 : 
Trnax/pk 

The s u b s c r i p t s  k  and p  r e f e r  t o  t h e  r a k e  and probe number, 

r e s p e c t i v e l y .  The v a l u e  o f  r ( k , p )  i s  d e f i n e d  as t h e  distance 

between t h e  probe w i t h  c o o r d i n a t e s  ( k , p ]  and t h e  c o r e  o f  the 

v o r t e x  a s s o c i a t e d  w i t h  r a k e  k: 



where: r ( k , p )  i s  t h e  r a d i a l  l o c a t i o n  of probe ( k , p )  
P  

r v [ k )  i s  t h e  r a d i a l  l o c a t i o n  o f  t h e  c o r e  o f  t h e  

v o r t e x  a s s o c i a t e d  w i t h  r a k e  ( k )  

The f i n a l  s t e p  i n  g e n e r a t i n g  t h e  peak i ns tan taneous  map 

is t o  i n t e r p o l a t e  v a l u e s  f o r  P 
T  

a t  each o f  t h e  d i s c r e t e  

pk 

p o i n t s  between t h e  probes.  T h i s  i s  done i n  t h e  same manner 

as  w i t h  t h e  s t e a d y - s t a t e  map ( r e f .  6 ) .  



3. RESULTS AND DISCUSSIONS 

Int the following sections, numerical and graphicai 

predictions from the analytical methods described in the 

present work are provided with three inlet data sets. Data 

comparisons with the DYNADEC results are also provided wit17 

each of the inlet configurations. The three inlet data sets 

consist of provisional experimental results from subsanic, 

transonic, and supersonic inlet configurations under various 

flight conditions. Inlet configurations and measured results 

of the data sets are provided in figures 8 through 1 0 .  Data 

comparisons of predicted and measured peak instantaneous 

distortion levels, and graphical comparisons of predicted 

and measured peak instantaneous distortion maps are also 

provided. 

A. Subsonic Inlet 

Configuration of a full-scale short S-shaped subsonic 

inlet duct is shown in figure 8. The engine centerline is 

tilted approximately six degrees from the horizontal as 

shown in the figure. The freestream Mach number was given as 

subsonic. Six test cases were available for data cornparis~r~, 

These data were provided by the Air Force [AFWAL], Wright- 

Patterson AFB, Ohio. 

Comparison of Melick predicted peak instantaneous dis- 

tortion levels is given in Table 2 and Figures 11 and 1 2 ,  

Figure 13 shows mapping comparisons for the steady-state, 

DYNADEC measured peak, Melick predicted peak, and the Modi- 

fied Vortex predicted peak instantaneous distortion patterns, 

A s  described in Reference 3, reasonably good accuracy of the 

distortion level prediction analyses is indicated. In certzin 



cases, the peak instantaneous distortion level is underpre- 

dicted by the Melick approach. This is attributed to the 

fact that the Melick approach cannot accurately predict the 

peak distortion level for inlet flows with separated boun- 

dary layers. Unfortunately, the subsonic data set contains 

separated boundary layers at the engine face (ref. 31 Fur- 

ther study will be required to improve the Melick predict%ve 

accuracy in separated flow cases. 

The Modified (segmented-nonlinear) Vortex technique 

compares favorably with the Melick modelling approach in the 

peak distortion map generation, in certain cases. In cases 

where the Melick linear vortex model produces an accurate 

prediction of the peak instantaneous map, the modified 

approach generally overpredicts the distortion pattern 

slightly. In cases where the Melick approach yields poor 

results in the peak distortion map, the modified appr~ach 

tends to improve the map considerably (fig. 13). 

€3. Transonic Inlet 

Configuration of a 15% subscale long S-shaped transonic 

inlet duct is shown in Figure 9. Six test cases with a tran- 

sonic freestream Mach number were available for comparison, 

These data were provided by the Air Force (AFWAL) Wright- 

Patterson AFB, Ohio. 

Comparisons of predicted and measured peak instantane-- 

ous distortion levels are given in Table 3 and Figures 14 

and 15. Figure 16 shows mapping comparisons for steady- 

state, DYNADEC measured peak, Melick predicted peak, and 

the Modified Vortex predicted peak instantaneous distortion 

patterns. Good accuracy in predicting peak dynamic distor- 

tion levels i s  indicated for these test cases. The Melick 

method slightly overpredicts the peak distortion level, 

which is the desired affect. 



The Modified Vortex approach again compares favorably 

with the Melick linear vortex approach. In examples where  the 

original Melick approach yields poor predictions of the peak 

instantaneous distortion pattern, the modified approach pro- 

duces superior results (fig. 16). In cases where the Melick 

approach produces good peak distortion maps, the modified 

approach produces comparable results. 

A notable exception to this can be seen in the first 

case (case number 464.12). The steady-state map shows a 

symmetrical pattern, while the DYNADEC predicted pattern 

is not symmetrical (fig. 16). The Melick approach produces 

a fairly symmetrical pattern as expected, while the r n a d i F i e d  

approach produces a pattern almost identical to the steady- 

state pattern, except for enhanced pressure magnitudes, a l s o  

as expected from the modelling criteria. This is due to ths  

fact that this particular test case represents an extremely 

high angle of attack, where asymmetrical vortex shedding is 

evidently taking place. This inlet "pumping" has the effect 

of alternating high and low pressure levels on either side 

of the inlet duct instantaneously, while providing apparently 

symmetrical patterns in the steady-state. Asymmetrical o r  

alternating vortex shedding is the same phenomenon whick is 

associated with wing "rocking" in highly swept delta wings 

at high angles of attack. 

C. Supersonic Inlet 

Configurations for four 25% scale supersonic inlet 

ducts are shown in Figure 10. These inlet models include 

data for a variety of supersonic freestream Mach numbers, 

and angles of attack and yaw. There are thirteen test cases 

availabe for comparison. These data were also provided by 

the Air Force (AFWAL) Wright-Patterson AFB, Ohio. The four 

inlet configurations, test conditions, and some measured 

results are given in figure 10. 



Comparison of predicted and measured peak instantaneaus 

distortion levels is given in table 4 and figure 17. Figure 

I 8  shows comparisons of steady-state, DYNADEC measured peaK, 

Melick predicted peak, and modified Melick predicted peak 

instantaneous distortion contour maps. Many of the peak 

instantaneous distortion levels are underpredicted slightly, 

primarily because these cases show separated boundary layers, 

It is recalled that the Melick approach tends to underprecict 

peak distortion levels when separated boundary layers occur 

in the inlet duct. It is noted that in many cases the m a p c )  

generated by the Melick approach appear to have no apparent 

pattern as far as relatively high and low pressure regions, 

The steady-state and peak instantaneous maps in these cases 

exhibit quasi-random characteristics, indicating severe 

turbulence levels and flow separation. The Melick predictran 

technique generally requires a reasonably well-defined mean 

shear line in order to effectively apply the vortex model, 

The predicted distortion levels and distortion maps are seen 

to be fair to good in these cases. In certain cases, when the 

linear Melick vortex model fails to provide a good predicricn 

of the peak distortion map and the measured peak map resem- 

bles the steady-state pattern, the segmented vortex model 

provides a map superior to the one generated by the linear 

vortex model (fig. 13). 

D. General Results and Comments 

1. The Melick Approach 

The Melick approach to predicting the peak instantaneous 

distortion levels can be evaluated by examining Tables 2 ,  3 

and 4, comparing peak distortion values as measured from the 

DYNADEC system, and as predicted by the Melick approach, 

Figures 1 1 ,  1 4  and 17 show these comparisons in graphical 

form . 



It is seen from Figure 11 that the subsonic peak dis- 

tortion factors are underpredicted in four out of six cases, 

and has a percent error of greater than plus or minus twenty 

percent in three out of six cases. At first glance this m a y  

be disturbing, but it is recalled that the subsonic inlet 

data set indicates a separated boundary layer, as described 

in Reference 3. Since the Melick approach assumes an attached 

boundary layer, the results are understandable. Nevertheless 

it can be said that the Melick approach provided a good 

ball-park figure in distortion level prediction. 

Figure 17 shows peak distortion level predictions w i t i 7 -  

in 20 percent in 4 out o f  6 cases, with an underprediction 

of the measured peak distortion in only one case. These 

results can be considered very good. Near-perfect predictinns 

are seen in two cases, which is encouraging. These transoniz 

inlet data sets show a mean percent error of approximately 

ten percent for all six test cases. 

The supersonic test cases show peak distortion predic-- 

tions within 20 percent in 1 1  out of 13 cases. However, it 

is also noted from Figure 17 that the peak distortion is 

underpredicted in almost all cases. A s  seen from Figure 18, 

the supersonic inlet cases in many cases represent highly 

turbulent separated flow conditions, for which the Melick 

technique is known to tend to underpredict. The overall re- 

sults for the supersonic test cases can be said to be Fairly 

good, and very consistent. 

The overall accuracy of the Melick approach can be 

judged with Figure 19. The overall percent error in the 

predicted peak instantaneous distortion level with non- 

separated flow shows a mean value of +19.5%, while the 

separated flow inlets show a mean percent error of - 3 . 3 % -  

These results are considered good for preliminary engine- = r i n g  

purposes. 



2. The Minimum Dynamic Measurement Approach 

In addition to the results indicated in Reference 2 ,  

which shows very good results in the minimum dynamic measure- 

ment approach with respect to the full 140-probe) approach, 

Tables 2 and 3, and Figures 12 and 15 indicate excellent 

correlations between the two approaches. In addition, as 

indicated in Reference 3, the turbulence modelling approach 

shows excellent predictions of peak instantaneous distort:.aq 

levels, with no dynamic measurements. Predictions well with- 

in 20 percent of the 40-probe predicted values are indicated 

for most of the test cases. These results appear to validate 

these two low-cost approaches. 

3. The Segmented Vortex Approach 

The segmented vortex approach can be judged in terms 

of its performance with respect to theoretical expectzzia~s, 

The segmented vortex approach is, again, a simplified madel 

of the nonlinear mean-line following approach. This model 

will always produce a predicted peak instantaneous distor- 

tion pattern similar to the steady-state pattern, with the 

pressure levels amplified somewhat. This phenomenon can be 

easily seen in the distortion map comparisons (figs. 13, 16 

and 181. In cases where the peak instantaneous map is n c t  

similar to the steady-state map, this approach will produce 

a poor prediction, while cases where the steady-state and 

peak instantaneous maps have similar patterns as measured 

by DYNADEC, the approach will produce a map generally 

superior to the linear Melick vortex approach. In some cases 

it is seen that the segmented vortex approach is far superior 

to the linear, while in mast cases, the improvement is anly 

marginal (fig. 13, 16, 18). It is possible that the accuracy 

of this approach can be improved by removing simplificatio7s, 

though the overall pattern would not change significantly, 



4. CONCLUSIONS 

A simplified nonlinear vortex model has been developed 

in order to improve the quality of predicted peak instan- 

taneous distortion maps. The nonlinear mean-line following 

vortex model is simplified by dividing the vortex into 

linear vortex segments, one for each rake of probes, orier- 

ted perpendicular to each probe, and each having the charac- 

teristics of the mean vortex developed in the original Melick 

approach. 

A review and evaluation of recent developments in tne 

Melick peak instantaneous distortion level prediction tech- 

nique has been included. A simplified description of the 

Melick method has also been provided, with references tc 

more detailed reports. Predictions using limited, minimum 

and no dynamic data have been compared to OYNADEC measure- 

ments with favorable results for three inlet data sets, 

Minimum and no dynamic data approaches have also been corn- 

pared to full (40-  robe) predictions with excellent results. 

The Melick approach, along with recent improvements, 

is shown to be an efficient and accurate design tool f o r  

predicting peak instantaneous disortion levels in prelirni- 

nsry analyses. It is noted, however, that the approach d o ~ s  

not work well with highly turbulent separated flow inlet 

conditions, due to limitations in the modelling approach, 

Further research will be required to develop improvements 

in separated inlet flow predictions. 

The segmented vortex approach is a useful method nf 

improving peak instantaneous distortion maps, provided the 

Melick peak distortion level has been accurately predicted, 

and provided the actual peak distortion map does resemble 

the steady-state map pattern. Further improvements in this 



modelling approach are possible by removing simplificatisns 

and assumptions, as long as these two conditions are met. 

At this time there exists no modification to the Melick 

vortex model which can accurately predict the peak instan- 

taneous distortion pattern when the measured peak pattern 

is significantly different from the steady-state pattern. 

Further study will be required to understand and predict 

this particular problem. 
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Equation Supplemental. equa t ions  

(PC) j - ( ~ t  .in 1 
I D C  = > 

j P t  

I D R  . = - 

D e f i n i t i o n s  
-. 

( i t ) j =  average  t o t a l  p r e s su re  f o r  r i n g  j 

) = minimum t o t a l  p r e s su re  r ead in ]  
('t,min j 

i n  r i n g  j 

p = average  t o t a l  p r e s s u r e  a t  engine  fac t  t 

gj= c i r c u m f e r e n t i a l  e x t e n t  of l a r g e s t  
cont inuous  t o t a l  p r e s su re  dep re s s ion  
below (p  ) degrees  

t j' 
I,= diameter  of  r i n g  j ; NK = number of 
J 

ID = o u t e r  duc t  d iameter  r i n g  

j (  ) D = s e e  above 
t '  t j' j 

4 = average  dynamic p re s su re  a t  engine  
f a c e  

4 = number of  r a k e s  
[Fti) = i n d i v i d u a l  t o t a l  p r e s su re ;  r a k e  i 

j , r i n g  j 
1 = angu la r  p o s i t i o n  of p  
f 1 t i  
"t ,base  j - = base  r a d i a l  p r o f i l e  f o r  

t r i n g  j ;  s e t  = 1 f o r  a l l  j 
) = r a d i a l  d i s t o r t i o n  weight ing  f a c t o r s l .  - 
i = s e e  above 
r t  = minimum t o t a l  p r e s su re  a t  engine  
t ,min f a c e  . 

L = compressor reduced frequency 
:_= circumferential distortion sensdtivit 
L 

fac tor  
= r a d i a l  distortion sensdtivdCy f a c t o r  

k- 
r = rfrcurnfesenlr-bal d lstort i o n  we ig l l l lng  

f a c t o r  - -- - - -- - -- - - - -- - - -- - - - 
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Figure 1. Determination of Steady-State Distortion 



ILLUSTRATION OF SOME FEATURES OF THE TIME VARIANT TOTAL 

PRESSURES AND DYNAMIC DISTORTION: 

Compressor Face 
Instrumentation 
* Steady-state 
Probe 
' Dynamic Probe 

(a) I n l e t  Test Nodel: o* 

(b) Total Pressure: 
I goo V 4pt(i,j) fluctuating 

Time-s ec 

instantaneous peak d i s t o r t i o n  
fac tor .  Distribution 

Figure 2 .  Illustration of a Typical Inlet T e s z  M o d e l  
and Peak Distortion Factor Measurement 



a) Vortex Orientation angl 

Compressor Face 
z 

Dynamic ?robe 
Y 

x 0  

'Xv 

GAMMA = vortex orientation angle between y axis 
and the x'-y' plane 

BETA = vortex orientation angle between x f  and x 
axes, with the x axis in the xl-y' plane 

b) Vortex 
Orienta 

an 
core 
linear) 

Figure 3. Melick Linear Vortex Model 



' Figure 4. Nonlinear/Segmented Vortex Models 
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Static Pressure 
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Figure 5. Inlet vortex flow model and perturbation of velocity and 
static pressure and the time variant total pressure 
fluctuation caused by a single 1-D vortex (Ref. 2) 



normal 6 0  = "most probable" or 
mlsxrlbution 50% Confidence Level 

0 2  = 95% Confidence Level 
a?. 

5 0  6 1  6 2  6 3  

confidence level 4 percent of area to the left 

Figure 6. Definition of Confidence Levels 
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Figure 

Note: NR = 7 = number of probe rings 
NP = 8 = number of probe rakes 

engi 

7 .  Ring, Rake, and Probe Assignments for 
a typical instrument configuration 



(a)  Subsonic F u l l  Scale I n l e t  Model: 

carrpressor face 
i n s t m m t a t i m  

(b) Tes t  Conditions and Sane Measured Results: 

Figure 8. I l l u s t r a t i o n  of a Subsonic I n l e t  Tes t  Model and some Test 
Results  (unpublished da ta  from A i r  Force Fl ight  Dynamics 
Laboratory, Wright-Pat terson A i r  Force Base, Day ton, Ohio ) 
[Ref. 31 



(a) Transonic .15 scale Inlet Model: 

rrl), 
Mo ampressor face 

(b) Test Conditions and Sane Measured Results: 

Figure 9. Illustration of a Transonic Inlet Test Model and sane Test 
Results (unpublished data from Air Force Flight Dynamics 
Laboratory, Wright-Pat terson Air Force Base, Day ton, 0hia) 
[Ref. 31 
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(a) Configurations of four .25 scale Tailor-Mate Model: 

Figure 10. Illustration of four Supersonic Inlet Test Model and some 
Test Results (ref. 3 7 
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Figure 18b. Supersonic Inlet Map Comparisons (189 /3 )  
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Figure 18c. Supersonic Inlet Map Comparison (216 /3 )  
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F i g u r e  18e. Supe rson i c  I n l e t  Map Comparison (246 /3 ]  
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F i g u r e  18 f .  Supe rson i c  I n l e t  Map Comparison [247 /2 )  
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mean = 19.51% 

Figure 19. Accuracy of the Present Method i n  Predicting ms Levels 
and Dynamic Peak Distortion Factors 



PART I1 

COME'UTER PROGRAM DOCUMENTATION AND USER'S MANUAL 

ESTIMATING MAXIMUM INSTANTANEOUS INLET FLOW 
DISTORTION FORM STEADY-STATE TOTAL PRESSURE 

MEASURESMENTS WITH FULL, LIMITED, OR NO DYNAMIC 
DATA 



ABSTRACT 

A computer program for statistically predicting peak 

instantaneous dynamic distortion, given steady-state distnr- 

tion data and dynamic root mean square pressure fluctuation 

levels in gas turbine inlets, is presented. The statistical 

approach utilizes a physical flow model which characterizes 

inlet flow distortion as due to random vorticity convecting 

through the inlet duct. Characteristics of a mean vortex are 

statistically determined to match steady-state distortian 

data and contour map, as measured by steady-state totzl 

pressure probes. The mean vortex characteristics are then 

intensified according to the mean rms fluctuation level as 

measured by full or limited high response pressure trans- 

ducer instrumentation, or as simulated by turbulence maael- 

ling, to produce the most probable peak instantaneous dis- 

tortion level. The computer program utilizes this approacn 

to solve for the dynamic distortion and print the results, 

including contour maps. 



FOREWORD 

T h i s  R e p o r t  i s  d e s i g n e d  t o  be a  U s e r ' s  Manual  and B o c -  

u m e n t a t i o n  Guide f o r  t h e  imp roved  M e l i c k  ( r e f .  1-3) dynamic 

d i s t o r t i o n  computer  program deve loped  a t  t h e  U n i v e r s i t y  o f  

Kansas. T h i s  program c h a r a c t e r i z e s  t h e  random v o r t i c e s  u s ~ d  

t o  d e s c r i b e  t h e  u n s t e a d y ,  t u r b u l e n t  f l o w  i n  j e t  e n g i n e  i n l e t s ,  

and s t a t i s t i c a l l y  c a l c u l a t e s  t h e  most p r o b a b l e  peak i n s t a n -  

t aneous  (dynamic )  d i s t o r t i o n  l e v e l  f o r  a  p a r t i c u l a r  i n l e t  

o p e r a t i n g  c o n d i t i o n .  S t e a d y - s t a t e  d i s t o r t i o n  l e v e l s  a r e  com- 

p u t e d  f o r  e i g h t  common d i s t o r t i o n  f a c t o r s  g i v e n  t h e  t i m e -  

ave raged  s t e a d y - s t a t e  p robe  p r e s s u r e  a r r a y ,  and t h e  root 

mean s q u a r e  p r e s s u r e  f l u c t u a t i o n  l e v e l s  a r e  used  t o  pro,ect 

t h e  maximum peak i n s t a n t a n e o u s  d i s t o r t i o n  f o r  t h e  g i v e v  corl- 

d i t i o n s .  

D e t a i l s  o f  t h e  d e r i v a t i o n  and deve lopment  o f  t h e  randam 

v o r t e x  m o d e l l i n g  app roach  a r e  n o t  i n c l u d e d  i n  t h i s  U s e r " s  

Guide a s  t h e  Guide i s  o r i e n t a t e d  more t o w a r d s  a p p l i c a t i o n  

t h a n  t h e o r y .  The Re fe rences ,  however ,  p r o v i d e  e x h a u s t i v e  

d e t a i l i n g  o f  t h e  g e n e r a l  M e l i c k  approach ,  e s p e c i a l l y  ReFer -  

ences 1 t h r o u g h  3 .  Re fe rence  4 p r o v i d e s  an  e x t e n s i v e  l i s t  OF 

o t h e r  s o u r c e s  wh i ch  r e l a t e  t o  d i s t o r t i o n  p r e d i c t i o n .  F i n a l l y  

References 5 ,  6, and 8 show d e t a i l s  o f  some s p e c i f i c  d e v e L -  

opments i n  d i s t o r t i o n  r e s e a r c h  a t  t h e  U n i v e r s i t y  o f  Kansas.  

M a j o r  segments i n  t h i s  Guide i n c l u d e  d e s c r i p t i o n s  OF 

t h e  ma in  p rogram and subprograms as  w e l l  a s  i n p u t  and o u t p u t  

d a t a .  Sample p rob lems  a r e  i n c l u d e d  f o r  i l l u s t r a t i o n .  A lisc- 

i n g  i s  p r o v i d e d  i n  a n  append i x .  The f u l l y  documented pr -ograw 

r e q u i r e s  memory c a p a c i t y  f o r  70 ,000  c h a r a c t e r s  in 2300 lines. 

Hardware r e q u i r e m e n t s  i n c l u d e ,  i n  a d d i t i o n  t o  t h e  mai r i f raTe 

compute r ,  a n  o n - l i n e  p r i n t e r  f o r  h i g h  speed o u t p u t .  
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NOMENCLATURE 

SYMBOL OTHER NAMES DESCRIPTION 

V o r t e x  c o r e  r a d i u s  a t  p o i n t  o f  
maximum a n g u l a r  v e l o c i t y ,  i n c h e s  

A T r i d i a g o n a l  m a t r i x  

- 
AB ABAR, a Mean v o r t e x  c o r e  r a d i u s ,  i n c h e s  

ALPH a l p h a  A i r c r a f t / i n l e t  a n g l e  o f  a t t a c k "  
i n  deg rees  

ANGLOC Angu la r  p o s i t i o n  o f  r a k e s ,  deg.  

ART A/RT, AYRT, N o n d i m e n s i o n a l i z e d  v o r t e x  c o r e  
A Y / R T  r a d i u s  ( d i v i d e d  b y  i n l e t  r a d i u s )  

V o r t e x  c o r e  s i z e  computed f r o m  
power s p e c t r a l  d e n s i t y  f u n c t i o n  

N o n d i m e n s i o n a l i z e d  PSD v o r t e x  
r a d i u s  ( d i v i d e d  b y  i n l e t  r a d i u s :  

Rad ius  o f  s t e a d y - s t a t e  v o r t e x ,  
i n c h e s  

B  BETA V o r t e x  o r i e n t a t i o n  a n g l e ,  deg.  

BF B - f  a c t o r  R a d i a l  w e i g h t i n g  f a c t o r  f o r  KA2 

BRP Base r a d i a l  p r o f i l e  

BSF 

CKP K C  

CUBIC 

I n t e r m e d i a t e  w e i g h t i n g  f a c t o r  
f o r  I D  d i s t o r t i o n  s o l u t i o n  

C i r c u m f e r e n t i a l  w e i g h t i n g  f a c -  
t o r  f o r  I D  d i s t o r t i o n  s o l u t i o n  

S u b r o u t i n e  - e x e c u t e s  c u b i c  
s p l i n e  i n t e r p o l a t i o n s  



SYMBOL 

DISPAR 

OTHER NAMES DESCRIPTION -- PAGE 

S u b r o u t i n e  - computes p r i m a r y  
d i s t o r t i o n  f a c t o r s  

DISTRT S u b r o u t i n e  - computes s i m p l e  
d i s t o r t i o n  pa rame te rs  

G e n e r a l  d i s t o r t i o n  f a c t o r  des- 
i g n a t o r  

DKBAR 

DKMX 

Mean d i s t o r t i o n  l e v e l  

Most p r o b a b l e  peak d i s t o r t i o n  
l e v e l  - 50% p r o b a b l e  

DKMAX 

DKSS 

DK950 

S t e a d y - s t a t e  d i s t o r t i o n  l e v e l  

95% p r o b a b l e  d i s t o r t i o n  l e v e l  - 
e s t i m a t e d  peak d i s t o r t i o n  

99 .7% p r o b a b l e  peak d i s t o r t i o n  
l e v e l  

DRT N o n d i m e n s i o n a l i z e d  r a d i a l  l o c a -  
t i o n s  o f  r i n g s  

DSPR ASPR 

DTHETA 

D e l t a  s t a l l  p r e s s u r e  r a t i o  d i s -  
t o r t i o n  f a c t o r  

DTH Angu la r  d i f f e r e n c e  between t h e  
p r e s s u r e  r a k e s  w i t h  m i n i m u m  and 
maximum average  t o t a l  p r e s s u r e  

T u r b u l e n t  k i n e t i c  ene rgy  d i s s i -  
p a t i o n  r a t e  i n  f t 2 / s e c 3  

ERRE 

ERRK 

ERRT 

ETA 

E r r o r  Ln  E  i n  i t e r a t i o n ,  f t 2 / s e c 3  

E r r o r  i n  K i n  i t e r a t i o n ,  f t z / s e c 2  

T o t a l  e r r o r  i n  E  and K 

Face average  s t e a d y - s t a t e  t o t a l  

p r e s s u r e  r e c o v e r y  

EXTRME S u b r o u t i n e  - manages d i s t o r t i o n  
f a c t o r  ex t reme-va lue  c o m p u t a t i o n  



SYMBOL OTHER NAMES DESCRIPTION P A G E  -- 

FACE FACP Element used in discrete point 
analysis in face contour map 

Low-pass cut-off filter fre- 
quency in rms fluctuation data 

FCO FC 

Subroutine - solves finite 
difference equations 

FINITE 

FO F Engine rpm filter frequency in 
hertz 

FRF Subroutine - computes by iter- 
ation the mean vortex core size 

GAMMA Vortex orientation angle, deg. 

Turbulent kinetic energy dis- 
sipation rate at each finite 
element grid point, ft2/sec3 

Turbulent kinetic energy at 
each grid point, ftz/sec2 

Steady-state GAMMA orientation 
angle of the vortex, degrees 

General Electric combined ra- 
dial/circumferential distortion 
factor 

IDC GE circumferential distortion 
factor 

IDC-MAX Maximum GE circumferential 
distortion factor 

IDR 

IDR-MAX 

GE radial distortion factor 

Maximum GE radial distortion 
factor 

INITL Subroutine - sets initial val- 
ues for GE and GK (energies) 

INIVEL Subroutine - computes velocity 
gradiants in steady-state data 



SYMBOL OTHER NAMES DESCRIPTION PAGE -...--- 

INTERP Subroutine - interpolates pres- 
sure recoveries at discrete 
element points at engine face 

General distortion factor K KO, UK 

K TK Turbulent kinetic energy in 
f t?/secZ 

Pratt S Whitney combined radial 
and circumferential distortion 

P G W circumferential distor- 
tion factor 

KRA 

KTHETA KTTA 

P S W radial distortion factor 

P '& W circumferential distor- 
tion factor (alternate) 

LAB LABEL 

LNPOUT 

Distortion factor name or label 

Subroutine - prints pressure 
distortion contour map and 
distortion factor tables 

MAINLP Subroutine - controls computa- 
tion of discrete point pressure 
data for contour mapping 

MAXDP Subroutine - calculates projec- 
ted extreme values of distortion 
factors 

MAXIOYN Main driver computer program 

MFR Inlet mass flow ratio - rh2/h0 

Freestream Mach number 

rile 
ril 

2 

Mass flow rate in front of inlet 

Mass flow rate at compressor 
face measurement plane 

NEWPSD Subroutine - inputs dynamic data 
and evaluates PSD functions 



SYMBOL OTHER NAMES 

N T ,  PROBE 

DESCRIPTION -- PAGE 

T o t a l  number o f  r a d i a l  r a k e s  NP 

NPR 

NR 

N u m e r i c a l  d e s i g n a t i o n  o f  p r o b e  

T o t a l  number o f  r i n g s ,  i n c l u d i n g  
s t a t i c  p r e s s u r e  r i n g s  a t  hub and 
o u t e r  r a d i u s  

NTUR C o n t r o l  pa rame te r  f o r  s e l e c t i o n  
o f  dynamic  d a t a  i n p u t  o r  t u r b u -  
l e n c e  m o d e l l i n g  s u b r o u t i n e s  

P 

PAVG 

P I  

PAVE 

L o c a l  i n s t a n t a n e o u s  t o t a l  p r e s -  
s u r e  r e c o v e r y  

Average p r e s s u r e  r e c o v e r y  a t  
compressor  f a c e  measurement p l a n e  

PFIX S u b r o u t i n e  - t r a n s f o r m s  i n p u t  
d a t a  i n t o  mapping pa rame te rs  

PFX PFXL S u b r o u t i n e  - computes v o r t e x  
f l u x  r a t e  

PRNT S u b r o u t i n e  - p r i n t s  p r e s s u r e  
a r r a y s  and o t h e r  o u t p u t  

PROBE 

PS 

NPR, NT 

SMAVG 

N u m e r i c a l  d e s i g n a t i o n  o f  p r o b e  

L o c a l  s t e a d y - s t a t e  t o t a l  p r e s -  
s u r e  r e c o v e r y  

PSAVG Average s t e a d y - s t a t e  t o t a l  p r e s -  
s u r e  r e c o v e r y  a t  e n g i n e  f a c e  

PSD 

PS I  

PSPEC 

Power s p e c t r a l  d e n s i t y  f u n c t i o n  

~ i c r a f t / i n l e t  yaw a n g l e ,  degrees  

K ,  KO, DK 

PT2 

PTAV, TMAVG 

G e n e r a l  f l o w  d i s t o r t i o n  f a c t o r  
d e s i g n a t o r  

L o c a l  t o t a l  p r e s s u r e  r e c o v e r y  

a t  compressor  f a c e  

PTAVG Face ave rage  t o t a l  p r e s s u r e  
r e c o v e r y  



SYMBOL OTHER NAMES DESCRIPTION 
PAGE -- 

PTMAX PTMX, TMMAX Maximum i n d i c a t e d  l o c a l  t o t a l  
p r e s s u r e  r e c o v e r y  

PTMIN PTMN, TMMIN M i n i m u m  i n d i c a t e d  l o c a l  t o t a l  
p r e s s u r e  r e c o v e r y  

QAVG QAV Face ave rage  dynamic p r e s s u r e  

QPT2 Q/PT2 R a t i o  o f  d y n a m i c - t o - t o t a l  p r e s -  
s u r e  a t  e n g i n e  f a c e  

RADLOC R a d i a l  p o s i t i o n  o f  r i n g s ,  deg.  

RATK S u b r o u t i n e  d e t e r m i n e s  t h e  e f f e c t  
o f  f i l t e r  f r e q u e n c i e s  on  d i s -  
t o r t i o n  f a c t o r  v a l u e s  

R I  

RKMN 

I n l e t  c e n t e r b o d y  hub r a d i u s  i n  
i n c h e s  ( t y p i c a l  u n i t s )  

Average t o t a l  p r e s s u r e  r e c o v e r y  
a l o n g  r a k e  w i t h  m i n i m u m  average  
p r e s s u r e  

RKMX Average t o t a l  p r e s s u r e  r e c o v e r y  
a l o n g  r a k e  w i t h  maximum average  
p r e s s u r e  

RKP KR R a d i a l  w e i g h t i n g  f a c t o r  f o r  
s o l u t i o n  of I D  d i s t o r t i o n  

RMS 

ROUT 

Root  mean square  

P e r c e n t  d i f f e r e n c e  between t h e  
i n d i c a t e d  l o c a l  p r o b e ,  r a k e ,  or 
r i n g  p r e s s u r e  and t h e  f a c e  
ave rage  p r e s s u r e  

ART R/RT 

RS 

RSIGMA 

R a d i a l  l o c a t i o n  o f  v o r t e x  c o r e  
Cnond imens iona l )  

R a t i o  o f  f i l t e r e d - t o - u n f i l t e r e d  

rms t o t a l  p r e s s u r e  f l u c t u a t i o n s  

S u b r o u t i n e  - computes rms v a l u e  
o f  d i s t o r t i o n  f a c t o r s  



SYMBOL OTHER NAMES DESCRIPTION --- PASE 

RT 

SEARCH 

SG SIG 

SGOK 

SGP 

SG/PT2 

SMAVG PSAVG 

SPTRC 

SUMMER 

SYMBLE 

TOP I 

TDPZ 

TOP3 

TE 

TOP 

Ou te r  i n l e t  r a d i u s  ( t i p )  a t  t h e  

compressor  f a c e ,  i n  

S u b r o u t i n e  - c o n t r o l s  s o l u t i o n  
of peak d i s t o r t i o n  f a c t o r s  

U n f i l t e r e d  rms t o t a l  p r e s s u r e  
f l u c t u a t i o n s  

F i l t e r e d  rrns d i s t o r t i o n  l e v e l  

U n f i l t e r e d  rrns d i s t o r t i o n  l e v e l  

R a t i o  o f  u n f i l t e r e d  rms t o t a l  
p r e s s u r e  f l u c t u a t i o n s  t o  a v e r -  
age t o t a l  p r e s s u r e  r e c o v e r y  a t  

e n g i n e  f a c e  

Face average  s t a t i c  p r e s s u r e  
r e c o v e r y  

T o t a l  p r e s s u r e  r e c o v e r y  t h r o u g h  
s u p e r s o n i c  i n l e t  shock  sys tem 

S u b r o u t i n e  - e v a l u a t e s  e r r o r  
f u n c t i o n  i n  v o r t e x  c o r e  s i z e  
i t e r a t i v e  c o m p u t a t i o n s  

S u b r o u t i n e  - s u p p l i e s  symbo ls  
f o r  d i s t o r t i o n  c o n t o u r  map 
g e n e r a t i o n  

T ime -on -po in t  o r  d a t a  p o i n t  
d w e l l  t i m e  - d u r a t i o n  o f  rms 
p r e s s u r e  f l u c t u a t i o n  d a t a  meas- 
u rement  , seconds 

S imp le  d i s t o r t i o n  p a r a m e t e r :  
CPTMAX-PTMIN)/PTMAX 

S imp le  d i s t o r t i o n  p a r a m e t e r :  
IPTMAX-PTMIN)/PTAVG 

S imp le  d i s t o r t i o n  p- = r a m e t e r :  
CPTAVG-PTMIN)/PTAVG 

T u r b u l e n t  k i n e t i c  ene rgy  d i s s i -  
p a t i o n  r a t e  - f t Z / s e c 3  



SYMBOL OTHER NAMES 

THE THETA 

THMN 

THMX 

TMAVG PTAVG 

TMMAX PTMAX 

TMMIN PTMIN 

TRIOIA 

TURBUL 

TV 

UNSTDY 

THETA 

TUU 

DESCRIPTION 

A n g u l a r  l o c a t i o n  o f  t h e  c e n t e r  
o f  t h e  a r c  DTH, i n  degrees  

Angu la r  l o c a t i o n  of t h e  r a k e  
w i t h  m i n i m u m  r ake -ave rage  t o t a l  
p r e s s u r e  r e c o v e r y ,  degrees  

A n g u l a r  l o c a t i o n  o f  t h e  r a k e  
w i t h  maximum rake -ave rage  t o t a l  
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I. INTRODUCTION 

Turbulence and other flow nonuniformities in aircraFt 

engine inlets have long been known to cause an unwanted f l o n  

distortion phenomena at the compressor face. These imperfec- 

tions in the ideally smooth inlet airflow is frequently due 

to the turning and shaping of the flow as it passes throu5'7 

the inlet duct. Generally the magnitude of the distortion is 

a function of the angle of attack and sideslip (yaw angle: 

of the aircraft. The time averaged steady-state distortion 

level is relatively easy to determine experimentally by la- 

cating an array of total pressure probes ahead of the com- 

pressor face, and evaluating specific distortion parameters 

based on these steady-state measurements. Steady-state cis- 

tortion can be of sufficient magnitude to disrupt the proper 

operation of the engine by stalling the compressor. EFForts 

to develope high performance engine and inlet configurations 

has been hampered because of the inherent sensitivity of 

highly loaded compressors to flow distortion. 

It has also been found that random fluctuations in t h ~  

distortion level, known as dynamic distortion, can have an 

even greater effect on engine stability as the steady-state 

distortion. It has been demonstrated that the dynamic dis- 

tortion can cause the engine to surge even though the steaay 

state distortion is well below the level at which the eng~ne 

would be expected to stall. It becomes of particular i rnpor -  

tance to be able to predict the dynamic distortion levels 

which could occur at any instant in time. 

One of the most common experimental methods of deter- 

mining the maximum instantaneous distortion is to use Fast 

response (dynamic) probes to produce time histories of the 

total pressure fluctuations at the compressor face. These 



instantaneous pressures are then translated, as in the steaoy 

state case, into distortion parameters. These data are the13 

screened by the Dynamic Data Editing and Computing System, 

DYNADEC, to determine the maximum instantaneous distortion 

during the test run. An estimation of the most probable peak 

distortion level is then available for the inlet designer. 

The DYNADEC approach to dynamic distortion prediction 

is generally quite accurate, but is extremely expensive im 

terms of test instrumentation and computing time. For pre- 

liminary design purposes, it becomes difficult to justiFy 

the cost of a full DYNADEC test run. It is for this reason 

that methods of statistically predicting peak distorticn 

levels have been developed. Further information on the 

DYNADEC and various statistical prediction methods can be 

obtained with the aid of References 4 and 7. 

Of the many statistical approaches for predicting aeak 

dynamic distortion, the Melick random vortex model (Ref. ? - 

33 is of particular interest because of it's high efficiercy 

in terms of data requirements and numerical analyses. The 

basis of the Melick approach is formulated around the obser- 

vation of the randomness of the total pressure fluctuations 

during a test run. It was hypothesized that the inlet Flow# 

could be modelled as having randomly distributed vortices 3f" 

random strength, size, and orientation convecting with t?e 

steady-state flow, which itself is distorted by a large 

steady-state vortex. By applying fluid mechanics to convec- 

ting vortices, a mathematical model of the inlet turbulence 

can be generated. The vortices are then translated into dy- 

namic distortion parameters using a statistical criterion. 

The distortion level, or the extent to which ths flcw 

is distorted, is generally defined in terms of distortio~ 

factors. These distortion factors are designed to indicate 

the distortion relative to some reference value, typically 

the level at which the engine could be expected to surge. 



The maximum dynamic distortion prediction in the V e - ~ c k  

approach makes use of rms total pressure fluctuation leve;s 

to identify the main variables in the convecting vortex Flow 

model (Ref. 5). Filtered and unfiltered rms levels are re- 

quired so that any unwanted effects, such as engine speed. 

can be removed. The rms levels are somewhat easier to p r o -  

cess than the instantaneous distortion computations done by 

DYNADEC, but the instrumentation requirements are much the 

same. It is seen that instrumentation costs can be reduced 

by using fewer dynamic probes. The Melick method allows a 

duction in probes since it actually uses the face-averaged 

fluctuation level in the analysis. In principle, the hse c f  

very few dynamic probes is feasible, as long as they produze 

the same face-average rms fluctuation level as the fully i r i -  

strumented case. 

There is some difficulty in choosing the locations F o r  

the placement of a limited number of dynamic probes, because 

it requires some knowledge of the solution before the t e s t  

begins. Reference 5, however, provides a simplified scheme 

for locating as few as two dynamic probes at the engine face 

while retaining sufficient accuracy in the dynamic distortion 

prediction. It is apparent that even further cost reducti~ns 

could be achieved if the requirement for dynamic probes a n d  

the associated instrumentation could be eliminated entirely. 

Until recently, however, no methods have been available For 

reasonably accurate peak dynamic distortion prediction with- 

out dynamic data. 

Research at the University of Kansas has produced a 

new technique for estimating maximum instantaneous distcrtlxn 

based only on the steady-state total pressure measurements. 

Chen (~eference 6 )  has developed an approach to inlet t u r b u -  

lence modelling which analytically simulates the rms total 

pressure fluctuation levels using the predicted turbulent 

kinetic energy distribution at the compressor face. These 

simulated rms levels replace the rms level data which had co 



be measured previously. The simulated rms fluctuation l e v e l s  

are then used to compute the variables of the random vorte'~ 

model, from which the peak dynamic distortion parameters are 

derived, just as if the rms levels had been input as sata. 

The purpose of this work is to present a computer pru- 

gram which statistically computes the most probable peak dy- 

namic distortion level, based on the methods o f  Chen amd 

Melick. The program is designed to be highly adaptable l n  

that the user may decide on the extent of the dynamic data 

to be input. There are three main alternatives available to 

the user. First the user may select a full set of dynamic 

data, a partial set can be considered (to a minimum of two 

dynamic probes], or the user can opt to input no dynamic oa- 

ta. In the last case, the program automatically executes t l e  

computations related to the turbulence modelling and dyna~l-c 

data simulation. This flexibility is designed to not only 

allow the user to select and control the quantity of dynarnrc 

data to be processed, but to also allow comparison of d l f -  

ferent dynamic probe configurations in a single data run. 

In summary, the subject computer program solves for ar 

estimation of the maximum instantaneous distortion, given 

the steady-state distortion data and rms total pressure fluc- 

tuation levels. The mathematical and theoretical derivations 

are well documented in the Melick references (Ref. I - 3) 

and the improvements by Chen are detailed in References 5 

and 6. Additional information on inlet flow distortion in 

general can be found with the aid of Reference 4. 

This Users Manual is designed to assist the user toward 

an understanding of the operational capabilities of the prc- 

gram. The three major sections of the Manual include a break- 

down of the program elements, an input and output data sec- 

tiun, and a set of sample problems. A listing of the program 

is included at the end of the Manual. Suggestions for pass.- 

ble future studies in improving the program or the anaiyt-ca: 

techniques are also included. 
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11. PROGRAM DESCRIPTION 

The subject computer program, the MAXIDYN peak dynamic 

distortion estimator, is written in FORTRAN IV and can be 

run as is or with minor modification on most FORTRAN compil- 

ers. MAXIDYN requires memory capacity for about 70,000 w o r d s  

in 2300 program lines, including comments. Deletion o f  t h ~  

comment lines would reduce the memory space needed to ab0t-1~~ 

45,000 characters and 1600 1ines.Appendix A of this work 

includes a listing of the program and subprograms. 

This program is designed to be flexible in nature, aqd 

can be used to run with a variety of inlet pressure probe 

configurations. Individual test cases can be analyzed sepe-- 

rately, or groups of data sets can be run in sequence. A set 

of typical distortion factors are included in the program. 

though these can be modified by the User. Figure 7 g i v e s t " l e  

definitions of the distortion factors used in this program, 

The program may be used with or without dynamic r m s  

total pressure fluctuation data, with a minimum of two probes 

in the case that dynamic data is included. 

A block diagram of calling sequences of subprograms is 

given in figure 1. A description of each of the subprograms 

is given in this section. The subprogram descriptions are 

alphabetized, for convenience. An operational sequence of 

events is included to illustrate key events during a data 

run. 

Peripheral requirements are limited to a line printer. 

The program is suitable for use online while data is being 

collected, provided format requirements (sect. 111) are m e t ,  



I1.A. SUBPROGRAM DESCRIPTION 

1. MAXIDYN main driver 

The main driver of the MAXIDYN program controls some 

of the data input, including the inlet probe configuration, 

and the steady-state pressure array. In addition, the main 

driver controls the subprograms which handle the remaining 

input data, distortion computations, and the output. Soeci- 

fically, the main driver controls directly the following: 

a. Reading in of pressure probe ring and rake geometry. 

b.  Reading in of data titles and identifying comments 

after checking for an End Of File command which 

stops program execution. 

c. Reading in of steady-state pressure data. 

d. Controlling the subroutines which control other da- 

ta input, check for errors, assign default values, 

and control distortion computations and output. 

2. Function ARNTU 

This function subprogram computes the vortex f l u x  rate 

and it's effect on the root mean square distortion level. 

ARNTU is controlled by subroutine MAXDP. 



3. Subroutine CUBIC 

This subroutine controls the cubic spline interpola- 

tions for subroutines TURBUL and INIVEL. These slope-based 

cubic spline interpolations are used to compute velocity 

gradients and turbulent kinetic energies at the fine grid 

points during turbulence modelling computations. 

4. Subroutine DISPAR 

This subroutine is used to calculate the eight aictar- 

tion factors used by the program. These distortion factors 

are defined in figure 7 and can be modified by the user. 

DISPAR is controlled by subroutine DISTRT, a subdriver which 

controls most of the distortion computations. The actual 

formulas for the distortion factors are contained in D I S P A R ,  

5. Subroutine DISTRT 

Subroutine DISTRT is a subdriver which controls the 

computation of the distortion factors. Some of the duties of 

DISTRT includes the following: 

a. Calculation of simple distortion parameters: for 

instance, the locations of the rake or ring with 

maximum and minimum average pressure. 

b. Calculation of average static pressure at the engine 

face, and the average Mach number. 

c. Control subroutines INTERP and DISPAR which c o n t i n ~ e  

the distortion factor computations. 



6. Subroutine EXTRME 

This subroutine manages the computation of extreme Val- 

ues of the distortion factors. Called by subroutine M A X D P .  

EXTRME controls the solution of the most probable peak d i s -  

tortion level for each of the distortion factors. The peak 

distortion factor is calculated by adding an incremental 6:s- 

tortion level to the steady state distortion. The incr-ernevrsl 

distortion level is computed via the SEARCH subroutine. EXSPME 

returns the peak distortion level to MAXOP after summing t h e  

steady state and incremental distortion values. 

7 .  Subroutine FINITE 

FINITE is a subroutine which is used to solve the Fi- 

nite difference equations for subroutine TURBUL. These equa- 

tions are the turbulence modelling set formed by an implicit 

tridiagonal matrix scheme. The elements of the tridiaganal 

matrix equations, which consist of the turbulent kinetic en- 

ergies and the turbulent kinetic energy dissipation rates, are 

formed by FINITE and solved by subroutine TRIDIA. FINITE also 

computes the relative errors in the turbulent kinetic energy 

and the tubulent kinetic energy dissipation rate for each c f  

the fine grid points at the compressor face. 

8. Subroutine FRF 

This subroutine evaluates the mean vortex core size by 

an iterative inverse solution scheme. FRF evaluates the vor- 

tex core size as a function of the filtered-to-unfiltered 

root mean square total pressure fluctuation level. S u b r o u t i n e  

SUMMER evaluates the error function of the vortex core s i z z .  

and the solution is iterated until the error is small. 



9. Subroutine INITL 

This subroutine solves for the initial values of the 

turbulent kinetic energy and the turbulent kinetic energy 

dissipation rate. These initial values are used as a starting 

point in the iteration of the solution of these parameters. 

INITL is controlled by the TURBUL subdriver, which uses the 

turbulent kinetic energies to solve for the turbulent model 

in the synthesis of the rms pressure fluctuation levels. 

10. Subroutine INIVEL 

This subroutine calculates the circumferential and ra- 

dial velocity gradients at each of the grid points at the 

compressor face. INIVEL is called by TURBUL and uses subrou- 

tine CUBIC to carry out spline interpolations of the velocicy 

gradients. 

1 1 .  Subroutine INTERP 

This is an interpolation subroutine which calculates 

the total pressure recovery at each of the discrete paints 

in the measurement plane. These points are used to generate 

the pressure contour map. INTERP uses linear interpolation 

to find the pressure at points between the pressure probe 

locations. Two linear interpolations are carried out: a ra- 

dial one and a circumferential one. The final value is taken 

to be the average of these interpolations. INTERP is called 

by both MAINLP and DISTRT; when called by MAINLP, the inter- 

polated values are used to generate the contour map, while 

DISTRT uses the interpolations to compute the distorticn Fac- 

tors. A call to subroutine PRNT has been nulled - it had p r o -  

vided a message when interpolations could not be performed. 



12. S u b r o u t i n e  LNPOUT 

T h i s  s u b r o u t i n e  c o n t r o l s  some o f  t h e  o u t p u t  f r o m  t h e  

p rogram.  When c a l l e d  b y  UNSTDY, LNPOUT p r i n t s  two  o f  t h e  ta- 

b l e s  i n  t h e  o u t p u t :  t h e  O v e r a l l  F l ow  D e s c r i p t o r s  and t h e  F l o w  

D i s t o r t i o n  F a c t o r s .  The O v e r a l l  F low D e s c r i p t o r s  t a b l e  g i lnes  

v a l u e s  f o r  some o f  t h e  s i m p l e  d i s t o r t i o n  p a r a m e t e r s ,  and t h e  

F low  D i s t o r t i o n  F a c t o r s  t a b l e  g i v e s  v a l u e s  f o r  t h e  e i g h t  

u s e r - d e f i n e d  d i s t o r t i o n  f a c t o r s .  LNPOUT p r i n t s  t h e s e  t a b l e s  

f o r  b o t h  t h e  s t e a d y - s t a t e  and  peak i n s t a n t a n e o u s  case .  In 

a d d i t i o n ,  LNPOUT p r i n t s  t h e  d i s t o r t i o n  c o n t o u r  maps f o r  tPe 

s t e a d y - s t a t e  and peak i n s t a n t a n e o u s  case .  UNSTDY c o n t r o l s  

LNPOUT b y  p a s s i n g  a  c o n t r o l  pa rame te r ;  LNPOUT t h e n  s e l e c t s  

t h e  o u t p u t  t o  be p r i n t e d .  

13. S u b r o u t i n e  MAINLP 

S u b r o u t i n e  MAINLP c o n t r o l s  t h e  c a l c u l a t i o n s  i n v o l v e d  

i n  t h e  deve lopment  o f  t h e  p r e s s u r e  d i s t o r t i o n  c o n t o u r  map, 

MAINLP c a l l s  on  INTERP t o  c a l c u l a t e  t h e  p r e s s u r e  a t  any o f  

t h e  d i s c r e t e  p o i n t s  a t  t h e  compressor  f a c e ,  g i v e n  t h e  p r e s -  

s u r e  a t  t h e  p r o b e  l o c a t i o n s .  S u b r o u t i n e  SYMBLE t h e n  assigns 

a  symbol  f o r  each o f  t h e  d i s c r e t e  p o i n t s ,  based on  t h e  p r e s -  

s u r e  f o u n d  by  INTERP. MAINLP t h e n  passes t h e  p r e s s u r e  and 

symbol  i n f o r m a t i o n  t o  t h e  m a i n  d r i v e r ,  and u l t i m a t e l y  t o  

LNPOUT f o r  p r i n t i n g  o f  t h e  d i s t o r t i o n  map. 

14. S u b r o u t i n e  MAXDP 

T h i s  s u b r o u t i n e  i s  a  s u b d r i v e r  wh i ch  c o n t r o l s  t h e  c o m -  

p u t a t i o n  o f  t h e  peak d i s t o r t i o n  l e v e l s  f o r  t h e  e i g h t  d i s t o r -  

t i o n  f a c t o r s .  MAXDP computes t h e  mean v o r t e x  s i z e  and t h e  

mean rms p r e s s u r e  f l u c t u a t i o n  l e v e l ,  f rom wh i ch  t h e  peak 



i n s t a n t a n e o u s  d i s t o r t i o n  i s  d e r i v e d .  MAXOP a l s o  c o n t r a l s  t 3 e  

c a l c u l a t i o n s  i n v o l v e d  i n  p r o d u c i n g  t h e  e f f e c t s  o f  o t h e r  para- 

m e t e r s  o n  t h e  peak d i s t o r t i o n ,  l i k e  t h e  v o r t e x  f l u x  r a t e  a n d  

and e n g i n e  f i l t e r s ,  v i a  s u b r o u t i n e  RATK. S u b r o u t i n e  RSIGMA 

i s  c a l l e d  t o  compute t h e  f i l t e r e d  and u n f i l t e r e d  rms l e v e l  

o f  t h e  d i s t o r t i o n  f a c t o r s .  S u b r o u t i n e  EXTRME t h e n  computes 

t h e  peak i n s t a n t a n e o u s  d i s t o r t i o n  s t a t i s t i c a l l y  a t  5 0 % .  95%, 

and 99.7% c o n f i d e n c e  l e v e l s .  MAXDP t h e n  p r i n t s  t h e  r e s u l t s  

i n  t a b l e s ,  namely t h e  D i s t o r t i o n  F a c t o r  Ext reme Va lue  table 

and o t h e r s .  The u s e r - s e l e c t e d  most p r o b a b l e  peak i n s t a n t a -  

neous d i s t o r t i o n  f a c t o r  i s  a l s o  p r i n t e d .  It i s  t h i s  d i - s t a r -  

t i o n  f a c t o r  t h a t  t h e  peak d i s t o r t i o n  map i s  based i n  t h ~  

i t e r a t i v e  m a t c h i n g  p r o c e s s .  

15. S u b r o u t i n e  NEWPSD 

T h i s  s u b r o u t i n e  i s  a  m a j o r  s u b d r i v e r  wh i ch  c o n t r o l s  

some o f  t h e  i n p u t  d a t a  and  manages most o f  t h e  c o m p u t a t i o n s  

i n v o l v e d  i n  t h e  p r e d i c t i o n  o f  t h e  peak i n s t a n t a n e o u s  distor- 

t i o n .  NEWPSD c o n t r o l s  t h e  i n p u t  o f  t h e  dynamic d a t a ,  i n c l u d -  

i n g  t h e  f i l t e r  f r e q u e n c i e s ,  t h e  d a t a p o i n t  d w e l l  t i m e  ( t i m e  

o n  p o i n t ) ,  i d e n t i f i c a t i o n  and  program c o n t r o l  p a r a m e t e r s ,  

and  t h e  r m s  p r e s s u r e  f l u c t u a t i o n  d a t a  a t  each of  t h e  d y n a m i c  

p r o b e  l o c a t i o n s .  NEWPSO a l s o  passes  p rogram e x e c u t i o n  t o  t h e  

t u r b u l e n c e  m o d e l l i n g  s u b r o u t i n e ,  TURBUL, i f  t h e  u s e r  has  se-  

l e c t e d  t h e  o p t i o n  o f  n o t  e n t e r i n g  dynamic d a t a .  Once t h e  dy-  

namic  d a t a  has  been e n t e r e d  o r  s y n t h e s i z e d ,  NEWPSO c o n t r o l s  

s u b r o u t i n e s  MAXOP and F R F  w h i c h  manage t h e  c o m p u t a t i o n s  i n  

t h e  peak i n s t a n t a n e o u s  d i s t o r t i o n  p r e d i c t i o n .  NEWPSD else 

p r i n t s  t h e  dynamic d a t a  and t h e  i d e n t i f i c a t i o n  and c o n t r o l  

p a r a m e t e r s .  NEWPSD i s  c o n t r o l l e d  by  t h e  ma in  d r i v e r  and sub- 

r o u t i n e  UNSTDY 



16. Subroutine P F I X  

This subroutine has two primary functions. The first 

part of the routine transforms the steady-state or dynamic 

distortion data from pressure recoveries to percent diffe-- 

ences from the average values. These percents are then used 

by the mapping routines for the plotting of the pressure 

distortion contour maps. P F I X  also calculates the dynamic 

pressure and Mach number at each of the pressure probe 1 0 ~ 2 -  

tions as a secondary function. The face-average Mach number 

is also computed by P F I X .  P F I X  is called by the main d r i v e r  

in the steady-state case, and UNSTDY in the peak dynamic 

estimation case. 

17. Subroutines P F X  and P F X L  

These twin subroutines are used in the,computation aF 

the eddy (vortex) flux rate as a function of the distartian 

level. The difference between the two subroutines is i n  tPe 

computation of the vortex flux rate which depends on the 

magnitude of the ratio of steady-state to root mean square 

distortion: when this ratio is greater than 2.0, P F X  is 

called, while P F X L  is called when the ratio is less than 2 ,  

The computational procedure for these two cases is somewhat 

different and an error would probably occur during camputa- 

tions which involve logarithms and exponentials if the cases 

were not separated. 

18. Subroutine P R N T  

This subroutine controls the printing of steady-stace 

and peak instantaneous pressure arrays, the printing OF some 

of the titles and the listing of rnesseges in the output, 
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19. Subroutine R A T K  

R A T K  is a subroutine which evaluates the effect of the 

engine filter frequency, F O ,  on the root mean square distsr- 

tion level. The variation of rms distortion with engine fil- 

ter frequency is analytically determined. 

20. Subroutine R S I G M A  

This subroutine is called by M A X D P  and computes the 

root mean square distortion level for the eight distartion 

factors. The routine is divided into separate groups F s r  

individual distortion factor evaluations. 

2 Subroutine S E A R C H  

Subroutine S E A R C H  controls the computation of a pesk 

distortion parameter which is used by E X T R M E  to form an es- 

timation of the peak instantaneous distortion level. The 

ratio of the difference between the peak and steady-state 

to the rms distortion is solved for in an iterative s e a r c i  

for the peak distortion level. 

22. Subroutine SUMMER 

This subroutine evaluates the error function in the 

iterative calculation of the mean vortex core size. SUMPIEP 

is called by F R F .  



23. Subroutine SYMBLE 

This subroutine supplies the mapping symbols for the 

generation of the compressor face pressure distortion can-  

tour map. Called by MAINLP, SYMBLE assigns a symbol for each 

discrete paint at the engine face, depending on the pressure  

indicated at that point by the interpolation routine, INTERP.  

The spelling of SYMBLE was selected to avoid possible can- 

flicts with library functions in some compilers. 

24. Subroutine TRIDIA 

Subroutine TRIDIA solves the tridiagonal matrix equa- 

tions in the turbulence modelling computations. TRIDIA is 

controlled by subroutine FINITE, which sets up the finite 

difference equations to be solved by TRIDIA, 

25. Subroutine UNSTDY 

This subroutine is the primary subdriver responsible 

for the predictive evaluation of the peak instantaneous dis- 

tortion. Called by the main driver of MAXIDYN, UNSTDY can- 

trols the input and output of dynamic data, manages the cam- 

putations leading to the peak distortion prediction, and 

controls the output of results. Some of the more important 

activities and functions of UNSTDY are listed below: 

a. Call NEWPSD to input identification and data control 

parameters for the test run. 

b. Compute compressor face averaged dynamic pressure and 

Mach number, inlet vortex properties, and other p a r a -  

meters leading to the peak distortion prediction. 



c .  Call subroutine LNPOUT to print some of the tables uF 

distortion data, and the distortion contour map. 

d. Call subdriver NEWPSD to read in and analyse the dy- 

dynamic data or select the turbulence modelling rou- 

tines if there is no dynamic data in the input File, 

e. Control the subroutines which iteratively evaluate 

the most probable peak distortion level and print the 

results. 

26. Subroutine TURBUL 

TURBUL is the subdriver responsible for the turbulerlce 

modelling prediction when there is no dynamic data in the 

input file. TURBUL controls subroutines CUBIC, I N I T L ,  I N I ' J E L ,  

F I N I T E ,  T R I O I A ,  and PRNT in the synthesis of simulated dy- 

namic data for processing by the subdriver UNSTDY. TURBUL is 

called by subroutine NEWPSD when the user specifies the "no 

dynamic data" option in the input data file. TURBUL assigns 

a finite-element grid to.represent the discrete points on 

the compressor face for the finite difference analytical 

scheme. The boundary conditions for the turbulence model are 

estimated based on the total pressure measurements from t-e 

steady-state data, and the initial values of the turbulent 

kinetic energy and dissipation rate are found via INIT,. TI-e 

inlet face velocities are then found via I N I V E L ,  and tye 

turbulent equations are solved by F I N I T E .  These result in 

estimates for the rms total pressure fluctuation levels, 

which are then fed back to NEWPSD for the computation of t t ~ e  

most probable peak instantaneous distortion. 
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11.6 .  TYPICAL DATA RUN SEQUENCE DESCRIPTION 

A t y p i c a l  d a t a  run o f  t h e  MAXIDYN dynamic d i s t o r t i o n  

p r e d i c t i o n  program can  be t r a c e d  a s  f o l l o w s .  

The m a i n  d r i v e r  i n i t i a t e s  t h e  d a t a  i n p u t  sequence w i ~ h  

t h e  r e a d i n g  o f  c o n t r o l  p a r a m e t e r s  and t h e  i n l e t  p r e s s u r e  

p r o b e  c o n f i g u r a t i o n .  A f t e r  t h e  r a d i a l  and a n g u l a r  l o c a t i o r s  

o f  t h e  p r o b e  r i n g s  and r a k e s  a r e  r e a d  i n ,  s u b r o u t i n e  NEWPSD 

i s  c a l l e d  t o  r e a d  i n  t h e  e n g i n e  f i l t e r  f r e q u e n c y ,  t h e  rms dy- 

namic  d a t a  c u t - o f f  f r e q u e n c y ,  t h e  d a t a - p o i n t  d w e l l  t i m e r  o r  

t h e  l e n g t h  o f  t i m e  i n  wh i ch  t h e  dynamic d a t a  i s  measured, 

and t h e  s p e c i f i c  d i s t o r t i o n  f a c t o r  wh i ch  t h e  u s e r  s e l e c t s  

a s  p r i m a r y  f o r  t h e  peak i n s t a n t a n e o u s  d i s t o r t i o n  a n a l y s i s ,  

The m a i n  d r i v e r  t h e n  r e a d s  i n  any d a t a  i d e n t i f i c a t i o n  

t i t l e s  w h i c h  t h e  u s e r  may e l e c t  t o  i n p u t .  The r e s u l t i n g  s e t  

o f  comments a r e  p r i n t e d  a t  t h e  t o p  o f  each page o f  t h e  a u t -  

p u t .  I f  a n  "end o f  f i l e r r  o r  T rend job"  i n s t r u c t i o n  i s  entered 

a t  t h i s  p o i n t ,  program e x e c u t i o n  i s  a b o r t e d .  A f t e r  t h e  ti- 

t l e s  a r e  r e a d  i n ,  t h e  ma in  d r i v e r  r e a d s  i n  t h e  base radial 

p r o f i l e  and s t e a d y - s t a t e  p r e s s u r e  a r r a y .  The s t e a d y - s t a t e  

p r e s s u r e  r e c o v e r i e s  a r e  s t o r e d  i n t o  t h e  i n s t a n t a n e o u s  a r r e y  

a s  a  s t a r t i n g  p o i n t  f o r  t h e  peak i n s t a n t a n e o u s  c o m p u t a t i o n s .  

S u b r o u t i n e  PRNT i s  t h e n  c a l l e d  t o  p r i n t  t h e  t a b l e  oF 

s t e a d y - s t a t e  p r e s s u r e s  and t h e  base  r a d i a l  p r o f i l e .  These 

i t e m s  a r e  i n c l u d e d  on  t h e  f i r s t  page o f  t h e  o u t p u t .  Suarou- 

t i n e  PFIX i s  c a l l e d  n e x t  t o  compute t h e  f ace -ave rage  Mach 

number. S u b r o u t i n e  DISTRT i s  t h e n  c a l l e d  t o  c o n t r o l  t h e  com- 

p u t a t i o n  o f  t h e  s t e a d y - s t a t e  d i s t o r t i o n  f a c t o r s .  

S u b r o u t i n e  DISTRT i s  a  s u b d r i v e r  wh i ch  manages d i s t o r -  

t i o n  f a c t o r  c o m p u t a t i o n s .  DISTRT computes t h e  s i m p l e  d i s t o r -  

t i o n  p a r a m e t e r s  b e f o r e  c a l l i n g  s u b r o u t i n e s  INTERP and D I S P A R  

t o  c a l c u l a t e  t h e  e i g h t  p r i m a r y  d i s t o r t i o n  f a c t o r s .  S u b r o u t l r e  
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PRNT is called if there are an insufficient number of p r o b e  

rings to allow accurate radial interpolation for some d i s t o r -  

tion factors, in which case a message to that effect i s  ~ r i n -  

ted in the output. Subroutine INTERP is called to carry GLJ" 

circumferential interpolations at discrete locations an each 

of the probe rings, in preparation for the computation of the 

distortion factors by DISPAR. This subroutine contains a c,et 

of sample distortion factor which can be modified by the ~lser 

as desired. The results of these computations are eight pri- 

mary steady-state distortion factors used to define the o i s -  

tortion level at the compressor face. After computation c+ 

the steady-state distortion level is completed, OISTRT re- 

turns control to the main driver. 

The main driver then calls subroutine PFIX to s e t  ua 

certain parameters required to develop the distortion con- 

tour map for the steady-state case. A "dummy ring" of p r o o e s  

is set up to enable interpolations through the centerbody. 

PFIX then tranforms the input pressure measurements into pa- 

rameters used by the map-generating subdriver routine MAIMCP. 

MAINLP controls subroutines INTERP and SYMBLE which generate 

the symbols in the distortion map. INTERP interpolates the 

pressure at the discrete locations on the engine face based 

on the steady-state input data, while SYMBLE assigns a char- 

acter based on the interpolated value at each of the discrete 

points. After all interpolations and symbol assignments Pave 

been completed, MAINLP returns program control to the main 

driver. At this point the steady-state distortion has been 

completely defined and the dynamic distortion evaluations are 

commenced with the calling of the main subdriver, UNSTDY, 

UNSTDY controls the subroutines and subdrivers whicn 

compute the total pressure fluctuation levels which translate 

into so-called "delta pressures". These are added to the 

steady-state pressures to produce the dynamic distortion 

level and the most likely peak dynamic distortion. AFter all 

of the dynamic calculations are completed, UNSTDY returqs ta 



the main driver to start another data run. Before this zakes 

place, however, the main subdriver, UNSTDY, manages all of 

the dynamic data input and calculations, or the dynamlc data 

simulation if the user selects this option. 

After setting initial values for some of the vortex 

properties, UNSTOY calls on NEWPSO to read in inlet operating 

parameters and some program control parameters. Most oF t5e 

inlet parameters are non-functional, that is they are not 

involved in distortion computations, but rather are OF in::er- 

est for identification and comparison purposes. One cantrol 

parameter, NTUR, allows the user to select the no-dynamic-data 

option, or to input the required dynamic data conventionally. 

After checking the control parameters for errors, assignirg 

default values if necessary, NEWPSO returns to UNSTDY, wksch  

evaluates the flow velocity and Mach number, and the v o r t e x  

properties. LNPOUT is called to print the simple distortion 

parameters and flow descriptors, and the distortion Facto-s 

for the steady-state case. After printing the steady-state 

vortex properties, UNSTOY again calls LNPOUT to print the 

steady-state distortion contour map. Subroutine NEWPSD is 

then called to begin the evaluation of the most probable 

peak instantaneous distortion. 

After printing out the identification and control pa-  

rameters, NEWPSO branches according to the dynamic data on- 

tion selected by the user. If the no-dynamic-data option has 

been selected, NEWPSO calls the tubulence modelling subdrl- 

ver, TURBUL, to compute the rms fluctuation levels which 

would otherwise be input as data. After setting up a Fine 

grid at the compressor face for finite element modelling of 

the flow distortion, TURBUL controls subroutines CUBIC, PRNT, 

INIVEL, FINITE and TRIDIA in the development and solutian of 

the turbulence equations. Subroutine INITL sets initial v a l -  

ues for the turbulent kinetic energy, INIVEL computes the 

velocity gradients, and subroutine FINITE uses finite d1ffe-- 

ence formulations to solve the turbulence model. CUBIC per-- 

forms cubic spline interpolations and TRIOIA solves tridia- 



gonal matrices generated by the finite difference equatlols, 

TURBUL then calculates the rms total pressure fluctuatian 

levels at each of the probe locations, and the results arc 

printed. Control is then returned to subdriver NEWPSD, ard 

program execution continues as if the dynamic data had aeen 

input, rather than computed. 

If the user selects the option for the reading in of 

dynamic probe data, then these data are input at this p o i ~ t  

in program execution. In either case, NEWPSD then calls 

subroutine FRF to evaluate the vortex core size as a Fun- 

tion of the filtered-to-unfiltered rms pressure fluctuatisn 

level ratio using an iterative scheme. FRF calls subrouti-e 

SUMMER to evaluate the error function of the inverse SOIL- 

tion. After the vortex core size is found, the results are 

printed by NEWPSD. When all of the dynamic probe data have 

been read in, subroutine MAXOP is called to compute the 

most probable maximum instantaneous distortion levels, 

MAXDP is the subdriver which controls the computatian 

of the most probable maximum peak in the distortion level, 

After determining the mean values for the vortex core size 

and filtered-to-unfiltered rms pressure fluctuation ratio, 

and the effects of engine filters and vortex flux rates via 

subroutines RSIGMA and RATK, the rms and mean instantanecus 

levels are computed by adding a "delta" distortion value to 

the steady-state value. Subroutine EXTRME is then called %a 

evaluate the most probable (50% confidence level) extreme 

value of the peak instantaneous distortion. EXTRME utilizes 

subroutine SEARCH which controls the twin subroutines PFXL 

and PFX in the determination of the "delta" distortion used 

to find the maximum instantaneous distortion. EXTRME is aLso 

used to determine the distortion factor extreme values Fat- 

the 95% and 99.7% confidence levels, using the same pian as 

for the 50% confidence level. After printing the results cF 

these computations, program control is returned to NEWPSC, 

and then back to UNSTDY. 



A f t e r  r e - e v a l u a t i n g  t h e  v o r t e x  p r o p e r t i e s  f o r  t h e  m a x -  

i m u m  i n s t a n t a n e o u s  case,  UNSTDY f i n d s  t h e  p r e s s u r e  recove - -  

i e s  a t  each o f  t h e  p r o b e  l o c a t i o n s  based on  t h e  p r e d i c t e c  

maximum i n s t a n t a n e o u s  d i s t o r t i o n  and t h e  s t e a d y - s t a t e  a a t a ,  

S u b r o u t i n e  PRNT i s  c a l l e d  t o  p r i n t  some o u t p u t ,  t h e n  FFrX 

i s  c a l l e d  t o  compute f l o w  v e l o c i t i e s  and Mach number a t  each 

o f  t h e  p r o b e  l o c a t i o n s .  The f ace -ave rage  Mach number f o r  sbe 

peak i n s t a n t a n e o u s  case i s  a l s o  d e t e r m i n e d  b y  PFIX.  In t h e b  

same manner a s  w i t h  t h e  s t e a d y - s t a t e  case,  s u b r o u t i n e  OISTRT 

manages t h e  c o m p u t a t i o n  of t h e  d i s t o r t i o n  f a c t o r s  g i v e n  t n e  

t o t a l  p r e s s u r e  r e c o v e r i e s  f o u n d  by  UNSTDY f o r  t h e  m a x i m u m -  

i n s t a n t a n e o u s  d i s t o r t i o n  case .  S u b r o u t i n e  MAINLP c o n t r o l s  

t h e  p r i n t i n g  o f  t h e  p r e s s u r e  d i s t o r t i o n  c o n t o u r  map f o r  t ~ e  

peak i n s t a n t a n e o u s  case  a s  f o r  t h e  s t e a d y - s t a t e  case ,  and 

LNPOUT i s  a g a i n  c a l l e d  t o  a s s i s t  w i t h  t h e  p r i n t i n g  of cut- 

p u t  o f  t h e  peak i n s t a n t a n e o u s  d a t a .  A f t e r  a l l  t h e  o u t ~ u t  

f o r  t h e  t e s t  run h a s  been p r i n t e d ,  UNSTOY r e t u r n s  t o  t h e  

ma in  d r i v e r .  The ma in  d r i v e r  checks  f o r  a d d i t i o n a l  s e t s  o f  

d a t a  o r  new t e s t  cases .  I f  t h e r e  d a t a ,  t h e n  p rogram execb- 

t i o n  b e g i n s  w i t h  t h e  r e a d i n g  i n  of d a t a  t i t l e s  and t h e  

s t e a d y - s t a t e  p r e s s u r e  d a t a  f o r  t h e  new case.  I f  an  END OF 

F I L E  o r  ENDJOB command i s  encoun te red ,  meaning t h e r e  i - s  nct 

an a d d i t i o n a l  t e s t  case .  

I n  summary, t h e  MAXIDYN dynamic d i s t o r t i o n  program 

computes t h e  most p r o b a b l e  maximum peak i n s t a n t a n e o u s  d i s - -  

t o r t i o n  g i v e n  t h e  s t e a d y - s t a t e  d i s t o r t i o n  d a t a  and l i m i t e c  

dynamic d a t a .  A f t e r  r e a d i n g  i n  t h e  s t e a d y - s t a t e  p r e s s u r e  

r e c o v e r i e s  and compu t i ng  t h e  s t e a d y - s t a t e  d i s t o r t i o n  f a c -  

t o r s ,  t h e  s t e a d y - s t a t e  d i s t o r t i o n  c o n t o u r  map i s  p r i n z e d  

a l o n g  w i t h  t h e  d i s t o r t i o n  d a t a .  The average  rms p r e s s u r e  

f l u c t u a t i o n  l e v e l  i s  t h e n  used  t o  d e t e r m i n e  t h e  most praba- 

b l e  peak i n s t a n t a n e o u s  d i s t o r t i o n .  The rms f l u c t u a t i o n  daca 

may be  r e a d  i n ,  o r  s i m u l a t e d  b y  t h e  t u r b u l e n c e  m o d e l l i r g  

r o u t i n e s .  A f t e r  t h e  p r e d i c t i o n  f o r  t h e  most p r o b a b l e  peak 

d i s t o r t i o n  l e v e l  has  been made, a  new d i s t o r t i o n  c o n t o u r  rao 



i s  g e n e r a t e d  t o  r e p r e s e n t  t h i s  case.  

The r e s u l t s  o f  t h e  c a l c u l a t i o n s  i n  t h e  M A X I O Y N  d i s t a r -  

t i o n  p rogram a r e  p r i n t e d  on  s e v e r a l  pages o f  o u t p u t .  T h i s  

m a t e r i a l  i n c l u d e s  a  l i s t i n g  o f  a l l  i n p u t  d a t a ,  t h e  s teady -  

s t a t e  d i s t o r t i o n  f a c t o r s  and pa rame te rs ,  t h e  p r o p e r t i e s  OF 

t h e  c o n v e c t i n g  v o r t e x  used  t o  d e s c r i b e  t h e  f l o w  i n  t h e  in- 

l e t ,  t h e  dynamic r m s  p r e s s u r e  f l u c t u a t i o n  d a t a  and /o r  t u r -  

b u l e n c e  m o d e l l i n g  d a t a ,  and t h e  p r e s s u r e  d i s t o r t i o n  conzonr  

maps f o r  t h e  s t e a d y - s t a t e  and maximum i n s t a n t a n e o u s  cases,  

D e t a i l s  on  t h e  i n p u t  and o u t p u t  d a t a  a r e  p r o v i d e d  i n  t h e i r  

r e s p e c t i v e  s e c t i o n s .  



111. INPUT DATA DESCRIPTION 

The input data are divided into three primary g r a d p s -  

The first group defines the inlet pressure probe arrange- 

ment at the measurement plane, and some data control para- 

meters. The second group includes identification titles a-~d 

the steady-state inlet distortion data. The last group i s  

the "dynamic data" - the rms total pressure fluctuation le- 
vels - for each of the probe locations. These data may be 
limited to as few as two probes, or omitted entirely as as 

option to utilize the turbulence modelling dynamic data s l -  

mulation capabilities of the program. 

The general arrangement and formatting rules for the 

input data are given in Figures 2 and 3. Further illustra- 

tion on the arrangement can be found in the sample prablevs 

in Section V.  The following is a description of the input 

data items, presented in the order in which they are read 

by the software. Items marked with an asterisk ( O )  can be 

omitted from the input file without disrupting program exe- 

cution. In this case default values are usually assigned, 

or simulated in the case of the dynamic data when turbulence 

modelling has been selected by the user 

ions The first group of input data include specificat' 

for the inlet probe configuration, data filter frequecies, 

data point dwell time, and a parameter with which the use- 

may select the specific distortion factor used in the gener- 

ation of the distortion contour maps. NR and NP are the ta- 

tal number of probe rings and rakes, respectively, and R A C -  

LOG and ANGLOC are the radial and angular locations o f  the 

probes. KD is the distortion factor key used to select one 

of the eight distortion factors available in the program. 



The t i m e  on  p o i n t ,  o r  d a t a  p o i n t  d w e l l  t i m e ,  T, r e p r e s e n t s  

t h e  d u r a t i o n  o f  t i m e  i n  wh i ch  t h e  rrns p r e s s u r e  f l u c t u a t i o n s  

a r e  measured and c a l c u l a t e d .  FO and FCO a r e  t h e  e n g i n e  f i l -  

t e r  and rms dynamic d a t a  c u t o f f  f r e q u e n c i e s  r e s p e c t i v e l y .  

F u r t h e r  i n f o r m a t i o n  can  be  f o u n d  f o r  each o f  t h e s e  v a r i a b i e s  

i n  t h e  d e t a i l e d  d e s c r i p t i o n s  be low:  

NR i s  an  i n t e g e r  c o r r e s p o n d i n g  t o  t h e  number o f  p r e s s u r e  - 
p r o b e  r i n g s  used  i n  t h e  t e s t  run. NR s h o u l d  i n c l u d e  

s t a t i c  p r e s s u r e  r i n g s  l o c a t e d  a t  t h e  c e n t e r b o d y  hub 

and  a t  t h e  o u t e r  r a d i u s ,  even i f  t h e s e  a r e  n o t  inc1~- 

ded i n  t h e  i n s t r u m e n t a t i o n ,  so  t h a t  t h e  d i s t o r t i o n  

c o n t o u r  map resemb les  t h e  e n g i n e  f a c e  geomet ry .  IF, 

f o r  example,  t h e r e  a r e  f i v e  t o t a l  p r e s s u r e  p robes  l a -  

c a t e d  a l o n g  t h e  i n l e t  r a k e s ,  NR s h o u l d  be e n t e r e d  as  

seven  t o  accoun t  f o r  t h e  s t a t i c  p r e s s u r e  p r o b e s .  

NP i s  a n  i n t e g e r  c o r r e s p o n d i n g  t o  t h e  number o f  p r e s s u r e  - 
p r o b e  r a k e s  used  i n  t h e  t e s t  run. These r a k e s  a r e  

g e n e r a l l y  p o s i t i o n e d  between t h e  hub and t h e  i n s i d e  

s u r f a c e  o f  t h e  n a c e l l e ,  and a r e  e v e n l y  spaced  a l a n s  

r a d i i  a round  t h e  c e n t e r b o d y  hub. NR r e p r e s e n t s  t h e  

number o f  p r o b e s  a l o n g  t h e  r a k e s .  

RADLOC i s  a  one-by-NR a r r a y  o f  r e a l  numbers co r respoqd- -  

i n g  t o  t h e  r a d i a l  l o c a t i o n s  o f  t h e  p r e s s u r e  p r o b e s  

p l a c e d  a l o n g  t h e  p r o b e  r a k e s .  RAOLOC i n c l u d e s  t h e  

r a d i a l  l o c a t i o n  o f  t h e  c e n t e r b o d y  hub, a s  w e l l  as tI-,e 

o u t e r  r a d i u s  of t h e  i n l e t  a t  t h e  n a c e l l e  i n n e r  sur-  

f ace .  RADLOC may be d i m e n s i o n a l ,  o r  a  d i m e n s i o n l e s s  

f r a c t i o n  of t h e  o u t e r  i n l e t  r a d i u s .  U n i t s  may b- a r -  

b i t r a r y  i n  t h e  d i m e n s i o n a l  case .  I t  i s  n o t e d ,  however ,  

t h a t  t h e  v o r t e x  d i m e n s i o n s  w i l l  be i n  t e r m s  of the 

d i m e n s i o n s  o f  RADLOC. See f i g u r e  4. 



ANGLOC is a one-by-NP array of real numbers which carre- 

spond to the angular locations of the probe rakes. 

The units of ANGLOC are degrees, with the top rake 

being 'zero' and with the angle increasing clockwise, 

as viewed from the front. See Figure 4. 

KD is an integer with which the user selects the a i s + a r -  - 
tion factor of primary interest in the test rur. O f  

eight available distortion factors included in the 

program, one is selected for use in generating the 

peak instantaneous distortion contour map which match- 

es and represents the predicted peak distortion level, 

Definitions of the eight distortion factors providec 

in the program are given in Figure 9. Below is a key 

for use in selecting the desired distortion factor, 

Entering an integer (1 through 8) effects the selec- 

tion of the distortion factor indicated below: 

KTHETA (Pratt & Whitney circumferential distortion 81)  

KD2 (Pratt 6 Whitney circumferential distortion # Z )  

IOC (General Electric circumferential distortion) 

IDR (~eneral Electric radial distortion factor) 

KRA (~ratt & Whitney radial distortion factor) 

KA2 (Pratt 6 Whitney combined distortion factor) 

DSPR (Delta [loss in] stall pressure ratio) 

ID (General Electric combined distortion factor) 

It is noted that are two distinct Pratt 6 Whitney cir- 

cumferential distortion factors from two distinct de'- 

initions (see Figure 9). The combined distortion Fac- 

tors are found by combining the circumferential and 

radial distortion factors. In the case of KA2, the 

circumferential distortion factor used in the combi- 

nation is KTHETA. The distortion factors represented 

in this program are only examples - the user is Free 

to redefine or modify them at will. 



4. 

T "' This is the dynamic data time on point or "dwell" - 
time during which the total pressure fluctuation level 

is measured and the root mean square value is deter- 

mined. The units are seconds, and a default valce oF 

one second is assigned if no value is input. T may 

be omitted if the no-dynamic-data option has been se- 

lected for all test cases. 

-8 .  

FO This is the engine filter frequency, in Hertz. F O  - 
is used in the computation of the mean peak instanta- 

neous distortion levels. The purpose of the filter i s  

to remove the effect of engine speed on the measured 

pressure fluctuations. A default value of 500 Hz is 

assigned if no value is input. 

st. 

FCO -'' This is the low pass cutoff filter frequency used - 
when measuring the filtered rms total pressure fluc- 

tuation levels. The ratio of filtered-to-unfilte-ed 

mean square pressure fluctuations are used to predict 

the most probable maximum instantaneous distortion. 

The units of FCO are Hertz, with a default value aF  

1000 Hz, when no value is input directly. 

The second part of the input data includes title 

blocks, the steady-state total pressure recovery array, ama 

several inlet flow parameters. TITLE1 and TITLE2 provide 

space for 160 characters of identifying comments. PS is an 

NR by NP array of steady-state pressure recoveries. The base 

radial profile BRP is the ratio of ring-average pressures 

to the face-average pressure. ALPHA and PSI are the angle 

of attack and sideslip angle respectively, and the freestream 

Mach number is given by MO. The flow velocity at the engine 

face is U 2 .  BF, CKP, and RKP are weighting factors used in 

the computation of combined radial/circumferential distortlo? 

f a c t o r s .  The mass flow ratio, MFR, gives an indication OF zhe 
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the mass flow rate before and after inlet duct bleed-off, 

NTUR is a control parameter which allows the user to select 

the option of inputting the dynamic data, or having these 

data simulated by the turbulence modelling scheme. Finally, 

SPTRC is the total pressure recovery through the inlet shock 

system in a supersonic inlet. 

More detailed descriptions of the data items in the 

second group are given below. Most of these data may be Se- 

leted from the input data deck, without causing any real 

difficulties. Many of these are simply included for identi- 

fication purposes, while others are provided with default 

values to avoid data errors. Default values are included in 

the detailed descriptions below: 

TITLE1 and TITLE2 are alphanumeric hollerith arrays used 

for test run identification. Two lines of up to eighty 

characters each are available for information such ss 

engine/inlet type, Mach number, angle of attack, yaw 

angle, altitude, and so forth. TITLE1 and TITLE2 are 

printed at the top of each page of output for easy 

reference. TITLE1 also is used to check for an END OF 

FILE or ENDJOB command at the end of the data f:Le, -7 

which case program execution is stopped. 

E F P  is the compressor face base raaial ~rofile. This is - 
defined as the ratio of the average pressure aroJnd E 

ring to the face-average pressure. BRP is a one-by-NP 

array with a value at each of the radial locatiors sI- 

o- r, RbDLSZ. 5"" r s s  a ceZz,iz . ~ ; ~ e  2 ;  :. 

F S  is an array of steady-state tofal pressure recover~es. - 
The dimensions of the array dre NR rows by NP coluvns, 

The rows of PS are pressures at radial locations R A D L O C  

while the columns are at angular locations ANGLOC. TPE 

first and last rows of PS are static pressures assccr- 

ated with :-I= statiz pressure rirlgs lccatel 2Z t-IS 
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centerbody h u ~  and the surface of the inlet at t-e 

engine face. These static pressures can be measured zr 

comauted values. The pressure array is eventually used 

to generate the distortion contour map, and alsc r s  zhe 

oasis for finding the instanta~eous pressure =-rz:l. " .  

ALPH is the aircraft/inlet angle of attack relative to 

the freestream, typically in degrees. ALPH is used For 

run identification, and does not enter into any compu- 

tations. 

PSI is the aircraft/inlet sideslip or yaw angle relative - 
to the freestream, typically in degrees, Like ALFH,  

PSI is of interest for identification and analysis, 

and does not enter into the computations. 

MO is the freestream Mach number. Of interest for i d e n t i -  - 
fication of test runs, MO does not enter into calcdla- 

tions. 

U 2  is the flow velocity in the inlet at the compressar - 
face, in feet per second. 

BF is the b-factor used as a weighting term for the corn-. - 
putation of the combined radial and circumferential 

distortion factor K A 2  (Pratt & Whitney). BF is nulti- 

plied by the radial contribution, and the result added 

to the circumferential distortion to get the combined 

distortion factor. BF has a default value of 1. 

CKP is the circumferential weighting factor used in the - 
computation of 10, the General Electric combined r a -  

dial/circumferential distortion factor. CKP is multi- 

plied by the circumferential distortion, then added 

to the radial contribution. CKP default value is 16.4. 



RKP is the radial weighting factor used in the computa- - 
tion of ID, the General Electric combined radiai/cir- 

cumferential distortion factor. RKP is multiplied by 

the radial distortion factor, and the result added ta 

the circumferential contribution. The default value 

for RKP has been set at 11.1 in the program. 

MFR is the inlet mass flow reatio, defined in terms of - 
the streamtube geometry. Specifically, MFR is the 

ratio of actual inlet mass flow rate, to the maximum 

inlet mass flow rate. The maximum inlet mass flow 

rate is defined as the product of the freestream vel- 

ocity times the inlet hilite area. Low MFR implies 

a large amount of inlet spillage. MFR is generally 2 

function of the engine thrust level and flight velocity, 

NTUR is a control parameter which allows the user tn se- - 
lect the turbulence modelling dynamic data sirnulatio? 

capabilities of the program as an alternative to u s i ~ g  

measured dynamic data. Inputting a value of 1.0 for 

NTUR causes the program to branch to the turbulence 

modelling routines within the program. A value of zera 

or defaulting the input of a value causes the program 

to branch to the routines requiring the input of d y n a -  

mic data. 

SPTRC is the total pressure recovery through the i n l e t  

shock system of a supersonic inlet duct. For subsonic 

and transonic inlets, SPTRC is equal to one. If SPTRC 

is unknown for an arbitrary supersonic inlet, it can 

be estimated by using Figure 5, with a value of 0.90 

being reasonable as a rough preliminary estimate far 

most inlet configurations. A default value of 1 . 0  has 

been set in the program. It is noted that SPTRC should 

always be less than or equal to one. 



The third part of the input data consists of the dy- 

namic data. These data consist of rms total pressure fluc- 

tuation levels from fast-response total pressure probes, -rhe 

number of dynamic probe data sets in each run is fully onuer 

control of the user - within certain limitations. In a nor- 
mal run, the number of dynamic probes is equal to the number 

of steady-state total pressure probes. In a reduced dynam:.c 

data run, the number of dynamic probes can be anywhere From 

two to as many as would be used in a normal run. Finslly, if 

the user selects the no dynamic data option by setting NTUR 

equal to 1.0 (see previous page), these dynamic data may ue 

completely omitted from the input data. 

There are four input variables in the dynamic data, 

NPG is a run identification code, NPR is the probe identiri- 

cation code, RS is the filtered to unfiltered ratio of m e a -  

square pressure fluctuation levels, and SIG is the root m s a l  

square level of total pressure fluctuations. Further detalls 

on these data can be found below. 

NPG is a code number for identifying data runs. This user - 
definable integer can be completely arbitrary, though 

entering a value of zero, or defaulting the input sig- 

nals the end of the dynamic data set. Therefore NPG 

can be any integer greater than one. When all of the 

dynamic data has been input, entering a value of z e r o  

for NPG (or leaving it blank] will signal the program 

to move on the the next phase of computations. 

NPR is the numeral designation for the location of the - 
dynamic probe. This identification code can be fauna 

with the aid of Figure 4, which is given as an e x a m p l e  

for the convenience of the user. Other inlet probe arid 

instrumentation configurations may result in a d i f f e r -  

ent numeration scheme, so Figure 4 should be used as a 

guideline. 



RS is the ratio of filtered to unfiltered mean square - 
pressure fluctuations. RS is found by squaring t h ~  

ratio of the rms pressure fluctuation level filtered 

at the cut-off filter frequency FCO, to the unfiltered 

level. This ratio is used in the prediction of the 

maximum instantaneous distortion level, and a default 

value of 0.50 has been included in the program. In 

addition, a maximum value of 0.70 has been set to a- 

void errors in certain computations. These values are 

easily modified, if necessary, by the user. 

SIG is the unfiltered root mean square value o f  the totai - 
pressure fluctuations measured by the dynamic (fast 

response) total pressure probes. Generally, the units 

of SIG are identical to those of the PS array, which 

are nondimensional total pressure recoveries (local 

total pressure divided by the freestream or inlet lip 

total pressure). 

Sample problems have been included in this manual to 

illustrate the arrangement of the input data, and to F u r t h e r  

clarify the utility of the various capabilities of the pro- 

gram. Figures 2 and 3 show formatting rules and the general 

arrangement scheme of the input data. 



CARO 1 ,/ 

FIELD 
FORMAT 

PARAMETER 

C A R O  3 

CARD 4 1 
FIELD 

FORMAT 
PARAMETER 

CARD 5,6 

FIELD 
FORMAT 

PARAMETER 

CARD 7.1  

FIELD 1-10 11-20 21-30 31-40 41-50 51-60 61-70 74-60 
FORMAT F10.5 F10.5 F10.5 F10.5 F10.5 F10.5 F10.5 F10 .5  

PARAMETER I BRP (1 1 ( 2 )  (3 1 (4 1 (5) (6 1 ( 7 )  BF?P(NRj 

CARD 7.NR 

FIELO 51-60 61-70 
FORMAT F10.5 F10.5 

PARAMETER 

C A R O  8 

FIELD 
FORMAT 

PARAMETER 

CARD 9 

F I EL0 
FORMAT 

PARAMETER 

CARO 10 

F I ELD 
FORMAT 

PARAMETER 

C A R O  11 

FIELO 1-80 
FORMAT 20A4 

PARAMETER I TITLE1 - for n e w  data point set, or END OF FILE card 

F i g u r e  2. B a t c h  I n p u t  Data Deck F o r m a t t i n g  Arrangement 
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Boundary - O= 

Note:  NR = 7 = number o f  p robe  r i n g s  
NP = 8 = number o f  p robe  r a k e s  

eng ine  
f a c e  ifY 

F i g u r e  4 .  R i n g ,  Rake, and Probe Ass ignments  for 
a  t y p i c a l  i n s t r u m e n t  c o n f i g u r a t i o ~  
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I V .  PRINTED OUTPUT DATA DESCRIPTION 

The p r i n t e d  o u t p u t  of t h e  MAXIDYN dynamic d i s t o r - c i o ~  

program c o n s i s t s  of f r o m  f i v e  t o  seven  pages o f  d a t a  (sixty 

l i n e s  on  ea.ch page)  depend ing  on  t h e  o p t i o n s  s e l e c t e e  by  t ~ e  

u s e r .  The f i r s t  two  pages p e r t a i n  t o  t h e  s t e a d y - s t a t e  dLs- 

t o r t i o n  c h a r a c t e r i s t i c s ,  w i t h  t h e  s t e a d y - s t a t e  p r e s s u r e  ar- 

r a y ,  v o r t e x  p r o p e r t i e s ,  d i s t o r t i o n  f a c t o r s ,  and r e l a t e d  

pa rame te rs ,  a l o n g  w i t h  t h e  s t e a d y - s t a t e  d i s t o r t i o n  c o n t o u r  

map. The n e x t  page o r  two  i n v o l v e s  t h e  dynamic d a t a ,  w i t h  

rms p r e s s u r e  f l u c t u a t i o n s  l e v e l s ,  t u r b u l e n c e  d a t a ,  and 

some a d d i t i o n a l  f l o w  pa rame te rs .  The f o l l o w i n g  page ia a 

l i s t i n g  o f  a summary o f  d i s t o r t i o n  f a c t o r  ex t reme v a l u e s  

a s  p r e d i c t e d  i n  t h e  M e l i c k  p r e d i c t i o n  t e c h n i q u e .  The F i i - a -  

two  pages a r e  s i m i l a r  t o  t h e  f i r s t  two ,  b u t  p e r t a i n  t c  t h e  

peak i n s t a n t a n e o u s  d i s t o r t i o n  l e v e l .  

The f o l l o w i n g  i s  a  page-by-page d e s c r i p t i o n  o f  t h e  

o u t p u t .  S i n c e  t h e  c o n t e n t  o f  t h e  o u t p u t  depends on t h e  dy- 

namic  d a t a  i n p u t  o p t i o n  chosen b y  t h e  u s e r ,  some v a r i a b l e s  

d e s c r i b e d  may n o t  a p p l y  t o  a s p e c i f i c  case.  Da ta  a f f e c t e d  

b y  t h e  dynamic  d a t a  o p t i o n s  a r e  so i n d i c a t e d ,  and a l l  aF t h e  

a f f e c t e d  d a t a  a r e  found i n  t h e  m i d d l e  pages w i t h  t h e  d y n a m i c  

d a t a  g roups .  Some d a t a  a r e  p r o v i d e d  w i t h  d e f a u l t  v a l u e s  a s  

d e s c r i b e d  i n  t h e  i n p u t  s e c t i o n ,  and t h e  d e f a u l t  v a l u e s  a r e  

r e p e a t e d  h e r e  f o r  conven ience .  

Page 1 

The f i r s t  page o f  o u t p u t  c o n s i s t s  o f  f i v e  t a b l e s  o f  

s t e a d y - s t a t e  d i s t o r t i o n  d a t a .  I m m e d i a t e l y  be low t h e  t i t l e  

b l o c k  p r o v i d e d  b y  TITLE1 and TITLEZ, t h e  s t e a d y - s t a t e  total. 

p r e s s u r e  r e c o v e r y  a r r a y  is p r i n t e d .  The rows  i n  t h i s  matrix 



a r e  i d e n t i f i e d  w i t h  t h e  RADLOC r a d i a l  p robe  l o c a t i o n s ,  and 

t h e  co lumns w i t h  t h e  ANGLOC a n g u l a r  r a k e  l o c a t i o n s .  The sta- 

t i c  p r e s s u r e  r i n g s  a s s o c i a t e d  w i t h  t h e  i n n e r m o s t  and o u t e r -  

most RADLOCs a r e  n o t  i n c l u d e d  i n  t h e  p r e s s u r e  a r r a y .  T h e  

numbers o f  t h e  p r e s s u r e  a r r a y  P  a r e  o t h e r w i s e  i d e n t i c a l  t c  

t h e  i n p u t  a r r a y  PS. 

Benea th  t h e  p r e s s u r e  a r r a y  i s  a  t a b l e  o f  base r a d i a l  

p r o f i l e s .  These a r e  d e f i n e d  a s  t h e  r a t i o  o f  p r o b e  r i n g  aver-- 

age p r e s s u r e s  t o  t h e  average  p r e s s u r e  o v e r  t h e  e n t i r e  engir-ie 

f ace .  F o r  each  r a d i a l  l o c a t i o n  RADLOC ( i n c l u d i n g  s t a t i c  

r i n g s )  a  v a l u e  o f  PTR/PTA i s  g i v e n .  T h i s  BRP a r r a y  is ider-- 

t i c a l  t o  t h e  i n p u t  a r r a y  BRP. A d e f a u l t  v a l u e  o f  1 .0 is 

a s s i g n e d  f o r  each  t e r m  i n  BRP when no  v a l u e  i s  i n p u t .  

The n e x t  t a b l e  i s  a  l i s t i n g  o f  t h e  o v e r a l l  f l o w  des- 

c r i p t o r s .  These s i m p l e  d i s t o r t i o n  pa rame te rs  a r e  used  to 

e v a l u a t e  t h e  d i s t o r t i o n  f a c t o r s  and  v o r t e x  p r o p e r t i e s .  The 

t e r m s  a p p e a r i n g  i n  t h i s  t a b l e  a r e  d e f i n e d  be low:  

PTMIN [ a l s o  PTMN and TMMIN) T h i s  i s  t h e  m i n i m u m  t o t a l  

p r e s s u r e  r e c o v e r y  v a l u e  f r o m  t h e  p r e s s u r e  a r r a y ,  P ? 

e x c l u s i v e  of t h e  s t a t i c  p r e s s u r e  d a t a .  

PTMAX ( a l s o  PTMX and TMMAX) T h i s  i s  t h e  maximum t o t a l  

p r e s s u r e  r e c o v e r y  v a l u e  f r o m  t h e  p r e s s u r e  a r r a y ,  P 

e x c l u s i v e  o f  t h e  s t a t i c  p r e s s u r e  d a t a .  

PTAVG ( a l s o  PTAV and TMAVG) T h i s  i s  t h e  f ace -ave rage  

t o t a l  p r e s s u r e  r e c o v e r y  f r o m  t h e  p r e s s u r e  a r r a y ,  P , 
e x c l u s i v e  of t h e  s t a t i c  p r e s s u r e  d a t a .  

PSAVG ( a l s o  SMAVG) T h i s  i s  t h e  average  v a l u e  o f  s t a t i c  

p r e s s u r e  f r o m  t h e  s t a t i c  p r e s s u r e  d a t a  i n  t h e  p r e s -  

s u r e  a r r a y ,  PS. The two  s t a t i c  p r e s s u r e  r i n g s  a t  the 

c e n t e r b o d y  hub and o u t e r  r a d i u s  o f  t h e  i n l e t  s u p p l y  

t h e s e  d a t a .  



QAVG (also QAV) This is the face-average dynamic p r e s s u r e  - 
recovery, computed as the difference between the aver- 

age total pressure recovery and the static pressure. 

Mathematically stated, QAVG = PTAVG - PSAVG. 

The three remaining terms in the flow descriptors table 

are algebraic manipulations of PTMAX, PTMIN, and PTAVG. These 

terms are self explanatory - for example, (PTMX-PTMN)/PTAV 

is interpreted as the difference between the maximum and 

minimum total pressure recoveries, divided by the average 

value. 

Following the overall flow descriptors table is a t a b l e  

of flow distortion factors. The eight distortion factors 

listed in this table are representative of a variety availe- 

ble to the industry, and are intented as examples. The user  

is free to redefine the distortion factors within the pro- 

gram. Next to the distortion factors in the table are same 

weighting factors used in calculating combined distortion 

factors. The eight distortion factors and their weighting 

factors are described below: 

K-THETA (also KTHETA, E, and KTTA) Pratt 6 Whitney 

circumferential distortion factor [#I] - see Figure 9 ,  

KD2 Pratt 6 Whitney circumferential distortion factor - 
[#21 - see Figure 9. 

C I D C I - M A X  General Electric maximum circumferential d i s -  

tortion factor - see Figure 9. 

(1DR)-MAX General Electric maximum radial distortian 

factor - see Figure 9. 

KRA Pratt & Whitney radial distortion factor - see Fig- - 
u r e  9. 



KA2 Pratt & Whitney combined radial/circumferential dis- - 
tortion factor - see Figure 9. 

DSPR Delta (loss in) stall pressure ratio - see Figure 9. 

ID General Electric combined radial/circumferential dis- - 
tortion factor - see Figure 9. 

B-FACTOR (also BF) Radial weighting factor used in corn-- 

puting KAZ - see Figure 9. 

BSF Intermediate weighting factor used in computing I D  - - 
see Figure 9. 

KC (also CKP) Circumferential weighting factor used in - 
computing ID - see Figure 9. 

KR (also RKP] Radial weighting factor used in computing - 
ID - see Figure 9. 

Beneath the flow distortion factors table is a list 

of vortex properties. These properties are described below: 

THMN (Theta Min) Angular location of the probe rake aith 

the minimum average total pressure recovery, in deg- 

rees. The 'zero' rake is the upper vertical rake. T k 8 M N  

is one of the ANGLOC angular locations, and depends on 

the steady-state pressure array. 

RKMN The average pressure recovery along the rake desig- 

nated by THMN. 

THMX (Theta Max) Angular location of the probe rake with 

the maximum average total pressure recovery, in deg- 

rees. See THMN, above. 



RKMX The ave rage  t o t a l  p r e s s u r e  r e c o v e r y  a l o n g  t h e  r a k e  

d e s i g n a t e d  b y  THMX. 

DTH ( D e l t a  T h e t a )  The a n g u l a r  d i f f e r e n c e  between THMX - 
and THMN. DTH = THMX - THMN. 

THETA ( a l s o  - THE) The a n g u l a r  l o c a t i o n  o f  t h e  r a k e  m id -  

way be tween t h e  r a k e s  d e s i g n a t e d  b y  THMX and THMN. 

THETA = %(THMX + THMN). 

A1 ( a l s o  ART, e t c . )  The v o r t e x  c o r e  s i z e  wh i ch  f i t s  - 
w i t h i n  t h e  b o u n d a r i e s  o f  t h e  r a k e s  d e s i g n a t e d  by  THMN 

and  THMX. A1 r e p r e s e n t s  t h e  s i z e  o f  t h e  s t e a d y - s t a t e  

v o r t e x .  

G I  ( a l s o  GAMMA) The o r i e n t a t i o n  a n g l e  o f  t h e  s t e a d y - s t a t e  - 
v o r t e x .  T h i s  i s  used  t o  s a t i s f y  t h e  a m p l i f i c a t i o n  OF 

t h e  s t e a d y - s t a t e  d i s t o r t i o n  l e v e l  by  t h e  v o r t e x  f i e l d ,  

i n  d e t e r m i n i n g  t h e  peak d i s t o r t i o n  l e v e l .  

Page 2 

The second  page o f  t h e  p r i n t e d  o u t p u t  i s  t h e  p r e s s u r e  

d i s t o r t i o n  c o n t o u r  map f o r  t h e  s t e a d y - s t a t e  case .  A r ep re - .  

s e n t a t i o n  o f  t h e  h i g h  and  l ow  p r e s s u r e  r e g i o n s  a t  t h e  corn- 

p r e s s o r  f a c e  o f  t h e  e n g i n g ,  t h i s  map i s  u s e f u l  i n  i d e n t i f y -  

i n g  and v i s u a l i z i n g  t h e  n a t u r e  o f  t h e  d i s t o r t i o n  o f  t h e  F i o , ~  

t h r o u g h  t h e  i n l e t .  Symbols a r e  used  f o r  i d e n t i f y i n g  t h e  

p r e s s u r e  a t  any  p o i n t  i n  t h e  measurement p l a n e ,  and a k e y  tc 

t h e  mapping symbo ls  i s  p r o v i d e d .  The numbers p r o v i d e d  in t n e  

k e y  a r e  i n t e - p r e t e d  t o  mean t h e  p e r c e n t  d i f f e r e n c e  between 

t h e  l o c a l  p r e s s u r e  and t h e  f ace -ave rage  p r e s s u r e  - f o r  exam- 

p l e ,  an  i n d i c a t i o n  of -3 .0  i s  i n t e r p r e t e d  as  t h r e e  p e r c e n t  

be low t h e  average  p r e s s u r e  o v e r  t h e  e n g i n e  f a c e .  



Page 3 

The t h i r d  page o f  o u t p u t  i s  r e l a t e d  t o  t h e  dynamic da- 

t a ,  wh i ch  may be i n c l u d e d  i n  t h e  i n p u t  f i l e ,  o r  s i m u l a t e d  by  

t h e  t u r b u l e n c e  m o d e l l i n g  scheme. The c o n t e n t  o f  t h i s  page 

( and  somet imes t h e  n e x t  page) depends on whether  t h e  dynamic 

d a t a  i s  i n p u t  o r  s i m u l a t e d ,  as  d e s c r i b e d  i n  t h e  cases be low :  

Case 1: Dynamic Data  i s  I n p u t  

I m m e d i a t e l y  f o l l o w i n g  t h e  t i t l e  b l o c k  i s  a  l i s t i n g  of 

s e v e r a l  i n l e t  pa rame te rs ,  a l o n g  w i t h  some pa rame te rs  used 

w i t h  t h e  dynamic d a t a .  These pa rame te rs  a r e  d e s c r i b e d  b e l o i r ~ :  

T  The dynamic d a t a  t i m e - o n - p o i n t ,  o r  d w e l l  t i m e  d u r i n g  - 
wh ich  t h e  dynamic d a t a  a r e  measured f o r  each o f  t h e  

dynamic p r o b e s .  The u n i t s  a r e  seconds.  

FO The e n g i n e  f i l t e r  f r e q u e n c y ,  i n  H e r t z .  FO i s  o f t e n  - 
a s s o c i a t e d  w i t h  t h e  e n g i n e  rpm speed. 

RT The o u t e r  r a d i u s  o f  t h e  i n l e t  a t  t h e  compressor Face,  - 
o r  t h e  l o c a t i o n  o f  t h e  o u t e r m o s t  s t a t i c  p r e s s u r e  

p r o b e s  - t h e  maximum v a l u e  o f  t h e  RAOLOC a r r a y .  

R I  The i n n e r  r a d i u s  o f  t h e  compressor  f ace ,  t h e  r a d i u s  - 
o f  t h e  c e n t e r b o d y  hub, o r  t h e  m i n i m u m  v a l u e  of t h e  

AAOLOC a r r a y .  

ALPH ( a l s o  ALPHA) The i n l e t  a n g l e  of a t t a c k ,  r e l a t i v e  %o 

t h e  f r e e s t r e a m ,  i n  degrees .  

PSI  The s i d e s l i p  o r  yaw a n g l e  o f  t h e  i n l e t  i n  deg rees .  - 

SPTRC The t o t a l  p r e s s u r e  r e c o v e r y  t h r o u g h  t h e  i n l e t  shock 
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SPTRC (cont'd) system in a supersonic inlet configura- 

tion. For supersonic inlets SPTRC is less than 9.0, 

while subsonic and transonic inlets will have SPTRC 

equal to 1.0. 

MO The freestream Mach number. 

ETA The face-average total pressure recovery from the - 
steady-state pressure array, PS. 

MFR The mass flow ratio of the inlet system. This g L v s s  - 
an indication of how much of the inlet air remains 

after bleed-air has been removed. 

U2  The inlet flow velocity at the engine face in feet - 
per second. 

QPT2 The dynamic pressure divided by the total pressu-e. 

QPT2 = QAVG/PTAVG, where QAVG is the face-average l y -  

namic pressure and PTAVG is the face-average total 

pressure. (see "overall flow descriptors" table des- 

cription in Page 1 descriptions.) 

RS AT FC = The cutoff frequency of the rms dynamic data. 

(see FCO in input data descriptions) 

The next table of data includes the dynamic data as 

input by the user. For each dynamic probe location selected, 

values for the rms pressure fluctuations and the resulting 

vortex core size are given. The specific terms in this t a a ; e  

are described below: 

PROBE The numerical designation for the location OF a 

dynamic probe. See Figure 4 



RS The ratio of the filtered to unfiltered mean square - 
total pressure fluctuation level. 

SG/PTZ (also z) The unfiltered rms total pressure F i ~ c -  

tuation level. 

A/RT (also ART) The mean vortex core size, based on t h e  - - 
magnitude of SIG. The vortex core size is nondimension- 

alized to the inlet radius, RT. 

Immediately below the dynamic data table, the average 

value for the rms unfiltered total pressure fluctuation le- 

vel, SIG, is printed along with the average vortex size. 

These terms are actually used in the Melick peak distortic- 

prediction technique (Reference 5). 

In some cases, specifically when the number of dynavic 

probes in the dynamic data is relatively few, the distart~on 

factor extreme value table is printed on page three irnrnedi- 

ately below the dynamic distortion table. The reader should 

refer to Page 4 output descriptions for identification OF 

the terms in this table. 

The following is a descripti.on of the terms on page 3 

of the output when the no dynamic data option is selected 

in the input file, that is, when the dynamic data is sinu;a- 

ted by the turbulence modelling techniques: 

Case Z: Dynamic Data is Simulated 

The data appearing on the third page of output includ~s 

all of the data appearing in Case 1,excluding the dynamic data 

listing. The reader should refer to the descriptions in Czse 

1 ,  except for the dynamic data - PROBE, RS, SIG, and ART. 
These terms are replaced by three tables of turbulence cal- 

culations, and the simulated values of SIG for each oF the 

available dynamic probe locations. 



The following is a descriptive listing of the data 

on the third page of output when the dynamic data are s i r n i ~ -  

lated by the turbulence modelling technique. The parameteLF*s 

listed in Case 1 are included in these data, and the readsr 

should refer to the description listing there for details, 

The first table following the inlet and control Para- 

meter listing gives dimensionless velocities of the f l o w  st 

the compressor face for each of the pressure probe locations. 

These velocities are calculated based on the steady-state 

pressure data from the input file. The rows of the velocity 

array are associated with the ANGLOC angular locations of the 

rakes, while the columns are associated with the R A D L O C  r=- 

dial probe locations along the rakes. The first and last 

columns reflect the static pressure probes located at the 

centerbody hub and outer inlet radius. 

Following the table of dimensionless velocities For 

each of the probe locations is a listing showing the itera- 

tion of the turbulent kinet.ic energy, and the kinetic ener.gy 

dissipation rate. The relative error in these terms is nini- 

mised during the iterations. The first column shows -the 

error in the turbulent kinetic energy; the second, the errop 

in the turbulent kinetic energy dissipation rate, and the 

third gives the sum of these two. These errors should de- 

crease rapidly within the thirty iterations allowed. Once 

the errors have been minimized, the turbulent kinetic energy 

and dissipation rates are used to generate the synthisized 

dynamic data. 

The next table is a listing of the results of the t d r -  

bulence calculations, including the synthesized dynamic d z t a  

and the turbulence modelling parameters. This table is si m i -  

lar to the dynamic data table in the Case 1 descriptic~s, 

but includes some additional terms. This table is large, zr,a 

may actually be slipped to the fourth page. The terms appear- 

ing in this table are defined on the following page. 



PROBE The numerical designation of a dynamic probe, used 

to define the location of the probe. See Figure 4. 

UU The sum of the squares of the radial and circurnferen- - 2 
tial velocity gradiants in (ft/sec) . 

E The turbulent kinetic energy dissipation rate in u n i t s  - 
2 3 

of ft /sec . 

2 
K The turbulent kinetic energy in (ft/sec) . - 

SG/PT2 (or SIG) The synthesized unfiltered rms pressure 

fluctuation level. 

Printed below the synthesized dynamic data table arz 

values for the face-average SIG, and the mean vortex size, 

ART. These values are used to predict the most probable 

peak insta2taneous dynamic distortion level. 

Page 4 

  he fourth page of output is a table of distortion 
factors and parameters leading to the most probable peak 

instantaneous distortion for each of the eight sample dis- 

tortion factors. The terms and distortion factors appearin? 

in this table are described below: 

KTTA (or KTHETA) The Pratt G Whitney circumferential 

distortion factor, definition #I (see Fig. 9). 

KD2 The Pratt G Whitney circumferential distortion "ac- - 
tor, definition #2 (see Fig. 9). 

IDC The General Electric circumferential distortion fsc- - 



tor (see Fig. 91. 

IDR The General Electric radial distortion factor (see - 
Fig. '71. 

KRA The Pratt & Whitney radial distortion factor (see - 
Fig. 9). 

KA2 The Pratt G Whitney combined radial/circumferential - 
distortion factor (see Fig. 93.  

DSPR The loss in stall pressure ratio (see Fig. 93 

ID The General Electric combined radial/circumferential - 
distortion factor (see Fig. 9) 

STEADY STATE This column indicates the steady-state 

values for the distortion factors, as computed from 

the input distortion data. 

MEAN VALUE The mean instantaneous distortion level, cnm- 

puted by adding the mean instantaneous rms fluctuation 

level to the steady-state distortion. 

SIGMA INF The unfiltered rms distortion fluctuation le- 

vel. 

SIGMA FO The rms distortion fluctuation level, filtered 

at the engine filter frequency, FO. 

MOST PRO8 The most probable peak instantaneous distor- 

tion level at a 50% confidence level. Statisticallyq 

this is the most likely value for the peak distnrticn 

level in the statistical prediction analysis. Moving 

away from this value decreases the probability. 



1.0 Figure 5. Estimati 

note: - - - - -  
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95% PRO6 The peak i n s t a n t a n e o u s  d i s t o r t i o n  l e v e l  a t  a 

95% c o n f i d e n c e  l e v e l .  T h i s  i s  i n t e r p r e t e d  as  meaning 

t h e r e  i s  a  95% chance t h e  a c t u a l  peak i n s t a n t a n e o u s  

d i s t o r t i o n  l e v e l  w i l l  be l e s s  t h a n  t h e  i n d i c a t e d  i e - .  

v e l .  The l i k e l y h o o d  t h a t  t h e  a c t u a l  peak w i l l  r e a c h  

t h i s  l e v e l  i s  s m a l l .  

99.7% PRO6 The peak i n s t a n t a n e o u s  d i s t o r t i o n  l e v e l  a t  a 

99 .7% c o n f i d e n c e  l e v e l  - t h e r e  i s  a  99.7% chance " h a t  

t h e  a c t u a l  peak w i l l  be l e s s  t h a n  t h i s  l e v e l .  I t  i s  

v e r y  u n l i k e l y  t h a t  t h e  a c t u a l  peak d i s t o r t i o n  l e v e l  

w i l l  e v e r  be t h i s  h i g h .  

The most p r o b a b l e  peak i n s t a n t a n e o u s  d i s t o r t i o n  l e v e l  

f o r  t h e  d i s t o r t i o n  f a c t o r  s e l e c t e d  b y  t h e  u s e r  i s  p r i n t e d  

i m m e d i a t e l y  be low  t h e  d i s t o r t i o n  f a c t o r  ex t reme v a l u e  t a b l e ,  

T h i s  d i s t o r t i o n  f a c t o r  i s  used  t o  d e v e l o p  t h e  peak i n s t a r -  

t aneous  p r e s s u r e  a r r a y  and c o n t o u r  map. 

Page 5 

The f i f t h  page o f  o u t p u t  i s  much t h e  same a s  t b e  f i - s t  

page, e x c e p t  t h e  d a t a  a p p l i e s  t o  t h e  peak i n s t a n t a n e o u s  o i s -  

t o r t i o n  r a t h e r  t h a n  t h e  s t e a d y - s t a t e .  The t e r m s  i n  t h e  z a a l e s  

a r e  d e f i n e d  i n  t h e  d e s c r i p t i o n s  o f  Page 1, t h o u g h  any r e f e r -  

ences t o  t h e  s t e a d y - s t a t e  case  a r e  u n d e r s t o o d  t o  be r e p l a s e d  

b y  t h e  peak i n s t a n t a n e o u s  case .  

A m a j o r  d i f f e r e n c e  between t h e  f i f t h  page and t h e  f l r s t  

page i s  t h a t  t h e  v o r t e x  p r o p e r t i e s  t a b l e  has  been r e p l a c e d  

by a v o r t e x  l o c a t i o n  t a b l e ,  w i t h  some new t e r m s .  These a r e  

d e f i n e d  on  t h e  f o l l o w i n g  page.  Many o f  t h e  t e r m s  a r e  s i m i l a r  

t o  some of t h e  s t e a d y - s t a t e  v o r t e x  p r o p e r t i e s ,  t hough  t h e y  

a p p l y  t o  t h e  peak i n s t a n t a n e o u s  v o r t e x .  



VBAR The average vortex strength in terms of the vortex 

tangential velocity vector nondimensionalized by divi- 

ding by the flow velocity at the engine face. This 

property is used to define the source of the pressure 

fluctuations. 

A/RT (also ART) The vortex core size in terms of the 

vortex radius divided by the inlet radius. See A V / R T  

GAMMA A vortex orientation angle in degrees, due to the 

rotation of the vortex core about the x axis. See 

Figure 10. 

BETA A vortex orientation angle in degrees, due to the 

rotation of the vortex core about the z axis. See 

Figure 10. 

A'f/RT (also AYRT) The vortex core size in terms af the 

vortex radius (the radius at the maximum tangential 

velocity of the vortex system) divided by the inlet 

radius. AY/RT is also the same as A/RT. 

VL The nondimensional vortex length limit. VL has been - 
set at 999.999 (infinity for all intents and purposes! 

in the current program, though this is easily altered, 

VL should represent the true vortex length limit divi- 

ded by the inlet radius. 

R/RT (also RRT) The radial location of the vortex cen- 

tral core. R/RT is a dimensionless value with a mexi- 

mum value of unity. 

THETA The angular location of the vortex center in de-- 

grees. Zero degrees is the top vertical position, with 

positive THETA being clockwise about the engine face, 



VBMAX The maximum vortex strength in terms of the ten- 

gential velocity of the vortex divided by the flow 

velocity at the engine face. VBMAX also appears as 

VBM in the FORTRAN coding. 

VBO The vortex strength as approximated from the total - 
pressure rms fluctuation dynamic data 

AO/RT The vortex core size computed from the average cF 

the dynamic data power spectral density (PSD) Funct -  

tions. 

Page 6 

The sixth and last page of the printed output consists 

of the pressure distortion contour map for the peak instan- 

taneous case. The terms and parameters appearing with this 

map are identical to those in the steady-state map. These 

parameters are described in the Page 2 description in this 

section. 

SUMMARY OF DEFAULT VALUES 

The following is a summary list of default values for the 

input/output variables which have such values: 

T = I .000 

FO = 500 H z  

FCO = 1000 H z  

BF = 1 .DO0 

RS = 0.500 

CKP (or KC) = 16.4 

BRP = 1.000 

MFR = 1.000 

SPTRC = 1.000 

VL = 999.999 

max RS = 0.700 

RKP (or KR) = 11.1 



V .  S A M P L E  P R O B L E M  



V .  SAMPLE PROBLEM 

A .  Introduction 

Four sample data sets are provided to illustrate the 

input/output capabilities of the MAXIDYN distortion p r o g r a m ,  

These problems are taken from provisional data, and represent 

a variety of inlet operating conditions. The first and second 

cases are supersonic inlets with a full set of 40 dynamic 

probes, and a partial set of 14, respectively. The third case 

is a subsonic inlet with the minimum number of high-response 

dynamic probes - 2. The final case is a transonic inlet w i t h  

no dynamic data input. This case makes use of the turbulence 

modelling capabilities of the program, which simulates the 

dynamic data. 

Some of the primary data parameters are shown in the 

table of part B,  below. Figure 7 gives a complete listing 

of the input data files for the sample problems. Figure €3 in 

part C shows the output from the four sample problems. DeFi- 

nitions of each of the terms in the input and output listings 

may be found in the input and output data descriptions of 

section 11, parts B and C, respectively. 

B. Sample Problem Input 

The four test cases provided here have similar p r o b e  

ring/rake configurations. Figure 4 illustrates the arrange- 

ment of the pressure probes at the engine face. Some o f  t h e  

main parameters in the input data are tabulated on the Fol- 

lowing page, with a complete input data listing in Fig. 7, 



[ A  dash "-" i n d i c a t e s  a  d e f a u l t e d  e n t r y ,  o r  z e r o .  T h e  

program a s s i g n s  d e f a u l t  v a l u e s  i n  t h e s e  cases . ]  

C. Sample Prob lem O u t p u t  

The l i n e - p r i n t e r  g e n e r a t e d  o u t p u t  f o r  t h e  f o u r  test 

cases  i s  p r e s e n t e d  i n  F i g u r e  8 .  The number o f  pages OF output 

v a r i e s  w i t h  t h e  dynamic d a t a  c o n t e n t ,  b u t  n e v e r  exceeds seven 

pages,  u n l e s s  t h e r e  a r e  r u n - t i m e  e r r o r s  ( e x p o n e n t i a l  o v e r -  

f l o w s ,  n e g a t i v e  squa re  r o o t  r a d i c a l s ,  e t c . )  o r  c o m p i l e - t i m e  

e r r o r s .  Run- t ime e r r o r s  can  o c c u r  w i t h  bad d a t a .  The t e r m s  

g i v e n  i n  t h e  o u t p u t  a r e  d e f i n e d  i n  S e c t i o n  11, p a r t  C .  





Figure 7 .  ( c o n t ' d )  
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Dynamic Probe 

G A M M A  = vortex orientation angle between y axis 
and the xr-y' plane 

BETA = vortex orientation angle between x' and x 
axes, with the x axis in the x'-y' plane 

Figure 10. Definition of Vortex Angles 
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APPENDIX B.  

OPTIONAL "SEGMENTED VORTEXT1 ADDITION 

A n  a d d i t i o n  t o  t h e  source  code g i v e n  i n  Appendix B 

i n c l u d e s  t h e  Segmented Vor tex  approach d e s c r i b e d  i n  ReF, 8, 

I n  t h i s  approach, t h e  v o r t e x  model d e r i v e d  i n  t h e  s tandzsd 

M e l i c k  approach i s  d i v i d e d  i n t o  e i g h t  segments. T h i s  p r o c e s s  

a l l o w s  f o r  s i m u l a t i o n  o f  a  n o n l i n e a r  v o r t e x ,  o r  a  v o r t e x  

r i n g .  T h e o r e t i c a l l y ,  t h i s  s h o u l d  a l l o w  f o r  more a c c u r a t e  

m o d e l l i n g  o f  t h e  i n l e t  f l o w  d i s t o r t i o n ,  f o r  b e t t e r  results. 

The segmented v o r t e x  approach showed some improvement o f  

t h e  p r e d i c t e d  peak i ns tan taneous  d i s t o r t i o n  con tou r  map i n  

c e r t a i n  cases (Reference 8 ) .  The User i s  f r e e  t o  experirner-~t 

w i t h  t h i s  a d d i t i o n  t o  t h e  source  code. The f o l l o w i n g  page 

l i s t s  t h e  a d d i t i o n ,  showing where i t  i s  t o  be i n s e r t e d  in 

t h e  o r i g i n a l  code. 
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1. MAXIDYN Program Description 

The MAXIDYN dynamic distortion program computes the 

most probable peak instantaneous distortion level given the 

steady-state distortion conditions, and generates a peak 

distortion map based on the predictions. The Melick convec- 

ting vortex model and statistical approach is used in this 

predictive analysis, with some modifications and improvements 

to enhance program flexibility. The complete FORTRAN p r o g r a m  

requires sufficient computer memory capacity for approxi- 

mately 100,000 words, plus typically 5000 words per data 

set. Run time varies from system, but is generally limited 

only by the online printer output capacity on most main- 

frame systems. 

Input data requirements include the rake and probe 

configuration used in the test, the steady-state static 

and total [stagnation) pressure measurements in the rake 

plane, some basic inlet flow parameters, and optionally the 

root mean square pressure fluctuation level measurements, 

The input data are described briefly in the next section, 

and formatting requirements are shown in the figure. Some 

of the input data are optional, that is they may be deleted 

from the input file. The program automatically assigns pre- 

defined default values, or as in the case of the rms levels, 

the data are computed based on other input data. 

The printed output of the MAXIDYN program includes 

several pages of steady-state and dynamic distortion data, 

The input data are organized in groups printed in the Firs-c 

few pages, along with steady-state distortion computations, 

Melick vortex model parameters, and the steady-state map. 

The rms fluctuation levels and/or turbulence modelling dats 

are printed in the next few pages, along with the stati~ti~csl 



predictions of the most probable peak instantaneous distor- 

tion levels. Finally, a dynamic distortion map is generated 

based on the peak instantaneous prediction. A brief descrip- 

tion of the output data is given in the third part of this 

Appendix. 

2. Input Data Description 

The table below briefly defines the variables in the 

input data. Certain data may be deleted from the input File 

because they are considered optional and generally are not 

part of the computational procedure. Some of these data are 

assigned default values as needed within the program. All 

optional data are indicated with a ":::" in the second c a l ~ r n  

of the table below. In the Format column, "F" indicates a 

rea 1 number, " I " indicates an integer, and "A" indicates z n  

alphanumeric array, according to standard FORTRAN rules, The 

arrangement of the input data is illustrated in Figure A l ,  

Data :: Format Definition 

NR I5 Number of pressure tap radial locatians 

NP I5 Number of rakes 

RADLOC F10.5 Radial location of pressure taps 

ANGLOC F10.5 Angular location of rakes in degrees 

KD I5 Distortion factor selection index 

KO = 1: KTHETA 

2: KO2 

3: IDC 

4: IDR 

5: KRA 

6: KA2 

7: DSPR 

8: ID 



Data : Format Def inition 

FO 

FCO 

TITLE 

BRP 

PS 

ALPH 

PSI 

MO 

U2 

BF 

CKP 

RKP 

MFR 

NTUR 

SPTRC 

RMS fluctuation measurement time-on-pail% 

default = I sec. 

Engine filter frequency, default = 500  H z  

RMS cut-off filter frequency, IOOO Hz def .  

Title block 

Base radial profile array, default = 1,[2 

Steady-state pressure array 

Inlet angle of attack in degrees 

Inlet yaw angle (crosswind) in degrees 

Freestream Mach number 

Inlet flow velocity in fps 

B-factor for weighting in KA2 computatian 

default = 1.0 

Circumferential ID weighting factor, 

default = 16.4 
Radial ID weighting factor, default = 2 1 , 1  

Inlet mass flow ratio, default = 2 .0  

Dynamic data selection index 

NTUR = 0: Dynamic data (rms levels) input 

1: Dynamic data synthesized 

Supersonic inlet pressure recovery, 

default = 1.0 

The following data is required if NTUR = 0: 

NPG I5 Data run number 

NPR I5 Dynamic probe location number 

RS :: F5.3 Filtered rms level + unfiltered r m s  l e v e l  

default = 0.5 
SIG F6.4 Unfiltered rms fluctuation level 





3. Output  Data D e s c r i p t i o n  

The p r i n t e d  o u t p u t  o f  t h e  MAXIDYN program c o n s i s t s  o f  

s e v e r a l  pages o f  d a t a  and computa t ions .  The f i r s t  two pages 

a r e  r e l a t e d  t o  t h e  s t e a d y - s t a t e  d i s t o r t i o n  and some Melick 

v o r t e x  model parameters,  t h e  m i d d l e  page o r  pages a r e  

r e l a t e d  t o  t h e  dynamic da ta  and t h e  s t a t i s t i c a l  d e t e r m i n a t i o n  

o f  t h e  most p r o b a b l e  peak i n s t a n t a n e o u s  d i s t o r t i o n ,  and the 

l a s t  two pages a r e  r e l a t e d  t o  t h e  g e n e r a t i o n  o f  t h e  peak 

i ns tan taneous  d i s t o r t i o n  map. The c o n t e n t s  o f  each of t h e  

pages of o u t p u t  a r e  b r i e f l y  d e f i n e d  below. 

A t  t h e  t o p  o f  t h e  f i r s t  page, immed ia te l y  below t h e  

t i t l e  b l o c k s  s u p p l i e d  by  t h e  u s e r ,  i s  t h e  s t e a d y - s t a t e  

PRESSURE ARRAY.  T h i s  a r r a y  i s  i d e n t i c a l  t o  t h e  p ressu re  

a r r a y  o f  t h e  i n p u t  data,  except  t h e  s t a t i c  p ressu res  have 

been d e l e t e d .  Each column o f  t h e  a r r a y  r e p r e s e n t s  a  r a k e ,  

w h i l e  t h e  rows r e p r e s e n t  probe l o c a t i o n s  o f  probes a l o n g  

t h e  r a k e .  Immed ia te l y  below t h e  p r e s s u r e  a r r a y  i s  t h e  BASE 

RADIAL PROFILE, a l s o  f rom t h e  i n p u t  f i l e .  The n e x t  t a b l e ,  

t h e  OVERALL FLOW DESCRIPTORS, p r o v i d e s  some s i m p l e  d i s t o r -  

t i o n  parameters:  

PTMIN i s  t h e  m i n i m u m  measured l o c a l  p ressu re  f rom the 
s t e a d y - s t a t e  PRESSURE A R R A Y .  

PTMAX i s  t h e  maximum p ressu re  f rom t h e  PRESSURE A R R A Y ,  

PTAVG i s  t h e  average p ressu re  from t h e  PRESSURE ARRAY,  

PSAVG i s  t h e  average s t a t i c  p ressu re .  

Q A V G  i s  t h e  average dynamic p ressu re .  

The n e x t  t a b l e  i s  a  l i s t i n g  o f  t h e  e i g h t  FLOW DISTORTION 

FACTORS and t h e i r  va lues ,  a l o n g  w i t h  w e i g h t i n g  f a c t o r s ,  



A t  t h e  bot tom o f  t h e  f i r s t  page, some o f  t h e  M e l i c k  V O R T E X  

PROPERTIES a r e  g i ven .  These p r o p e r t i e s  a re :  

THMN - The r a k e  showing minimum average p ressu re  

RKMN - The average p ressu re  a l o n g  r a k e  THMN 

THMX - The r a k e  w i t h  maximum average p ressu re  

RKMX - The average p ressu re  a l o n g  r a k e  THMX 

DTH - The angu la r  d i f f e r e n c e  between THMX and THMN 

THETA - The angu la r  l o c a t i o n  o f  t h e  c e n t e r  o f  a r c  GTH 

A 1  - The r a d i u s  o f  t h e  s t e a d y - s t a t e  M e l i c k  v o r t e x  

G I  - The o r i e n t a t i o n  ang le  o f  t h e  s t e a d y - s t a t e  v o r t e x  

The n e x t  page o f  p r i n t e d  o u t p u t  i s  a  d i s t o r t i o n  c a n t o u r  

map f o r  t h e  s t e a d y - s t a t e  case. R e l a t i v e l y  h i g h  and low p r e s -  

s u r e  r e g i o n s  a r e  i n d i c a t e d  by  symbols, which r e p r e s e n t  the 

p e r c e n t  d i f f e r e n c e  f rom t h e  average pressure ,  as  i n d i c a t e d  

b y  t h e  KEY TO MAPPING SYMBOLS immed ia te l y  above t h e  map, 

The average p r e s s u r e  i s  p r i n t e d  t o  t h e  r i g h t  o f  t h e  map, 

Page 3 

Page t h r e e  o f  t h e  o u t p u t  i n c l u d e s  a  l i s t i n g  o f  some 

o f  t h e  i n p u t  da ta ,  i n c l u d i n g  f l o w  parameters,  and t h e  

dynamic da ta ,  assuming dynamic d a t a  was i n c l u d e d  i n  t h e  

i n p u t  f i l e .  I f  dynamic da ta  was n o t  i n c l u d e d  i n  t h e  input 

f i l e ,  t h e  t h i r d  page would i n c l u d e  some da ta  f rom i n t e r n a l  

t u r b u l e n c e  c a l c u l a t i o n s .  The da ta  on t h i s  page i n c l u d e s :  

T  - The dynamic d a t a  t ime-on -po in t ,  i n  seconds 

FO - The eng ine  f i l t e r  f requency ,  i n  Hz. 

RT - The o u t e r  r a k e  d iamete r  a t  t h e  s t a t i c  t a p  

R I  - The centerbody  hub r a d i u s  

SPTRC - The superson ic  i n l e t  shock p ressu re  r e c o v e r y  

ALPH - The i n l e t  ang le  o f  a t t a c k  

PSI - The i n l e t  yaw/crosswind a n g l e  



MO - The freestream Mach number 
ETA - The average pressure at the measurement p l a n e  

MFR - The inlet mass flow ratio 
U2 - The inlet flow velocity at the measurement plane 
QPT2 - The ratio of the dynamic to total pressure 
FC - The rms filter cutoff frequency 

If dynamic data is included in the input data file, these 

data are printed in a table. The terms in this table are: 

PROBE - The dynamic probe location index 
RS - The ratio of filtered-to-unfiltered rrns level 
SG/PT2 - The unfiltered rms fluctuation level 
A/RT - The vortex radius resulting from the rrns level 

The rms fluctuation level and vortex size are given b e l o w  

the dynamic data table. 

If dynamic data are excluded from the input file, ehese 

data must be synthesized by the turbulence modelling scheme, 

In this case, the dynamic data table is replaced by a t a b l ~  

of DIMENSIONLESS VELOCITIES occurring at each of the probe 

locations, and a table of iterations of turbulent kinetic 

energies. These are provided for the convenience of the user 

and are not directly involved in the distortion analysis, 
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The fourth page of output includes a listing of the 

DISTORTION FACTOR EXTREME VALUE computations. For each af 

the eight distortion factors, values of the most probable 

peak instantaneous diskortion are presented. This table 

includes the STEADY STATE, MEAN INSTANTANEOUS, and peak 

instantaneous distortion at various statistical confidence 

levels. In addition, the filtered and unfiltered rrns dis- 

tortion levels are indicated; INF referring to the unfiltered 

case and FO representing the filtered case. 



In the case where the turbulence modelling scheme is used to 

generate the dynamic data, the fourth page includes further 

results of the TURBULENCE CALCULATIONS. This table is similar 

to the dynamic data table as described in the third page c" 

output, with the exception that the term RS is deleted, a r d  

velocity gradiants (UU) and turbulent kinetic energy terms 

( K  and E) are added. The unfiltered rms levels are presented 

in the last column. The DISTORTION FACTOR EXTREME VALUE 

table is moved to the fifth page in this case. 

Page 5 

The fifth page is arranged exactly like the first page, but 

with notable differences. All of the terms in the PRESSURE 

ARRAY, OVERALL FLOW DESCRIPTORS, and FLOW DISTORTION F A C T O R S  

tables refer to the peak instantaneous case rather t h a n  the 

steady-state case. In addition, the VORTEX properties t s b l e  

contains additional terms: 

VBAR - The vortex "strengthT7, or maximum swirling 
velocity 

A/RT - The radius of the Melick vortex 
GAMMA - One of the vortex orientation angles 
BETA - The second vortex orientation angle 
AY/RT - [The same as A/RT) 
VL - The vortex length limit (generally "infinity") 
R/RT - The radial location of the vortex core 
VBMX - The maximum instantaneous vortex "strength" 
V B O  - The approximated mean vortex strength found in 

an iteration of strengths and distortion f a c t o - s ,  

AO/RT - The vortex size indicated from the rms data, 

The sixth page is similar to the second page except the 

distortion map is for the peak instantaneous case. 



VI. CONCLUSIONS & RECOMMENDATIONS 

The subject computer program can be used to aid the 

prediction of maximum instantaneous distortion levels, and 

the peak instantaneous contour map, given the steady-state 

distortion data and, optionally, the dynamic rms pressure 

fluctuation data. There are some improvements which can 

be added to the program, at User's discretion. 

One improvement currently being researched at t h e  

University of Kansas is the replacement of the single 

steady-state vortex model with a series of vortices whose 

axes lie approximately along the "mean linew of pressure 

recoveries at the compressor face. This effort is intendeo 

to improve the predicted peak distortion contour map to m o p e  

closely resemble the experimental map produced by DYNABEG, 

Other methods of improving the accuracy of both the peak 

distortion level, and the corresponding contour map, w i t h  

respect to experimental results, would be highly desireable, 

The accuracy of the present analysis is discussed in 

References 5 and 6, along with the basic derivations in the 

theoretical analysis. In general, the Melick technique i s  

reasonably accurate for preliminary design and analysis, The 

major benefit of the Melick method is it's efficiency, ana 

the general tendency to over-estimate the experimental or 

true peak distortion level, rather than under-estimate it, 

One of the primary difficulties with the Melick analysis is 

in predicting the distortion levels for inlets with separa- 

ted flows. It would be desireable to try to improve the 

accuracy of the peak prediction for this extreme case, which 

can occur especially often in highly maneuverable aircraft, 

which operate at high angles of attack and yaw angles, ane 

also tend to have complicated inlet duct shapes. 
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