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Summary A limitationto designinglighter weightgeared transmissions
arises from the dynamic tooth loads and noise produced by

A helicopter transmission thatwas being considered for the vibration withinthe transmission. Gearbox vibration is caused
Army's Utility Tactical Transport Attack System (UTTAS)
was testedin theNASA Lewis 2240-kW(3000-hp)test facility primarily by tooth meshing excitation and is characterizedby
to obtain the transmission's operationaldata. The results will a discrete rather than a continuous line spectrum. Excessive
form a vibrationand efficiencydata base for evaluatingsimilar- vibrationmay result if any of the meshingfrequenciesor strong
class helicopter transmissions. The transmission's mechanical sidebands happen to nearly coincide with a natural vibration

frequency resonance of the transmission. In highly loaded,
efficiencywas determined to be 98.7 percent at its ratedpower lightweight, fatigue-critical gearing such as that in helicopter
level of 2080 kW (2792 hp). At power levelsup to 113percent transmissions, resonance is a much more critical phenomenonof rated the transmissiondisplayed 56 percent higher vibration
acceleration levels on the right input than on the left input, than in heavy-duty industrial drives (ref. 14). Further

descriptions of the vibratory response of gearing are given in
Both vibration signature analysis and final visual inspection references 15 to 19.
indicatedthat the right input spiral-bevel gear had poor contact
patterns. For many years the two major conflicting field-operational

The highest vibration meter level was 52 g's rms at the aft performance indices, MTBUR (ref. 20) and P/W (ref. 21),
have remained in need of substantial improvement. Fieldaccessory gear, which had free-wheeling gearsets (the

transmission was tested without accessories). At 113-percent experience has shown that lighter, more flexibletransmissions
power and 100-percent rated speed the vibration meter levels (for the same power) tend to be noisier. Because of the
generally ranged from 3 to 25 g's rms. The facility was complexity of helicopter transmissions and the effect of

component "coupling" on design, improvements in these
operated at and qualified for testing to 2600 kW (3500 hp). indices require Continuingprograms of advanced analytical

research and testing of the life, efficiency, and noise of full-

Introduction scale transmissions. These programs will validate advanced
components and technologies against the research and

Modern helicopter transmissions are being required to computer codes that spawned them. The NASA Lewis facility
achieve ever-higher levels of mechanical efficiency and augments the ongoing needfor facilitiesthat can quantitatively
transmitted power per unit weight (P/W) and significantly evaluate technological research concepts in order to improve
longer mean times between unscheduled removals (MTBUR). the conflicting requirements of increasing both MTBUR and
A transmission's mechanical efficiency is to a large degree P/W. The facility will help to advancehelicopter transmission
an index of its design sophistication. A 2240-kW (3000-hp) technology (refs. 22 to 24).
helicopter transmission is nearly 98 percent efficient at full This work was conducted primarily to develop baseline
rated load. Each of the many items in a helicoptergear train-- efficiency and vibration data for the YUH-61A transmission
gears, bearings, lubrication system circuitry, and seals-- to serve as documentation for improvements to transmission
influencesthe total efficiency. In general there is a 3/4-percent designs. A secondary objective was to establishthe operational

and control limits and integrity of the test facility. The dataloss for a planetary gear stage and a 1/2-percent loss for a
single bevel or spur gear mesh (ref. 1). Further data on gear acquisition system is overviewed as well as the facility and
and gear system power losses can be found in references 2 its subsystems.Test resultsinclude transmissionpower ranges,
to 5. The effectof lubricationand oil at gear meshesis reported mechanical efficiency, and vibration characteristics.
in references 6 to 8. Oil traction effects on worm gear
efficiencies are covered in reference 9. Bearing power losses
are reviewed in reference 10. Even small efficiency degrada- Apparatus
tions (e.g., an accumulative reductionof nearly 1percent) are Test Transmission
very significant (ref. 11). Efficiency studies on the Army's
smaller OH-58 helicopter transmission have also shown that The YUH-61A helicopter transmission was a candidate in
even the composition of oils obtained under the same military the U.S. Army's Utility Tactical Transport Attack System
specification has a significant effect (refs. 12 and 13). (UTTAS)competition. It has a rated power level of 2080 kW



(2792 hp) and an output rotor shaft speed of 286 rpm. The generator installed. The main transmission has a dry weight
transmission (figs. 1 to 3) delivers power from the UTTAS of 383.3 kg (845 lb), the housing being primarily of magne-
helicopter's twin engines through separate external speed- sium with an aluminum upper cover. The lubricant for this
reduction stages and twin input spiral-bevel gears to a transmission complied with the MIL-L-7808 specification.
combining spiral-bevel gear. This combining gear in turn is The transmission's integral lubrication system (ref. 25)
splinedto the sun gear of a single-planetary-gearoutput stage, consists of a primary system and an auxiliary system. The
The input spiral-bevel gears provide a reduction of 121/25 primary lubricationpumphas two elements:a pressure element
from the input shaft speed of 7178 rpm. The planetary stage and a scavenge element. The auxiliary lubrication pump is a
provides a further reduction ratio of 1+ 113/27. The overall single-element pump driven by the forward accessory spiral-
speed reduction is 25.096. The numbers of gear teeth, the shaft bevel gear.
speeds, and the calculated tooth meshing frequencies and their

Test Facilityharmonics are listed in table I. The transmission was tested

without its forward accessory gearbox. The aft accessory The NASA Lewis 2240-kW (3000-hp) helicopter trans-
gearbox was mounted without the auxiliary power unit or mission facility is a regenerative (four square) testing power

TABLE I.--SHAFT SPEEDS AND TOOTH MESHING HARMONICS FOR
RATED OPERATING SPEED OF 286 rpm

Component Number Shaft First Second Third Fourth First Second Third Fourth
of speed, mode mode mode mode mode mode mode mode

teeth rpm
Shaft harmonics, Hz Tooth harmonics, Hz

Main power train

Input bevel pinion 25 7 178 119.6 239 359 479 2991 5981 8 972 11 963
Main bevel gear 121 1483 24.72 49.4 74.1 98.9 2991 5981 8 972 11 963
Main-bevel sun gear 27 1483 a24.72 49.4 74.1 98.9 539 1077 1 616 2 155
Planet gears (four) 43 466 a7.76 15.5 23.3 31.0 539 1077 1 616 2 155
Ring gear 113 0 (a) 539 1077 1 616 2 155
Carrier (output) .... 286 4.77 9.53 14.3 19.1
Planet passing 19.07 38.1 57.2 76.3

frequency

Tail rotor

Main bevel gear 121 1483 24.72 49.4 74.1 98.9 2991 5981 8 972 11 963
Tail takeoff gear 25 7 178 119.6 239 359 479 2991 5981 8 972 I1 963
Shell gear 28 7 178 119.6 239 359 479 3350 6699 10049 13 398
Tail drive gear 30 6 699 111.7 223 335 447 3350 6699 10049 13 398

Rear accessory gearbox

Accessory drive 42 6 999 11'_7 223 335 447 4689 9379 14 068 18 757
Spur gear to clutch 49 5 742 95.70 191 287 383 4689 9379 14 068 18 375
Spur gear from 48 5 742 95.70 191 287 383 4594 9187 13 781
clutch

Primary lubrication 49 5 625 93.75 187 281 375 I i
pump iI

Idler gear 55 5 011 83.52 167 251 334
Fan gear 33 8 352 139.2 278 417 557 i
Primary lubrication 49 5 625 93.75 187 281 375 :
pump !

Hydraulic pump 36 7 656 127.6 255 383 510
Lubricant scavenge 48 5 742 95.70 191 287 383
pump

Idler gear 60 4 594 76.56 153 230 306
Generator drive 23 11983 199.7 399 599 799
Idler gear 60 4 594 76.56 153 230 306
Auxiliary-power- 36 7 656 127.6 255 383 510 _ ', _'
unit gear

ashaft frequencies for sidebands (relative to carrier: sun gear, reduced to 19.95 Hz; planet gears, increased to 12.53 Hz; ring gear, 4.77 Hz).



loop driven by a constant-speed, 600-kW (800-hp) induction uses strain gauge bridges on the rotating shafts. The system

motor. The test stand was designedand built by the Boeing- was calibrated at torqueintervals via the deadweightmoment
Vertol Company. Speedcontrol is providedby a dynamic method.
(eddy current) clutch (fig. 4). The induction motor drive Vibration transducers were commercial piezoelectric
serves only to supply the mechanical frictional losses in the accelerometers. All thermocouples were Chromel/Alumel.
power loops. A 90* reduction gearbox connects the clutch to The NASA Lewis data acquisition system, Escort H (fig. 6),
an input helical pinion gear located in the power distribution supports the steady-state experimental facilities at the Lewis
gearbox (fig. 5). The pinion gear in turn drives the large helical Research Center (fig. 6). Escort II has real-time data
combining gear connected to the rotor output shaft and the acquisition and processing capability for up to 256 channels

smaller helical piniongear on the oppositeside. Torque is of measurement while maintaininga 2- to 3-secupdaterate
introduced into both rotating vertical shafts (representing the of facility displays. Mainframe computing capabilities are also
left and right transmission drive engines)by two two-stage available in the off-line batch mode. Data accumulated during
planetary torquers. The upper ring gears of these torquers have testing are analyzed according to computer codes.
external teeth that mesh with dc-motor-driven worm gears.
Upon ring gear rotation a controlled torque is introduced into

the rotating left and right shafts. Power flows through the input Procedure
stage of the facility gearbox, through the transmission, and

out the rotor shaft and is recirculated through the power Efficiency Tests
distribution gearbox. The returning power flow to the two
pinions completes the power flow loop. The transmission tail The test transmission was insulated to provide an adiabatic
output shaft and torquer loop are similar (recirculating), but enclosure. Ten- to 15-cm (4- to 6-in.) thick blankets of
the controlled power flow is reversed to simulate the power fiberglass covered with an aluminized coated asbestos cloth

requirements of the UTTAS helicopter's tail rotor, were placed on the top and bottom of the enclosure. The
Immediately above the transmission and connected to its vertical sides of the transmission's sheet metal housing were

output rotor shaft is the rotor loader assembly. The loader internally lined with 2.5 cm (1 in.) of fiberglass insulation
assembly housing is attached to three vertical hydraulic board and blankets. In addition, a series of5-cm (2-in.)thick
cylinders positioned above it and located at three position removable fiberglass blankets, similar to the top and bottom
points that fall on the apexes of an equilateral triangle. A fourth blankets, were wrapped around the sides of the transmission
cylinder is attached and reacts horizontally. Controlling the (fig. 7). In addition, closed-cell insulation foam was pressure
cylinder pressures produces a bending moment in the fed into the openings of the enclosure required for the input
transmission's output shaft to simulate flight lift, two-axis and tail shafts. A close-fitting stainless steel tube over the
moment, and drag (horizontal) loading. During operational transmission shafts (used as an insulation foam stop) permitted
testing the input speeds, torques, and rotor loads are controlled the nearly complete adiabatic encapsulation. The transmission
from a remote control room. had minor heat losses through the annuli of the input and tail

The lubrication system of the facility consists of two pumps shafts and by convection and radiation from the housing.
rated at 0.66 ma/min (173 gal/min) and 690 kPa (100 psi) Twelve thermocouples were placed on the sheet metal housing
with oil flowing through three tube-and-shell oil/water heat and on top of the upper transmission insulation blankets. One
exchangers located above the sump. The heat exchangers thermocouple was placed in each shaft annulus to allow
supply temperature-controlled oil to the facility's gearboxes calculation of all of the heat losses (refs. 26 and 27) from the
and torquers. Ten-#m filters are installed in each lubrication housing. The flight oil/air heat exchanger (fig. 1), which was
output branch. Lubrication oil temperatures and pressures to close coupled to the transmission, was not enclosed.
all facility gearboxes and torquers are connected to limit- The testing comprised varying the output speed and torque
warning annunciators. The facility lubrication oil is ASLE under a matrix of set points (table II). Input power levels
grade S-315. ranged from 3 to 113 percent of rated power at output rotor

The water system, from the cooling towers, supplies water speeds of 25, 75, and 100 percent of nominal rated.
at 586 kPa (85 psi) for the dynamic clutch and the facility For each data point the specified torque and speed were set
oil/water heat exchangers, and the transmission operated at that setting until the close-

Upon annunciator warning the CO 2 "cell flood" system coupled flight oil/air heat exchanger brought the oil inlet
can be manually activated. Four television cameras allow temperature to equilibrium. Data taken included oil inlet and
control room monitoring of the facility during testing. The exit temperatures and mass flow rates through the oil/air heat
facility has four flame detector "fire eyes" with fault self- exchanger, the speeds and torques of the input shafts, and the
checking circuitry, temperatures of the transmission's sheet metal housing.

The output rotor shaft speed is measured by an inductive Transmission power loss, input power, and housing heat loss
speed pickup. Input and tail torques are measured, controlled, were determined. The mechanical efficiency of the

: and displayed by a telemetry torsion measurement system that transmission was calculated by



TABLE II.--YUH-61A T_, Vibration Tests
TEST DATA

Eleven piezoelectric accelerometers, labeled VIB 1 to
Escort Speed, Torque, Power, VIB 11, were fitted to various locations on the transmission
reading percentof percentof percentof case. Data from eight of the accelerometers (figs. 1 to 3 andrated rated rated

table III) are discussed in this report. The frequency response
259 25 54 12 of these eight accelerometers was ±5 percent at
260 73 56 41 2 to 5500 Hz and +20 percent at 10 kHz. The resonant261 99 57 56
262 27 84 23 frequency was 27 kHz.
263 73 87 64 In the vibration measurement system (fig. 8) the
264 99 86 85 accelerometer output was fed to vibration meters (charge
265 27 l 11 30 amplifiers) that produced a dc output representing the overall
266 73 112 82 peak acceleration level. The dc signal was converted to digital
267 100 113 113 format for processing by the Escort II system. The vibration268 27 11 3
269 74 10 7 meters also produced an ac output signal that was further
270 99 11 ll amplified by broadband amplifiers and stored on 14-channel
271 99 110 109 tape for later analysis on a Fourier analyzer. The vibration
272 73 109 80 measurement system was calibrated by means of signal
273 25 109 27 injection applied at the transmission to check the cabling, the274 100 88 88
275 74 86 64 amplifier, and the analyzer system. The calibration was also
276 99 57 56 verified by a shake table.
277 25 84 21 Data were acquired at several combinations of speed and
278 74 58 43 torque (table II) from less than 5 to 113percent of full rated279 100 11 l I
280 27 56 15 power. The tail torque was maintained throughout testing at
281 74 12 9 a nominal 17 percent of the total input torque. Frequency
282 25 12 3 domain vibration spectra were plotted on a Fourier analyzer
283 26 10 3 by using the random (Hanning) signal window. A gearbox
284 74 l l 8 produces a discrete spectrum of frequencypeakscorresponding285 99 I 1 11

to gear meshingharmonics and sidebandsabove a much lower286 99 29 29
287 25 56 14 continuous background of other component noise levels.
288 74 57 42 Because the spectrum is not continuous, the ordinates on the
289 99 57 56 vibration spectral plots are calibrated in units of rms g's and
290 26 86 22 not in (g's)2/Hz as in a power spectral density plot of a
291 74 87 64 continuous spectrum (ref. 16). Overall (Fourier) acceleration292 98 86 84
293 28 111 31 values were obtained for comparison with the vibration meter
294 26 112 29 (Escort II) reading (table III). These were derived by taking
295 73 114 83 the square root of the sum of the squares of the frequency lines
296 99 114 113 in the amplitude spectrum over the measurement bandwidth.

Except for "zoom" measurements the frequency range 0 to
12.8 kHz was chosen to provide a frequency resolution of
25 Hz. Twenty data samples were averaged by the analyzer

+P2) × 100 for each vibration spectrum.

Post-Test Inspection

At the conclusion of efficiency and vibration testing of the

mechanical efficiency, percent YUH-61A the transmission was removed from the test stand
and disassembled to allow visual inspection at the component

transmission input power level. Oil samples were taken for oil particle analysis. Chip
transmission mechanical power loss to heat exchanger detectors, filters, and the interior housing surfaces of the

radiation, convection, and conduction power losses transmission were also visually inspected. Photographs were
housing and shafts taken of the power train gearing components. Gear teeth



TABLE III.--MAJOR FREQUENCY COMPONENTS AT 99 PERCENT OF RATED SPEED
AND 113 PERCENT OF RATED TORQUE

Acceler- Accelerometer Overall Component Component Peak-to-peak
ometer, location acceleration, frequency, acceleration, displacement,
VIB- g's rms Hz g's rms tim

11 Aft accessory 48.5 525 4.2 10.7 Planet mesh
drive case 2975 16.4 1.3 Main bevel

4650 8.8 .3 Accessory drive
9325 20.6 .2 Accessory drive
3325 9.0 .6 Tail drive
6650 22.2 .4 Tail drive
9975 12.0 .1 Tail drive

8 Right input 41.7 525 5.4 13.8 Planet mesh
2975 13.5 1.1 Main bevel
5925 22.5 .5 Main bevel

7 Forward 35.8 525 3.3 8.4 Planet mesh

accessory 1075 3.5 2.1 Planet mesh
pinion 2975 30.9 2.5 Main bevel

5925 3.8 .1 Main bevel

9 Left input 24.3 525 8.1 20.6 Planet mesh
1075 2.8 1.7 Planet mesh
2975 10.0 .8 Main bevel
5925 5.8 .1 Main bevel

5 Rotor housing 16.5 525 1.1 2.8 Planet mesh
(45") 1075 11.5 7.0 Planet mesh

1600 3.5 1.0 Planet mesh
2975 5.7 .5 Main bevel

6 Rotor housing 16.4 525 9.8 25.0 Planet mesh
(horizontal) 1075 9.3 5.7 Planet mesh

1600 2.6 .7 Planet mesh
2975 1.9 .2 Main bevel

2 Left input 15.6 525 3.2 8.2 Planet mesh
(horizontal) 1075 5.5 3.3 Planet mesh

1600 2.9 .8 Planet mesh
2975 9.0 .7 Main bevel

3 Mounting arm 13.0 525 2.2 5.6 Planet mesh
1075 1.4 .9 Planet mesh
1600 5.9 1.6 Planet mesh
2975 2.5 .2 Main bevel

adjacent to any gear tooth contact patterns (footprints) to be The transmission's mechanical efficiency was 98.7 percent
observed were whitened so as to highlight the footprints by at its rated power level of 2080 kW (2792 hp) and rated output
light reflectance, rotor speed of 286 rpm (fig. 9). This was only 0.1 percent

higher than the value listed in reference 25. Figures 9 and 10
show the marked effect of speed on efficiency. Past NASA

Results and Discussion transmission programs (refs. 4, 5, 11, and 13) have shown

Efficiency that the higher efficiencies at 15 to 80 percent of rated load
are a direct result of speed-related losses. Lubricantchurning,

For the efficiencytest 38 data points were taken for a matrix windage, mesh (elastohydrodynamic, rolling traction), and
of nominal percentages of rated speed and input torque bearing losses all are functions of speed; sooperation at lower
(table II). The resulting power levels are also shown, speed (for a specific input torque) results in reduced net losses



and higher efficiency but at the penalty of operation at less (load)on vibrationlevels at various points on the transmission.
than rated power. Sliding losses also significantly increase The vibration level generally increased with speed and to a
nearly in direct proportion to power except at very low torque lesser extent with torque.
levels (ref. 4). At torque levels less than 15percent (fig. I 1) Vibration spectra from tape-recorded vibration signals for
the sliding losses approached zero and the power loss five accelerometers at six speed/torque combinations are
approached the tare (no load) loss. As the input power was shown in figures 13to 19. These spectra were taken at speeds
further reduced, it very rapidly approachedthe almost constant of 75 and 100percent of nominal rated with torque levels of
tare loss, thereby resulting in the very rapid decrease in 112, 88, and 58 percent and 113, 88, and 11percentof nominal
efficiency. Figure 11also shows the effect of very low torque rated, respectively. A speed map and zoom spectra are
operation with increasing speed (at approximately 11percent provided for VIB 8 (figs. 16 and 17). Spectra for VIB 6 and
of nominal rated torque). The major losses at this loading-- 7 are shown in figure 20.
churning, windage, mesh, and bearing losses--became The major frequency components at the full-speed,
significantly more dominant as speed was increased. At full 113-percent-torque operating condition are summarized in
power all losseswere contributors, their ratios being dependent table In. An overall acceleration value from the spectral plots
on the transmission's design and configuration. (figs. 13 to 15 and 18 to 20) is shown. This value generally

Figures such as 9 to 11 can be useful for comparing the agreed within ± 6 percent with the vibration meter reading
operational integrityof any two similarhelicopter transmission as recorded by the Escort system (convertedto rms). The peak-
designs when used inconjunction with other information such to-peak (doubleamplitude) displacementat each of the various
as vibration spectraanalysesand wear metal and contamination frequency components is also given in table III.
analyses of the lubricating oil (refs. 28 and 29). Very high vibration levels (30 to 50 g's rms) were found

Vibration at three locations on the test transmission: VIB 11, on the aft
accessory gearbox; VIB 8, at the right input pinion; and VIB

Gear vibrationis causedby nonuniformaction (transmission 7, at the forward accessory pinion. All other accelerometers
error) of the gear teeth as they roll through the mesh. Mark produced much lower vibration levels.
(ref. 19)definesmean and random componentsof transmission VIB//.--The VIB I 1 (aft accessory gearbox) vibration
error. The mean component, which is the same for all teeth, meter level (fig. 12(h), 99-percent speed, 113-percent torque)
is due to deviation of the average tooth surface from a perfect was 51.7 g's. This very high vibration level was due to the
involute shape. These deviations are caused by manufacturing several gear meshes (11) located in and near the aft accessory
errors as well as load-dependent tooth distortion (refs. 19and gearbox. The most prominent contributors to the vibration
30). The mean component of transmission error produces levels were the main bevel, tail drive, and accessory drive
vibration at the harmonics of the tooth meshing frequency, meshes (fig. 19). The planet mesh components had a much
The random component of transmission error produces lower effect. The general trend that larger vibration amplitudes
vibration at the sideband frequencies. Amplitude modulation were associated with spiral-bevel gears rather than spur gears
(AM) sidebandsare excitedprimarily by eccentricity (runout), in a planetary stage is consistent with prior testing experience
which causes the depth of gear tooth engagement to vary as involving several transmissions of various sizes (ref. 20). The
the gears rotate. AM sidebands occur at frequencies equal to vibration amplitude at VIB 11 was much more affected by
the meshing frequency plus or minus multiples of the pinion operating speed than by load level. (This was expected since
or gear shaftfrequency. Frequency modulation(FM) sidebands no accessorieswere mounted and therefore the accessorygears
are excited by tooth spacing errors or by torsional vibration were not loaded.) The spectra taken at 100-percent speed at
of the gear shafts (refs. 31 to 34). The combination of AM the various torque levels show much more high-frequency
and FM may produce additional sidebands known as complex harmonic content than do those taken at 75-percent speed
intermodulation components (ref. 15). (fig. 19).

Any rigid body constrained by elastic supports will have VIB 8.--The spectra from VIB 8 at the right input pinion
natural modes of vibration at frequencies determined by the at nominally 100-percentspeed (figs. 15(d)to (f)) reveal a band
effective mass and stiffness properties of the system. A of increasedvibration between4500 and 6000 Hz that contains
continuous structure will also have an infinite number of several prominent response peaks. These peaks were caused
flexible body modes (independentof supportconditions), each by the second harmonic of the main bevel gear meshing
of which has a unique shape and frequency. In practice, (5981 Hz) and by the ninth (4851 Hz) and tenth (5390 Hz)
however, one need not be concerned with modes of higher harmonics of the planet gear meshing. These tooth meshing
frequency than the first two to three harmonics of the highest harmonics were excited by the mean component of trans-
excitation frequency (ref. 14). mission error. When the operating speed was reduced from

The vibration levels reported by Escort II (converted to g's the 100-percent (286 rpm) level, these peaks were shifted out
rms) are plotted in figure 12. (Readings made within ± 5 of the 4500- to 6000-Hz band (figs. 15(a) to (c)) and greatly
percent of the same speed and torque conditions were reduced inamplitude, but the backgroundvibration levelwithin
averaged.) This figure shows the effect of speed and torque this band remained higher than outside the band. The band !



of increased vibration suggests resonant response. A speed map VIII 5/6.--The vibration signals measured on the rotor
ofVIB 8 (fig. 16) was made at the 11-percent torque condition, housing near the output bearing (VIB 5 and VIB 6, figs. 14
The speed map shows a very strong component at the main and 20(a)) were dominated by planet meshing (i.e., sun/planet
bevel gear meshing frequency (2991 Hz) as 100-percent speed and planet/ring) frequencies. The second planet harmonic was
was reached and a tendency toward many minor vibration relatively prominent in most of these spectra. Planet harmonics
peaks within the 4500- to 6000-Hz band at speeds approaching were greatly diminished at the low torque operating conditions,
100 percent. (Compare this speed map with fig. 15(f).) especially at the 99-percent speed and 11-percent torque of

Reference 25 describes free-free modal testing performed VIB 5 (fig. 14(f)). The torque dependence of the vibration
on individual gears with no bearings, spacers, etc., installed, level shows clearly in figures 12(c) and (d) (VIB 5 and
The results are reported in the form of Campbell diagrams. VIB 6). Torque dependence suggests that tooth deflection is

For the input pinions resonances were found at 5500 Hz (pinion a major contributor to transmission error for the planetary
shaft) and at 5800/6200 Hz (two-dimensional gear ring at gears. Houser (ref. 30) discusses the effect of transmission
100-percent speed). Free-free modal testing will detect flexible error on the compliance (deflection) of gear teeth. The first
body modes but not rigid body modes in which the pinion and two planet mesh harmonics of VIB 6 are shown at expanded
gear move relative to their supports and to each other, scale in figure 20(b) to display the sideband structure.

Therefore additional modes may be present. No damping rings Sidebands were distributed at the planet passing frequency
were installed on the input pinions (ref. 25) because none of (19 Hz) about the planet meshing harmonics. The amplitude
the modes found coincided with the first harmonic of any tooth of the sidebands was not more than 20 percent of the associated

meshing frequency. The modal testing was not performed with harmonic frequency. This suggests that the planet gears had
the pinion installed with bearings, etc., in the transmission little runout. The sidebands are distributed in a nonsymmettical
case. However, reference 14 reports less than a 10-percent pattern about the tooth meshing frequency. The distortion

increase in modal frequencies between free and installed states, effects of ring gear deflection acting at planet passing would
The sidebands associated with gear meshing frequency produce a symmetrical pattern of tooth positioning errors

measured at VIB 8 (fig. 17) are shown as zoom spectra on (frequency modulation) plus a cyclic variation in the depth of
a logarithmic amplitude scale with a frequency resolution of gear tooth engagement (amplitude modulation). The two types
0.78 Hz. The horizontal line at 0 dB indicates the 1.0-g of modulation acting together produce the typical
reference level. (Compare the discrete frequency lines of nonsymmetrical pattern (ref. 15).
fig. 17 with those of fig. 15(d).) The presence of gear shaft Additional sources of asymmetry include multiple mesh
runout would be indicated by strong sidebands, but here the contact (due to the presence of several planets) and the
sidebands are at least 20 dB lower than the associated gear smoothing effect of multiple tooth contact as vibration energy
mesh frequency. These low levels indicate very little shaft is transmitted through the gear mesh into the surrounding
runout in the right input pinion and gear. structure. A mathematical treatment of gear-transmission-error

The tight input pinion produced consistently higher vibration (in the frequency domain) mesh transfer functions appears in
(typically 50 percent higher g-levels) than the identical left reference 19. For a discussion on planet passing vibration,
input pinion throughout the testing sequence. The cause for see reference 32.

this difference is suspected to be transmission error combined Vibration frequencies attributable to rolling-element beatings
with an undamped resonance condition at the tight input pinion have not been identified. Minor bearing faults are not apparent
(see the section Post-Test Inspection). The left input vibration in transmission gearbox spectra because of the overall
levels (VIB 2 and VIB 9, figs. 13 and 18) were also less torque dominance of gear meshing signals. Bearing faults can be
dependent (figs. 12(a) and (g)) and show much less evidence difficult to detect unless transducers are mounted directly on
of resonance, bearing races (refs. 34 and 35).

Of the 11 accelerometers the three on the transmission
Post-Test Inspectionmounting arms produced similar data, and therefore only one

of these (VIB 3) is reported in table III. Another was mounted The transmission was inspected after 50 hr of testing. The
on the split line between the upper and lower housings to transmission oil particulate analysis revealed no significant
monitor ring gear vibration levels. Its values were consistently increase in contaminant level. Oil system component surface
low (less than 2 g's rms) and are not further reported, integrities were acceptable. The general overall appearance

VIB 7.--The forward accessory pinion (VIB 7, figs. 12(e) of the gears and bearings was indicative of moderate to full
and 20(c)) showed a strong 30.9-g component in its spectrum loading. Light wearing of the black oxide coating on the load
at 2991 Hz. This is the common meshing frequency (at 99 surfaces of the gears revealed the contact pattern. No spaIling
percent speed) of the four pinions that mesh with the main was observed. In figures 21 to 25 the adjacent tooth was
bevel gear (two input pinions and two accessory pinions). In painted white to highlight the gear tooth contact area by light
the test transmission the forward accessory pinion operated reflectance.
without load because the transmission was tested with no The right input spiral-bevel pinion gear (fig. 21) had poor
forward accessory gearbox, tooth contact with its mating bevel gear. The load-side contact



pattern (footprint) was positioned approximately normally at to obtain baseline efficiency and vibration data for use as a
the gear tooth heel, but the contact area dropped below the data base for evaluating similar-power-class transmissions.
pitch diameter and to near line contact at the toe. The poor The following results were obtained:
contact pattern is suspected to be a result of angular 1. The mechanical efficiency of the YUH-61A helicopter
misalignment. Poor tooth contact between pinion and gear is transmission, when tested at its rated power level of 2080 kW
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Figure 13.--Vibration spectra for VIB 2 (left input horizontal).
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Figure 14.--Vibration spectra for VIB 5 (rotor housing, 45*).
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Figure 15.--Vibration spectra for VIB 8 (right input pinion).
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Figure 18.--Vibration spectra for VIB 9 (left input pinion).
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Figure 19.--Vibration spectra for VIB 11 (aft accessory drive case).

21



30 -- 30 -- B

2O -- 2O--

P Planetmeshharmonics
B Mainbevelmeshharmonics

lO -- P 10 --

PPP B2-,,
d 0 4 8 12 0 4 8 12c)

-- 30 --
,_ ]0 p

8 --

20 --
6 --

4 i

I0 --

P

2 -- p I P pBp B

.4 .6 .8 1.0 1.2 0 4 8 12
Frequency,kHz

(a) VIB 6, rotor housing, horizontal.
(b) First two planetary harmonics from (a).

(c) VIB 7, forward accessory pinion.
(d) VIB 3 right rear mounting arm.

Figure 20.--Vibration spectra for various locations. Rotor speed, 99 percent of rated; torque. 113 percent of rated.
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Figure 21.--Right input spiral-bevel pinion gear.
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Figure 22.--Main bevel gear.
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Figure 24.--Planet gear and bearing.
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