
5105-155
Solar Thermal Power Systems Project
Parabolic Dish Systems Development

DOE/JPL-1060-90
Distribution Category UC-62

(JPL-Putl-85-56) C V E B V I E W C f S O f l W A R E
D E V E L O P M E N T Al I f cE P A E A B G L I C LISH TEST SITE
(Jet Propulsion Lab .) 83 p HC A05/HF A01

CSCL 10A
G3/44

N86-250U4

Unclas
43379

Overview of Software Development
at the Parabolic Dish
Test Site
C.K. Miyazono

July 15, 1985

Prepared for
U.S. Department of Energy
Through an Agreement with
National Aeronautics and Space Administration

by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL Publication 85-56

5105-155
Solar Thermal Power Systems Project
Parabolic Dish Systems Development

DOE/JPL-1060-90
Distribution Category UC-62

Overview of Software Development
at the Parabolic Dish
Test Site
C.K. Miyazono

July 15, 1985

Prepared for
U.S. Department of Energy
Through an Agreement with
National Aeronautics and Space Administration

by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL Publication 85-56

Prepared by the Jet Propulsion Laboratory, California Institute of Technology,
for the U.S. Department of Energy through an agreement with the National
Aeronautics and Space Administration.

The JPL Solar Thermal Power Systems Project is sponsored by the U.S.
Department of Energy and is part of the Solar Thermal Program to develop low-
cost solar thermal and electric power plants.

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ABSTRACT

The development history of the data acquisition and data analysis
softwa're is discussed in this report. The software development occurred
between 1978 and 1984 in support of solar energy module testing at the Jet
Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test
Station. The development went through incremental stages, starting with a
simple single-user BASIC set of programs, and progressing to the relative
complex multi-user FORTRAN system that was used until the termination of the
project. Additional software in support of testing is discussed including
software in support of the meteorological subsystem and the Test Bed
Concentrator Control Console interface. Conclusions and recommendations for
further development are discussed.

111

ACKNOWLEDGMENT

The work described herein was conducted by the Jet Propulsion
Laboratory, California Institute of Technology, for the U.S. Department of
Energy through an agreement with the National Aeronautics and Space
Administration (NASA Task RE-152, Amendment 327; DOE/ALO/NASA Interagency
Agreement No. DE-AM04-80AL13137).

IV

CONTENTS

I. INTRODUCTION . 1-1

A. OVERALL DESIGN PHILOSOPHY 1-1

B. DATA LOGGING HARDWARE . . 1-2

C. PRACTICAL RESTRICTIONS 1-2

II. RT-11 BASIC 2-1

A. DESIGN PHILOSOPHY 2-1

B. HARDWARE 2-1

C. SOFTWARE ' . ' 2-1

D. PROBLEMS/RECOMMENDATIONS 2-2

III. RT-11 FORTRAN 3-1

A. DESIGN PHILOSOPHY 3-1

B. HARDWARE AVAILABLE 3-1

C. SOFTWARE 3-1

D. PROBLEMS/RECOMMENDATIONS 3-3

IV. RSX-11M FORTRAN 4-1

A. DESIGN PHILOSOPHY 4-1

B. HARDWARE AVAILABLE 4-1

C. SOFTWARE 4-1

1. Initial Attempt 4-1

2. Operating System 4-2

3. Disk File Access 4-3

4. Testing Sequence 4-4

5. File Structure 4-8

D. PROBLEMS/RECOMMENDATIONS , , . 4-14

V. HARDWARE INTERFACING . 5-1

VI. TRAINING 6-1

VII. RECOMMENDATIONS AND CONCLUSIONS 7-1

A. SOFTWARE 7-1

B. HARDWARE 7-1

C. CONCLUSIONS 7-1

APPENDIXES

A. SAMPLE GRAPHICAL OUTPUT FROM THE PLOT ROUTINE FOR TEST
DATA TAKEN AT ETS A-l

B. SAMPLE OUTPUT FROM THE COMMENTS (.GMT) FILE AND FROM THE
NOTES (.NOT) FILE FOR A TEST B-l

C. ACUREX AUTODATA NINE DATA LOGGER CONTROL SEQUENCES C-l

D. SAMPLE MONTHLY WEATHER SUMMARY PLOTS D-l

E. RSX-11M FORTRAN VERSION "USER'S GUIDE,"
DATED MARCH 18, 1983 E-l

F. SAMPLE OF AN INDIRECT COMMAND FILE F-l

Tables

2-1. Example of Output from a Data Logger 2-3

4-1. Major Tasks for Data Analysis 4-4

4-2. Module Identifications 4-6

. 4-3. Filename Extensions Used for Data Analysis 4-7

4-4. Parameter Table 4-9

VI

SECTION I

INTRODUCTION

This report covers the software development task that took place in
support of the U.S. Department of Energy's (DOE's) Thermal Power Systems (TPS)
task at the Jet Propulsion Laboratory (JPL) between 1978 and 1984.

The software development task was undertaken to gather data from solar
tests in a timely manner and provide this information to cognizant engineers
in a useful form. The actual testing of the solar equipment took place at
JPL's Edwards Test Station (ETS) located at Edwards Air Force Base, Lancaster,
California, approximately 150 km northeast of Pasadena. The software was
developed at JPL's Foothill Facility in East Pasadena.

A. OVERALL DESIGN PHILOSOPHY

The overall design philosophy was the accurate and timely gathering of
data from solar tests at ETS. This governed all decisions regarding software,
hardware, and programming commitments. Software was also designed to provide
the resulting information in a form that was easily understandable, both
during the test and after the completion of the test.

Additional design requirements included ease of operation by the testing
staff at ETS, and the eventual need for a multi-testing capability.

The ease of operation requirement developed as a consequence of the
location of the test site. The testing staff at ETS did not have programming
expertise and, therefore, could not handle complex programming tasks. Nor was
there a sufficient workforce to dedicate an individual to operating the data
acquisition system. This task had to be shared by all the testing staff.
This meant that the testing procedure could not be too complicated nor time
consuming. Changes in test parameters at the last moment were not uncommon
and the software had to reflect the ability to change with the testing
hardware on very short notice. These factors contributed to the need for
simple and fast software to handle the data acquisition.

The testing at ETS was initially confined to one module at a time.
However, hardware plans were made to have several test bed concentrators
(TBCs) available for use simultaneously. This required that data acquisition
equipment sufficient to handle all the tests be in place, and that software to
support all these .needs be available when the time came. This design
requirement was to have a major impact on the selection of an operating system
in the future.

All of these factors contributed to the overall design philosophy and
the eventual software that was provided for test support at ETS.

1-1

B. DATA LOGGING HARDWARE

The data logger selected for the conversion of data from sensors to a
digital form was the Acurex Autodata-Nine. This data logger has a modular
design with input cards that permit the scanning of 10 sensors or channels of
data. This modularity extended to remote scanner boxes that could be placed
in a remote location, and be activated and scanned by a data logger on
command. The remote scanners could also operate from a considerably remote
location. The cabling required to connect the remote scanner to the data
logger was far less than the cabling required to connect all the sensors to
the data logger located hundreds of meters away.

The data loggers had a scan rate of 24 channels per second in standard
resolution mode, and 10 channels per second in high resolution mode. The data
loggers used a sample-and-hold type of scan, rather than an average for some
period of time. These data loggers, first purchased in 1978, were most noted
for the low signal-to-noise ratio. They were able to scan 1000 channels with
the aid of the remote scanners. The scan rate, channels scanned, and sensor
type were selectable from the front panel. A backup battery provided power
for the clock and calendar so that the device always had the correct time and
day. An impact paper tape printer was available, but was not used during
testing due to the slowness of the printing, which adversely affected scanning
during testing.

The selection of the data logger was based primarily on criteria
determined by the test engineers within the group. The low signal-to-noise
ratio was the most persuasive argument for their use. The ability of the data
loggers to handle a wide range of sensors was also important in their
selection. These data loggers could handle voltages up to 10 V with the
appropriate input card. The thermocouple input cards included electronic
temperature compensation, eliminating the need for a standard temperature
lead. All the common forms for thermocouple leads were supported by the data
logger. The necessary digital interface to the minicomputer was of secondary
importance. This was a problem during later multi-testing implementation.

The data loggers became the standard logging device at the test site.
Eventually, close to half a dozen were purchased and used for testing and data
acquisition at ETS by the time that testing ended in 1984.

C. PRACTICAL RESTRICTIONS

Some practical restrictions had to be taken into account in developing
the software. The most obvious were the restrictions placed on the software
by the available hardware. These hardware restrictions were divided into two
categories: the data loggers and the minicomputer used for data gathering.

As mentioned previously, the data loggers were selected for their low
signal-to-noise ratio rather than their serial input/output (I/O) capabilities.
The serial I/O was 'an added feature that was restricted to a relatively low
speed. The I/O was also sensitive to noise and required exact control
sequences to operate. Support for starting and stopping the data flow once

1-2

the scan command was sent was not provided by the data logger. This lack of
XON/XOFF support restricted the minicomputer's availability to perform other
tasks. The minicomputer's ability to accept the data when a scan was started
was an essential criterion.

The minicomputer used was originally made available to the Test and
Evaluation (T&E) Group from a previous NASA project. This was the start of
the use of Digital Equipment Corporation (DEC) PDP-11 series minicomputers for
the data gathering task. The expertise of the members of the programming
staff was in the use of DEC equipment and software. This would restrict the
T&E Group to DEC equipment and monetary considerations would restrict the type
of DEC equipment available.

Another practical restriction was the location of the test site. The
programmers developing the software were located 150 km from the actual test
site. During periods of software installation or software problems at ETS, a
programmer had to be available on site. This took up valuable development
time by a programmer. Every attempt had to be made to keep the software as
"friendly" as possible for the staff at ETS, thereby eliminating the need for
a permanent programmer on site.

These were some of the general practical restrictions that had to be
included in the software development. Additional restrictions due to new
hardware and software additions are discussed in the appropriate sections.

1-3

SECTION II

RT-11 BASIC

A. DESIGN PHILOSOPHY

The overall design philosophy for this first stage of development was to
provide testing capability as soon as possible and support the testing effort
at ETS with the existing equipment. A second, but equally important,
consideration was the need to keep the software as easy to use as possible for
the testing staff at ETS.

The first requirement was that the testing capability be available at
the first possible opportunity. However, the system was initially quite
cumbersome and provided a great deal of input on user interfacing for future
software efforts.

B. HARDWARE

The initial hardware available for the beginning of the project included
equipment that was transferred from a previous project. This was the DEC
PDP-11/10 minicomputer with two removable 2.5 MByte disk drives, and a
Versatec printer/plotter. This equipment was originally purchased with NASA
funds for a different project. The Solar Thermal T&E Group also purchased new
equipment to supplement the transferred equipment. This included a nine-track
magnetic tape drive and controller, and an Acurex Autodata-Nine data logger.

C. SOFTWARE

The operating system used was the standard single-user software supplied
by DEC called RT-11. This operating software was designed for a single user
to interface with the equipment. As such, all the system resources were
available to the one user.

The initial data acquisition software was written in BASIC. This
version was not very sophisticated and was more of a temporary measure until a
FORTRAN version of the software was available. The BASIC program required
that the program be started from the console terminal, and that the connecting
cable from the terminal to the minicomputer be disconnected from the terminal
and re-routed to the data logger. At that point, the data logger was set to
the scanning mode and data acquisition began.

The data from the data logger consisted of American Standard Committee
for the Interchange of Information (ASCII) characters, each character
equalling 7 bits. The data were set out in a scan, with all data channels
scanned in sequence preceded by a time mark. A selectable end-of-scan
character was sent at the end. This character was an "!", ASCII character
41 octal. The structure of the characters within a data scan was fixed by the
data logger. This served as a check of the integrity of the transmission of
the data from the data logger to the minicomputer. A typical scan is shown in

2-1

Table 2-1. The presence of the colons separating the minutes, hours, and
seconds were checked to perform a rudimentary check of the integrity of the
data. The example shown in Table 2-1 is for the Meteorological Subsystem.
The output for test data includes a three-digit channel identifier rather than
the one-digit identifier (shown before the + or - sign) and includes six
characters for units which have been deleted from this example. For more
details, see the Acurex Auto-Data Nine Reference Manual.

The data logger was manually set to scan through all of its programmed
channels once per interval. The interval usually used was 30 s or 1 min. The
data logger's slow scan speed and the minicomputer's method of data
acquisition prevented shorter intervals.

The data logger converted several types of analog data into useful
digital data. Thermocouple voltages were directly converted to temperatures
by the data logger. The data loggers were equipped with temperature
compensating circuitry to perform the conversion. All other measurements had
to be converted to voltages for measurement. These were digitized in sequence
during a scan. These instantaneous values were then transmitted to the serial
port of the data logger. No averaging of values during the interval was
possible with the data logger.

The data from each scan was loaded into a buffer within the operating
system software and was then transferred to the magnetic tape. All data in
this version was sent directly to mag tape. No data was stored on any other
medium. The format of the data on the magnetic tape was in the standard form
for BASIC files. The scan information was transferred to magnetic tape in
standard 512 byte blocks. Since the scans from the data logger may not be
exactly 512 characters per scan, each block of data may include less than one
scan of data. The magnetic tape drive used the standard IBM nine-track format
for writing.

At the conclusion of the test, the cable from-the minicomputer to the
data logger was removed and re-attached to the terminal. From the terminal, a
command to terminate the acquisition program was entered. At this point, an
end-of-tape mark was placed onto the magnetic tape. The software would then
perform a data dump of all data recorded on magnetic tape, either in a
formatted output with all measurements converted to appropriate engineering
units, or as a direct data dump in actual voltages as measured from the'data
logger.

This software was only an initial attempt at data acquisition for a
limited number of data channels and was used only for the first few tests.
During this period, development, of FORTRAN data acquisition and printout
software was underway. This BASIC software provided information that was
helpful in generating a FORTRAN software package that was better suited to the
needs of the test facility.

D. PROBLEMS/RECOMMENDATIONS

The major problem with this system had to do with the user interface.
The constant moving of cable connectors and shuffling back and forth between
the data logger arid the terminal were quite complicated and required timing

2-2

Ma>oo
oo

cd
4J
Cfl
O

3
P.
4J

O

a)
i-H

I
M

W

CM

(U
H

•8
H

IX.
VO

on
.¥cn

CM

oin
CD

CO

vo
IX.

aon
CO

CM

cn

vo

Tt
CM

CMcn
¥in
$
03

CD

CO

¥to
»
*̂

¥
(M

00on
m

¥
CD
CD

CD
CO

¥
CD

3
CO

CM

R

—CMon
¥cn
IX-vo
COon
CD

CD

~CM

cn
¥

invo
tocn
¥
VD

CD
VO

CMon
¥in
3
03
CO

¥

£

03
H-to

VO
VD

¥
CM

00cn
m

¥
CO
CD

CO
03
CD
1
CD

COin

§
CM

rocn

S
OJ
cn
¥cn
vocn
CDcn
¥
CO

§
on
¥

vocn
toon
CO•t-
vo

03on
CMon
¥in
00

CD
CD

¥

in

¥to
co
CD

¥
CM

CO
cn

cn
¥

03
CD

CD
03
CD
1
CO

CD
03

3
CM

rocn

00

CMcn
03

cn

inro

cn
¥
00

on
CD

cn
¥
voto
•xTon
¥
VD

03ro
rocn
¥in
CD
•xT

03
03

¥

in
03

¥to
CD
G3

¥
CM

03
cn
cncn
¥
GO
03

03

G3
1
63

03

§

CM

rocn

. 5
CMcn
¥on
inro

on
CO

CD

on
03

cn
¥
tx-fo

cn
¥vo
00to
toon
¥in

3
03
CD

¥
in
CD

¥to
CD
03

¥
CM

03on
oncn
03

03co
CD
iS

¥
CD

COc»j

?r
CM

rocn

in
ro
CO

¥cn
ro
CM

CM
CD
<9

CD

£
CM
CO

¥
rocn
•xT
03
CD

VO

in
CO

•VT
00

¥
in

.to
Tf

CO
03

¥

voro

¥ro
CDin

¥
CM

CDon
oncn
¥
CD

03
03

¥
CD

CDro
cn
TT

CM

rocn

vo

CD

¥on
ro
03

CM
CD

¥
00

to
ro

voin
in
CO

¥vo
CD
VO

CO

¥in

S
CD
GO

¥

ID

¥to
CO
CD

¥
CM

CDm
cnonro

03
03

03
03

¥
03

?

3
CM

toen

IX.

CO

¥
CTl

to
03

CM
00

¥
03

to
ro
C3
CO

voin
in
CO

¥
vo

IX.
VO

CD

¥in

"
03
03

¥
vovo

¥to
CO
03

¥
CM

00
CD

cnon
¥

GO
CD

CO
CO
C3
1
CD

CD
in

3
CM

to
on

in

03

¥on
cn

ro
CD

¥
00

IX.
VO

ro
CD

¥
roon
in
00

¥
VD

10
03

in
CO

¥in
3
CO
03

¥

ro
03

¥to

cn

¥
CM

CDcn
on
cn
¥
03
CO

03
CO
SB
1
CD

CD
CO

03in
CM

toon

in

03

cn

cn

ro
CO

¥
CD

[X.
VD

to
03

¥
CMon
inoo

VD

to
03

in
03

¥in
3
03
03

¥
to
03

¥ro

on

¥
CM

CO
cn
mon
¥
CO
CD

CO
CD
CO

CD

00

03in
CM

roon

N.on

CD

¥cn
Tt
vo
ro
03

¥
03

ro

•xT
03

¥
a
•xT

VD
CO

¥vo
CO
U1

inaa
¥
in

•xT
03
S3

¥

vo
CO

¥to
CD
CM

¥
CM

Ol
cn
cnen
¥
CD
CO

a
CD

¥
CD

00
(M

COin
CM

tom

ro
CM

in

I
cn

cn
CD

ro
CO

¥
00

aaro

03

¥
invo
vo
CO

¥
VD

1C
in
03

¥in

3
03
03

¥
CD

¥to
CMto

¥
CM

CDcn
onat
¥
03
CD

CD
CD
CO
1
CD

CDro
COin
CM

ro
cn

to
CM

in
CO

¥cn
cn
00

ro
CO

¥
CD

aaro
•xT
C3
CD
T

in
vo
vo
CO

¥
VD

in

in
CO

¥in
3
03
03

¥

03

¥to
CXI
to

¥
fM

00an
cnm
¥
03
O

03
03
CD
1
CO

3
03in
CM

tocn

aa
IN.

in
CO

¥cn

•xT

•xT
03

¥
CD

tocn
•xT
CO

¥

(M
(M

IX.
CO

¥vo
to
vo
CD

¥in
3
03
CD

¥

£

¥to
cnin

¥
(M

03cn
onon
CD

CO
CD

03

¥
CO

COin
03in
CM

rocn

an
CO

in
03

¥cn
TT
in
Tf
CD

¥
CO

ro
CD

in
03

¥

CMro
IX.
00

¥vo
voro
vo
03

¥
in

3
03
CD

¥

£
•xj

¥ro
CMvo

¥
CM

aaon
anan
¥
03
03

03
CD
CD
1
CD

00
CD

in
CM

rocn

2
VO
03
CD

an

cn
IX.

03

¥
CO

03
(M

in
00
CO

03in

6
+

0
8
?

IX.
VO

vo
CO

¥
in

3
03
CD

¥

Cxi
VO

¥ro
ID
IX.

03

CM

CDan
cncn
CD

03
CO

CO
CO

¥
03

OD

in
CM

rocn

3
vo
CO

¥
an

cn
03

in
00

¥
00

min
in
CO

¥
an
CD

IX.
CD

¥vo
CDan
vo
00

¥
in

'x?
CO
CD

¥

IX.
IX.

¥to

cn

¥
CM

00on
atan
¥

03
CO

CO
03
CD
1
03

CO
CM

in
CM

to
on

03

u>
03
03

on

3
in
03

¥
03

•xTon
in
CD

¥
vo
(M

03aa
¥
VD

•xT

03

¥
in

*
03
G3

¥
•xt
cn

¥ro
CO
03

CM

00an
aton
¥

03
03

03
G3

¥
03

OOro

in
CM

roon

—IX.aa
¥an
in
IX.

in
03

¥
03

in
CM

vo
03
03

in
00

vo

invo

03

¥in
"
03
03

¥

on
03

¥ro
ro
CM

CO

CM

03an
anon
¥
03
G3

03
03
03
1
03

?

in
CM

toat

IX.
in

03

¥an
at

VDaa
¥
CD

g

VO
03

¥
•xT
03

at
03
(3

VO

~

00aa
¥in
!§
CO
03

¥

at
CM

¥to
at10

¥
(M

COat
enat
¥
03
03

03
CO

¥
03

COin

in
CM

roon

ro
IX.

IX.
03

¥an

inro
vo
03
CD

aa

in
CO

vo
03

¥

at

at
03

¥vo
VD
(M

CD
03

¥in

%
03
03

¥

anro

¥ro
roin

¥
CM

00an
on

¥
03
03

S3
03
03

03

CD

CMin
CM

toon

2-3

from the testing staff. As the testing staff was not accustomed to using
computerized data acquisition equipment, this only complicated matters. A
major recommendation from this software was to simplify the user interface.

The data loggers can scan up to 1000 channels of information per scan.
The data logger has to be set up to identify the channel number, the type of
measurement to expect, the level of resolution to measure, as well as standard
information such as scan frequency. This initial version of the software did
not permit the automatic setting of the data logger. This required that the
data logger be set by hand prior to the test. This can be a tedious task that
could be automated through the data logger's serial I/O port.

The conversion values for each channel of data were hard-coded into the
data processing software. To affect a change, the program had to be edited.
This required that a programmer be available to make even the simplest changes
of conversion constants. A better alternative would be to support the
conversion constants in a table of values that could easily be edited.

These major problems were examined and corresponding solutions were
incorporated into the next version of the software.

2-4

SECTION III

RT-11 FORTRAN

A. DESIGN PHILOSOPHY

This was the next increment of development of the software for the
testing at the Parabolic Dish Test Site (PDTS). The overall design philosophy
remained the same, namely, the accurate and timely gathering of data from
tests.

Based on the experience from the BASIC programming, additional
interfacing for ease of operator use was planned for the system. This
experience not only provided information about the human-data-acquisition
equipment interface, but also about the data logger-data-acquisition equipment
interface.

B. HARDWARE AVAILABLE

The hardware was upgraded at this point. Rather than a DEC PDP-11/10
minicomputer, a larger, faster minicomputer (PDP-1134A) was substituted. This
minicomputer provided more flexibility in accessories than could be included
into the system.

.. The same peripherals were available for this new minicomputer. One
major factor in the decision to use the PDP-1134A was the compatibility of
peripherals. The two removable 2.5 MByte disk drives, the nine track magnetic
tape drive, and the printer/plotter were all transferred to the new system.
Additional peripherals that were new to this system included additional serial
I/O ports for connection of the data loggers.

C. SOFTWARE

The software developed tried to take advantage of the BASIC programming
experience. The inconvenience of manually changing the serial I/O port
connector from the data logger to the console terminal was replaced by a much
smoother system. As much automatic logging of information as possible was
included.

The software consisted of six separate programs, each designed to be
used in sequence. The first of the sequence was the program to set the
parameters called SETPAR. This program was used to alter and/or update a
table containing information about the channels to be scanned in the day's
test. The information included the type of transducer that would be used, the
conversion coefficient, if any, the resolution that the data acquisition
software should expect, and a suitable title and appropriate units for each
measurement. This software prepared the table that would be used in printing
out the final results. 'It did not set up the data logger.

The next program assigned the test number and prepared the magnetic tape
by placing a header file containing information about the test, such as test

3-1

number and date of test. The testing staff was encouraged to manually check
the data logger to ensure that the time was synchronized with that in the data
acquisition minicomputer, that the channels of interest would be scanned, that
all alarm levels were properly set, that the scan rate was correct, and that
the data logger was set to send data to its serial port.

The actual logging was performed by a program called LOG. This program
acted acted as a buffer, collecting data from the data logger input port,
performing some minor string checking, and outputting the information to the
magnetic tape drive. The software also permitted the suspension and
resumption of logging within a test and the entry of a message onto the tape.
The checking of the string included the checking for colons in the time string
and, in later versions, the checking of the data stream for warning messages.
These warning messages were displayed on the screen of the console terminal
for the testing staff to interpret and act upon.

At the conclusion of the data gathering, a program to place the
parameter table onto the magnetic tape was run. This was the POST program.
This provided an archive copy of the channels measured and some minor
information about each channel. Later examination of the data showed that
more information about the testing would have helped.

Two versions were available for printing out the data. The quickest was
a program called QUICKY. This program started at the beginning of the data
run on the magnetic tape and printed out each scan, line by line, without
conversion of data or any additional information other than the time, channel
number, and the raw data value. This was the printout most often requested at
the test site. The other version provided a cleaner format with conversion to
the appropriate engineering units, but could only display 10 channels of data
at a time. Simple calculations were possible for this print program called
PRINT. The simple calculations were included in the source code and had to be
incorporated by a programmer. This precluded a member of the testing staff
from altering or adding calculations during the testing. This further
required the cognizant engineer to preplan his calculation needs. As a
typical test had over 70 channels of data, the cognizant engineer would
request the quick, raw printout and a formatted printout of only 10 of the
most significant channels.

Note that the data logger was handled as a separate device. The
software was set to permit rapid change of the channels to be scanned, the
conversion factors to use, and the other information included in the output;
but the testing staff had to set up the data logger manually, initiate testing
manually, and terminate testing manually. In later versions of the software,
this was replaced with automatic setup and use of the data logger by the
minicomputer. Also note that graphs of data were not available at this time.
The software supported several I/O channels so that the cabling from the
console terminal did not have to be changed to a data logger during testing,
as was the case with the BASIC software.

The files on magnetic tape consisted of three files. The first file
contained starting information about the test such as test number and date.
This file had the filename xxxxxx.PRE where the xxxxxx was the six-letter code
for the test. This file was in a DEC RT-11 FORTRAN formatted sequential
file. The main data file on the magnetic tape was in the form of a DEC RT-11

3-2

FORTRAN unformatted sequential file. Data from the log program was written
onto the magnetic tape in this manner. The last file in the series was the
file containing the parameters used to prepare the formatted output. It
included all the information about the channel numbers used, the units, the
titles, the resolution, and the type of sensor. This file was in the form of
a DEC RT-11 FORTRAN unformatted sequential file. This information was
important in reconstructing the test information at some future time. All
three files were stored on magnetic tape at the test site.

Each tape could contain more than one test. However, one test could not
span more than one tape. Running out of tape during a test would have
resulted in a fatal error in the FORTRAN programming. Therefore, the testing
staff was instructed to use a new tape whenever a long test was expected.

D. PROBLEMS/RECOMMENDATIONS

This version of the software package was a major improvement over the
BASIC version. The amount of test equipment manipulation during testing was
decreased, although not totally eliminated. The fact that the testing staff
still had to set the data loggers by hand was a problem. The availability of
several I/O ports accounted for the moderate amount of improvement.

This version also permitted easier changing of the testing parameter
information, right up to the moment of the test. This ensured that the data
was timely and correct. However, calculations still had to be prepared days
in advance and last-minute changes could not be incorporated.

The data in tabular form, even with the appropriate units and formatting,
still represented a staggering amount of data. Typical runs of several hours
with scans of 75 channels every minute could produce a quarter of a million
characters in the printout. Graphic representation of all these data would
have assisted the cognizant engineer in the interpretation of the data. This
major modification was added to the next software package.

Information about the test other than the raw data was limited. The
parameters table was included; but this was minimal information at best. The
software did support comments; but during the testing, time to include
comments was usually not available. Additional information had to be stored
with the test data for archival purposes.

Neither the operating system nor the application software permitted the
conducting of two tests simultaneously. This was a major drawback. During
the period of this testing, the two TBCs were being readied for simultaneous
use. Software was developed to handle this situation.

3-3

•

SECTION IV

RSX-11M FORTRAN

A. DESIGN PHILOSOPHY

The basic design philosophy was simply an extension of the previous
systems. The primary design goal was to ensure the accurate and timely
gathering of data. Now, however, the requirements of testing dictated that
the software be able to record data from two separate tests simultaneously.

The "user friendliness" of the software still needed to be improved.
The design philosophy of providing the testing staff with software that would
handle the majority of the data acquisition task had not yet materialized.
This situation was extended to the cognizant engineer who had to interpret the
data gathered.

B. HARDWARE AVAILABLE

The hardware available at this point changed significantly. To support
the greater amount of data expected and the anticipated speed that would be
required to handle this additional data, a large disk system was added to the
minicomputer. This was a Control Data Corporation 7766 hard disk drive and
Systems Industries disk controller. This disk had a capacity of 300 MByte of
data. All software, with the exception of the operating system, was placed
onto this disk. Additional serial I/O ports and video terminals were also
added to the system in support of the expected multiple test situation.

The rest of the hardware remained the same. The minicomputer at the
center of the data acquisition system was the DEC PDP-1134A with two 2.5 MByte
removable hard disk drives, a nine track magnetic tape drive, an electrostatic
printer/plotter, and assorted accessory equipment.

Additional data loggers were purchased from Acurex. In fact, the last
data loggers received were from the final manufacturing run by Acurex. In
support of the testing at a site far from the data acquisition equipment, the
RS-232 signal would not ordinarily reach that far without the possibility of
interference. To ensure that the data were received without problems, a
duplex fiber optic cable was installed from the test site to the data
acquisition site. This fiber optic link proved to be trouble free during the
entire testing period.

C. SOFTWARE

1. Initial Attempt

The support of multiple tests simultaneously presented many
problems. The first was the operating system that would support multiple
users conducting multiple tests. Because of the hardware restraints, the
multi-user real-time operating system available from DEC (called RSX-11M) was
used. Along with this operating system, the applications software was written

4-1

in FORTRAN and assembly language. The version of RSX-11M that was used was
version 3.1. Since the start of the development, RSX-11M had progressed to
version 4.0. The last version represented an improvement in user interfacing,
but at the price of speed and compactness. Also, each new version brought on
new changes in the printer/plotter software and in the hard disk handler.
These represented additional charges for software that were not expected.
Also, a special driver was written to support the serial I/O in version 3.1,
and it was not clear that it would function properly in later versions. For
this reason, once the acquisition software was written in version 3.1*- no
further updating to support later versions was made.

The software effort at this point was quite large. Two programmers were
assigned the task of data acquisition and recording, using a common memory
approach. In this method, the data as received from the various data loggers
was placed in a common area of memory that could be accessed by printout and
storage programs running in turn. The common area of memory held the most
recent scan of data; and it required coordination to receive, print out, and
store the data in proper sequence in the time allotted. This task proved to
be quite complicated.

Two events changed this approach. First, the individual in charge of
software development, as well as the individual most intimately involved in
the common memory approach, both left the project. The second event was
financial. A budgetary problem resulted in releasing the two programmers
working on the common memory approach and the abandonment of this approach.
In its place, the need to get a multiple test system in operation quickly
resulted in a much more conservative system. This system was based on hard
disk file access for the data.

This hard disk file access was made possible because of the availability
of the 300 MByte hard disk system. The data acquisition software stored the
data in its raw form on a disk prior to any manipulations. This ensured that
the data received was correct and that, at some future time, if a change in
calibration were found, or some constant altered, the raw data received from
the data logger would be available. The acquisition software was also
designed to display warning messages on the console terminal should a raw data
value exceed a predetermined limit. The software was designed to display on
the console terminal the values "obtained for several channels immediately
after the scan to provide the cognizant engineer with a real-time estimate of
the test situation.

This part of the software package was performed during the winter of
1981. The software needed to conduct the entire test consisted of several
programs, each used in succession. This was necessary due to the limitations
of the DEC FORTRAN software. Programs larger than 32 kilowords, where each
word consists of two 8-bit bytes, could not be executed. This resulted in the
segmentation of the overall program into subsets which performed specific
tasks. Together, the software provided all the data acquisition and data
retrieval necessary.

4-2

2. Operating System

At this point, a few words about the constraints placed upon the
data acquisition software by the operating system is included. Under the
original plan, several separate programs would run simultaneously within the
operating system environment. One major problem that was encountered early,
while working with the RSX-11M operating system, was the round-robin polling
of tasks. Under RSX-11M, the operating system assigns a priority number to
each task ranging from 1 to 250. Tasks with a high priority receive the
resources of the minicomputer. Tasks with equal priority each get a turn at
using the resources of the minicomputer for a set period of time. After the
task's allocated period of time, the operating system goes to the next task
with the same priority and gives the system resources to it. In this way,
each task gets its turn using the minicomputer, and tasks that were entered
later into the system get an opportunity to complete on an equal footing with
tasks entered earlier into the system. However, this round-robin scheduling
of resource allocation did not work well with the data loggers. The data
loggers, as mentioned earlier, did not support XON-XOFF protocol and,
therefore, could not be stopped once the scanning was begun. The problem
developed that, during the scanning, the round-robin scheduler stopped the
acquisition task and went on to another task, such as the data storage task or
the printout task. This meant that the data for the latter portion of the
task was lost. The only solution available to us at the time was to ensure
that the minicomputer and its resources were always in the data acquisition
task during the test procedure. This was done by setting the data acquisition
task at a priority of 249 at startup. This effectively made the multi-user
system a single user system.

One possible solution to this problem might have been the use of a
"keyboard buffer" to store the information from the data logger in a serial
input buffer until the operating system returned to the acquisition task after
the round-robin attention to the other tasks. The RSX-11M operating system
did not support an input buffer. The keyboard was active only when the
operating system was polling that task. This meant that the common practice
of "typing ahead" was not allowed. Any input was lost. This proved to be a
major problem that was encountered using RSX-11M.

Another problem encountered with the operating system early in
development was the difficulty with shuffling tasks within memory. The
operating system monitored the free memory available for new tasks. As each
user requested a task, each was loaded into memory as low as possible. As the
tasks were completed, each task was removed from memory. A problem can occur
if a small task is loaded low in memory with other larger tasks installed
above in higher memory. When the small task is completed, it is removed from
memory. If another task wants to enter into the system, it must be equal to
or be smaller than the just-removed task. The operating system shuffler will
consolidate any existing space in memory into one large contiguous region of
memory and make it available for use to a new task. This did not always occur
when tasks of different priorities were involved. Tasks would not be shuffled
to make room and other requested tasks would be queued. This made it
imperative that care be taken when running tasks of different priorities.

4-3

3. Disk File Access

The data acquisition system that was eventually used for the bulk
of the testing at ETS was based on the RSX-11M operating system and the disk
file access approach. The task was broken into many small tasks that were set
to "daisy chain" together with each completing task calling the next task.
This daisy chaining was accomplished through the use of indirect command files
as well as the chaining of tasks. The tasks are listed in Table 4-1. Note
that these are the major tasks. Each task shown has several subroutines that
are not listed.

The daisy chaining of the tasks was accomplished by either calls from
within an indirect command file or through the use of the RECEIV/SEND
directives. In most cases, both methods were used to initiate the appropriate
tasks. A sample of an indirect command file is included in Appendix F.

Table 4-1. Major Tasks for Data Analysis

Software Task Description

DBGEN

DECODE

NWDBGN

EXECUT

LOGGER

CNVRT

NEWVRT

NWPRNT

PLTSET

PLOT

Database generator

Decodes the calculation subroutine and
creates array for calculations

Further database generation processor

Executive program from which the operator
starts and stops logging

Main task that performs the actual logging

Compacts the data from one character per
word to one character per byte

Converts data from raw form to engineering
units

Prints out engineering unit data in tabular
form

Extracts data from engineering unit file
for plotting

Generates plotting instructions for plotter
using data extracted above

4-4

4. Testing Sequence

The sequence of testing began with the testing staff at ETS
checking the parameters file. The parameters file contained the list of
channels that were to be scanned including information concerning the type of
sensor used, the resolution expected, the name and units to associate with the
channel, limits (if any) to monitor for the various channels, the name and
channel assignment of calculations to be included, the list of channels to
display on the terminal in near real time, and a list of channels to plot at
the conclusion of the test. The checking was done using the system editor.
The test number was sequenced manually, and a check of time interval to be
used was also made.

A parameters file existed for each module tested at ETS. As sensors
were added or deleted, this file was modified. These parameters were used by
subsequent programs to determine such functions as the channels to scan, the
channels to display, and the channels to plot. To place this file into a
readable form, the tasks DBGEN and NWDBGN were used to create and/or update
the machine-readable file, SETPAR.OOx, where x was either 1, 2, or 3. This
file was the one used by all subsequent programs.

To include calculations in the data printout portion of the analysis
sequence, the subroutine containing calculations had to be correlated with the
channels used in the parameters file. To accomplish this, the program DECODE
was used to correlate this information. This information was used to provide
near real time displays of calculated values.

The testing staff interfaced with the data acquisition program EXECUT to
start or stop a test. EXECUT asked a series of questions about the test to be
performed to ensure that information important to the test would be archived
with the data. The information included the test identification number, the
date, the test bed being used, the mirror configuration (if the mirrors had
been washed today), the cloud cover, and any notes of interest. This
information was printed out at the end of the test. This information
subroutine was added later and, therefore, was not available for all tests.

The EXECUT program performs a call to the operating system that
initiates logging by calling the program LOGGER. This program sends a series
of characters to the data logger serial port. The data logger interprets
these characters and starts a scan. The program then waits for the characters
to return from the data logger. As each character returns, the character is
placed into a buffer maintained by the program. The characters are checked
for warning and, if one is found, is displayed on the predetermined terminal.
At the conclusion of the scan, .the data in the buffer is transferred to a file
on a disk called LOGx.ACQ, with the x either 1, 2, or 3. The file is opened,
the information is transferred, and then the file is closed. This is to
ensure that if there is a system crash, the data will not be lost. Under
ordinary circumstances, an open file will be lost should a system crash occur.

After the data is safely on a disk, the logging task displays selected
channels of converted data on a preassigned terminal. The selection of
channels to display is set in the parameters table and the assignment of
terminals is done at startup time by assignment of logical units. This is a
feature of the RSX-11M operating system for installed tasks. The logging task

4-5

then checks its timer to see when the next scan is to be executed. In this
way, the logging task determines when the logging is to be done, starts the
scan, and processes the data as they are returned by the data logger. The
logging task will skip the display of data should its timer indicate that the
next scan is to start. In this way, the display of data is of secondary
importance. The collection of data is paramount.

The EXECUT program can instruct the logging task to collect data from
one, two, or all three available ports.' The timing of the scans can be a
problem, however. If each data logger scans approximately 75 channels of
data, over 3 s are required simply to transfer the data from the data logger
to the minicomputer. This does not include time to store, process, and
display the data. The time given to perform the additional functions is
approximately 15 s. The best scan rates that were used at ETS were 20-s scans
for one data logger, and usually 30 s for two data loggers, and 1 min between
scans for three data loggers. The logging task and the data loggers simply
were not fast enough to handle data at higher rates.

At the conclusion of the test, an indirect command file (called POST)
was executed that would handle the termination of the test and the post
processing of the data. Whenever possible, indirect command files were used
to ease the operator input at the test site. The indirect command files
permitted a predetermined set of operating system-level commands to be
entered. Each was then executed in turn. Some simple decision making logic
was available in the indirect command processor and this was used to handle
some individual differences between tests.

The indirect command file, POST, started by running the executive
program EXECUT. From this task, the logging could be halted. At this point,
additional comments could be entered for inclusion with the other data onto
magnetic tape. The operator was asked to include the number of the logger
used and the test ID run number. The test ID run numbers for the RSX-11M
collected data was based upon a two-character module identification. The next
four digits represented test numbers, usually starting with test 0100. The
file extensions (the three characters after the decimal point) were used to
indicate different types of files. Table 4-2 gives an example of the type of
two-character module identifications that were used. A listing of all the
tests performed is given in a JPL report.1

At this point, the processing of the data was started. The raw data was
converted from one character per word to one character per byte, and stored in
a file with the six-character file name followed by the three-character
extension; .ACQ, by the task CNVRT. The .ACQ file was unique to this
particular data run and contained all the raw data from the data logger. Upon
completion, the CNVRT task called the next task, NEWVRT. This task took the
raw data from the .ACQ file and, using the information from the parameters
file, converted all the information to engineering units. This information
was stored in a file given the name: filename.EUS. Upon completion of this
task, the print formatting task was called by the NEWVRT

1-Selcuk, M. K. , Parabolic Dish Test Site; History and Operating Experience,
JPL Publication 85-18, February 15, 1985.

4-6

Table 4-2. Module Identifications

Module ID Module Tested

OG Omnium-G Tests

BR Brayton Air Receiver

CR Carter Steam Engine

FM Flux Mapper

CW Cold-Water Cavity Calorimeter

ST Stirling Cycle Engine

PY Pyrheliometer Standards Comparison

MA Materials Test

VA Vanguard Tests

task. The print formatting task, called NWPRNT, formatted the output into
seven columns of data in addition to the time stamp for each channel. This
printout file was stored as TRANSx.LST where the x indicated the logger used.

The NWPRNT task is called the plot formatting task, PLTSET. This task
extracted the necessary data from the .EUS file to create the graphs that were
requested in the parameters file. The output from this task was stored in a
temporary file denoted by the extension, .PLT. The formatting of the data into
a plot format for use by the printer/plotter was performed by a task called
PLOT. This task took the data from the PLT file and, using the proprietary
software from the plotter vendor, performed the actual calls to the plotter
subroutines. The outputs from this task were two binary files called
VECTR1.BIN and FARM.BIN. At this point, many files were renamed to match the
test identification filename to keep them unique to the just-completed test.
A list of extensions used in the data analysis is given in Table 4-3.

All the files (with the exception of the .LST, .PLT, and .NOT files)
were stored onto magnetic tape for archival storage. The files were also kept
on the 300 MByte disk drive for backup. This twin backup system was used to
ensure that the data would be available should one backup source be damaged.
The transfer of data to the magnetic tape was done using the standard DEC
peripheral interchange program (PIP), rather than the backup and recovery (BRU)
utility. The BRU utility was not available when the RSX-11M data acquisition
program was begun at ETS; and the initial versions proved to have a system
bug. The PIP commands were well known to the testing staff and easy to use.

The storage of the data on the 300 MByte data disks required that the
disks be changed periodically. The filled disks were stored at the Foothill
Facility and a new disk was installed to store data. The data acquisition
software was transferred from magnetic tape and occupied approximately 1 MByte
of disk space.

4-7

Table 4-3. Filename Extensions Used for Data Analysis

Filename Extension Contents

0

ACQ Raw data from data logger
o

EUS Data converted to engineering unit

LSI . Engineering unit data formatted for printout

PLT File containing data to plot

NOT Note file containing notes from testing

CLC Copy of calculations subroutine

SET Copy of parameters table for this test

CMT Comments file included on magnetic tape

The printing of the data and graphs was performed by the initiation of
another indirect command file called PRINTOUT. This indirect command file
could perform the printing and plotting of data for four different tests, each
with different requirements for number of copies of data and number of sets of
plots. This routine was normally initiated at the end of the day with a time
delay and allowed to run overnight. The printout routine would begin the '
printout sometime overnight; and the completed printouts and plots would be
available the next morning. Occasionally, problems with the printer such as a
paper jam overnight would hinder the task. The biggest problem that developed
was the printing out of large test runs overnight. The printer/plotter used
an electrostatic process to write and, therefore, required specially processed
paper. This paper was supplied in fanfold sizes of only 1000 sheets. Some of
the later tests required from 300 to 400 sheets to print out. It was normal
to require three sets of printouts and, therefore, only two sets could be
printed out from one box of paper. This was especially annoying because
printing was performed overnight and no one was available to add paper to the
printer.

Once a week the testing staff cleaned up the disk by eliminating
unnecessary files. Another indirect command file, CLEANUP, was used to
perform this task. All .LST, .PLT, and .NOT files were eliminated.
Executable tasks were purged so that only the last two versions were retained
on the disk. This usually saved several hundred blocks of space on the disk.

5. File Structure

The structure of the data files stored on the disk was based upon
the total number of channels that could possibly be recorded during a test.
Initial versions used a maximum of 100 channels, but later this was increased

4-8

to 150 channels. All storage of data was by the sequence in which it was
recorded, not by channel numbers. Because of this, information stored in the
parameters file was very important in the correlating of stored data to the
actual channel numbers used on the data logger.

The parameters file was an ASCII file that could be edited using the
standard DEC editor. The structure of the file is shown in Table 4-4.

The first line is simply used to assist the testing staff to find the
correct column for data entry. The second line contains information about the
test to be performed. The first two characters represent the module being
tested, the next four represent the test number, and the next three digits
represent the total number of minutes during the test. This number is
initially zero and, during the shutdown of the testing procedure, the correct
number of minutes is placed into this table. The two digits starting at
column 16 represent the time between scans in seconds. The last two sets of
numbers were provided, but never used. The remaining lines, up to the words
PRINTOUT ORDER, contained the actual information about each channel in the
data logger. The first three-digit number was the channel number, as set in
the data logger. The six-character code name starting at column 7 was a code
input name for the calculation routines. This was normally set to any
six-letter code word, such as HEADER, for channels not used in calculations.
The information in columns 16 to 21 contained the conversion factor that the
raw data from that channel was to be multiplied by in order to convert to
engineering units. The eight-character engineering units were listed in
columns 25 to 32. Columns 37 to 52 listed the 16-character name of the
channel being recorded. This contained information about the test channel
such as "INPUT STEAM PRES" or "THERM.ENRGY OUT."

Column 54 contained a single number that was to have been used to
indicate the number of significant figures allowed in the printout. However,
this was never implemented. The information in columns 56 and 57 were for use
with the data logger; The logger can be set to measure thermocouples or
voltages in the 100-millivolt range, 1-volt range, or 10-volt range with the
simple selection of a switch. The first number corresponded to the selection
switches on the data logger. The second character indicated the type of
resolution that the data logger was to supply. The "H" indicated high
resolution mode, while the "S" indicated standard resolution mode. The high
resolution mode provided one additional decimal place of accuracy, but at the
cost of speed. The scanning of a high-resolution channel was approximately
2.4 times slower than a standard resolution.

The last two sets of numbers, starting at columns 59 up to 63 for the
lower and columns 65 to 70 for .the higher, represented the lower and upper
limits to be used by the data logger for tripping of alarms. If the two
values were identically set to 9999., then no alarms were set. These last
three sets of numbers were used to set up the data loggers.

All channels that would be scanned by the data logger were listed in
order of appearance. The data loggers start from the low channels and work
upward. At the end of the parameters list of channels, several channels are

4-9

Table 4-4. Parameter Table

TBC1 STIRLING ENGINE TEST* MOUNTED
12345478901234547890123454789012345478901234547890123454789012345478901234547890
ST 01 11 000 20 0 002
190
171
192
193
194
197
198
199
200
201
202
203
204
205
204
207
208
209
210
211
212
213
214
215
214
217
218
219
220
221
222
223
224
225
224
227
228
229
230
231
501
502
503
504
505
504
507
508
509
510
511
512

mm
TTTTTT

TTTTTT
TTTTTT
mm
mm
mm

mm
mm
VAL013
mm
VALOOl
VAL002
VAL003
VAL004
VAL005
VAL004
VAL007
VAL008
VAL009
TTTTTT

mm
TTTTTT

VAL010
VAL011
TTTTTT
VAL012
TTTTTT
mm
TTTTTT
KEHDAL
EPPLET
mm
mm

i.oooo
i.oooo
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
10.000
500.00
290.00
10.000
290.00
290.00
1.0000
I.OOOO
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
50.000
50.000
50.000
5.0000
5.0000
5.0000
1.0000
1.0000
4.0000
1.0000
2.0000
1.4447
0.3333
10.000
117.10
1.0000
0.0100

BEG. C
DEC. C
DEB. C
DEO. C
DEB. C
DEE. C
DEG. C
DEC. C
6PM
RPH
PSIG
DEG.C
PSIG
PSIG
VOLTS
VOLTS
VOLTS
VOLTS
VOLTS
VOLTS
VOLTS
VOLTS
VOLTS
VOLTS
VOLTS
VOLTS
AKPS
AMPS
AMPS
VOLTS
VOLTS
KHATTS
VOLTS
GPM
PSIG
PSID
HATT/SO.H
HATT/SO.H
(STATUS)
PSID
DEG.C
DEG.C
DEG.C
DEG.C
DEG.C
DEG.C
DEG.C
DEG.C
DEG.C
HERTZ
PF

PERCENT
MPA

ENG.OIL.RES.TEW 4 4S 9999. 9999.
INR HWFOLB QAD 4 4 45 9999. 9999.
INR HHFOLB HAD 7 4 4S 9999. 9999.
DACK SURF.QUAJ 1 4 4S 999?. 9999.
DACK SURF.OUAB 8 4 45 9999. 9999.
ORIFICE LINE Tw 4 45 9999. 9999.
PREHEATS ArirPflB 4 4S 9999. 9999.
PHEHEATEJ AIR 4 4S 9999. 9999.
ENG COOL ROM 4 35 2.000 9999.
ENGINE SPEED 4 35 9999. 4.000
HE PRESS SELECT 4 35 9999. 8.000
ENG OIL TEMP
HE PRESS MAX
HE PRESS -TANK
ENG COOLANT TMP
HIGH TUBE TEHP
TUBE 1 QUAD1
TUBE 2 QUAD*
TUBE 3 QUAD?
TUBE 4 QUADS

4 38 9999. 7.500
4 3S 9999. 10.00
4 3S 9999. 10.00
4 3S 9999. 3.400
4 3S 9999. 4.400
4 35 9999. 4.400
4 35 9999. 4.400
4 3S 9999. 4.400
4 35 9999. 4.(

RUE (CONE) TEMP 4 3S 9999. 5.000
PREHEAT EXHAUST 4 3S 9999. 5.000
ALT MINDING TEHP 4 35 9999. 3.400
VOLT PHASE A 4 3S 9999. 9999.
VOLT PHASE B 4 3S 9999. 9999.
VOLT PHASE C 4 35 9999. 9999.
CURRENT PHASE A 4 35 9999. 9999.
CURRENT PHASE B 4 3S 9999. 9999.
CURRENT PHASE C 4 35 9999. 9999.
ALT FREQUENCY 4 3S 9999. 9999.
PONER FACTOR 4 35 9999. 9999.
ALTERN POKER 4 3S 9999. 9999.
OXYGEN ANALYZER 4 35 9999. 9999.
FLT.PLT.COOL.FLD 4 3S 9999. 9999.
ORIFCE LIME PRES 4 IS 9999. 9999.
ORIFCE DELTA PRS 4 IS 9999. 9999.
KENDALL PYHHELIO 4 IS 9999. 9999.
&PLEY PYRHILIO. 4 IS 9999. 9999.
SLUE PLATE STAT 4 25 9999. 9999.
HANIFLD AIR PRES 4 IS 9999. 9999.
ENG COOLANT TEMP
HIGH TUBE TEMP
TUBE 1 SUAD1
TUBE 2 QUAD*
TUBE 3 QUAD?
TUBE 4 QUADB
FLUE (com) TEHP
PREHEAT OUT TEMP
ALT MINDING TEMP
ALT FREQUENCY
POWER FACTOR
OXYGEN ANALYZER
SCALED CHAN 204

45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47 .
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47
45.47

513
PRINTOUT ORDER
200i201/202.203.204i205i215i214i217i218i219i220;222<223.22B;229i230i501/502/507/
510,511,
REAL TIME PLOTS
504 0.000 0000.00
END

4-10

listed with a number greater than 500. These were used to indicate
calculations. These corresponded to the calculations that were included in
the .CLC routines. Since the printout required titles, this was the place
where that information was given. Note that information about conversion
factors or data logger setups is not presented here. If there were no
calculations, then the last scanning "channel must be set to 599. This was
used by the program to indicate the end of the data channel portion of the
table.

The next section of the setup table is the printout order list. This
list represented the channels to be displayed on the terminal during near real
time display of data. The data displayed included units and the channel
number. Conversion to engineering units was completed before displaying the
information on the screen. The screen was set to display 23 channels of
data. It was here that the testing staff could set which channels were to be
displayed. The display was formatted with four rows each of six channels with
the exception of the last, which only displayed five channels. This section
had to be set prior to the start of the test and could not be changed during
the test. Therefore, once set, the display was fixed until the next text. If
the data logger fell behind in completing scans, such as when several data
loggers were collecting data and there were many alarms that must be
processed, then the display portion of the code was bypassed. The collection
and storage of data and the display of warnings were considered more important
than the display of near real time values.

The final section of the parameters table was the plotting of data
marked "REAL TIME PLOTS." This section listed the channels to be plotted by
the PLTSET and PLOT tasks in the data processing sequence. The first 16
characters of a single line indicated the channels to be plotted on one
graph. As shown in the example, calculations were combined with data channels
in any order. The next eight columns represented the starting value of the
y-axis of the graph, and the last eight columns represented the ending value
of the y-axis. If the values were both zero, then the task was requested to
determine the minimum and maximum values. The plotting routines used the
minimum listed and used either the higher limit or the next closest increment
in plotting. A maximum of 20 different graphs was possible. There was no
restriction on the use of channels, so that a channel could appear in all 20
graphs if desired.

The end of the parameters file was indicated by the word "END." This,
then, is a summary of the parameters file. The file appears with each test on
magnetic tape or on the 300 MByte data disks as xxxxxx.SET where xxxxxx
indicates the test name.

The testing staff was instructed to verify this parameters file each day
prior to testing. If a channel was added or deleted, the testing staff was
instructed to make the appropriate changes. The most common change after the
addition or deletion of a channel was the changing of a conversion factor.
This information was critical for the proper analysis of the data at some
later time. In many cases, this file was the only listing indicating the
channels that were recorded during a test.

4-11

To create a machine-readable form of this parameters file, the tasks
DBGEN and NWDBGN were used. The resulting file was called SETPAR.OOx where x
was the data logger number. This file contained information in a binary
form. The first record of the file consisted of 20 words and contained the
following information:

Word 1

Word 2 and 3

Word 4

Word 5

Word 6

Word 7

Word 8

Word 12

Word 20

All other words

Number of channels to acquire

Test identification number

Number of scans planned for test

Time between scans

Two-character test module identifier

Number of channels for screen display

Number of plots

Number of calculations

Actual number of scans taken during the test

Left blank for future use

The second record contained the channel numbers to scan and consisted of
150 words. The third record was 150 real variables that contained the
conversion factors to translate the raw data to engineering units. The fourth
record consisted of double-real variables containing the ASCII units
description. This record was 150 double-real variables long. The fifth
record was 300 double-real variables long and contained the 16-character
channel descriptor. The sixth record of 150 words contained the significant
digits information.

The seventh record, consisting of 150 double-real variables, contained
the code input name used for the calculation routines. The eighth record,
consisting of 150 words, contained the sequence numbers for the screen output
for near real time displays. The ninth record, consisting of 150 integers,
was followed by 150 pairs of real numbers. The integers contained the
sequence number of channels to be plotted and the pair of real numbers were
the lower and upper limits of the channel number. The tenth record was 100
words indicating the numbering sequence of the calculations. The eleventh
record was 100 double-real variables containing the units of the calculations.
The next record of 200 double-real variables contained the 16-character
identifiers for the calculations. The thirteenth record of 200 double-real
variables contained output information used for calculations. The fourteenth
record of 150 words contained the input selection of each channel for the data
logger. The fifteenth record contained the input sequence numbers for data
needed for the calculations. The last record consisted of 150 pairs of real
variables. These contained the lower and upper alarm limits for each logger
channel. All of this information in the SETPAR file was accessible from each

4-12

of the subsequent tasks. This ensured that the setup information used by each
task was identical. It also offered a relatively easy method of transmitting
this information from task to task and still was easily accessible to the
testing staff.

The procedure for data acquisition by the LOGGER program placed the data
received from the data logger directly into a disk file called LOGx.ACQ, where
the x indicated the logger used. This file consisted of records, each
approximately 2700 words in length. This corresponded to 150 channels of data,
each channel occupying 18 words of data space. The data from the data logger
was stored in the record as it was received. The first 18 characters, which
were the day and time, were stored in the first 18 words of data space. The
next 18 characters, representing the first channel scanned, were stored in the
next 18 words of data space, regardless of the channel number. In other
words, the first channel collected, whether it was channel 001 or channel 367,
was placed in the second 18 words of data. The next channel scanned was
placed in the next 18 words of data space, and so on. As can be seen, only
when 150 channels were scanned was it possible to fill the record. Under
normal use, the records were not filled entirely. The reason for this type of
structure was the type of access that was used in the logging programs. The
direct access file structure was used to allow rapid opening, writing, and
closing of the file. This was important to preserve data in case of a system
crash. To use the direct access file structure, a fixed record length was
required. Also, a future addition that was never implemented would have
required that the record length be predetermined to some maximum value.

The LOGx.ACQ file held the data inefficiently. The DEC minicomputer
memory is based on words, each of which consists of two bytes. Each byte can
hold one character. This file held the character only in the lower byte of
the words. This was done for speed considerations. However, for storage of
data, this is inefficient. The first task called in the data analysis portion
converted this information from word format to byte format. The structure of
the resulting output was different. This output data file was given the name
xxxxxx.ACQ where xxxxxx was the file name.

The day and time were stored in the 18 bytes of the ACQ file. The next
120 bytes were set aside for the inclusion of weather station data. This
function was never implemented. More about the weather station is provided in
a later section. Following the weather data section, the 150 channels of
information were stored, each channel occupying 18 bytes. The same storage
arrangement as for the LOGx.ACQ file was used for the storage of the channel
data.

The processing of the raw data to engineering unit data generated
another data file containing the engineering unit data and the results of the
calculations. This file was denoted xxxxxx.EUS, where xxxxxx was the file
name. This file consisted of two types of records. The first record
contained a list of channels that were converted in this file. The second and
subsequent records consisted of 260 real variable elements. The first two
real elements were broken down into four words consisting of the time. The
first word contained the day number of the test, measured from the start of
the year as day number one. The next three words contained the time of the

4-13

scan in hours, minutes, and seconds. The next 10 real variables contained the
converted weather data. The next 150 variables contained the converted
channel data. The final 98 variables contained the calculations in sequential
order. It should be noted that, under normal circumstances, not all the
variables in the record were used. Typical data runs consisted of 100 data
channels and 20 calculations.

For the plotting of the data, information had to be extracted from the
EUS file. This information was included in a .PLT file. This file consisted
of two records. The first record contained information about the plots. The
number of channels to be plotted was placed in the first word. The second
word of the record contained the time between scans. The next 640 words
contained the 16-character channel identification information. The following
320 words contained the units to be matched with the channels. The next two
sets of 80 words contained the sequence number of the channels to be plotted
first, then all the limits of the channels as determined either from the
parameters table or from a scan of the data. Word numbers 1123 to 1142
contained the number of graphs to be included in each plot, and the final nine
words contained the beginning and ending times of the plots. The second and
subsequent records contained the values in chronological order for each
channel in ascending order. It should be noted that if more than 480 data
points were taken for any given channel, the plotting routine took every other
data point for plotting. This plotting information was then used to produce
the actual plots which were generated by proprietary software from Versatec.
The file structure of these .BIN files can be determined from Versatec.

All other files are sequential ASCII files that are direct
representations of the data as viewed on the terminal screen. The data for
these files are not altered in any way for storage onto a disk.

In summary, the file structures for the data files used in the RSX-11M
FORTRAN version of the data acquisition system are based entirely on the order
of acquisition, and are not dependent upon the channel number directly. All
data files were set to the maximum allowable size prior to testing, even
though the testing may not have required all the data record space to be
used. The data files tended to be direct-access type of files that permitted
quick access to a specific record, but required the predetermination of record
size.

D. PROBLEMS/RECOMMENDATIONS

The RSX-11M FORTRAN data acquisition system was not without its
problems. This system, in its .end configuration, was quite different from the
initial concept. This change was mainly due to changes in the testing
requirements as well as to changes in our understanding of the RSX-11M
operating system and its FORTRAN language.

The most important problem with the RSX-11M FORTRAN data acquisition
software was the lack of a hardware interrupt routine that would permit the
recording of the data from the data loggers on an as-needed basis, rather than
the waiting-for-data approach that was used. The group lacked an expert in

4-14

RSX-11M systems applications and, consequently, was unable to implement a
hardware interrupt routine. This would have alleviated the requirement for
the minicomputer to be waiting for the data to arrive at the serial input port
from the data logger. Rather, the minicomputer could have been processing the
data, displaying the data in a real time display, or generating real time
graphs, and returning to collect data on demand from the input port. This
type of hardware interrupt would also have alleviated the input buffer problem
if it had been implemented in all input ports such as terminal inputs. This
would also have solved the round-robin scheduling problem that occurred. The
hardware interrupt routine would have had the highest priority and, therefore,
would always have been serviced first. Other tasks, not now time dependent,
could have completed their functions unencumbered by timing restraints.
Implementation of this type of routine is highly recommended if this system is
to be used.

The problem with the shuffling of tasks within memory was a systems
level problem that has since been corrected by later versions of the RSX-11M
operating system. The reason that a newer version was not used at the test
site was that several vendor-supplied software packages were written for the
version of RSX-11M in use, and upgrades to newer versions were not purchased.
Also, several assembly language device drivers had been written specifically
for this version of the operating system and it was unclear how they would
interface with the newer version of the operating system. Another problem
with working with an older operating system is the lack of software support
from DEC or from any other software vendors.

In summary, the inclusion of a hardware interrupt service routine would
have simplified development of the data acquisition system. Time constraints
as well as the lack of a systems applications background severely limited the
type of data acquisition system that could be developed. Any new application
of this software should include modifications to include a hardware interrupt
service routine and a recompilation and relinking with the newer operating
systems.

4-15

SECTION V

HARDWARE INTERFACING

A great deal of data acquisition and data analysis hardware was
purchased during the course of the project. Much of this hardware included
software from the vendor or software modifications to the data acquisition
software that had to be taken into account during software development.

The most obvious area of interfacing was with the newly acquired DEC
equipment. As the system grew, the operating system was changed as well as
the programming language that was used. During the entire period of
development, a software update agreement was in force with DEC. This provided
the software development group with new updates of the operating system and
the programming language as they became available. This agreement also
provided software support by telephone. However, as the operating systems
evolved to newer versions, this telephone support was no longer available.

The DEC hardware was normally installed by the software development
group members. When a move of the entire system took place, such as the
transfer of equipment from the Foothill Facility to ETS, DEC field service was
contracted to provide support for the move. A service maintenance agreement
was in force during the entire period of testing. This proved invaluable in
repairing the system at ETS whenever there was a problem with the system.
This also provided routine maintenance on a regular basis. This was most
important at ETS due to the environmental conditions there.

Much of the peripherals were from outside third-party vendors. The
hardware was checked as much as possible for compatibility with both the
operating system software and the existing DEC hardware. In all cases,
installation was purchased with the hardware. This was very cost effective in
that any problems at installation time were quickly handled. Most of the
peripherals did not require software changes nor did they come with software
patches to be added to the system. The two major exceptions were the Control
Data Corporation CDC-9766 disk drive and the Versatec Model 1100 printer/
plotter. The disk drive required additional driver software that was provided
by DEC and the third-party vendor. The printer/plotter came with a set of
FORTRAN callable subroutines to be used to plot graphs and a printer driver to
install within the operating system. Both the disk drive software and the
printer/plotter software worked on a specific operating system, and worked
only on one version. At operating system upgrade time, a new version of the
peripheral software was needed. This required additional funds and the need
to perhaps modify the existing .data acquisition/analysis software to handle
the new peripheral software. Partially for this reason, the operating system
was never upgraded to the new system.

One critical system that had to be interfaced to the minicomputer was
the E-Systems Control Console for the operation of the TBCs. The TBCs
provided a single serial I/O port for eventual control of the TBC function
from the minicomputer. However, for the initial (and only) use at ETS, it was
desired that the minicomputer be able to load in ephemeris data for each day's
testing. The software for this was written under the name CCUCON, and was set

5-1

to provide all the functions necessary for control by the minicomputer. The
only function that was completely tested was the loading of the ephemeris
data. The algorithm used to calculate the sun's position was based on an
article by Robert Walraven.2 This algorithm provided a generally accurate
method of finding the sun. However, since the memory-based tracking system
was used only to get the parabolic disk in the general vicinity of the sun, it
was considered accurate enough initially. This was later updated to an .
algorithm based upon the work of John Stallkamp, of JPL, working with the Low
Cost Concentrator. This proved to be much more accurate and required updating
at the start of each calendar year with information from the Astronomical
Almanac. This program loaded the TBC memory with the solar positions and was
used each morning prior to the beginning of testing. It usually required
10 min to complete. This delay was due to the slowness of the TBC control to
register and respond to the input from the minicomputer. After the loading,
the testing staff ensured that the load was good by examining several
coordinates by hand and comparing this with a printout from the minicomputer.
In general, there were no problems.

The other major pieces of hardware that had to be interfaced to the
minicomputer were the data loggers. A detailed description of the data logger
is given above. The interfacing of the data loggers to the minicomputer was
by an RS-232 serial I/O line. Setting up the data loggers was initially
accomplished by hand setting toggle switches on the front. This was acceptable
during the early stages of development, but later, when testing sequences
reached 100 channels, this became tedious. To assist the testing staff, a
program called LOGSET was written that scanned the SETPAR file for a
particular logger and, taking that information, returned control sequence
characters to set up the data logger as indicated by that file. The
information in the parameters file that indicated the type of transducer,
limits, channels to scan, resolution, and scanning frequency was loaded into
the data logger. This procedure was quite lengthy, requiring 10 to 20 min,
depending on the complexity of the channels being set. A listing of the
control sequences for the data logger is included in Appendix C. This routine
had to be used whenever the parameters file had been altered and whenever
there was a power outage on the data loggers. This program relieved the
testing staff from setting the data loggers and permitted them to perform
other tasks.

Data acquisition from a different source, the JPL-developed flux mapper
controller, is covered in a separate report.3 The software used for this
task was not used at ETS; but, rather, the data was gathered at ETS on digital
cassette tapes and transported to the Foothill Facility for analysis. This
analysis included the plotting of three-dimensional graphs depicting the flux
at a location at or near the fo.cal plane, printouts of the flux ratios, and
contour plots showing lines of equal flux. Examples of these are given in the
separate report.

2Walraven, R.f "Calculating the Position of the Sun," Solar Energy, Vol. 20,
pp. 393-397, 1978.

^Miyazano, C., Software Used with the Flux Mapper at the Solar Parabolic
Dish Test Site, JPL Publication 84-76, September 15, 1984.

5-2

During all of the testing period, a separate meteorological subsystem
was established and maintained at ETS near the test site. The instruments
included in this meteorological subsystem were as follows:

Instrument Manufacturer

Ambient Temperature Meteorological Research

Wind Speed Meteorological Research

Wind Direction Meteorological Research

Dew Point Meteorological Research

Pyrheliometer JPL/Kendall

Pyranometer JPL/Kendall

Barometric Pressure Meteorological Research

Pyrheliometer Eppley

This subsystem was operated 24 hours a day, 7 days a week, from late
1978 to mid-1984. Data was recorded at a frequency of one scan per minute.
The system was active during the entire period with the exception of power
failure periods and measuring device failures. This data was recorded using
an Acurex Autodata-Nine data logger attached to a separate data buffer and
formatting unit and a magnetic tape drive. The magnetic tape was changed
monthly and all the weather information was provided on two charts each month
to all cognizant engineers. One of these charts included graphs showing the
Pyrheliometer values for each day as a function of time. The other chart
provided the minimum and maximum values for ambient temperature, wind speed,
and barometric pressure for each day, along with an integrated total energy
received per unit area measure for each day. A sample of this is provided in
Appendix D.

The analysis of the data tape was performed at the Foothill Facility
using a sequence of programs designed to store the data into FORTRAN-
accessible files on the disk, search the data for the minima and maxima
values, and generate the plots. The program, MS6DAY, performed the transfer
from magnetic tape onto the disk. The data on magnetic tape was stored in
512 byte blocks of data as ASCII characters. Each scan was not an exact
multiple of 512 bytes so that a single block on tape contained more than
one scan. The program had to scan the data and determine the start of each
new scan from the time mark, and store the data on the disk as a new scan.
Another problem with this tape system was the lack of an end-of-tape mark on
some of the tapes. This was due to such problems as operator error, power
outages at the meteorological subsystem, and running out of tape. For these
cases, the file on the disk would not close properly since the program did not
terminate properly. This presented a problem that was solved only by
monitoring the progress and instructing the software to terminate the scanning
of the tape at the last known correct scan.

5-3

The magnetic tape drive handler was an assembly language routine that
was developed by the software development staff to read one block of data from
a tape and transfer the data to memory. This was one of the drivers which
prevented the upgrading to updated versions of the operating system. It was
not clear that this driver would function under the new environment without
problems.

The program, MSS, took the disk data and created the monthly
pyrheliometer charts. These were based on the values of the first
pyrheliometer listed. If, from this chart, an anomaly appeared, then the
second pyrheliometer value was used. The program, SEARCH3, searched the data
files for the minima and maxima for each day as well as integrated the total
energy received by the first pyrheliometer. This information was then used by
the program, PLOT3, to produce the minima/maxima charts.

On several occasions, special plots were requested by various engineers
for a varie,ty of analyses. The most common request was wind speed data for
several days. This was used for convective heat loss studies. Another common
request was ambient temperature data for several days. This was used in
conjunction with the Low Cost Concentrator expansion/contraction problem.

The weather station instrumentation was calibrated approximately once
every 6 months. The pyrheliometers were calibrated by comparison of a
laboratory standard with the instruments. All other calibrations were
performed as stated in the manufacturers' manuals.

. The weather station was dismantled to provide instrumentation for
support of the parabolic disk at Rancho Mirage. The weather data tap'es remain
archived at JPL.

The environment at ETS presented major problems for the data acquisition
equipment. The extremes of heat and cold were the most obvious problems. The
minicomputer and peripheral equipment required constant air conditioning
during the summer, and heating during the winter. Another problem not nearly
as obvious was that of dust. The wind blew dust and sand into the
minicomputer room, which were quite detrimental to the hard disk systems in
the unit. In fact, one severe head crash of the 300-MByte disk drive was
caused by the dust conditions in the minicomputer room. This dust problem
demanded that both DEC and the third-party vendor for the 300-MByte disk drive
make routine maintenance calls to clean and replace air filters. The power
for the minicomputer room proved to be a problem as well. Additional power
for just the minicomputer room had to be provided. Power in the trailer
housing the minicomputer room was used by the adjacent building to power
control panels for the TBCs as .well as power data loggers and other analysis
equipment.

The distance between the minicomputer room and the test control room
where the terminals and data loggers were located was near the maximum of the
RS-232 serial lines. Lower baud rates were used to ensure that data was not
lost in transit. For the most remote test site, a 20mA current loop line was
used for the terminal I/O, and a fiber optics cable was used for the data
logger link.

5-4

SECTION VI

TRAINING

The training of the testing staff at ETS to use the data acquisition
system was difficult at best. The testing staff was constantly short-handed
and did not have time to go through a great deal of formal training. Most of
the training that did occur was hands-on and, in short, one- to two-day
sessions. Much of the initial use of the data acquisition software was done
by an individual from the software development group that was at ETS for the
day. He would conduct the data acquisition portion of the test and,
simultaneously, show the testing staff the procedure for testing.

Also, several different versions of a User's Guide were produced. One
for the RSX-11M FORTRAN is included in Appendix E of this report.

If a problem occurred during testing, someone from the software
development group was available by telephone to assist. Occasionally,
modifications were made by using a phone modem hookup between ETS and the
Foothill Facility, although this was not done very often due to the noise that
was present on the telephone lines.

For this type of development system, it is recommended that the testing
staff either have one individual whose primary function is to operate the data
acquisition system, or provide much more training for the testing staff on the
use of the data acquisition software and hardware.

6-1

SECTION VII

RECOMMENDATIONS AND CONCLUSIONS

A. SOFTWARE

The software written was adequate for most of the testing at ETS. When
several tests were conducted and shorter intervals between scans were desired,
it became obvious that a hardware interrupt service routine was necessary. This
is probably the one major software recommendation that can be made after 6 years
of testing. The progression from the RT-11 BASIC to RT-11 FORTRAN to RSX-11M
FORTRAN was inevitable. The flexibility provided by either newer versions of
the RSX-11M operating system or the upgraded RSX-11M+ operating system may solve
many of the difficulties associated with the operating systems. This will have
to be re-evaluated. As for using this data acquisition software on another
operating system, there are too many hardware and operating system-dependent
functions. Transition to another operating system would be very difficult,
despite the fact that the programming language is FORTRAN.

The disk access system of storage of data performed well; however, it
used large amounts of disk space. Another system of storage may conserve disk
space better and should be considered in any modification to the system.

B. HARDWARE

By starting with a DEC PDP-11/10 minicomputer, hardware alterations were
impossible without a major investment in new hardware. However, to achieve
higher scan rates and a larger number of channels, some method of direct
memory access (DMA) for the input devices should be considered. The use of
external data loggers would not be possible in this case. Several manu-
facturers provide DMA devices that will allow the input data to be scanned
much more quickly and transferred to memory directly rather than through a
serial port as used in this system. This would greatly increase the speed of
all phases of data acquisition.

The selection of the data loggers should include a closer look at the
interface between the data logger and the minicomputer. The data loggers used
at ETS did not provide adequate interfacing for all of the features that would
be needed for true compatibility between the data logger and the minicomputer.

C. CONCLUSIONS

--*
The data acquisition system used at the PDTS was developmental, just as

the modules tested there. The data acquisition software that was developed in
support of testing at ETS was adequate for the task. Many problems were
encountered in the development and use of the software, but data collection in
support of testing was always handled in a timely manner. Supplemental
software for the analysis of meteorological data, flux mapper data, and
control of the TBC control console were developed on schedule. Any future use
of this software should consider the recommendations concerning the use of
hardware interrupt service routine in the software and the use of direct
memory access data acquisition hardware.

7-1

APPENDIX A

SAMPLE GRAPHICAL OUTPUT FROM THE PLOT ROUTINE
FOR TEST DATA TAKEN AT ETS

A-l

PDC1: CWCC 1007. MIRR.

TEST RUN: CW0178 22-FEB-83

1. FM CflL IN TIKE INTERVAL 8ETNEEN SCflNSi 30 SEC.

GPM ~ CHNL NO. 200
NUMBER OF SCANSi 6U2

2. EX. nPERTURE FLW
GPH CHNL NO. 213

o
a

CO

o
o

CO

O
O

c\J_
CO

cng
x<=>.
C
I

n
a
oo.
rvj

o
o
(a.
CVJ

o
a

^^^^ '

I I I I I I
CVJ (EACH MARK IS 30 HIN. RPRRT)

11:08:42 16:28:42

FSECEENNQ PAQ£ BLANK HOT FILMS?

A-3

PDC1: CWCC 100X MIRR.

TEST RUN: CW0178

1. WIND SPEED
M/SEC . CHNL NO. 211

22-FEB-83

TIME INTERVOL BETWEEN SCflNSi 30 SEC.

NUMBER OF SCflNSi 6*2

o
o
ru_

o
a
o.

o
o

a
o

11:08:42
(ERCH MRRK IS 30 MIN. flPRRT)

16:28:42

A-4

APPENDIX B

SAMPLE OUTPUT FROM THE COMMENTS (.CMT) FILE AND FROM
THE NOTES (.NOT) FILE FOR A TEST

B-l

NOTE — TEST NO. ST0173
NOTE — DATE: 21-JUN-82
NOTE — TEST BED ID: TBC-2
NOTE — MIRROR CONFIG: 100X
NOTE — MIRRORS MASHED TODAY?
NOTE — CLOUD COVER: CLEAR
NOTE — ENGINE/RECEIVER TESTED:
NOTE — ADD. MIRRORS COVERED:N
NOTE — 457 MM Z AXIS POSITION

N

ESOR II B HYDROGEN

FKECEDiNG PAGE BLANK NQT FOSE0

B-3

TEST RUNi ST0173

DflTE: 21-JUN-82 TEST MODULE: TBC-2

ENGINE/RECEIVER TESTED:

ESOR II B HYDROGEN

MIRROR CGNFIGURflTIGN: 100Z

ROD. MIRRORS COVERED: NO

CLOUD COVER: CLEflR

MIRRORS WflSHED TGDflY: NO

RDDITIONRL NOTES:
457 MM Z RXIS POSITION

POST: THIS IS THE "MORNING" DflTR FROM ST0173

POST: RNOTHER RUN ST0173 HflS THE "flFTERNOON" DRTR FROM THIS TEST

POST: SEE OTHER ST0173 RUN ON RRC TRPE 36 FOR DRTR

B-4

APPENDIX C

ACUREX AUTODATA-NINE DATA LOGGER CONTROL SEQUENCES

C-l

Table A - Set Remote Commands

Command

*
*LO.

*AA.
*AB.
*AF.
*AC.
*AO.
*AZ.

*CC.

*CD.

*DC.
*DO.

*EC.
*EO.

*GO.

*HA.

Action

un1 ock remote command input
lo-:k out remote command input

select "all data" record mode

alarms on
alarms off
clear all alarms'

time, header and predata/digital
inputs normal

delete time, header and predata/
digital inputs from serial output

predata/digital inputs on
pre a a ig inpu

echo on
echo off

start scan

halt scan and stop any
operation in process

Command

*MC.
*MO.

*NC.
*NO.

*PC.
*PO.

*RC.
*RO.

*S1.

*sc.
*SI.
*S8.

*wc.
*wo.

Action

mag tape on
mag tape off

punch on
punch off

printer on
printer off

serial output on
serial output off - (disables
data and summary table out-
puts; does not affect echo)

report summary Table 1

select interval scan mode
select single scan mode

wait I/O on
wait I/O off

Table B - Define Remote Commands

Command (a)*

*AD(6).

*A1(9).

*AS(1).

*AV(9).
*AG(9).

*FC(3).
*LC(3).
*H1(6).
*H2(6).
*RA(3).

*RT(9).
*S2(6).

*S3(6).

*T1(9).

*TY(8).

Action

define alarm beadband value

define alarm periodic log interval

define alarm state:
D *» clear
1 - +hi
2 - -hi
3 - +10
A = -10

define limit number and value
assign limit to channels

select first channel of scan
select last channel of scan
define header 1
define header 2
select one channel (random access)
and inmate scan according to
selected scan mode

set real time
report summary Table 2 (l/T and
resolution assignments) of selected
channels
report summary Table 3 (limit
assignments), of selected channels
define scan interval

assign resolution and I/T function
to channels

a. Resolution is "H" for hi., and
"S" for standard.

b. I/T function is "0" through "T"
corresponding to pushbutton
assignment on Autodata Nine
front panel .

0 1

2 3

4 5

6 7

Example

*AD 00060.

*A1 000 00 15 30.

*A83.

*AV 001 100000.
*AG 001 012 015.

*FC 005.
*LC 099.
*Hl 123456.
*H2 987654.
*RA 017.

*RT 115 14.45.30.
*S2 000 049.

*S3 014 019.

*T1 000 00 00 90.

*TY 007 022 1H.

1

define beadband equal to 000060 units

define log interval equal to 000 days,
00 hours, 15 minutes and 30 seconds
define alarm state (+10)

define limit 001-equal to 100000 units
assign limit 001 to channels 012
through 015

select first channel 005
select last channel 099
define header 1 equal to 123456
define header 2 equal to 987654
scan channel 017

set real time- to day 115, 2:45:30 p.m.
report I/T and resolution assigned to
channels 000 through 049 (see Figure 3)

report limits assigned to channels 014
through 019 (see Figure 4)

define scan interval equal to. 000 days,
00 hours, 00 minutes, 90 seconds
assign I/T function 1 and hi resolution
to channels 007 through 022

*Digits in parentheses define the number of characters required in the argument. Spaces may be inserted

validity.

C-3
P^ECEDJNQ PAGE BLANK. NOT

APPENDIX D

SAMPLE MONTHLY WEATHER SUMMARY PLOTS

The Weather Summary Plots show daily pyrheliotneter readings and monthly
minima/maxima for ambient temperature, wind speed, barometric pressure,
relative humidity, and total solar energy integrated over the day.

D-l

rr\ \r\

8
i

10

11 12
.il_ iLlJ

13 15

16 17 18 19 20

21 22 23 25

26 27 28 29 30

INSOLRTION FOR NOV. . 1981

JPL/PDTS

NGRMflL INCIDENCE PYRHELIOHETER

D-3

PAGE BLANK NOT

MINIMUM/MflXIMUM VflLUES FOR NOV. , 1981

0.

UJ

z
UJ w
ID

CC

0
UJ

in

-SB

80

aa

10

* *

15 20 ZS

m m
30
X

nV-

i V'

10
K K

. 15 20 25
m m

80
X

728

CO
UJ
1C
0_

CC
CC
m

i *

UJ
DC

875

850

so.

10
X X

15 20
X

25 80
X

UJ

a.

to.

6.

• a.

10
X X

15 20 25
X X

80
X

_

t4'
S/i

•!j
A4ft

if

ft

]f

\
\

T]

'!jr,j

K

•!j!i4 '
G

^

:;
f^

5
v"
>LJ

r,J

•̂

l?fi '

K
10
K

T

:;
^^

J] Rf,i, .fjf,

'>.

\
Jr
15

'l^
p j

'1J

r J

l?
'l'
fi '

. pi

J

4'i

\
Jf,

[TT"1

î:;:
F,4,4Jr,
20
K

^
4'L
JP,

X

f-l

JJ
r J

i4'

'S
'l4 '
25

-n

,4',
A
*t 71

'i/1

I4-ij|
ij
:4'!4pi
80
K

_

JKINDICRTES SOME DRTP MISSING FOR THflT DOT. RESULTS HRT BE IN ERROR

D-4

APPENDIX E

RSX-11M FORTRAN VERSION "USER'S GUIDE," DATED MARCH 18, 1983

E-l

USER'S GUIDE

ETS COMPUTER SYSTEM
MARCH 18, 1983

m.&m NOT FILMED'

E-3

CONTENTS

1. INTRODUCTION . . . E-5

2. STARTUP E-6

2.1 COMPUTER . . E-6

2.2 TERMINAL E-7

2.3 CCU E-7

3. PREPARATION E-9

3.1 SOFTWARE E-9

3.2 LOGGER E-10

3.3 MAG TAPE E-ll

4. ACQUISITION E-12

4.1 COMMENT . E-12

5.' TERMINATE E-14

5.1 TEST COMPLETED EARLY IN DAY E-14

5.2 TEST COMPLETED LATE IN DAY E-14

5.3 LAST TEST OF THE DAY E-15

5.4 FAST RESTART E-15

5.5 LATER E-16

6. REDUCTION E-17

6.1 DELAY E-17

6.2 RESTART RECOVERY E-18

6.3 LATER E-19

E-4

CONTENTS (Continued)

7. PRINTOUT OF DATA E-21

7.1 ADDITIONAL COPIES. ".'. E-21

8. SHUTDOWN . E-23

8.1 TERMINAL E-24

9. PROBLEMS E-25

9.1 COMPUTER E-25

9.2 LOGGER E-26

9.3 MAG TAPE UNIT. . . E-26

9.4 PRINTER . E-26

9.5 TERMINALS E-26

10. COMMANDS E-28

11. TAPE BACKUP E-29

12. KNOWN BUGS AND PROBLEMS. . E-31

E-5

CHAPTER 1

INTRODUCTION

The document contains information on the use of the Digital Equipment
Corporation PDP-11/34A computer located at Edwards Test Station.

In this document and in the computer file, the following convention is
used to describe what is to be typed in by the operator. All messages to be
typed in are in quotes (" ") except the carriage return which is displayed as
'(CR)'. All your typing must be capitalized. In the text of this document,
lower case words or letters means that you are to input the appropriate
number, letter or word to complete the command.

If you need any help or have any questions, call 85-177-9131.

Thanks.

E-6

CHAPTER 2

STARTUP

(

This file assumes you wish to start up the computer.

2.1 COMPUTER

Startup procedure is as follows:

1. Turn on terminal TTO:

2. Power up mass storage unit (1st button on left).

3. Remove cover from computer.

4. Turn on computer (knob on right turn to DC ON).

5. Put RK05 disk marked "System1 into DKO: and move rocker switch from
'LOAD' to 'RUN'.

6. On the computer control panel, hit 'CNTRL1 and 'BOOT1 keys
simultaneously.

7. On TTO: type

"DK" (CR)

8. Follow the commands on TTO: (be sure to enter correct time)

9. Log in on TTO:

"HEL DB1/DB1" (CR)

(This is now a priviledged terminal).

10. Type in:

"SET /UIC=[310,15]" (CR)

11. You have now completed the computer startup sequence.

E-7

2.2 TERMINAL

To log on to a terminal, do the following:

1. Turn on the terminal (toggle switch on back left side of terminal as
viewed from front, toggle up is on). The terminal should reply with
a beep to indicate that it has reset itself.

2. Log in on a terminal by typing

"HEL DB1/DB1" (CR)

3. Type in:

"SET /UIC=[310,15]" (CR)

4. Terminal is now ready for use.

5. If the terminal is for data display only, set the terminal to a slave
condition by typing

"SET /SLAVE=TTx:" (CR)

Where x is the terminal number. To return the terminal to normal
operation, type in, at another terminal, the following

! "SET /NOSLAVE=TTx: (CR)

Where x is the terminal number.

2.3 CCU

Startup of CCU must be cleared with a Test Chief. The Test Chief or someone
appointed by him will start up the system for you.

To update the ephemeris data in the CCU, do the following:

1. At the terminal, type in

"RUN CCUCON" (CR)

2. Put the CCU in supervisory mode by pushing the following buttons in
the control panel of the CCU in use, 'MAN1, then 'ENTER', then
•SUPV', then 'ENTER'. The display should return with

'[MPOS]'

3. Verify that the line printer is on in the trailer and that the
three-way switch (next to terminal 5) is switched to the TBC you wish
to load.

4. Follow the directions in the program.

E-8

5. Upon completion of the update, the full menu will appear again, at
this point, verify a few points in the CCU memory by manually
comparing the printout of ephemeral data with the contents of the CCU
memory.

6. If the memory has loaded correctly, terminate the CCUCON program by
typing in

"S" (CR)

7. Update the clock and the date on the CCU control panel.

8. You have now completed the loading of the memtrack memory in the CCU.

9. If the terminal keyboard is unresponsive, switch the three way switch
to TT5 and hit the return key once. This should clear the computer
line.

E-9

CHAPTER 3

PREPARATION

This file assumes you wish to prepare for a test run.

For software preparation, look at the SOFTWARE section.
For logger preparation, look at the LOGGER section.
For mag tape preparation, look at the MAG TAPE section.

3.1 SOFTWARE .

To prepare the software for a test run, do the following:

(1) Using the DEC editor (EDT), make the necessary changes to the parameter
table, such as STIRL.SET. This will include updating the following:

(a) Title

(b) Test number

(c) Run number

(d) Scan frequency

(e) Scan interval between real-time printouts

(f) Plots

(g) Alarm changes

(h) Deletion of channels

(i) Addition of channels

(j) Conversion factor changes

Upon completion of any necessary changes, exit the editor by typing

"EX (CR)"

E-10

(2) Use PIP to transfer this parameter table to the working table for the
test run, by typing

"PIP TBLx.SET=STIRL.SET" (CR)

where the x is the concentrator number.

(3) To prepare the computer-understandable run table, type

"RUN DBGEN" (CR)

and answer with the correct table number.

(4) If calculations are to be made, type

"RUN DECODE" (CR)

and follow the directions.

(5) If a real-time display is desired, type
;

"RUN NWDBGN" (CR)

and follow the directions.

(6) At this point, a usable SETPAR table is ready.

3.2 LOGGER

To set-up the logger for a test run, do the following:

(1) Be sure the red lockout switch inside the logger front door is in the up
position.

(2) Be sure the RS-232-C cable is connected to the port in the back of the
logger.

(3) Check the logger front panel. A listing of the computer port number will
be taped there.

(4) With a usable SETPAR table available, type

"LOG" (CR)

and answer the questions. The logging sequence takes approximately 15
minutes.

(5) When the LOG program terminates, correct the logger time with the program
TRY (but not from terminal TTO:). Do this by typing

"TRY" (CR)

E-ll

Enter the logger port number (listed on logger), enter the terminal port
number (listed on the terminal — 0, 1, 5, 6, or 7), and when the command
is requested, type in

"*RTdddhhmmss," (not shown on screen)

where ddd is the day number, hh is the hour, mm is the minute, and ss is
the second.

Enter the comma when the exact time is at hand [do not enter a (CR)].

(6) The logger is now ready for use.

3.3. MAG TAPE

To set-up the mag tape unit for a test run, do the following:

(1) Mount a magnetic tape on the tape drive. Be sure that the
"WRITE-ENABLED" ring is in place.

(2) Make sure adequate tape is available (1200* needed for a 5 hour test).

(3) If this is a new tape, then you must initialize the tape first. This is
done by typing

"INI MT:ARCxx" (CR)

where xx is the number of the ARC tape. This number can be obtained from
the log book.

(4) Type in

"MOU MT:/OVR" (CR)

The tape should move forward 5 cm and rewind. This indicates the tape is
now mounted and the system acknowledges this.

E-12

CHAPTER 4

ACQUISITION

This file assumes you wish to begin the acquisition of data. For inclusion of
"a comment, look at the COMMENT section below.

To being, do the following:

(1) Begin by verifying that the SETPAR table has been updated, the logger has
been programmed, and the time is correct in both the computer and the
logger.

(2) To begin the acquisition of data, type

"RUN EXECUT" (CR)

and follow the directions.

(3) Acquired raw data is written into a file,

LOG1.ACQ For Table 1 Data
LOG2.ACQ For Table 2 Data

and so forth.

(4) Messages of scan number should appear on the terminal from which you
started the task.

(5) Alarms and screen display (if any) will appear on TT5: for Table 1 data,
TT6: for Table 2 data, and TT7: for Table 3 data.

4.1 COMMENT

To enter a comment into the data record during a data run, do the following:

(1) Use a terminal not being used for screen display of data.

(2) Enter the comment by first typing

"RUN EXECUT" (CR)

and follow the directions listed. Be sure to wait until the terminal
directs you to enter the comment.

E-13

the
~7ratinal «.„
ime th* co°° 10*8*-ODln..4.

has to

CHAPTER 5

TERMINATE

For standard post processing procedures, the following instructions should be.
followed. These instructions assume that there are multiple tests for the day
and that some of these have been processed during the day.

5.1 TEST COMPLETED EARLY IN DAY

A test has been completed early in the day and there is sufficient time to

process the data completely before terminating the active test. If this is
the case, then the procedure to follow is:

(1) Use "@POST" (CR) to begin post processing. You will need to have the
test ID number and the number of the table used in order to answer all
the questions.

(2) The POST routine will process the data and store it on a disk using the

test ID number as the file name. When data reduction is complete, a
message will appear on the terminal in which the @POST command was given,
indicating that the processing is complete.

(3) Now, all the files for this test have been processed. You can now
proceed to the section dealing with the printing of the data.

5.2 TEST COMPLETED LATE IN DAY

A test has been completed late in the day and there is insufficient time to
process the data completely before terminating another active test. If this
is the case, then the procedure is:

(1) At the keyboard, type in

"RUN EXECUT" (CR)

and state that you do NOT wish to process immediately.

(2) When the remaining active test is terminated, you may begin analysis of
this test overnight using the command

"@DELAY1" (CR)

E-15

Answer the questions that follow. When the task asks if you wish to
process overnight, type in

"Y" (CR)

(3) The post processing will begin in 4 hours. However, it will not be
printed out.

5.3 LAST TEST OF THE DAY

This is the last test of the day and all other tests have either completed
analysis or have been halted using the "RUN EXECUT" command. If this is the
case, then to begin immediate analysis of the data,

(1) Type in

"@POST" (CR)

and answer that you wish to begin analysis of the data immediately.
Identify the logger used and the Test ID run number to the program. The
pogram will now analyze the data to completion. However, it will not be
printed out.

5.4 FAST RESTART

This file assumes that you have just completed a test run (or the system has
had a problem and abnormally terminated the program) and you wish to restart
immediately.

(1) Be sure that the system has not rebooted automatically. (This can be
done by checking to see if the cursor returns when the "RETURN" key is
pressed.) If necessary, reboot, otherwise go on to step 2.

(2) If everything appears to be alright, then copy the scan number from the
control terminal. This will be necessary to reduce this first file later.

(3) Once you have this number (or the time of the last scan), type

"@FASTx" (CR)

Where x is the number of the logger or table being used. This will pip
over the LOGx.ACQ file to a holding file named "HOLDx.RAW" and the
NOTE.oox to a holding file named "HOLDx.NOT".

(4) The computer will automatically place you into EOT. You will have to
change the number of the test run to the next higher number before you
can begin.

(5) Once you have exited EOT, the program will automatically run DBGEN,
DECODE, and NWDBGN (you will have to enter the table number).

E-16

(6) Once you have completed these, you are now ready to begin taking data
once again. Follow the instructions listed in the "ACQUISITION" section
of this report.

Warning

This can only be used once. Once it is used, the post processing must be
done to both before being used again. Failure to do so will cause
erasure of data.

5.5 LATER

This file assumes that you wish to terminate a test run and reduce the data at
some convenient time later.

If you wish to start analyzing data from a previously completed run using this
procedure, look at the section titled "REDUCTION LATER".

(1) To terminate the currently executing logging task and start the analysis
later, type

"RUN EXECUT" (CR)

When the instructions appear, type in the appropriate letter to terminate
the logger task in progress.

(2) A question will appear on the terminal asking if you wish to begin
reduction of data, type

"N" (CR)

(3) You will see two stop messages on the terminal, one for the task EXECUT
and one for the task LOGGER. After these two have appeared, the system
has now completed logging and is free to be used for some other
application.

(4) BEFORE DOING ANYTHING ELSE, use PIP to change the name of the raw data
file. If you do not, you could write over the just-gathered data and
eliminate it.1.1 Type

"PIP yyyyyy.RAW=LOGx.ACQ/RE" (CR)

where yyyyyy is the test ID name and number (e.g. ST0111) and x is the
number of the logger used (same as the TBLx.SET number).

WARNING

Failure to perform step 4 during this type
of operation might result in the loss of all
accumulated data from this test run.

E-17

CHAPTER 6

REDUCTION

This file assumes you wish to begin the reduction of data and have used the
"@POST" (CR) command to terminate the test.

For fast restart recovery, look at the REDUCTION RESTART section. For
reduction of data from a LATER termination, look at the REDUCTION LATER
section.

(1) If, upon completion of the test run, "@POST" (CR) was typed into the
command terminal, and a "Y" (CR) was typed when asked if the system
should begin reduction immediately, then the system will automatically
reduce the data and store the results on the large disk. However, it
will not printout the results nor place them on mag tape.

(2) To transfer the data to mag tape and print out the results, see the
section on printing the data.

(3) Be sure the line printer is 'ON' and that there is sufficient paper.
Advance enough paper such that the fan-fold process can begin in the
catch basket.

(4) Be sure that an archive mag tape is on the drive and that the tape has
been mounted with the commands

"MOU MT:/OVR" (CR)

If this is a new tape, then see "HELP PREP MAG" for appropriate commands.

(5) The system can now be left to complete this task.

(6) Upon completion of this task, update the master file with the correct ARC
tape number by using

"EOT MASTER.FIL" (CR)

6.1 DELAY

This file assumes you wish to begin the reduction of data later in the day or
overnight and have used the "RUN EXECUT" (CR) command to terminate the test.

E-18

(1) Be sure that the terminal that you are using was not used to start any
other command files (files that start with the '<§' symbol).

Warning

If there are several tests to reduce later, then be sure that
the tests are staggered overnight. If two tests try to
access the same program, the second test will abort
abnormally and analysis will not occur. To prevent this, see
the last instruction in this section.

(2) To begin data analysis, type in

"@DELAY1" (CR)

at a terminal not currently being used.

(3) Answer the questions that will be asked such as the identification number
of the run and the TBLx.SET being used for the run.

(4) The computer will now ask if you wish to process the data overnight. If
you answer "N" (CR), then the computer will wait until the command

"RES xxxxxx" (CR)

is typed in, where xxxxxx is the name of the command file. This name is
listed on the command terminal at the time of the pause initiation.

(5) The computer will now ask if you wish to process immediately. If the
answer is "Y" (CR), then proceed to the PRINTOUT OF DATA section in
TERMINATE chapter. If the answer is "N" (CR), go to the next instruction.

(6) The computer will now ask if you wish to process overnight. If the
answer is "Y" (CR), then the computer will begin analysis in 4 hours. If
the answer is "N" (CR), then the computer will place you back into pause
and you will have to go up two instruction steps.

(7) If there is already a test being reduced using the command file "DELAYl",
then repeat the above instructions using the command file "DELAY". The
only difference will be that the time delay for overnight processing will
be 8 hours instead of 4.

6.2 RESTART RECOVERY

This file assumes that you had to use the FAST RESTART sequence to terminate a
test run in an abnormal fashion, such as the system rebooting itself.

Warning

All other logger data must be processed prior to the use of
this sequence. Failure to do so may result in the loss of
data.

E-19

(1) Be sure that all other logger data has been completely reduced.

(2) If RUN EXECUT was used, go to the next step. If RUN EXECUT was not used,

(a) Check to see that a comment file exists for the run by typing,

"PIP yyyyyy.CMT" (CR)

where yyyyyy is the test run number (e.g. ST0100). If it exists, go on
to the next instruction. If not, then type in the following to create
one.

"PIP yyyyyy.CMT/NV=NO.CMT" (CR)

(b) Take the scan number that you copied from the control terminal
screen during the fast restart, divide that number by the number of
scans per minute that were being taken during the test and round
this result to the nearest whole number. This is the number of
minutes of testing.

(c) Type in

"EOT TBLx.SET" (CR)

and edit the run number back to the original number and edit the
number of minutes to the one calculated in the instructions above.
(Be sure there are three digits in the number). Exit from edit.

(d) Type in

"PIP yyyyyy.SET/NV=TBLx.SET (CR)

where yyyyyy is the test run name (e.g. ST0100) and x is the number
of the logger used (same as the TBLx.SET number).

(e) To add the NOTE file to the CMT file, type in

"RUN EXECUT" (CR)

and type in the appropriate letter to terminate the test. When
asked, do you wish to process immediately, answer "N".

(3) Type in

"@PROCESS" (CR)

Answer the questions. This will now complete the analysis of the data.
Upon completion, you can use '@PRINTOUT' to printout the results.

6.3 LATER

This file assumes that you terminated a test using the procedure outlined in
TERMINATE LATER and are now ready to process the data, or that you have

E-20

followed the directions outlined in REDUCTION RESTART RECOVERY and are now
ready to proceed with the data reduction.

(1) Be sure that the TBLx.SET table is correct with the proper test run
number and the proper number of minutes of testing. The number of
minutes can either be obtained from the yyyyyy.SET table by using the
command

"PIP TI:=yyyyyy.SET"(CR)

and getting the number of minutes from the third line, or can be
calculated as done in the REDUCTION RESTART RECOVERY section.

(2) Type iii the following commands and enter the appropriate table numbers
when asked:

"RUN DBGEN" (CR)
"RUN DECODE" (CR)
"RUN NWDBGN" (CR)

(3) If you terminated the test using the procedure outlined in TERMINATE
LATER, then you must execute one additional command. Type in

"PIP LOGx.ACQ/NV=yyyyyy.RAW/RE" (CR)

where yyyyyy is the test ID name and number and x is the number of the
table use (See instruction 4 in TERMINATE LATER section).

(4) Now type

"@DELAY1" (CR)
or "(3DELAY" (CR)

and answer the questions.

(5) You will be asked if you wish to process overnight. If you wish to start
processing overnight, type in "Y" (CR), and go to the PRINTOUT OF DATA
section in the TERMINATE chapter. If you wish to process immediately,
type in "N" (CR), and go to the next step.

(6) If you answered "N" (CR), then the computer will wait until the command

"RES xxxxxx" (CR)

is typed in, where xxxxxx is the name of the command file. This name is
listed on the command terminal at the time of the pause initiation.

(7) The computer will now ask if you wish to process immediately. Type in
the answer "Y" (CR), and proceed to the PRINTOUT OF DATA section in
TERMINATE chapter.

E-21

CHAPTER 7

PRINTOUT OF DATA

Now that the analysis of data has either been completed or has yet to begin,
you may now start the printout command file. Please note that this command
file should be used only AFTER the last test of the day has been completed.

(1) At a terminal that is not currently processing a command file (any
terminal that does not have an @xxxx file working) type in the command,

"@PRINTOUT" (CR)

(2) A series of questions about today's tests will appear on the screen. You
will need to type in the test run ID number, the number of printouts and
the number of sets of plots desired.

(3) If a set of test data is still being processed, then you will have to
answer "N" when asked if the data is ready to print out. If this is the
case, then a later question will ask you when the test should be ready.
Type in the number of hours based on the terminating command file used.
For example,

if DELAY1 is used, type in "6" hours,
if DELAY is used, type in "10" hours,
if POST is used, type in "2" hours.

If two of the three above command files are being used, then type in the
greater of the two numbers.

(4) Be sure that the line printer is on and has sufficient paper. Be sure
that the mag tape unit is on line and mounted.

(5) The printing should be completed before the next morning.

7.1 ADDITIONAL COPIES

(1) For more copies of the last set of plots, type

"RUN RASM" (CR)

E-22

(2) For more copies of the data, type

"PIP xxxxxx.LST/SP:y" (CR)

where xxxxxx is the file name of the data to print out, and y is the
number of copies desired.
If only one copy is desired, the "/SP:y" can be left off.

E-23

CHAPTER 8

SHUTDOWN

This file assumes that you wish to shutdown the computer system in the
trailer, T-1600.

To shutdown a terminal, look at the SHUTDOWN TERMINAL section.

(1) Log off on all terminals except TTO: in the trailer.

(2) From TTO:, type

"RUN SHUTUP" (CR)

(3) The computer will ask for the number of minutes before shutdown. Type in

"0" (CR)

(4) The computer will now execute the shutdown procedure.

(5) When the RUN light on the front panel of the computer goes out, then
power down the RK05 disk drives by pushing the "RUN-LOAD1 rocker switch
to the 'LOAD' position. When the 'LOAD' light is on, remove the RK05
disks and store in the appropriate cabinet.

(6) Turn off the mass storage unit by pressing the 'START1 button (on the far
left side). The red lights above the row of buttons should start to
flash, indicating that the disk is spinning down.

(7) Turn the rotary switch on the right side of the computer front panel to
the 'DC OFF' position. The 'DC ON1 light just above that should go out.

(8) Go to the rear of the computer and turn off the power to the
transformer. A switch on the left side of the box on the transformer
should be in the 'DOWN* position. The red indicator light should be out.

(9) Cover the computer.

E-24

8.1 TERMINAL

To shutdown a terminal, do the following:

(1) At the keyboard, type

"BYE" (CR)

(2) A log off message will appear on the screen. When this message has
completed, turn off the terminal. (Toggle switch on back left side of
terminal as viewed from front, toggle down is off.)

E-25

CHAPTER 9

PROBLEMS

This file assumes that you are having a problem with one portion of the data
acquisition system. For more detailed help, look at the appropriate section
for the following devices:

COMPUTER
LOGGER
MAG TAPE UNIT
PRINTER
TERMINAL

Be sure to include a notation in the Computer Log book for all computer
related problems.

If none of these fix the description, then try calling 85-177-9131.

9.1 COMPUTER

(1) If the system is crashing on a sporatic basis, the best advice is to call
DEC service and request help.

(2) If the computer will not start up in the morning, and the vent fans on
the top of the cabinets are working, check the circuit breakers in the
computer cabinets.

(3) If during bootup, the run light does not come on, call DEC field service
and request help.

(4) If, during routine running (not data logging, not loading the CCU and not
setting up the logger), the computer becomes very sluggish and does not
respond quickly, check to see if someone has turned one of the data
loggers to manual control.

(5) For all other problems, the best advice is to call DEC service.

E-26

9.2 LOGGER

(1) If the logger is on, but you can not use the LOG or TRY commands, check
to see if the RS-232-C connector is still connected, check to see if the
"LOCK-OUT" switch is in the up position, and check to see if the "SERIAL
OUT" toggle is in the up position.

(2) If the logger communicates with the computer but will not set alarms
properly, first verify that the correct table is being used to set the
alarms, then have the alarms card exchanged with another unit.

(3) If the logger shows "Stuck in Loop" messages during the LOG routine, then
abort the LOG routine, check the connections on the logger, run WAK on
the logger port, and try again.

(4) If the logger was being used in the LOG routine and the log routine
aborted abnormally, run WAK to clear the logger port and try again.

9.3 MAG TAPE UNIT

(1) If a mag tape is on the drive and the computer refused to execute a "MOU"
command, check to see if the magtape is new and has not been initialized
yet. If so, initialize mag tape. ,

(2) If an old mag tape is on the drive and the computer refuses to
initialize, demount the mag tape (Caution — "DM0" command can crash
system).

(3) If a new tape is on the drive and the system has been up all night and
the computer refuses to initialize or mount the tape, then the system
still assumes that a tape is mounted. Use the "DM0" command to demount
the mag tape (Caution — "DM0" command can crash system).

(4) If during an attempted transfer of data using PIP, the computer refuses
to follow the command, check to see if the "WRITE-ENABLE" ring is

v installed.

9.4 PRINTER

(1) If print is light, check toner fluid level. Sometimes, shaking the tone
bottle to mix the toner will darken print.

(2) If print is erratic, try moving the cable around the Versatec cable is
very fragile and connections that are broken may come into contact again.

9.5 TERMINALS

(1) If a terminal is on but does not communicate with the computer, check the
RS-232-C cable both at the computer end and the terminal end.

(2) If a terminal is on and has been working but does not permit you to type
in, push "SET-UP" key and then the "RESET" key.

E-27

(3) If a terminal is on, has been working, and the "ON LINE" light is not on,
check the keyboard cable. Be sure its plugged in.

(4) If a terminal is on and random characters appear on the screen, baud
and/or parity is incorrect. Try pushing "SET-UP" key and then the
"RESET" key.

(5) If a terminal was being used for weather data and is to be changed back
to a computer terminal, be sure that the rotory switch on the box to the
right of the terminal is set back to the designation, "TT5".

(6) If a terminal is being used for SCREEN-ALARM output and the output has
stopped appearing, a key on the keyboard may have been pushed by
accident. Hit the "RETURN" key a few times to clear this.

(7) If a terminal will show the characters you type on the screen, but the
computer refuses to return a prompt or to execute your commands, there is
a logger that is not suppose to be on, putting data into a computer
line. The computer interprets this as a terminal trying to log on, so it
spends time trying to match log on messages. Turn off the logger that
should not be'on.

(8) If a terminal was being used for a TRY or LOG command and the program was
aborted abnormally, the terminal may not work. Try WAK from another
terminal to clear it.

(9) If a command file will not work on a terminal (any file that is entered
by typing "@xxxxxx"), then the terminal is being used by a command file
already. Each terminal can only handle one command file at any one

, time. Try going to another terminal and entering the command.

E-28

CHAPTER 10

COMMANDS

10.1 COMMANDS

The following are system level commands that might come in handy.

(1) To stop the printer when "ABO PRT..." (CR)
The "SP:y" option is used

(2) To see what tasks are "ACT" (CR)
executing at your terminals

(3) To see what task are "ACT /ALL" (CR)
executing at all terminals

(4) To get out of pip "(CTRL C) ABO PIP" (CR)

(5) To gevt a listing of files on "PIP DBO:/LI" (CR)
the storage (DBO) disk

(6) To get a listing of files on "PIP MT:/LI" (CR)
magnetic tape

(7) To find out the amount of free "PIP /FR" (CR)
space that remains on disk

(8) To see what devices are loaded "DEV" (CR)
and/or mounted on the computer

(9) To see the time "TIM" (CR)

E-29

CHAPTER 11

TAPE BACKUP

11.1 TAPE BACKUP

This section assumes that you wish to backup the DB1: disk onto tape for
archival storage or as a precaution against a disk crash. This is to be done
when the system is NOT performing any other tasks.

(1) If an arc tape is installed and mounted on the tape drive, remove it with
the following command:

c
"DM0 MOTrARCxx" (CR)

where xx is the arc tape number. Note that this procedure may cause the
system to crash.

(2) Install a new reel of magnetic tape onto the tape drive. It should be a
2400 foot (largest) reel. Be sure there is a write-enable ring installed
on the reel. Place the tape unit 'ON LINE'.

(3) At the console terminal, type the following commands:

"DM0 DB1:" (CR)
"RUN DBO:[100,4]BRU" (CR)

(4) You will now get a different cursor that identifies the program you are
running as BRU. Type in the following commands at the terminal:

BRU)/VERIFY/BACKUP SET;ddmmmyy/REVISED;AFTER;xx-yyy-zz
FROM; DB1:
TO: MTO:

where ddmmmyy represent today's data (e.g. 01JAN83) and xx-yyy-zz
represent the day before the last backup was executed (e.g. 20-DEC-82).
Note that the underlined works in the above command are typed by the
computer.

(5) The tape will make two passes—the first to write all of the new and
revised files onto tape and the second to compare the tape files with the
disk file. If there are a large number of files to back up, then two
reels of tape may be necessary. The terminal will inform you if another
reel is necessary.

E-30

(6) Upon completion, remove the .tape and label it as a BRU backup of ETS DB1;
giving all the information you listed on the line marked BRU) above.

(7) To exit from BRU, type in:

(CTRL Z)

(8) Remount the DB1: disk by typing:

"MOU DB1:/OVR" (CR)

(9) You have now completed the backup of the disk.

E-31

CHAPTER 12

KNOWN BUGS AND PROBLEMS

12.1 KNOWN BUGS AND PROBLEMS

This section is a summary of the known problems and bugs with specific
applications programs. A work-around, if it exists, is included to bypass the
problem. Any new or different problems should be reported as soon as possible
to the Foothill personnel. As problems and bugs are fixed, they will be
deleted from this .section.

(1) LOG problems.

(a) Problem - Does not set clock time properly.

(b) Cause - Slow sending of the time characters results in a lag between
inquiry of time and final sending of time to data logger.

(c) Work-Around - Use TRY to update the time after LOG is completed, as
indicated in the last instruction of section 3.2.

(2) LOGGER Problems.

(a) Problem - Screen display can only display 23 channels maximum.

(
(b) Cause - Unknown at this time.

(c) Work-Around - Limit display to 23 channels.

(a) Problem - screen display gives erroneous data if calculations are
mixed in with the data channels.

(b) Cause - Unknown at this time.

(c) Work-Around - Place all the calculations that are to be displayed on
the screen at the end of the display listing.

E-32

(3) PLOT problems.

(a) Problem - Plots without data are generated if only calculations are
plotted.

(b) Cause - Unknown at this time.

(c) Work-Around - At least one data channel must be plotted at the
beginning of the plot series, then all plots are correct.

CCUCON Problems.

(a) Problem - Divide-by-zero errors appear on screen during CCU loading
during certain times of the year.

(b) Cause - When the sun's azimuth angle approaches 90 degrees, a
division is performed using the sin or cos of the angle, causing the
error to appear.

(c) Work-Around - Ignore the error; it does not affect the results.

E-33

APPENDIX F

'SAMPLE OF AN INDIRECT COMMAND FILE

F-l

;TITLE POST.CMD
RUN EXECUT
.WAIT EXECUT
.5:
.IFNACT CNVRT .DELAY 20.S
.IFNACT CNVRT .GOTO 5
.ENABLE SUBSTITUTION
.ASKN Cl:33 TBL ENTER LOGGER NUMBER
.ASKS C6:63 FILE ENTER TEST ID RUN NUMBER <6 CHRS)
.WAIT CNVRT
.WAIT NEWVRT
.WAIT NWPRNT
.WAIT PLTSET
.WAIT PLOT
PIP 'FILE'.BAN/NV=VECTR1.BIN/RE
PIP 'FILE'.BBN/NV=PARM.BIN/RE
PIP 'FILE'.LST/NV=TRANS'TBL'.LST/RE
PIP 'FILE'.NOT/NV=NOTE.OO'TBL'/RE
•

; »» END OF POST PROCESSING FOR TBL 'TBL'
t

.END:

BUUtt NOT

F-3

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.
^^ 85-56

•4. Title and Subtitle
Overview of Software Development at the
Parabolic Dish Test Site

7. Authorfr)
C. K, Miyazpuo

9. Performing Organization Name an

JET PROPULSION IAB(
California Institul
A 800 Oak Grove Drii
Pasadena, Calif ornj

12. Sponsoring Agency Nome and Ad<

NATIONAL AERONAUTICS AND 1
Washington, D.C. 20546

fl AOOTHft f \ t_ si, I /^— .
«-'- ' Nv\r\HIATORY MKxJ

:e of Technology
re
La 91109

dress

SPACE ADMINISTRATION

3. Recipient's Catalog No.

5. Report Date
July 15. 1985

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.
NAS7-918

13. Type of Report and Period Covered

JPL Publication

14. Sponsoring Agency Code

15. Supplementary Notes Sponsored by the U,S, Department of Energy through Interagency
Agreement DE-AM04-80AL13137 with NASA; also identified as DOE/JPLT-1060r-90
and as JPL Project Ho. 5105-155 GtlQP or Customer Code 776-^1^62) .

16. Abstract

/̂O 6 -̂ The developnent history of the data acquisition and data analysis
software is discussed,in this report. The software development occurred
between 1978 and 1984 in support of solar energy module testing at the Jet
Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test
Station. The development went through incremental stages, starting with a
simple single-user BASIC set of programs, and progressing to the relative
complex multi-user FORTRAN system that was used until the termination of the
project. Additional software in support of testing is discussed including
software in support of the meteorological subsystem and the Test Bed
Concentrator Control Console interface. Conclusions and recommendations for
further development are discussed.

17. Key Words frbcted by Authorfi))
Energy Conversion
Energy Production
Solar Cells

19. Security Clossif. (of this report)

Unclassified

18. Distribution Statement

Unclassif ied unlimited

20. Security Clouif. (of this page)

Unclassified

21 . No. of Pages

9.6

22. Price

Jfi. 01*4 fl tl*3

