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INTRODUCTION

This report consists of two parts. Part I provides the theory and

results of an experimental program to test the feasibility of remote sens-

ing of current flows in the ocean and was written by Norden Huang. Part II

is a summary of an analytical study of the feasibility of remote sensing

of ocean currents by means of backseattaring cross-section techniques and

was written by W. A. Flood and G. S. Brown.

The experimental results in Part I represent the contributions of

many investigators. Data analysis of the laser profilometer was provided

by E. A. Uliana of Naval Research Laboratory; the probability density

curves are the result of C. C. Tung of North Carolina State University; the

data acquisition was supervised by Richard Shiel of Naval Research Labora-

tory and A. Gene Smith of Applied Science Associates, Inc.; and finally

the ground truth data was provided by Marty Welch of North Carolina State

University.
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Part I - Theoretical and Experimental Results of the Remote Sensing of

Ocean Currents.

1.0 INTRODUCTION

When waves propagate over the surface of the ocean their character-

istics are modified continuously. The changes are drastic when they en-

counter a non-uniform current field. From a basic fluid mechanics point

of view, this phenomenon has been studied by a number of investigators,

such as: Longuet-Higgius and Stewart (1960, 1961, 1964), Crapper (1972).

The application of the results as a means to measure the strength of the

current has only been discussed recently (Huang, et al, 1972).

Through preliminary studies in the laboratory (Huang, et al, 1974),

it was established that, for capillary waves, small scale currents could

be accurately measured through observations of wave kinematics. The

changes in gravity waves due to currents, however, have not yet been observ-

ed under controlled measurement conditions. From theoretical results and

from casual observations of waves under natural.conditions, drastic modi-

fications of waves by changing currents have been noted and have provided

ample justification to expect that whatever happened to capillary waves

would also happen to gravity waves. However, because of practical limi-

tations in the measurement technique used, the method employed for the

capillary wave studies reported previously (Huang, et al, 1974) can not

be used here. New methods and new theoretical groundwork will have to be

developed. The theoretical developments required will be discussed in

Chapter 2.

A field test at Hatteras Inlet, N. C., was conducted during the study.

The test site was not chosen by scientific consideration; rather, the avail-

ability of ground truth data dictated the decision. The results of these

tests showed qualitative support for the theoretical results. These will

be discussed in Chapter 3. There were, however, problems in the data pro-

cessing procedures and measurement techniques used. Recommendations for

future improvements to aid in resolving these problems are given in the

last chapter.
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2.0 THEORETICAL STUDIES

2.1 Introduction

Interactions between currents and waves have been discussed by numer-

ous authors, but in most of these studies, the directional properties of

the wavefield have not been duly considered. As a result, unidirectional

wave and current fields were assumed. Such approximation will probably

hold in the open ocean where the horizontal scale of currents and wave

fields are much longer than any single wave length; therefore, the wave

field is approximately uniform in the horizontal variable both in ampli-

tude and direction. Wave conditions at inlets, however, pose a different

problem. The current field here is well defined and concentrated. The

horizontal gradient of change is strong. Even if we neglect the influence

of the bottom, the waves will still change direction as they propagate.

This problem has been studied by Boone (1974) where directional and ampli-

tude changes were investigated. A brief summary of Boone's results will

be given first in the following discussion. The changes in wave charac-

teristics will be discussed through the associated probability distribu-

tion functions. J—. -

2.2 Summary of the Equations for Inlet Wave Patterns

In developing the wave-current interaction equations in this study,

the following assumptions are made:

(1) the tidal currents are assumed to be steady in time but

non-uniform in space. This assumption holds because the

periods of the wind waves and even the swells are of the

order of seconds while the tidal period is of the order of

hours. During the time a wave propagates through the tidal

inlet, the current condition indeed will not change substan-

tially, but the wave will experience completely different

current conditions across the inlet;
"i

(2) the motions of the fluid are assumed to be irrotational.

This is more out of convenience of analysis than reality,

but the assumption is good in most wave studies because the

rotational influence is small in any case;

(3) the waves are assumed to be in deep water. There are some
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difficulties with the deepwater assumption which requires

that the depth of the water, D, be greater than one-half

wave length, L/2; i.e. D/L > 1/2. The maximum depth at a

typical inlet on the Outer Banks of North Carolina is of

the order of 20 feet. Certainly any wave that has a length

less than 40 feet will satisfy the deepwater criteria. How-

ever, the restriction is not critical for most cases in which

we are interested. A wave of 100 feet in length, for example,

will introduce an error of only 10%. This is well within the

acceptable accuracy limit of the present capability in mea-

surement techniques. In the future, a more precise model

should be built for the shallow water case as well.

To begin the study of wave patterns, the kinematics involved will be

considered. For the inlet geometry shown in Figure 2.1, under steady

state conditions, by the kinematic conservation law discussed by Phillips

(1966) we will have

vn.'- 0 (2.1)

where n represents the total frequency actually observed, which

includes the pure oscillatory and convective frequencies, namely:

n = k« (W-c) = k-U + a (2.2)

In component form, equations 2.1 and 2.2 give:

k(Ucos9+c) » k c (2.3)o o

where k is the wave number, U the current magnitude, c the phase speed,

and 0 the angle between the wave vector and the current direction. The

subscript o indicates the condition when the current is zero.

For the deepwater gravity waves, the phase velocity and the wave

number are related by

2 k

-2-f • »-*>c k •o



-5-

SOUND SIDE

Land
TIDAL INLET

U

\

OCEAN SIDE

Land

Wave Crest

Direction of
Wave Movement

Figure 2.1. Schematic of coordinate system in relation to wave
crest> tidal inlet, current and wave movement
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therefore, equations 2.3 and 2.4 combined will give

2 •
-^ - - --- - cos6 = 0 (2.5)
c c co o o

which has the solution

<=„ "a)"" ' ee ' ( <2-6 '

Here only the positive sign for the radical has been retained to

reflect physical reality. By combining equations 2.4 and 2.6, the wave

number changes can be written as

(2.7)

O

The inverse of this ratio will give the wave length ratio.

By using the irrotational properties of the wave number vector, we

have

3ksin6 5kcos9 n ,~ 0\— — =0 (2.8)

where the x-axis is parallel to the current direction in this equation.

Wave number changes perpendicular to the current direction should be zero,

thus,

(2.9)

Hence

ksin9 = k sin6 (2.10)o o
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whlch is Snell's law of refraction. By combining equations (2.7) and

(2.10), the wave refraction equation under current is obtained as

The wave refraction equation shows that the refraction angle is a function

of the initial wave angle relative to the current direction, the -.initial

wave phase speed, and the current speed. When U/c is greater then zero,

sin0/sin6 increases with current changes. When the value of U/c is lesso ° o
than zero, sin6/sin6 decreases in an opposing current. The angle of re-

fraction can be obtained from the expanded form of equation 2.11 as

. 2 p2sin38 - 2 sin6
sin 6 + 5 £ 5 2.

(1+p sin 6 )o

(l-2p2)sin2eo-2P
4sin4eo 2

sin 6
eor

2 3

V.VN2s in9+ * 2 . 2" 2 = 0 <2'12>

where p=U/c . This algebraic expansion can be shown to be the same as

Crapper's (1972) wave refraction equation obtained through an independent

method using averaged Lagrangian and variational principles.

The wave amplitude can be found by using the wave energy conservation

equation:
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where E = energy density of the waves per unit area

i,j = indices with values 1,2 corresponding to x,y

U = current velocity

6 = excess momentum flux associated with the wave motion

c . = group velocity of the waves

e = the rate of energy dissipation per unit area

Under the steady state and non-dissipative assumptions, equation 2.13 can

be written as

[E(Ucos9+|c)] + -j [EUsin8] + j E = 0 (2.14)

The continuity equation for the current field is

3Ucos6 8Usin9
3x 9

By combining equations 2.14 and 2.15, and through some algebra, we get

const = TE (2.16)

Combining equation 2.6 with the energy equation, 2.16, finally gives

! + (1 + 4UCOS6)

[*4Ucos9_ + 1+ (1 + 4Ucos9
| c cL . o oc. - - -- • c. ' J

This equation indicates how the energy of a wave is modified by the

current velocity. Since the energy in a gravity wave is proportional to

the square of the amplitude,

1/21/2

ao 4Ucos9 . i , f-, . 4Ucps6 \ 1/24- 1 + (1 + )
c co o
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Associated with the wave amplitude is the wave slope or the wave

steepness, s, defined as the ratio of the wave height to the wave length:

f-^ (2.19)L IT

Thus

1+ (1+ 4Ucos9) 1/2 1/2

_§_= : * . !°
s • }1 i.l/i i. 4Ucos9 . 1 / 2 ) 2 4Ucos9 . , . , , , 4Ucos9 x 1/2o < — •+• -r-Ql + — ; \ — + !+(! + >

12 2 Co > V Co

(2.20)

With all the equations of wave characteristics given, the values of

the various quantities can be calculated. The calculation starts with the

equation of wave refraction given in the expanded form. For given 6 and

U/c values, the refraction angle changes, are shown in Figure 2.2. The

resulting refracted angle values are then applied to equation 2.17 to solve

for the energy changes under current as shown in Figure 2.3; to equation

2.18 to solve for amplitude changes as shown in Figure 2.4; to equation

2.20 to solve for the wave slope changes as shown in Figure 2.5; to equa-

tion 2.7 to solve for wave number changes as shown in Figure 2.6; and to

equation 2.6 to solve for the phase velocity changes as shown in Figure 2.7.

As the wave propagates against current, the wave slope keeps increas-

ing. The upper limit of the steepness can not exceel 1/7 as shown by

Michell (1893). Using this criteria, we can establish a stability curve

to predict the breaking conditions of waves. This limit is shown in Fig-

ure 2.8.

2.3 The Probability Distribution Function for Random Waves

The calculations presented in the previous section apply to simple

wave trains only. In the natural environment, wave fields are always ran-

dom in amplitude and direction; therefore, a complete description of the

wave problem should be in terms of directional wave spectra. However, prac-

tical capability limited the available experimental data to a simple wave
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Figure 2.2. Wave refraction angle 9 (degrees) versus velocity ratio U/c
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Figure 2.3. Wave energy ratio E/E versus velocity ratio U/c
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frequency spectrum only. Consequently a number of very attractive proper-

ties of waves such as the changes in wave number, phase speed, direction

et al. can not be fully utilized for measurements of current conditions.

With this limitation, other statistical characteristics in frequency

space should be considered in more detail. By using the energy equations,

the changes in the energy spectra in frequency space can be calculated.

This has been discussed in previous reports (Huang, et. al.. 1974). In

- addition to the spectra, the probability density function of the surface

elevation offers another measurement of the influence of the current on

wave fields. Another practical advantage of studying the probability

density function is that the quantities are measurable by radar techniques

(see, for example, Yaplee et al. 1971).

Both theoretical and field studies show that the probability density

function of the surface elevation of a wave field is approximately -Gaussian.

Thus

_ -1/2. ,- ' _
c2/52) (2.21)

where £ stands for the surface elevation measured from the mean sea level,

and the over bar indicates averages. When non-linear mechanisms are includ-

ed, the density function can be approximated by a Gram-Charlier series with

the leading term still Gaussian as shown by Longuet-Higgins (1960). Since

all the non-linear interactions are weak in nature, if we neglect the non-

linear effects and accept the first order approximation, the probability
—5-

density function of the surface elevation will then depend on C which is

controlled by the current-wave interactions under a given wind condition.

Two cases of current conditions are considered to show the influence

of current on the density function. The first case involves variable cur-

rents in one dimension only. As an example consider the Gulf Stream as a

uniform current which is a function of the variable x, measured perpendicu-

lar to the direction of current flow. The Gulf Stream is confined to a

particular region of x space. The energy conservation equation for this

case is:
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E(U +f)c = constant , (2.22)

where E is the total wave energy; U, the current velocity, and c, the phase

speed of the waves. The changes in the spectral function are given by

Huang et al. as

4<j>o(n)

o.

where n is the frequency and <(> (n) is the spectral function when the current

equals zero. Various forms of <}> (n) can be used in equation (2.23).

For the present discussion the Kitaigordoskii-Moskowitz-Pierson spectrum

is adopted, i.e. ,

n .
2 - (— ) ~"

4>o(n)-= Te (2.24)
n

«
where n = — with w standing for wind speed. Since the wave energy spectra

~2
are modified by the current, so is £ which equals

<• J (J)(n)dn (2.25)
o

where n is the cut-off frequency of the wave spectrum taken as that of a
c

wave 30 cm in length in the present study.

The second case deals with converging or diverging currents with con

tinuity equation as

3U 9U _ _ ,, ,,.+ -0 . (2.26)

Under this condition, the equation for energy conservation is
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E(U + yc)
= const, (2.27)

and-the spectral function becomes

1/2
<J> (n) [n + (1 + f)

<j,(n) = -2 ' 6 . . (2.28)

x T Vi T g ' g

2
Again the changes in <J)(n) are reflected in £ and the probability

density functions. The results are shown in Figures 2.9, 2.10, 2.11, and

2.12.

These results indicate that the probability density functions are
n

sensitive to whatever causes changes in £ . This is true even when the

higher order expansion terms in Gram-Charlier series are considered. In
-O

the open ocean, mechanisms that will .change £ substantially, are, of

course, winds and major currents. However, since we lack more detailed

knowledge of the generation of waves by wind, it is not easy to utilize

these properties as a means to measure wind velocity over the ocean,

because swells from previous storms will also change £ .

On the other hand, current-wave interaction is more definite and is

a first order effect. Furthermore, since the change depends on relative

values of currents, it is less susceptible to the error in establishing

an absolute relationship as required in wind wave generation studies. Under

normal conditions a wind system will cover an area substantially larger

than the scale of waves and thus will provide a homogeneous field for wave

action. In an inlet or a river mouth for example, the local flow will gen-

erate a non-uniform velocity field over a homogeneous wave field. Conse-

quently, the waves will interact and change characteristics depending on

the flow conditions. Such changes can be detected easily from the proba-

bility density function, but further study is needed to put this approach

on a sound quantitative basis.
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3.0 FIELD STUDIES

3.1 Introduction

The purpose of the field study was to conduct an experimental program

to establish the feasibility of using remotely sensed wave observations to

detect and measure ocean currents. Such a field test program must be sup-

ported by in-situ, ground truth measurements. The presence of a field

team from North Carolina State University making physical oceanographic

measurements at Hatteras Inlet, on the Outer Banks of North Carolina, sug-

gested that remotely sensed wave observations made at this location during

the North Carolina State field period might provide the basis of a fruit-

ful test of the theory presented in Part II of this report.

The initial plan called for four aircraft flights (two at ebb and two

at flood tides) carrying a laser profilometer and the NRL nanosecond radar.

The NRL radar was not available during the planned flight periods and

scheduling difficulties with the aircraft resulted in only three test

flights. Equipment malfunctions on two of the three test flights flown

resulted in useable data being restricted to the flight of July 15, 1974.

This data forms the basis for the field study.

.Figure 3.1 illustrates the location of Hatteras Inlet on the Outer

Banks of North Carolina. The inlet connects Pamlico Sound to the Atlantic

Ocean. Figure 3.2 is a more detailed drawing of the area and clearly shows

the presence of the small islands near the mouth of the inlet. These is-

lands produce an extremely complicated water flow pattern which make Hatteras

Inlet a less than ideal experimental site. The presence of gently sloping

beaches on the ocean side of the bank further complicate the data interpre-

tation by introducing the possibility of shallow water effects which are

not accounted for in the throry. The reason for the selection of Hatteras

for the experimental test site was primarily to take advantage of the physi-

cal oceanographic observations which could be provided by the North Carolina

State University field investigation.

3.2 Collection of Ground Truth Data

The physical oceanographic team from North Carolina State University

made current measurements at Hatteras Inlet from the 9th to the 16th of

July, 1974. These ground truth activities can be described as follows.
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Hatteras Inlet

Meteorological Station

Figure 3.1. Geographic location of Hatteras Inlet
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A. Bathymetrical Survey

A portable fathometer was used from a 16 ft. boat equipped

with an outboard motor, to make the bathymetrical survey. The

paths of the survey tracks near the Inlet are shown in Figure 3.3.

Though the width of the inlet is about 8000 ft., the maximum

depth is only 25 ft. The depth profiles obtained are shown in

Figures 3.4 and 3.5. The survey results indicated the shallow-

ness and the complicated nature of the bottom features of the Inlet.

The Inlet is not stable; dredging and erosion change the Inlet

geometry continuously. A decision was made at this point to

complete all measurements as quickly as possible; definitely

within the simmer and fall before the onset of winter storms

and resulting drastic changes in Inlet conditions.

B. Tracking Floating Buoys

Three dozen disposable buoys were prepared for measure-

ment of the Lagrangian surface current in the Inlet area

because the boat used was too .small to be safely operated there.

The buoys were 2' cubic sealed cardboard boxes painted bright

orange and weighted with sand to make the boxes slightly buoy-

ant so that only one-half of a box would be above the water

surface. Two transit stations were established on one of the

islands facing the ocean at the Inlet mouth as shown in Figure 3.3.

The distance between the stations was 1,181 ft., thus providing

a trangulation baseline sufficient for determining the position

of the buoys. A total of 30 buoys were released at various

times and positions and tracked as they moved through the

Inlet. Results of measurements on 15 July are shown in Figure

3.6. Surface current values deduced from buoy motion are shown

-on the figure.

C. Current Meter Measurements

A total of twelve current meters were deployed by the

North Carolina State University Marine Science team. Due to

limitations of the meters none was placed in the Inlet itself.

The locations of the two nearest to the Inlet mouth, that were
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most important to this study are shown in Figure 3.3. The

current meters used were General Oceanics Model 2010 film

recording meters. These instruments operate on the principle

that a buoyant wand tethered at one end will deflect into the

current stream at an angle and direction that are functions of

the current speed and direction. The sensing and recording of

this deflection yields information that can be readily tran-

slated into current speed and direction data. Accuracies of

measurements of current speed is +3%, and direction is + 5 .

The current meters were attached to 90 Ib. weights sunk to

the bottom. The meters were positioned 9 ft. above the bottom.

Current magnitudes and directions from these two stations are

shown in Figures 3.7 and 3.8. These values are comparable to

the ones obtained by the surface buoys discussed in the previous

paragraph.

D. Weather Data

A portable weather station was" established 20 miles south-

west of the Inlet at a Coast Guard Station. Standard meteoro-

logical parameters were recorded continuously. Figure 3.9

shows the wind data during the time of the buoy observations

and the current meter recordings. The wind data indicated that

during the flight time on July 15, 1974, the wind was coming

from the direction perpendicular to the axis of the Inlet, thus

the locally generated waves also moved in that direction. The

wind speed was around 15 knots which generated a sea state too

low to be tracked continuously by the laser profilometer. This

was not the most favorable condition to conduct the flight test,

but due to problems in scheduling the aircraft for alternate

dates, the aircraft experiment was conducted.

3.3 The Aircraft Experiment

A flight test plan was drawn up for the acquisition of data on wind-

wave height from one of the NASA Wallops Flight Center C-54 aircraft, using

a laser profilometer as the primary and the nanosecond radar as the secon-

dary source of data. The date scheduled for the first
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flight was chosen to be coincident with one of the days when inlet current

measurements were being made at one of the inlets by the ground crew using

floating buoys dropped from a small boat and tracked by two surveyor tran-

sits on an island in the mouth of the inlet.

It was hoped that sequential photographs taken from the aircraft as

it passed over the inlet could be used as a means of measuring buoy posi-

tions and velocities in order to provide an independent check on the tran-

sit measurements. It turned out, unfortunately, that the aircraft alti-

tude required to enable observation of sufficient land mass to permit mea-

surement of relative location of buoys with respect to land was so high

that the small buoys used (approximately 2 foot cubes) could not be seen

in the photographs.

Initial planning envisioned two data acquisiton flights on each of

two days: one flight each day at ebb tide and one at flood tide, and one

day for Hatteras Inlet and one for Ocracoke Inlet. The days initially

chosen as most desirable based on North Carolina State University research

project schedules and time of occurence of ebb and flood tides were:

10 July at Hatteras and 15 July at Ocracoke.

Data acquisition runs at an altitude of 500 feet (for best laser

operation conditions) were planned to be flown on courses along radials

from the center of each inlet mouth; each run to be nominally 10 miles

long to ensure that data would be obtained on ocean surface unaffected by

inlet currents as well as on ocean surface near the inlet where inlet cur-

rent effects could be observed.

Also, initial planning called for measurements to be made (simultan-

eous with the laser measurements) on ocean surface conditions using the

NRL nanosecond radar; it turned out that the radar was not available and

it was not used.

Although a detailed flight test plan originally had been drawn up for

this experiment, it was later modified as will be discussed, to be consis-

tent with final planning practicalities.

Figure 3.10 shows the ground traces of the flight test runs planned

for Hatteras Inlet. It can be seen that one run was planned to be flown

perpendicular to the beach rather than the inlet. The purpose of this run
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was to obtain information on changes in surface conditions to be expected

due to waves moving in to land unaffected by currents, so that this effect

could be accounted for in reducing the data from inlet runs.

, The laser profilometer to be flown was a continuous wave type with an

integration time of twenty (20) milliseconds. At an aircraft ground speed

of 140 knots, this is a minimum spatial resolution of 4.7 ft.

In order to produce reasonable measurements, a wave should be sampled about

four times per wavelength, minimum; thus the minimum wavelength observable re-

liably with the profilometer was about 19 feet. This was judged to be more than

adequate, since minimum wavelengths expected were of the order of 60 feet

A. 15 July Flight

The first experimental flight test was conducted on 15 July,

1974. Although the flight test plan called for measurements to

be made at Ocracoke Inlet, a pre-flight check with personnel at

Hatteras/Ocracoke revealed that ground measurements of current

velocity and direction were not possible""at Ocracoke due to

inability to emplace transits for tracking buoys. Plans to

fly data acquisition runs at Ocracoke were, therefore, abandoned.

At this time, the requirement for color photographs of

inlet geometry was upgraded to mandatory because field personnel

at Hatteras reported that inlet geography differed greatly from

that shown on charts used in experiment planning.

On the 15th, it had been previously estimated that ebb tide

would peak at 10:00. It was planned that flights should be made

near that time to maximize the probability of good data acquisi-

tion. Because the aircraft was not able to depart Wallops until

almost 8:30 it was necessary to change the sequence of experiments

from that in the test plan and begin measurement runs immediately

upon arrival at Hatteras. The photographic runs planned for

initial activity were postponed until after completion of laser

data runs.

The aircraft arrived at Hatteras at 9:30 and the first data

run was started at 9:30, after deciding that the plan to conduct

runs symmetrically located about the wind direction would have to
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be abandoned because the wind direction was observed to be almost

parallel to the beach front. This caused wind-wave/current inter-

actions to become inseparable from bottom effects on waves.

Swell was observed to be moving in from about the right di-

rection and it was hoped that the laser would be able to measure

interaction between current flowing from the inlet and swell

waves. Although the wave patterns in the vicinity of the inlet

were observed to be very complex due to interactions between

wind-waves, swell waves, inlet current and inlet bottom caused

effects, it was decided to go ahead with measurement runs in

the hope that inlet current/swell wave interaction effects would

be observable far enough from the inlet mouth to escape the com-

plications introduced by wind-wave/inlet bottom effects.

The direction of the first run was chosen to be parallel to

the axis of the inlet channel. This run was flown at an altitude

of 700 feet and ground speed of 146 knots. The ground track

heading was about 162 and the run was flown about 4 minutes,

which is about 9.6 nautical miles. The second run was simply

an inbound repeat of the first run. Subsequent runs were made

displaced 30°, then 60° i

is shown in Figure 3.10.

displaced 30 , then 60 clockwise from the first two runs, as

By the time the in-bound/out-bound set at 60 CW (runs 5

and 6) were complete, the time was 10:20 a.m. It was

then decided that instead of proceeding with the plan to make

runs CCW with respect to run #1, it would be better to repeat

the CW runs since wind direction was on that side and repetition

of data acquisition attempts needed to be conducted while current

conditions were still good.

This was done, with completion of the repeat of the 60 CW

run set (runs 11 and 12) at 11:05. At this time, runs 13 and 14

were flown 30 CCW from run #1, at a ground track heading of approxi-

mately 134° (and 314°).

Following the completion of this one CCW set of runs, the

planned runs out from and into the beach at a point some 5 to 7
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Table 1. July 15, 1974, Flight Pattern Data

Run No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Time Start

9:34:35

9:41:40

9:49:00

9:57:05

10:03:37

10:12:11

10:19:30

10:27:40

10:35:43

10:44:20

10:51:30

11:00:00 -

11:06:35

11:14:55

11:24:15

11:34:56

Time End

9:38:37

9:46:00

9:53:07

10:01:08

10:08:37

10:16:45

10:23:35

10:32:30

10:40:11

10:48:28

10:56:05

11:04:00

11:10:57

11:20:37

11:29:09

11:39:00

Begin Lat. & Long.

35°10.8'N 75°45.8'W

34°59.8'N 75°40.9'W

35°11.6'N 75°45.4'W

35° 1.3'N 75°49.3'W

35°11.8'N 75°46.2'W

35° 2.0'N 75°55.9'W

35°12.2'N.75°45.7'W

35° 0.8'N 75°41.3;w

35°12V5~fN 75°45.2'W

35° 1.6'N 75°47.8'W

35°12.7'N 75°45.1'W

35° 3.8'N 75°52.9W

.35°12.7'N 75°45.0'W

35°03.2'N 75°33.9'W

35°10.8'N 75°51.1'W

35° 0.1'N 75°49.6'W

End Lat. & Long.

35°. 1.3'N 75°41.8'W

35°11.6'N 75°45.8'W

35° 2.6'N 75°48.6'W

35°11.8fN 75°46.2'W

35° 8.9'N 75°54.5'W

35°12.0'N 75°46.6'W

35° 2.8'N 75°42.2'W

35°12.3'N 75°45.6'W

35° 2.6'N 75°48.0'W

35°12.5'N 75°45.2'W

35° 4.6'N 75°53.0'W

35°12.7'N 75°45.4'W

35° 4.9'N 75°35.5'W

35°13.0'N 75°45.4'W

35° 1.8'N 75°41.1'W

35° 9.3'N 75°54.7'W
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miles SW of Hatteras Inlet along Ocracoke Island were flown,

again at an altitude of 700 feet. The headings for these were

150° and 330°, approximately. This completed the data acquisi-

tion portion of the flight. Table 1 shows the time, heading,

ground speed, and corrected end point coordinates for all data

runs.

. During the portions of some of these runs when the aircraft

was in the vicinity of the inlet, photographs were made even

at the high altitude involved in the^hope that a floating buoy

would be observed in relation to a land mass. This did not happen.

After completion of the final data acquisition run, the air-

craft proceeded to Ocracoke Inlet where photographs were taken

at altitudes of 5, JOO and 8,000 feet. Photographs were then

taken at Hatteras Inlet at 8,000 feet altitude, with these com-

pleted at 12:15 p.m. The aircraft then returned to Wallops

Flight Center, arriving at 1:15 p.m.

The film from the aerial photographs was delivered to photo

processing and the laser data was taken to NRL to be converted

to digital form and processed. The results obtained are dis-

cussed in Section 3.4.

B. Flight on 17 and 18 October, 1974

A second group of flights was executed on October 17 and 18,

1974, to obtain data during flood conditions at Ocracoke before

the inlet geometry had undergone substantial changes due to winter

storms. The same flight plan as that of the July 15, 1974, test

was essentially adopted.

However, due to an undetected malfunction of the laser pro-

filometer, no useful data were collected during these flights.

Therefore discussions of test results presented in this report

will be limited to these data obtained on the flight of July 15, 1974.

3.4 Remote Sensing Results

The July 15th flight data were processed at the Naval Research Labora-

tory, Washington, D. C. Since the sea state during this flight was low,
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a number of data anomalies occurred on each run of the flight; the laser

profilometer did not provide continuous data. Therefore the single run

data were cut into segments of 28 second duration and only those segments

which were free of anomalies were processed.

Five typical runs are selected for this report. The wave spectra for

selected 28 second segments of these runs are shown in Figures 3tll through

3.15. Probability density functions (for the surface height fluctuations)

for.these same segments are shown in Figures 3.16 through 3.20

From Table 3.1 we see that Run 1 occurred between 0934 and 0939 and

Run 3 occurred between 0949 and 0953. During the time period 0934 and

0953 the wind was approximately 12 knots from 120 . These two runs tracked

sufficiently similar wind and current conditions to allow an inter compari-

son on the basis of theory. Runs 9 and 12 occurred when the wind direction

and magnitude were changing and might be intercompared but should not be

compared with Runs 1 and 3.

Run 1 is the most encouraging in terms,.of theory valuation. Figure

3.11 shows a pronounced spectral 'change and increase in energy as one

approaches the inlet. In the inlet case, the water coming out of the mouth

during ebb tide will diverge and hence decrease in speed. As a result the

wave energy should be higher near the inlet and decrease as the distance

from the inlet increases. This is the result shown for Run 1 in Figure 3.11.

As the energy of the wave field increases, the variance of the distribution

of wave heights increases. This is clearly evident for Run 1 in Figure 3.16.

However, agreement between theoretical predictions and the observed

spectral and density function cannot be made quantitative. At this time

it is not possible to locate the geographic wavemakers corresponding to each

28 second data segment. These locations determinations are crucial because

of the complex bottom topography and current distributions in the Hatteras

Inlet area.

While the data from Run 1 are encouraging, the data from Run 3 are not

so easily explained. The first data segment analyzed, occurring farthest
2

from the inlet has a peak value of approximately 2 ft. /Hz occurring at

.35 Hz. The spectrum for the farthest position in Run 1 had a peak value
•\

of less than one ft. /Hz occurring at approximately 0.6 Hz. It is likely
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ft.2/Hz

Run # 13

(7)S.W.H.=2.81 ft.

?)S.W.H.=2.98 ft.

?S.W.H.=3.37 ft.

S.W.H.=3.90 ft.

Figure 3.15. Frequency spectra measured by laser profilometer•for Run No. 13.
Numbers in circles increase as the distance gets smaller to the inlet.
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that the first spectrum for Run 1 was taken at a considerably greater dis-

tance from the inlet mouth than was the first spectrum of Run 3. Neverthe-

less as one approaches the inlet the spectra for both runs peak at about

.35 hertz although the peak value of Run 1 is almost twice the peak value

of Run 3. It may be that this period, (.35) seconds, is a consequence

of the bottom topography as well as current effects. In view of our in-

ability to locate the positions appropriate to each 28 second data segment
t

and the complex current distribution and bottom topography, it does not

seem fruitful to attempt further inter comparisons between Runs 1 and 3.

Notwithstanding these shortcomings, Run 1 will be discussed in more

detail to provide evidence of feasibility of the use of wave-current inter-

actions as a means of measuring current. The reasons for picking this set

of data are as follows: (1) Run 1 is along the axis of the inlet where the

current is strongest and the direction of the current is well defined as

indicated by the buoy studies; (2) by the theory of wave-current inter-

actions discussed in Chapter 2, the waves along this path should turn suf-

ficiently so that the wave vector will-be almost parallel to the current

on the axis of the inlet. If this happened, the flight path will be along

the wave vector at least for a short distance; (3) from this Run alone;,

five 28-second segments were chosen, so that the data from this run were

the most dense and complete. Spectra changes along this path are shown

in Figure 3-11. The lowest curve represents the sea state farthest from

the inlet while the highest represents that nearest to the inlet. A dif-

ferent way to present the spectra is shown in Figure 3.21. The energy

spectra indicate the change due to current conditions. The spectral form

also roughly indicated saturation in the higher frequency range as pre-

dicted by a previous report (Huang, et al. 1972) and Phillips (1966).

The probability density functions in Figure 3.16 show the same trend

as discussed in Section 2.3. It should be pointed out that the maximum

readings of the probability density function curves are considerably lower

than the theoretically predicted values under the given wind and current

conditions. This is probably due to the sensitivity of the instrument

used. The theoretical curves shown in Figures 2.9 through 2.12 were cal-

culated with a short wavelength cut off value of 1 ft., while the smallest

wave that the laser profilometer was capable of measuring was calculated
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Run # ' 1

1 S.W.H.=2.08 ft.

2 S.W.H.=2.99 ft.

3 s.W.H.=3.25 ft.

4 S.W.H.=5.27 ft.

5 S.W.H.=6.43 ft.

\ i\/

3 Hz.

Figure 3.21. Frequency spectra of Run No. 1 on log scale.
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in the previous section to be around 20 ft. in length. This difference

is substantial, but the discrepency was expected.

The trend of the events observed, however, is extremely encouraging.

The technique of the use of wave-current interaction as a means of making

current measurements has also received independent support from a study

by Parson (1974). In that study AGC samples from the SKYLAB S-193 alti-

meter were processed. Strong correlations between the signal strength and

the locations of the major current system were found.

Additional studies are needed to investigate and validate both these

methods and to establish the quantitative relationships needed for opera-

tional use of either.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusion

From this study, it has been established qualitatively that wave-

current interactions can be used to .detect currents at the regions where

strong current gradients exist. This method offers an alternative remote

sensing method of detecting ocean current, which differs from those used

previously in scatterometery, altimetry, laser wave profiling and air-borne

short-pulse radar, but which can be applied to data collected by one or all

of these. The experiments conducted during the period of this study

were not intensive enough to establish the required quantitative relation-

ships. Furthermore, only one of the above mentioned instruments was used.

Though the principle of using wave-current interactions has been established

to a certain extent in theory and in laboratory experiments, the technique

is still not fully developed and has not yet been completely proven. Con-

siderably more data are required to establish the quantitative relationships

needed to be able to use this method of current detection operationally.

The results from the present study offer a start in this direction, and

have proven to be invaluable as a precursor to improved future efforts.

4.2 Re commen da tion

A number of shortcomings became obvious during this study. The follow-

ing suggestions are made to help in avoiding some of them in future studies.
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A. Add time scale in data recordings- '

In the laser recording system, a time scale will have to be

build in so that the exact geographic location of the data points

can be established. This is crucial especially in the strong

current gradient cases where a small error in locations can change

the associated current value substantially. The development of

quantitative relationships will require exact current values as

a crucial input.

B. Incorporate flight directions relative to wave vector other than

parallel in the laser data reduction program.

The present laser data reduction program is written based

on the assumption that waves and wind are always propagating in

the same direction; i.e. the sea is assumed to be a one-dimensional

random surface. This assumption is obviously not true as discus-

sed by Phillips (1966). Even if the one-dimensional sea state

is accepted as an approximation, the flight angle relative to

the wave vector still have to be considered in data reduction.

Also, the platform on which the laser profilometer is mounted

is moving. This motion should also be considered. Probably a

scanning laser surface contour profilometer should be used in-

stead of the present single axis profiler.

C. Additional calculations of the probability density function, with

cut off wave length compatible with that of the laser profilo-

meter .

The present theoretical curves are generated by using a

short wavelength cutoff of 1 ft. in length, but the laser pro-

filometer can only measure waves longer than 20 ft. New curves

have to be generated, especially if a scanning laser profilo-

meter will be used. In the scanning mode, the laser spot will

move much faster and the sensitivity will decrease accordingly.

The discrepancy with the present theoretical results may thus

become even larger.

D. More field experiments.

The whole concept of using wave-current-interaction as a
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means of current detection is new. It needs considerably more

measurements for verification, with various instruments such as

scatterometer, radiometer, altimeter, air-borne laser profilo-

meter and nanosecond radar. Each of the instruments will measure

the same phenomenon with a different emphasis. With data from

all these, a complete picture can be constructed. Different

instruments will also offer a cross check of the results so

that a definitive quantitative relationship can be established

with confidence for operational use.
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Part II - Remote Sensing of Ocean Currents by Backscattering Cross Section

Measurements

1.0 INTRODUCTION

In Part I of this report, it was theoretically and experimentally dem-

onstrated that currents affect a change in the probability density function

of the height of the surface waves. This alteration arose because of a

change in the mean-square height of the waves. Since the probability den-

sity function of the wave elevation has a direct effect on the average

return waveform detected by a downward-looking short pulse radar, such an

instrument can be used to determine the presence and, conceivably, the mag-

nitude of currents. However, in order to evaluate the sensitivity of the wave-

form technique relative to ocean current sensing, it would be necessary to carry

out a very detailed study of the trade-offs between transmitted pulse width,

pulse repetition frequency, averaging time and surface roughness homogenity

similar to that conducted by Miller and Brown (1974). While such a study

is definitely essential to future work on remote, sensing of currents, it

was felt to be beyond the scope of-the present effort.

Large scale ocean currents are, in addition, known to alter the local

geoidal height and also influence the backscattering cross section of the

ocean surface. Since the effects of currents on geoidal height are pre-

sently being studied elsewhere, it was decided to direct this study toward

quantizing the influence of currents on the surface backscattering cross

section or o"°. Of all the consequences of ocean currents previously men-

tioned, the measurement of a° is probably the easiest to accomplish. However,

it is the purpose of this material to determine whether the influence of

currents on <J° is truly detectable or merely a second order effect.

The basis for this effort is formed by the work of Huang, et al. (1972)

in which the effects of ocean currents on the one-dimensional wave height

spectrum and the mean squared slope were determined. In this report, we

use these results to calculate the effect of currents on cr° for both large

angles of incidence and normal incidence and to determine the feasibility

of using such a measurement as a current sensor.
*

Before continuing, however, it should be pointed out that the theory

developed by Huang, et al. (1972) is applicable only to the so-called "gravity
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waye" range of the wave height spectrum. Furthermore, there is no justi-

fication for attempting to extend this theory into the capillary range of

the spectrum. This limitation will impose some rather severe restrictions

upon our analysis of the effects of currents on <J°; however, until the effects

of current on the capillary range are more completely known, these restrictions

must be understood and tolerated.

2.0 THE EFFECT OF CURRENTS UPON a" FOR LARGE ANGLES OF INCIDENCE

For large angles of incidence (9̂ 45°), the backscattering cross sec-

tion is determined by those surface.waves which satisfy the Bragg condition,

i.e.

Xr£ = sine , (2.1)

where X - is the wavelength of the radar, 6 is the angle of incidence and

k is the wavenumber of the ocean wave. JBecause of antenna aperture limita-

tions and resolution requirements, it is desirable to "select" a value of

k which yields a minimum radar wavelength. Quite obviously from equation

(2.1) this can be accomplished if k is

If k is to be made large, then this implies that the radar wavelength

will be in resonance with a ocean wavenumber in the so-called equilibrium

range of the surface height spectrum. Using Huang's results for the effect

of current on the spectrum in the equilibrium range, we find that the ratio

of cr° including current to a° for no current is given by

-7
/ - _- - I I

g°(U) , .
J. T
. _____

a°(u=0) I i + [i+4uv£7g]

2where g = 9.8 m/sec . In order to maximize the sensitivity of 0°(U)/a°(U=0)

to changes in U, we note by inspection of equation (2.2) that this can be

done by "selecting" the maximum value of k. Hence, both the requirement

to minimize X , and to maximize the sensitivity of o°(U)/a°(U=0) are satis-

fied by "selecting the largest possible value of k.
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Unfortunately, we are not at liberty to arbitrarily "select" k since

there are two other conditions which must be satisfied. These conditions

are imposed by; (1) the spectral isotropy assumption implicit in equation

(2.2); and (2) the requirement that we not exceed the spectral range for

which gravity waves are dominant (a condition imposed by the linitation of

Huang's analysis to the gravity wave region).

In equation (2.2), we have assumed that we are dealing with ocean

wavenumbers for which the waves spread isotropically. This assumption was

made for two reasons; the first of which is that our knowledge of the direc-

tional characteristics of the spectrum is rather poor and, thus, that part

of the spectrum which is not isotropic should be avoided. A second reason

is that in order to sense ocean currents, a flight path perpendicular to

the current would be chosen so that as the craft crossed the current boun-

dary a rapid change in radar cross section would define the position of the

current interface. For this geometry, we would want to observe (with the

radar) those waves which can propagate at large angles from the wind direc-

tion; in other words we must restrict- our attention to isotropic waves.

Based on an analysis of the results of measurements by Longuet-Higgins ,

.et al . (1963), Miller, e£ al . (1972) have concluded that isotropic waves are

(conservatively) defined by the following:

0.03 wifc >_ 1 (2.3)

where w is the wind speed in meters/sec and k is the wavenumber in I/meters.

Equation (2.3) defines the condition imposed by the isotropy assumption.

As noted previously, Huang's theory on current-wave interaction is only

valid in the gravity wave region of the spectrum. Based on Cox and Hunk's

(1954a) measurements of oil slick damped waves, Huang, et al. (1972) have

concluded that a cutoff wavenumber equal to 20.9 m (X =0.3m) is a rea-

sonable upper bound on the validity of their analysis. Thus, we must satisfy

k < 20.9 m'1 (2.4)
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With 20.9 m as the maximum permissible value of k, we determine

that the results of this analysis are valid provided w>^7.3 m/sec (equa-

tion (2.3)). Furthermore, we see from equation (2.1) that the radar wave-

length and angle of incidence are pair-wise uniquely determined; permissible

values of angle of incidence and radar operating frequency are given in

Table I.

TABLE I

Pairwise values of angle of incidence and frequency which satisfy the

Bragg condition for k = 20.9 m~ .

9 (degrees)

45

50

55

60

frf (MHz)

706

651

609 ..

576

Using k = 20.9 m~ in equation (2.2) will yield the maximum sensitiv-

ity of 0°(U)/a°(U=0) to current since 20.9 m~ is the maximum permissible

value of k. A plot of the dependence of a°(U)/a°(U=0) upon current is shown

in Figure 2.1. When U is positive, the wind and current directions are/par-

allel; when U is negative, the wind and current directions are anti-parallel.

For U<-0.2, the surface waves are evanescent and the analysis is no longer

valid since the waves do not propagate.

An inspection of Figure 2.1 clearly indicates that the large angle of

incidence backscattering cross-section is a very sensitive function of cur-

rent speed and direction. Furthermore, we note that the relationship between

current and cross section is independent of wind speed (a consequence of the

equilibrium spectrum) and is strictly monotonic. Thus, a measurement of O°

should result in a • nonambiguous measure of the current. In theory, at least,

this analysis indicates that the Bragg scatter geometry is a very suitable

configuration for detecting current changes.
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g°(u)
a°(U=0)

(dB)

4 -

0-

- 4-

- 8-

-12-

-16-

-20

WIND SPEED ̂ 7.3 m/sec
(See Table I for permissible
angles of incidence and radar
frequency)

-0.2
i
0 0.2 0.4 0.6

CURRENT SPEED (m/sec)
0.8 1.0

Figure 2.1. Dependence of wide angle of incidence backseattering
cross-section upon current.
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From a practical standpoint, there is some question as to the suitabil-

ity of the relatively low radar frequency to aircraft operation. Further-

more, the 18 dB decrease in a° for a parallel 1 m/sec current would surely

require a very sensitive receiver since the resultant signal-to-noise

ratio may be less than 0 dB.

3.0 THE EFFECT OF CURRENTS UPON CJ° AT NORMAL INCIDENCE

For normal incidence (6=0), the backscattering cross section of the

ocean surface is related to the wave height spatial autocorrelation func-

tion p (r) through the following equation;n

a° =

us

/e-16*
2(hm/Xrf)

2[l-pn(r)]
rdr (3.1)

where R is the Fresnel reflection. coefficient at 8 = 0° and h is the meano m

squared height of.the waves. Under the assumption that p (r) is analytic

at r=0 and that the integrand decays very rapidly as r departs from zero,

we can expand p (r) in a two-term power series about r = 0, i.e.
n

P(r) s: p (0) +fn n / (3.2)

Substituting (3.2) in (3.1) and noting that the mean squared slope is defined

by.

m -2hm
(3.3)

3r
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we find that the approximate value of a° for 8 = 0° is given as follows;

(3.4)

For ocean surface backscattering applications, there is an inherent problem

with equation (3.4). This problem is due to the fact that the mean squared

slope is dominated by the high wavenumber portion of the waveheight spectrum

(about which very little is known). In fact, if we assume that the spectrum

has the Phillips behavior, i.e. i|>(k) ~ k~ for k large, then the mean squared

slope becomes infinite as k-><». For this reason, it is necessary to intro-

duce the concept of cutoff wavenumber beyond which the spectrum decays
-4 -4much more rapidly than k . However, for an asymptotic k spectral behav-

ior, the mean squared slope is a very sensitive function of .the cutoff

wavenumber. _ .-
... - ' 2

In view of equation (3.4), it would appear that if s is sensitive tom
the cuttoff wavenumber (k ) then a° is also sensitive to k . However, suchc c
reasoning is not correct because equation (3.4) is a mathematical simpli-

fication of the more fundamental expression for a°, namely, equation (3.1).

In fact, Miller, £t al. (1972) have found that for a Pierson-Moskowitz-

Phillips spectral form, a determination of a° using (3.1) is insensitive to

k for k ~ 100 m while values for a° obtained from (3̂ 4) show an increased

sensitivity.

The primary reason for reviewing the dependence of a° at normal inci-
2

dence upon s is to point out that this relationship is an approximationm

which can lead to erroneous conclusions. Therefore, extreme care should be
2

exercised in relating a°, s and spectral cutoff wavenumbers.

Because the theory developed by Huang for current-wave interaction is

limited to the gravity wave range only, we note that it is inadequate to

permit a determination of the effect of currents on 0"° at normal incidence.

This observation is a consequence of the fact that we require the complete

spectrum in order to compute p (r) as required in equation (3.1), or, for
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that matter, to compute s as required in (3.4). As a result of this limi-m
tation, we can only very crudely estimate the effect of currents on the

normal incidence backscattering cross section. Only after the oceanographic

analysis is extended into the capillary range of the spectrum, can we accu-

rately determine the sensitivity of o° at normal incidence to currents.

To estimate the effect of currents on cr°, we will use the results
2

derived by Huang for s in conjunction with equation (3.4). In order to

not violate the gravity_wave assumptions implicit in Huang's analysis, we

will take the cutoff wavenumber to be 20.9 m (X =0.3 m). As noted above,
c

this value is felt to be somewhat conservative, i.e., actual values will

probably be larger. As will be shown below, as k increases so does the
c

sensitivity of O°(U) to current changes; thus, the results presented here

should be considered to be a lower bound estimate of the sensitivity of a°

to current changes.

From equation (3.4), the ratio of O°(U) to a°(U=0) is given by

a'Cu) :'_ sm(u=0)

s2(U) (3'5)m

2
Huang, et al. (1972) have derived the following relationships for s (U=0)

2 m

and s (U);
m

s
m
(U=0) = B I°g(kcw

2/g) (3.6)

and
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2B 6(X-Y> - f2

(X4-Y4) + f

I

-3
where B is the equilibrium range spectral constant (4.05x10 ) and

_
U4v

(3.7)

Y -

A plot of a°(U)/a°(U=0) is shown in Figure 3.1 as a function of current

and wind speed. The same directional convention for U and w as was used

for the Bragg scatter computation is used here. We note from Figure 3.1

that the normal incidence case is not as sensitive to current as the Bragg

scatter geometry. However, it should be noted that Figure 3.1 represents

the most pessimistic estimate of the sensitivity of <7°(U)/a°(U=0) for nor-

mal incidence to current while the same curve for the Bragg scatter case is

optimistic. That is, actual cross-section measurements may show that the

sensitivities of a°(U)/a°(U=0), for both normal and wide angles of incidence,

to changes in current are more comparable than is indicated in Figures 2.1

and 3.1.

Another point to note in Figure 3.1 is the dependence of q°(U)/a°(U=0)

on wind speed. Thus, in order to relate changes in o°(U)/cr°(U=0) to the

magnitude of current we would require some a_ priori knowledge about the wind

speed so that we know which of the curves we are to use in Figure 3.1. Such

a measure of wind speed may be obtainable from the waveform recorded by a

short pulse normal incidence radar so this is not a totally defeating objection.
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From a practical standpoint, the near normal incidence measurement

would seem to be more feasible in terms of satellite sensors since high

gain antennas can be used because the radar frequency may be made very high.

In addition, for parallel wind and current, the influence of current will

increase the signal-to-noise ratio over the no current condition. There-

fore, whereas the Bragg scatter result yields a greater sensitivity, the

variance of the measurement may be large due to low signal-to-noise ratio.

For normal incidence measurements, the sensitivity may be somewhat smaller

but the variance of the measurement will also be small due to the high

signal-to-noise ratio. Thus, we conclude that the normal incidence measure-

ment may be as good a sensor of current as the Bragg scatter measurement

when practical considerations are properly accounted for.

The results of the analysis presented here definitely justify an ex-

perimental program to determine if currents can be detected through cross

section measurements. Existing equipment such as the NRL four—frequency

radar and the NRL nanosecond radar could provide both- wide angle and nor-

mal incidence backscattering measurements.' It is strongly recommended

that such an experimental program be initiated.
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