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SUMMARY

This report provides the mathematical background for combining and connecting
linear, multi-input, multi-output subsystem models into an overall systems model.
Several examples of subsystem configurations are examined in detail. The report
also contains a description of a MATRIXx command file to aid in the process of com­
bining and connecting these subsystem models.

INTRODUCTION

To analyze and design models for complex systems, it is essential to combine
subsystem models into an overall system model. This report provides the mathemati-·
cal background for combining and connecting linear, multi-input, multi-output sub­
system models. Throughout this report, systems are assumed to have a standard form.

~ Ax + Bu

y Cx + Du

Using this system model, the mathematics that combine and connect two systems at
a time are described. Six representative combinations are presented: parallel
systems (fig. 1), summation of systems (fig. 2), concatenation of systems (fig. 3),
systems with a common input (fig. 4), summation of systems with a common input
(fig., 5), and feedback systems (fig. 6). The matrices representing the combined
system are presented in terms of the matrices for the subsystems.

The mathematics used in the development of the sample systems are presented in
appendix A in a MATRIXx (ref. 1) command file format. A listing of the command file

and instructions for the use of the file are presented in this report. MATRIXx is a

general purpose, interactive program for matrix manipulation, control law analysis
and design, and parameter identification.*

NOMENCLATURE

n dimension of state vector, ~

m dimension of control vector, u

r dimension of observation vector, ~

s Laplace variable

*MATRIXx is a proprietary product of Integrated Systems Inc., Palo Alto,
California.



Matrices:

A state matrix

B control matrix

C observation matrix

D feedforward matrix

F input selection matrix

H output selection matrix

I identity matrix

o matrix of zeros

Vectors:

u control vector

w selected input vector

x state vector

y observation vector

z selected output vector

Subscripts:

system one

2 system two

1 upper left submatrix of a partitioned matrix

2 upper right submatrix of a partitioned matrix

3 lower left submatrix of a partitioned matrix

4 lower right submatrix of a partitioned matrix
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MATHEMATICAL PRELIMINARIES

Matrices, which are a convenient method of formulating simultaneous linear
equations, are extremely useful in representing the linear models of dynamic
systems. Just as a system of linear scalar equations can be transformed into a
matrix equation, a system of linear matrix equations can be transformed into a
matrix equation using partitioned matrices. Thus the process for converting the
scalar equations

•• +

into the matrix equation

is identical to that used for converting the matrix equations

into the partitioned matrix equation

A1 1 I . . . I A1 n
---1-----4---

I I
I I
I I---r---l---

An1 I . . • I Ann

~1

Partitioned matrices are manipulated in the same way as normal matrices except
that the matrices and partitioned submatrices must be conformable for the operation
being performed. Consider the addition of matrices A and B, each partitioned into
four submatrices.

3



B = I~~~~~JlB2 I BiJ
If A and B have the same order and the corresponding submatrices (for example, A1

and B1) are of the same order, the sum may be expressed in terms of the partitioned

submatrices.

A + B

The same principles hold for multiplication. For example, if matrices A and B
are conformable for multiplication and all appropriate partitioned submatrices are
conformable for multiplication, then the product can be represented as

AB

DEVELOPMENT OF COMBINED SYSTEM MODELS

In this section, the models for six representative subsystem combinations are
developed. These subsystem combinations are for two independent (parallel) systems
(fig. 1), the summation of two systems (fig. 2), the concatenation of two systems
(fig. 3), two systems with a common input (fig. 4), the summation of two systems
with a common input (fig. 5), and a feedback system (fig. 6). Each subsystem con­
sidered is assumed to be represented by linear system equations of the form

• Ax + Bux =

'l.. = Cx + Du

!!1
!1 =A1!1 + 8 1!!1

11
11 =C1!1 + D1!!1

x2 = A#.2+ 82~2

12 = C#.2+ D2~2
12

Figure 1. Parallel systems.
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!1 = A1!1 + B1!:!1 Y1

~1

11 = C1!1 + D1!:!1

't.

!:!2
!2 = A2!2 + B2.Y2

J..2 = C2!2 + D2!!2 12

Figure 2. Summation of systems.

!1 = A1!1 + B1!:!1
Y1=!!2 0... - ~ !2 = A2!2 + B2!!2 ...

)
11 = C1!1 + D1!:!1

)
v Y J..2 = C2!2 + D2!!2 v

Figure 3. Concatenation of systems.

!1 =A1~1 + B1!! I-------.J"- l1

l1= C1~1 + D1!!

Figure 4. Systems with a
common input.

u
----,

Y

J..2!2= A~2+ B2!:!

Y2= C~2+ D2u

o 11
!1 = A1!1 + B1!:! ~---=------.

Y1 = C1!1 + D1!!

Figure 5. Summation of systems with a common input.
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!:!1 ... !1 = A1!1 + B1u1 ...
) >

•
'1.= C1!1 + B1u1

12 u2 =y

!2= A#2+ B2!!.2

12 = C#2 + D2!!.2

Figure 6. Feedback system.

The state vector x is assumed to be an n x
observation vector X are assumed to be m x

vector. The control vector u and the
and r x 1, respectively.

For the systems in which subsystems are connected, the concept of a selection
matrix is included. For notational convenience, the concept of an input and
an output selection matrix is used. These matrices are denoted F and H, respec­
tively, and are related to the subsystem control and observation vectors by the
following definitions.

u Fw

z HX

The vector ~ represents a generalized input into the system being considered. The
vector z serves the same purpose for output.

For
used as
model.

example, an output selection matrix that is not the identity matrix could be
a feedback controller model that is developed independently of the plant
If the feedback control vector, ~, of the controller model were

~ = [1J
and the observation vector X of the plant mode~ were

the selection matrix would be used to select the last three elements of tpe plant
observation vector and reorder them to conform to the order of the feedback control
vector for the controller. For this example, the selection matrix H would be
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If scaling of output parameters is desired, the elements of the selection matrix can
be used to accommodate that scaling. The use of the input selection matrix F is
identical to that described previously for the output selection matrix.

Parallel Systems

Two independent subsystems having no interconnections can be directly combined
into a single system model simply by defining the new control, state, and obser­
vation vectors and then, by inspection, constructing the partitioned matrices of the
resultant combined system. Figure 7 illustrates two parallel systems governed by
the following equations.

•
~1 A1~1 + B1~1}

System 1
X1 C1~1 + D1~1

x
2 A~2 + B~2}

System 2

X2 c2x2 + D~2

!1 = A1!1 + B1!:!.1

11 = C1!1 + D1!:!.1

!2 = A2!2 + B2!:!.2

Y2= C2!2+ D2!:!.2

-0

[tH~1-i-;;-] [~;}[~~1 i-B~;-] [~;1

Figure 7. state representation of
combined parallel systems.
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The control vectors to these systems are defined in terms of the input vectors ~1

and ~2' using the input selection matrices ~1 and F2 ·

~1 F1~1 System

u = F w System 2
-2 2-2

The control, state, and observation vectors are defined to include all elements
contained in the subsystem models.

If the system state equations are expressed in terms of the input vectors and the
input selection matrices, the equations for the system become

•
~1 A1 x 1 + B1F1~1 System

x = A x + B F w System 2-2 2-2 2 2-2

Using the previous definitions, the new state equation is represented by the
following equations.

The zero submatrices are of an order appropriate for the application.

Summation of Systems

Figure 8 illustrates the summation of two systems having independent input vec­
tors. As shown in the figure, the systems are preceded by an input selection matrix
and followed by an output selection matrix. The combined system model is developed
by defining the control, state, and output vectors for the total system; expressing
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I I

the subsystem controls in terms of the input vectors and input selection matrices;
and then expressing the output vector of the total system in terms of the selection
and observation equation matrices for both subsystems.

~1 =A1~1 + 81!!1

Y..1 =C1!1 + D1!!1

~2=A2!2+ 8 2!!2

Y..2 =C2!2 + D2!!2

Y..

0-

[zHi;-~-] t~;H~';!-lB:';] t~;J

Figure 8. State representation for
summation of systems.

The system equations for the two subsystems are given as

•
~1 A1~1 + Bl~l }System 1
;[1 C1~1 + D1~1

•
B2~2}~2 A2~2 +

System 2

;[2 = C2~2 + D2£2

The control vectors for the two systems are defined in forms of input vectors and
input selection matrices.

~1 = F1~1 System

Substituting these expressions into the state equations for both systems yields
equations in terms of the system inputs, the system selection matrices, the original
state vector, and the state and control matrices.

•

•

~2

~1 = A1~1 + B1F1~1

A2~2 + B2F
2"!!..2

System 1

System 2
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The output of the total system, X, is the sum of the selected outputs of system
and system 2, ~1 and ~2' respectively.

Y.. = ~1 + ~2

The selected vectors are defined as

System 1

~2 H2x'2

+ H2D2F2~J System 2
= H2C2~2

Thus the output vector for the total system can be written

The control vector ~ and state vector ~ in the total system are defined as all
elements that are to be added in the subsystems. This definition yields the
following partitioned vectors.

u = f!2-J
L~2

The state equation can be written in terms of these vectors by inspection.

The observation equation for the total system can be written using the previous
definitions for the control and state vectors for the total system and the expanded
observation equation.
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Concatenation of Systems

Two systems concatenated in a series are illustrated in figure 9. The first
system contains an input selection and output selection matrix. The total system
representation is determined by defining the state, control, and observation vectors
for the total system, defining the output selection equation, and defining the
observation equation from the first system to establish new system equations for the
second system.

r;;------, 11
~1 = A1~1 + 8 1!!.1

11 = C1~1 + D1!:! 1

!!.2
~2 = A2!5.2 + 8 2!!.2

1=C2~2+ D2!:!2

Figure 9. State representation for
concatenated systems.

The equations defining the two systems are

~1 A1~1 + Bl~l }

1.1 C1~1 + D1~1

~2 A2~2 + B2~2 }

1.2 = C2~2 + D2~2

System 1

System 2

The control vector to the first system is determined by the input to the system and
the input selection matrix.

The equations for the first system can be rewritten as

11



The control vector for the second system is defined by the output selection matrix
and the observation vector from the first system.

The state vector ~, the control vector ~, and the observation vector Z for the total
system are defined as

x [~~J
u w

The system equations for the second system must be reformulated in terms of ~1,

~2' ~, X2' and the system and selection matrices. Using the expanded definition of

the control vector for the second system, the reformulated equations become

Using these equations and the expanded equations for the first system (in terms of
~), the state equations for the total system can be formulated.

y.

Systems with a Common Input

Figure 10 illustrates two systems with a common input preceded by an input selec­
tion matrix. The formulation of the partitioned matrices for the total system is
straightforward once the state equations are rewritten in terms of the input vector
and input selection matrix.
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!1 =A1!!.1 +B1!! r----I~.'i1

.'i1= C1!!.1 + D1y'

-0

t;;HAi-i-~;] ti;H:;~;i•

Figure 10. State representation
of systems with a common input.

The equations for the two systems are.

•
~1 A1~1 + Bl~}·System 1

X.1 C1~1 + D1~

~2 A2~2 + B2~}
System 2

x'2 C2~2 + D2~

The control vector (~) for the two systems is defined in terms of the input vector w
and the input selection matrix F1'

The state vector ~, the control vector ~, and the observation vector X. for the total
system are defined as follows.

u = w
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Using the definition of the control vector common to both systems, the system
equations can be rewritten.

~1 A1~1 + .,F,". }
System 1

:(1 C1~1 + D1F1~

•
x A2~2 + ·2F1". }-2

System 2

X2 C2~2 + D2F1~

Thus, by inspection, the total system can be formulated as

Summation of Systems With a Common Input

Figure 11 illustrates the summation of two systems having a common input. The
total system is preceded by an input selection matrix. Output selection matrices
are appended to each system before the summation. After rewriting both sets of
system equations to include the input vector and input selection matrix, the total
system formulation follows immediately from the definition of the total system out­
put vector.

The systems are defined by the standard equations.

•
~1 A1~1 + Bl~ } System 1

1.1 C1~1 + D1~

•
~2 A2~2 + .2~} System 2

1.2 = C2~2 + D2~
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!1 =A1!1 + B1!!

11 = C1~1 + D1!!

Figure 11. State representation of summation
of systems with a common input.

The common control vector ~ for two systems is defined in terms of the input vector
~ and the input selection matrix F1.

The total system output vector can be written in terms of the output vectors of the
two systems,

x. = ~1 + ~2

or expanded in terms of the output selection matrices and observation vectors of the
two systems.

The state vector x and the control vector u for the total system are defined as
follows.

x = [{~J

u = w

Rewriting the state equations in terms of the input vector yields

•
~ A2~ + B2F1~ System 2
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The observation vector can be written by substituting for the observation vectors in
the expanded observation vector definition.

Using these equations, the total system can then be formulated in terms of par­
titioned matrices.

Feedback System

Figure 12 illustrates a generalized feedback system with a linear subsystem in
the forward and feedback loops. An input selection matrix precedes the total system.
The observation vector of the forward-loop system is used as the total system output
vector. The feedback system incorporates an input and an output selection matrix.
After a definition of the total system state, control, and observation vectors, a
multistep process is used to rewrite the subsystem equations in terms of the elements
of the total system vectors.

Figure 12. state representation of feedback system.
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The equations for the two subsystems are given as

•
~1 = A1~1 + B1~1}

System 1

~1 C1~1 + Df~!1

•
~2 A

2
X

+ BU }-2 2-2
System 2

:l.2 = C x + D2£22-2

The control .vector to the first system, £1' is defined in terms of the total system

input vector ~, the total system selection matrix F1, and the feedback vector ~2.

£1 u - ~2

This can be expanded in terms of the observation vector of the second system, ~2'

and the output selection matrix of the second system, H2, using the definition

and substituting into the equation for the control vector for the first system, £1,
yields

u1 = F1w - H Y- - 2-2

The control vector for the second (feedback) system is defined as

The state, control, and observation vectors for the total system are defined as
follows.

u = w

Y... = Y...1

17



The equations for the total system are derived by first expanding the observation
equation for the forward-loop system using the expanded equation for the control vec­
tor of the first system.

Z1 C1~1 + D1(F1~ - H2Z2)

C1~1 + D1F1~ - D1H2Y.2

Substituting the observation equation for the second system into this equation
yields

This equation is expanded again in terms of the definition for the control vector
for the feedback system

which can be written as

By defining an intermediate matrix, N, for notational convenience, as

the observation equation for the forward-loop system can be written

In a similar manner, the observation equation for the feedback system can be
derived. Starting with the simple equation for the observation vector of the second
system, 1.

2
,

and substituting for ~2 yields

18



This equation can be expanded in terms of Y1 to give

Using this equation for the observation vector of the feedback system, the state
equation for the first system can be written. Using the original state equation

and the expanded definition of the control vector for the first system,

the state equation becomes

which can be expanded in terms of the observation vector for the second

system, Y2' to give

Rearranging terms yields

Finally, an expression for the state equation for the second system is derived.
This derivation is based on the definition of the control vector for the feedback

system ~2'

and the final expression for Y1,
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which expands the definition to

This expression for ~2 is substituted into the original state equation for the feed­
back system

•
~2

to yield

Rearranging terms results in a usable expression for the state equation of the
second system.

The final state equations and the observation equation for the first system can
be expressed in terms of partitioned matrices for the total system equation.

MATRIXxCOMMAND FILE

To aid in the process of combining and connecting linear multi-input, multi­
output subsystems into a total system model, a command file has been created in
MATRIXx format. This file uses subsystem matrices whose names are consistent with

the notation of this report and produces total systems matrices ANEW, BNEW, CNEW,
and DNEW which correspond to the A, B, C, and D matric~s, respectively. The options
provided by this command file are the six sample systems developed in this report.
In addition to the four matrices above, the command file produces a total system
matrix, SNEW, defined in the following way.
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[
ANEW I SNEW~

SNEW" ---+--­
CNEW I DNEW

While the command file combines subsystems two at a time, the file is designed to
allow multiple combinations without leaving the command file.

The command file is used within MATRIXx by typing

EXEC ( 'COMBLK' )

The command file responds by typing a title,

COMMAND FILE TO ASSIST IN COMBINING AND CONNECTING SYSTEMS

REFERENCE NASA TM-85912

After the title is printed, the screen is cleared and a menu is displayed.

WANT TO DEFINE MATRICES

( 1) NO
(2) YES

The selection is made by positioning the cursor next to the desired answer and then
depressing the RETURN key.

If all matrices have been named using the notation of this report, the
matrices do not have to be redefined. However, if other names have been
used, the command file will 'request that the user define the appropriate
matrices. A typical respons.e following an answer of "yes" to the question
"want to define blocks" is

ENTER THE STATE MATRIX FOR THE FIRST SYSTEM, A1

The user must then either enter the elements of the A1 matrix or equate the A1
matrix to another, previously entered matrix, representing the state matrix for the
first system.

After the matrices for both systems are defined in the correct notation, the
screen is again cleared, and another menu appears.

SELECT AN OPTION

(1) PARALLEL SYSTEMS
( 2) SUMMATION
(3) CONCATENATION
(4) COMMON INPUT SYSTEMS
(5) SUM COMMON INPUT SYST
(6) FEEDBACK SYSTEM

21



Again, the selection is made by positioning the cursor next to the desired option
and then depressing the RETURN key. The options listed correspond to the examples
detailed in this report.

If the user has elected to enter or define the matrices, the command file will
again request that the required input and output selection matrices be entered. The
actual matrices to be defined are determined by the option selected. However,
because all options require an input selection matrix for the first system, F1, the

following message will always appear if the user is entering or defining matrices.

ENTER THE INPUT SELECTION MATRIX FOR THE FIRST SYSTEM, F1

The user must then either enter the elements of the F1 matrix or equate the F1

matrix to another, already entered matrix, representing the input selection matrix
for the first system.

The screen will again be cleared and another menu will appear.

DO YOU WANT TO EXIT

(1) NO
(2) YES

The selection is made by positioning the cursor next to the desired answer and
depressing the RETURN key. If (1) is selected, the command file will return to the
first menu and again ask if the user desires to define the matrices. Selection of
(2) will cause the system to exit the command file and return the user to MATRIXx '

Ames Research Center
Dryden Flight Research Facility
National Aeronautics and Space Administration
Edwards, Calif., August 2, 1984

REFERENCE

1. MATRIXx User's Guide. Integrated Systems Inc., 151 University Ave., Palo Alto,
Calif., 1982.
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APPENDIX A - LISTING OF COMMAND FILES

There are eleven command files to assist in combining and connecting systems.
These command files each perform specific functions described below. The prolifera­
tion of these files is partly due to normal program structuring and partly the
result of a 1024-character limitation on command files within MATRIXx '

The COMBLK command file (fig. A.1) is the main file used to combine and connect
systems. This file acts as an executive and controls the basic operation of the
command file. MENUS (fig. A.2) is a command file to define the menus listed when
using the COMBLK command file. The INPSYS command file (fig. A.3) is used to pro­
vide the user prompting while entering the system matrices. The input of selection
matrices is controlled by the SELECT command file (fig. A.4). SELECT contains logic
to request only the selection matrices required for the application selected by the
user. The actual combining and connecting of systems is controlled by the EXCOPT
command file (fig. A.5).

Figures A.6 to A.11 list the command files used to determine the matrices for
the total combined system. The combining of parallel. systems into a single system
description is done by the PARSYS command file (fig. A.6). The summation of
parallel systems is performed by the SUMSYS command file (fig. A.7). The CONSYS
command file (fig. A.B) determines the total system matrices when the systems are
to be concatenated. The COMINP (fig. A.9) and SUMCOM (fig. A.10) command files
determine the total system matrices for systems with a common input and separate
outputs or with a common input and a summed output. The FEDBAK command file
(fig. A.11) determines the total system matrices for a feedback system.
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II

II COMMAND FILE TO ASSIST IN COMBINING SYSTEMS

II

II REFERENCE NASA TM-85912

II LEE DUKE

II

EXEC ( 'MENUS' )

DISP('COMMAND FILE TO ASSIST IN COMBINING AND CONNECTING SYSTEMS')

DISP('REFERENCE NASA TM~85912')

ANSWER3=1

WHILE ANSWR3= 1 i

ANSWR1=MENU(LISTOP)-1i

IF ANSWR1=1iEXEC( 'INPSYS')iENDi

ANSWR2=MENU(LISTCM)i .•.

IF ANSWR1=1iEXEC( 'SELECT')iENDi

EXEC ( 'EXCOPT' ) i • • •

ANSWR3=MENU(LISTCH)i •

END;

Figure A.1 Listing of COMBLK command file.



II

II COMMAND FILE TO SET UP MENUS FOR COMBINING SYSTEMS

II

LISTOP ['WANT TO DEFINE BLOCKS'

'NO

'YES , ]

LISTCM

LISTCH

['SELECT AN OPTION

'PARALLEL SYSTEMS

'SUMMATION

'CONCATENATION

'COMMON INPUT SYSTEMS '

'SUM COMMON INPUT SYST'

'FEEDBACK SYSTEM '];

['DO YOU WANT TO EXIT'

'NO

'YES '];

Figure A.2 Listing of MENUS command file.
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II

II

II

COMMAND FILE TO INPUT SYSTEM MATRICES

26

DISP ('ENTER THE STATE MATRIX FOR THE FIRST SYSTEM, A1');

EXEC (S) ;

DISP ('ENTER THE CONTROL MATRIX FOR THE FIRST SYSTEM, B1');

EXEC(S);

DISP ('ENTER THE OBSERVATION MATRIX FOR THE FIRST SYSTEM, C1')

EXEC(S);

DISP ('ENTER THE FEEDFORWARD MATRIX FOR THE FIRST SYSTEM, D1');

EXEC( S);

DISP ('ENTER THE STATE MATRIX FOR THE SECOND SYSTEM, A2');

EXEC(S);

DISP ('ENTER THE CONTROL MATRIX FOR THE SECOND SYSTEM, B2');

EXEC(S);

DISP ('ENTER THE OBSERVATION MATRIX FOR THE SECOND SYSTEM, C2');

EXEC(S);

DISP ('ENTER THE FEEDFORWARD MATRIX FOR THE SECOND SYSTEM, D2');

EXEC( S);

Figure A.3 Listing of INPSYS command file.



II

II

II

COMMAND FILE TO INPUT SELECTION MATRICES

DISP ('ENTER THE INPUT SELECTION MATRIX FOR THE FIRST');

DISP ('SYSTEM, F1');

EXEC(5);

IF ANSWR2 < > 3; IF ANSWR2 < > 4; IF ANSWR2 < > 5; •

DISP ('ENTER THE INPUT SELECTION MATRIX FOR THE SECOND');

DISP ('SYSTEM, F2'); •

EXEC(5);

END;END;END;

IF ANSWR2 < > 1; IF ANSWR2 < > 4; IF ANSWR2 < > 5; •••

DISP ('ENTER THE SELECTION MATRIX FOR THE OUTPUT OF THE FIRST'); •••

DISP ('SYSTEM, H1'); •••

EXEC(5);

END;END;END;

IF ANSWR2 < > 1; IF ANSWR2 > 4;

DISP ('ENTER THE SELECTION MATRIX FOR THE OUTPUT OF THE SECOND'); •••

DISP ('SYSTEM, H2'); •••

EXEC(5);

END;END;

Figure A.4 Listing of SELECT command file.
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II

II COMMAND FILE TO EXECUTE OPTIONS FOR COMBINING

II AND CONNECTING SYSTEMS

II

IF ANSWR2 1; EXEC ( 'PARSYS' ) ; END;

IF ANSWR2 2 ; EXEC ( 'SUMSYS' ) ; END;

IF ANSWR2 3; EXEC ('CONSYS '); END;

IF ANSWR2 4; EXEC ( I COMINP , ) ; END;

IF ANSWR2 5; EXEC ( , SUMCOM' ) ; END;

IF ANSWR2 6; EXEC ('FEDBAK' ); END;

SNEW = [ANEW BNEW; CNEW DNEW] i

Figure A.5 Listing of EXCOPT command file.

II

II COMMAND FILE TO COMBINE PARALLEL SYSTEMS

II

<N1,M1> SIZE(B1); <R1,M1>

<N2,M2> = SIZE(B2); <R2,M2>

SIZE(D1); <M1,L1> = SIZE(F1)i

SIZE(D2); <M2,L2> SIZE(F2);

28

ANEW [A1 O*ONES(N1,N2);O*ONES(N2,N1) A2];

BNEW [B1*F1 O*ONES(N1,L2); O*ONES(N2,L1) B2*F2];

CNEW = [C1 O*ONES(R1,N2); O*ONES(R2,N1) C2];

DNEW [D1*F1 O*ONES(R1,L2); O*ONES(R1,L1) D2*F2];

Figure A.6 Listing of PARSYS command file.



II

II COMMAND FILE TO SUM PARALLEL SYSTEMS

II

<N 1, M1>

<N2,M2>

SIZE(B1); <M1,L1>

SIZE(B2); <M2,L2>

SIZE(F1) ;

SIZE(F2);

ANEW

BNEW

CNEW

DNE~'1

[A1 O*ONES(N1,N2); O*ONES(N2,N1) A2]i

[B1*F1 O*ONES(N2,L2); O*ONES(N2,L1) B2*F2];

[H1*C1 H2*C2];

[H1*D1*F1 H2*D2*F2];

Figure A.7 Listing of SUMSYS command file.

II

I I COMMAND FILE 'ro CONCATENATE SYSTEMS

II

<N1,M1> SIZE(B1)i

<N2,M2> SIZE(B2)i

ANEW [A2 O*ONES(N1,N2); B2*H1*C1 A2] i

BNEW [B1*F1; B2*H1*D1*F1];

CNEW

DNE~'1

[D2*H1*C1 C2] i

[D2*H1*D1*F1] ;

Figure A.8 Listing of CONSYS command file.
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II'

II COMMAND FILE TO COMBINE FEEDBACK SYSTEM

II

<N1,M1> = SIZE(B1)i

N = INVCEYE(N1) + D1*H2*D2*F2);

ANEW = rA1-B1*H2*D2*F2*N*C1 -B1*H2*(C2-D2*F2*N*D1*H2*C2)·

B2*F2*N*C1 A2-B2*F2*N*D1*H2*C2J;

30

BNEW

CNEW

DNEW

[B1*F1-B2*H2*D2*F2*N*D1*F1; B2*F2*N*D1*F1Jj

[N*C1 -N*D1*H2*C2J i

[N*D 1*F 1J i

Figure A.ll Listin;; of FEDBAK command file.
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