ICASE

SHIFTING THE CLOSED-LOOP SPECTRUM IN THE OPTIMAL LINEAR QUADRATIC REGULATOR PROBLEM FOR HEREDITARY SYSTEMS

J. S. Gibson and I. G. Rosen

Contract Nos. NAS1-17070 and NAS1-18107
March 1986

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

LIBRARY COPY
MAY 20 1986

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA
SHIFTING THE CLOSED-LOOP SPECTRUM IN
THE OPTIMAL LINEAR QUADRATIC REGULATOR
PROBLEM FOR HEREDITARY SYSTEMS(*)

by

J.S. Gibson*
Department of Mechanical, Aerospace
and Nuclear Engineering
University of California, Los Angeles
Los Angeles, CA 90024

and

I.G. Rosen**
Department of Mathematics
University of Southern California
Los Angeles, CA 90089

ABSTRACT

In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an α-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the α-shift to hereditary systems. As in finite dimensions, the shift can be accomplished by adding α times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An α-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

(*) This research was supported in part by The Air Force Office of Scientific Research under contract No. AFOSR-84-0309.

(**) This research was supported in part by the The Air Force Office of Scientific Research under contract No. AFOSR-84-0393.

(†) Part of this research was carried out while the authors were visiting scientists at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA, which is operated under NASA contracts No. NAS1-17070 and No. NAS1-18107.
1. **INTRODUCTION**

In this paper we consider the problem of computing optimal linear state feedback control laws for linear hereditary systems which yield a resulting optimal state trajectory that exhibits a prescribed degree of stability. This problem is sometimes referred to as the linear quadratic regulator problem with α-shift, α being the desired degree of stability, since it involves a linear state constraint, the minimization of a quadratic payoff functional and the shifting of the closed-loop spectrum to the left of the line $\text{Re } z = -\alpha$ in the complex z-plane. A solution is a control law of the form

\[u^*(t) = -K(x^*(t), x^*_t), \quad t > 0 \]

where K is a linear function of the optimal trajectory $x^*(t)$ and its past history x^*_t at time t, $x^* = x^*(u^*)$ is the solution to the underlying hereditary system, u^* minimizes a performance index which is quadratic in the state and the control and x^* satisfies a uniform exponential bound of the form

\[|x^*(t)| < M e^{-\alpha t}, \quad t > 0. \]

These ideas will be made precise in the subsequent Section 2.

In finite dimensions, i.e. when the state is given by a linear ordinary differential equation of the form

\[x(t) = Ax(t) + Bu(t), \quad t > 0, \]

the linear quadratic regulator problem with α-shift and its solution are well known (see [1], [2]). The matrix A is simply replaced by the matrix
A + αI and the resulting standard linear quadratic regulator problem (the shifted problem) is solved in the usual fashion.

A hereditary system, on the other hand, is infinite dimensional. Instead of the matrix A being replaced by A + αI, it is the infinitesimal generator A of the solution semigroup which is replaced by A + αI. The solution of the resulting shifted regulator problem requires the use of some form of finite dimensional approximation. One is tempted to take the general approach which by now has become standard in the control of infinite dimensional or distributed systems. That is, approximate the unshifted system using one of the currently available schemes for the regulator problem for hereditary systems and then apply the standard finite dimensional theory and techniques to the finite dimensional approximating systems to obtain approximations to the shifted system. However, as we discovered, this approach may not work.

The linear spline-based approximation scheme for the linear quadratic regulator problem for hereditary systems recently developed by Kappel and Salamon in [14] has been shown to be, in many respects, one of the most attractive approximation methods currently available for this class of problems. However, the finite dimensional approximating systems possess eigenvalues which do not converge to eigenvalues of the original underlying hereditary system. Those eigenvalues are stable and hence do not cause difficulties when the unshifted problems are solved. However, they are extremely difficult, if not impossible to shift. Consequently, even if the poles of the hereditary system which are to the right of the line Re z = −α in the complex z-plane can be shifted (i.e. the finite dimensional subspace spanned by the eigenvectors corresponding to the eigenvalues with real part greater than or equal to −α is controllable), when the α-shift is
applied to the approximating systems the solution of the resulting finite
dimensional regulator problems fail.

We have found a relatively simple and straightforward way to overcome
this difficulty. It involves a modification of the infinite dimensional
shifted system which permits the extraneous eigenvalues introduced by the
approximation to remain stable while the true eigenvalues of the hereditary
system are forced to the left of the line $\text{Re } z = -\alpha$.

In the paper we have treated both the continuous-time and the discrete-
time or sampled problems. The Kappel-Salamon approximation and the α-shift
are discussed in Section 3. In Section 4 we provide an example with numerical
results.
2. **THE OPTIMAL LINEAR QUADRATIC REGULATOR PROBLEM FOR HEREDITARY SYSTEMS WITH A PRESCRIBED DEGREE OF STABILITY**

We consider linear hereditary control systems of the form

\[(2.1)\quad x(t) = Lx_t + B_0u(t), \quad t > 0,\]

\[(2.2)\quad x(0) = \eta, \quad x_0 = \phi,\]

where \(x(t) \in \mathbb{R}^n\), \(u \in L_2(0,t_f;\mathbb{R}^m)\) for each \(t_f\) with \(0 < t_f < \infty\), \(B_0 \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)\), \(\eta \in \mathbb{R}^n\), \(\phi \in L_2(-r,0;\mathbb{R}^n)\) and for each \(t > 0\), \(x_t \in L_2(-r,0;\mathbb{R}^n)\) denotes the past history of the state \(x\) on the interval \([t-r, t]\). That is, \(x_t(\theta) = x(t+\theta), \quad -r < \theta < 0\). The linear transformation \(L\) is assumed to be of the form

\[(2.3)\quad L\psi = \sum_{i=0}^{\nu} A_i\psi(-r_i) + \int_{-r}^{0} A(\theta)\psi(\theta)\,d\theta\]

with \(A_i \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)\), \(i = 0,1,2,\ldots,\nu\), \((\nu < \infty)\), \(A \in L_2(-r,0; \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n))\) and \(0 = r_0 < r_1 < r_2 < \ldots < r_\nu = r\).

Standard arguments yield the existence of a unique solution \(x(\cdot;\eta,\phi,u)\) to \((2.1), (2.2)\) which is absolutely continuous with \(x(\cdot;\eta,\phi,u) \in L_2(0,t_f;\mathbb{R}^n)\) for any \(t_f\), \(0 < t_f < \infty\), which satisfies \((2.1)\) for almost every \(t > 0\) and which depends continuously on \(\eta,\phi,\) and \(u\).

A one parameter family of solution operators for the homogeneous system corresponding to \((2.1), (2.2)\) can be defined by

\[(2.4)\quad T(t)(\eta,\phi) = (x(t;\eta,\phi,0), x_t(\eta,\phi,0)).\]
If we let $Z = \mathbb{R}^n \times L^2(-r, 0; \mathbb{R}^n)$ together with the usual inner product
\begin{equation}
\langle (\xi, \psi), (\zeta, \chi) \rangle_Z = \xi^T \zeta + \int_{-r}^{0} \psi(\theta)^T \chi(\theta) d\theta,
\end{equation}
then the family of operators, \{ $T(t)$: $t > 0$\} forms a C_0 semigroup of bounded linear operators on the Hilbert space Z. The infinitesimal generator is given by
\begin{equation}
\text{Dom}(A) = \{ (\xi, \psi) \in Z : \psi \in H^1(-r, 0; \mathbb{R}^n), \xi = \psi(0) \}
\end{equation}
\begin{equation}
A(\psi(0), \psi) = (L\psi, D\psi).
\end{equation}
If we define the operator $B : \mathbb{R}^m \to Z$ by
\begin{equation}
B\psi = (B\psi_0, 0)
\end{equation}
then an equivalence exists between solutions to (2.1), (2.2) and mild or generalized solutions to the abstract evolution equation
\begin{equation}
z(t) = Az(t) + Bu(t), \quad t > 0
\end{equation}
with initial condition
\begin{equation}
z(0) = (n, \phi).
\end{equation}
That is, $z(t) = (x(t; n, \phi, u), x_t(t; n, \phi, u))$, where
In the subsequent discussion, when the solution to the system (2.8), (2.9) is referred to, it should be understood to imply the mild solution given by (2.10).

2.1 THE CONTINUOUS-TIME PROBLEM

The control problem which is of interest to us here is the infinite time horizon linear quadratic regulator (LQR) problem given by

Find \(u^* \in L^2(0, \infty; \mathbb{R}^m) \) which minimizes the performance index

\[
(2.11) \quad J(u) = \int_0^\infty x(t)^TQ_0x(t) + u(t)^TRu(t)dt
\]

where \(x \) is the solution to (2.1), (2.2) corresponding to \(u \).

The matrix \(Q_0 \in L(\mathbb{R}^n, \mathbb{R}^n) \) is assumed to be nonnegative, symmetric and the matrix \(R \in L(\mathbb{R}^m, \mathbb{R}^m) \) is assumed to be positive definite, symmetric.

Defining the nonnegative, symmetric operator \(Q : \mathbb{Z} \to \mathbb{Z} \) by

\[
(2.12) \quad Q(\xi, \psi) = (Q_0\xi, 0),
\]

we treat the equivalent LQR problem given by

\((P1) \) Find \(u^* \in L^2(0, \infty; \mathbb{R}^m) \) which minimizes

\[
(2.13) \quad J(u) = \int_0^\infty \langle Qz(t), z(t) \rangle_{\mathbb{Z}} + u(t)^TRu(t)dt
\]
where \(z \) is the solution to (2.8), (2.9) corresponding to \(u \).

We summarize the results from [7] concerning the solution of problem (P1). An admissible control for the initial state \(z(0) = (\eta, \phi) \in Z \) is a function \(u \in L^2(0, \infty; \mathbb{R}^m) \) for which \(J(u) < \infty \). Under the assumptions

(A1) for each initial state, \(z(0) = (\eta, \phi) \in Z \) there exists an admissible control,

and

(B1) the operators \(L, B_0 \) and \(Q_0 \) are such that any admissible control \(u \) drives the state \(z(t), t > 0 \) to zero, asymptotically as \(t \to \infty \),

there exists a unique nonnegative, self-adjoint solution \(P \in L(Z, Z) \) to the Riccati algebraic equation

\[
\tag{2.14} \quad A^* P + PA - PB R^{-1} B^* P + Q = 0.
\]

The unique solution \(u^* \in L^2(0, \infty; \mathbb{R}^m) \) to problem (P1) is given in feedback form by

\[
\tag{2.15} \quad u^*(t) = -R^{-1} B^* Pz^*(t), \quad t > 0
\]

and

\[
\tag{2.16} \quad J(u^*) = \langle P(\eta, \phi), (\eta, \phi) \rangle_Z.
\]

The optimal trajectory, \(z^* \), is given by
(2.17) \[z^*(t) = S(t)(\eta, \phi) \]

where \(\{S(t) : t \geq 0\} \) is the \(C_0 \) semigroup generated by \(A - BR^{-1} B^* P \). The semigroup \(\{S(t) : t \geq 0\} \) is uniformly exponentially stable, i.e. there exist positive constants \(M \) and \(\omega \) for which

(2.18) \[|S(t)| < Me^{-\omega t}, \quad t > 0. \]

The operator \(A^* \) is given by

\[
\text{Dom}(A^*) = \{(\xi, \psi) \in \mathcal{Z} : D\psi \in L_2(\mathbb{R}_0; \mathbb{R}^n), \psi \text{ absolutely continuous on } [-r, 0] \text{ except at the points } -r_1, \ldots, -r_{v-1} \}
\]

where \(\psi((-r_i)^+) = \psi((-r_i)^-) = A_T^i \xi, \quad 1 < i < v - 1 \)

and \(\psi(-r) = A_0^T \xi \),

(2.19) \[A^*(\xi, \psi) = (A_0^T \xi + \psi(0), A^T \xi - D\psi) \]

and is the infinitesimal generator of the \(C_0 \) semigroup \(\{T^*(t) : t \geq 0\} \).

We have \(\mathcal{P} \subset \text{Dom}(A^*) \).

The operator \(P \) can be represented by a matrix of operators

(2.20) \[P = \begin{pmatrix} p^{00} & p^{01} \\ p^{10} & p^{11} \end{pmatrix} \]

where \(p^{00} \in L(\mathbb{R}_0^1, \mathbb{R}^n) \) is a nonnegative symmetric matrix,
\[p^{10} \in L_2(-r,0; L(\mathbb{R}^n,\mathbb{R}^n)), \quad p^{01} = p^{10}^* \text{ with} \]

\[(2.21) \quad p^{01}\psi = \int_{-r}^{0} p^{10}(\theta)^T \psi(\theta) d\theta, \quad \psi \in L_2(-r,0;\mathbb{R}^n), \]

and \(p^{11} \in L(L_2(-r,0;\mathbb{R}^n), L_2(-r,0;\mathbb{R}^n)) \) is nonnegative and self-adjoint. We have

\[(2.22) \quad u^*(t) = -p^0 x^*(t) - \int_{-r}^{0} p^1(\theta)x^*(\theta) d\theta, \quad t > 0 \]

where \(p^0 = R^{-1}B_0^T p^{00} \) and \(p^1(\theta) = R^{-1}B_0^T p^{10}(\theta)^T, \quad -r < \theta < 0. \)

We note that Assumption (A1) is satisfied if the unstable subspace of \(L \) (which is finite dimensional, see [9], [23]) is controllable. Assumption (B1) is certainly satisfied if \(Q_0 \) is positive definite.

The Continuous-Time Problem with \(\alpha \)-Shift

An \(\alpha \)-shift, we recall, is a technique which is used in conjunction with the standard LQR theory to obtain an optimal feedback control which yields not just an asymptotically stable closed-loop system, but rather, one which exhibits a prescribed degree of stability. That is, one for which the state \(z(t) \) decays at least as fast as \(e^{-\alpha t} \), i.e.

\[(2.23) \quad |z(t)|_z < \hat{M} e^{-\alpha t} |z(0)|_z \]

where \(\hat{M} \) is a positive constant and \(\alpha > 0 \) is the desired degree of stability.

For the hereditary systems of interest to us here, this is completely
equivalent to requiring that the eigenvalues of the closed-loop system have real part less than \(-\alpha\). A discussion of this problem and its solution for finite dimensional systems first appeared in [1] and can also be found in [2].

One approach to solving this problem involves the inclusion of the multiplicative factor \(e^{2\alpha t}\) under the integral sign in the performance index given in (2.13). However, making the change of variables

\[
(2.24) \quad \hat{z}(t) = e^{\alpha t} z(t) \\
(2.25) \quad \hat{u}(t) = e^{\alpha t} u(t)
\]

it is easily seen that if one solves the modified LQR problem

\[
(\text{P1}) \quad \text{Find } \hat{u}^* \in L_2(0,\infty; \mathbb{R}^m) \text{ which minimizes }

(2.26) \quad J(\hat{u}) = \int_{-\infty}^{\infty} \langle \hat{Q}(t), \hat{z}(t) \rangle_{\hat{z}} + \hat{u}(t)^T \hat{R} \hat{u}(t) dt
\]

where \(\hat{z}\) is the (mild) solution to the abstract evolution system

\[
(2.27) \quad \frac{d}{dt} \hat{z}(t) = (A + \alpha I)\hat{z}(t) + \hat{B} \hat{u}(t), \quad t > 0
\]

\[
(2.28) \quad \hat{z}(0) = (n, \phi)
\]

and applies

\[
(2.29) \quad \hat{u}^*(t) = e^{-\alpha t} \hat{u}^*(t), \quad t > 0
\]

to the original control system (2.8), (2.9), the resulting optimal trajectory,
will satisfy (2.23).

Strictly speaking (2.27), (2.28) is not a hereditary system. However, the results outlined above concerning the solution of problem (P1) in closed-loop form are in fact derived from a more general abstract theory (see [6]). This more general theory can be applied directly to problem (P1). Under assumptions (Al) and (Bl) (with z, u, and J replaced by \hat{z}, \hat{u} and \hat{J} respectively) the unique solution to problem (P1) is given in state feedback form by

$$u^* = -R^{-1} B^* \hat{P} \hat{z}^*(t), \quad t > 0$$

where $\hat{P} \in L(Z,Z)$ is the unique nonnegative self-adjoint solution to the Riccati algebraic equation (2.14) with A and A^* replaced by $A + \alpha I$ and $A^* + \alpha I$ respectively. The operator \hat{P} can be represented by a matrix of operators analogous to the one given in (2.20). From (2.24) and (2.29) we obtain

$$u^*_\alpha(t) = -R^{-1} B^* \hat{P} \hat{z}^*_\alpha(t), \quad t > 0 .$$

It then follows that

$$z^*_\alpha(t) = S^*_\alpha(t)(\alpha, \phi), \quad t > 0$$

with

$$|S^*_\alpha(t)| < \delta e^{-\omega t}, \quad t > 0$$
where \(\{S_\alpha(t) : t > 0\} \) is the \(C_0 \) semigroup generated by \(A - BR^{-1} B^* P \).

Since the shifted system (2.27) is not a hereditary system, it would seem that to obtain the estimate (2.33) from the general theory presented in [6], the coercivity of \(Q \) would be required. (In the case of a hereditary system, assumption (Bl) is sufficient.) However, as will become clear in the next section, (2.27) is in fact related to a hereditary system through a bounded similarity transformation. Consequently, assumption (Bl) is sufficient to obtain the uniform exponential bound (2.33) for the shifted system as well.

The controllability of the finite dimensional generalized eigenspaces corresponding to the eigenvalues of \(A \) with real part greater than or equal to \(-\alpha\) is sufficient to conclude that assumption (Al) holds for the shifted system.

2.2 THE DISCRETE-TIME PROBLEM

The discrete-time or sampled analog of problem (P1) is given by

(P2) Find \(u^* = \{u_k^*\}_{k=0}^\infty \in \ell_2(0;\mathbb{R}^m) \) which minimizes

\[
J(u) = \sum_{j=0}^{\infty} <Qz_j, z_j> + u_j^T R u_j \quad \text{where} \quad z = \{z_k\}_{k=0}^\infty \quad \text{satisfies the recurrence}
\]

\[
z_{k+1} = T z_k + B u_k, \quad k = 0, 1, 2, \ldots,
\]

with

\[
z_0 = (\eta, \phi).
\]

The operators \(T \in L(Z;Z) \) and \(B \in L(R^m;Z) \) are defined by
(2.37) \[T = T(\tau) \quad \text{and} \quad B = \int_0^T T(s) E ds, \]

respectively, where \(\tau \) denotes the length of the sampling interval.

The characterization of the solution to the discrete-time LQR problem in state feedback form for infinite dimensional systems is treated in [18] and [24]. The application of the general theory to problems involving hereditary systems is discussed in [8]. The results are completely analogous to those given above for the continuous-time problem. We briefly summarize them here.

An admissible control sequence \(u \in \ell_2(0,\infty; \mathbb{R}^m) \) for the initial condition \(z_0 = (\eta, \phi) \in Z \) is one for which \(J(u) < \infty \). If the assumptions

\[(A2)\] for each initial condition \(z_0 = (\eta, \phi) \in Z \) there exists an admissible control

and

\[(B2)\] the operators \(L, R_0 \) and \(Q_0 \) are such that if \(u \) is an admissible control for the initial condition \(z_0 = (\eta, \phi) \) then the state \(z = \{z_k\}_{k=0}^\infty \) given by (2.35) satisfies \(\lim_{k \to \infty} |z_k|_z = 0 \) hold, then there exists a unique solution to problem (P2) which is given in linear state feedback form by

\[(2.38)\] \[u_k^* = -Fz_k^*, \quad k = 0, 1, 2, \ldots \]

where
\[(2.39) \quad F = R^{-1} B^* P T, \]
\[(2.40) \quad R = R + B^* P B \]

and P is the unique nonnegative self-adjoint solution to the Riccati algebraic equation

\[(2.41) \quad P = T^*(P - PB(R + B^* P B)^{-1} B^* P) T + Q. \]

The minimum value of the performance index can be computed from

\[(2.42) \quad J(u^*) = \langle P(n,\phi),(n,\phi) \rangle_Z \]

and the optimal trajectory z^* satisfies

\[(2.43) \quad z^*_k = S^k(n,\phi), \quad k = 0, 1, 2, \ldots \]

where $S \in L(Z,Z)$ is given by

\[(2.44) \quad S = T - BF. \]

We also have the following result.

Theorem 2.1 If assumptions (A2) and (B2) hold then the operator S has spectral radius less than 1 and there exist positive constants M and ρ with $\rho < 1$ for which
(2.45) \[|S^k| \leq M_0^k, \quad k = 0, 1, 2, ... \]

Proof

Since \(\{ T(t) : t > 0 \} \) is the solution semigroup for the hereditary system (2.8) and the operator BF is of finite rank, the operators \(S^k = (T - BF)^k \) are compact for all \(k \) sufficiently large. It follows therefore (see [5], Chapter VII, Section 4, Theorem 6) that the spectrum of \(S, \sigma(S) \), contains at most a countable number of points with no accumulation points in the complex plane except possibly \(\lambda = 0 \). The non-zero elements in \(\sigma(S) \) are in the point spectrum of \(S \); that is, they are eigenvalues of \(S \).

Now suppose \(\lambda \in \sigma(S), \lambda \neq 0 \) and \(S(\xi, \psi) = \lambda(\xi, \psi) \) with \((\xi, \psi) \neq 0 \). If \(\xi \neq 0 \), then for \(z_0 = (\xi, \psi) \) the optimal trajectory is

\[(2.46) \quad z_k^* = S^k(\xi, \psi) = \lambda^k(\xi, \psi), \quad k = 0, 1, 2,\]

Consequently assumption (B2) implies \(\lambda < 1 \). If \(\xi = 0 \) and \((0, \psi) \notin \text{N}(F) \), the null space of \(F \), the null space of \(F \), then \(z_0 = (0, \psi) \) implies

\[(2.47) \quad u_k^* = Fz_k^* = -F S^k(0, \psi) = -\lambda^k F(0, \psi), \quad k = 0, 1, 2,\]

Since \(u^* \in L_2(0, \infty; \mathbb{R}^m) \), (2.47) implies \(\lambda < 1 \). Finally, if \((0, \psi) \in \text{N}(F) \), then

\[(2.48) \quad \lambda(0, \psi) = S(0, \psi) = T(0, \psi) = (x(t; 0, \psi, 0), x_T(0, \psi, 0)) \]

which implies \(\psi = 0 \) and consequently that \(\lambda \notin \sigma(S) \).
Therefore, we conclude that the spectral radius of S is less than 1 and that $|S^k| < \rho^k$ for all k sufficiently large for some positive $\rho < 1$. The uniform exponential bound (2.45) immediately follows.

The operator $F \in L(Z, R^m)$ can be represented by a matrix of operators,
\[(F^0, F^1)\] where $F^0 \in L(R^n, R^m)$ can be represented by an $m \times n$ matrix f^0 and $F^1 \in L(L_2(-\Gamma, 0; R^n), R^m)$ can be represented by a square integrable $m \times n$ matrix valued function f^1 defined on the interval $[-\Gamma, 0]$. We have

\[(2.49) \quad u^*_k = -f^0x^* (k\Gamma) - \int_{-\Gamma}^{0} f^1(\theta)x^*_k (\theta)d\theta, \quad k = 0, 1, 2, \ldots\]

with $(x^*(k\Gamma), x^*_k) = z^*_k, \quad k = 0, 1, 2, \ldots$.

The Discrete-Time Problem with α-Shift

The shifted problem in discrete-time involves the finding of an optimal control u^*_α for which the resulting optimal trajectory z^*_α satisfies

\[(2.50) \quad |z^*_{\alpha, k}| \leq \alpha^k, \quad k = 0, 1, 2, \ldots\]

where α, the prescribed degree of stability is a positive number less than 1. The modified discrete-time problem (analogous to problem (P1)) takes the form

\[(\hat{P}2) \quad \text{Find } \hat{u}^* \in L_2(0, \infty; R^m) \text{ which minimizes}\]

\[(2.51) \quad \hat{J}(\hat{u}) = \sum_{j=0}^{\infty} \langle \hat{Q}z_j, \hat{z}_j \rangle_Z + \hat{u}^T j \hat{R} j \text{ where } \hat{z} = \{\hat{z}_k\}_{k=0}^{\infty} \text{ satisfies the recurrence}\]

\[(2.52) \quad \hat{z}_{k+1} = \frac{1}{\alpha} T \hat{z}_k + \frac{1}{\alpha} B u_k, \quad k = 0, 1, 2, \ldots\]
Assumptions analogous to (A2) and (B2) yield

\begin{equation}
(2.54) \quad u^*_{k} = -Fz^*_{k}, \quad k = 0,1,2,\ldots
\end{equation}

where \(\hat{F} \) is given by (2.39) - (2.41) with \(T \) and \(B \) replaced by \(\frac{1}{\alpha}T \) and \(\frac{1}{\alpha}B \) respectively. It follows that

\begin{equation}
(2.55) \quad u_{\alpha,k}^* = -Fz_{\alpha,k}^*, \quad k = 0,1,2,\ldots
\end{equation}

with the optimal trajectory given by

\begin{equation}
(2.56) \quad z_{\alpha,k}^* = S_{\alpha}^k(n,\phi), \quad k = 0,1,2,\ldots
\end{equation}

where \(S_{\alpha} \in L(Z,Z) \) is defined by

\begin{equation}
(2.57) \quad S_{\alpha} = T - BF.
\end{equation}

The operator \(S_{\alpha} \) has spectral radius less than 1 and is uniformly exponentially bounded;

\begin{equation}
(2.58) \quad |S_{\alpha}^k| < M_k, \quad k = 0,1,2,\ldots
\end{equation}

where \(M \) is a positive constant which does not depend on \(k \).
3. **APPROXIMATION**

The infinite dimensionality of problems (P1) (or (P1)) and (P2) (or (P2)) necessitates the use of some form of finite dimensional approximation to solve them. The standard approach involves the use of finite element (Rayleigh-Ritz, Galerkin, etc.) techniques to discretize the state equations (2.8) (or (2.27)) and (2.35) (or (2.52)). A sequence of finite dimensional LQR problems result, each of which can be solved in linear state feedback form using standard techniques and readily available software. The averaging, or AVE scheme, which uses piecewise constant elements with finite differencing, and its application to the continuous time problem is carefully studied in [7]. A linear spline based Galerkin method is treated in [4]. More recently, methods using piecewise linear elements [21] and Legendre polynomials [13] and a method based upon Lanczos' τ-method for partial differential equations which also uses Legendre polynomials [12] have yielded promising results.

While AVE yields strong L_2 convergence of the approximating feedback kernels, the observed rate of convergence is relatively slow. The spline based scheme, by some measures, offers superior performance. However, it appears that only weak L_2 convergence of the approximating feedback kernels can be obtained. Kappel and Salamon [14] have developed a new linear spline based method which performs at the level of the original spline scheme and which seems to yield strong L_2 convergence of the approximating functional feedback gains. It is this approximation scheme which is the focus of our discussions below.
3.1 AN APPROXIMATION SCHEME FOR LINEAR HEREDITARY SYSTEMS

We briefly outline the details of the formulation of the Kappel-Salamon scheme. Fundamental to their approach (and unlike the standard Galerkin approach) is the choosing of the approximating spaces so that they are not subspaces of either \(\text{Dom}(A) \) or \(\text{Dom}(A^*) \). Herein lies the key to obtaining strong \(L^2 \) convergence of the approximating feedback kernels.

For each \(N = 1,2, \ldots \) let

\[
\theta_{N}^{k,j} = \frac{\Delta r_{k}}{N} - j - r_{k-1}, \quad k = 1,2, \ldots , j = 0,1,2, \ldots , N
\]

where

\[
\Delta r_{k} = r_{k} - r_{k-1}, \quad k = 1,2, \ldots .
\]

Let \(\{\phi_{N}^{k,j} \}_{j=0}^{N} \) denote the usual linear B-spline elements with respect to the mesh \(\{\theta_{N}^{k,0}, \ldots , \theta_{N}^{k,N} \} \) on the interval \([-r_{k}, -r_{k-1}) \), \(k = 1,2, \ldots N \) and extended to be zero elsewhere on the interval \([-r,0] \). That is for each \(k = 1,2, \ldots , N \)

\[
\phi_{N}^{k,0}(\theta) = \begin{cases} \frac{N}{\Delta r_{k}} (\theta - \theta_{N}^{k,1}), & \theta \in [\theta_{N}^{k,0}, \theta_{N}^{k,1}) \\ 0 & \text{elsewhere} \end{cases}
\]

\[
\phi_{N}^{k,j}(\theta) = \begin{cases} \frac{N}{\Delta r_{k}} (\theta - \theta_{N}^{k,j-1}), & \theta \in [\theta_{N}^{k,j-1}, \theta_{N}^{k,j}) \\ 0 & \text{elsewhere} \end{cases}
\]
Defining

\[(3.4) \quad e_N^0 = (I_n, 0) \quad \text{and} \quad e_N^{k,j} = (0, \phi_N^{k,j} I_n)\]

in $\mathbb{R}^{n \times n} \times L_2(-r, 0; \mathbb{R}^{n \times n})$ where I_n denotes the $n \times n$ identity matrix, we let

\[(3.5) \quad Z_N = \{ (\xi, \psi_N) \in Z : (\xi, \psi_N) = e_N^0 a_0 + \sum_{k=1}^{\nu} \sum_{j=0}^{N} e_N^{k,j} a_{k,j}, a_0, a_{k,j} \in \mathbb{R}^n \}.

The collection $\{e_N^0, e_N^{k,j}\}$ is a basis for the $K_N = n((N+1)v + 1)$ dimensional subspace of Z, Z_N and $a = (a_0, a_{1,0}, \ldots, a_{v,N})^T$ is referred to as the coordinate vector with respect to the basis $\{e_N^0, e_N^{k,j}\}$ for the element $(\xi, \psi_N) \in Z_N$. Defining

\[(3.6) \quad E_N = (e_N^0, e_N^{1,0}, \ldots, e_N^{v,N}),

we have $(\xi, \psi_N) = E_N a$.

Let $p_N : Z + Z_N$ denote the orthogonal projection of Z onto Z_N. It is immediately clear that $p_N(\xi, \psi) = (\xi, \pi_N \psi)$ where π_N is the orthogonal projection of $L_2(-r, 0; \mathbb{R}^n)$ onto $\text{span}\{\phi_N^{k,j} I_n\}$.

\[\phi_N^{k,j}(\theta) = \begin{cases} \frac{-N}{\Delta r} (\theta - \theta_N^{k,j}), & \theta \in [\theta_N^{k,N}, \theta_N^{k,N-1}] \\ 0 & \text{elsewhere} \end{cases}\]
Noting that \(Z_N \notin \text{Dom}(A) \), approximations \(A_N : Z_N + Z_N \) to the operator \(A \) are defined by first extending \(A \) to all of \(Z_N \). For \((\xi,\psi_N) \in Z_N \), define

\[
(3.7) \quad \hat{A}(\xi,\psi_N) = (\hat{L}(\xi,\psi_N),\hat{D}(\xi,\psi_N))
\]

where

\[
(3.8) \quad \hat{L}(\xi,\psi_N) = A_0\xi + \sum_{k=1}^{\nu} A_k\psi_N(-r_k) + \int_{-r}^{0} A(\theta)\psi_N(\theta) d\theta
\]

and

\[
(3.9) \quad \hat{D}(\xi,\psi_N) = D^+\psi_N + \delta_0(\xi - \lim_{\theta \to 0^-} \psi_N(\theta)) + \sum_{k=1}^{\nu-1} \delta_k(\psi_N(-r_k) - \lim_{\theta \to -r_k^-} \psi_N(\theta))
\]

with \(\delta_i \) the Dirac delta impulse centered at \(-r_i\), \(i = 0,1,2,...,\nu-1 \) and \(D^+\psi_N \) the derivative from the right of \(\psi_N \).

Let \(M_N \in L(R^n, R^n) \) be given by

\[
(3.10) \quad M_N = <E_N^T, E_N> \quad Z
\]

and define \(\delta_{N}^{k,+} \), \(\delta_{N}^{k,-} \in L(R^n, Z_N) \) by

\[
(3.11) \quad \delta_{N}^{k,+}(\xi) = E_N^{k,+}\xi, \quad k = 1,2,...,\nu,
\]

\[
(3.12) \quad \delta_{N}^{k,-}(\xi) = E_N^{k,-}\xi, \quad k = 0,1,2,...,\nu-1,
\]

where
\[(3.13) \quad \gamma_{N}^{k,+} = M_{N}^{-1}(0, \phi_{N}^{1,0}(-r_{k}), \ldots, \phi_{N}^{\nu_{N}^{+},N}(-r_{k}))^{T} \otimes I_{n},\]

\[(3.14) \quad \gamma_{N}^{k,-} = M_{N}^{-1}(0, \lim_{\theta \to -r_{k}} \phi_{N}^{1,0}(\theta), \ldots, \lim_{\theta \to -r_{k}} \phi_{N}^{\nu_{N}^{+},N}(\theta))^{T} \otimes I_{n}\]

and \(\otimes\) denotes the Kronecker product. The approximating operators \(A_{N} : Z_{N} \to Z_{N}\) and their adjoints are given by

\[(3.15) \quad A_{N}(\xi, \psi_{N}) = (L(\xi, \psi_{N}), \pi_{N}D^{+}\psi_{N}) + \delta_{N}^{0,-} (\xi - \lim_{\theta \to 0}^{-} \psi_{N}(\theta))

+ \sum_{k=1}^{\nu-1} \delta_{N}^{k,-} (\psi_{N}(-r_{k}) - \lim_{\theta \to -r_{k}}^{-} \psi_{N}(\theta))\]

and

\[(3.16) \quad A_{N}^{*}(\xi, \psi_{N}) = (\lim_{\theta \to 0}^{-} \psi_{N}(\theta) + A_{0}^{T}\xi, \pi_{N}(A_{0}^{T} D^{+}\psi_{N}))

+ \sum_{k=1}^{\nu-1} \delta_{N}^{k,+} (A_{k}^{T}\xi + \lim_{\theta \to -r_{k}}^{-} \psi_{N}(\theta) - \psi_{N}(-r_{k}))

+ \delta_{N}^{\nu,+} (A_{\nu}^{T}\xi - \psi_{N}(\nu))\]

respectively.

3.2 THE APPROXIMATE SOLUTION OF THE REGULATOR PROBLEMS

The Continuous-Time Problem

\[(3.17) \quad B_{N} = p_{N}B \big|_{Z_{N}} = B \big|_{Z_{N}}\]

and
(3.18) \[Q_N = P_N Q \big|_{Z_N} = Q \big|_{Z_N} \]

and assume that problem (P1) with \(A, B, Q \) and \((n, \phi)\) replaced by \(A_N, B_N, Q_N \) and \(P_N(n, \phi) \) satisfies assumptions analogous to (AI) and (BI). (Under certain conditions, if the original system satisfies (AI) and (BI) so too will the approximating systems if \(N \) is sufficiently large, see [14].) The approximating solutions to problem (P1) are then given in feedback form by

(3.19) \[u^*_N(t) = -R^{-1} B_N^* P_N^* P_N Z_N(t), \quad t > 0 \]

where \(P_N \) is the unique nonnegative self-adjoint solution to the Riccati algebraic equation

(3.20) \[A_N^* P_N + P_N A_N + P_N B_N R^{-1} B_N^* P_N + Q_N = 0 \]

and \(z_N^* \) is given by

(3.21) \[z_N^*(t) = S_N^N(t)(n, \phi), \quad t > 0 \]

where \(\{S_N^N(t) : t > 0\} \) is the \(C_0 \) semigroup with infinitesimal generator

\[A - B R^{-1} B_N^* P_N P_N \cdot \]

In practice, the approximating feedback gains are computed by solving the \(K_N \) dimensional matrix Riccati algebraic equation

(3.22) \[[A_N]^T P_N + P_N A_N^T + \Pi_N[B_N] R^{-1} [B_N]^T P_N^T + Q_N = 0 \]
where brackets denote the operator's matrix representation with respect to the basis \(\{ e_0^N, e_{k,j}^N \} \) and the matrix \(\Pi_N \) is given by

\[
\Pi_N = M_N [P_N].
\]

Then, if we write

\[
(P_N) = \begin{pmatrix}
 p_0^N & 0 \\
p_{1,0}^N & \tilde{p}_N \\
p_{0,1}^N & 0 \\
p_{1,1}^N & 0 \\
p_{1,2}^N & 0 \\
\end{pmatrix}
\]

where \(p_0^N \) and \(p_{k,j}^N \), \(k = 1, 2, \ldots, \nu \), \(j = 0, 1, 2, \ldots, N \) are \(n \times n \) matrices, we have

\[
U_N(t) = PN X_N(t) - \int_0^t p_1^N(\theta)(x^*_N)_L(\theta)d\theta, \quad t > 0
\]

with

\[
p_0^N = R^{-1}B_0^T p_0^0, \quad p_1^N(\theta) = \sum_{k=1}^{\nu} \sum_{j=0}^{N} R^{-1}B_0^T p_{k,j}^N \phi_{k,j}^N(\theta), \quad -r < \theta < 0
\]

and \((x^*_N(t), (x^*_N)_L) = z^*_N(t), \quad t > 0\).
The Discrete-Time Problem

For the discrete-time problem, we let

\[(3.27) \quad T_N = T_N(\tau) \quad \text{and} \quad B_N = \int_0^\tau T_N(t) B_N dt\]

where \(B_N\) is given by (3.17) and \(\{T_N(t) : t \geq 0\}\) is the \(C_0\) semigroup with infinitesimal generator \(A_N\). The approximating solutions to problem (P2) are then given in feedback form by

\[(3.28) \quad u_{N,k}^* = -F_N P_N Z_{N,k}^*, \quad k = 0,1,2,...\]

where

\[(3.29) \quad F_N = R^\dagger N P_N^\dagger N T_N,\]

\[(3.30) \quad \tilde{R}_N = R + B_N^* P_N B_N,\]

\(P_N\) is the unique, nonnegative, self-adjoint solution to the Riccati algebraic equation

\[(3.31) \quad P_N = T_N^* \left(P_N - P_N B_N (R + B_N^* P_N B_N)^{-1} B_N^* P_N \right) T_N + Q_N\]

and \(Z_{N,k}^*\) is given by

\[(3.32) \quad Z_{N,k}^* = (S^N)^k(\eta,\phi), \quad k = 0,1,2,...\]
with

(3.33) \[S^N = T - BF^*_N. \]

The approximating feedback kernels can be computed from

(3.34) \[[F_N] = [R_N]^{-1}[B_N]^T [T_N][T_N^T], \]

and

(3.35) \[[R_N] = R + [B_N]^T [T_N][B_N] \]

where

(3.36) \[[T_N] = \exp ([A_N]T), [B_N] = \int_0^T \exp([A_N]t)[B_N]dt \]

and \(\Gamma_N \) is the unique nonnegative symmetric solution to the \(K_N \) dimensional matrix Riccati algebraic equation

(3.37) \[\Gamma_N = [T_N]^T(\Gamma_N - [B_N](R + [B_N]^T [T_N][B_N])^{-1}[B_N]^T [T_N] + [Q_N]) \]

If we set

(3.38) \[[F_N]M^{-1} = (F_N^0, F_N^{1,0}, \ldots, F_N^{v,N}) \]

where \(F_N^0 \) and \(F_N^{k,j} \), \(k = 1,2,\ldots,v, j = 0,1,2,\ldots,N \) are \(m \times n \) matrices, we have
\[u^*_N,k = -f^0_N x^*_N(kt) - \int_{-r}^0 f^1_N(\theta)(x^*_N)_{kr}(\theta)d\theta, \quad k = 0,1,2,\ldots \]

with

\[f^0_N = F^0_N, \quad f^1_N(\theta) = \sum_{k=1}^N \sum_{j=0}^N f^k_j N \phi^k_j(\theta), \quad -r < \theta < 0 \]

and \((x^*_N(kt), (x^*_N)_{kt}) = z^*_N,k, \quad k = 0,1,2,\ldots\)

3.3 CONVERGENCE

The Continuous-Time Problem

Elementary approximation properties of spline functions and the Trotter-Kato Theorem on the approximation of semigroups (stability together with consistency imply convergence, see [15], [20]) can be used to argue that

\[T^*_N(t) \to T(t) \quad \text{and} \quad T^*_N(t) + T^*(t), \quad t > 0 \]

strongly on \(\mathbb{Z} \) as \(N \to \infty \), uniformly in \(t \) for \(t \) in bounded sub-intervals, where \(\{T^*_N(t) : t > 0\} \) and \(\{T^*(t) : t > 0\} \) are the \(C_0 \) semigroups with infinitesimal generators \(A^*_N \) and \(A^* \) respectively. Observing (numerically) that \(|P_N|\) is bounded in \(N \), it follows (see [7], Theorem 6.7) that \(P_N \) converges weakly to \(P \) as \(N \to \infty \) and consequently that \(p^0_N + p^0 \) in \(\mathbb{R}^{m \times n} \) and \(p^1 + p^1 \) weakly in \(L_2(-r_0; \mathbb{R}^{m \times n}) \) as \(N \to \infty \). To obtain strong convergence of \(P_N \) to \(P \) and strong \(L_2 \) convergence of \(p^1_N \) to \(p^1 \), the only known result (see [7], Theorem 6.9) requires the existence of positive constants \(M \) and \(\omega \), independent of \(N \), for which
(3.42) \[|S_N(t)| < Me^{-at}, \quad t > 0, \quad N > 1 \]

where \(\{ S_N(t) : t > 0 \} \) is the \(C_0 \) semigroup with infinitesimal generator \(A_N = B_N R^{-1} B_N^* P_N P_N \). While all numerical results indicate that strong convergence of the approximating feedback kernels holds, analysis in [14] and numerical studies point to the fact that a uniform exponential bound of the form (3.42) can not be obtained for the Kappel-Salamon scheme. Indeed, both the open and closed-loop approximating systems yield a sequence of extraneous eigenvalues (i.e. ones which do not appear to be converging to an element of the spectrum of the original open or closed-loop hereditary system) \(\{ \lambda_N \}_{N=1}^{\infty} \) for which \(\text{Re} \lambda_N \to 0^- \) and \(\text{Im} \lambda_N \to +\infty \) (or \(-\infty\)) as \(N \to \infty \).

We note that the \(N \)-independent uniform exponential bound (3.42) which is sufficient for strong (in fact trace norm, see [7]) convergence of \(P_N \) to \(P \) has been shown to hold for the AVE scheme in [22] and for the Legendre-tau method in [11].

The Discrete-Time Problem

For the discrete-time problem (see [8], Theorem 3.12) \(|P_N| \) bounded in \(N \) implies \(P_N \to P \) weakly, \(F_N \to F \) strongly, \(f_N^0 \to f^0 \) in \(R^{mxn} \) and \(f_N^1 \to f^1 \) weakly in \(L_2(-\tau,0;R^{mxn}) \) as \(N \to \infty \). The existence of positive constants \(M \) and \(\rho \) which do not depend on \(N \), with \(\rho < 1 \) and for which

\[
(3.43) \quad |S_N^k| < M \rho^k, \quad k = 0,1,2,\ldots, \quad N > 1,
\]

where

\[
(3.44) \quad S_N = T_N - R_N F_N P_N
\]
is sufficient (see [8], Theorem 3.10) to conclude strong convergence of \(P_N \) to
\(P \), uniform norm convergence of \(F_N \) to \(F \) and strong \(L_2 \) convergence of
\(f_N^1 \) to \(f^1 \) as \(N \to \infty \). Although numerical studies indicate that the stronger
modes of convergence hold, the approximating open and closed-loop discrete-
time systems constructed using the Kappel-Salamon scheme yield a sequence of
extraordinary eigenvalues \(\{\mu_N\}_{N=1}^{\infty} \) with \(|\mu_N| + 1^- \) as \(N \to \infty \).

3.4 THE APPROXIMATE SOLUTION OF THE REGULATOR PROBLEMS WITH \(\alpha \)-SHIFT

One obvious approach for approximating the solutions to the LQR problems
with \(\alpha \)-shift is to replace the operators \(A, B \) and \(Q \) in problem (P1) with the
operators \(A_N, B_N \) and \(Q_N \) or the operators \(T, B \) and \(Q \) in problem (P2) with \(T_N, \)
\(B_N \) and \(Q_N \) and then solve the finite dimensional shifted problems with states
given either by

\[
\frac{d}{dt} z^N(t) = (A_N + \alpha I) z^N(t) + B_N u(t), \quad t > 0
\]

or

\[
\hat{z}^N_{k+1} = \frac{1}{\alpha} T_N \hat{z}^N_k + \frac{1}{\alpha} B_N \hat{u}_k, \quad k = 0, 1, 2, \ldots.
\]

However, if the Kappel-Salamon scheme outlined above is used, this approach
will not work. Indeed, our numerical studies indicate that as a result of the
extraordinary eigenvalues introduced by the approximation scheme, for \(N \)
and \(\alpha \) sufficiently large the resulting finite dimensional systems are, at
best, marginally stabilizable. The solutions to the matrix Riccati algebraic
equations begin to deteriorate. Eventually the eigenvalue-eigenvector or
Schur vector methods used to solve them fail completely. We
observe this independently of the stabilizability of the original underlying hereditary system. Since only the poles of the original hereditary system are to be shifted, this situation can be remedied by observing that the operator $A + \alpha I$ is related to the infinitesimal generator for a hereditary system (semigroup) through a bounded similarity transformation.

For γ a real number, define $U_\gamma \in L(Z,Z)$ by

\begin{equation}
U_\gamma(\xi,\psi) = (\xi, e^{\gamma \psi}) ,
\end{equation}

where the function $e^{\gamma \psi}$ evaluated at θ is $e^{\gamma \psi}(\theta)$, $r < \theta < s$. Then

\begin{equation}
U_\gamma^{-1}(\xi,\psi) = (\xi, e^{-\gamma \psi}) .
\end{equation}

The Continuous-Time Problem

For the continuous-time problem, set $\hat{w}(t) = U_{\alpha} \hat{z}(t)$. Then \hat{w} satisfies

\begin{equation}
\frac{d}{dt} \hat{w}(t) = A_{\alpha} \hat{w}(t) + B \hat{u}(t), \quad t > 0
\end{equation}

\begin{equation}
\hat{w}(0) = (\eta, e^{\alpha \phi})
\end{equation}

where for $\gamma \in \mathbb{R}$, $A_{\gamma} : \text{Dom}(A) \subset Z + Z$ is given by

\begin{equation}
A_{\gamma}(\psi(0), \psi) = U_{\gamma}(A + \gamma I) U_{\gamma}^{-1}(\psi(0), \psi) = (L_{\gamma} \psi, D \psi)
\end{equation}

with
\(L_\gamma \psi = (A_0 + \gamma I)\psi(0) + \sum_{i=1}^{V} \gamma r_i A_i^\dagger \psi(-r_i) + \int_{-\infty}^{0} e^{-\gamma \theta} A(\theta)\psi(\theta) d\theta \).

Since \(U^{-1}_\gamma \) is self-adjoint and \(U^{-1}_\gamma Q U^{-1}_\gamma = Q \) for all \(\gamma \in \mathbb{R} \), the Kappel-Salamon scheme can be applied to problem (P1) with \(A + \alpha I \) replaced with \(A + z \) and \(z \) replaced with \(w \). The extraneous eigenvalues will now remain stable and therefore cause no problems when the approximating feedback laws are computed. The approximating solutions to the continuous-time problem with \(\alpha \)-shift are given by

\[
(3.53) \quad u^*_{aN}(t) = -R^{-1} B^* N P_{aN} P_{aN}^* z^*_{aN}(t) = -R^{-1} B^* N P_{aN}^* P_{aN} z^*_{aN}(t), \quad t > 0
\]

where \(P_{aN} \) is the solution to the Riccati algebraic equation (3.20) with \(A_N \) and \(\hat{A}_N \) replaced by \(A_{aN} \) and \(\hat{A}_{aN} \) respectively and \(z^*_{aN} \) is given by

\[
(3.54) \quad z^*_{aN}(t) = S_{aN}^N(t)(x_{aN}, t) = \int_{-\infty}^{0} S_{aN}^N(t)(r, \theta) z^*_{aN}(\theta) d\theta, \quad t > 0
\]

where \(\{ S_{aN}^N(t) : t > 0 \} \) is the \(C_0 \) semigroup with infinitesimal generator

\(A - B R^{-1} B^* N P_{aN}^* \). We have

\[
(3.55) \quad u^*_{aN}(t) = -p^0_{aN} x^*_{aN}(t) - \int_{-\infty}^{0} p^1_{aN}(\theta) (x^*_{aN}(\theta)) d\theta
\]

\[
= -p^0_{aN} x^*_{aN}(t) - \int_{-\infty}^{0} p^1_{aN}(\theta) e^{\alpha \theta} (x^*_{aN}(\theta)) d\theta, \quad t > 0
\]

where \(p^0_{aN} \) and \(p^1_{aN} \) are obtained from \(P_{aN} \) in the same manner that \(p^0_{N} \) and \(p^1_{N} \) are obtained from \(P_{N} \) (as in (3.2.6)) and \((x^*_{aN}(t), (x^*_{aN}(t)) = z^*_{aN}(t), \quad t > 0 \).
The Discrete-Time Problem

For the discrete-time problem, we set \(\hat{w}_k = U_\beta z_k \). Then

\[
\hat{w}_{k+1} = T_w \hat{w}_k + B_\alpha \hat{w}_k, \quad k = 0, 1, 2, \ldots
\]

\[
\hat{w}_0 = (n, e^{\beta \phi})
\]

where

\[
T_w = \frac{1}{\alpha} U_\beta U_\beta^{-1} = T_\beta(\tau),
\]

\(\{T_\beta(t) : t > 0\} \) the \(C_0 \) semigroup whose infinitesimal generator is \(A_\beta \),

\[
B_\alpha = \frac{1}{\alpha} \int_0^\tau e^{-\beta t} T_\beta(t) \beta \ dt
\]

and \(\beta = -(\ln \alpha)/\tau \). The approximating solutions to the discrete-time problem with \(\alpha \)-shift are given by

\[
u^*_k, k = 0, 1, 2, \ldots
\]

where \(F_{\alpha N} \) is computed according to (3.29)-(3.31) with \(F_N, R_N, B_N, T_N \) and \(P_N \) replaced by \(F_{\alpha N}, R_{\alpha N}, B_{\alpha N}, T_{\alpha N} \) and \(P_{\alpha N} \) respectively and \(z^*_{\alpha N} \) is given by

\[
z^*_{\alpha N, k} = (S_{\alpha N})^k(n, \phi), \quad k = 0, 1, 2, \ldots
\]

with
Finally, we have

\begin{equation}
 u_{\alpha N, k}^* = -\int_0^\infty \int_{-\pi}^\pi f_{\alpha N}(\theta) e^{i\theta} (x_{\alpha N}^*)_{k\tau} (\theta) d\theta
\end{equation}

where \(f_{\alpha N}^0 \) and \(f_{\alpha N}^1 \) are obtained from \(F_{\alpha N} \) as were \(f_N^0 \) and \(f_N^1 \) from \(F_N \) in (3.40) and \((x_{\alpha N}^* (k\tau), (x_{\alpha N}^*)_{k\tau}) = z_{\alpha N, k}^* \), \(k = 0, 1, 2, \ldots \).
4. **AN EXAMPLE AND NUMERICAL RESULTS**

We consider the second order linear harmonic oscillator with delayed damping given by

\[(4.1) \quad y(t) + \dot{y}(t-1) + y(t) = u(t), \quad t > 0.\]

We take the continuous-time performance index to be

\[(4.2) \quad J(u) = \int_0^\infty \dot{y}(t)^2 + \ddot{y}(t)^2 + u(t)^2 dt .\]

Setting \(x(t) = (y(t), \dot{y}(t))^T\), we rewrite (4.1) as a first order system;

\[(4.3) \quad \dot{x}(t) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ 0 \end{pmatrix} x(t-1) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t), \quad t > 0 .\]

For this example we have \(n = 2, m = 1, r = 1, \nu = 1, A \equiv 0,\)

\[A_0 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad A_1 = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}, \quad B_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad Q_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},\]

and \(R = 1.\)

We computed the optimal feedback gains for the shifted and unshifted, continuous and discrete-time control problems on an IBM PC personal computer using the Kappel-Salamon approximation scheme and the \(\alpha\)-shift technique outlined in the previous section. The matrix Riccati algebraic equations (3.22) and (3.37) were solved using either a standard eigenvalue/eigenvector (see [16]) or Schur vector (see [17], [19]) decomposition of the Hamiltonian matrix. For the discrete-time problem, matrix exponentials were computed using an eigenvalue/eigenvector decomposition.
A Scheme to Compute Eigenvalues of Linear Hereditary Systems

In order to evaluate the performance of the method, we had to be able to compute approximations to the closed-loop eigenvalues of continuous-time and sampled hereditary systems. To do this we used a spline-based scheme developed in [10]. In the case of the continuous-time problem, the closed-loop system is a homogeneous hereditary system. Let $A^N = A - BR^{-1} B_N^* P_N \alpha P_N$ denote the infinitesimal generator of the closed-loop semigroup $S^N(t): t > 0$ and let $\{Z^M\}$ denote a sequence of finite dimensional spline-based subspaces of Z which are contained in $\text{Dom}(A)$. Let $q^M : Z \to Z^M$ denote the orthogonal projection of Z onto Z^M with respect to the inner product

$$\langle \langle \xi, \psi \rangle, (\zeta, \chi) \rangle_Z = \langle A^N(\xi, \psi), A^N(\zeta, \chi) \rangle_Z.$$

An approximation to the spectrum of A^N is obtained by computing the eigenvalues of the matrix representation of the inverse of the operators

$$q^M(A^N)^{-1} |_{Z^M}.$$

Spectral convergence is argued in [10] using the theory of collectively compact families of operators (see [3]).

The approach outlined above is used to obtain approximations T^M and B^M to the discrete-time open-loop state transition operator T and input operator B. The feedback gains $F_N^N P_N$ are projected (with respect to the standard Z inner product) onto Z^M to obtain the operators F^M_N. The eigenvalues of the operator $T^M - B^M F^M_N$ are taken to be an approximation to the closed-loop spectrum of the discrete-time system.
The eigenvalues in the examples which follow were computed using the method we have described above with quintic splines and M taken large enough to declare a sufficient number of the eigenvalues converged. Typically, taking $M = 30$, which results in a 70 dimensional eigenvalue problem, sufficed to yield 21 converged eigenvalues. The resulting matrix eigenvalue problems were solved using IMSL routines EIGRF (the QR method for the standard eigenvalue problem) or EIGZF (the QZ method for the generalized problem). These computations were performed in double precision on the IBM 3081 at the University of Southern California.

The eigenvalues of A_N, the Nth Kappel–Salamon approximation to A, with real part greater than -3.5 (ordered by decreasing real part) are given in Tables 4.2 and 4.3 for various values of N. The first nine "true" continuous-time open-loop eigenvalues (eigenvalues of the operator A) can be found in Table 4.1. Upon careful inspection of Tables 4.1, 4.2 and 4.3, one can easily discern the true eigenvalues of the hereditary system emerging and observe the behavior of the extraneous, artifactual eigenvalues which was described in the previous section as N increases.

For the present example, we used the schemes described in Section 3 to compute the continuous-time feedback gains, \hat{P}_{aN}^0 and \hat{P}_{aN}^1 for $\alpha = 0, 2.0$ and 3.0, and the discrete-time gains \hat{F}_{aN}^0 and \hat{F}_{aN}^1 for $\alpha = 1.0, .98$ and .975. As α is increased, larger values of N are necessary to ensure that the approximating optimal feedback laws have essentially converged. The results presented below were computed with $N = 10$. The scalar gains \hat{P}_{aN}^0 and \hat{F}_{aN}^0 are given in Table 4.4 and 4.6 respectively. The kernels or functional gains $(\hat{P}_{aN}^1)_2$ and $(\hat{F}_{aN}^1)_2$ (where $(\)_j, j = 1,2$ denotes the jth component) are plotted in Figures 4.5 and 4.7. Note that the initial conditions
(4.6) \(\eta = (0,0)^T, (\phi)_1 \) arbitrary, \((\phi)_2 = 0 \)

for the system (4.3) yield \(x(t) = 0, t > 0 \) and consequently that the optimal control is \(u(t) = 0, t > 0 \). This will also be true for the corresponding "\(\alpha \)-shifted" systems. It therefore immediately follows from this observation and the basic structure of the finite dimensional approximating systems that the true and approximating, continuous and discrete-time optimal control laws do not feedback displacement history; that is

(4.7) \((\hat{\rho}_{\alpha N})_1 = (\hat{\rho}_{\alpha})_1 = (\hat{f}_{\alpha N})_1 = (\hat{f}_{\alpha})_1 = 0 \)

for all \(N \).

The resulting closed-loop eigenvalues for the continuous-time systems are plotted in Figure 4.8 and are tabulated for the discrete-time systems in Table 4.9. In the discrete-time example, the length of the sampling interval \(\tau \) was taken to be .01.
<table>
<thead>
<tr>
<th>i</th>
<th>λ_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>0.0219 ± 1.6019i</td>
</tr>
<tr>
<td>3</td>
<td>-0.7384</td>
</tr>
<tr>
<td>4.5</td>
<td>-2.0469 ± 7.5820i</td>
</tr>
<tr>
<td>6,7</td>
<td>-2.6484 ± 13.9477i</td>
</tr>
<tr>
<td>8,9</td>
<td>-3.0179 ± 20.2719i</td>
</tr>
</tbody>
</table>

Table 4.1: Eigenvalues of A_N

<table>
<thead>
<tr>
<th>i</th>
<th>N = 4</th>
<th>N = 6</th>
<th>N = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>0.0220 ± 1.6017i</td>
<td>0.0219 ± 1.6019i</td>
<td>0.0219 ± 1.6019i</td>
</tr>
<tr>
<td>3</td>
<td>-0.7384</td>
<td>-0.7384</td>
<td>-0.7384</td>
</tr>
<tr>
<td></td>
<td>-1.2679 ± 6.1063i</td>
<td>-0.9824 ± 9.2136i</td>
<td>-0.5833 ± 12.7756i</td>
</tr>
<tr>
<td></td>
<td>-1.5000 ± 5.8095i</td>
<td>-1.1564 ± 9.1174i</td>
<td>-0.6503 ± 12.7819i</td>
</tr>
<tr>
<td></td>
<td>-3.4286 ± 2.9692i</td>
<td>-2.0876 ± 7.0492i</td>
<td>-2.1251 ± 7.4637i</td>
</tr>
<tr>
<td>4,5</td>
<td></td>
<td>-2.8600 ± 6.3173i</td>
<td>-2.1392 ± 9.9917i</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2.8084 ± 10.0431i</td>
</tr>
</tbody>
</table>

Table 4.2: Eigenvalues of A_N
<table>
<thead>
<tr>
<th></th>
<th>$N = 10$</th>
<th>$N = 20$</th>
<th>$N = 30$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>$0.0219 \pm 1.6019i$</td>
<td>$0.0219 \pm 1.6020i$</td>
<td>$0.0219 \pm 1.6020i$</td>
</tr>
<tr>
<td></td>
<td>$-0.4513 \pm 16.3731i$</td>
<td>$-0.1227 \pm 34.0989i$</td>
<td>$-0.0575 \pm 51.5897i$</td>
</tr>
<tr>
<td></td>
<td>$-0.4681 \pm 16.4023i$</td>
<td>$-0.1265 \pm 34.0977i$</td>
<td>$-0.0576 \pm 51.5885i$</td>
</tr>
<tr>
<td>3</td>
<td>0.7384</td>
<td>0.7384</td>
<td>0.7384</td>
</tr>
<tr>
<td></td>
<td>$1.3760 \pm 13.7131i$</td>
<td>$1.0176 \pm 30.0843i$</td>
<td>$0.8459 \pm 46.3080i$</td>
</tr>
<tr>
<td></td>
<td>$1.5800 \pm 13.8084i$</td>
<td>$1.0330 \pm 30.0323i$</td>
<td>$0.8707 \pm 46.3184i$</td>
</tr>
<tr>
<td>4,5</td>
<td>$-2.0765 \pm 7.5469i$</td>
<td>$-2.0483 \pm 7.5804i$</td>
<td>$-2.0471 \pm 7.5817i$</td>
</tr>
<tr>
<td></td>
<td>$-2.9685 \pm 10.3102i$</td>
<td>$-2.4723 \pm 23.1169i$</td>
<td>$-2.2485 \pm 36.2831i$</td>
</tr>
<tr>
<td>6,7</td>
<td>$-2.5840 \pm 13.9956i$</td>
<td>$-2.7313 \pm 19.6455i$</td>
<td>$-2.6381 \pm 13.9567i$</td>
</tr>
<tr>
<td></td>
<td>$-2.8700 \pm 23.2028i$</td>
<td>$-3.004 \pm 32.2934i$</td>
<td>$-2.7968 \pm 32.2934i$</td>
</tr>
<tr>
<td>8,9</td>
<td>$-3.004 \pm 19.0864i$</td>
<td>$-3.004 \pm 19.0864i$</td>
<td>$-3.004 \pm 19.0864i$</td>
</tr>
</tbody>
</table>

TABLE 4.3: EIGENVALUES OF A_N
\[\begin{array}{|c|c|c|c|}
| \alpha = 0.0 & \alpha = 2.0 & \alpha = 3.0 \\
\hline
\hat{p}^0_{\alpha 10} \quad _1 & .4142 & 31.8304 & 129.1725 \\
\hline
\hat{p}^0_{\alpha 10} \quad _2 & 1.4291 & 10.8678 & 21.6132 \\
\hline
\end{array} \]

TABLE 4.4: SCALAR GAINS - CONTINUOUS-TIME

FIGURE 4.5: FUNCTIONAL GAINS - CONTINUOUS-TIME
<table>
<thead>
<tr>
<th></th>
<th>$\alpha = 1.0$</th>
<th>$\alpha = 0.98$</th>
<th>$\alpha = 0.975$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\hat{f}_{a10}^0)_1$</td>
<td>0.4041</td>
<td>30.9821</td>
<td>63.8527</td>
</tr>
<tr>
<td>$(\hat{f}_{a10}^0)_2$</td>
<td>1.4215</td>
<td>10.5734</td>
<td>14.9272</td>
</tr>
</tbody>
</table>

TABLE 4.6: SCALAR GAINS - DISCRETE-TIME

FIGURE 4.7: FUNCTIONAL GAINS - DISCRETE-TIME
FIGURE 4.8: OPEN AND CLOSED-LOOP SPECTRUM - CONTINUOUS TIME;

EIGENVALUES OF \(A \) AND \(A - BR^{-1}B^* \) \(\alpha \)
<table>
<thead>
<tr>
<th>OPEN-LOOP</th>
<th>$\alpha = 1.0$</th>
<th>$\alpha = .98$</th>
<th>$\alpha = .975$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAG</td>
<td>ARG</td>
<td>MAG</td>
</tr>
<tr>
<td>.9926</td>
<td>.9919</td>
<td>0</td>
<td>.9693</td>
</tr>
<tr>
<td>1.0002 ± .0160</td>
<td>.9938</td>
<td>± .0170</td>
<td>.9594</td>
</tr>
<tr>
<td>.9797 ± .0758</td>
<td>.9796</td>
<td>± .0759</td>
<td>.9787</td>
</tr>
<tr>
<td>.9739 ± .1395</td>
<td>.9738</td>
<td>± .1395</td>
<td>.9738</td>
</tr>
<tr>
<td>.9703 ± .2027</td>
<td>.9702</td>
<td>± .2027</td>
<td>.9703</td>
</tr>
<tr>
<td>.9677 ± .2658</td>
<td>.9677</td>
<td>± .2658</td>
<td>.9677</td>
</tr>
<tr>
<td>.9656 ± .3288</td>
<td>.9656</td>
<td>± .3288</td>
<td>.9656</td>
</tr>
<tr>
<td>.9639 ± .3918</td>
<td>.9639</td>
<td>± .3918</td>
<td>.9639</td>
</tr>
<tr>
<td>.9625 ± .4547</td>
<td>.9625</td>
<td>± .4547</td>
<td>.9625</td>
</tr>
<tr>
<td>.9612 ± .5176</td>
<td>.9612</td>
<td>± .5176</td>
<td>.9613</td>
</tr>
<tr>
<td>.9599 ± .5806</td>
<td>.9599</td>
<td>± .5806</td>
<td>.9600</td>
</tr>
</tbody>
</table>

TABLE 4.9: OPEN AND CLOSED-LOOP SPECTRUM - DISCRETE-TIME;
EIGENVALUES OF T AND $T^H - BF_{\alpha10}$
REFERENCES

In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an α-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the α-shift to hereditary systems. As in finite dimensions, the shift can be accomplished by adding α times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An α-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.