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ABSTRACT

The study outlines a procedure for adapting existing hyper-
sonic flow field programs to nonequilibrium conditions. The
procedure treats bound-bound transitions between electronic
levels in molecular species in which electron impact is
considered to be the dominant excitation mechanism. The
formulation of expressions for excited state population and the
radiative transfer equation are presented. The formulation
indicates how for nonequilibrium of the radiative transfer
equation can be written in terms of spectral source functions
and absorption coefficients so that existing programs for
radiative properties can be used as well as existing radiative
transfer solution programs.
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NOMENCLATURE

A... -Einstein coefficient for spontaneous emission 2 ->• 1

B_- -Einstein coefficient for stimulated emission 2 -* 1

BI _ -Einstein coefficient for stimulated absorption 1 -* 2

B (T) -Planck function at frequency v and temperature T

c -velocity of light

f. -fraction of the particles in an electronic state which are

in the i'th vibrational state

g. -statistical weight factor of state i'th

h -Planck constant

I -specific intensity at frequency i>

J -mean intensity at v specific intensity averaged over

direction

k -Boltzmann constant

N- -concentration of particles in lower electronic state -

number/unit volume

N. -concentration of particles in upper electronic state -

number/unit volume

N -concentration of electrons - number/unit volume

Q9(T) -vibrational partition function for the upper electronic

state evaluated at temperature T

Q-. (T) -vibrational partition function for the lower electronic

state evaluated at temperature T

q , , , -Franck-Condon factor for a transition between the v''v v

vibrational level of the lower electronic state and.the v'

vibrational level of the upper electronic state

S -Source function at frequency v



T -translational temperature of free electrons

T_1 -Boltzmann temperature of the lower electronic statet> JL.

T „ -Boltzmann temperature of the upper electronic state

T 1 -Boltzmann vibrational temperature of the lower electronic

state

T _ -Boltzmann vibrational temperature of the upper electronic

state

v' -vibrational quantum number of the upper electronic state

v'' -vibrational quantum number of the lower electronic state

z -depth coordinate

e , -energy of the v' vibrational state relative to v' =0

e ,, -energy of the v'' vibrational state relative to v'' =0

€„ -energy level of the upper electronic state v' = 0

e1 -energy level of the lower electronic state v'' = 0

e19 -energy difference between electronic states (e_ - e..)

H -cosine of polar angle between intensity and depth

coordinate

H -absorption coefficient per unit depth at frequency v

v -frequency

r -optical thickness at frequency v

$1 -normalized line shape profile for lower electronic state

$„ -normalized line shape profile for upper electronic state

QI . -collisional excitation rate 1 -* 2

Q--. -collisional quenching rate 2 -* 1

( ) -identifies an i'th electronic transition and/or specie



INTRODUCTION

Nonequilibrium occurs in a gas when an imbalance in excitation and

quenching (de-excitation) processes results in state populations which

deviate from the Boltzmann distribution characterized by the gas

temperature. In the general case, the excitation and quenching processes

include both kinetic (collisional) and, radiative processes. For the

molecular species, the subject of this study, each state is specified by

a rotational quantum number, a vibrational quantum number, and the

electronic level. Under the most sever nonequilibrium condition, each

state is characterized by a different temperature which is not the

translational temperature of the gas; in fact, the translational

temperatures of the species are not necessarily equal.

A severe perturbation of atmospheric gases by an entry shock results

in a nonequilibrium layer of gas adjacent to the shock. In this

nonequilibrium layer, the rapid rise in random translational energy of

the post-shock gas is re-distributed by kinetic processes into the

internal states of the gas (rotational, vibrational, electronic, chemical

change, and ionization).

The combination of hypersonic entry velocities with the low densities

encountered in upper atmospheric entry produces a shock-layer

characterized by high temperatures and low collision rates. For these

conditions, the nonequilibrium region is extensive and the prediction of

radiative transfer from this region is essential in prediction of the

instantaneous heating from the shock-layer.

Nonequilibrium radiative heating is encountered by every body during

the early portions of entry. During this portion of the trajectory,

radiative heating of the body poses a more severe and uncertain problem



than conventional equilibrium heating estimates would indicate. The

problem was studied in the Apollo program. For Apollo, the

nonequilibrium heating did not pose a severe problem in total system

thermal management as Apollo plunged quickly through those conditions for

which nonequilibrium dominates. A re-examination of the early flight and

laboratory data has been presented by Sutton [1].

To date, the hypersonic shock layer heating has been handled by using

either a chemical equilibrium or a chemical nonequilibrium flow field

analysis to describe the spatial distribution of radiating species. An

example of such a program (NEQ-VIS) is the viscous-shock-layer program of

Moss [2] which has been extended for use in chemical nonequilibrium flow

field analysis [3]. These applications are for conditions in which the

collision rates are sufficiently high to assure kinetic equilibrium of

the internal states to a common temperature and to assure kinetic rates

exceed those of the radiative processes. For these conditions, the

prediction of radiative transfer through the shock-layer follows the same

procedure whether chemical nonequilibrium or equilibrium is considered,

and programs such as Nicolet's (RAD) [4] can be used with the spatial

distribution of temperature and radiating specie from the flow field

programs.

Systems of current interest [5], Orbital Transfer Vehicles (OTV) or

(AOTV), are proposed to operate in an entry-exit maneuver - "skipping"

through the rarefied upper atmosphere. As a result, an OTV would dwell

for a significant portion of its entry-exit trajectory'in conditions for

which nonequilibrium dominates [6]. As an example, consider an OTV entry

of 10 to 11 km/sec which attains a minimum altitude of 80 km. For these

conditions, the number density in the shock layer will be of the order of



10 particles/cm (number density at STP is 10 particles/cm ) and the

collision frequency would be 10 collisions/sec. Clearly, the collision

quenching rate can be no larger than this; however, the radiative

quenching rate can be several orders of magnitude larger. Thus, both

radiative and kinetic rates govern state populations and nonequilibrium

predictions of state populations are required.

The situation where kinetic rates are dominant but do not balance can

be termed kinetic nonequilibrium. For such situations, one solves the

kinetic rate equations to determine state populations. With the

populations, one can solve the radiative transfer problem using

procedures similar to those for the equilibrium. By contrast, those

situations associate with OTV's in which radiative rates are significant

the radiative terms must be considered in the rate equations.

To answer the question of the importance of nonequilibrium radiative

transfer, one should solve the system of coupled rate equations for the

state populations together with momentum, energy and radiative transfer

equations for the complex shock-layer geometry of the OTV. This is a

formidable problem. One approach, taken by Park [7], is to meticulously

assess the rate processes in the context of a simplified flow field

geometry.

Below, we approach the problem with the question: Can programs under

development or existing programs similar to NEQ-VIZ and RAD be modified

to solve the OTV problem to conserve the considerable effort required in

code of development? The logic behind the question is that the form of

the continuum conservation equation for mass, momentum and energy and

their boundary conditions are the same regardless of the state of

nonequilibrium. The treatment of chemical rate processes would seem



extendible to kinetic rate processes. Similarly, if the nonequilibrium

radiative transfer problem can be stated in terms of spectral absorption

coefficients and source functions, then the spectral and spatial

integration procedure of existing computer codes can be used.

To explore the limitations associated with this approach, the

character of a generic flow-field and radiative codes, will be briefly

reviewed in the next section. A simple two level system is used to

illustrate the conditions of nonequilibrium for the state population rate

equation and the radiative transfer equation and to examine

simplifications. The simplifications are then incorporated into general

multi-state rate and radiative transfer equations. The result of this

study is a procedure which enables one to modify existing codes for

application to the nonequilibrium shock-layer of OTV's.



REVIEW OF CODES

The computational problem involving an entry shock-layer can be

viewed in three, not necessarily equal parts:

Part (1) Satisfying conservation equations, boundary conditions and

chemistry

Part (2) Computation of state populations for radiative properties

Part (3) Satisfy the radiative transfer equation

Usually, these parts are considered sequential; however, with

radiative terms coupling all three together, a sequential solution must

be considered as iterative.

The governing equations for the continuum regime of an OTV trajectory

have been reviewed recently be Lee [8]. Comparing these equations, using

order of magnitude arguments, with those incorporated into a program such

as NEQ-V1S, one finds the governing equations satisfied to better than

first order. This is not a surprise as the form of the conservation of

mass, momentum and energy equations are basically the same, equilibrium

or nonequilibrium. Certainly, kinetic nonequilibrium perturbs gas

properties such as viscosity, conductivity, and specific heat; and these

can be corrected, if one desires, in iterative cycles.

More important are three aspects of Part (1) which are not

incorporated into the generic flow-field codes with nonequilibrium

chemistry. These are:

(1) Computation of the translational temperature, T , for the

electrons

(2) Computation of the vibrational temperatures, T , for the

electronic states



(3) Proper use of heavy particle translation temperature T, electron

temperature T , and vibrational temperature T in the evaluation
i

of the chemistry rate constants.

These three aspects can best be handled by the addition of the energy

equation for electrons and rate equations for the vibrational states to

the set of simultaneous equations treated by the program which handles

Part (1). Adequate treatment of T in NEQ-VIS has been reported by Shinn

[9]. The importance of incorporating vibrational temperatures is at this

point, arguable. It can be done; however, in some of Park's work,

arguments have been presented for T to T equilibrium. The proper use

of T, T and T in the evaluation of chemical rate constants has been
v e

treated recently by Park [10]. Thus, Part (1) can be handled by existing

programs with:

(1) the addition of an energy equation for electrons

(2) proper use of T , T and T in rate constant evaluations

(3) proper evaluation of radiative contribution in the energy

equation

Part (1) will supply a flow field map of T , T, chemical specie

concentration, and T 's.

The Part (2) computation of state populations is treated in a later

section of this study. At this point, we should note that for the

temperature and the level of ionization expected, the primary excitation

mechanism will be from the ground electronic state and due to electron

impact excitation. Due to their high speed, electrons are likely to

dominate heavy particles in excitation. The excitations of rotational

and vibrational states are sufficient fast to assure a Boltzmann

distribution for each rotational and vibrational system. However, the



Boltzmann vibrational temperature for each electronic state may be

different. Essentially, Part (2) converts the spatial distribution of

T , chemical specie number density, and N into a spatial distribution of

electronic state populations fractions or temperatures. In conclusion,

recall that the stimulated emission and absorption processes result in a

coupling of Part (2) to the solution for Part (3) and that for the

assumption of an optically thin gas these stimulated terms are neglected.

For Part (3), codes such as RAD handle radiative transfer as two

problems. One consists of computing the optical properties (absorption

coefficients and source functions) for every spatial point based upon the

temperature and number density field supplied. The second problem

involves the integration of the radiative transfer equation to achieve

+he spatial and spectral values of the radiative intensity or of the

integrals of the intensity. From these quantities, radiative heating of

the OTV can be determined as well as the radiative coupling terms which

should be used for the next iteration through Parts (1) and (2).

The procedure for solving the radiative transfer equation and

determining heating rates is independent of nonequilibrium considerations

providing the radiative transfer equation for nonequilibrium can be

written in the standard form involving a spectral absorption coefficient

and source function. The problem posed by the standard form of the

radiative transfer equation is not so much in the absorption coefficient

as in the source function. It is clear that each absorption coefficient

will contribute to the frequency interval associated with its electronic

state and it is clear how to sum the absorption coefficients spectrally.

What is not clear is: What does one replace the Planck source function

with to achieve the classic form of the radiative transfer equation?



This source function and its logical development is treated in a later

section devoted to the radiative transfer equation. It will be shown

that taking simple combinations of absorption coefficients and Planck

functions evaluated at the nonequilibrium state temperatures will enable

the spectral and spatial solution procedure of the RAD code to operate as

if solving an equilibrium problem with spatial variation of absorption

coefficients and source function.

Returning to the former problem of optical properties, several

approaches are available. First, a line by line computation has been

used by several investigators. Such an approach requires a knowledge of

the line broadening mechanisms to be used with an extensive data base and

accounting procedures. Second, a JORL "just overlapping-rotational-line"

band model [11] and [12] has been used extensively. This model portrays

a simple variation in absorption coefficient within a vibrational band by

summing over each rotational line which is assigned a line width

conforming to the line spacing. A third procedure which is referred to

as the "bandless model" or average absorption coefficient model considers

the coefficient to be constant in and evaluated by averaging over a

frequency interval Au. In this way, sums over all rotational lines lead

to expressions which are independent of rotational temperature and

parameters. This procedure was used in the early work of Meyerott [13].

with Av = 6000 cm and the frequently cited work of Biberman [14] with

Ai/ = 3000 cm . These frequency intervals would sum together several

vibrational transitions. To be consistent with the average coefficient

assumption the spectral variation should be portrayed as a series of

steps; however, the variation of amplitude is frequently represented by a

smooth curve with the amplitude associated with the center of the

10



frequency interval. This model and procedure are incorporated into RAD

[4] and will be used in a later section in which the nonequilibrium

radiative transfer equation is examined. The result of this examination

indicates that the nonequilibrium optical properties can be computed to

the same accuracy as equilibrium optical properties using the procedures

of RAD providing the properties are evaluated at the proper

nonequilibrium temperatures supplied by Part (2). Thus, the use of

proper sums and temperatures allows RAD to be used without major

modifications.

11



TWO-LEVEL ILLUSTRATION

A two-level system similar to that used in an earlier investigation

[15], provides a simple illustration of the problem of predicting state

populations for nonequilibrium and for observing the consequences of

these populations on the radiative transfer problem. This will allow

critical points to be observed uncluttered by the1 complex notation

inherent in a multi-level system. Later sections will apply the findings

of this section to more complex multi-level systems.

For a radiating specie possessing two nondegenerate states between

which both radiative and kinetic transitions occur, the rate equation and

the radiative transfer equation take the form:

DM. _ ... ,

= ~N2(A21 + B21 J + N °21 + Nen21

dl
-* = -<lu,« /4«) [HLB I -N (A + B I )] (2)
dz

The terms of the RHS of Eq. (1) are the rate of quenching of the

population N. of the upper state and the rate of excitation from N.. the

lower state. The quenching processes are spontaneous emission,

stimulated emission, collisional de-excitation by heavy particles, and

collisional de-excitation by electrons. The excitation processes are

stimulated absorption, excitation by heavy particles, and excitation by

electrons. The differentiation is the material derivative associated

with the stream lines of the flow. The differentiation of Eq. (2) is

along a ray path.

12



Rearranging Eq. (2) yields the classical radiative transfer equation:

dl
— = (hi/* /4ir) (N B 2 - N^) [S^ - IJ (2b)
dz

where the source function

= N2A21/(N1B12~N2B21) = (2h^

3 2
using B 2̂ = B '.. and A-../B-.. = 2h»/ /c , and one recognizes the

absorption coefficient as:

Now for many applications the optically thin assumption is used.

This is based upon the assumption that the optical depth r is small.

For a uniform gas, the optical depth is proportional to the produce of

the absorption coefficient and the ray path length. Recall that the

absorption coefficient is inversely proportional to the photon mean free

path. Thus, large mean free paths compared to the characteristic ray

path dimensions implies small optical depths and photons escape the

emitting volume without participation in the stimulated absorption or

emission processes.

For the optically thin assumption, Eq. (2b) is conventionally written

as:

dl

= "„ S, <3>
dz

13



implying that the stimulated absorption and emission processes are -

negligible. Reconsidering the definition of the absorption coefficient

and source function yields a more useful form of Eq. (3) for the

optically thin gas.

dl
— = hi/* A N /47r (3b)
dz

The quantity hi/A N« is the radiative power emitted per unit volume

and will be noted by Q/v.

Returning to Eq. (1) for the population of the upper state N~ and

seeking the steady state population i.e., the maximum population to which

the process relaxes, we have set Eq. (1) equal to 0 to achieve the steady

state result.

B12J<1 -

Nl V2 + A21

where we have neglected the heavy particle collision terms based upon the

argument that the columbic interaction by the electrons results in cross

sections larger than heavy particle cross sections by an order of

magnitude, that the speed of the electrons is over 250 times those of the

heavy particles and that for a degree of ionization of 1% or more, the

electron impact process exceeds the heavy particle process by more than

an order of magnitude. Clearly, the heavy particle kinetics could have

been retained; however, we would require the rate constants for them.

14



Now, if the numerator and denominator of Eq. (4) were divided by A...

we would find the term [J B.. - (1 - N?/N.. )/A?1 ] to be of the order of the

terms which were considered negligible in the optically thin

approximation. Thus, we shall neglect these stimulated processes and re-

write Eq. (4) as:

2

*1

21

<°12VA21>

(5)
flN

Both fl1„ and fl_- are functions of the temperature of the electrons and by

the usual kinetic arguments relating forward and reverse rates:

= exp <- (6)

Before examining Eq. (5) further, let us compare Eqs . (4) and (5) and

ask the question: how does neglecting the stimulated absorption and

emission terms influence the state population? Clearly, the dominant

absorption process is an excitation mechanism which tends to increase the

upper state population and so estimates in which these stimulated

absorption terms are neglected, such as Eq. (5), will tend to under

predict the excited state population.

Returning to Eq. (5), notice that (fl̂ N is ratio

15



rate of kinetic quenching to the rate of radiative quenching and that at

large electron concentrations, kinetic quenching will dominate and at low

electron concentrations, radiative quenching will dominate.

For large electron concentrations, i.e., N » (A-../̂ ..) Eq. (5)

reduces to:

VN1 =

(012Ne/A21)

= 'Weq

using Eq. (6). This is the equilibrium solution which is maintained in

equilibrium with the electrons by balancing of kinetic excitation and

kinetic quenching.

As the electron concentration is reduced, the kinetic quenching rate

is reduced until it is below the radiative quenching rate. Thus, for

N « A2l/
n21 Eq' ^ reduces to:

VN1 = 012Ne/A21

where excitation by electron collision is balanced by radiative

quenching. This solution is frequently referred to as "collision

limiting."

Clearly for any prediction, Eq. (5) would be used with Eq. (6).

However, it is useful to keep these two limiting solutions in mind. To

achieve some understanding of the magnitudes involved in these two limits

*
consider the conditions for Q?1 (N ) /A,,, = 1

16



<V* = = (A21/D12)
(9)

In Figure 1, the radiative lifetime and excitation rate data from [16]

and [17] have been used to compute the "limiting electron concentration"

(N )* for 4 band systems: the first-positive (1+), the second-positive
e

(2+), and the Lyman-Birge-Hopfield (LBH) of Nitrogen and the Schumann-

Runge (SR) of Oxygen. The radiative lifetime is that of the optical

transition while the excitation is always the resonant transition from

the ground state.

Ne (cm-
3)

10"

10'

10'

lO1"

10'

02(SR)

N2(2*)

N,(LBH)

0.4 0.6 0.8 1.0

Te (ev)

2.0 3.0

Figure 1. Nonequilibrium Criterion Curves. The curve for each
specie-transition represents the "limiting electron
concentration" for which population fractions of the upper
electronic state of the transition is 1/2 the equilibrium
value. Conditions above a curve approach equilibrium,
while conditions below a curve indicate nonequilibrium.
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*
In interpreting Fig. 1 electron concentrations well above the (N ) curve

assure equilibrium population fractions while electron concentrations

well below the (N ) indicate collision limited nonequilibrium

populations. Thus, for N = 10 cm" the (2+) and the (SR) are in

nonequilibrium while the (1+) and the (LBH) are in equilibrium.

In Table 1, a comparison of the population fractions predicted by Eq.

(5) is given for N_(l+) over a range of temperatures and at two electron

concentrations.

TABLE 1

Population Fractio Prediction of Equation (5)
for the Upper STa£e of the N (1+) Transition

T (ev) (N_/N1 ) °ioN /A?i

.4

.5

1.0

2.0

3.0

2.1

8.3

1.3

5.1

1.7

x 10

x 10

x 10

x 10

x 10

-8

-7

-3

-2

-1

N =1015e

2.8 x 10~7

1.4 x 10~5

3.5 x 10~2

1.9

6.8

N = io
13

e

2

1

3

1

6

.8

.4

.5

.9

.8

x 10

x 10

x 10

x 10

x 10

-9

-7

-4

-2

-2

Ne

1.

7.

1.

4.

1.

N2/N1

= io15

9 x

8 x

2 x

9 x

7 x

10

10

10

10

10

'

-8

-7

-3

-2

-1

Ne

2.

1.

2.

1.

4.

5

2

8

4

9

= 1013

x 10~9

x 10~7

x 10~4

x 10~2

x 10~2

In the second column above the equilibrium predictions of Eq. (7) are

listed. Recall these are also the ratios of the collisional excitation

and quenching. The third and fourth column list the collision limited

18



solution, Eq. (8), for the two electron concentrations considered. Note

the ratio of the third or fourth columns to column two is the ratio of

collision to radiative quenching which appears in the denominator of Eq.

(5). An electron concentration of 10 cm is well above the (N )* limit

for N9(l+) and we find the population fraction from Eq. (5) in column 5

very close to the equilibrium value in column 2. By contrast, an

electron concentration of 10 cm is below (N )* for the N.(l+) and the

predictions of Eq. (5) in column 6 are close to the collision limited

solutions of Eq. (8) in column 4.

Notice that the collision limited population fraction "prediction" is

not always below the equilibrium fraction; however, only those values

below the equilibrium value are valid. Collision limited solutions are

valid only for N < (N )*. Thus, if we make a computation of equilibrium

and collision limited fractions, we may be assumed that the smaller

fraction is the valid fraction and Eq. (5) would predict a fraction which

is below the valid limit. Note that stimulated absorption and cascading

from higher excited states could raise the fraction above the prediction

of Eq. (5).

Now, using the optically thin form of the radiative transfer

equation, consider the implications of Eq. (5). Combining the two

equations yields:

Q/v =

. = hi/(012NeN1)/[l+(021Ne/A21)] . (10)

For the equilibrium limit achieved with N » (N )*
e e

19



(Q/v) = hi/A21N2 (11)

and for the collision limited with N « (N )*

(Q/v)cl = h«/012N1Ne (12)

The first expression applicable to equilibrium conditions indicates

the emission from a unit volume is proportional to the number of emitters

and is limited by the radiative decay rate. The collision limit

indicates the emission from a unit volume is proportional to the

excitation rate. Note also that the equilibrium emission scales linearly

with density of the specie while the collision limit scales as the square

of the density. When predicting Q/v, it is possible for the equilibrium

prediction to exceed the collision limiting prediction as it is also

possible for the reverse to occur. The valid Q/v is the lower of the two

predictions. The cross over point for Q/v predictions is (N )*.

As an illustration of the variation of Q/v with N , consider Table 2.

The first column indicates the band system. The electron temperature

was fixed at lev and the specie ground state concentration was 10 cm

Column 2 indicates the equilibrium solution. Columns 3, 4, and 5

indicate the solution of Eq. (10). For the lowest N only the (LBH) band

of nitrogen is close to equilibrium with the other transitions well below

equilibrium. The N = 10 cm indicates the (1+) joins the (LBH) in

equilibrium. At the highest electron concentration considered N = 10

_3
cm all states are approaching equilibrium emission. Note the relation

of these three N 's to the (N )* for the bands of Figure (1).
e e

In the above, we have used the optically thin assumption to

effectively de-couple the population prediction from the radiative

20



transfer process while retaining the nonequilibrium character of the

problem. In doing this, we may be under predicting state populations

slightly.

Table 2

Prediction of Volumetric Emission at T = lev and N, = 10 cm
e 1

by Equation (10) for Different Electron Concentrations

_3
Transition Q/v watts/cm

Equilibrium

N2

NO

(1+)

(2+)

(LBH)

0.

0.

0.

39 x

37

31 x

10

10

-2

-2

N

0.

0.

0.

=

08

11

21

io13

x 10~2

x 10~2

x 10~2

N =10
15

e

0.37 x 10~2

0.08

0.3 x 10~2

N =
e

0.39

0.37

0.31

io17

x 10~2

x 10~2

02(SR) 260 0.02 2.8 130

Next, we shall consider how this simple model can be transferred into

a simple expression for electronic state temperature while considering

the vibrational and rotational states of a molecular sources.

21



POPULATION FRACTIONS FOR ELECTRONIC STATES

Applying the optically thin assumption and considering electron

impact kinetics to dominate heavy particle kinetics, the expression

determining the population, N , of the upper state, u, from the rate

processes between states u and lower state 2, of a molecule is:

DN
—- = S (fl. N.N - 0 .N N - A .N ) (13)

& tu t e uS u e ufi u' ^ '

where fl. and fl are the kinetic rate coefficients for excitation and
2u uH

de-excitation of state u by electron impact and A . is the spontaneous

emission coefficient between u and £.

The total population N_ of the upper electronic state which is

designated by "2" is obtained by summing over all the upper states

associated with the upper electronic level. So

DN DN
—- = S —~ = N SZQ..N -N S Z n . N - S S A . N (14)
TV TV e . 2 u e e . u 2 u . u0 uD t u D t u $ u & u 2

Considering that the upper state u is designated by the electronic state

number 2 and the vibrational state number v' and that the lower state fi

is designated by the electronic state number 1 and the vibrational state

number v'', it is clear that the summations in Eq. (14) are over all the

v'' and the v' associate with the (2,1) transition. Although the

rotational structure of the states has not been considered, to be

consistent with the bandless model used with the radiative transfer

equation, the summation over rotational states would yield expressions

identical to those below.

22



Now using the Boltzmann distribution for the fraction f , of the

population of an electronic state which is in the specific vibrational

state v'

VN2 = fv' = N2v'/N2 = 6XP (-£V/kTv2)/Q2(Tv2) (15a)

and f ,, for the lower electronic state fraction
v' '

VN1 = fv" = Nlv"/Nl = 6XP ̂ ev"/kTvl)/Ql(Tvl) (15b)

Where the Q's are the vibrational partition functions for the respective

electronic states which are evaluated at the Boltzmann vibrational

temperatures: T _ for the upper electronic state and T .. for the lower

electronic state.

Recall that the spontaneous emission coefficient can be factored into

an electronic transition probability A-., and a Franck-Condon factor

Vv" S

Aui=A2lVv"

Thus, using Eqs. (15) and (16), terms such as

2 S Au*Nu = A21N2 S, 2,, Vv" Vu 2 v' v''

The sum of the Franck-Condon factors over any column or row is unity so

rv'
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The sum of the vibrational state population fractions over all upper

electronic state vibrational levels is also unity so the double sura on

the right side of Eq. (17) is unity and the equation reduces to:

S * Au*Nu = A21N2
u 9.

Similar arguments can be used for the collisional rate coefficients so

Eq. (14) can be re-written as:

DN
— = 0,^ - nnN2Ne - A21N2 (19)

Where NI and N_ are the populations of the lower and upper electronic

states and Q.. „, 0_1 and A_- are the collisional excitation rate

coefficient, collisional quenching rate coefficient, and the radiative

(spontaneous) quenching rate coefficient.

The steady state population ratio is achieved by setting Eq. (19)
/

equal to zero so:

(20)

which is identical in form to the illustration in the previous section.

The equation will be written as:

N2/N1 = (R1R2)/(R2 + RL) (21)

where r = A01 is the radiative lifetime and R, = rO., 0N and
LL 1 12 e
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R2 = (W^ = (s2Q2(Tv2)/g1Q1(Tvl)) exp <-«12Aie> = O12/n21

The quantity RI is ratio of collisional excitation to radiative quenching

rates, the quantity R_ is the ratio of upper to lower electronic state

populations in equilibrium*, and the ratio R,/R~ is the ratio of

collisional to radiative quenching rates.

Rather than an expression for populations such as Eq. (21), it is

more useful in radiative transfer applications to express a population as

an electronic state temperature, T _

TE2 = <£12/k) ln t<W (W (S2
/gl)] (22)

Although developed for a resonant transition, i.e. 1 is the ground

state and 2 is an excited state, radiative quenching to other excited

states may be considered simply by substituting an appropriate radiative

lifetime for r in Eq. (21).

In closing, note the relationships between individual state rate

constants and electronic state rate constants are:

n . = n»,q , .. f .u0 21 v'v' ' v'

(23)

A . = q , ..f ,/r
ufi v v v'

* Note equilibrium is in terms of the electron temperature T and the
6

upper and lower electronic states vibrational temperatures T _ and

T T .vl
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RADIATIVE TRANSFER EQUATION

This section is devoted to an examination of the radiative transfer

equation and shall show how the standard or classic form of this equation

in terms of source function and absorption coefficient can be constructed

for nonequilibrium conditions from a modification of the conventional

absorption coefficients and source functions computed by equilibrium

computer codes. Solution procedures for the classic radiative transfer

equation will not be considered as adequate treatment is available in the

form of computer codes and their documentation. Similarly, we will not.

review the computation of absorption coefficients as the procedure for

computing the bandless model is incorporated into the same codes. We

shall concentrate on the necessary modifications and their logical

development. The development is easily extended to more complex models

such as the JORL.

Assuming that either excited state population fractions or

temperatures are available from solutions of the state population rate

equations, the starting point is the "microscopic" radiative transfer

equation expressed in terms of the Einstein relations for bound-bound

transitions. The equation, Ref. [18], for the rate of change of

radiative intensity I in the frequency range Ai/ at frequency i>, in the

direction z per unit solid angle, considering the processes of

spontaneous emission, stimulated absorption and stimulated emission

between an upper electronic state 2 with population N_ and a lower state

1 with a population NI is:

= (h,/4.) E
dz i
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where the summation over i includes all species and bands which

contribute to the AJ/ interval and where $.. and $„ which may be though of

as "line" shape functions for the transition, are:

>2 = S <V "f </Al/ < 2 5 a>
Ai/ V V

=2 Vv,,fvf,/Av (25b)
AJ/

where the sums are over all vibrational-electronic transitions with

centers in the interval Ai/. Recall the quantity p is the direction

cosine between the intensity ray and the direction z. The above

expression is consistent with the bandless model which assumes the

interval At/ to be small enough so that properties are constant in the

interval but broad enough to encompass all of the rotational lines

associated with the transition.

Recognizing that the terms multiplied by I comprise the absorption

coefficient including stimulated emission:

(26a)
i

with

(26b)

and the absorption coefficient

(26c)
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Factoring this term in Eq. (24) yields the standard form:

~ = *C (S, - V (27a)

dz

where the source term takes the form:

(27b)

With the use of the relationship between the Einstein coefficients:

the terms

= (2hu3/c2) B ; B = (g g (28)

A21N2$2 = <B12N2V <2hl//c> (§i/g2
) (29a)

which comprise the sum and the numerator of the source function. Now

multiply and divide by N..$ which are evaluated at the lower electronic

state vibration temperature T 1 yielding:

(B12NlV = <2hl//c> (g1
N
2
$2/S2Nl$l) (29b)

with the introduction of a term, Eq. (26b) , 6 = g,N-<I> /g2N..<l> the above

can be written as:

[(B12NlV (1 ' V1 f<2hl//c) «/d - 5̂ )] (29c)
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which one recognizes as the product of the absorption coefficient n ' and

the Planck or Blackbody source function provided S reduces to the simple

exponential of frequency and temperature. The source function becomes:

(30)

where the absorption coefficient for the individual band interval for the

i'th transition:

= (hi//47r) (B-.-N..*.,

and the source function for the individual band interval from the i'th

transition is:

S = (2h,3/c2) S <«/(! - S
V V V

with

First note that the ratio of upper electronic state population to

lower electronic state population:

(Q2
(Tv2)/Ql(Tvl) GXP (-£2

/kTE2)/eXp (~6l/kTEl) (32)

which is not a simple function of temperature and frequency.
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Furthermore, re-examining the sums of $1 and 3> , Eqs. (25 a & b), it is

not obvious that these sums over the At/ band interval are equal other

than under the conditions that Af encompasses the entire band so that the

sum encompasses all upper and lower states. To explore the relationship

between $1 and <I> it is convenient to recall that for frequencies i/ in

the Af interval are represented by the upper and lower state vibrational

energy terms satisfying:

ht/ = £12 + V ~ V' (33)

which can be used to solve for e , and used with Eqs. (25) to yield a

ratio

(34)

where vQQ = ê /h.

Combining Eqs. (34 and 32), we find that

<-hi/ATv2) (35a)

where the double prime indicates the functions are evaluated at T .. and

the single prime indicates the functions are evaluated at T „ and

= exp (-e12/kTt)/exp <-*12ATv2) (35b)

where T , the transition temperature is
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t = TE2/tl + (elAl2) (TE1-TE2) / TE1] (35c)

Note first that for equilibrium R = 1 and the partition function and

line shape function ratio is unity so we find S = exp (-ê /lcT), the

familiar Planck exponential. Next, note that in general, for

nonequilibrium S is a function of 4 temperatures, i.e. a vibrational and

electronic state temperature for both the upper and lower states of the

radiative transition. If the transition is to a ground state, e.. = 0 and

the transition temperature reduces to the upper state electronic

temperature; however, both upper and lower vibrational state temperatures

are required. Next, note if all upper and lower states share a common

value of vibrational state temperature then the line shape and partition

function ratio terms reduce to unity. Clearly, under most nonequilibrium

conditions, the 5 term does not reduce to the Planck exponential;

however, it can be re-written as a frequency shifted Planck term

evaluated at the upper state vibrational temperature.

= exp (-h(i/ + A(i))/kTv2
(l)) (36a)

where the extent of the frequency shift is:

A(l) = "00[<Tv2-Tt)/Tt] + kTv2 In [ (Q̂ ) "/(Q̂ )' ] (36b)

Thus, the algorithm for the standard form for the radiative transfer

equation, Eq. (27a) consisting of the absorption coefficient Eq. (26 a

and c) and the source function by Eq. (30) with S given by Eq. (36).
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In adapting this algorithm to existing programs, the absorption

coefficient could be taken care of by an equilibrium code provided the

T is used in its evaluation. Note T - is also necessary if the lower
VL fc*J-

level is not a ground electronic state. The 5 would have to be

evaluated by using the upper vibrational state temperature and computing

the frequency shift which is a function of all four temperatures

associated with the transition.

Note that the shift in the Planck exponential,terms are positive for

T > T - and T „ > T . This shift would attenuate UV and increase the
v2 vl v2 t

potential contributions in the IR. High electronic state temperatures

would reverse this pattern.

The reduction of the above to the optically thin approximate, such as

discussed in earlier sections, would indicate the dependence upon T - and

T is not as strong as the above expressions seem to indicate.
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CONCLUSION

The objective of this study has been to develop the algorithm which

will allow nonequilibrium flowfield codes to be coupled to radiative

transfer codes which are currently limited to equilibrium applications.

The algorithm consists of Eq. (22) for the prediction of electronic state

population fractions (electronic state temperature) and Eqs. (35c) , (36),

(26c), (26a) and (30) for the compution of spectral absorption

coefficients and source functions for use in Eq. (27a). These

expressions represent a thorough treatment in the context of the bandless

model which in the past has proven adequate for equilibrium radiative

transfer predictions. Perhaps the approach is more than adequate as the

current algorithm requires four temperatures for each transition.

Clearly, a more sophisticated model can be developed; however, it would

require more information ie. rotational temperatures of the electronic

levels.
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