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Abstract

The problem of achieving near-unity power factor while supplying power to a dc
load from a single-phase ac source of power is examined. Power processors for this appli-
cation must perform three functions: input-current shaping, energy storage, and output-
voltage regulation. The methods available for performing each of these three functions
are reviewed. Input-current shaping methods are either active or passive, with the active
methods divided into buck-like and boost-like techniques. In addition to large reactances,
energy storage methods include resonant filters, active filters, and active storage schemes.
Fast voltage regulation can be achieved by post-regulation or by supplementing the current-
shaping topology with an extra switch. Some indication of which methods are best suited
for particular applications concludes the discussion.
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1 Introduction

In switched-mode power conversion, a high quality output voltage is usually of
first importance. Converters are often chosen for their ability to produce clean, well-
regulated outputs while problems with the input side are ignored or patched up with
filters.

The present proliferation of switching converters and other non-linear loads is
changing this approach, forcing designers to consider converters as generators of input
current, as well as of output voltage, waveforms.

The objective of this work is to investigate and catalog input-current shaping
techniques for power converters supplying dc loads from a single-phase ac line. Three-
phase power sources present a quite different set of problems and are outside the scope of
this report. The demand for input-current improvement is first reviewed, along with some
means of describing the quality of input waveforms. A current-shaping converter is found
to perform at least three vital functions, detailed in Section 1.3, and two fundamental
restrictions on the operation of all current shapers are discussed in Section 2. Section
3 examines techniques for generating input-current waveforms, and Section 4 presents
ways of handling the energy storage problem identified in Section 2.1. A novel method of
combining current shaping and fast voltage regulation in the same topology is presented
in Section 5. The merits of each technique are summarized in Section 6, and conclusions
are drawn regarding the best techniques for certain applications.

1.1 Need for Current Shaping

There are two major reasons why increased attention needs to be given to input-
current shaping for ac-tc-dc power converters, both of which lead to the conclusion that
the input-current waveshape should be the same as that of the input voltage, and in phase
with it. In other words, the input current and voltage at every instant should be related
by a real constant, just as if the load were a resistor instead of a power converter. For a
sinusoidal input voltage, the case considered here, the input current should therefore be
a sine wave in phase with the input voltage.

Efficiency
The first reason concerns high efficiency. Any periodic current or voltage wave-

form may be represented by a Fourier series. Only Fourier components of the current
that match those of the voltage waveform deliver power from source to load; however,
all current components contribute to the nns value of the current, and hence to the
lost power. Therefore, any current component of a frequency not present in the voltage
waveform, or of the wrong phase, generates power loss in the parasitic resistance but
does not contribute to the load power. For a given nns current (given parasitic loss),
maximum power is delivered from source to load when all current Fourier components are
proportional to and in phase with a corresponding voltage component. Equivalently, for
maximum power delivery every current component must be related to its corresponding
voltage component by a common scalar, and so the entire current waveform is just a
scalar multiple of the voltage waveform.



Parasitic resistance will always be present—in the converter input circuitry, in
the line connecting the power source to the converter, and in the source itself (source
resistance). Parasitic power loss in excess of the minimum leads not only to loss of
electrical efficiency, but also to poor utilization of source and line capacity.

Noise
The second reason why the input current should be the same as the voltage

waveform is that otherwise unnecessary noise is generated, both radiated and conducted.
In a converter operating from a dc input voltage, any ac component of input current can
be considered as noise. There are two sources of such noise: reflected load current, and
internally generated ac currents caused by the switching action of the converter, which
consist of the switching frequency and its harmonics.

In a converter operating from an ac input voltage, noise currents are those of
frequencies other than the line frequency. This noise comes not only from the load and
from the internal switching action, but also from harmonics of the line frequency caused
by rectification of the input voltage. These harmonics can be large, as in the common
half-wave, full-wave, or bridge rectifiers followed by a large reservoir capacitor. Sidebands
generated by the switching frequency in combination with the line frequency may also be
present.

1.2 Power Factor

One measure of how close a current waveform comes to the ideal is the power
factor, or PF. In general, power factor is defined as the ratio of true power to the product
of rms voltage and rrns current. When the line voltage is a distortion-free sinusoid,
however, a more useful special case of this definition is

PF = ^cos<£ (1)
It

where <j> is the angle the fundamental component of the current makes with the voltage,
// is the rms value of the fundamental of the current, and It is the rms value of the total
current. Equation (1) shows that power factor degradation comes from two sources—
phase displacement of the fundamental component of the current, and current waveform
distortion. In the case of a linear load, the current is sinusoidal and only phase displace-
ment, cos<£, reduces the PF below unity. Rectifiers and switching converters present a
nonlinear load to the line, and the distortion factor, If/It contributes to PF reduction.
Pure sinusoidal, in-phase current is the only way to obtain unity PF, but if lower PF's
are acceptable then the loss may be taken as phase displacement or distortion, or as a
combination of both.

1.3 Functions of an Input-Current Shaper

The difficulties of input-current shaping depend heavily on the power source
(line) and load to be matched. The only case considered here is the common problem
of supplying a dc load from a single-phase line. Allowing a three-phase power source
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Figure 1: Power processor supplying a dc load from a single-phase ac power source.

removes the energy storage restriction discussed in Section 2.1, permitting alternatives
not available with a single-phase source.

Figure 1 shows the system of interest. The power processor, or "input-current
shaper," draws power from the single-phase power source and supplies constant power to
the load. The load, in steady-state, is modeled as a resistor of value RL = V0/I0.

An ideal power processor for the application of Fig.l would have unity PF and
high bandwidth control over the output voltage. It would also have high efficiency and
low weight, complexity, and cost. The many current-shaping methods available each
trade strength in some of these areas for weakness in others.

The input-current shaper of Fig.l must perform three functions. One function
is, of course, shaping the input-current waveform. A sinusoidal current is most desirable,
but a current shaper may be called upon to impose other waveforms. Section 3 presents
several shaping methods. Because the current shaper supplies constant power to the load
while the input current is not constant, the shaper must take up and give back energy
during each line cycle. Thus a second function of a current shaper is to "balance" the
difference between input and output power. This power balancing requires the power
processor to store at least a minimum amount of energy, independent of the internal
switching frequency, as discussed in Section 2.1. Section 4 compares various methods of
handling the energy storage problem. Finally, output voltage regulation must be included
in the power processor of Fig.l. Regulation may be performed by the same circuitry that
shapes the input current or by a separate dc-to-dc converter. Section 2.2 discusses the
challenges of simultaneous input current and output voltage control, and Section 5 shows
how an added switch can enable a current-shaping converter to rapidly regulate the
output voltage.

2 Fundamental Limitations of Current Shapers

It is often the case in power processing that, theoretically, if one could only
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switch fast enough, problems of weight and speed of response would disappear. Input-
current shapers do not follow this "rule." Instead, they have fundamental restrictions
on stored energy and speed of response that are independent of switching frequency.
First, absorbing the difference between the varying input power and the constant load
power requires a minimum amount of energy storage in the power processor. Second,
control variables that are used to shape input current cannot also be used to provide
high bandwidth control of the output voltage. An extra degree of freedom—in this case
a switch—is necessary to achieve both input-current shaping and fast control over the
output voltage.

2.1 Minimum Stored Energy

The amount of energy a current-shaping power processor must store to bal-
ance the difference between input and output power will depend upon the input-current
waveform. The stored energy requirement is found here for the ideal case of sinusoidal,
in-phase current. Other, less ideal, waveforms may yield slightly different theoretical
requirements, but the important result remains that a current shaper must store energy,
and the minimum amount stored is limited by the line frequency and the load power
level, regardless of internal switching frequency.

Consider a converter with 100 percent efficiency drawing an in-phase, sinusoidal
current from the line and delivering constant power P to a load, as in Fig.2. Because
the input voltage and current both vary as sin art, the input power is 2F sin2 art or
P — Pcos2urt. The difference between the input power and the output power is absorbed
by the converter. Since no energy can be lost, this power difference must alternately in-
crease and decrease the stored energy of the converter. The change in stored energy is
the integral of the absorbed power, plus some constant.

U(t) = / -Pcos2utdt = - ~ + U(0) (2)
J Mil

The stored energy must always be positive so the minimum value of 27(0) must be P/2u.
The peak stored energy is then

Upeak > £ (3)

The converter must contain a set of inductors and/or capacitors that store at least this
amount of energy at some point in each half cycle of the line voltage.

This restriction on stored energy does not apply to converters running from a
three-phase line, because power drawn from the three-phase line by sinusoidal currents
is constant. With constant load power, no imbalance of input and output power need
be absorbed by the power converter. Minimum stored energy can be a function of the
switching, not the line frequency, and the reactive elements can therefore be smaller.

In addition to reduced size, weight, and cost, low stored energy is desirable for
one more important reason. If the energy storage element directly feeds the load, then
the ability to control the load voltage depends on changing the voltage or current through
the energy storage device. Excessive stored energy means a slow time constant between
the energy storage and the load, and therefore slow response to load variations or voltage
change commands.

Section 4 discusses several different ways to handle the energy storage problem.
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Figure 2: Ac-to-dc power converter and corresponding power waveforms.

2.2 Voltage Regulation

The control circuits of an active input-current shaper must perform two tasks.
First, the controller imposes the shape of the input current, usually a sine wave. Second,
the amplitude of the input waveform is adjusted so that the average power drawn from
the line just equals the load power plus any losses in the converter. The second task
usually corresponds to controlling the load voltage.

When the power processor has only one switch—one control variable—the fol-
lowing problem arises. If the bandwidth of the amplitude control loop is on the order of
(or higher than) the line frequency, disturbances in this loop (output voltage ripple, for
instance) will affect the shape of the input current as the current amplitude is rapidly
altered within the space of a half period of the line. The amplitude loop will override the
shaping control, making the latter ineffective. To avoid this problem, the bandwidth of
the voltage control loop is restricted to much less than the line frequency. A converter
with only one switch must therefore be an extremely slow voltage controller. Fast control
of the output voltage is sacrificed to enable fast control, i.e., shaping, of the input current.

Fast voltage regulation can be recovered by adding another degree of control.
Placing a complete dc-to-dc converter between the current shaper and the load is one
way to get fast control over the output voltage, and this method also allows easy in-
troduction of isolation. Section 5 gives another alternative, the three switched-network
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topologies, in which adding a single switch and rectifier to the shaping topology enables
fast, independent voltage regulation. Isolation is a simple matter with these topologies.

3 Input-Current Shaping Methods

An input-current waveform can be imposed by either active or passive methods.
Passive methods have the advantage of simplicity, but the current waveform is generally
load dependent. Active schemes offer possibilities for advanced control, such as current
limiting and load-independent waveshapes. Section 3.1 discusses three passive means of
current shaping and Section 3.2 introduces some of the many active schemes available.

3.1 Passive Shaping Methods

Input current can be shaped using no switches at all. In this case the power
processor is really just a filter, and a dc-to-dc post-converter is required to regulate the
load voltage. Passive current shapers generally need more stored energy and hence larger
reactances than active methods, but they deserve consideration for their ruggedness and
simplicity.

In the rare event of a high frequency power source, passive niters will be more
attractive, and active methods less so, than at the usual 60 or 400Hz line frequency. For
fixed performance, the value of reactances in passive niters is inversely proportional to
the line frequency. Active current-shaping schemes, for constant performance, must have
switching frequencies a fixed ratio above the line frequency. As line frequency increases,
then, passive filters get smaller and active methods must switch faster. At some point,
passive methods will be superior, and this point is by no means necessarily in the kilohertz
range. Passive filters are quite common at 60Hz, although they usually do not provide
power factors above 0.7 or 0.8.

The inductor input filter is probably the most common passive filter used. The
filter is simple and relatively cheap. Its main drawbacks are a 0.90 upper limit on PF,
and discontinuous input current for high PF. A series resonant filter is an alternative way
to passively shape input current. Although heavy and expensive, it shows that unity PF
is possible without using active elements. More often used as a voltage regulator, the
ferroresonant transformer can also be considered as a passive current shaper. It too has
a resonant circuit that makes the input current nearly sinusoidal.

3.1.1 Inductor Input Filter

A simple way to improve the input-current performance of a capacitor input
filter is to place an inductor in series with the output of the bridge rectifier (Fig.3).
This configuration is called the inductor input filter, by analogy with the capacitor input
filter. In analyzing the filter, the usual assumption is that the output voltage is pure dc.
Several analyses appear in the literature [lj,[2]. A summary of the analysis and results
is presented here with an emphasis on exposing the effects of inductance L, line (radian)
frequency u or line period T, and load R simultaneously. The conduction parameter KI,
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Figure 3: Inductor input filter followed by a voltage post-regulator.

defined by

(4)

does this very well and supplants the normalized units of [1] and [2]. Note that the load
R is defined as the ratio of average voltage and current at the output of the filter, and
does not necessarily represent an actual resistance. The T subscript on K\ means that
KI involves the line frequency.

The filter operates in either the continuous conduction mode (COM), in which
the rectifier bridge always conducts, or in the discontinuous mode (DCM) when the bridge
is off during some portion of the line period.

Figure 4 is an equivalent circuit for CCM. The capacitor is assumed infinitely
large so that the output voltage is constant. Since the average voltage across the inductor
must be zero, the output voltage is

= -Va (5)

where Vg is the peak value of the line voltage. Integration of the voltage across the
inductor gives the shape of the inductor current. The average current, or constant of
integration, is chosen to produce V across R, yielding

— cos(urt) 1 , 0 < tjjt < IT•*<<•"> = d
The rms value of the line current is the same as the rms value of if,,

(6)

(7)

found by integrating the square of Eq.(6). The power factor follows directly from Eqs.(5)
through (7), and is a function only of KI.

PF =
0.90

(8)
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Figure 4: Equivalent circuit of the inductor input filter in CCM.

The phase displacement contribution to power factor degradation, cos<£, is found by
calculating the Fourier sine and cosine coefficients of the input current, the odd extension
of Eq.(6) into the full line period, and is given by

(9)

The boundary of CCM, called critical conduction, occurs when the current of
Eq.(6) just reaches zero at some point during a cycle. Equation (6) can be differentiated
to find that the minimum current occurs when

- ** 40°

The value of KI that makes the current exactly zero at this point is found to be

= \ [-sin'1 (-} +cos [sin-1 (-}] - 1 j w 0.1053

(10)

(11)

Analysis of the discontinuous mode of operation is more difficult than for CCM.
While closed form solutions for the PF and its phase displacement component cannot
be found, it is not hard to show that these two quantities remain functions of KI alone.
Appendix A outlines the DCM analysis.

Because PF and its phase displacement component cos^ are functions of KI
alone in both CCM and DCM, a single plot is sufficient to show the effect of all operating
conditions. In Fig. 5, PF and cos<f> are plotted versus KI on a log scale. Maximum PF
is 0.90, achieved as Kt -»• oo. As KI is reduced, PF falls to a value of only 0.732 at the
critical point. As KI falls below Ki^t, the power factor initially increases, a somewhat
surprising result. As KI falls still further, the PF decreases monotonically.
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Figure 5: Power factor and its phase displacement contribution for the inductor input
filter.

The curious behavior of the PF is explained in Fig.6 and the fundamental phase
component plot of Fig.5. Figure 6 shows the waveshape of the line current ("unfolded"
inductor current) as KI varies. For large KI (Fig.6(a)), the line current is nearly a square
wave. The fundamental is in-phase with the line voltage; distortion alone causes the 0.90
PF limit. As KI falls, some ripple appears across the previously flat tops of the the square
wave (Fig.6(b)) and the fundamental lags slightly.

Note the discontinuities in the line current in Fig.6(a) through Fig.6(c). "Contin-
uous conduction" of the inductor current is unrelated to the continuity of the line current.
The filter must be well into discontinuous inductor current mode, with KI < 0.05, before
the line current becomes continuous.

Critical conduction is shown in Fig.6(c). The point where the input current
reaches zero is given by Eq.(lO), and is quite different from zero degrees, indicating the
current is both discontinuous and out of phase. There is little distortion, but phase
displacement of the fundamental keeps the PF relatively low. As KI is reduced below its
critical value, as in Fig.6(d), the distortion of the current increases, but at the same time
the fundamental phase displacement decreases. The combined effect is an increase in PF.
Eventually, for very small KI, the line current becomes a narrow spike, nearly centered

10
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Figure 6: Line current waveforms (solid curves) for the inductor input filter as KI changes.
The dashed curves represent the line voltage. As KI falls from a large value (a), the PF
initially decreases and the phase displacement <f> increases. Over a range of intermediate
values, ((c) and (d)), PF increases and 4> decreases with falling KI. For small KI (e), PF
decreases with KI and <f> is near zero.

in the voltage half-sine, as in Fig.6(e). The fundamental is almost in phase in this case,
and the low power factor is a result of distortion alone.

The inductor input filter offers the advantages of passivity, simplicity, and rug-
gedness. These advantages all stem from the filter containing no switches. Undesirable
aspects of the filter as an input-current shaping method are the large, heavy inductor,
the lack of output voltage regulation, the fact that PF varies with the load, discontinuity
of the input current, and the 0.90 upper limit on PF.

3.1.2 Resonant Input Filter

Essentially unity PF can be achieved using only passive components. The reso-
nant input filter, Fig.7, named by analogy with the capacitor and inductor input filters,
serves as an example of this fact. Operation of this filter is easy to understand when one
considers that if the Q and characteristic impedance ZQ of the series resonant circuit are
both high enough, only currents at the "notch" frequency can get through to the line, and
the PF will be near unity. Analysis of the waveforms and PF is outlined in Appendix B.

11
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As with the inductor input filter, the power factor is a function of the single
parameter

Kl = ~~R ^

The inductance L in KI is the resonant inductance in this case, and R is the effective
load seen by the filter.

The resonant input filter has both continuous and discontinuous modes, the
latter occurring when the rectifier bridge is open for some fraction of a cycle. Unlike
the inductor input filter, however, the series inductance ensures that the line current is
always continuous. Figure 8 shows the form of the input current as the parameter KI
varies. The critical value

2
Crit = -203 (13)

marks the boundary between COM and DCM. The power factor as a function of KI is
shown in Fig.9. The curve is similar to that of Fig. 5 for the inductor input filter, but in
this case the PF is higher, 0.94 at critical conduction and approaching unity for large KI.

12
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Figure 8: Line current waveforms (solid curves) for the resonant input filter as KI changes.
The dashed curves represent the line voltage. As KI changes from a large (a) to a small
value (d), PF falls monotonically, while the phase displacement (f> initially increases, then
returns to zero.

The major disadvantages of the resonant input filter are the large size of the
reactive elements and the large rms current in both the capacitors. The filter is useful
mainly as a demonstration that passive circuits can achieve essentially unity PF.

3.1.3 Ferroresonant Transformer

The resonant input filter is similar in some ways to the ferroresonant transformer,
or ferro. Like the resonant input filter, the ferro has an L-C resonant circuit that prevents
high distortion of the input current. The ferro is unique among passive methods, however,
in that it uses a saturating transformer to provide some degree of regulation against input
voltage changes. The ferro provides no control over the output voltage, however, so a
post-regulator is still needed.

Like the resonant input filter, the ferro is heavy (as one would expect of any line
frequency transformer) and is valued chiefly for its ruggedness.

3.2 Active Shaping Methods

Active devices provide a variety of ways to shape input current. Each of the basic

13
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Figure 9: Power factor of the resonant input filter as a function of K\.

ideas has several variations, leading to a bewildering number of topologies and control
schemes. Despite this variety, the methods seem to fall conveniently into two categories,
those based on boost-like topologies and those built around buck-related topologies. Both
kinds of topologies can be operated with low switching frequencies (not more than a
decade or two above the line frequency) or with fast switching. The boost topologies
can operate in either a continuous or discontinuous mode, but the buck-based schemes
always use continuous conduction.

3.2.1 Boost-like Topologies

The basic boost topology appears in Fig.10, shown with a bipolar switch. An
inductor is placed in series with the rectified line. When the switch is on, the switch
connects the end of the inductor to ground, so that the current in the inductor increases.
When the switch is off, the rectifier comes on and the inductor is connected to a stiff
voltage, such as a large capacitor. As long as this voltage is greater than the input
voltage, the current decreases. By varying the time the switch is on, the input current
can be shaped.

The boost topology is used as an example throughout this section, but other

14



Figure 10: Boost topology.

"boost-like" topologies, such as the Cuk and SEPIC topologies, can also be used to shape
input current. In all these "boost-like" topologies, one end of an inductor is connected
to the input while the other end is switched between fixed voltage levels. The inductor
current, and hence the input current, is shaped by controlling the voltage applied across
the inductor.

The switch in the boost topology can be operated slowly and reasonably good
PF will result. Some examples of this kind of operation are presented first. When the
switching frequency is much higher than the line frequency (fast switching), true sine
wave current is possible, and the current shaper is called a "resistor emulator" because
the line current is proportional to the line voltage. Guidelines for choosing the inductor in
this case are studied next. The boost topology can mimic the inductor filter with infinite
inductance by programming the inductor current to be constant. Some advantages to this
scheme are discussed. Finally, the boost topology can be operated with discontinuous
inductor current and constant switch duty ratio, leading to a kind of "automatic" resistor
emulation mode.

Slow-switching Boost
With a switching frequency a scant 8 or 10 times the line frequency, the boost

topology of Fig.10 can deliver PF'a of well over 90 percent. Figure 11 shows some exam-
ples of the line current waveform. Two parameters determine the PF for a given switching
frequency: the conduction parameter

(14)

and the voltage gain V/Vg. In Fig. 11, there are five constant frequency switching intervals
per line cycle, and the voltage gain is 1.5.

For large KI, Fig.ll(a), the dc inductor current is large and the line current is
nearly a square wave. Power factor in this case approaches 0.90, just as in the inductor
input filter with large KI. (It is interesting to note that the boost topology is an inductor
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Figure 11: Line current waveforms for the boost topology switched at low frequency.

input filter if the switch is kept off indefinitely.) For decreasing KI, the inductor current
becomes more "peaky", as in Fig.ll(b). For still lower KI, the inductor current becomes
discontinuous, as shown in Fig.ll(c).

The input current is shaped by controlling the switching times. Power factor,
or other criteria, can be optimized over these variables. A numerical multivariable opti-
mization routine can find the best switching scheme to meet PF and harmonic distortion
constraints.

In practice, specifications such as constant switching frequency and maximum or
minimum on time will likely constrain the switching times. The waveforms of Fig.ll(b)
are for optimal PF assuming constant switching frequency and no minimum on or off
time. Optimal values for the switching times change as the load and output voltage
change. An optimal control scheme would therefore be complicated, probably requiring
microprocessor control.

Problems with the boost topology at low frequency include high peak currents
and the intelligent control needed. Line current is discontinuous at the crossover of the
input voltage sine wave unless KI is low. The fundamental of the input current tends to
lag because of the difficulty in increasing the inductor current early in the cycle when the
input voltage is low. Proper choice of the inductance can correct this effect at the expense
of higher current peaks and lower form factor. The most important drawback, however,
is the drastic change in the form of the line current as the load varies, demonstrated in
Fig.ll.

16



REF

GAIN

Figure 12: Control of the boost resistor emulator.

Resistor Emulator
When the boost topology operates with switching frequency well above the line

frequency, the inductor current can be programmed to be proportional to the rectified
input voltage [3], [4], [6]. The input current is then a sinusoid proportional to input
voltage, plus some high frequency ripple. This scheme has been given the name "resistor
emulator," although any input-current shaper with unity PF emulates a resistor.

Control of a boost resistor emulator is fairly simple, as shown in Fig.12 [3]. The
switch is current programmed so that the inductor current closely follows some reference.
An error signal, R^£> generated by a voltage feedback loop, scales the input voltage to
produce the reference current. The bandwidth of the voltage loop must be less than the
line frequency to ensure proper current shaping (see Section 2.2).

Ideally, the switching frequency is so much higher than the line frequency that
ripple effects can be ignored and averaging can be performed to study the effect of the
switch. If the short-time average (switching frequency effects averaged but line frequencies
remaining) of the transistor switch is D(ut), the average voltage across the inductor is

vL(avg) = va(ut) - D'(ut)V (15)

where U'(wt) is 1 — D(u>t), the complement of the switch duty ratio. If the converter
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emulates a resistor, the current is related to the rectified line voltage by

(16)

where R,m is a constant, called the emulated resistance. The duty ratio required to
generate this current waveform is found by differentiating Eq.(16), multiplying by L and
equating the result to Eq.(15), yielding

where 7 is defined by

(18)
• e m

Thus Ke is

and is analogous to the conduction parameter K\ defined earlier. The difference is that
Ke involves the emulated resistance Rem, while K\ contains the effective load resistance
R.

The duty ratio D'(ui) of Eq.(l7) must lie between 0 and 1. The latter constraint
is satisfied when

£ > — (20)
Vg COSf

but the constraint that D'(ut) be positive cannot be satisfied for wt near zero. The
physical explanation of this effect is illustrated in Fig. 13. For small art, the input voltage
is near zero. The inductor current, trying to follow the commanded current vg(ut)/Rem,
rises fastest with the switch on, or D' = 0. With the switch held continuously on, the
current t£ is

«t(w*) = T r V3 smu;r «kw = -7 (1 - coswt) (21)L JQ

Equation (16) represents the desired current while Eq.(2l) is the highest current
possible for small art. The two waveforms converge when art = 27; after this time the
desired current waveform can be followed exactly. If the inductor current is programmed
to follow Eq.(l6), the actual effect will be

0 < ut < 27
il(wt) = { v , . . (22)v '

and
0 < wt < 27
«>~ ^ ,.,* ^ «• (23)

f 0
= \ £_^_

^ v eotf

This assumes the switch duty ratio can reach zero. In practice the minimum on time
may be restricted and the time when the inductor current finally reaches the reference
current will be somewhat later than wf = 27.
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Figure 13: Distortion of the boost inductor current waveform as the reference current
leaves the cusp.

This "lag" effect in the initial inductor current affects the output voltage and 3

PF. To find the output voltage, the average output current /,

I = - f' iL(ut)D'((jjt) dut (24)

is evaluated using Eqs.(22) and (23), and the result multiplied by R, yielding

(25)

The mean square current can be found from Eq.(22) and the PF follows.

PT3* — y IT * ^9R^

|l — 2l + ^sin47 + jcot27 [37 — 3 sin 7 cos 7 — 2 sin3 7 cos 7] }

Finding the Fourier coefficients of the odd extension of Eq.(22) into the complete
line period enables the phase displacement component of PF to be calculated.

Equations (26) and (27) consider only the effect of the initial "lag" in the current
waveform, and are independent of the switching frequency. The effect on PF of the high
frequency ripple current has been studied by Rippel [4], who neglected any error at the
cusp, essentially assuming 7 = 0. If the two nonidealities, nonzero 7 and finite switching
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Figure 14: Switching ripple on the inductor current of the boost resistor emulator.

ripple, each cause small deviations from the ideal current waveform, one may treat the
two effects separately and find the total PF as the product of the PF's derived by the
separate calculations.

To evaluate the effect on PF of switching ripple alone, consider Fig.14, where the
inductor current is shown over a single switching period. Again, assuming the switching
frequency much greater than the line frequency, the reference current can be considered
constant during any one switching cycle. The rms current contains both line frequency
and switching frequency components. Since the ripple component has zero average, the
total mean square current is the sum of the mean squares of the line component (ideal cur-
rent waveform) and the switching ripple component (zero average triangular waveform).
The peak-to-peak value of the ripple current is

»rp-p
_ D(ut)T.vg(ut)

(28)

For negligible "lag" effect near the cusp, the duty ratio D(<jjt) is found from Eq.(l7) with
7 = 0,

y
D(wt) = 1 - D'(wt) = 1 - -^ sin ut (29)

The mean square ripple current during any single switching cycle is just the peak-to-peak
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value squared divided by \/12, or

.2 T2y2gin2wt , %

) 'm <30>
By invoking the assumption of high switching frequency, however, the mean square ripple
current can be considered a continuous function of ut, and the total mean square ripple
current is found by averaging Eq.(30) over a half-cycle of the line, to find

V2T2
7-2 _ ya •*«
•'rrrna — 24

_i i f J_U£fJ_V
Zx \MJ 4 \MJ

where M = V/Vg. The total mean square current is the mean square of the ideal current,
, plus the mean square of the ripple from Eq.(3l). The resulting PF is

pp _ _ _ _ (32^~ I >

where Ke, is defined by

(33)

The e subscript refers to the dependence of Kes on the emulated resistance, while the s
subscript indicates that it is the switching frequency that appears in Ke3.

Because the ripple has zero average during each switching cycle, it adds no phase
displacement to the PF. Equation (32) represents distortion alone.

In Fig.15, the two effects, Eqs.(26) and (27), and Eq.(32), are plotted against
Ke on a log scale. Since Ket = (u,/u)Ke, the curve showing the ripple effect is shifted
relative to the lag effect curve as the switching frequency changes. Figure 15 shows the
relationship of the two PF components for u, = lOOOur. For lower switching frequency, the
ripple curves move to the right, defining a more narrow region where the PF is near unity.
For higher switching frequency, the ripple curve moves to the left and a broader range of
Ke values (inductance values) give acceptable PF. When the total PF is near 1, it may
be found by multiplying together the individual PF's resulting from ripple and lag alone.
If either effect is large, treating the two separately is not such a good approximation. At
any rate, Fig.15 shows how the inductance L must be chosen in terms of the load and
switching frequency if near-unity PF is needed. Alternatively, if the acceptable switching
ripple (and hence Ke,} is specified, Fig.15 shows the necessary separation of the line and
switching frequencies to obtain a specified PF.

Both [3] and [4] show that the inductor current goes discontinuous near the cusp
if Kel < 1. This is frequently taken as a lower bound for acceptable current ripple.

Constant Current Mode
An interesting way to use the boost topology is to program the inductor current

to be constant. The effect is that of an inductor input filter with L— »oo, so that the PF
approaches 0.90. The difference is that in the inductor input filter with PF near 0.90, a
large inductor is required and the filter capacitor can be small. With constant current in
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Figure 15: Power factor of the boost resistor emulator, considering both "lag" effects
following the cusp and switching frequency ripple.

the boost topology, the inductance can be small if the switching frequency is high, and
the capacitor is large instead. Since capacitors are volumetrically more energy efficient,
the boost with constant current might have a weight or volume advantage. In addition,
the boost provides active current limiting and output voltage regulation, features missing
with the inductor input filter.

Discontinuous Conduction Mode
The boost topology offers one further mode of operation. If the switch duty ratio

is kept constant, and the inductor current is discontinuous during every switching period,
then the average of the input-current pulse in each cycle is roughly proportional to the
input voltage. By filtering the input-current pulses, the line current is made proportional
to the line voltage and the converter has near-unity PF [5].

To find the PF for this mode of operation, consider the boost converter of Fig. 10
when the inductor current is discontinuous. The inductor current during a typical switch-
big cycle is shown in Fig.16. The on time of the switch is fixed at DT,. While the switch is
on, the inductor current rises with aslope determined by the rectified line voltage vg(ut).
The output voltage V and v3(ut) together determine the falling slope of the inductor
current when the switch is off. Assuming that the switching frequency is much greater
than the line frequency permits two approximations. First, the input voltage vg can be
considered constant during any single switching cycle. Second, the time interval D^T,
can be treated as a low frequency, continuous variable by averaging over each switching
cycle. With these assumptions, the time required for the inductor current to fall to zero
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Figure 16: Inductor current of the boost topology in DCM.

is

(34)

The inductor current is discontinuous if DT, + D^T3 is always less than T,. Discontinuous
operation is ensured throughout the line cycle if

The average inductor current during a single switching period is

r
a f sinu/t \

2L

(35)

(36)

where M is the voltage gain V/V3. Under the assumption that an input filter removes
switching ripple leaving only the line frequency part of the unfolded inductor current, i£
can be treated as a continuous variable. The input power is calculated by integrating the
product of vg and IL, yielding

p. -•*tn — 21
\ 1 /•* sinzu;t
— / r~. <*"*

IT JQ i — TTf Sin Ut
(37)

The rms line current equals the rms inductor current, the average of the square of Eq.(36),

VT.V.r sin2.t _ (3g)
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Figure 17: PF of the boost topology in DCM, neglecting switching ripple effects.

The PF can now be calculated using Eqs.(37) and (38), yielding

f* "p3"* dutJ° 1— trsinut
PF = W-

sin3 ut

(39)

The integrals in Eq.(39) are apparently not available in closed form. Numerical inte-
gration can be used to evaluate Eq.(39), resulting in the PF plot of Fig.17. Because
of the symmetry of Eq.(36) within a half cycle of the line voltage, there is no phase
displacement. Equation (39) represents distortion alone.

The voltage gain as a function of D and the load R can be found by calculating
the average output current and using V = IR, but the result is an implicit equation in
M. For M > 1.5, however, the voltage gain is very nearly

where K, is defined by

M

2L _ w,I
•" "75"

(40)

(41)
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Figure 18: Buck topology.

The obvious advantage to this input-current shaping scheme is that the shaping
takes place "automatically," and no current sensing or programming is required. (The
voltage control must still have low bandwidth, however, to avoid disturbing the input-
current shape.) The inductor current in DCM contains more high frequency noise than in
the fast-switching resistor emulation mode, requiring a larger filter. The size of the filter
is still dependent only on the switching frequency, however, not on the line frequency.

3.2.2 Buck-like Topologies

Another set of topologies is the buck-like group. Instead of having a series
inductor switched between voltages, buck-like converters have a constant current source
that is alternately connected to the input and shunted to ground. In addition to the
basic buck converter, any of the buck-derived topologies, including half- and full-bridge
versions, can be used as input-current shapers. The buck-boost, or flyback, topology is
another buck-like topology with the potential for current shaping. Figure 18 shows a
buck topology using a large inductor for the source of constant current. Buck topologies
switched at low frequencies usually use a controlled bridge, as in Fig. 19, rather than a
rectifier bridge and separate control switch. The input current is made up of chops of
the constant current source. When switched at relatively low frequencies, buck current
shaping methods are known collectively as "pulse-width-modulation," or PWM.

A filter should be used with buck-like topologies to prevent the discontinuous
input current from reaching the line. Unity PF is impossible without such a filter.

One major difference between boost and buck-like topologies is the form of the
energy storage. Boost topologies store energy in a source of constant voltage, such as a
large capacitor. The buck-like methods store energy in a current source, such as a large
inductor. Filtering the discontinuous input current still requires a capacitor handling high
rms currents, though the capacitance value can be low. Another difference is that boost
converters have output voltages greater than the peak of the line voltage, and switching
transistors see this voltage. Buck converters provide output voltages lower than the line
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Figure 19: Buck topology with controlled bridge for high power applications.

voltage, and the switches need only handle the peak line voltage.

Resistor Emulator
When the switching frequency is very far above the line frequency, the buck

topology can achieve unity PF and emulate a resistor, like the boost topology. In the
case of the buck, the average input current is the switch duty ratio times the constant
inductor current. By varying the duty cycle of the switch, any value of average current
from zero to the constant current value can be drawn from the line. A filter ensures that
the line sees only the short*time average of the chopped current, rather than the chopped
waveform itself with its high frequency content. The size of the filter diminishes with
the switching frequency, and is independent of line frequency. An example of a buck-like
topology switched at high frequency is found in [9], where a flyback topology is used.

The buck topology itself has no problem following the cusp of the desired input-
current waveform, but addition of a filter at the input will introduce di/dt limits, pro-
ducing some error at the cusp. As in the boost topology, a large separation of the line
and switching frequencies makes it possible to adequately filter out high frequency ripple
while still having small errors near the cusp.

Current programming is the natural choice for control in a boost resistor emulator
because the input current appears in the inductor and in the transistor during the on
time. In the buck topology, however, the actual input current is discontinuous and cannot
be programmed.

Sawtooth Modulation
Low frequency PWM methods have two main features: where the switching

instants are placed within the line period, and how the actual switching is accomplished.
For high power schemes, the latter usually involves commutation of SCR's. For a given
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Figure 20: Topology used in the "sawtooth" modulation scheme.

number of switching transitions per line cycle, the transitions can be placed to satisfy
some criteria of optimality, such as high PF or reduction of specific harmonics.

Among the many low frequency PWM schemes, one known as sawtooth modu-
lation is unusual in that it requires no extra thyristors for commutation [10]. Sawtooth
modulation uses the circuit of Fig.20. To understand the operation, assume thyristor Th\
is on and the commutating capacitor C has terminal A positive and B negative. When
thyristor T/ij is turned on, the capacitor voltage reverse biases and turns off thyristor

The capacitor C discharges through LI, DL\ and the load and reverses the po-
larity until D\ clamps the supply voltage and DI begins to conduct. L3 is included to
boost the voltage on capacitor C when the line voltage is near zero, in order to ensure
successful commutation in the next cycle.

Figure 21 shows the modulation scheme used in sawtooth modulation. The gate
signals for the thyristors are obtained by comparing a triangular voltage ej with a rectified
sinusoidal voltage e, synchronized with the line voltage. Output voltage regulation is
achieved by varying the amplitude of et, or the ratio e,max/etmax.

4 Energy Storage Methods

As discussed in Section 2.1 above, all resistor emulators must store a minimum
amount of energy, regardless of their switching frequency. Whether a boost-like or buck-
like input is used, the converter can store energy in several ways, as illustrated by the
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Figure 21: Control method used in sawtooth modulation.

methods described in the sections below.

Despite the high costs of extra stored energy, it is not always desirable to store
only the minimum energy required by power balancing. A common specification for off-
line converters is a minimum hold-up time, a requirement that calls for a large amount
of stored energy. Using a large capacitor in a boost resistor emulator, for example, is not
a waste of size and weight if the extra energy is needed for hold-up. Another use of extra
stored energy is meeting sudden changes in load demand. Suppose a minimum-energy
scheme is being employed and a sudden increase of load power is called for when the
stored energy is at its minimum. Since the converter stores no energy at this instant, the
increase in load power can only come directly from the line. The line current amplitude
is only allowed to change slowly, however, as discussed in Section 2.2. Even if the line
current could be changed quickly, the presence of reasonably large capacitors or inductors
in the power processor makes it impossible to rapidly change the state of the converter
and increase the load power. The minimum energy stored in a current-shaping power
processor must be such that load changes and hold-up specifications can be met during
any portion of the line period.
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4.1 Large Reactance

The simplest way to store energy under nearly constant voltage or current is to
use a large capacitor or inductor, respectively. In the boost converter, for example, a large
output capacitor is used to hold the output voltage constant, as in Fig. 10. The current
through this capacitor is a sinusoid at twice the line frequency. The capacitor takes up
and releases energy to account for the difference between input and output power. The
peak energy stored in the capacitor is much greater than that required by theoretical
power balancing, however, because of the large capacitance necessary to keep the ripple
voltage small while a large sinusoidal current flows.

An energy storage capacitor will have a large rms ripple current at the line
frequency. In addition, if a switching converter is used to actively shape the input current,
the capacitor will also have large rms currents at the switching frequency. Large rms
current capability and high capacitance in the same package means a very large and
expensive capacitor. An alternative would be to use two capacitors in parallel, one of
large capacitance to handle the line frequency current, and another of small capacitance to
absorb the switching ripple. In either case, the energy storage capacitor will be expensive.

The inductor in buck-like converters plays the same role as the capacitor of
the boost converter, maintaining its current constant while under a sinusoidal voltage.
The high rms currents in the boost capacitor correspond to high rms voltages across the
inductor in the buck topologies. The switching frequency rms voltage on the inductor is
not a major stress, unlike the case with the boost capacitor. Buck-like topologies do not
entirely avoid the rms current problem, however, because they require an input filter,
and this filter must include a capacitor with large, high frequency rms current.

4.2 Active Filter

A power amplifier can effectively multiply the value of a capacitance or induc-
tance, producing the same ripple performance as a much larger reactance alone. The
"super-capacitor" filter [8] is an example of this technique. A fast-switching inverter
(power amplifier) and small capacitor C, can replace the large capacitor in a boost
current-shaper, as in Fig.22. If the voltage gain of the power amp is F, the ripple
voltage vre on Ct is (1 + F] times the ripple at the output, vr. The ripple current ir

generated by current shaping is absorbed by the filter at the lower ripple voltage. While
the impedance of the capacitor is Zc = Vr«/*r> the apparent impedance seen by the load
is

Vr 1 Vrc 1 „ r ,0x

Tr = 1+777 = TTJZc (42)

This assumes the power amp input current is negligible, a good approximation when

*£ < 1 (43)

A small capacitor C, therefore simulates a much larger capacitance (1 + F}C3,
yet the peak voltage on C, is still approximately V. The active filter thus stores less
energy than a capacitor alone for a given ripple performance.

The drawback of the active filter is, of course, the expense of the power amplifier.
The amplifier must be fast-switching and have a four quadrant output.
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Figure 22: Super-capacitor filter in a boost current shaper.

4.3 Resonant Filter

For fast-switching current shapers with near-unity PF, an alternative form of
energy storage is the resonant filter, shown in a boost resistor emulator in Fig.23 [11].
Since the short-time average of the current in the capacitor of a boost resistor emulator is
sinusoidal, a resonant filter tuned to twice the line frequency will present a low impedance
to the current, providing small voltage ripple. The resonant capacitor Cr must see the
same dc voltage as the single capacitor it replaces, but the capacitor in the resonant filter
can be much smaller for the same output voltage ripple. The capacitor C/,/ is necessary
because switching makes the actual current in the filter discontinuous and a path must
be provided around the resonant inductor to allow the high frequency components of the
filtered current through. A resonant filter can store as little as 1.2 times the minimum
energy required for power balancing while still providing arbitrarily small voltage ripple.

Energy storage for a buck topology is the dual case of that for a boost. For
a fast-switching buck resistor emulator, a parallel resonant filter can replace the main
inductor, gaining the same advantages of less total stored energy.

4.4 Active Control of Energy Storage

A recent approach confronts the energy storage problem directly, choosing a
topology and control scheme with the purpose of balancing the difference between input
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Figure 23: Resonant filter in a boost current shaper.

and output power [12]. An example of the proposed technique is shown in Fig.24. The
converter can be viewed as a boost topology followed by a buck regulator. The induc-
tor LI is "small", as in the boost resistor emulator, and stores insignificant energy if
the switching frequency is far above the line frequency. Capacitor C\ provides the line
frequency energy storage. Stored energy in this capacitor is "programmed" in the sense
that its voltage is controlled to provide energy |CjV2 that will balance the difference
between instantaneous input and output power with very little extra stored energy. The
time-varying voltage across C\ is regulated by the buck post-converter so that the load
voltage is dc. In theory, the capacitor voltage can vary to provide ideal energy storage
while the switches on either side provide ideal input and output waveforms. To obtain
precisely the theoretical minimum stored energy, the switch duty cycles must reach ex-
treme values of 0 or 1, and the voltage across Ci (and hence the switch voltage stresses)
must be arbitrarily large. Near-ideal operation brings very good results, however. For
instance, if the duty ratios are allowed a full range from 0 to 1 and the switch stresses
are 1.6 times the peak line voltage Vt, then the peak stored energy is only 1.25 times the
theoretical minimum. For stresses equal to V3, the peak stored energy is twice the ideal
value.

The converter offers low stored energy at the expense of some added complexity,
large range of switch duty ratios, and increased voltage stress.

5 Three Switched-Network Topologies

Fast control of the output voltage in a current shaper requires more than one
switch, as seen in Section 2.2. One way to introduce the extra degree of control is to
follow the current shaper with a separate dc-to-dc converter. Another way is to add a
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Figure 24: Topology used for directly controlling energy storage.

switch directly to the shaper topology. The resulting converter is called a three switched-
network (3SN) converter [7]. Figure 25 shows an extra switch and rectifier added to
a buck-boost input-current shaper (a buck-like topology). The duty ratio of the first
switch is modulated to obtain the desired input current. The amplitude of the average
input current and the dc inductor current are slowly regulated by the depth of this duty
ratio. The added switch effectively forms a boost converter, regulating the amount of the
inductor current that is fed to the load. The second switch can be dedicated to controlling
the output voltage, and the response to disturbances in the output voltage can be very
fast. The bandwidth of the voltage control loop depends upon the switching frequency,
not the line frequency. The voltage loop can reject ripple on the main inductor, allowing
a slightly smaller inductor to be used.

A switch can also be added to the Cuk converter (a boost-like current-shaping
topology) to get a current shaper with independent voltage control (Fig.26). This con-
verter is very similar to the topology of Fig.24. Because of the extra degree of regulation
afforded by the extra switch in Fig.26, the voltage on capacitor C can have large rip-
ple. In the limit, the capacitor voltage can be varied to control the stored energy, as in
Section 4.4.

The basic boost and buck topologies cannot be turned into 3SN converters,
because the main energy storage element is directly connected to the output at all times.

The 3SN versions of the buck-boost and Cuk converters have the advantage of
easy isolation. In the buck-boost, the main inductor becomes a coupled inductor, as
in Fig.27. The coupled inductor needs a large gap because it provides the main (line
frequency) energy storage. In the Cuk converter, addition of a transformer and an extra
capacitor generates the isolated version of Fig.28. Here the transformer sees only the
switching frequency and is excited in both directions, so it can be quite small. The main
energy storage is in the two capacitors on either side of the transformer.
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6 Conclusions

There are many ways to shape the input current drawn by a single-phase ac-to-dc
power converter. The preceding sections have discussed passive and active input-current
shaping methods, alternative ways to meet stored energy requirements, and a topology
modification that allows rapid output voltage regulation. The methods presented are
some of the most promising, but many other variations certainly exist. The designer's
task is to decide how much current shaping is necessary or practical and which of the
various schemes should be used. To aid in this decision, the relative merits and drawbacks
of the current-shaping methods are now discussed, with emphasis on certain applications.

Perhaps the most important feature of a current-shaping application is the
amount of power to be processed. At high power levels, the designer has few options.
Capacitors are nearly out of the question because of large rms currents. Switch stresses
must be kept as low as possible, and switching frequencies will not be much higher than
the line frequency. For several reasons, at very high power levels a slow-switching buck
topology, such as the sawtooth modulation scheme of Section 3.2.2, will be the preferred
choice of all the alternatives presented here.

First, assuming fast voltage regulation will be sacrificed, an active current-
shaping scheme with built-in voltage regulation is easier to implement at high power
than a large passive filter followed by a complete dc-to-dc converter. Second, a buck
topology can easily achieve cos<£ = 1, no matter how slowly it is switched, simply by
using symmetrical modulation, as illustrated in Fig.29. A boost topology needs a com-
plicated control scheme to have an in-phase fundamental component of current, and the
control must change with the load. The PF for a buck topology, however, is indepen-
dent of the load, because as the load changes only the amplitude of the current pulses
in Fig.29 need change, not the switching times. In addition, the buck feeds a nearly
constant current into the parallel combination of output capacitor and load, while the
boost has a discontinuous current waveform. The buck consequently has a higher quality
output voltage, with less ripple and noise. Finally, boost topologies have a capacitor with
large rms current. If the input current of a buck topology is not filtered, the topology
does not need a high current capacitor. The buck topology therefore allows one to avoid
capacitors with large rms currents, but only at the expense of the poor current waveform
of Fig.29, with its large harmonic content and high di/dt. (Any current-shaping method,
active or passive, with smooth, high quality line current will have at least one capacitor
with rms current on the order of the line current.)

"Current shaping" becomes a fuz2y concept at high power levels. Low harmonic
content and good PF are still goals, but the demands of high power usually force the
designer to settle for small fundamental phase displacement (cos<£ w 1) and whatever
harmonic content comes with it. (In fact, the phrase "unity PF" at high power levels is
often misleading, frequently referring only to cos<£ = 1, not true unity PF.) The input
current of Fig.29 does not seem to deserve the description "shaped," but at high power
levels such waveforms are common and are considered "good."

When power levels are low enough to permit fast-switching, more options are
available. Before choosing one, the designer must decide just how good the current
waveshape should be. Unity PF is certainly desirable, but most specifications do not call
for perfect sine wave input currents. Power level and cost constraints can, and often do,
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Figure 29: Line current of a buck topology when switching frequency is very low.

force one to accept less than ideal PF's and current waveforms. For applications where
near-unity PF is practical and fast-switching schemes are being considered, the following
specific recommendations can be made:

• When switching frequency is fairly high in an active resistor emulation scheme (buck
or boost), a resonant filter should be used to allow lower weight and faster control,
unless the extra stored energy of a large capacitor or inductor is needed anyway to
meet hold-up time specifications.

• When power levels permit fast switching, a boost-based topology is preferred to a
buck-derived topology. The input current is cleaner and requires no filter.

• If active current shaping is employed and fast output voltage regulation is desired,
the 3SN topologies appear to provide a simpler power processor than a cascade of
current shaper and dc-to-dc converter. Application of these topologies to current
shaping needs further investigation.

• In a noisy environment, the boost converter operating in DCM has the advantage of
requiring no high-bandwidth control loop (such as current programming) to shape
the input current.
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• In the unusual case of a high line frequency, passive methods should be given
extra attention. The reactive elements will be smaller, and once the passive circuit
generates a dc voltage, the dc-todc post-regulator can switch at any frequency—
even below the line frequency.

• For applications where the load will change over a broad range, active methods—
and buck-based topologies in particular—are better able to impose a constant PF
and current waveshape than passive methods.

On the system level, a question that needs further investigation concerns central
versus distributed current shaping. Is it better to have a high power current-shaped
ac-to-dc converter that generates a dc bus voltage which supplies individual dc-todc
converters? Or would there be more advantages to a distributed scheme in which the
single-phase ac line voltage is bussed, and each local power processor performs its own
current shaping?

It is unfortunate that input-current shaping is a luxury one can only afford at
low to medium power levels; most of the noise and power factor damage to the utility lines
is caused by high power systems. As pollution of the power lines becomes a more pressing
problem, however, emphasis will shift toward better input-side performance, and the fast-
switching methods emphasized in this report will become more attractive. The methods
presented here offer a wide variety of means to shape current and perform the tasks that
go along with it, such as energy storage and voltage regulation. The designer should be
aware of the many techniques available and choose the method most appropriate to the
particular application.
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Figure 30: Inductor current waveforms for discontinuous mode of operation of the induc-
tor input filter.

A Discontinuous Conduction Mode of the Inductor Input
Filter

This section studies the discontinuous mode of operation of the inductor input
filter of Fig.3. For convenience, define

d = (44)

The analysis is divided into two cases, corresponding to the two inductor current
waveforms of Fig.30. In both cases, conduction of the bridge rectifiers begins when the
input voltage rises to meet the output voltage. The angle Oi is defined as the value of 0
at this instant, giving the relation

V
57- = sin 0i (45)
va

The angle 9% is defined as the value of 0 at the instant the inductor current reaches zero.
For case I of Fig.30, 0Z lies in the same half-cycle of the line voltage as 9\t or 02 < IT.
Case II occurs when the inductor current extends into the next half-cycle, and 0j > *•

The input current for case I is found from

(46)

Using Eq.(45) for V and evaluating the integral gives
y

ig = —j- [cos9i - cosff - (9 - sn (47)
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The cut-off angle 02 is found by solving

cos 81 - cos 02 - (02 - 0i) sin 0i = 0 (48)

This transcendental equation must be solved before KI or the PF can be found. Once
02 is known, however, KI can be calculated by integrating tj(0) from 9\ to 02 to find the
average inductor current. Since

(49)

can be written in terms of 0\ and #2*

(50)

The angle 02 is a function only of Q\. The function Eq.(50) is one-to-one, so
that 0i can be considered a function of KI, (This means that given KI, 9\ is uniquely
determined. No two different values of 0i result from the same KI.)

To find the power factor, Eq.(46) is first squared and integrated over the range
01 < 0 < 02, yielding

'Inn. =

+ §(02 - 0i) + j sin202 + 2(02 - 0i) sin 0X sin 02 (51)

-i sin 0i cos 02 -2sin(02 - 0i)}

The PF is then evaluated using

PF = 2^ (52)

where taavg is given by
• "t _ Tf • A f C f t \
•tfavg == •—:r« Aj Sin PI v^"/

The fundamental phase displacement component of the PF, cos<£, is found by
evaluating the Fourier coefficients of the fundamental of Eq.(46). The cosine coefficient
is

ai = £ [sin(02 - 0i) - (02 - 0i)(| + sin0i sin02)

-i(sin202-sin20i)] ^ '

and the sine coefficient is

bi = \ [(02 - 0i) sin 0i cos 02 - cos(02 - 0i)

• - - i' ^ 1^1 (55)
7 02 — COS^l)
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The phase displacement factor is then given by

cos <j> = . (56)

The boundary between cases I and El occurs when 02 = jr. The value of 0i
corresponding to this from Eq.(48) is approximately .8105 radians, about 46 degrees.
The conduction parameter KI is approximately .362 at this boundary. The boundary
between cases I and II also marks the change between continuous and discontinuous line
current. For KI > .362, the line current is discontinuous.

For case £[ of Fig.30, analysis proceeds just as in case I except that for 6 > TT
the voltage from the bridge is — sin 9, to account for the rectification of the sine wave
voltage. The inductor current now follows Eq.(46) for 9\ < 9 < JT, but for JT < 9 < 02,

ig(0 ) = -J- [(2 + cos 9i + 0i sin 0i) + cos 9 - 9 sin 0i] (57)

The cut-off angle 63 is found by solving

2 + cos 0i + 0i sin 0i + cos 02 - 02sin0i = 0 (58)

For case II, the conduction parameter KI is

+2(03 - JT) + (02 - 0i) cos 0i + sin 02}

The expression for the rms inductor current is even more unwieldy:

2 !* + cos3 '0
+ (02 - 0i)(| - 2 sin 0! sin 02) + 2 sin(02 - 0i)

+ 4(sin02-sin0i) +i(sin20i-sin0i) ^ '

+4(02 — *)(1 + cos0i + 0i sin 0i — j(02 + JT) sin0i) j

The PF for case II is evaluated as for case I, using the new expressions Eqs.(60) and (59)
for igraa and KI, respectively. Equation (53) still gives the average current in terms of
the appropriate KI for that mode.

The Fourier coefficients for the current fundamental in case II are

01 = \ {- sin(02 - 0i) - £(sin 202 - sin 20i) + |(0i - 02)

1 (61)
+ (02 - 0l) sin 0i sin 02 - 2 sin 02 + 2 sin 0t >

and
b\ = ~ {-(0j - 0i) sin0i cos02 + 2cos0i + 2cos02

1 (62)
+ cos(02 - 0i) + j(cos202 - cos 20i) + 3 - 2(?r - 0i) sin 0i >
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The phase displacement factor is again given by

cos <t> — , •. (63)
£f?6f

B Analysis of the Resonant Input Filter

This section outlines the analysis of the resonant input filter of Fig.7. The
following assumptions are used:

• Input voltage is a perfect sine wave, Vg sin wt.

• The capacitor CM is large enough that the output voltage may be considered a pure
dc voltage V'.

• The unloaded Q of the series resonant circuit L — Cia infinite—there is no parasitic
series resistance.

• The diode bridge is considered ideal.

It is also assumed that the resonant frequency of the filter,

_ 1
W°~ v/Zc

is equal to the line frequency or, since this results in optimum performance. Define 9 = ut
and

z° = y§
Since the resonant frequency and line frequency are the same, ZQ is equal to u>L.

Continuous Conduction Mode
Consider the resonant current waveform of Fig.31. It is not immediately ap-

parent that the diode bridge will switch at 9 = 0 and 9 = it. Instead, assume that the
bridge switches at time Q\ when the current t'z, passes through zero. From 9\ to TT + 9\
the resonant current satisfies the differential equation

(64)

Natural solutions to this equation are cos art and sinoit and the particular solution is

The total current during the period 9\ < 9 < w + ffj, is then

y
(66)

&
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Figure 31: Inductor current waveform for the resonant input filter in continuous conduc-
tion mode.

Four unknown quanties must be determined: 9\, A, B, and the magnitude of the output
voltage V, which does not appear in the equation for \L-

Applying the condition that the current is zero at both 0\ and at IT + 9\ gives
01 = 0 and 0i = IT as the only admissible values of 0i, and only 9\ = 0 gives positive
power flow through the filter. Then, using t'i(O) = 0 implies that A = 0.

Since 0\ = 0, the switching of the bridge applies a square wave voltage of mag-
nitude V to one side of the series resonant circuit. By assumption, the circuit has no
parasitic resistance. Stable operation therefore requires zero net voltage across the res-
onant circuit at the resonant frequency. This is only possible when the fundamental
component of the rectifier-switched output voltage is equal in magnitude to the input
voltage, or

—V — VV — V,3> or — = — (67)

Finally, the constant B is determined by equating the average input current during a
half-cycle with the average output current:

This leads to

(68)

(69)
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where

P0)
This is the same conduction parameter defined for the inductor input niter. The final
expression for the current over the half-cycle 0 < 9 < JT is then

I
(71)

With the current waveform known, the average (over a half-cycle) and rms line
currents can be calculated. The average output current I equals the average of the line
current over the interval 0 < 9 < jr.

'-''-•-&T* (T2)

The rms line current is found by averaging the square of Eq.(71) over a half-cycle.

Finally, the power factor is calculated as the ratio of output power, VI, to the product
of rms line voltage and current.

I Kl i
PP = ' * . (74)

/__«* A O I I . O V /

In continuous conduction mode the current i°t must be positive throughout the
interval 0 < 6 < if. Since t't(O) = 0, the initial slope of the current must also be positive,
and this means B must be positive. From Eq.(69), therefore, the boundary between CCM
and DCM is

Kl crit = ^ (75)

Discontinuous Conduction Mode
Figure 32 shows a half-cycle of resonant current in DCM. The current hi DCM

still obeys Eq.(66), but the values A and B must be found, and 0\ will be different from
zero. Two conditions are applied to find A and B: first, t*t(0i) = 0, and second, the slope
of »L must also be zero at 0\. In DCM, the diode bridge is cut-off until the input voltage
minus the capacitor voltage just equals the output voltage. This occurs at 6\ and there
is no voltage on the inductor at this instant, hence di^/dd = 0 at 0 = 9\. These two
conditions give simultaneous equations in A and B, with the solutions

B = -j- (0i -h sin 0i cos 0i)

The final expression for i£, in DCM is

it = ̂ - 1(9 - 0i) sin 9 - sin 0l sin(0 - 0i)l (77)
ZJu
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Figure 32: Inductor current waveform of the resonant input filter in discontinuous con-
duction mode.

Setting »i(02) = 0 leads to the following implicit expression for 02:

(02 - 0i) sin 02 ~ sin 0i sin(02 - 0i) = 0 (78)

Finding the output voltage is somewhat laborious. First the voltage waveform
is found to within a constant by using

Then, cyclic stability requires that

and this yields the constant, giving

vc(0) = SL [sin0i (2cos(0 - 0i) - cos(02 - 0i) - 2)

-2(0 - 0i) cos 9 + 2 sin 0 + (0j - 0i) cos 02 - sin 02]

(79)

(80)

(81)

Finally, the output voltage is determined from the fact that, when the bridge first turns
on,

Vg sin 0i — vc(9\) = V (82)

which leads to

V_ _ 1 f P *] . . -I
V , ~ 4 ~ U COSt 2 iJJsm * sm 2 (2 ijcos 2j
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The average output current, found by integrating t'i(fl) over a half-cycle, is

/ = ( — |- ) - {sin 0i [cos(02 - 0i ) - 2J + sin 02 - (#2 - 0i) cos02| (84)
2^ T

The mean square line current is calculated by averaging »'!,(#), yielding the following
complicated expression.

where
Wi, W = { |(*2 - *i)3 - (02 - *i)2 [sin 2tfi + sin 202]

+ (02 - 0i) [l + cos 2(02 - 0i) - cos 20i - 2 cos 202] (86)

-(02 - 0i)2 sin 202 - sin 20! - [l - icos20i] sin2(02 - 0i)l

Applying the previous results to the definition of PF gives the following expression:

PF =

where
j(0i, 02) = | [2 + cos(02 - 0i)j sin 9i + sin 02 - (02 - 0i) cos 02

x {sin0i [cos(02 - 0i) - 2J + sin 02 - (02 - 0i) cos 02}

The expression for / can also be used to find R in terms of 0i and 02) which
then leads to KI\

_2_ ("sin 0i [cos(02 - 0i) - 2] + sin 02 - (02 - 0Q cos 021
' jr2 [sin 0i [cos(02 - 0i) + 2} + sin 02 - (02 - 0i) cos 02 \

 { '

As in the inductor input filter, KI is a one-to-one function of 0\, so that one may
instead consider Q\ to be a function of KI. Both 0i and 02 are determined by KI alone,
and the PF is therefore a function of KI alone. To plot the PF in DCM, a value of 9\
is chosen and 02 calculated by numerically solving Eq.(78). Then KI and the PF can be
calculated and plotted versus each other.
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