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The Construction and Use of Divergence Free Vector

Expansions for Incompressible Fluid Flow Calculations

Ne88an Mac Giolla Mhuiri8

Institute for Computer Applications in Science and Engineering,
Mail Stop 132C, NASA Langley Research Center,

Hampton, Virginia 23665, USA.

A BS TRA C T

For incompressible fluids the law of mass conservation reduces to a con-
straint on the velocity vector, namely that it be divergence free. This constraint
has long been a source of great difficulty to the numericist seeking to discretize the
Navier-Stokes and Euler equations. In this paper we will discuss a spectral
method which overcomes this difficulty and we will demonstrate its efficacy on
some simple problems. The velocity is approximated by a finite sum of divergence
free vectors, each of which satisfies the same boundary conditions as the velocity.
Projecting the governing equations onto the space of inviscid vector fields elim-

inates the pressure term and produces a set of ordinary differential equations that
must be solved for the coefficents in the velocity sum. The pressure can then be
recovered if it is needed.

The researchfor the authorwas supportedin part by NSF Grant830713and by theNational Aeronauticsand
Space AdministrationunderNASA ContractNo. NAS1 - 17070 whilehe was in residenceat ICASE, NASA
LangleyResearchCenterIHampton,VA23665-5225.





1. Introduction.

We will be interested in the flow of incompressible fluids for which the physical law of mass con-

servation reduces to a constraint on the velocity vector of the fluid, namely that it be divergence

free. The pressure in such flows is not then a thermodynamic variable determined by an equation

of state but rather can be thought of as a Lagrange multiplier which adjusts itself instantaneously

to ensure that this kinematical constraint on the velocity vector is satisfied. There is no evolu-

tion equation for the pressure nor does it satisfy any predetermined boundary or initial condi-

tions.

Numericists, seeking to solve the governing equations approximately, have found that their

greatest difficulty lies in the treatment of the pressure variable. While many ingenious methods

have been devised to overcome the difficulties, the treatment advocated in this work is in a

mathematical sense the most natural and offers many computational advantages. Here, the pres-

sure term is eliminated from the equations entirely, and the divergence free condition is satisfied

exactly by the numerically obtained approximation to the velocity vector. Moreover, as the com-

ponents of the velocity are expanded in terms of series of polynomials which are solutions of a

singular Sturm Liouville problem, whose excellent approximation properties are well documented,

(e.g., Gottlieb & Orszag [1977], Quarteroni [1983]) convergence of our approximation will be

bound only by the smoothness of the solution and by the number of terms used in the com-

ponent expansions. For infinitely differentiable velocity fields we should expect to achieve

TTexponential convergence Tt(Canuto et al.) .

The essence of the method involves expanding the velocity in a series of divergence free vec-

tor fields each of which satisfies the same boundary conditions as the velocity and where in gen-

eral the coefficents in the expansion are time dependent. The infinite sums are truncated and
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substituted into the governing equations, which are the Navier-Stokes or Euler equations. Inner

products are taken with vectors fields that satisfy inviscid boundary conditions, eliminating the

pressure term and giving rise to a set of coupled ordinary differential equations for the coefficents.

Nonlinear terms are treated explicitly in the time marching scheme, but the linear viscous terms

can be treated implicitly. The method can also be used to solve linear stability problems; for

these we will get a generalized matrix eigenvalue problem rather than a set of ordinary

differential equations. The eigenvalue determines the stability of the base flow and each eigen-

function is the set of coefficents in the expansion of the corresponding perturbation velocity field.

In the next section of this paper we will see how to construct complete sets of solenoidal vec-

tor fields assuming that these are periodic in two directions. There have been various applica-

tions of the method both to simulate certain fluid flows (e.g., Moser & Moin's [1984] work on the

infinite Taylor-Couette system) and also to solve linear stability problems for rather complex

base flows (Mac Giolla Mhuiris [1986]). For pedagogical purposes, in this short paper we will con-

sider the linear stability of a rotating Poiseuille flow. Extensive applications of the method to a

set of more taxlng stability problems that arise in the context of a fluid flow phenomenon known

as vortex breakdown will be published elsewhere. We will also indicate how the method was used

to simulate the infinite Taylor-Couette system.

2. Divergence Free Vector :Bases.

It is well known (Ladyshenskaya [1966]) that the space of square integrable vector functions,

L2(D) defined on a bounded domain D (D c R n' n = 2,3) can be decomposed into those that are

divergence free and whose normal components vanish on the boundary and those that can be

expressed as the gradient of a differentiable function defined on D. The domains of interest for
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this paper are either cylinderical or annular. For now we will consider vector fields defined on the

section of a cylinder, T which are periodic in both the axial and azimuthal variables, having as

their axial period the tube length, 2H.

We will decompose L2(T) as follows.

L2(T) = J(T) + jI(T), (2.1)

where,

(a) _'u = 0 in T,

J(T) = u_L2(T) (b) u'n=OonOT, (2.2)

Cc)__1s,=zls2.

S1 and S2 represent the ends of the cylinder. Given in this form J(T) is clearly the space of

(a) incompressible, (b) inviscid, (c) periodic velocity fields.

The set of "viscous" velocity fields on T is a subset of J(T) denoted j0(T).

J°CT) = { u E J( T) ] u = O on DT } . (2.3)

An alternative representation of J(T) (Richtmyer [19781) is given by,

Ca)<_,VP>=0for,_Up_C_(T)
J(T) = u_, LZ(T) (2.4)

where _ is the closure of T and <','> represents the usual inner product in L2(T),

<z,__>--f_ _.vr_r_0_z. (2.5)

The space J(T) endowed with this inner product is a Hilbert space and a closed subspace of
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L2(T).

The projection of L2(T) onto J(T) will be denoted by II. It is clear that vectors of the form 7_P

are perpendicular to all u in J(T) and in fact (Ladyshenskaya [1966]),

J!(T) = { I __=V__pforsomepinCl(_)}. (2.6)

II then has the following properties,

If:L:(T) --*J(T), (2.7)

H u = u for all u_ J(T), (2.8)

II V___P= 0 for all p _ cl('_). (2.9)

To solve the Navier-Stokes equations in the domain T with periodic boundary conditions in

the axial and azimuthal directions, we seek a vector u in j0(T) satisfying,

__ + (u'__7_)u = -VP + v_u, (2.10)

where t/is the kinematic viscosity of the fluid.

We can eliminate the _7._Pterm in this equation by means of the projection II and, using

some vector identities, we arrive at the following equation for u.

where w_w- is the vorticity_ w = Y7xu.

Projection of the Navier-Stokes equation onto a finite dimensional subspace, Jjv(T) of J(T)

is achieved in practice by taking the inner product of the equation with basis vectors for JI_(T).

This process eliminates the operator II from the equation_ for given any vector f_ in L2(T) and
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any vector A__inJ(T) we have that,

<Hf, ix> = <f, A>, (2.12)

as projections are self adjoint and as the projection of any vector in J(T) is itself.

It is worth emphasizing that although we are solving the equations for a viscous fluid we

nevertheless project the governing equations onto the space of inviscid vector fields. The reason

for this is that having found a velocity u such that the vector Z defined as,

Z = _ - wxu + t_Vxw (2.13)

is orthogonal to all A__in J(T) then L e J[(T) and so there exists a scalar function p (a pressure)

with f = VP. If, however, L were in J°J-(T), which contains jL(T), the existence of a pressure is

not guaranteed; consequently, tt may not correspond to a physical solution.

Leonard and Wray [1982] demonstrated a divergence free vector function expansion on a

cylindrical domain for viscous velocity fields that are Fourier decomposable in both the axial and

azimuthal variables. Mac Giolla Mhuiris [1986] considered expansions in terms of somewhat

different basis functions, and it is these which will be described here.

The velocity field, u_,satisfies the continuity equation and is Fourier decomposable in z and

8, which means in effect that only two of its three components, u, v, w are independent. This

motivates the introduction of two vector families, X___in an expansion of the form,

u_ = ._m{a2.km(t)x+(r) + a2n_lkm(t)x-#(r)} e'(kz+'°) (2.14)

The components of the vectors _ are found as follows. Expand two of the velocity components,

say the first and the third, independently as,



-6-

" = E a2._lk._(t)y;(r)e iCk_+me), (2.15)nkm

w = E a2.kr,,(t)/:(")__(k_+_e)' (2.16)nkm

where f_(r) are complete sets of polynomials chosen to satisfy the boundary conditions that are

imposed on u, w. The r and z components of Xn_ have now been picked, and it remains for us to

choose the 0 components in a manner that ensures the vectors X__n_ e i(kz+ m0 are divergence free.

Consider for example, x_(r).

__-->

(r/Z(r))" + imx'_,a = 0, (2.18)

where the prime denotes a derivative with respect to r. This equation gives us the 0 component of

X_._-(r).Rescaling, it is found that an expansion of the form (2.14) is possible for non-zero azimu-

thal wavenumbers where,

xZCr)= (r:ZCr))',0}, (2.19)

X__+_(r)= (0,- rkf+(r), mf+(r) ) (2.20)

and such an expansion will guarantee that u_is divergence free. This expansion is clearly incom-

plete for azimuthal wave number zero, (m = 0), i.e., for axisymmetric flows and for that case

the following expansion vectors can be used.

x_(r) = ( ikf_(r)' o'-l (rf_(r))') 'r (2.21)
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x_:(,)= (o,I:(r),0). (2.22)
The polynomialsf_(r) must be chosen so that the vectoru given by (2.14)satisfies

appropriate(viscousorinviscid)boundaryconditionson thewallsofthedomain, T, and issingle

valuedat the origin,r = 0. We willdenotethepolynomialsused in theinviscidcaseby a_(r)

reservingf_(r)forviscousexpansions.We have thenupon truncating(2:14)an approximation

to u oftheform,

N K M

__VKM = Z Z Z a,km(t)D,kr_Cr,z,O) (2.23)
n=l k=-Km=-M

where,

z)._.C.,z,0)= _(r;k,m).;ck.,+.0). (2.24)

The projectionvectorswillhave thesame form astheexpansionvectors,i.e.,we willproject

withvectors,___jpq(r,z,0),where

AjpqCr,z,O) = _(r; k, m) e iCPz+ qo) (2.25)

for

l = 1,...,N; p = -K,...,K; q = -M,...,M

with the vectors 2 + being given by equations (2.19 - 22) using the inviscid polynomials, a_:(r) for

the components.

Itispossibletochoosethepolynomialsa_:(r)and f_(r)inmany differentways. Leonard&

Wray [1982]intheirconsiderationofcertainturbulencesimulationsemployedan unusualclassof

Jacobipolynomialsto reducethebandwidthofthefinalmatrixsystem.Thesepolynomialswere

alsousedby Spalart[1983]inhissimulationsofboundary-layertransition.Moser & Moin [1984],

in theirwork on the infiniteTaylor-Couettesystem,used Tchebychev polynomialsand incor-

poratedtheweightfunction,againstwhich thesepolynomialsareorthogonal,intotheprojection
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vectors. Mac Giolla Mhuiris [1986], investigating the temporal stability of a set of flows that are

said to model vortex breakdown, (Leibovich [1984]) experimented with various sets of polynomi-

als and found that Legendre polynomials were, perhaps, the easiest to use. All of the above sets

are solutions to singular Sturm Liouville problems, and consequently we can expect expansions in

terms of any of these polynomials to exhibit excellent convergence properties.

The single valuedness criterion, which must be applied along the center llne of the tube for

the vector u, causes the polynomials f_(r) and a_(r) to depend on m, the azimuthal

wavenumber (Joseph [1970]). One appropriate choice for a_(r) in the case of pipe flow is,

at+Cr) = rPtC2r - 1) for all m,

aTCr) = C1- r)PtC2r- 1) iflml= 1, (2.26)

,,-(r) = r(1- r)Pt(2r- 1) ill ml € 1,

where the radial variable has been scaled by the tube radius and Pt(r) is the Legendre polynomial

of order l (Jbramowitz & Stegun [1970]). The corresponding choice for f:(r) is,

f+(r) = r(1 - r)Pn(2r - 1) for all m,

/_-(r) = (1 - r)2Pn(2r - 1) if[ m[ = 1, (2.27)

f[(r) = r(1- r)2P_(2r -1) ifIml 4:1.

For the problems tackled to date, all of which separate in some sense in the azimuthal direc-

tion, this dependence on m presents no difficulty. We solve separate problems for each azimuthal

wavenumber; so having chosen an m the expansion and projection sets are fixed throughout the

calculation . Indeed, in theory there is no difficulty even if the problem at hand is truly three

dimensional; however, some care is required in implementing the method to ensure that the
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correct radial polynomial set is being used for each azimuthal component of the velocity.

3. Linear Stability Problems.

To determine the linear stability of a solution U of, say, the Navier-Stokes equations, we

consider whether infinitesimal perturbations to that solution grow in time. Therefore we linearize

the governing equations about U and seek solutions of the form,

 (r,z,e)e-;o'. (3.1)

The character of _r then determines the linear temporal stability of U. If a = a . ifl where a, fl

are real, then

fl>0 => U is unstable

fl = 0 => U is neutrally stable (3.2)

fl<0 => U is stable.

The equations that must be solved have the form,

iau = Eu + Re-lSu. (3.3)

E and S are operators defined on J(T) as follows,

=
and

Eu = IICw×U + ftxu), (3.6)

where 12 is the base flow vortlcity, fl = _x U. Some suitable nondimensionalization has intro-

duced the Reynolds number,
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Re= U°R°, (3.4)u

R 0 and U0 being characteristic length and velocity scales associated with the base flow. We can

take R 0 to be the radius of the tube and U0 to be the maximum value of the base flow azimuthal

velocity.

We will solve (3.3) approximately by using the expansion __.NKM for u, taking inner products

with the projection vectors, A__tpq and solving the resulting generalized matrix eigen problem for

the eigenvalues _r and the eigenvectors ankm. (In this case, of course, these coefficents do not

depend on time.) In general this matrix problem can be written as,

= + a. (3.7)

The matrix A is purely real and arises from the fact that the expansion and projection vectors

are not orthogonal.

At'_pkq'n = <A---tt,q' D---nkm>' = <2, X_X_n>6pk6qm,-- Aln6pk6,m, (3.8)

The Kroneeker delta symbol, _11 arises because the Fourier bases employed in the axial and

azimuthal directions are orthogonal. The matrix B" arising from the convection terms is also

purely real.

Bt.,+q = + (3.9)

Finally, the matrix C arising from the viscous terms is purely imaginary.

Gt,,k,_ - <A_/p,, V×v×Dnkm>. (3.10)

Using the orthogonality of the Fourier bases, it can be written as,
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= (3.11)

The form of the matrix B depends on the base flow U. If U is independent of z and 0 then it will

be possible to find a matrix B such that,

B"l,pkqrn = Bla 6pk6_rn" (3.12)

This simply corresponds to the fact that the partial differential equation (3.3) separates in z and

0, for base flows that are independent of those variables. The stability of such flows can be deter-

mined by solving the NxN generalized matrix eigen problem,

( ,ic (3.13)
trAa = B + Re

The matrices A, B, and C all depend parametrically on the wavenumbers of the projection and

expansion vectors so it is advisable to separate them into submatrices that can be evaluated

independently of these and any other parameters occurring in the base flow. The submatrices are

evaluated once and then stored in the computer. The required integrations can be done at very

little cost by utilizing the orthogonality properties of the expansion and projection polynomials.

The full matrices can then be reassembled without the need for doing any" further integrations.

One can always band the A and C matrices by appropriate choice of the polynomials f_(r)

and a_(r). However the matrix B will generally be full, though for certain rather simple base

flows such as the Hagen Pouiseille flow considered be Leonard & Wray [1982] it is also possible to

band B. It is also worth noting that the matrix problem we get when considering the inviscid

stability of base flows is a purely real one, and consequently the eigenvalues occur, as they should

do, in conjugate pairs.

To demonstrate the method let us consider the viscous stability of a rotating Poiseuille flow,
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--/0,  0r,/1-r2/ /314/
Cotton et ah [1980] found that this flow with V0 = 0.2147 was neutrally stable to disturbances

having azimuthal wavenumber, m = 1 and axial wavenumber, k = -1. The following table lists

the most unstable eigenvalue found for this flow using a code which implements the method we

have discussed in the previous section (with Legendre polynomials as the radial basis functions).

The first column of the table gives N, the number of radial basis vectors that were used to obtain

the eigenvalue given in the next two columns; N is also the order of the matrix problem that

needs to be solved at each step.

Most unstable eigenvalue found for the rotating Poiseuille flow (3.14)
with m = 1, k=-l, and V0=0.2147.

N _equency growth rate

4 -0.00029 .00334
6 -0.00279 .00101

10 -0.00284 .000001
14 -0.002847 .0000001
18 -0.002847898 .0000001379

22 -0.002847898 .0000001378

The convergence is exponential in N or some power of N, and there is no evidence of significant

roundoff error.

We also used the divergence free expansion method to solve the adjoint stability problem

which can be written as follows,

1

iAu = E*u + -_e SU. (3.15)

The operator E* is the adjoint operator to E and is given by,
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E'u_ = -II( 12xu + __TX(_ux__U)). (3.16)

The direct and adjoint spectra obtained by solving (3.3) and (3.15) should, of course, be conju-

gate to each other, and how well a numerical scheme reproduces this theoretical result is a test of

its accuracy. The following table lists the corresponding adjoint eigenvalue found by solving

(3.15) for the base flow and wavenumber pair considered previously.

Eigenvalue found by doing the adjoint problem (3.15) for the flow (3.13),
with m = 1, k=-l, and V0=0.2147.

N _equency growth rate

4 -0.00270 -.000094
6 -0.00280 -.000013

10 -0.00284 -.000004

14 -0.002847 -.0000002
18 -0.002847898 -.0000001379
22 -0.002847898 -.0000001379

Clearly the agreement between the adjoint and direct results is excellent.

4. Flow Simulations

The global nature of the expansion functions we are considering here causes them to be extremely

inefficient for the direct evaluation of nonlinearities such as the convective derivative term that

occurs in the Navier-Stokes and Euler equations. However it is possible to use the so-called collo-

cation technique (see for example Orszag [1972] or Kreiss & Oliger [1971]) in conjunction with

our divergence free expansions to alleviate this problem.

The idea is to evaluate the nonlinear terms in physical space, expressing the result of this

calculation (a vector function known on a set of grid points), componentwise, as a series of the
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selected basis polynomials being used to form the projection vectors. The orthogonality proper-

ties of these polynomials can then be used to evaluate the needed inner products efficiently. The

term <__vx_u_!v,A___>is evaluated as follows, where for simplicity we assume that the terms are

functions of just a single variable, r.

(1) Evaluate _ at the collocation points, ri, i = 1, . . . ,N.

(2) Evaluate _v there also.

(The derivatives of __vare evaluated spectrally.)

(3) Evaluate f_/v --- _WAvx__vat the collocation points.

(4) Express each component of _ as a series of the appropriate polynomials.

(5) Evaluate the integrals <f!v, A_> utilizing the orthogonality properties of these polynomials.

When using Tchebychev polynomials to form the expansion and projection vectors, the

transformations needed in step (4) can be very efficiently carried out (in O(NlogN) operations)

by means of Fast Fourier Transforms (see, for example, (Canuto et al.)); however, it is then

1

important to include the weight function, (1 - r2) 2 (assuming r _ [-1,1]), in the definition of

the projection vectors so that we can carry out step (5) efficiently (Moser & Moin [1984]). We

also mention in passing that to avoid aliasing errors it is necessary to use more collocation points

than the number of modes, N, in the expansion.

For the time discretization scheme, the viscous terms are generally advanced by means of

the trapezoidal rule (Crank-Nicholson) with an Adams-Bashforth scheme being used for the non-

linear term, f_ Such a scheme is indicated in the following equation where the superscript denotes
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the time level and _t is the step size being used:

,_t 2 - 2Re

The velocity is represented by a truncated expansion, __VKLwith the coefficents now depending on

the time, t. Projections are taken with vectors A__tpq to get the following set of linear equations to

solve for the coefficents: a at the new time level, j+l:

A _t aj+l = A + _t C aI + _t
2Re 2Re -_ 3Fi -Fi-1 ' (4.2)

where C and A are essentially the same matrices we had before arising respectively from the

viscous terms and the non-orthogonality of the expansion and projection vectors terms while F

represents the projection of f__,

F -- <f, A>. (4.3)

Moser & Moin [1984] used a similar scheme to compute several states of the infinite Taylor-

Couette flow successfully and went on to simulate turbulent flow in a mildly curved channel. For

example, using just nine Fourier modes in the z direction and eleven Tchebychev polynomials in

the r direction they found that the critical Reynolds number for transition to Taylor vortices was

at Re = 185 for cylinders with an inner to outer ratio_ q = 0.95 and at Re = 68.2 when r/= 0.5.

These figures are in excellent agreement with the analysis of DiPrima & Eagles [1977] for both

the narrow and wide gap problems. They also carried out a series of three dimensional Taylor-

Couette flow calculations and had excellent agreement with experimental results for Reynolds

numbers up to 1300 with r/= 0.877 (for modulated wavy vortex flow) using thirty one Fourier

modes in the z direction, fifteen in the 0 direction, and thirty three Tchebychev polynomials in

the radial directon.
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5. Conclusions and Outlook

Divergence free expansions eliminate many of the problems that a numericist must face

when discretizing the equations governing the flow of incompressible fluids. Use of such an

expansion ensures that the computed velocity will be exactly solenoidal and also enforces all the

necessary boundary conditions on that vector, including the no-slip condition on the solid boun-

daries. Projection with invlscid vectors eliminates the V__Pterm from the governing equation and

we can recover the pressure, if it is needed, once an adequately resolved velocity field has been

obtained. Finally, as each component of the velocity is expressed as a sum of polynomials which

are solutions to a singular Sturm Liouville problem, we can expect exponential convergence for a

smooth u.

There are some problems with this method also. In common with all global expansion

methods it is not possible to consider complex physical domains directly -- these must be mapped

onto some simpler configuration, which may not always be possible, or else split into simple sub-

domains, leaving us with the problem of connecting the solutions across the interfaces. This

problem is by no means specific to the divergence free expansion technique but rather is inherent

in all spectral methods. It must also be admitted that implementation of the vector expansions

in a computer program is far from easy, requiring as it does, a significant amount of algebraic

manipulation to subdivide the matrices that are used into submatrices that are independent of

the parameters occurring in the problem. A symbolic language such as MACSYMA can be used

to somewhat alleviate these latter difficulties.

Current research that utilizes divergence free expansions includes a simulation of the finite

Taylor-Couette system with the aid of vectors that are aperiodic in both the radial and axial

directions. We see this method as an excellent tool for the direct simulation of incompressible
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flows_ and it should have many applications in investigations of the fundamental problems of

incompressible fluid mechanics.
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