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ABSTRACT

A new capability called NASHUA is described for calculating the radiated

acoustic sound pressure field exterior to a harmonically-exclted arbitrary
submerged 3-D elastic structure. The surface fluid pressures and velocities are

first calculated by coupling a NASTRAN finite element model of the structure with

a dlscretized form of the Helmholtz surface integral equation for the exterior

fluid. After the fluid impedance is calculated, most of the required matrix
operations are performed using the general matrix manipulation package (DMAP)

available in NASTRAN. Far-field radiated pressures are then calculated from the

surface solution using the Helmholtz exterior integral equation. Other output
quantities include the maximum sound pressure levels in each of the three

coordinate planes, the rms and average surface pressures and normal velocities,

the total radiated power, and the radiation efficiency. The overall approach is

illustrated and validated using known analytic solutions for submerged spherical
shells subjected to both uniform and non-unlform applied loads.

INTRODUCTION

A fundamental problem of interest in acoustics is the calculation of the

far-field acoustic pressure field radiated by a general submerged three-
dimensional elastic structure subjected to internal time-harmonlc loads. This

:problem is usually solved by combining a finite element model of the structure

with a fluid loading computed using either finite element [I-3] or boundary
integral equation [4-10] techniques.

Although both approaches are computationally expensive for large structural
models, the fluid finite element approach is burdened with the additional

complications caused by the approximate radiation boundary condition at the outer

fluid boundary, the requirements on mesh size and extent, and the difficulty of
generating the fluid mesh [1,3].

In contrast, the boundary integral equation (BIE) approach for generating
the fluid loading is mathematically exact (except for surface dlscretization

error) and requires no addi=ional modeling effort to conver= an existing model of

a dry structure for use in submerged analyses. The savings in engineering time,
however, is partially offset by the somewhat greater computing costs associated
with the BIE approach.

Although several general BIE acoustic radiation capabilities have been

developed previously, none was developed for the widely-used, nonproprietary
structural analysis code NASTRAN. Here we present a new capability known as
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NASHUA which couples a NASTRAN finite element model of a dry structure with a

fluid loading calculated by a dlscretlzed form of the Helmholtz surface integral

equation.
The primary purposes of this paper are to describe in detail the theoretical

basis for NASHUA and to demonstrate its validity by showing results of radiation

calculations for the elementary problems of unlformly-driven and sector-driven

spherical shells. Detailed user's information will not be presented here since a
user's guide for NASHUA was published previously [II].

THEORETICAL APPROACH

We wish to calculate the far-fleld acoustic pressure field radiated by a

general submerged three-dimensional elastic structure subjected to internal

time-harmonic loads. In general, our approach combines in a highly automated
fashion a finite element model of the strucure with a Helmholtz boundary integral

equation model of the fluid.

The Structure

The dry structure, when modeled with finite elements in a conventional way,

results in the equation of motion in the frequency domain

(-_2M + i_B + K)u = F (I)

where M, B, and K are the structural mass, viscous damping, and stiffness matrices,

respectively, _ is the circular frequency of excitation, F is the complex amplitude
of the applied force, and u is the complex amplitude of the displacement vector.

The time dependence exp(i_t) has been suppressed. For structures with material
damping or a nonzero loss factor, K is complex. We note from Equation (I) that

the structural impedance matrix (the ratio of force to velocity) is

Zs = i_M + B - iK/_ (2)

The Exterior Fluid

For the fluid, the pressure p satisfies the reduced wave equation

V2p + k2p = 0 (3)

where k = _/c is the acoustic wave number, and c is the speed of sound in the

fluid. Equivalently, p is the solution of the Helmholtz integral equation [12]

{ p(_')/2, _' on S
p(_) (_D(r)/3n)dS q(x)D(r)dS = (4)

fS -- p(x'), _ in mfS _ x'

where S and E denote surface and exterior fluid points, respectively, r is the

distance from x to x' (Figure I), D is the Green's function
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D(r) = e-ikr/4=r (5)

and

q = 3p/_n = -i_pv (6)

where p is the density of the fluid, and v is the outward normal component of

velocity on S. As shown in Figure I, x in Equation (4) is the position vector for

a typical point Pj on the surface S, x' is the position vector for the point Pi
which may be either on the surface or--in the exterior field E, the vector

= _' - _, and _ is the unit outward normal at P''I We denote the lengths of the
vectors x, x', and r by x, x', and r, respectively. The normal derivative of the

Green's function D appearing in Equation (4) can be evaluated as

8D(r)/_n = (e-ikr/4_r) (ik + i/r) cos B (7)

where 8 is defined in Figure I.

The substitution of Equations (6) and (7) into the surface equation (4)

yields

p(_')/2 - fS p(_) (e-ikr/4_r) (ik + I/r) cos B dS

= i_p fS v(_) (e-ikr/4_r)dS (8)

where _' is on S. This equation can be interpreted as an integral equation

relating the pressure p and normal velocity v on S. If Equation (8) is

discretized for numerical computation, we obtain the matrix equation

Ep = Cv (9)

on S. With low-order approximations to the integrals, E can be evaluated simply as

FLUID

Pi

x
r

n

Figure 1 - Notation for Helmholtz Integral Equations
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Eli = -(e-lkr/4=r) (ik + i/r) (cos 81j)Aj, i _ j (i0)

where Aj is the area assigned to the point xj, and r = rlj = Ix/ -xjl.
Similarly,

Cij = (i_p e-lkr/4_r)Aj, i _ j (ii)

In general, surface areas in NASHUA are obtained from the NASTRAN calculation of
the load vector resulting from an outwardly directed static unit pressure load on
the structure's wet surface.

The use of low-order integration in Equations (I0) and (II) yields roughly

the same accuracy as would be obtained if linear shape functions were used for

the variation of p and v over the element [7]. (This property is analogous to
the situation in one-dlmenslonal Newton-Cotes integration in which odd-point

formulas are preferred to the next hlgher-order even-point formulas, since both

have the same order of accuracy [13].) Moreover, the integration scheme selected

is particularly easy to implement since it requires a knowledge only of the area

assigned to each point rather than any information about the elements on the wet
surface.

The above two formulas for Eli and Cij are applicable only for the off-
diagonal terms (i _ j), because r vanishes for i = j. For this singular case,
the integrals in Equation (8), which are in fact well-defined, must be evaluated

by a different approach. Consider first the velocity integral in Equation (8).
Following Chertock [14], if we assume that v is constant over a small circular

patch of radius bi centered at _, then, from Equation (8),

2= bi

Cii = i_p f f (e-lkr/4=r) rdrde (12)
0 0

where bi is selected so that _bi 2 = Ai, the total area assigned to the point. The
evaluation of this integral ylelds

Cii = i_PAi/2_b i (13)

where

bi = (Ai/_)i/2 (14)

The evaluation of the "self term" Eli is similar except that the curvature
of the radiating surface must be taken into account because the singularity in

the pressure term of Equation (8) is one order higher than that of the velocity

term. Here we assume that p is constant over a small spherical cap located at x_
and having curvature ci and area Ai. Then, from Equation (i),

2_ bi

Ell = I/2 - f f (e-lkr/4_r) (ik + I/r) (-rci/2) rdrd8 (15)
0 0

where we have used the approximation
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cos B = -rci/2 (16)

The evaluation of this integral yields

Eil= i/2 + (I + ikb i) (ciAi)/(4_bi) (17)

where we interpret ci as the mean curvature at x_i.

The use of bi in Equation (13) and (17) facilitates the calculation of the
self terms at points lying in planes of symmetry, since Ai is halved or quartered

at such points, but bi is computed from Equation (14) as if the full area at the
point were applicable.

The need to know the mean curvatures at each wet point is the major impediment

to full generality for the NASHUA procedure, since there is no mechanism built
into NASTRAN that enables the user to extract the curvature of a surface at a

point. NASHUA handles this problem by placing some minor restrictions on the

analyst so that the curvatures can be computed for the commonly-occurring

geometries of spheres, cylinders, conical see=ions, and flat sections. For other

shapes, the user must insert a few lines of code into the NASHUA processor SURF

to compute the curvature at each point, given its location.
In contrast to the situation for curvatures, the NASHUA requirement for

surface areas and normals is handled with full generality, since the user defines

the wet surface by applying a static, outwardly-directed, unit pressure load to
that surface.

We note from Equation (9) that, if E-I exists, the impedance matrix Zf for
the exterior fluid is

Zf = A E-Ic (18)

where A is the diagonal area matrix for the wet surface.

The Coupled System

The structural and fluid impedance matrices given by Equations (2) and (18)

cannot be added to yield the impedance matrix for the submerged structure since

Zs and Zf are not conformable. The matrix Zs has dimension s x s, and Zf has
dimension f x f, where s is the number of structural degrees of freedom (wet and

dry, including interior points), and f is the number of fluid degrees of freedom

(DOF) on the fluid-structure interface. That is, f is equal to the number of wet
points.

However, in terms of the wet DOF of the problem, the applied forces and the
resulting velocities are related by

(zs + Zf) v = F(n) (19)

where v = complex amplitude of the velocity vector for the wet DOF (the surface
normals)

F(n) = complex amplitude of the force vector applied to the wet DOF
zs = impedance matrix for the structure in terms of the wet DOF

Zf = impedance matrix for the exterior fluid

The structural impedance matrix Zs and applied load vector F expresse_ _n terms
of all structural DOF can be related to the smaller matrices zs and F_nj using

297



the transformation matrix G defined by the equation

F = G F(n) (20)

where F is a vector of dimension s (the total number of structural DOF), F(n) is

a vector of dimension f (the number of fluid (wet) DOF on the surface), and G is

the s x f matrix of direction cosines which converts F(n) to F. Thus,

Zs -1 = GT Zs -1G (21)

Zs-i F(n) = GT Zs-I F (22)

where the latter equation indicates the transformation of the velocity vector.

Algebraic manipulation of the preceding four equations yields [6,7]

H p - Q (23)

whe re

H = E + C GT Zs-I G A (24)

Q = c Gr Zs-I F (25)

Matrices E, C, and A have dimension f x f, Zs is s x s, G is s x f, and F is
s x r, where s is the number of structural DOF, f is the number of fluid DOF (on

the wet surface), and r is the number of load cases. Since H and Q depend on

geometry, material properties, and frequency, Equation (23) may be solved to

yield the surface pressures p. Surface normal velocities 'v' may then be
recovered using

v = GT Zs-i F - GT Zs-i G A p (26)

To summarize, the NASHUA solution procedure uses NASTRAN to generate K, M,
B, and F and to generate sufficient geometry information so that E, C, G, and A
can be computed by a separate program (SURF). Then, given all matrices on the

right-hand sides of Equations (24) and (25), a NASTRAN DMAP analysis is used to

compute H and Q. Equation (23) is then solved for the pressures 'p' using a new

block solver (OCSOLVE) written especially for this problem. Next, NASTRAN DMAP
is used to recover the surface velocities 'v' according to Equation (26). This
completes the surface solution.

The Far-Field Solution

Given the solution for the pressures and velocities on the surface, the

exterior Helmholtz integral equation, Equation (4), can be integrated to obtain
the radiated pressure at any desired location x' in the field. We first

substitute Equations (6) and (7) into Equation (4) to obtain a form suitable for
numerical integration:

p(_') = fS[i_pv(_) + (ik + I/r)p(_) cos 8] (e-lkr/4_r)dS (27)
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where all symbols have the same definitions as were used previously, and x' is in

the exterior field. Thus, given the pressure p and normal velocity v on the
surface S, the pressure at x' can be determined by numerical quadrature using

Equation (27).

In applications, however, the field pressures generally of interest are in

the far-field, so we develop an asymptotic form of Equation (27) for use instead

of Equation (27). In the far-field, x'+_ implies

ik + i/r . ik (28)

cos S + n.x'/x' (29)

and, from the application of the law of cosines,

r + x' - x cos _ (30)

where _ is defined in Figure i. Hence, in the far-field [6],

P(_') = (ike-ikx'/4_x') fS [Ocv(_) + p(_) cos _]eikx cos = dS (31)

where the asymptotic form, Equation (29), is used for cos 8. We note that, since

Equation (31) is a far-fleld formula, the pressure varies inversely with distance

x' everywhere so that any range x' may be used in its evaluation, e.g., B6 inches

(one yard). Numerically, the integral in Equation (31) is evaluated as

p(x') = (ike-ikx'/4_x ' _j(pcvj + pj cos 8ij)e ikx cos_ Aj (32)

Other Output Quantities

Given both the surface and far-field solutions, a variety of other quantities

of interest in applications can be computed. The average and root-mean-square
normal velocities on the surface are defined as

Vavg = fS vdS/A = _iviAi/A (33)

Vrm s = (fsIV]2 dS/A) I/2 = (_ Ivi ]2 Ai/A)I/2 (34)

where A is the total area of the radiating surface. The volume velocity, a

measure of source strength, is Avavg. Average and rms surface pressures can also
be computed using Equations similar to (33) and (34) if 'v' is replaced by 'p.'

The acoustic intensity at a point on the surface is the product of the

pressure there with the component of normal velocity which is in phase with the
pressure:

I = Re(pv*) (35)

where the asterisk denotes the complex conjugate. (There is no factor I/2 in

Equation (35) if we assume that pressures and velocities are already "effective"
values rather than amplitudes.)
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The power radiated can be obtained by integrating the acoustic intensity
over the surface

Wra d = fsRe(pv *) dS = _iRe(PiVi*)Ai (36)

Since for low frequencies, p and v are nearly orthogonal (i.e., the fluid behaves

like an added mass), this integral can be sensitive to small errors in p and v on

the surface. To circumvent this problem, the radiated power is also computed by

integrating the acoustic intensity over the far-field sphere, where p = pcv:

Wra d = /SO (Ipl2/pc)dSo = [ilPil 2 Aoi/PC (37)

where So is the surface of the far-field sphere, and the numerical approximation
is summed over all far-field points where pressure is evaluated. For a non-

dissipative medium, the last two equations are theoretically equivalent.
Numerically, the second form, Equation (37), is better behaved, but it has the

slight disadvantage of requiring the computation of the far-field solution at a
large enough number of points so that the integration can be accurately performed.

Given the power radiated and the rms surface velocity, the radiation

efficiency o can be computed:

= Wrad/(pcAvrms 2) (38)

where vr 2 is the mean-square velocity on the surface, and A is the area of thesurface _5]

OVERVIEW OF NASHUA SOLUTION PROCEDURE

The overall organization and setup of the solution procedure is summarized

in Figure 2. NASTRAN appears three times in the procedure; to distinguish one

NASTRAN execution from another, the integers I, 2, or 3 are appended to "NASTRAN"
in the figure.

A separate NASTRAN model is prepared and run (Step 1 in Figure 2) for each

unique set of symmetry constraints. Since up to three planes of reflective

symmetry are allowed, there would be one, two, four, or eight such runs. Step 1
generates files containing geometry information and the structure's stiffness (K),

mass (M), and damping (B) matrices.

For each symmetry case and drive frequency, the Step 2 sequence is run in a

single job. The SURF program reads the geometry file generated by NASTRAN in
Step I and, using the Helmholtz surface integral equation, generates the fluid

matrices E and C for the exterior fluid, the area matrix A, the structure-fluid

transformation matrix G, and a condensed geometry file to be used later by FAROUT
(Step 4) for the field calculation. SURF is followed by a NASTRAN DMAP job which

takes the matrices K, M, B, and F from Step 1 and the matrices E, C, A, and G from

SURF and calculates H and Q according to Equations (24) and (25). Equation (23)

is then solved for the surface pressure vector 'p' by program OCSOLVE. OCSOLVE

is a general block solver for full, complex, nonsymmetric systems of linear,

algebraic equations. The program was designed to be particularly effective on

such systems and executes about 20 times faster than NASTRAN's equation solver,
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I SYMI

I I. NASTRAN-I
(K, B, M, Geometry)

q_

SURF

2. NASTRAN-2 (DMAP) ...
OCSOLVE
NASTRAN-3 (DMAP)

SYM2 SYM8
,le

(polar plots)
(X-Y plots)_

NOTE: Each solld block is a separate job submission.

Figure 2 - Summary of NASHUA Solution Procedure

_hich was not designed for efficient solution of such systems of equations.

NASTRAN is then re-entered in Step 2 with 'p' so that the outward normal surface

velocity vector 'v' can be recovered using DMAP operations according to Equation

(26). A file containing the surface pressures and velocities for each unique

symmetry case and frequency is saved at the conclusion of Step 2.

After all frequencies have been run for a given symmetry case, the surface

pressure and velocity results are reformatted and merged into a single file using

program MERGE (Step 3). This program is run separately for each symmetry case.

Recall that there are one, two, four, or eight possible symmetry cases.

Steps 1 to 3 are repeated for each symmetry case. After all symmetry cases

are completed (with Step 3 completed for each), program FAROUT (Step 4) is run to

combine the symmetry cases and to integrate over the surface. FAROUT uses as

input the geometry file generated by SURF (Step 2) and the surface solutions from

the one, two, four, or eight files generated by MERGE (Step 3). The far-field

pressure solution is obtained by integrating the surface pressures and velocities

using the far-fleld form of the exterior Helmholtz integral equation, Equation

(31). Output from FAROUT consists of both tables and files suitable for plotting
by IDDS (Step 5) and FAFPLOT (Step 6).

IDDS (Step 5) is a general purpose interactive X-Y plotting program which is

used here for plotting surface velocities and impedances versus frequency [16].

FAFPLOT (Step 6) is _n interactive graphics program for making polar plots of the
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far-field sound pressure levels in each of the three principal coordinate

planes [17].
Complete details on the requirements and deck setups for the entire solution

procedure are given in the NASHUA user's guide [II].

FREQUENCY LIMITATIONS

It is known that the fluid matrices E and C in the surface Helmholtz integral

equation formulation are singular at the frequencies of the resonances of the

corresponding interior acoustic cavity with Dirichlet (zero pressure) boundary

conditions [5]. Although the NASHUA formulation described in the previous section

was designed to avoid having to invert either E or C in Equations (23) to (25),

the coefficient matrix H is also poorly conditioned at these frequencies (referred
to as the "critical" or "forbidden" frequencies of the problem). Therefore, to

be safe, the user should avoid excitation frequencies which exceed the lowest

critical frequency for the geometry in question.
For spheres, for example, the lowest critical frequency occurs at ka = _.

For long cylinders with flat ends, the lowest critical frequency occurs at

ka = 2.4, where k is the acoustic wave number, and 'a' is the radius of the

sphere or cylinder. For short cylinders with flat ends, the lowest critical

frequency is slightly higher than for long cylinders.

RESTRICTIONS ON MODEL

Although the NASHUA solution procedure was designed to be general enough so
that arbitrary three-dlmensional structures could be analyzed, a few restrictions

remain. In our view, however, none is a burden, since a NASTRAN deck for a dry

structure modeled with low-order finite elements can be adapted for use with
NASHUA in a few hours. The following general restrictions apply:

I. All translational DOF for wet points must be in NASTRAN's "analysis set"

(a-set), since (a) all symmetry cases must have the same wet DOF, and (b) the

fluid matrices E and C involve all wet points. This restriction also affects

constraints. Thus, constraints on translational DOF of wet points may not be
imposed with single point constraint (SPC) cards, but must instead be imposed

using large springs connected between ground and the DOF to be constrained.
Generally, this restriction affects only those DOF which are constrained due to

symmetry conditions.

2. The wet face of each finite element in contact with the exterior fluid

must be defined by either three or four grid points, since the numerical
dlscretization of the Helmholtz surface integral equation assumes the use of low

order elements. In particular, NASTRAN elements with mldside nodes (e.g., TRIM6,
IS2D8, or IHEX2) may not be in contact with the exterior fluid.

3. Symmetry planes must be coordinate planes of the basic Cartesian
coordinate system.

4. No scalar points or extra points are allowed, since program SURF assumes
that each point is a grid point.
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5. For cylindrical shells, the axis of the cylinder should coincide with
one of the three basic Cartesian axes; for spherical shells, the center of the

sphere should coincide with the basic origin. These restrictions facilitate the

treatment of symmetry planes and the calculation of curvatures in program SURF.

6. At least one degree of freedom in the model should be constrained with

an SPC, MPC, or OMIT so that the NASTRAN data block PL is generated.

7. Thin structures with fluid on both sides should be avoided, since the

formulations for the fluid matrices are singular if two wet points are coincident.
A precise restriction is not known.

TIME ESTIMATION

Most of the computer time required to execute the entire NASHUA procedure is

associated with the back solve operation (FBS) in Step 2, Equation (24), in which

the matrix Zs-IGA is computed given the triangular factors of Zs and the matrix
GA. Zs is a complex, symmetric, banded matrix of dimension s x s, where s is the

number of structural DOF in the problem, and GA is a real, sparsely-populated,
rectangular matrix of dimension s x f, where f is the number of fluid DOF (the

number of wet points on the surface). This FBS time is proportional to f and

typically accounts for about two-thirds of the total time to make a single pass
through the NASHUA procedure.

For example, consider a problem with the following characteristics:

s = 2973 (number of structural DOF)

f = 496 (number of fluid DOF)

Wavg = 129 (average wavefront of stiffness matrix)

On the CDC Cyber 176 computer at DTNSRDC, the computer time ("wall-clock" time)

required to solve this problem in a dedicated computer environment for a single
symmetry case and one drive frequency was about 30 minutes, of which 19 minutes
were spent in the FBS operation.

EXAMPLE I: UNIFORMLY-DRIVEN SPHERICAL SHELL

We first demonstrate NASHUA's ability to solve radiation problems by solving
the problem of the uniformly-driven submerged spherical shell, a problem with a

closed-form solution. In this problem, a thln-walled spherical shell is submerged
in a liquid and driven internally with a spherically-symmetric time-harmonic

pressure load. Since the solution is also spherically-symmetric, the field
solution depends only on radial distance from the origin.

Analytic Solution

The shell stiffness (the total static force required to increase the radius
a unit amount) is

ks = 8_Eh/(l-_) (39)
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where E and _ are the Young's modulus and Poisson's ratio for the shell material,
and h is the thickness of the shell. The shell mass is

ms = 4_a2hPs (40)

where 'a' is the mean shell radius, and Ps is the density of the shell material.
Hence, for a uniform time-harmonic pressure drive, the structural impedance is

Zs = (_2ms - ks)i/_ (41)

where m is the circular frequency of the excitation.
For the surrounding fluid, the ratio of surface pressure to surface velocity

is [5]

p/v = impa/(l + ika) (42)

where p is the density of the fluid and k = m/c. Hence, the fluid impedance

(ratio of total force to velocity) is

Zf = i_04_a3/(l+ika) (43)

For the harmonically-driven submerged shell, the surface velocity is therefore

v = 4=a2po/(Zs + Zf) (44)

where Po is the amplitude of the internal pressure drive. The surface pressure
can be recovered from Equation (42). The fluid pressure in the exterior field

decays inversely with distance [18]; hence

Pr = P(a/r)e-ik(r-a) (45)

where Pr is the pressure at distance r from the origin, and p is the pressure on
the surface. Note that if the expression for surface velocity v obtained from

Equation (42) is substituted into the far-field radiated pressure formula,
Equation (31), Equation (45) is obtained.

The radiation efficiency for this problem is obtained by substituting the
surface solution, Equation (42), into Equations (36) and (38):

= (ka)2/(l + (ka)2) (46)

NASHUA Solution

We solve with NASHUA the problem with the following characteristics [19]:

a = 5 m (shell radius)

h = 0.15 m (shell thickness)

E = 2.07 x I0II Pa (Young's modulus)
_ 0.3 (Poisson's ratio)

Ps] 7669 kg/m 3 (shell density)
p I000 kg/m3 (fluid density)

c = 1524 m/s (fluid speed of sound)

Po= 1Pa (internal pressure)
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One octant of the shell was modeled with NASTRAN's CTRIA2 membrane/bending

elements as shown in Figure 3. With 20 elements along each edge of the domain,

the model has 231 wet points and 1263 structural DOF. Three planes of symmetry
were imposed.

The NASHUA model was run for 15 drive frequencies in the nondimensional

frequency range ka = 0.5 to ka = 8.0, where 'a' is the shell radius. Table I

shows a comparison between the NASHUA calculations and the closed-form solution

for surface pressures, surface velocities, and far-fleld radiated pressures.
Clearly, the NASHUA calculations agree very closely with the closed-form solution

for all ka's except those near ka = = and ka = 8.18, where the Helmholtz integral

equation is singular [19], as discussed in a previous section.

EXAMPLE 2: SECTOR-DRIVEN SPHERICAL SHELL

The uniformly-driven spherical shell problem described in the preceding

section is necessary but probably not sufficient to validate NASHUA. A more

challenging problem, both analytically and numerically, is the spherical shell
with a uniform pressure drive over a sector, as shown in Figure 4. (Here we use

the term "analytic" to refer to a series solution which converges to the exact

solution.) The particular problem solved has the internal pressure load applied
over the polar angle y = 36 degrees.

This problem was solved with the same finite element model used in Example I.

Thus, with two load cases (subcases), both problems can be solved together.
However, with a one-octant model of the sphere (Figure 3), the NASHUA solution of

this problem requires running both symmetric and anti-symmetric parts of the

Figure 3 - Finite Element Model of One Octant of Spherical Shell
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Table 1 - Comparison of NASHUA Solution with Closed-Form Solution

for Unlformly-Driven Spherical Shell

Average Surface Pressure Average Surface Velocity Far-Field Pressure
ka NASHUA Exact % Error NASHUA Exact % Error NASHUA* Exact % Error

(xl0 -I ) (xlO -I ) (xl0 -7 ) (xlO -7 ) (xlO -2) (xlO -2 )
0.5 0.302 0.303 0.3 0.445 0.444 0.2 0.151 0.151 0.0

1.0 1.02 1.02 0.0 0.948 0.947 0.1 0.508 0.510 0.4

1.5 1.91 1.92 0.5 1.51 1.51 0.0 0.944 0.958 1.5

2.0 2.92 2.92 0.0 2.14 2.14 0.0 1.48 1.46 1.4

2.5 4.04 4.03 0.2 2.84 2.85 0.4 2.04 2.02 1.0

2.8 4.80 4.76 0.8 3.28 3.32 1.2 2.42 2.38 1.7

3.0 5.41 5.28 2.5 3.54 3.65 3.0 2.73 2.64 3.4

3.1 6.10 5.54 i0.i 3.41 3.82 10.7 3.07 2.77 10.8

3.14 I0.I 5.65 78.8 0.231 3.89 94.1 5.05 2.82 79.1

3.2 5.35 5.81 7.9 4.35 4.00 8.8 2.69 2.91 7.6

3.3 5.89 6.09 3.3 4.32 4.17 3.6 2.96 3.04 2.6

3.5 6.53 6.64 1.7 4.61 4.53 1.8 3.29 3.32 0.9

4.0 7.97 8.04 0.9 5.50 5.44 i.i 4.01 4.02 0.2

5.0 9.97 i0.0 0.3 6.75 6.70 0.7 5.10 5.01 i.8

8.0 7.02 7.04 0.3 4.82 4.65 3.7 3.73 3.52 6.0

* worst case

Notes: I. The average surface velocity is defined in Equation (33); the

average surface pressure is similarly defined.

2. The "% Error" is defined as IO0*INASHUA - Exactl/Exact

3. SI units are used (Pa for pressure and m/s for velocity). Far-

field pressures are calculated at a range of 100m.

4. The NASHUA far-fleld pressure used is the one on the far-field

sphere which deviates the most in absolute value from the exact
result.

5. The critical frequencies which affect these calculations are
located at ka = _ and ka = 8.18.

problem, thus providing a good check on NASHUA's ability to combine symmetry
cases.

The benchmark solution to which the NASHUA results are compared is a series

solution which we developed based on equations in the Junger and Felt book [20].

The results of this comparison are shown in Table 2 for four different non-

dimensional drive frequencies ka, where 'a' is the radius of the sphere. None of

the drive frequencies is near a critical frequency. For each drive frequency ka,

the normalized far-fleld pressure IPrr/Poal is listed for each colatitude angle O,
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Figure 4 - Submerged Elastic Spherical Shell Driven over Sector

where Pr is the far-fleld pressure at distance r from the origin, and Po is the
internally-applied pressure. Clearly, the NASHUA solution again agrees very well
with the exact solution.

DISCUSSION

A very general capability has been described for predicting the acoustic
sound pressure fiel_ radiated by arbitrary three-dlmenslonal elastic structures

subjected to tlme-harmonic loads. Sufficient automation is provided so that, for
many structures of practical interest, an existing NASTRAN structural model can
be adapted for NASHUA acoustic analysis within a few hours.

One of the major benefits of having NASHUA linked with NASTRAN is the ability
to integrate the acoustic analysis of a structure with other dynamic analyses.

Thus the same finite element model can be used for modal analysis, frequency

response analysis, linear shock analysis, and underwater acoustic analysis. In
addition, many of the pre- and postprocessors developed for use with NASTRAN
become available for NASHUA as well.

There are two areas in which improvements to NASHUA would be desirable. The

first is to remove the frequency limitation caused by the presence of the critical

frequencies inherent in the Helmholtz integral equation formulation. As a result,
cylindrical shells, for example, can be safely analyzed by NASHUA only for
ka < 2.4, where 'a' is the radius. Since for some problems, it would be of
interest to treat higher frequencies, the limitation should be removed. A

conversion to a different formulation (e.g., Burton and Miller [8] or Mathews [I0]
is being considered.

The second area in which NASHUA could be improved would be to extend the

program's capabilities to include acoustic scattering as well as radiation.

Generally, this improvement requires replacing the mechanical drive force with an
incident loading, a relatively modest change [2].
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Table 2 - Comparison of NASHUA Solution with Converged Series

Solution for Sector-Drlven Spherical Shell

Colatltude Normalized Far-Field Pressure r Iprr/p_al

ka 0 (de_rees) NASHUA Exact % Error

0 0.0514 0.0514 0.0

30 0.0445 0.0445 0.0

60 0.0257 0.0258 0.4

0.5 90 0.0035 0.0035 0.0
120 0.0258 0.0259 0.4

150 0.0446 0.0446 0.0

180 0.0515 0.0515 0.0

0 0.0887 0.0889 0.2

30 0.0744 0.0745 0.i
60 0.0434 0.0434 0.0

1.0 90 0.0235 0.0237 0.8
120 0.0448 0.0448 0.0

150 0.0784 0.0786 0.3

180 0.0939 0.0942 0.3

0 1.183 1.163 1.7

30 0.278 0.276 0.7

60 0.667 0.666 0.2

2.0 90 0.131 0.128 2.3
120 0.721 0.716 0.7

150 0.757 0.695 8.9

180 1.977 1.860 6.3

0 0.510 0.512 0.4
30 0.292 0.292 0.0

60 0.020 0.017 17.6
5.0 90 0.I00 0.097 3.1

120 0.161 0.160 0.6

150 0.169 0.163 3.7
180 0.177 0.170 4.1
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