
NASA-CR-178102
19860016523

NASA Contractor Report 178102

leASE REPORT NO. 86-24

leASE

I

i
I

)
~-----------

STENCILS AND PROBLEM PARTITIONINGS:

THEIR INFLUENCE ON THE PERFORMANCE OF MULTIPLE PROCESSOR

SYSTEMS

Daniel A. Reed

Loyce M. Adams

Merrell L. Patrick

" ; .. -" .. ; ,
, __ t.

,,-'-., "-r"'~ '«"..~~ -:.., ... "''''"' ~,,~-.. --::~;-'l~.

, ""'-.,;~

Contract Nos. NASI-17070, NASl-18107
May 1986

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NI\SI\
National Aeronautics and
Space Administration

Langley Research center
Hampton,Virginia 23665

LANGLEY RESEARCH CENTER
LIBRARY, NASA

H,I\~·.1PTON, VIRGINIA

Stencils and Problem Partitionings:
Their Influence on the Performance of Multiple Processor Systems

Daniel A. Reed t

Department of Computer Science
University of Illinois

Urbana, Illinois 61801

Loyce M. Adama t
Department of Applied Mathematics

University of Washington

Seattle, Washington 98195

Merrell L. Patrick t

Department of Computer Science
Duke University

Durham, North Carolina 27706

ABSTRACT

Given a discretization stencil, partitioning the problem domain is an important first
step for the efficient solution of partial differential equations on multiple processor
systems. We derive partitions that minimize interprocessor communication when the

number of processors is known a priori and each domain partition is assigned to a different
processor. Our partitioning technique uses the stencil structure to select appropriate
partition shapes. For square problem domains, we show that non-standard partitions

{e.g., hexagons) are frequently preferable to the standard square partitions for a variety of
commonly used stencils. We conclude with a formalization of the relationship between
partition shape, stencil structure, and architecture, allowing selection of optimal partitions
for a variety of parallel systems.

t Research supported by the National Aeronautics and Space Administration under NASA
Contract Numbers NASI-17070 and NASI-18107 and by the U.S. Air Force Office of
Scientific Research under contract No. AFOSR-76-2881 while the authors were in residence

at ICASE, NASA Langley Research Center, Hampton, VA 23665

Merrell L. Patrick was also supported in part by NASA Grant Number NAG-I-466.

Daniel A. Reed was also supported in part by NSF Grant Number DCR 84-17948 and
NASA Contract Number NAG-I-613.

1. Introduction

Problem transformation has long been among the most successful solution paradigms. As

an example, consider the solution of elliptic partial differential equations fOrte85]. Given some

planar region R, the classical central difference technique covers the region R with a rectangular

grid and replaces the derivatives at each grid point with central differences. The resulting system

of linear equations is then amenable to solution via a variety of efficient algorithms. This

transformation, from partial differential equation to linear system, makes the solution both

feasible and attractive. Within this framework there remain several alternatives, both in the

choice of discretization stencil (e.g., 5-point or 9-point) and the linear system solver (e.g., direct

or iterative)_ and the most appropriate choices depend on the problem.

When one considers parallel solution of partial differential equations, an additional

paradigm, problem domain decomposition [Voig85], arises. If multiple processors are to

cooperate, each solving the linear equations on a portion of the grid, the selection of grid

partitions and their assignment to processors are crucial to good performance.

In this paper, we consider the parallel solution of elliptic partial differential equations over a

planar region, using both shared memory and message passing architectures. Historically, only

rectangular partitions of the discretization grid have been assigned to processors, primarily

because the resulting data structures are regular. However, triangles, squares (a special case of

rectangles), and hexagons also tessellate the plane. The effects of these partitions on inter-

processor communication and their relation to the discretization stencil are investigated.

Because partitions like hexagons have a higher area to perimeter ratio than rectangles and

potentially less interpartition communication, there is incentive to investigate their attributes.

Our results show that the efficiency of the parallel solution depends on the partitioning of

the discretization grid, its associated stencil, and the underlying architecture. Observing that the

2

amounts of required computation and communication are functions of a partition's area and

perimeter, respectively, we compare the performance of a variety of associated stencil/partition

pairs on both message passing and shared memory architectures. However, we begin with a

survey of related work and a formal specification of the problem.

1.1. Related Work

In a study of hypercube performance, Fox and Otto [Fox84] recently noted that the

efficiency of a parallel algorithm is not determined by the amount of communication but the

ratio of communication to calculation. In their study, they considered the solution of Laplace's

equation over a square region using a 5-point discretization stencil. Their partitioning placed

squares of grid points on each node of the hypercube, using only nearest neighbor

communication. This choice of partitioning has a lower communication to computation ratio

than the natural alternative, partitioning the grid into an equal number of rectangular strips.

Vrsalovic, et al. [Vrsa85] have also considered the solution of Poisson's equation over a

square region using a 5-point discretization stencil. Unlike Fox and Otto, they tested triangular,

square, and hexagonal partitions. Their study used the ratio of processing time to data access

time as one performance metric when comparing the speedup of different partitions on a general

class of multiprocessor systems. Their hypothetical multlprocessor systems were assumed to

have both local memory attached to each processor and global memories accessible via an

interconnection network. Of the three partltiolls, hexagonal decomposition produced the largest

speedup.

In an experimental study, Saltz, et al. [Salt86] considered solution of the heat equation using

successive over-relaxation (SOR) on an Intel iPSC [f_,al,t,_5]. Rectangular strips and squares were

used as grid partitions. They observed that the Intel iPSC's high startup costs for message

3

transmission often favored decreasing the number of messages sent, even if that meant sending

more bytes of data. Hence, partitions of rectangular strips were often more efficient that square

partitions.

Superficially, these results by Fox and Otto, Vrsalovic, et al., and Saltz et al. seem

mutually contradictory - each favoring different partition shapes. However, these studies

considered only a small portion of the possible parameter space of stencils, partitionings, and

architectures. Moreover, their underlying assumptions differ. This paper presents a formal

method for analyzing stencil/partition/architecture triplets and applies this method to a variety

of these triplets. Section 2 begins by computing the total number of points in a partition versus

the number of points that must be communicated for several common stencils using each of the

rectangular, square, triangular, and hexagonal partitions. In section 3, these results are used to

determine those stencil/partition pairs that maximize the ratio of computation to

communication. Finally, section 4 compares the performance of an algorithm for solving

Laplace's equation over a square region using different stencil/partition pairs on both shared

memory and message passing architectures.

2. Communication Costs for Selected Stencil/Grid Partition Pairs

Elliptic partial differential equations, particularly the Laplace and Poisson equations, have

long been used as test vehicles for new solution algorithms and parallel architectures.

Consequently, our study is based on the following problem formulation.

The Problem: Consider an elliptic partial differential equation with Dirichlet
boundary conditions on some square region R. If R is discretized to
contain N = n2 points, we wish to solve the resulting linear system

using a point Jaeobi iterative solver on a parallel processor

containing p processors (PEs), where p __ N.

4

One interesting question immediately arises. Suppose the grid were divided with each

partition placed in a different PE and that each PE used the point Jacobi iterative solution

technique. 1 In this scenario, each PE repeatedly updates its partition of grid points and sends

values associated with its partition boundary to logically adjacent partitions. What partition

structure would maximize the ratio of computation to communication? One immediately

observes that

• computation is a function of a partition's area,

• communication is a function of a partition's perimeter, and

o the partition's perimeter that must be sent to other partitions is a function of the stencil.

As an example, Figure 2.1 illustrates square partitions with a 5-point stencil. Each partition

communicates with four neighboring partitions, and the amount of data transferred is directly

proportional to the perimeter of the partition. Although convergence checking for an iterative

scheme also involves communication, the amount and cost of this communication is independent

of stencil type and partition shape and will not be considered. (It is interesting to note that the

communication required for the inner products of the conjugate gradient method is also

independent of stencil type and partition shape.)

In the remainder of this section, we analyze the expected amount of data that must be

transferred between partitions, given possible stencil/partition pairs. In a later section, we will

consider the influence of parallel architecture on the choice of a stencil/partition pair.

1The iterates generated by our parallel Jacobi method are the same as those generated by the sequential Jacobi

method. We also emphasize that our analysis techniques can be applied to other point iterative solvers (e.g., mul-
tieoh)r SOR and conjugate gradient) as well.

Ui,j-f-1

• o • • • • •

• • • U • • • IZi_l,___ Ui,y Ui+ld
8 • • _ _ _ • • • • •

• • a U • • •

@ @ D • • • •

o • o • • • • Ui,i_l.

CO_lt_tl'_a_on _sg i I]communication _-_4s ui,J : --4 ui-t'J + Ui+l'J + ui'J-1 -}- ui'j+l

(b)

Figure 2.1 Square partitions with 5-point stencil

2.1. Five Point Stencil

Figure 2.1b shows the 5-point stencil and the equations for the unknowns in Laplace's

equation that arise from the standard centered difference approximation to the partial

derivatives. With an iterative solution of these equations (e.g., point Jacobi), the new value

computed at each grid point depends on the previous values from its north, south, east, and west

grid point neighbors.

Using this stencil, we now consider the influence of partition shape on inter-PE

communication. To ease comparison, we assume each partition contains n2/p grid points (i.e.,

each PE's computation is proportional to n2/p).

6

2.1.1. Rectangular Partitions

Suppose the grid of n 2 points were partitioned into p horizontal strips, and each strip were
r

again partitioned into r rcctangles; scc Figure 2.2a. Assuming all rectangles are of equal size,

n 2

each contains _ grid points with sides n and n--Lr. As illustrated in Figure 2.2b, the perimeter
p r p

2{--n + nTr/--4 grid points and all are involved in data transfer. I-Iowever, the four

I"1

contains

[p]r

corner points in each rectangle involve two (2) data transfers. Therefore, the data transferred

from each interior rectangle is 2 [_ + f].

To find an optimal value for r, the number of horizontal rectangles, we need only maximize

the ratio of computation to communication

n 2

F(r) -- max P - max nr

r>l { r>l 2(p.r 2)r<_p 2 n+ nr r_pI

r pj

" n ,_

• " " p//r

. _ _ _ _ _ d, _ nr points

• • • • • _- p

n . ? ? T ? ?
• • • 2

n
.... 1 -- points

r
1 2 r

(a) (b)

Figure 2.2 Rectangular partitions with 5-point stencil

7

in a single PE. Differentiating and setting the derivative equal to zero, we obtain p=r 2 or

r=_/p as the optimal value of r. Therefore, squares are the optimal rectangular partitioning for

4n

the 5-point stencil with a communicating perimeter of --_p . With the 5-point stencil, this result

has a simple geometric interpretation: of all rectangular partitions, the square maximizes the

area/perimeter ratio.

Finally, as an interesting special case, note that if r = 1, the grid of n 2 points is partitioned

n 2
into p strips each containing -- points. In this case, there is no communication to the east or

P

west and 2n -- 4 values (n - 2 north and n -- 2 south) are communicated from each partition. 2

2.1.2. Triangular Partitions

p__
To partition an nXn grid into p triangles we assume n = 2v_p-pI and divide the grid into 2

P squares will contain 81z grid points. Each of the
squares with sides s = 2X/-21. Each of these 2

squares is then divided into the two "approximate" triangles shown in Figure 2.3a. Each of the

p triangles contains 412grid points and has height s and base s-1.

Now consider the communicating perimeter of the upper triangle in Figure 2.3a, assuming a

5-point stencil. By observation, s values are sent north, s-1 values east, s values south, and 1

value to the west, for a total of 3s. Note that s - 2 of the values transmitted south are used

twice by the receiving triangle. The other triangles are reflections of this case. Because

3V_n

n = 2Vppl and s = 2V_l, the total number of values sent from each triangle is _.

2The four corner points of the partition are fixed boundary values that need not be transmitted.

8

• • • • • • • • • • • @

"'''_ _'''"

_ " " _ " " ___ " "

y _
_ : :_

s 1 __

• • . . _ • • • ._::.-.-:-_ _ ._::....:y.o
• • • .,_ • . -/- . • .
: .'."::_." V:: :::

Ca) (h)

Figure 2.3 Triangular partitions with 5-point stencil

2.1.3. Hexagonal Partitions

Now consider dividing the n×n grid into p hexagonal partitions. We again assume that

n 2
n = 2N/-p-plimplying each partition has _ = 41z grid points. Figure 2.4 shows how this

P

partitioning can be accomplished. Each hexagon has l + 1 grid points at the north and south

edges and l grid points on each of the four remaining sides. The number of grid points in the

upper or lower half of each hexagon is

1+1)+2(i--1 =212,

for a total of 412 in each hexagon.

9

• • • • • l

Q • • • • • •

@ • • • • • •

• • • • • • •

Figure 2.4 Hexagonal partitions with 5-point stencil

As Figure 2.4 shows, l . 1 values must be sent north, 1 + 1 values south, l northeast, l

southeast, l southwest, and l northwest, a total of 61-4-2 . Because l - 2_-' each hexagon must

communicate _ +2 values.
Vp

2.2. Nine Point Stencil

The 9-point stencil, shown in Figure 2.5, is a higher order finite difference approximation to

the partial derivatives than the 5-point stencil discussed earlier. When using this stencil, the

iteration value computed at each grid point is a function of its north, northeast, east, southeast_

south, southwest, west, and northwest grid point neighbor values. In this section we examine the

amount of inter-PE communication for the same partitions discussed earlier and observe the

change in a partition's communicating perimeter as the stencil changes.

10

Ui-l,j+l ui,j+l Ui+l,j+l

Ui-l,j--1 ui,j-1 Ui+l,j

Figure 2.5 9-point star stencil

2.2.1. Rectangular Partitions

Figures 2.2 and 2.5 show that the communicating perimeter of rectangular partitions for

the 9-polnt stencil is nearly the same as the communicating perimeter for the 5-point stencil.

Only the four corner points of a partition are each involved in an additional communication. As

before, squares are the optimal rectangular partitioning with a communicating perimeter of

4n

X/p- . 4. Because there is no communication to the left or right, rectangular strips (r = 1) have

the same communicating perimeter for both the 5 and 9-point stencils.

11

2.2.2. Triangular Partitions

The dashed lines between grid points in Figure 2.6 highlight the additional communications

required for triangular partitions when using the 9-polnt stencil rather than the 5-point stencil.

The solid lines between grid points are the communicating perimeter for the 5-point stencil (3s).

The 9-point stencil requires the following additional communications: 1 to the northeast, 1 to

the southeast, 1 to the northwest, 1 to the southwest, and s-2 to the south. This yields a total

communicating "perimeter" for an interior triangular partition with the 9-polnt stencil of

4_/2_+2
4s -}-2 or _ . "Perimeter" is perhaps a misnomer here, for the perimeter of points along

the diagonal in Figure 2.6 is "two deep" for the 9-point stencil.

Figure 2.6 Triangular partitions with 9-point star stencil

12

2.2.3. Hexagonal Partitions

The dashed lines in Figure 2.7 illustrate the the additional communications required with

hexagonal partitions when using the 9-point stencil instead of the 5-point stencil. The solid lines

of Figure 2.7 correspond to the communicating perimeter of the 5-point stencil, shown to be

61 + 2 in section 2.1.3. The 9-point stencil requires l communications to the northeast,

southeast, southwest, and northwest in addition to those for the 5-point stencil. This gives a

total communicating perimeter, for interior hexagonal partitions, of

5n

101 +2 -- _--_-_.2

where

111 .
"0 • • • • " .

"0 @ • @ • • @" •

• • • • • • I • ..

•
Figure 2.7 Hexagonal partitions with 9-point star stencil

13

Note that the communicating "perimeter" is depth 2 along four of the six edges.

2.3. Other Stencils

Many stencils other than the 5-point and 9-point stencils analyzed above are frequently

used when solving partial differential equations. Figure 2.8 illustrates some of the most common.

For brevity's sake, we do not include the analysis of the communication required for their

associated partitions. However, the results of this analysis are summarized in Table 2. The

interested reader can verify these results by applying the methods discussed earlier to compute

the additional grid points involved in data transfer for each of these stencils.

ui,i+ 2 ui,i+2

t/i-l'j+la, u/'J+le ui,I+l u/-1,j+l ui,l'+l tti+l,'+ 1

Ui-l,j_tt),, Ui+l,, tti-2,] _//_1,] uy j uiq-1,, ui+2, , t/i_2, , Ui-l,$'_uJ,_+l, , 15/+2,," I1 : '!" ----- • •
Iti-1, , +1,,

t I"_i, -2

• Ui -2

7--point 9--cross 13--point

Figure 2.8 Frequently used discretization stencils

14

2.4. Computation/Communication Ratios

Before summarizing the results of the previous section, we introduce the notation shown in

Table 1. Using this notation, Table 2 shows relative amounts of computation and

communication for selected stencil/partition pairs. For simplicity, the effects of boundaries on

communication have been elided. (Recall that n 2 is the number of grid points, and p is the

number of processors.) Table 2 also includes one quantity not discussed earlier, parallel

communication, the amount of data transfer if partition sides can communicate in parallel. This

parallel communication will later allow us to determine if the optimal stencil/partition changes

when communication to neighboring partitions can be done in parallel.

The entries of most interest in Table 2 are the ratio of computation to communication (R)

and the ratio of computation to parallel communication (PR). Table 3 illustrates the relative

magnitude of these quantities for a square grid containing 256X256 points and a parallel system

with 64 processors.

Table 1 Static scheduling notation

Quantity Definition

n 2

Comp --, the computational complexity of a stencil/partition pairP

Comm communication complexity of a stencil/partltion pair

Pcomm parallel communication complexity of a stencil/pair

R the ratio Comp
Comm

PR the ratio Comp
Pcomm

15

Table 2 Summary of stencil/partition analysis

Partltlon Stencll

5-point 7-point 9-point star 9-point cross 1S-point

Rectangular
Strips
Comm: 2n 2n 2n 4n 4n
Pcomm: n n n 2n 2n

n n _ n 17,
R:

2p 2p 2p 4p 4p
n n 71, n

PR:
p p p 2p 2p

Trlangle
3_/_n 3V_n 4V_n 6V_n 8V_n _

Cor_m- Vp _7--p+2 _+2 7p _+_

X/_n ZX/_n Z 2V_n Z ZX/_,_1 2_/'_n 1

n n n n

R: 3---_p --3----_p --:i:_-_p 6----_p --

n n n n n

Square

4n 4n +2 4n +4 8n 8n

n n n 2n 2n

n n n n 7/,

n: 4vT --4-V7 _-4-V7 _ _-8-V7
n n n n n

PR: _ _ _ _ 2%/_.
Hexagon

3n +2 4n +2 5n 2 6n +4 6n +8Co_- _p _ 7; + _p -q7

n n n n 2 n 2
Pcomm: 2---_p +1 "_p _ -_p+ -_p+

P._ n n

2n n n n n

NOTE: Comp = n2/p is used in computing R and PR in all cases.

16

An inspection of Table 3 shows that hexagonal partitions yield the highest ratio of

computation to serial communication, except for the 9-point star stencil, where squares are

better. However, if one assumes the inter-partition communication can be done in parallel (i.e.,

all edges of a partition can be transmitted in parallel), hexagons yield the highest ratio in all

cases. With parallel communication, the improvement obtained with hexagons is even greater

PRhezag°n -- 2).
(e.g., Rhezag°nR#quare-- 1.33 for the 5-point stencil but PRsq uare

The patterns in Table 3 suggest there is some formal relation between partitions and

stencils, with certain combinations preferred. In the next section we develop techniques for

selecting optimal partition/stencil combinations.

Table 3

Ratio of computation to communication (n = 256 and p = 64)

Partition Type Stencil

5-point 7-point 9-point star 9-point cross 13-point
Rectangle

R: 2 2 2 1 1
PR: 4 4 4 2 2

Triangle

R: 7.5 7.5 5.65 3.75 3.75
PR: 22.5 11.3 11.3 11.3 11.3

Square

R: 8 8 8 4 4
PR: 32 32 32 16 16

Hexa$on

R: 10.66 8 6.4 5.3 5.3
PR: 64 32 32 32 32

17

3. Determining Optimal Stencil/Partition Pairs

Using the following definition, a partition can be categorized with respect to a given stencil

by the number of partition perimeters that must be communicated.

Definition: A partition is a k-partition with respect to stencil S if k perimeters are
communicated when stencil S is used.

For example, the square is a 1-partition with respect to the 5-point, 7-point, and 9-point star

stencils but is a 2-partition with respect to the 9-point cross and 13-point stencils. The hexagon

is a 1-partition for the 5-point and a 2-partition with respect to the 9-point cross and 13-point

stencils.

Moreover, the value of k can be a fraction. The hexagon, for example, is a 12 partition for6

14 partition with the 9-point star stencil. Why? Because only somethe 7-point stencil and a 6

sides of the hexagon are involved ir_ multiple data transfers. This categorization of partitions

with respect to stencils provides a ranking mechanism for stencil/partition pairs. Hence, one can

determine those stencils where l-partition hexagons are preferable to k-partition squares.

When communication from a partition to each of its neighboring partitions is done serially,

4kn

the communicating perimeter for square k-partitions is nearly -_---_, and the corresponding ratio

n

of computation to serial communication is 4k%/p. The communicating perimeter for hexagonal

3In

l-partitions is approximately -_--_-p,and the corresponding ratio of computation to serial

12

communication is 3/-f--_p" Clearly, an l-partition hexagon yields a higher ratio when

n n

3t/p > -VYp

or when

18

k > 31. (3.1)4

If one adopts parallel rather than serial communication, the communicating perimeter for

kn

square k-partitions is, except for a small constant, -_p, and the ratio of computation to parallel

communication is n
kX/p" Similarly, the communicating perimeter for hexagonal l-partitions is

In 2n

and the corresponding ratio of computation to parallel communication is 3-ffl-_p" With

parallel communication, l-hexagons are preferable to k-squares when

2n n

l_/p > k---_p

or

k > --.l (3.2)2

Using inequalities (3.1) and (3.2), Table 4 shows optimal stencil/partition pairs, based on

the maximum ratio of computation to communication. Table 4 shows that square partitions are

better than hexagons in only one of the 10 cases. Note that the k and l-values for parallel

communication in Table 4 were obtained by rounding the fractional values for serial

communication up to the next largest integer (i.e., a parallel communication of 12 perimeters6

requires two transmissions). Based solely on Table 4, hexagonal partitions are superior to square

partitions because they minimize the interpartition data transfer. 3 Similarly, triangles are clearly

inferior.

aAs we shall see, the underlying parallel architecture also influences the choice of partition shape.

19

Table 4 Comparison of Square and Hexagonal Partitions

Square k-value Hexagon l-value Optimal partition Optimal partltlon
3l l
-- parallel: k >

Stencil (serial, parallel) (serial, parallel) serial: k > 4 2
1

3 hexagon(1 > _-)5-voirtt (1,1) (1,1) hexagon (1 > T)

7-point (1,1) (12,2) equal (1 = T.T)34 equal (1 = 12)

3 10, = 12)9-point 8tar (1,1) (14,2) square(1< -_-'T) equal (1

9-point cros_ (2,2) (2,2) hexagon (2 > 3'2) hexagon (2 > I)

13-point (2,2) (2,2) hexagon (2 > 3"2) hexagon (2 > 1)

4. Architecture and the Performance of Stencil/Partition Pairs

Our previous analysis did not include architectural considerations, save for the inclusion of

results for both serial and parallel communication. However, the stencil and grid partition

cannot be divorced from the processor connectivity of a message passing architecture (e.g., square

or hexagonal grid) or the storage schema used in a shared memory multiprocessor. Optimal

performance can be achieved only via judicious selection of a trio: stencil, partitioning, and

architecture.

Deriving expressions for parallel execution times and speed-ups for a

stencil/partition/architecture trio requires a model of execution. Our parallel execution time

model is a variation of one we developed earlier [Reed85] and is similar to the one used by

Vrsalovic, et al. [Vrsa85]. In this model, the parallel iteration time for evaluating one partition

of grid points is

tPcvc_erocess°r= tcomp -{-ta Jr"tw

20

where tcomp is the iteration computation time, 4 is tilt: data access/transfer time, and tw is the

waiting/synchronization time.

The computation time tcomp depends on the partition size and stencil, and is independent of

the architecture except for the time, Tfp, to execute a floating point operation. Formally, tcornp is

toom,= r1,,P

where E(S) is the number of floating point operations required to update the value of a grid

n 2

point, given a stencil S, k is the number of grid points in a partition, and Tip is the time for aP

single floating point operation.

The speedup obtained using parallel iterations is simply

tuni?rocessor

Sp __ -cycletP--yroces,or' (4.1)
cycle

where the single processor iteration time is just

E(S).2TI,.

Specific values for the speedup depend not only on the trio of stencil, partition, and network

chosen, but also on the technology constants (e.g., floating point operation time and packet

transmission time).

The other components of the execution time model, ta and tw, depend on the particular

combination of partitioning, stencil, and architecture and are analyzed below.

4.1. Message Passing Architectures

Among the competing classes of parallel machines, message passing architectures occupy an

important niche. The recent emergence of commercial message passing machines (.e.g., the Intel

21

hypercube [Raft85]) has stimulated great interest in this area.

Each processor in a message passing machine contains a local memory and is connected to a

(necessarily) small number of other processors. Access to data contained in another processor's

memory requires transfer of that data via the interconnection network. Clearly, the performance

of a stencil/partition pair depends heavily on the performance of the interconnection network of

the multiprocessor system. Although a plethora of interconnection networks have been proposed

[Reed83, WittSl], Figure 4.1 shows those networks (meshes) that are directly relevant to iterative

solution of elliptic partial differential equations. Each interconnection network has an associated

"natural" partition (e.g., square partitions on a square mesh).

Consider an interior processor in one of the partition/mesh pairs. During each iteration

(cycle), two groups of data must cross each communications link, one in each direction from

neighboring processors. There are several possible interleavings of computation and remote data

access. These range from a separate request for each communicating "perimeter" grid point

when it is needed to a request for an entire "side" of the communicating "perimeter" of the

partition. These requests can, in turn, be either overlapped or non-overlapped with

computation. Similarly, the hardware support for interprocessor communication must be

specified. A simple hardware design allows only one link connected to each processor to be active

at any time, increasing the data transfer time. With additional hardware, each processor link

can be simultaneously active.

Each combination of data access patterns and hardware design alternatives leads to an

implementation with different performance characteristics. Rather than cursorily examine a wide

variety of alternatives, we have chosen to examine a smaller set in detail. Specifically, we assume

* communication links are half-duplex (i.e., data can flow along links in only one direction at

a time) and

22

[]

[]

[]

[]

]

Figure 4.1 Selected interconnection networks

• processors request and wait for all perimeter values before starting computation.

Currently, these assumptions correspond to all commercial hypercube implementations [Raft85].

Whether the communication is serial or parallel, some processor P; in the interior of the

network will need data from another processor Pi that is some number of links lq away. (See

Table 5 for notation.) The amount of data to be transmitted, d_y(S, P), depends on both the

stencil S and the grid partitioning P. Ignoring synchronization and queueing delays, the time to

transmit data from Pi to PJ, crossing lij links, is

23

Table 5 Execution time model notation

Quantity Definition

dlj(S,P) amount of data sent from i to j

lii number of links between i and j

P partition

Pi processor i

Ps packet size

S discretization stencil

Sp speedup

Tfp time for a single floating point operation

tparalle! parallel access time

tseriat serial access time
a

tcomm time to send a packet across one communication link

tcycte time for one iteration
time (possibly zero) to interrupt an intermediate processor

tf°rward and forward a message

t,end(i,j) data transmission time from processor i to j

t#tartup overhead for preparing a communication

tseriat serial waiting timeto

dij(S, P)]t"_d(i'J) = t't"t_P + Ps liyte°mm+ (lli -- 1)tI°'to_*d' (4.2)

where tst=rtup is the fixed overhead for sending data, tcomrn is the packet transmission time, and

tlorto=,ais the message forwarding overhead incurred at intermediate processors. The ceiling

function reflects the redundant communication due to the fixed packet size Ps.

In general, data destined for other processors will encounter queueing delays, both at their

origin and at intermediate nodes. The latter is expected, but the former is counter-intuitive. As

an example of this phenomenon, consider the mapping of hexagonal partitions onto either a

square or hexagonal mesh. On a square mesh, data from the six sides of the hexagons must exit

24

via only four connecting links. Even with all links simultaneously active, some data will be

delayed.

With hexagonal partitions on a hexagonal mesh, each partition edge i:_directly connected to

its six neighboring partitions. However, each pair of neighbors must exchange data. Thus, two

transmission delays are needed on each of the six links before exchanges are complete. If all links

can simultaneously be active, two transmission delays will suffice to exchange boundary values.

Conversely, twelve delays will be needed if only one link per processor can be active at any time.

There are two general approaches to managing the interpartitlon communication problem.

The first relegates management of message passing and the associated queueing of messages for

available links to system software residing in each processor. With this approach, each partition

simply passes the data to be delivered to other partitions to the system software. No

consideration is given to the pattern of communication in time. As an example, each partition

might successively send boundary values on each of its links, then await receipt of boundary

values from neighboring partitions. Although this approach is attractive from a programming

standpoint, it hides the performance issues and may lead Lo increased contention for

communication links.

The second approach requires programming the exchange of partition boundaries in a series

of phases, each phase corresponding to a particular pattern of communication. In the example of

hexagonal partitions on a hexagonal mesh, discussed above, the communication pattern of

neighboring partitions would be alternating sends and receives. Sender and receiver would

cooperate, each expecting the action of the other. This pseudo-SIMD mode of communication

leads to regular communication patterns with minimal delays. Application of this approach is

the subject of the next section.

25

4.2. Message Passing Analysis

Because the range of partition and network possibilities is so large, we have opted to

present only the analysis of the 5-point stencil with square and hexagonal partitions on square

and hexagonal interconnection networks. The triangular partitions were omitted because, as a

cursory examination of Figure 2.3 shows, they require data transmission to four adjacent

partitions. Because square partitions also transmit to only four adjacent partitions and have a

higher ratio of computation to communication, they are always preferable to triangles. The

analysis for 9-point stencils is similar to that presented below; only the case analysis is more

complex.

When partitions are mapped onto an interconnection network, the processors may permit

communication on only one link or on all. In the following we consider only the serial case;

similar analysis applies to simultaneous communication on all links.

We begin with the simplest case: square partitions on a square interconnection network.

n

Each partition must exchange _ values with each of its four neighbors. Because only one link

per processor can be active, we expect the data exchange to require, four phases (i.e., time

4n) However, this would require all processors to simultaneously send and
proportional to _/p-.

receive. At any given instant, only half the processors can send; the other half must receive.

Hence, eight phases are needed, and the total time for data exchange is

fserial _]_ t_erial q- 8 tcomm-a = 4tstart_p •

Four startup costs are needed to initiate message transmissions to neighboring processors.

Because square partitions map directly onto the square mesh, no intermediate node forwarding

costs arise. Because the square mesh can be directly embedded in the hexagonal mesh, the data

2B

exchange delay for square partitions on a hexagonal mesh is identical to that for the square

mesh. 4

Like square partitions on a square mesh, hexagonal partitions map directly onto a

n

hexagonal mesh. Recalling that the north and south sides of a hexagon contain _ + 1 points,

n

and the other four sides contain _ points each, the data exchange delay is

tserial .q_ fserial _ 6tstartup + 4 _ q- 1 " n-- Ps tcomm "b 8 _ teomm.- t_ -11) T

The first ceiling term corresponds to the north/south exchange and requires four phases.

Similarly, the second term represents the exchange of data along the four diagonal connections

and requires eight phases.

Finally, hexagonal partitions can also be mapped onto a square mesh. Unlike the other

mappings, this one requires data exchange between non-adjacent processors. In this case, we

assume that rows of hexagons are mapped onto corresponding rows of the square mesh. With

this mapping, nort;h/,_o.t,h connections and half the diagonal connections are realized directly.

The remaining diagonal connections require traversal of two links to "turn the corner" in the

square mesh. Hence, the total communication delay due to data exchange is

tseriat + t seriat --=a

.1] o o]
6t, t=,t_p + 4 Ps to°ram + 4 _ tcomm + 8 [t_omm + 4tior_,=,a

T T "

4Thisis only true for the 5-point stencil. With the 9-point and other stencils, the distinction between square
and hexagonal meshesis important.

27

The first ceiling term corresponds to the north/south connections and the second to the directly

connected diagonals, each with four phases. The third term represents indirectly connected

diagonals, requiring eight phases. Half these phases require forwarding through intermediate

nodes, hence the four forwarding costs.

As noted earlier, similar analysis can be applied to other meshes and stencils. Table 6

shows the number of other partitions with which each partition must communicate (i.e., the

number of transmission startups). In addition, transmission delays are shown as a sum of terms.

Each term is a product of the amount of data exchanged between logically adjacent partitions

and the number of phases necessary to accomplish the exchange. In the table, the potential

effects of packet size on transmission delay are ignored, as are the times for startup and

forwarding. Table 6 suggests that hexagonal partitions are preferable for 5-point stencils, and

square partitions are more appropriate for 9-point stencils, confirming our earlier, mesh

independent analysis. As we shall see, however, both the number of message startup.s and

amount of data must be considered when estimating the performance of a stencil/partition/mesh

trio.

4.3. An Evaluation of Stencils, Partitions and Meshes

Equation (4.2), the delay to send data, includes parameters for startup, forwarding cost,

packet size, and packet transmission time. Because our primary interest is the effect of

transmission time, we have ignored the effects of startup and forwarding (i.e., we have assumed

those parameters are zero). When evaluating the relative performance of stencil/partition/mesh

trios, we have attempted to use values for packet size and packet transmission time based on

those for commercial message passing machines. For example, the Intel iPSC [Ratt85] sends 1K

byte packets with a measured transmission time of between 6 and 7 milliseconds.

28

Table fl Message passing data exchange

Number of Phase-Data
Communicating Transmission

Partition Mesh Stencil Partitions Products O(EzpectedDelay)

8n 8n

Square Square 5-poinf; 4 -_p :_p
8n 8n

Square Square 9-point 8 _ + 16 -Wp
8n 8n

Square Hexagon 5-point 4 _
8n 8n

Square Hexagon 9-point 8 _ + 12

n 4n 8n 8n

Hexagon Square 5-point 6 4 _ + I + _ + _

Hexagon Square 9-point 6 4 + 1 "{-_ . __vp -p

n 8n 6n

Hexagon Hexagon 5-point 6 4 2-Vp + 1 + -.r_ --_---]p

n 8n 10n
Hexagon Hexagon 9-point 6 4 + 1 q- "-'v'--77p Vp

Figure 4.2 shows the speedup, obtained using (4.1), of square and hexagonal partitions on

both square and hexagonal meshes, using a 5-point stencil. In the figure, 1K byte packets are

used. We see that square partitions yield significantly larger speedup than hexagonal partitions,

regardless of the underlying mesh. This is counter-intuitive and would seem to contradict Table

6. Careful inspection of (4.2), however, shows that packet size is crucial. The term

dq(S, P)]
Ps lij to°ram

in (4.2) accounts for the discretization overhead caused by packets. If Ps, the packet size, is

large, the number of partitions that must receive data from each partition is much more

important than the total amount of data to be sent. For example, sending 4 bytes to 6 partitions

29

Figure 4.2
Speedup for 5-point stencil

(1024 X 1024 grid with 1024 byte packets)

Speedup

100 , , ,

_7 Square partitions
Hexagonal partitions/square mesh

80- [] Hexagonal partitions/hexagonal mesh

60-

40-

20- !

0 { { {

0 256 512 768 1024

Number of Processors

Parameter Value

Packet size 1024

Startup 0.0

Forwarding 0.0

Packet transmission 6X10 -3 sec

Floating point operation 1X10 -8 sec

30

is much more expensive than sending 6 bytes to 4 partitions if the packet size is 1024 bytes. The

former requires 6 packet transmissions, the latter only 4 transmissions. Square partitions,

because they require communication with only four neighboring partitions, are preferable to

hexagonal partitions with six neighboring partitions, even though more data must be transmitted

with square partitions.

With a 4 byte floating point representation, a 1024X1024 grid, 1024 byte packets, and

square partitions (the assumptions of Figure 4.2), using more than 16 partitions will not decrease

the communication delay because, beyond this point, the total number of packet transmissions

does not change. Instead, the ratio of useful computation to communication begins to degrade.

As the packet size decreases, we would expect the differential in amount of transmitted

data to become more important. For small enough packets, the total amount of data accurately

reflects the delay. Figure 4.3 shows just this result. For smaller 16 byte packets used in the

figure, hexagonal partitions are preferred over square partitions.

Comparing Figures 4.2 and 4.3, we also see the effects of v_rying the number of processors.

For a small number of processors, the iteration is compute bound. As the processors (and

partitions) increase, the distinction between differing partition shapes becomes apparent. With

1024 processors, only one grid point resides in each partition, and the effects of packet size on

performance are striking.

Figures 4.4 and 4.5 illustrate phenomena similar to those in Figures 4.2 and 4.3. For large

packet sizes, Figure 4.4, hexagonal partitions are preferable to square partitions because the

hexagons communicate with only six other hexagons, rather than eight other squares. However,

the square partitions require less interpartition data transfer. Only when the packet size

becomes small, Figure 4.5, does the potential advantage of square partitions become apparent.

31

Figure 4.3
Speedup for 5-point stencil

(1024 X 1024 grid with 16 byte packets)

Speedup

500 , , i

Square partitions
• Hexagonal partitions/square mesh
o Hexagonal partitions/hexagonal400-

300-

200-

100-

I I I

0 256 512 768 1024

Number of Processors

Parameter Value

Packet size 16

Startup 0.0

Forwarding 0.0

Packet transmission 9.375X10 -_ sec

Floating point operation 1X10 -6 sec

32

Stencil, partition, mesh, and hardware parameters interact in non-intuitive ways. For 5-

point stencils, square partitions, with their smaller number of communicating neighbors, are

appropriate for large packet sizes. Likewise, hexagonal partitions, with smaller interpartition

data transfer, are appropriate for small packet sizes. The reverse is true for 9-point stencils:

hexagonal partitions are appropriate for large packet sizes (even though they are 14 partitions
6

for the 9-point stencil), and square partitions are best for small packet sizes. The interaction of

parameters cannot be ignored when considering the performance of an algorithm on a particular

architecture.

Recognizing the interdependence of parameters, Saltz et. al. [Salt86] recently evaluated the

Intel iPSC for solution of the heat equation using Successive Over Relaxation (SOR). They

observed that performance on the iPSC, with its high transmission startup cost and large

packets, varied greatly with the size of the grid and the shape of the grid partitions. For small

grids, horizontal strips, although requiring more interpartition data transfer, were preferable to

square partitions. Only when the grid became large did the advantage of square partitions

become apparent. The reasons are precisely those observed in Figures 4.2 and 4.3: amount of

data versus number of communicating partitions. This validation of our analytic techniques

suggests that they can effectively be used to determine the appropriate combination of partition

shape and size given tile architectural parameters of the underlying parallel machine.

4.4. Shared Memory Architectures

Unlike a message passing architecture where partitions exchange values via explici_

messages, a shared memory implementation stores all partition values that must be exchanged in

global, shared memory. The values associated with all other grid points are kept in memories

local to each processor.

33

Figure 4.4
Speedup for 0-point stencil

(1024 X 1024 grid with 1024 byte packets)

Speedup

125 j , ;

100-

75-

50-

25- #/ _ons/hexagonal mesh
[] I-I_titlons/square mesh

+ Hexagonal partitions/hexagonal mesh

1
I I t

0 256 512 768 1024

Number ofProcessors

Parameter Value

Packet size 1024

Startup 0.0

Forwarding 0.0

Packet transmission 6X10 -3 sec

Floating point operation 1X10 -8 sec

34

Figure 4.5
Speedup for 9-point stencil

(1024 X 1024 grid with 16 byte packets)

Speedup

625 i i ,

Square partitions/square meshSquare partitions/hexagonal mesh
500- [] Hexagonal partitlons/square mesh

+ Hexagonal partitions/hexagonal mc

375-

250-

I I I

0 256 512 768 1024

Number of Processors

Parameter Value

Packet size 16

Startup 0.0

Forwarding 0.0

Packet transmission 9.375X10 -5 sec

Floating point operation 1×10 -6 sec

35

Just as for message passing, the iteration time for evaluating one partition of grid points is

'°°"'°r=toomp+t, + tw, (4.3)

only the interpretation of the access (4) and waiting (tw) times differ. With a message passing

architecture, these times depend on the contention for communication links. Analogously, shared

memory delays arise from memory contention. Vrsalovic, et al. [Vrsa85] observed that the

expected waiting time for memory access takes the form

--_ -- 1]ta synchronous
(4.4)

asynchronous

maz lO, --_--1 ta - tcomp}

where 6' is the number of processors that can access shared memory simultaneously, and ta is the

memory access time. The synchronous case, where all processors simultaneously attempt to

access global memory, forces one processor to wait until all others have accessed memory. The

length of this delay depends on the number of simultaneous memory accesses supported. If the

processors operate asynchronously, allowing overlap of computation and 'memory access, the level

of memory contention is reduced. In the simplest ease, a set of global memory modules

connected to a shared bus, the number of concurrent memory accesses 6' is just 1. If a multistage

switching network connects processors and memories, (4.4) can be replaced with a waiting time

function [Krus83]. Whatever the interconneetion network, tw reflects the effects of memory

contention. We will return to this later, but first we consider the expected amount of data

transferred to/from shared memory.

When considering a shared memory implementation of an iteration technique, two choices

arise: local copies of partition boundaries or only global storage. In the first case, each partition

3@

not only retains a copy of its boundary values after writing them to global memory but also

copies into local memory all boundaries needed from other partitions. With only global storage,

the boundary values are accessed in global memory each time they are needed. The performance

of these two implementations differs considerably based on the "stencil, partition, and memory

access technique. Hence, we consider local copies and global access for both 5-point and 9-point

stencils with rectangular strips, square, and hexagonal partitions.

For notational convenience, we let gta°calcopiesbe the number of global memory accesses for

copying boundary values to and from a partition (assuming local copies), g_"°topic, be the number

of global memory accesses (assuming no local copies), tg be the time to access one value from

global memory, and tl be the processor overhead associated with copying one boundary value.

With this notation, the cycle time for one iteration is

t,oco, copie,= .E(S)n 2 _,oco,cop,, (tg + t,) + t= (4.5)
cycle p Tip "3t-ga "

or

_2
trio cop_ce

E(S)2_ - Tip + g_° c°Pi_' "tg + t=, (4.6)
cycle

where the three terms correspond to those in (4.3). As with message passing implementations,

E(S) is the number of floating point operations required to update each grid point given stencil

S, p is the number of partitions, and Tfp is the time needed for one floating point operation.

When local copies are used, some processor overhead may be required to maintain the copies

(e.g., copying from system buffers to user memory); this overhead is reflected by tt. Finally, tg

and tt are hardware parameters; only ga depends on the choice of local copies or global access.

Thus, we concentrate on derivations of _localcopies and no copies9a ga for selected combinations of

stencils and partitions. The results, derived below, are summarized in Table 7.

37

Table 7 shared memory data transfers

Rectangular
Stencil Strip Square Hexagon

5-point

gtOeat 4(n -- 2) 8n 6n
a %/---_-- 4 %/p

n] 18n
ggtobat 12(n -- 2) 24 -_p- 1 -_p 12

0-point

g':"' 4(n--2) VySn lOn--4

ggat°bat 20(n -- 2) -_p+840n -_--p --4448n

The values of _tocatcoHe_for both the 5-point and !l-point stencils can be easily determinedga

from Figures 2.2, 2.4, and 2.7. For example, Figure 2.2(b) (with r = X/p-) shows that a square

n

partition reads -_p data global memory values from each of its four neighbors and writes its

own four boundaries back to global memory, s The total number of global memory accesses is

then

i
4n n I 8n

_X/p+4 _p 1] = _ - 4.

The 9-point stencil is similar, requiring four extra boundary values, one from each of the

diagonally adjacent partitions.

5Thefourcornerpointsurewrittenonlyonce.

38

The situation changes dramatically if no local copies of boundary data are maintained.

Boundary values are often used multiple times during an iteration. With a 5-point stencil and

square partitions, updating a single element on the boundary generally requires access to three

values on the partition's boundary and one access to another partition's boundary. The updated

boundary element must then be rewritten. Hence, five memory accesses are required if no copies

are maintained.

The penalty for not maintaining local copies is even more striking for 9-point stencils.

Figure 4.6 shows the number of global memory accesses for each point in an interior square

partition when the 9-point stencil is used and no local copies are maintained. The numbers are

Figure 4.6
Global memory accesses for 9-point stencil

(square partitions with no local copies)

9 8 7 7 7 7 8 9

8 5 3 3 3 3 5 8

7 3 0 0 0 0 3 7

7 3 0 0 0 0 3 7

7 3 0 0 0 0 3 7

7 3 0 0 0 0 3 7

8 5 3 3 3 3 5 8

9 8 7 7 7 7 8 9

3@

determined by counting boundary grid points needed to update the value at each grid point. If

the grid point lies on the boundary, tile count is increased by two: the old value must be be read

from global memory and the new value written. Obtaining a general formula for the number of

memory accesses is straightforward, given diagrams such at Figure 4.6. For a 9-point stencil

40n

with square partitions, _ q- 8 memory accesses are needed, a five-fold increase over that when

local copies are maintained.

4.5. Shared Memory Analysis

Given an analysis of the memory traffic required for maintaining local copies or always

accessing shared memory, only hardware parameters and some assumption about the underlying

interconnection network are needed to predict performance. As noted earlier, the memory

contention function tw can reflect ._ variety of interconnection strategies ranging from a single

global memory bus to a multistage interconnection network. Because the importance of local

copies is most striking when memory contention is severe, we have concentrated on the worst

case: a single bus connecting all global memories and processors.

Figure 4.7 illustrates the speedup obtained for square and hexagonal partitions on a 5-point

stencil with varying numbers of processors and local copies of partition boundaries. In the figure,

access to global memory is assumed to require five times that for a single floating point

operation. The figure confirms the analysis of Table 6 and 7: hexagons are the preferred

partition type. For small numbers of processors, computation time dominates, and there is little

distinction between the partition types. However, as the number of processors increases, the

smaller interpartition data transfer required by hexagons makes their use attractive. Speedup

increases with the number of processors until the global memory bus becomes a bottleneck; at

that point speedup begins to decline.

4O

Figure 4.7
Shared memory speedup for 5-point stencil

(local copies with grid size 1024 X 1024)

Speedup

15 I I I

12- _7 Squares
• Hexagons

0 I I I

0 256 512 768 1024

Number of Processors

Parameter "Value

Global memory access time 5×10 -6 sec

Local processing overhead 0.25X10 -6 sec

Floating point operation 1X10 -_ sec

41

Figure 4.8

Shared memory speedup for 9-point stencil

(local copies with grid size 1024 X 1024)

Speedup

16- _7 Squares
• Hexagons

0 I I I

0 256 512 768 L024

Number of Processors

Parameter Value

Global memory access time 5X10 -8 sec

Local processing overhead 0.25X10 -6 sec

Floating point operation lXl0 -6 sec

42

Figure 4.8 shows a result similar to Figure 4.7, except for 9-point stencils. As Table 7

suggests, square partitions are preferred. A comparison of Figures 4.7 and 4.8 shows that the 9-

point stencil gives larger absolute speedup. The reason is intuitive: the greater computation cost

at each grid point more than offsets the increased communication cost for the 9-point stencil.

Hence, an equal number of processors translates into a greater speedup.

Finally, Figure 4.9 compares maintaining local copies of boundaries to continued access to

global memory. This figure also confirms what Table 7 suggests; local copies are clearly

advantageous. The argument for storing boundaries in local memories is compelling. Without

such copies, the bandwidth of the global bus quickly saturates.

5. Conclusions

The trio of iteration stencil, grid partition shape, and underlying parallel architecture must

be considered together when designing parallel algorithms for solution of elliptic partial

differential equations. Isolated evaluation of one or even two components of the trio is likely to

yield non-optimal algorithms.

We have seen, for example, that an abstract analysis of iteration stencil and partition shape

suggests that hexagonal partitions are best for 5-point stencils, whereas square partitions are

best for 9-point stencils. Further analysis shows that this is only true in a message passing

implementation if small packets are supported. For large packets, the reverse is true (i.e., square

partitions for 5-point stencils and hexagonal partitions for 9-point stencils). Likewise, the type

of interconnection network is crucial. Mapping grid partitions onto a network that does not

directly support the interpartition communication pattern markedly degrades performance.

Finally, when considering shared memory implementation of the iterations, maintaining local

copies of the partition boundaries is imperative. Without local copies, or an extremely fast

43

Figure 4.9

Speedup for 9-point stencil with grid size 1024 X 1024

Speedup

_7 Squares with local copies
° Hexagons with local copies
D Squares without local copies16-
+ Hexagons without local copies

I I I

0 256 512 768 1024

Number of Processors

Parameter Value

Global memory access time 5X10 -6 sec

Local processing overhead 0.25X10 -8 sec

Floating point operation 1X10 -8 sec

44

interconnection network, the observed speedups are extremely small. Consequently, only a small

number of processors can be used effectively.

In summary, stencil, partition shape, and architecture must be considered in concert when

designing an iterative solution algorithm. They interact in non-intuitive ways and ignoring one

or more of the three almost certainly leads to sub-optimal performance.

45

R(_erences

[Fox84] G.C. Fox and S. W. Otto, "Algorithms for Concurrent Processors," Physics Today,
Vol. 37, pp. 50-59, May 1984.

[Krus83] C. P. Kruskal, "The Performance of Multistage Interconnection Networks for
Multiprocessors," IEEE Transactions on Computers, Vol. C-32, No. 12, pp. 1091-
1098, December 1983.

[Orte85] J. Ortega and R. Voigt, "Solution of Partial Differential Equations on Vector and
Parallel Computers," SIAM Review, Vol. 27, No. 2, pp. 149-240, June 1985.

[Ratt85] J. Rattner, "Concurrent Processing: A New Direction in Scientific Computing,"
Conference Proceedings of the 1985 National Computer Conference, AFIPS Press,
Vol. 54, pp. 157-166, 1985.

[Reed83] D. A. Reed and H. D. Schwetman, "Cost-Performance Bounds on
Multimicrocomputer Networks," IEEE Transactions on Computers, Vol. C-32, No. 1,

pp. 85-93, January 1983.

[Reed85] D.A. Reed and M. L. Patrick, "Parallel, Iterative Solution of Sparse Linear Systems:
Models and Architectures," Parallel Computing, Vol. 2, pp. 45-67, 1985.

[Salt86] J.H. Saltz, V. K. Naik, and D. M. Nieol, "Reduction of the Effects of the
Communication Delays in Scientific Algorithms on Message Passing MIMD
Architectures," ICASE Report 86-4, NASA Langley Research Center, to appear in the
SIAM Journal of Scientific and Statistical Computing.

[Voig85] R.G. Voigt, "Where Are the Parallel Algorithms?" Conference Proceedings of the
1985 National Computer Conference, AFIPS Press, Vol. 54, pp. 329-334, 1985.

[Vrsa85] D. Vrsalovic, E. F. Gehringer, Z. Z. Segall, and D. P. Siewiorek, "The Influence of
Parallel Decomposition Strategies on the Performance of Multiprocessor Systems,"

Proceedings of the lZth Annual International Symposium on Computer Architecture,
ACM Sigarch Newsletter, Vol. 13, No. 3, pp. 396-405, June 1985.

[WittS1] L.D. Wittie, "Communication Structures for Large Multimicroeomputer Systems,"
IEEE Transactions on Computers, Vol. C-30, No. 4, pp. 264-273, April 1981.

1. Report No. NASA CR-178102 12. Government Accession No. 3. Recipient's Catalog No.

ICASE Report No. 86-24
4. Title and Subtitle 5. Report Date

STENCILS AND PROBLEM PARTITIONINGS: THEIR May 1986
INFLUENCE ON THE PERFORMANCE OF MULTIPLE PROCESSOR 6. Performing Organization Code

SYSTEMS
7. Author(s)

8. Performing Organization Report No.
Daniel A. Reed, Loyce M. Adams, and Merrell t. 86-24Patrick

9. Performing Organization Name and Address
10. Work Unit No.

Institute for Computer Applications in Science
and Engineering 11. Contract or Grant No.

Mail Stop 132C, NASA Langley Research Center NASl-17070, NASl-18l07
Hamoton. VA 23665-5225

12. Sponsoring Agency Name and Address
13. Type of Report and Period Covered

('nT1t--~~..~- ~

National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington. D.C. 20546 e:ne: .. ')1 n ... 1"\1

15. Supplementary Notes -~- -~ ~- ~~

Langley Technical Monitor: Submitted to IEEE Trans. Comput.
J. C. South

Final Report
16. Abstract

Given a discretization stencil, partitioning the problem domain is an
important first step for the efficient solution of partial differential
equations on multiple processor systems. We derive partitions that minimize
interprocessor communication when the number of processors is known a priori
and each domain partition is assigned to a different processor. Our
partitioning technique uses the stencil structure to select appropriate
partition shapes. For square problem domains, we show that non-standard
partitions (e.g., hexagons) are frequently preferable to the standard square
partitions for a variety of commonly used stencils. We conclude with a
formalization of the relationship between partition shape, stencil structure,
and architecture, allowing selection of optimal partitions for a variety of
parallel systems.

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement

discretization stencils, domain 59 - Mathematical & Computer
partitioning, parallel computing, Sciences
elliptic equations 62 - Computer Systems

Unclassified - unlimited
19. Security Classif.(of this report) 120. Security Classif.(of this page) 21. No. of Pages 122. Price

Unclassified Unclassified 47 A03

For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1986

