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ABSTRACT

Given a discretization stencil, partitioning the problem domain is an important first
step for the efficient solution of partial differential equations on multiple processor
systems. We derive partitions that minimize interprocessor communication when the
number of processors is known a priori and each domain partition is assigned to a different
processor. Our partitioning technique uses the stencil structure to select appropriate
partition shapes. For square problem domains, we show that non-standard partitions
(e.g., hexagons) are frequently preferable to the standard square partitions for a variety of
commonly used stencils. We conclude with a formalization of the relationship between
partition shape, stencil structure, and architecture, allowing selection of optimal partitions
for a variety of parallel systems.
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1. Introduction

Problem transformation has long been among the most successful solution paradigms. As
an example, consider the solution of elliptic partial differential equations [Orte85]. Given some
planar region R, the classical central difference technique covers the region B with a rectangular
grid and replaces the derivatives at each grid point with central differences. The resulting system
of linear equations is then amenable to solution via a variety of efficient algorithms. This
transformation, from partial differential equation to linear system, makes the solution both
feasible and attractive. Within this framework there remain several alternatives, both in the
choice of discretization stencil (e.g., 5-point or 9—point) and the linear system solver (e.g., direct

or iterative), and the most appropriate choices depend on the problem.

When one considers parallel solution of partial differential equations, an additional
paradigm, problem domain decomposition [Voig85], arises. If multiple processors are to
cooperate, each solving the linear equations on a portion of the grid, the selection of grid

partitions and their assignment to processors are crucial to good performance.

In this paper, we consider the parallel solution of elliptic partial differential equations over a
planar region, using both shared memory and message passing architectures. Historically, only
rectangular partitions of the discretization grid have been assigned to processors, primarily
because the resulting data structures are regular. However, triangles, squares (a special case of
rectangles), and hexagons also tessellate the plane. The effects of these partitions on inter—
processor communication and their relation to the discretization stencil are investigated.
Because partitions like hexagons have a higher area to perimeter ratio than rectangles and

potentially less interpartition communication, there is incentive to investigate their attributes.

Our results show that the efficiency of the parallel solution depends on the partitioning of

the discretization grid, its associated stencil, and the underlying architecture. Observing that the



amounts of required computation and communication are functions of a partition’s area and
perimeter, respectively, we compare the performance of a variety of associated stencil/partition
pairs on both message passing and shared memory architectures. However, we begin with a

survey of related work and a formal specification of the problem.

1.1. Related Work

In a study of hypercube performance, Fox and Otto [Fox84] recently noted that the
efficiency of a parallel algorithm is not determined by the amount of communication but the
ratio of communication to calculation. In their study, they considered the solution of Laplace’s
equation over a square region using a 5-point discretization stencil. Their partitioning placed
squares of grid points on each node of the hypercube, using only nearest neighbor
communication. This choice of partitioning has a lower communication to computation ratio

than the natural alternative, partitioning the grid into an equal number of rectangular strips.

Vrsalovic, et al. [Vrsa85] have also considered the solution of Poisson’s equation over a
square region using a 5-point discretization stencil. Unlike Fox and Otto, they tested triangular,
square, and hexagonal partitions. Their study used the ratio of processing time to data access
time as one performance metric when comparing the speedup of different partitions on a general
class of multiprocessor systems. Their hypothetical multiprocessor systems weré assumed to
have both local memory attached to each processor and global memories accessible via an
interconnection network. Of the three partitions, hexagonal decomposition produced the largest

speedup.

In an experimental study, Saltz, et al. [Salt86] considered solution of the heat equation using
successive over-relaxation (SOR) on an Intel iPSC [Ratt85]. Rectangular strips and squares were

used as grid partitions. They observed that the Intel iPSC’s high startup costs for message



transmission often favored decreasing the number of messages sent, even if that meant sending
more bytes of data. Hence, partitions of rectangular strips were often more efficient that square

partitions.

Superficially, these results by Fox and Otto, Vrsalovic, et al., and Saltz et al. seem
mutually contradictory — each favoring different partition shapes. However, these studies
considered only a small portion of the possible parameter space of stencils, partitionings, and
architectures. Moreover, their underlying assumptions differ. This paper presents a formal
method for analyzing stencil /partition/architecture triplets and applies this method to a variety
of these triplets. Section 2 begins by computing the total number of points in a partition versus
the number of points that must be communicated for several common stencils using each of the
rectangular, square, triangular, and hexagonal partitions. In section 3, these results are used to
determine those stencil/partition pairs that maximize the ratio of computation to
communication. Finally, section 4 compares the performance of an algorithm for solving
Laplace’s equation over a square region using different stencil/partition pairs on both shared

memory and message passing architectures.

2. Communication Costs for Selected Stencil/Grid Partition Pairs

Elliptic partial differential equations, particularly the Laplace and Poisson equations, have
long been used as test vehicles for new solution algorithms and parallel architectures.

Consequently, our study is based on the following problem formulation.

The Problem: Consider an elliptic partial differential equation with Dirichlet
boundary conditions on some square region R. If R is discretized to
contain N = n? points, we wish to solve the resulting linear system
using a point Jacobi iterative solver on a parallel processor
containing p processors (PEs), where p < N.



One interesting question immediately arises. Suppose the grid were divided with each

partition placed in a different PE and that each PE used the point Jacobi iterative solution

technique.! In this scenario, each PE repeatedly updates its partition of grid points and sends
values associated with its partition boundary to logically adjacent partitions. What partition
structure would maximize the ratio of computation to communication? One immediately

observes that

. computation is a function of a partition’s area,
. communication is a function of a partition’s perimeter, and
- the partition’s perimeter that must be sent to other partitions is a function of the stencil.

As an example, Figure 2.1 illustrates square partitions with a 5—point stencil. Each partition
communicates with four neighboring partitions, and the amount of data transferred is directly
proportional to the perimeter of the partition. Although convergence checking for an iterative
scheme also involves communication, the amount and cost of this communication is independent
of stencil type and partition shape and will not be considered. (It is interesting to note that the
communication required for the inner products of the conjugate gradient method is also

independent of stencil type and partition shape.)

In the remainder of this section, we analyze the expected amount of data that must be
transferred between partitions, given possible stencil/partition pairs. In a later section, we will

consider the influence of parallel architecture on the choice of a stencil /partition pair.

!The iterates generated by our parallel Jacobi method are the same as those generated by the sequential Jacobi
method. We also emphasize that our analysis techniques can be applied to other point iterative solvers (e.g., mul-
ticolor SOR and conjugate gradient) as well.
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Figure 2.1 Square partitions with 5—point stencil

2.1. Five Point Stencil

Figure 2.1b shows the 5-point stencil and the equations for the unknowns in Laplace’s
equation that arise from the standard centered difference approximation to the partial
derivatives. With an iterative solution of these equations (e.g., point Jacobi), the new value
computed at each grid point depends on the previous values from its north, south, east, and west

grid point neighbors.

Using this stencil, we now consider the influence of partition shape on inter-PE
communication. To ease comparison, we assume each partition contains n?/p grid points (i.e.,

each PE’s computation is proportional to n?/p).



2.1.1. Rectangular Partitions

Suppose the grid of n? points were partitioned into -2 horizontal strips, and each strip were
r

again partitioned into r rectangles; see Figure 2.2a. Assuming all rectangles are of equal size,

2

each contains —— grid points with sides == and 2L, As illustrated in Figure 2.2b, the perimeter
p r p

contains 2 [ > + 2L

—4 grid points and all are involved in data transfer. However, the four
r P

corner points in each rectangle involve two (2) data transfers. Therefore, the data transferred

nr

p

from each interior rectangle is 2 | == +
r

To find an optimal value for r, the number of horizontal rectangles, we need only maximize

the ratio of computation to communication
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Figure 2.2 Rectangular partitions with 5-point stencil




in a single PE. Differentiating and setting the derivative equal to zero, we obtain p=r? or

r=Vp as the optimal value of r. Therefore, squares are the optimal rectangular partitioning for
the 5-point stencil with a communicating perimeter of % With the 5—point stencil, this result
has a simple geometric interpretation: of all rectangular partitions, the square maximizes the
area/berimeter ratio.

Finally, as an interesting special case, note that if # = 1, the grid of n? points is partitioned

2
into p strips each containing L points. In this case, there is no communication to the east or
p

west and 2n — 4 values (n — 2 north and n — 2 south) are communicated from each partition.?

2.1.2. Triangular Partitions

To partition an nXn grid into p triangles we assume n = 2Vp! and divide the grid into -g—

squares with sides s = 2V2l. Each of these -g— squares will contain 81 grid points. Each of the

squares is then divided into the two “approximate’ triangles shown in Figure 2.3a. Each of the

p triangles contains 4/% grid points and has height s and base s—1.

Now consider the communicating perimeter of the upper triangle in Figure 2.3a, assuming a
5-point stencil. By observation, s values are sent north, s—1 values east, s values south, and 1
value to the west, for a total of 3s. Note that s — 2 of the values transmitted south are used

twice by the receiving triangle. The other triangles are reflections of this case. Because

3Vaon

n =2Vpl and s =2V2l, the total number of values sent from each triangle is v
p

*The four corner points of the partition are fixed boundary values that need not be transmitted.
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Figure 2.3 Triangular partitions with 5-point stencil

2.1.3. Hexagonal Partitions

Now consider dividing the nXn grid into p hexagonal partitions. We again assume that
n =2Vpl implying each partition has nTz=412 grid points. Figure 2.4 shows how this
partitioning can be accomplished. Each hexagon has ! + 1 grid points at the north and south

edges and ! grid points on each of the four remaining sides. The number of grid points in the

upper or lower half of each hexagon is

!
(I +1)+2(: —1)|=20,
1=1

for a total of 4/% in each hexagon.



Figure 2.4 Hexagonal partitions with 5-point stencil

As Figure 2.4 shows, [ + 1 values must be sent north, ! 4+ 1 values south, ! northeast, [

southeast, | southwest, and [ northwest, a total of 6/+2 . Because | =

2\’; , each hexagon must
p

. 3n
communicate —=— +2 values.

Vp

2.2. Nine Point Stencil

The 9-point stencil, shown in Figure 2.5, is a higher order finite difference approximation to
the partial derivatives than the 5-point stencil discussed earlier. When using this stencil, the
iteration value computed at each grid point is a function of its north, northeast, cast, southeast,
south, southwest, west, and northwest grid point neighbor values. In this section we examine the
amount of inter-PE communication for the same partitions discussed earlier and observe the

change in a partition’s communicating perimeter as the stencil changes.
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Figure 2.5 9-point star stencil

2.2.1. Rectangular Partitions

Figures 2.2 and 2.5 show that the communicating perimeter of rectangular partitions for
the 9-point stencil is nearly the same as the communicating perimeter for the 5-point stencil.
Only the four corner points of a partition are each involved in an additional communication. As

before, squares are the optimal rectangular partitioning with a communicating perimeter of

{4/71_ + 4. Because there is no communication to the left or right, rectangular strips (r =1) have
4

the same communicating perimeter for both the 5 and 9-point stencils.
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2.2.2. Triangular Partitions

The dashed lines between grid points in Figure 2.6 highlight the additional communications
required for triangular partitions when using the 9-point stencil rather than the 5-point stencil.
The solid lines between grid points are the communicating perimeter for the 5-point stencil (3s).
The 9-point stencil requires the following additional communications: 1 to the northeast, 1 to
the southeast, 1 to the northwest, 1 to the southwest, and s—2 to the south. This yields a total

communicating “perimeter’” for an interior triangular partition with the 9-point stencil of

45 +2 or %/Zri—i-?.. “Perimeter” is perhaps a misnomer here, for the perimeter of points along
p

the diagonal in Figure 2.6 is “two deep’’ for the 9-point stencil.

Figure 2.6 Triangular partitions with 9-point star stencil
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2.2.3. Hexagonal Partitions

The dashed lines in Figure 2.7 illustrate the the additional communications required with
hexagonal partitions when using the 9-point stencil instead of the 5-point stencil. The solid lines
of Figure 2.7 correspond to the communicating perimeter of the 5-point stencil, shown to be
6/ +2 in section 2.1.3. The 9-point stencil requires | communications to the northeast,
southeast, southwest, and northwest in addition to those for the 5-point stencil. This gives a

total communicating perimeter, for interior hexagonal partitions, of

5n

I 4+2 = ——
10! + v

+2

where

—e

Figure 2.7 Hexagonal partitions with 9-point star stencil
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2Vp
Note that the communicating “perimeter’’ is depth 2 along four of the six edges.

2.3. Other Stencils

Many stencils other than the 5-point and 9-point stencils analyzed above are frequently
used when solving partial differential equations. Figure 2.8 illustrates some of the most common.
For brevity’s sake, we do not include the analysis of the communication required for their
associated partitions. However, the results of this analysis are summarized in Table 2. The
interested reader can verify these results by applying the methods discussed earlier to compute

the additional grid points involved in data transfer for each of these stencils.
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Figure 2.8 Frequently used discretization stencils
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2.4. Computation/Communication Ratios

Before summarizing the results of the previous section, we introduce the notation shown in
Table 1. Using this notation, Table 2 shows relative amounts of computation and
communication for selected stencil/partition pairs. For simplicity, the effects of boundaries on
communication have been elided. (Recall that n? is the number of grid points, and p is the
number of processors.) Table 2 also includes one quantity not discussed earlier, parallel
communication, the amount of data transfer if partition sides can communicate in parallel. This
parallel communication will later allow us to determine if the optimal stencil/partition changes

when communication to neighboring partitions can be done in parallel.

The entries of most interest in Table 2 are the ratio of computation to communication (R)
and the ratio of computation to parallel communication (PR). Table 3 illustrates the relative

magnitude of these quantities for a square grid containing 256X256 points and a parallel system

with 64 processors.

Table 1 Static scheduling notation

Quantity Definition
n? . . . . .
Comp —, the computational complexity of a stencil /partition pair
p
Comm communication complexity of a stencil /partition pair

Pcomm  parallel communication complexity of a stencil /pair

R the ratio —m
omm
PR the ratio —Z0MP_

Pcomm
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Table 2 Summary of stencil/partition analysis

Partition Stencil
5-point 7-point 9-point star | 9-point cross 18-point
Rectangular
Strips
Comm: 2n 2n 2n 4n 4n
Pcomm: n n n 2n 2n
R: o RO o L .
2p 2p 2p 4p 4p
PR: n o o . 2
P R R 2p —2p
Triangle B
Comms 3Van 3Von 4Von 6V2n 6V2n 2
) Vp Vp Vp Vp Vp
Peomms: V2n 2Van 9 2V2n 9 2Van 1 2Van 1
' Vo Vp Vp v »
R n n _.n n __n
’ 3Vep | 3Vep | 4V Vap “6V2p
PR: n —__n n n —__n__
) Vo —2V2p 2V2; 2V 22 ~2V2
Square
4n 4n 4n 8n 8n
: 2 4 4
Comm N R I R Iy Vot
Peomm: n n n 2n 2n
' Vp Vp Vyp Vp Vp
R n N __n n __n
) 4Vp ~4Vp T 4Vp 8Vp ~8Vp
PR: n n n n n
i Vp Vo Vo 2Vp 2Vp
Hexagon
3n 4n 5n 6n 6n
: 2 2 2 4 8
com Vit Ve Ve VT Vit
n n n n n
Pcomm: 1 2 2
2Vp | Vp Vi Vp | Vp '
R: ~_n ~_n ~_" ~_T ~_m
| “Wr | SWr | T | T™r | T
PR: __ 2n n n _.n —__n
~ vy | Vi |V |V | TV

NOTE: Comp == n%/p is used in computing B and PR in all cases.
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An inspection of Table 3 shows that hexagonal partitions yield the highest ratio of
computation to serial communication, except for the 9-point star stencil, where squares are
better. However, if one assumes the inter-partition communication can be done in parallel (i.e.,
all edges of a partition can be transmitted in parallel), hexagons yield the highest ratio in all

cases. With parallel communication, the improvement obtained with hexagons is even greater

R PR
(e.g., % = 1.33 for the 5-point stencil but —P}w"— = 2).

gquare equare
The patterns in Table 3 suggest there is some formal relation between partitions and

stencils, with certain combinations preferred. In the next section we develop techniques for

selecting optimal partition/stencil combinations.

Table 3
Ratio of computation to communication (n =256 and p = 64)

Partition Type Stencil

5—point 7—point 9-point star 9-point cross | 13-point
Rectangle '
R: 2 2 2 1 1
PR: 4 4 4 2 2
Triangle
R: 7.5 7.5 5.65 3.75 3.75
PR: 22.5 11.3 11.3 11.3 11.3
Square
R: 8 8 8 4 4
PR: 32 32 32 16 16
Hexagon
R: 10.66 8 6.4 5.3 5.3
PR: 64 32 32 32 32
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3. Determining Optimal Stencil/Partition Pairs

Using the following definition, a partition can be categorized with respect to a given stencil

by the number of partition perimeters that must be communicated.

Definition: A partition is a k-partition with respect to stencil Sif k perimeters are
communicated when stencil S is used.

For example, the square is a 1-partition with respect to the 5-point, 7-point, and 9-point star
stencils but is a 2—partition with respect to the 9-point cross and 13-point stencils. The hexagon
is a 1-partition for the 5-point and a 2—partition with respect to the 9-point cross and 13-point

stencils.

Moreover, the value of k can be a fraction. The hexagon, for example, is a 1% partition for

the 7-point stencil and a 1% partition with the 9-point star stencil. Why? Because only some

sides of the hexagon are involved in multiple data transfers. This categorization of partitions
with respect to stencils provides a ranking mechanism for stencil/partition pairs. Hence, one can

determine those stencils where !-partition hexagons are preferable to k-partition squares.

When communication from a partition to each of its neighboring partitions is done serially,

the communicating perimeter for square k—partitions is nearly gﬁ, and the corresponding ratio
p
of computation to serial communication is # The communicating perimeter for hexagonal
p

3in

[-partitions is approximately v and the corresponding ratio of computation to serial
P

communication is ﬁ Clearly, an [-partition hexagon yields a higher ratio when

n n

>
3IVp 4kVp

or when
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k> :31_1. (3.1)

If one adopts parallel rather than serial communication, the communicating perimeter for

square k-partitions is, except for a small constant, kn , and the ratio of computation to parallel
q p \/p p

communication is k\r;—. Similarly, the communicating perimeter for hexagonal [-partitions is
p

In and the corresponding ratio of computation to parallel communication is Zn . With
2V'p 3V
parallel communication, /~hexagons are preferable to k—squares when

2n n
>
IVp EVp
or
[
k > 7 (3.2)

Using inequalities (3.1) and (3.2), Table 4 shows optimal stencil/partition pairs, based on
the maximum ratio of computation to communication. Table 4 shows that square partitions are
better than hexagons in only one of the 10 cases. Note that the k and [-values for parallel

communication in Table 4 were obtained by rounding the fractional values for serial

communication up to the next largest integer (i.e., a parallel communication of 1% perimeters

requires two transmissions). Based solely on Table 4, hexagonal partitions are superior to square

partitions because they minimize the interpartition data transfer.® Similarly, triangles are clearly

inferior.

?As we shall see, the underlying parallel architecture also influences the choice of partition shape.
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Table 4 Comparison of Square and Hexagonal Partitions

Square k—value

Hexagon l-value

Optimal partition
3l

Optimal partition

Stencil (serial, parallel) | (serial, parallel) | serial: k > T parallel: k > —é[-
5-point (1,1) (1,1) hexagon (1 > %) hexagon(1 > %—)
. 2 3 4 1
7-point (1,1) (1—6—,2) equal (1 = Z-é—) equal (1 = ?2)
9-point star (1,1) (1%,2) square(l < %1—;)—) equal (1 = —;—-2)
9-point cross (2,2) (2,2) hexagon (2 > —ZLZ) hexagon (2 > 1)
13-point (2,2) (2,2) hexagon (2 > %2) hexagon (2 > 1)

4. Architecture and the Performance of Stencil/Partition Pairs

Our previous analysis did not include architectural considerations, save for the inclusion of
results for both serial and parallel communication. However, the stencil and grid partition
cannot be divorced from the processor connectivity of a message passing architecture (e.g., square
or hexagonal grid) or the storage schema used in a shared memory multiprocessor. Optimal
performance can be achieved only via judicious selection of a trio: stencil, partitioning, and

architecture.

Deriving  expressions for parallel execution times and speed-ups for a

stencil/partition/architecture trio requires a model of execution. Our parallel execution time
model is a variation of one we developed earlier [Reed85] and is similar to the one used by
Vrsalovic, et al. [Vrsa85]. In this model, the parallel iteration time for evaluating one partition

of grid points is

p—processor __
tcyc e - tcomp + ta + tw
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where t.omp is the iteration computation time, t, is the data access/transfer time, and t, is the
waiting/synchronization time.
The computation time tcomp depends on the partition size and stencil, and is independent of

the architecture except for the time, Ty, to execute a floating point operation. Formally, teomp 18

- E!S!n2 T
tcomp - P Ir

where E(S) is the number of floating point operations required to update the value of a grid
. . . n2 . . . . oy . .
point, given a stencil §, — is the number of grid points in a partition, and T}, is the time for a
4
single floating point operation.
The speedup obtained using parallel iterations is simply

tum‘ rocessor

— _cycie .
SP - {p—processor ! (41)
cycle

where the single processor iteration time is just

tcuyncieroceasor — E(S)nszp.
Specific values for the speedup depend not only on the trio of stencil, partition, and network

chosen, but also on the technology constants (e.g., floating point operation time and packet

transmission time).

The other components of the execution time model, t, and t,, depend on the particular
combination of partitioning, stencil, and architecture and are analyzed below.
4.1. Message Passing Architectures

Among the competing classes of parallel machines, message passing architectures occupy an

important niche. The recent emergence of commercial message passing machines (.e.g., the Intel
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hypercube [Ratt85]) has stimulated great interest in this area.

Each processor in a message passing machine contains a local memory and is connected to a
(necessarily) small number of other processors. Access to data contained in another processor’s
memory requires transfer of that data via the interconnection network. Clearly, the performance
of a stencil/partition pair depends heavily on the performance of the interconnection network of
the multiprocessor system. Although a plethora of interconnection networks have been proposed
[Reed83, Witt81], Figure 4.1 shows those networks (meshes) that are directly relevant to iterative
solution of elliptic partial differential equations. Each interconnection network has an associated

“natural” partition (e.g., square partitions on a square mesh).

Consider an interior processor in one of the partition/mesh pairs. During each iteration
(cycle), two groups of data must cross each communications link, one in each direction from
neighboring processors. There are several possible interleavings of computation and remote data
access. These range from a separate request for each communicating ‘“‘perimeter’ grid point
when it is needed to a request for an entire ‘‘side” of the communicating ‘‘perimeter’’ of the
partition. These requests can, in turn, be either overlapped or non-overlapped with
computation. Similarly, the hardware support for interprocessor communication must be
specified. A simple hardware design allows only one link connected to each processor to be active
at any time, increasing the data transfer time. With additional hardware, each processor link

can be simultaneously active.

Each combination of data access patterns and hardware design alternatives leads to an
implementation with different performance characteristics. Rather than cursorily examine a wide

variety of alternatives, we have chosen to examine a smaller set in detail. Specifically, we assume

o communication links are half-duplex (i.e., data can flow along links in only one direction at

a time) and
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Figure 4.1 Selected interconnection networks

®  processors request and wait for all perimeter values before starting computation.

Currently, these assumptions correspond to all commercial hypercube implementations [Ratt85].

Whether the communication is serial or parallel, some processor P; in the interior of the
network will need data from another processor P; that is some number of links l; away. (See
Table 5 for notation.) The amount of data to be transmitted, d;;(S, P), depends on both the
stencil S and the grid partitioning P. Ignoring synchronization and queueing delays, the time to

transmit data from P; to P;, crossing [; links, is
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Table 5 Execution time model notation

Quantity Definition
d;;(S,P)  amount of data sent from ¢ to j
L number of links between ¢ and j
P partition
P; processor ¢
Ps packet size
S discretization stencil
S, speedup
T, time for a single floating point operation
gperellel parallel access time
geerial serial access time
teomm time to send a packet across one communication link
Eeycle time for one iteration
¢ ; time (possibly zero) to interrupt an intermediate processor
Joruar and forward a message
tyena(t,7)  data transmission time from processor ¢ to j
Lotartup overhead for preparing a communication
gieriol serial waiting time

d;(8, P)

Ps Ii'tcomm + (Iij - l)tforward’ (42)

taend(i’j) = talartup +

where #,,,,, is the fixed overhead for sending data, ,,,,, is the packet transmission time, and
torwara 15 the message forwarding overhead incurred at intermediate processors. The ceiling

function reflects the redundant communication due to the fixed packet size Ps.

In general, data destined for other processors will encounter queueing delays, both at their
origin and at intermediate nodes. The latter is expected, but the former is counter-intuitive. As
an example of this phenomenon, consider the mapping of hexagonal partitions onto either a

square or hexagonal mesh. On a square mesh, data from the six sides of the hexagons must exit
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via only four connecting links. Even with all links simultaneously active, some data will be

delayed.

With hexagonal partitions on a hexagonal mesh, each partition edge i directly connected to
its six neighboring partitions. However, each pair of neighbors must ezchange data. Thus, two
transmission delays are needed on each of the six links before exchanges are complete. If all links
can simultaneously be active, two transmission delays will suffice to exchange boundary values.

Conversely, twelve delays will be needed if only one link per processor can be active at any time.

There are two general approaches to managing the interpartition communication problem.
The first relegates management of message passing and the associated queueing of messages for
available links to system software residing in each processor. With this approach, each partition
simply passes the data to be delivered to other partitions to the system software. No
consideration is given to the pattern of communication in time. As an example, each partition
might successively send boundary values on each of its links, then await receipt of boundary
values from neighboring partitions. Although this approach is attractive from a programming
standpoint, it hides the performance issues and may lead to increased contention for

communication links.

The second approach requires programming the exchange of partition boundaries in a series
of phases, each phase corresponding to a particular pattern of communication. In the example of
hexagonal partitions on a hexagonal mesh, discussed above, the communication pattern of
neighboring partitions would be alternating sends and receives. Sender and receiver would
cooperate, each expecting the action of the other. This pseudo~SIMD mode of communication
leads to regular communication patterns with minimal delays. Application of this approach is

the subject of the next section.
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4.2. Message Passing Analysis

Because the range of partition and network possibilities is so large, we have opted to
present only the analysis of the 5-point stencil with square and hexagonal partitions on square
and hexagonal interconnection networks. The triangular partitions were omitted because, as a
cursory examination of Figure 2.3 shows, they require data transmission to four adjacent
partitions. Because square partitions also transmit to only four adjacent partitions and have a
higher ratio of computation to communication, they are always preferable to triangles. The
analysis for 9-point stencils is similar to that presented below; only the case analysis is more

complex.

When partitions are mapped onto an interconnection network, the processors may permit
communication on only one link or on all. In the following we consider only the serial case;

similar analysis applies to simultaneous communication on all links.

We begin with the simplest case: square partitions on a square interconnection network.

Each partition must exchange \7 values with each of its four neighbors. Because only one link
p

per processor can be active, we expect the data exchange to require four phases (i.e., time

proportional to ). However, this would require all processors to simultaneously send and

4n
Vp

receive. At any given instant, only half the processors can send; the other half must receive.

Hence, eight phases are needed, and the total time for data exchange is

serial serial __
ta + tw - 4t:tartup +8

— |t
Ps»\/p comm *
Four startup costs are needed to initiate message transmissions to neighboring processors.

Because square partitions map directly onto the square mesh, no intermediate node forwarding

costs arise. Because the square mesh can be directly embedded in the hexagonal mesh, the data
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exchange delay for square partitions on a hexagonal mesh is identical to that for the square

mesh.*

Like square partitions on a square mesh, hexagonal partitions map directly onto a

hexagonal mesh. Recalling that the north and south sides of a hexagon contain —— + 1 points,

2\/1)

and the other four sides contain 2\7; points each, the data exchange delay is
p

n_ n
_?s— tcomm +8 Ps tcomm'

+1

serial gserial __
ta + tw - Gtslartup +4

The first ceiling term corresponds to the north/south exchange and requires four phases.
Similarly, the second term represents the exchange of data along the four diagonal connections

and requires eight phases.

Finally, hexagonal partitions can also be mapped onto a square mesh. Unlike the other
mappings, this one requires data exchange between non-adjacent processors. In this case, we
assume that rows of hexagons are mapped onto corresponding rows of the square mesh. With
this mapping, north/south connections and half the diagonal connections are realized directly.
The remaining diagonal connections require traversal of two links to "turn the corner” in the -

square mesh. Hence, the total communication delay due to data exchange is

taerial+ fsen'al .
e

‘m -

n
— -+ 1 n n
2Vp — eV
2V 2V
6tsiartup +4 Ps tcomm +4 Psp tcomm +8 .Psp tcomm + 4tforward .

‘This is only true for the 5-point stencil. With the 9-point and other stencils, the distinction between square
and hexagonal meshes is important.
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The first ceiling term corresponds to the north/south connections and the second to the directly
connected diagonals, each with four phases. The third term represents indirectly connected
diagonals, requiring eight phases. Half these phases require forwarding through intermediate

nodes, hence the four forwarding costs.

As noted earlier, similar analysis can be applied to other meshes and stencils. Table 6
shows the number of other partitions with which each partition must communicate (i.e., the
number of transmission startups). In addition, transmission delays are shown as a sum of terms.
Each term is a product of the amount of data exchanged between logically adjacent partitions
and the number of phases necessary to accomplish the exchange. In the table, .the potential
effects of packet size on transmission delay are ignored, as are the times for startup and
forwarding. Table 6 suggests that hexagonal partitions are preferable for 5-point stencils, and
square partitions are more appropriate for 9-point stencils, confirming our earlier, mesh
independent analysis. As we shall see, however, both the number of message startups and
amount of data must be considered when estimating the performance of a stencil/partition/mesh

trio.

4.3. An Evaluation of Stencils, Partitions and Meshes

Equation (4.2), the delay to send data, includes parameters for startup, forwarding cost,
packet size, and packet transmission time. Because our primary interest is the effect of
transmission time, we have ignored the effects of startup and forwarding (i.e., we have assumed
those parameters are zero). When evaluating the relative performance of stencil/partition/mesh
trios, we have attempted to use values for packet size and packet transmission time based on
those for commercial message passing machines. For example, the Intel iPSC [Ratt85] sends 1K

byte packets with a measured transmission time of between 6 and 7 milliseconds.
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Table 6 Message passing data exchange

Number of . H.[’hase-Data
Communicating Transmission
Partition Mesh Stencil Partitions Products O(Ezpected Delay)
Square Square 5-point 4 VSn_ vSn_
P P
Square Square 9-point 8 v8n_ + 16 %n_
P p
Square Hexagon | 5-point 4 VSL vSn_
p D
Square Hexagon | 9-point 8 VSn_ + 12 VSn_
/P ] p
Hexagon | Square 5-point 6 4 L + 1|+ an + 8n 8n
on | 8q P P M Vvl v
{ n - 4in 8n 14n
Hexagon | Square 9-point 6 4 +1(+ +
ron | Sware | 0 B AR
. n 8n 6n
Hexagon | Hexagon | 5-point 6 4 Wp— + 1|+ Wp— vp—-
L :
0
Hexagon | Hexagon | 9-point 6 4 Wnp- +1[+ vs'i— -%71,1

Figure 4.2 shows the speedup, obtained using (4.1), of square and hexagonal partitions on

both square and hexagonal meshes, using a 5-point stencil. In the figure, 1K byte packets are

used. We sce that square partitions yield significantly larger speedup than hexagonal partitions,

regardless of the underlying mesh. This is counter—intuitive and would seem to contradict Table

6. Careful inspection of (4.2), however, shows that packet size is crucial. The term

d;(S, P)
Ps

7 tcomm

in (4.2) accounts for the discretization overhead caused by packets. If Ps, the packet size, is

large, the number of partitions that must receive data from each partition is much more

important than the total amount of data to be sent. For example, sending 4 bytes to 6 partitions
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~ Figure 4.2

Speedup for 5-point stencil

(1024 X 1024 grid with 1024 byte packets)
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is much more expensive than sending 6 bytes to 4 partitions if the packet size is 1024 bytes. The
former requires 6 packet transmissions, the latter only 4 transmissions. Square partitions,
because they require communication with only four neighboring partitions, are preferable to
hexagonal partitions with six neighboring partitions, even though more data must be transmitted

with square partitions.

With a 4 byte floating point representation, a 1024x1024 grid, 1024 byte packets, and
square partitions (the assumptions of Figure 4.2), using more than 16 partitions will not decrease
the communication delay because, beyond this point, the total number of packet transmissions

does not change. Instead, the ratio of useful computation to communication begins to degrade.

As the packet size decreases, we would expect the differential in amount of transmitted
data to become more important. For small enough packets, the total amount of data accurately
reflects the delay. Figure 4.3 shows just this result. For smaller 16 byte packets used in the

figure, hexagonal partitions are preferred over square partitions.

Comparing Figures 4.2 and 4.3, we also see the effects of varying the number of processors.
For a small number of processors, the iteration is compute bound. As the processors (and
partitions) increase, the distinction between differing partition shapes becomes apparent. With
1024 processors, only one grid point resides in each partition, and the effects of packet size on

performance are striking.

Figures 4.4 and 4.5 illustrate phenomena similar to those in Figures 4.2 and 4.3. For large
packet sizes, Figure 4.4, hexagonal partitions are preferable to square partitions because the
hexagons communicate with only six other hexagons, rather than eight other squares. However,
the square partitions require less interpartition data transfer. Only when the packet size

becomes small, Figure 4.5, does the potential advantage of square partitions become apparent.
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Figure 4.3

Speedup for 5-point stencil
(1024 X 1024 grid with 16 byte packets)
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Stencil, partition, mesh, and hardware parameters interact in non-intuitive ways. For 5-
point stencils, square partitions, with their smaller number of communicating neighbors, are
appropriate for large packet sizes. Likewise, hexagonal partitions, with smaller interpartition

data transfer, are appropriate for small packet sizes. The reverse is true for 9-point stencils:

hexagonal partitions are appropriate for large packet sizes (even though they are 1-2— partitions

for the 9-point stencil), and square partitions are best for small packet sizes. The interaction of
parameters cannot be ignored when considering the performance of an algorithm on a particular

architecture.

Recognizing the interdependence of parameters, Saltz ef. al. [Salt86] recently evaluated the
Intel iPSC for solution of the heat equation using Successive Over Relaxation (SOR). They
observed that performance on the iPSC, with its high transmission startup cost and large
packets, varied greatly with the size of the grid and the shape of the grid partitions. For small
grids, horizontal strips, although requiring more interpartition data transfer, were preferable to
square partitions. Only when the grid became large did the advantage of square partitions
become apparent. The reasons are precisely those observed in Figures 4.2 and 4.3: amount of
data versus number of communicating partitions. This validation of our analytic techniques
suggests that they can effectively be used to determine the appropriate combination of partition

shape and size given the architectural parameters of the underlying parallel machine.

4.4. Shared Memory Architectures

Unlike a message passing architecture where partitions exchange values via explicit
messages, a shared memory implementation stores all partition values that must be exchanged in
global, shared memory. The values associated with all other grid points are kept in memories

local to each processor.
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- Figure 4.4

Speedup for 9-point stencil
(1024 X 1024 grid with 1024 byte packets)
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Figure 4.5

Speedup for 9-—point stencil
(1024 X 1024 grid with 16 byte packets)
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Just as for message passing, the iteration time for evaluating one partition of grid points is

tfy; Procestor — teomp T ta T tus (4.3)
only the interpretation of the access (¢,) and waiting (f,) times differ. With a message passing
architecture, these times depend on the contention for communication links. Analogously, shared
memory delays arise from memory contention. Vrsalovic, ef al. [Vrsa85] observed that the

expected waiting time for memory access takes the form

;

P21
C

synchronous

asynchronous
| -
maz 10, teomp |

where C is the number of processors that can access shared memory simultaneously, and ¢, is the
memory access time. The synchronous case, where all processors simultaneously attempt to
access global memory, forces one processor to wait until all others have accessed memory. The
length of this delay depends on the number of simultaneous memory accesses supported. If the
processors operate asynchronously, allowing overlap of computation and memory access, the level
of memory contention is reduced. In the simplest case, a set of global memory modules
connected to a shared bus, the number of concurrent memory accesses C is just 1. If a multistage
switching network connects processors and memories, (4.4) can be replaced with a waiting time
function [Krus83]. Whatever the interconnection network, f, reflects the effects of memory
contention. We will return to this later, but first we consider the expected amount of data

transferred to/from shared memory.

When considering a shared memory implementation of an iteration technique, two choices

arise: local copies of partition boundaries or only global storage. In the first case, each partition
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not only retains a copy of its boundary values after writing them to global memory but also
copies into local memory all boundaries needed from other partitions. With only global storage,
the boundary values are accessed in global memory each time they are needed. The performance
of these two implementations differs considerably based on the stencil, partition, and memory
access technique. Hence, we consider local copies and global access for both 5-point and 9-point

stencils with rectangular strips, square, and hexagonal partitions.

For notational convenience, we let gi"”’ €073 be the number of global memory accesses for
copying boundary values to and from a partition (assuming local copies), g Pt he the number
of global memory accesses (assuming no local copies), t, be the time to access one value from
global memory, and ¢ be the processor overhead associated with copying one boundary value.

With this notation, the cycle time for one iteration is

. g 2 2 .
t:;g;t: copies __ E i n Tfp + giocal copies , (tg + tl) + tw (4.5)
or
. 2 .
t:;cl:om" — E(S)ip— T/p + g:o copies , tg + tun (4.6)

where the three terms correspond to those in (4.3). As with message passing implementations,
E(S) is the number of floating point operations required to update each grid point given stencil
S, p is the number of partitions, and Ty, is the time needed for one floating point operation.
When local copies are used, some processor overhead may be required to maintain the copies
(e.g., copying from system buffers to user memory); this overhead is reflected by {,. Finally, L
and ¢ are hardware parameters; only 9, depends on the choice of local copies or global access.
Thus, we concentrate on derivations of glocal copies 54 gro coPies for selected combinations of

stencils and partitions. The results, derived below, are summarized in Table 7.
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Table 7 Shared memory data transfers

Rectangular
Stencil Strip Square Hezagon
5—point
local 3n 6n
4(n — 2 — —4 —
9e (n ) vp v
gglotel 12(n —2) | 24| —1| | 182 _yo
: Vp Vp
9—point
local 8n 10n
4(n — 2 — —4
9 (n ) v V7
global 20(n — 2 0n g | Bn _ 4y
9a (n ) V> + Vp

The values of gf,"“' copies for both the 5-point and 9--point stencils can be easily determined

from Figures 2.2, 2.4, and 2.7. For example, Figure 2.2(b) (with r = Vp ) shows that a square

n

Vp

partition reads data global memory values from each of its four neighbors and writes its

own four boundaries back to global memory.® The total number of global memory accesses is

then

4n
Vp

+ 4

n 8n
——1] = — — 4,
1|

The 9-point stencil is similar, requiring four extra boundary values, one from each of the

diagonally adjacent partitions.

5The four corner points are written only once.
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The situation changes dramatically if no local copies of boundary data are maintained.
Boundary values are often used multiple times during an iteration. With a 5-point stencil and
square partitions, updating a single element on the boundary generally requires access to three
values on the partition’s boundary and one access to another partition’s boundary. The updated
boundary element must then be rewritten. Hence, five memory accesses are required if no copies

are maintained.

The penalty for not maintaining local copies is even more striking for 9-point stencils.
Figure 4.6 shows the number of global memory accesses for each point in an interior square

partition when the 9-point stencil is used and no local copies are maintained. The numbers are

Figure 4.8
Global memory accesses for 9-point stencil
(square partitions with no local copies)
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determined by counting boundary grid points needed to update the value at each grid point. If
the grid point lies on the boundary, the count is increased by two: the old value must be be read
from global memory and the new value written. Obtaining a general formula for the number of

memory accesses is straightforward, given diagrams such at Figure 4.6. For a 9-point stencil

with square partitions, %i + 8 memory accesses are needed, a five—fold increase over that when
p

local copies are maintained.

4.5. Shared Memory Analysis

Given an analysis of the memory traffic required for maintaining local copies or always
accessing shared memory, only hardware parameters and some assumption about the underlying
interconnection network are needed to predict performance. As noted earlier, the memory
contention function ¢, can reflect a variety of interconnection strategies ranging from a single
global memory bus to a multistage interconnection network. Because the importance of local
copies is most striking when memory contention is severe, we have concentrated on the worst

case: a single bus connecting all global memories and processors.

Figure 4.7 illustrates the speedup obtained for square and hexagonal partitions on a 5-point
stencil with varying numbers of processors and local copies of partition boundaries. In the figure,
access to global memory is assumed to require five times that for a single floating point
operation. The figure confirms the analysis of Table 6 and 7: hexagons are the preferred
partition type. For small numbers of processors, computation time dominates, and there is little
distinction between the partition types. However, as the number of processors increases, the
smaller interpartition data transfer required by -hexagons makes their use attractive. Speedup
increases with the number of processors until the global memory bus becomes a bottleneck; at

that point speedup begins to decline.



40

Figure 4.7

Shared memory speedup for 5-point stencil
(local copies with grid size 1024 X 1024)
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Figure 4.8

Shared memory speedup for 9-point stencil
(local copies with grid size 1024 X 1024)
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Figure 4.8 shows a result similar to Figure 4.7, except for 9-point stencils. As Table 7
suggests, square partitions are preferred. A comparison of Figures 4.7 and 4.8 shows that the 9
point stencil gives larger absolute speedup. The reason is intuitive: the greater computation cost
at each grid point more than offsets the increased communication cost for the 9-point stencil.

Hence, an equal number of processors translates into a greater speedup.

Finally, Figure 4.9 compares maintaining local copies of boundaries to continued access to
global memory. This figure also confirms what Table 7 suggests; local copies are clearly
advantageous. The argument for storing boundaries in local memories is compelling. Without

such copies, the bandwidth of the global bus quickly saturates.

5. Conclusions

The trio of iteration stencil, grid partition shape, and underlying parallel architecture must
be considered together when designing parallel algorithms for solution of elliptic partial
differential equations. Isolated evaluation of one or even two components of the trio is likely to

yield non-optimal algorithms.

We have seen, for example, that an abstract analysis of iteration stencil and partition shape
suggests that hexagonal partitions are best for 5-point stencils, whereas square partitions are
best for 9-point stencils. Further analysis shows that this is only true in a message passing
implementation if small packets are supported. For large packets, the reverse is true (i.e., square
partitions for 5-point stencils and hexagonal partitions for 9-point stencils). Likewise, the type
of .interconnection network is crucial. Mapping grid partitions onto a network that does not
directly support the interpartition communication pattern markedly degrades performance.
Finally, when considering shared memory implexﬁentation of the iterations, maintaining local

copies of the partition boundaries is imperative. Without local copies, or an extremely fast
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Figure 4.9

Speedup for 9-point stencil with grid size 1024 X 1024
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interconnection network, the observed speedups are extremely small. Consequently, only a small

number of processors can be used effectively.

In summary, stencil, partition shape, and architecture must be considered in concert when
designing an iterative solution algorithm. They interact in non-intuitive ways and ignoring one

or more of the three almost certainly leads to sub-optimal performance.
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