
-;
i ,

! "

..,
j
i -

-;)

-
..
! I

.....

-
I

-

-,
I ! .

, ,
;

-I
i '

I'
i

f
i ,
:

--!

NA~-Cr<- I/G 8?)Q
I

THEORETICAL AND SOFTWARE CONSIDERATIONS

FOR GENERAL DYNAMIC ANALYSIS

USING MULTILEVEL SUBSTRUCTURED MODELS

NASA-CR-176822
19860016595

By

Richard J. Schmidt

Robert H. Dodd s Jr.

A Report on Research Sponsored by the

NASA LEWIS RESEARCH CENTER

NASA NAG 3-32 ll3RARV COpy

LANGLEY RESEARCH CENTER
LIBRARY, NASA

H.'1,M~TO~, VIRGINIA

Structural Engineering and Engineering Materials

SM Report No. 15

September 1985

I

-----------~---THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.
I

(2291 Irving Hili Drive-Campus West Lawrence. Kansas 66045
\ .

1111111111111 1111 11111 11111 11111 111111111 1111
NF01200

-

,~

THEORETICAL AND SOFTWARE CONSIDERATIONS

FOR GENERAL DYNAMIC ANALYSIS

USING MULTILEVEL SUB STRUCTURED MODELS

by

Richard J. Schmidt

and

Robert H. Dodds., Jr.

A Report on Research Sponsored By

NASA Lewis Research Center

Research Grant NAG3-32

University of Kansas

Lawrence, Kansas

September 1985

- 50272-101

REPORT DOCUMENTATION 11. REPORT NO.

PAGE I~
4. TItle and Subtitle

Theoretical and Software Considerations for General
Dynamic Analysis Using Multilevel Substructured
Mnnpl c::

3. RKlplent'& Accession No.

5. Repart Dete

September 1985

- 7. Author(s) 8. Perfonnlnc O,.anlntlon Rept. No;

SM Report No. 15

r

Richard J. Schmidt and Robert H. Dodds, Jr.
9. Performlnc 0reanlzatlon Name and Address

University of Kansas Center for Research Inc.
2291 Irving Hill Drive, West Campus
Lawrence, Kansas 66045

1~ Spansorinc Orpnlntlon Name and Address

10. ProJact/Task/Work Unit No.

11. Contract(C) or Grant(G) No.

(C)

(G)

13. Type of Repart & Period Covered

final

14.

,-. 15. Supplementary NotH

~ lL Abstract (Umlt: 200 words) An approach is presented for the dynamic analysis of complex structura
systems using the finite element method and multilevel substructured models. The fixed
interface method is selected for substructure reduction because of its efficiency, accurac
and adaptability to restart and reanalysis. This method is extended to reduction of sub
structures which are themselves composed of reduced substructures. Emphasis is placed on
the implementation and performance of the method in a general-purpose software s·ystem.

- Solution algorithms consistent with the chosen data structures are presented in detail.
This study demonstrates that successful finite element software requires the use of

software executives to supplement the algorithmic language. As modeling and analysis
~ techniques become more complex, proportionally more implementation effort is spent on data

and computer resource management. Executive systems are essential_tools for these tasks.
The complexity of the implementation of restart and reanalysis porcedures also ·illustrate
the need for executive systems to support the non-computational aspects of the software.

The example problems show that significant computational efficiencies can be achieved
through proper use of substructuring and reduction techniques without sacrificing solution
accuracy. The unique restart and reanalysis capabilities developed in this study and the

.... flexible procedures for multilevel substructured modeling allow analysts to achieve
economical yet accurate analyses of complex structural systems.

,..... 17. Document Analysis a. Descriptors

dynamiC analysis, finite element method, multilevel substructuring, modal synthesis,
eigenproblem solution, subspace iteration, software executives, software engineering

b. Identlfiers/Open·Ended Terms

c. COSATI Field/Group

18, Avellabillty Statement

release unlimited

,....,(5 •• ANSI..z39.18)

19. Security Clu. (Thl. Report)

unclassified
21. No. of PII"

188 --------------r---------------; 20. Security Cla.s (ThIs Pice)
unclassified

s •• InstructIons on Rev.,..

22. Price

OPTIONAL FORM 272 (4-77)
(Formerly NTIS-35)
Department of Comm.rce

-
........

,......

ACKNOWLEDGEMENTS

This report is based on the dissertation of Richard J.

Schmidt submitted to the Department of Civil Engineering, Uni

versity of Kansas for the degree of Doctor of Philosophy. The

study was conducted under the direction of Dr. Robert H.

Dodds, Jr.

The research was supported by the NASA Lewis Research Center

under Grant No. NAG3-32. Dr. Murray S. Hirschbein served as

NASA Technical Officer.

Numerical computations were performed on Harris computers

operated by the Computer Aided Engineering Laboratory, School of

Engineering, University of Kansas.

r
!

,-
I

i ,

....
i

-,

CHAPTER

1

2

3

4

CONTENTS

INTRODUCTION

1.1 General

1.2 Substructured Modeling Techniques

1.3 Modal S~thesis Techniques.

1.4 Objectives and Scope. . . .

FIXED-INTERFACE METHOD

2.1 General ..

2.2 Features of the Fixed-Interface Method.

2.2.1 Efficiency of the Reduction Method

2.2.2 Applicability to General Problems.

2.2.3 Substructure Independence.

2.2.4 Ease of Reanalysis ..

2.2.5 Accuracy and Stability

2.3 Formulation of the Fixed-Interface Method

2.3.1 Basic Formulation

2.3.2 Extension to Multilevel Substructuring

2.3.3 Substructure Reanalysis

SOFTWARE DEVELOPMENT ENVIRONMENT

3.1 General

3.2 The POLO Executive.

3.3 Data Definition Language.

3.4 Host Language . . .
3.5 FORTRAN Processing Routines

3.6 Run-Time Configuration.

SOFTWARE DESIGN AND IMPLEMENTATION

4.1 General

4.2 FINITE System Organization.

4.2.1 Organization of FINITE Subsystems.

4.2.2 Application Databases.

4.2.3 Subsystem Interfacing.

Page

1

1

3

10

17

21

21

21

22

23

24

25

25

27

27

33

36

39

39

40

41

46

51

53

57

57

58

60

62

63

CHAPTER

5

6

4.3 User Interface for Dynamic Analysis .

4.4 Data Structures for Dynamic Analysis.

4.4.1 Hypermatrix Data Structures ..

4.4.2 Hypermatrix Solution Algorithms.

4.5 Subsystem DYNAMICS.

4.6 Frequency Analysis.

4.6.1 Generalized Jacobi Method ..

4.6.2 Conventional Subspace Iteration.

4.6.3 Hypermatrix Subspace Iteration.

4.6.3.1 Selection of Iteration Vectors.

4.6.3.2 Solution of the Subspace Eigenprob1em

Page

64

71

73

77

80

83

84

85

87

88

90

4.6.3.3 Orthogonalization of Iteration Vectors. 92

4.6.3.4 Subspace Iteration with Hypermatrices 95

4.6.3.5 Description of Procedures 95

4.7 Fixed-Interface Method. . . 99

4.7.1 Static Constraint Modes. 99

4.7.2 Guyan Reduced Mass. . . 101

4.7.3 Fixed-Fixed Frequency Analysis 102

4.7.4 Mass Coupling Block. 103

4.7.5 Assembly of the Reduced Stiffness and Mass 104

4.8 Restart and Reanalysis ..

4.8.1 Automatic Restart.

4.8.2 Partial Reanalysis

NUMERICAL EXAMPLES

5.1 General

5.2 Cantilever Box.

5.3 Double Tetrahedron.

SUMMARY AND CONCLUSIONS.

6 . 1 Summary. .

6.2 Conclusions

104

106

108

112

112

113

138

153

153

154

REFERENCES . 157

APPENDIX A: USER INTERFACE AND INPUT DESIGN 162

-.

,.....

r

r

..-

r
I

-I

..-
!

FIGURE

1.1

1.2

1.3

1.4

1.5

2.1

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1

5.2

5.3

5.4

5.5

LIST OF FIGURES

Page

Bridge Structure to Illustrate Substructuring. 5

Substructured BRIDGE Model . . 6

Structural Hierarchy for BRIDGE Model. 7

POL Definition of BRIDGE Model 9

Typical Component Modes 13

Substructure Equation Assembly 35

POLO Development Environment 42

Sample Data Structure. .. 44

POLO Run-Time Configuration. 54

Resolution of Logical Data References. 56

FINITE System Organization 59

Functional Dependencies Among the FINITE Subsystems. 61

Substructured BRIDGE Model . . 66

POL Definition of BRIDGE Model 67

Sample Data Structure. . 72

Representation of a Hypermatrix. 74

Banded, Symmetric Hypermatrices. 75

Hypervector Data Structure. . 89

Cosine Function Iteration Vectors. 89

Stiffness Matrix Resizing. 111

Open Cantilever Box Model. 114

Finite Element Mesh for Structure BOX_I. 115

POL Definition of Structure BOX 1.. . 117

Finite Element Mesh for Structure BOX_2. 118

POL Definition of Structure BOX_2. 119

FIGURE

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

TABLE

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

A.1

A.2

Hierarchy of Structure BOX_2

Finite Element Mesh for Structure BOX_3.

POL Definition of Structure BOX_3.

Hierarchy of Structure BOX_3 ..

CPU and Paging Performance of BOX Models

Double Tetrahedron Model .

Finite Element Mesh for Structure JOIST.

Finite Element Mesh for Structure TETRA.

POL Definition of Double Tetrahedron . .

POL Definition of Condensed Double Tetrahedron

POL Definition for Restart and Reanalysis ..

LIST OF TABLES

Number of Retained Normal DOF in BOX Models.

Natural Frequencies for BOX Models .
L1 Norms for Mode Shapes BOX Models

L2 Norms for Mode Shapes BOX Models .

L1 Norms for Modal Strains BOX Models

L2 Norms for Modal Strains BOX Models

. .

.

. . .

Characteristics of the Double Tetrahedron Models

Natural Frequencies for the Double Tetrahedron Models.

Properties for JACOBI Frequency Analysis Method. .

Properties for SUBSPACE Frequency Analysis Method.

·

· .

·

Page

120

121

123

124

137

140

141

142

143

145

150

Page

125

127

131

133

134

135

146

147

177

177

r

r ,
; .

,-.
I

r
;

,....
I

CHAPTER 1 - - INTRODUCTION

1.1 General

The finite element method (FEM) provides the most general modeling

procedure for dynamic analysis of complex structural systems. Often it

is necessary to obtain detailed displacement, strain, and stress infor-

mation within a small region or over an entire structural model. Such a

requirement is usually satisfied by dividing the model into a large

number of elements. As the number of elements increases, the cost of

the analysis correspondingly increases. Limitations of computing

resources (both hardware and software) may force the analyst to com-

promise his objectives by restricting the degree to which the model is

refined. Substructuring is a modeling technique which relieves many of

the restrictions on model refinement.

Substructuring with static condensation [15, 20, 50] is a popular

technique for improving efficiency of static analysis. In the substruc-

turing technique, unique or functionally distinct portions of a

structural system are analyzed separately, condensed, and then combined

to form a reduced model. This reduced model, having fewer degrees of

freedom (DOF) , is generally more economical to analyze than the original

structural model. Results from a static analysis of a condensed model

are identical to those for the same model without condensation. Static

condensation is therefore termed an "exact" reduction procedure.

Aside from its computational advantages, the substructuring tech-

nique yields a secondary benefit. Independent development of the

various structural components (substructures) can proceed

- 1 -

simultaneously.

sic example.

substructures:

The structural frame of an aircraft provides the clas

Independent design teams develop the individual

wing assembly, fuselage sections, vertical stabilizer,

etc. The substructures are later interfaced at their common boundaries.

The modeling and analysis technique can be extended using multilevel

substructuring, where the individual substructures can themselves be

composed of condensed substructures.

In dynamic analysis, exact reduction of an individual substructure

is dependent upon the natural frequencies of the total structural

system. Since the system frequencies are objectives of the analysis and

as yet unknown, the analyst must use reduction methods that are either

iterative or frequency independent (and therefore approximate). The

various reduction methods are collectively known as procedures for com

ponent mode synthesis or modal synthesis.

In general, modal synthesis techniques have not been incorporated

into general FEM programs [13]. A possible exception is some work on

proprietary computer codes, full details of which are not readily

available. Analyses presented in the literature based on modal syn

thesis techniques have been achieved by combining the functions of

structural modeling, eigensolution, and matrix manipulation through the

use of a number of independent and highly specialized computer programs.

As a consequence of this lack of sophistication in available software,

only trival models have been studied (e.g., planar trusses, rectangular

plates, etc). Each analysis requires a specialized driver program to

manage the computational procedures unique to the individual structural

model. Clearly, a more general analysis procedure is required to permit

general studies of modal synthesis techniques.

- 2 -

......
I

r

The objectives of this work are to review the state-of-the-art in

modal synthesis; to design and implement a general, user-oriented

software system incorporating multilevel substructured modeling for

dynamic analysis; and to perform preliminary evaluations of the impact

of the modeling and analysis techniques on computed results. The

development of general-purpose analysis systems, using sophisticated

software techniques, is vital to the incorporation of new analytical

techniques into the analysis and design procedures used by practicing

engineers and researchers. Modal synthesis techniques must be included

as an integral part of the dynamic analysis capabilities of general FEM

software. Without general-purpose analysis systems, the burden of

developing an individual analysis program for each unique structure

would significantly outweigh the computational advantages available with

modal synthesis.

1.2 Substructured Modeling Techniques

A brief review of the substructuring and condensation prodecures

for static analysis is needed before modal synthesis techniques can be

reviewed. Many investigators [20, 50, 56] have shown that partitioning

of a structural model into smaller, often identical, substructures can

lead to significant savings in model generation and computer solution

costs for static, linear and nonlinear analysis. The choice of parti-

tions is generally guided by economic, fabrication, or symmetry

constraints. The boundaries which result between substructures due to

partitioning may then be either real or artificial in form. When the

structure partitioning is applied to an assembly of substructures, a

recursive procedure known as multilevel substructuring is established.

- 3 -

The substructure partitioning ends when all "lowest level" structures

are composed of only finite elements.

The organization of the structural hierarchy for a multilevel sub-

structured model is represented as an inverted tree. The top of the

tree (the root node) defines the highest level structure and resides at

level nnn of the hferarchy. Any number of substructure levels may be

defined below the root node. There is no theoretical limit on the num-

ber of branches (or elements) that enter a node (or structure) at level

"in from level ni-l". All terminal nodes of the tree are finite ele-

ments (ex: bars, frames, triangles, etc.). For generality, no

distinction is made throughout the hierarchy between finite elements and

substructures.

For static analysis of both linear and nonlinear structures, it has

been shown that a substructured model yields the same solution as a

nonsubstructured model which contains only finite elements. The equa-

tions governing the substructuring technique are fully documented

elsewhere [53] and will not be reviewed here. Instead a small example

is presented which illustrates the terminology associated with the sub-

structuring technique and the degree of simplification possible with a

user-oriented approach to substructure analysis. The example structure

is a simple two-span, plane truss shown in Figure 1.1. Components of

the substructured model are shown in Figure 1.2, with names assigned to

each component for identification purposes. Figure 1.3 illustrates the

substructure hierarchy in inverted-tree form. The lowest-level struc-

ture is the hierarchy is SPAN.

- 4 -

.... ,

,-- -J -] 1 '1 - - 1 --1 -- -]---1 ---- --J '----1 ' -1 - -J ,-- 1 - - -) '-J -J -- -]-}

y
NODE

r-
'T
20'

} ... X '*" , 'K; , L,K '*' ~ ,
UI

I- 4 @20' .-1 .. 4 @20·

Figure 1.1. Bridge Structure to Illustrate Substructuring

'"

. _ . .J

v.s~
I 2 4 6 8

SPAN

XSS
~

BRIDGE

Figure 1. 2. Substructured BRIDGE Hodel

. J . .J J

Xs
~

1
3 5 7

l/f\II?h
1 2 468

SPAN

Xss

_ .J

---]--] ----1 --1 -- 1----1 ---1 ------1----]---1----]--] ---1 -----1 ----l---l ---1 -- .. 1

-..J

13 Rod
Elements

13 Rod
Elements

Figure 1.3. Structural Hierarchy for BRIDGE Hodel

"

After substructure SPAN is defined, nodes 1, 3, 7, and 8 are

selected as boundary nodes. They are retained in the condensed sub-

structure SPAN_CON for connection to adjacent substructures. The

remaining interior nodes (2, 4, 5, and 6) are eliminated by

condensation. The transformation of coordinates from SPAN to SPAN CON

is achieved by use of the static constraint modes. A static constraint

mode is the displaced configuration of the interior nodes when a unit

displacement is applied to one of the boundary nodes with all other

boundary nodes constrained. The highest level structure, BRIDGE, is

defined using two copies of the condensed substructure and three rod

elements for closure over the center support.

Figure 1.4 illustrates the ease with which this structural model is

defined for analysis. The problem oriented language (POL) used to

describe the model is taken from the POLO-FINITE structural mechanics

system. As described below, POLO-FINITE supports user-defined, multi-

level subs true turing as a natural extension of standard modeling and

analysis procedures. The lowest level substructure, SPAN, contains 8

nodes and 13 elements. Element types, properties, topology, and nodal

coordinates are easily defined through the POL. The condensed version

of SPAN is then defined as structure SPAN_CON. Structure SPAN_CON con-

tains the four boundary nodes from structure SPAN. These nodes are

identified through the incidence list for SPAN CON. Structure SPAN is

referred to as the "parent" structure. SPAN_CON is the "child". This

technique for defining the condensed structure at an intermediate level

in the hierarchy eliminates confusion on the analyst's part and main-

tains a consistent definition of structures throughout the hierarchy.

Structure BRIDGE is modeled from two copies of SPAN_CON and three

additional rod elements. Copies of SPAN_CON (elements 1 and 2) are

- 8

J

\0

] 1 1

*RUN FINITE
C
C
C
C

C
C
C
C
C
C
C

C
C
C

DEFINE TilE BRIDGE SEGMENT I SPAN.
UNITS ARE "KIPS· AND "FEET".

STRUCTURE SPAN
NUMBER OF NODES 8 ELEMENTS 13
ELEMENTS ALL TYPE ROD E 3.0E04
COORDINATES

1 0.0
2 20.0
3 20.0
4 40.0
5 40.0
6 60.0
7 60.0
8 80.0

INCIDENCES
113
223
334
4 4 5
547
6 6 7
778
835
957

10 1 2
11 2 4
12 4 6
13 6 8

0.0
0.0

20.0
0.0

20.0
• 0.0
20.0
0.0

END OF STRUCTURE SPAN

AX 0.0347

DEFINE THE CONDENSED VERSION OF STRUCTURE SPAN.
RETAIN NODES 1 3 7 AND 8 IN THE CONDENSED STRUCTURE.

STRUCTURE SPAN CON
NUMBER OF NODES 4 ELEMENTS 1
ELEMENT 1 TYPE SPAN CONDENSED
INCIDENCES
11378

END OF STRUCTURE SPAN_CON

-----]

C
C DEFINE TilE HIGHEST LEVEL STRUCTURE AS A COMBINATION
C OF TWO CONDENSED SPANS AND THREE SIMPLE ROD ELEMENTS
C
C

C

C

C

C

C

C

C

C

STRUCTURE BRIDGE

NUMBER OF NODES 8 ELEMENTS 5
ELEMENTS

1 2 TYPE SPAN CON ROTATION SUPPRESSED
3-5 TYPE ROD E 3.0E04 AX 0.0347

COORDINATES
2 0.0 0.0
5 -20.0 20.0
6 0.0 20.0
7 20.0 20.0

INCIDENCES
1 1 4 5 2
2 2 7 8 3
3 5 6
4 6 7
5 2 6

CONSTRAINTS
1-3 V - 0.0
1 U - 0.0

<aetinition ot loaas>

<requests tor computation>

<requests tor output>

STOP

Figure 1. 4. POL Defini tion of BRIDGE Hodel

placed into BRIDGE without rotation from the coordinate system in which

they were defined. The three rod elements require nodal coordinates for

computation of element size and orientation. Boundary constraints on

BRIDGE impose the simple support boundary conditions illustrated in

Figure 1.1. Definition of loads and requests for computation and output

follow.

1.3 Modal Synthesis Techniques

The selection of a method for reducing the order of a structural

model is a key step in the design of a software system with dynamic

analysis and substructuring capabilities. In dynamic analysis, reduc

tion is applied to both the stiffness and mass matrices of the

structural model. Static condensation is an "exact" method for reducing

the size of the stiffness matrix in static analysis. The method is

termed "exact" because results for a substructured model are identical

to results for a model of the same structure in which substructuring is

not used. Chapter

method exists for

2 will show that no corresponding exact reduction

dynamic analysis. Numerous dynamic reduction tech-

niques have been proposed to improve substructure representations [1, 2,

6, 10-14, 21-34, 36-40,44-49, 52, 54, 59]. The remainder of this sec

tion presents an overview of the most significant techniques available

in the open literature in order to illustrate the variety of procedures

that have been developed.

The concept of component mode synthesis was first proposed by Hurty

in 1960 [31]. Hurty developed a method to aid in the analysis of framed

structures. Continuous beam members were represented by admissible

functions (low-order polynomials) to develop a numerical model with a

- 10 -

.-

.,

r

.,

,......
,

r

finite number of degrees of freedom. This procedure is essentially the

application of the Rayleigh-Ritz procedure at the member level.

Perhaps the simplest of all component mode techniques is Guyan

reduction [23] . This approach is a direct extension of static

condensation. The transformation matrix of static constraint modes,

which is used to reduce the order of the stiffness matrix in static

analysis, is also used to reduce the order of the structure mass matrix.

The kinetic energy of the interior nodes is represented by only static

mode shapes, thus creating the potential for significant analysis error.

The simplicity of this method makes it the most popular reduction tech-

nique in use today in spite of its limited accuracy.

Improved recovery of the substructure displacements for models

condensed by Guyan reduction was studied first by Kidder [36] and again

later by Miller (48]. Reduction of the substructure equations follows

the standard procedure for Guyan reduction. After the mode shapes for

the highest level structure have been computed, a frequency dependent

transformation is written between the retained DOF at the highest level

and the reduced substructure DOF. This new transformation is then used

to recover substructure mode shapes. The frequency estimates obtained

by eigenvalue solution of the system equations are used in the new

transformation.

Rational procedures for selection of retained (or master) DOF for

Guyan reduction were proposed by Henshell and Ong [26] and later by Shah

and Raymund [54] . The objective of the procedures is to retain those

DOF that most closely maintain the low-frequency response of the

structure. The first approach simply retains the DOF with the smallest

stiffness-to-mass ratios. The other approach is to recursively perform

- 11 -

Guyan reduction, eliminating only one DOF at a time. The DOF that is

eliminated is presumed to have a negligible effect on the frequency

range of interest. The use of these methods is limited to models that

are not substructured but that are large enough such that reduction

prior to eigenproblem solution is desirable.

Hurty's component mode method was extended in 1965 to include dis-

crete (finite element) models [32]. Instead of low-order polynomials,

physical mode shapes that represented the individual substructure are

used as component modes. These mode shapes are rigid-body modes, static

constraint modes, and fixed-fixed normal modes. A fixed-fixed normal

mode is a vibration mode shape for an individual substructure with all

of its boundary nodes constrained. Rigid-body modes are a substruc-

ture's displacement configurations which contain no strain energy. The

various mode shapes are illustrated in Figure 1.5. Geometric com-

patibility between adjacent substructures is enforced through constraint

equations at nodes common to both substructures. A simplification of

Hurty's fixed-interface method was presented by Craig and Bampton [10].

Substructure component modes were divided into only two groups: con-

straint modes and normal modes. This resulted in a procedure which is

conceptually simpler, easier to implement in the analysis software, and

easier for the analyst to use.

Goldman [22] introduced the free-interface method in which only

rigid-body modes and free-free normal modes are used in the synthesis

process. This technique eliminates the computation of static constraint

modes, but this advantage is negated by the poor accuracy of the method.

Hou [30] presented a variation of Goldman's free-interface method in

which no distinction is made between rigid-body modes and free-free

-.12 -

-,

- --)----1 .- -1 --1 - --1 1 0) -. 1

~

~~ ~ ~=-==-==== -~==~

......
w

STATIC CONSTRAINT

NORMAL

- -] 0] --- -- 1 - 0_)

RIGID BODY

p

ATIACHMENT

Figure 1.5. Typical Component Modes

1 -- ---J -]

normal (elastic) modes. Hou's approach also includes an error analysis

procedure to evaluate convergence.

Gladwell [21] introduced "branch mode analysis" by combining free-

interface and fixed-interface analyses to reduce the order of the

coefficient matrices (stiffness and mass) for individual substructures.

The reduction procedure depends upon the topologic arrangement of the

substructures in the model. Thus reduction of anyone substructure

requires knowledge of the arrangement of all substructures in the model.

Bajan, et. al. [1] developed an iterative form of the fixed-

interface method. Significant improvements in accuracy are achieved by-

repeating the reduction, based on updated estimates of system fre-

quencies and mode shapes.

A second-order, frequency-dependent Guyan reduction procedure was

developed by ~right and Miles [59] to improve the accuracy of the

reduction. Use of this approach requires the solution of a non-

symmetric eigenvalue problem which has twice the order of a standard

Guyan reduction model.

A modification of the free-interface method known as "interface

loading" was presented by Benfield and Hruda [6]. Interface loading is

essentially a modification of the stiffness and mass of the object sub-

structure to account for adjacent substructures prior to computation of

free-free component modes for the object substructure. Morosow and

Abbott [49] developed a mode selection procedure applicable to interface

loading. Holze and Boresi [29] incorporated the interface loading tech-

nique into a complete dynamic analysis procedure.

An approach for improving displacement recovery for modal synthesis

models, similar to that used in Guyan reduction, was presented by Kuhar

- 14 -
~

I

-i
and Stahle [38]. They developed a dynamic transformation method which

can be used with any of the basic modal synthesis methods. A frequency

dependent transformation of the equations for the highest level struc-

ture is developed following modal synthesis reduction. The

transformation is derived for a given target frequency about which fur-

ther reduction is desired. Improvements in substructure mode shape

recovery are achieved by using the frequency dependent transformation

after system modes have been computed.

The use of attachment modes as an additional type of component mode

was first proposed by Bamford, et. al. [2]. An attachment mode is the

displaced configuration of a substructure when a unit force is applied

to one boundary DCF while all other boundary DCF remain free of loads.

Use of attachment modes was expected to reduce the number of normal

modes required to accurately describe the displacement behavior of the

substructure. However, there is a potential problem of linear depend-

ence between attachment modes and normal modes.

MacNeal [44] introduced the use of hybrid modes and inertia-relief

attachment modes for component mode synthesis. Hybrid modes are sub-

structure normal modes computed with a combination of fixed and free

boundary conditions. Inertia-relief attachment modes are attachment

modes for substructures that contain rigid-body freedoms. MacNeal's

development also included "residual flexibility" and "residual mass" to

approximate the static contribution of the truncated higher modes to the

total system response. Use of these residuals is analogous to the mode

acceleration procedure for mode superposition. Rubin [52] extended the
r

residual flexibility approach for free-interface substructures by the

r ,
use of a second-order representation of the truncated modes.

- 15 -

From a more application-oriented viewpoint, Hintz [28] grouped

combinations of the four mode classes: rigid-body, static constraint,

normal, and attachment into five different interface mode sets.

Implications of truncating a selected interface mode set were discussed

and guidelines were developed for retaining accuracy with a reduced size

model. In another "application paper, Craig and Chang [12] discussed

alternatives for reduction of boundary coordinates for a number of dif

ferent modal synthesis methods. Also included in their discussion were

requirements for substructure modeling that facilitate experimental

verification of the numerical model.

In the only known discussion of modal synthesis for multilevel

substructured models, Herting [27] presented work in progress on

NASTRAN. The modeling technique allows retention of an arbitrary set of

substructure normal modes (fixed, free, or hybrid), inertia relief

modes, and all geometric coordinates at substructure boundaries. This

method is the most general of the modal synthesis techniques. It is

shown in the study that both the fixed-interface method of Craig and

Bampton

of the

and the MacNeal's residual flexibility method are special cases

general technique. No discussion of solution economy or user-

interface in the NASTRAN implementation are presented.

A pair of frequency-dependent, iterative methods was developed by

Leung [39, 40] as extensions of Guyan reduction and the fixed-interface

method. In both methods, the unknown system frequency is retained in

the substructure reduction equations. Initial estimates for the natural

frequencies of interest are improved after each iteration of the proce-

dure. The reduction yields a single coefficient matrix, the dynamic-

stiffness matrix, which defines a "standard" eigenvalue problem. In

- 16 -

r

contrast, other modal synthesis techniques produce two coefficient

matrices, generalized stiffness and mass matrices, which define a

"generalized" eigenvalue problem.

A second-order substructure condensation procedure generally ap-

plicable to the basic modal synthesis methods was presented by Kubomura

[37]. In this procedure, the component modes used in reduction include

fixed-interface, free-interface, and hybrid modes. Using the system

eigenvalue of interest, a rational approach to mode selection is

developed.

As an extension of Hurty's first paper on modal synthesis,

Meirovitch and Hale expanded the use of admissible functions in com-

ponent mode synthesis [24, 25, 45-47]. Their work broadened the

definition of admissible functions that are suitable for use in sub-

structure reduction. Their technique is applicable to both continuous

and discrete structural models. While the use of admissible functions

other than eigenfunctions presents the potential for significant reduc-

tion in analysis costs, the selection of suitable functions (low-order

polynomials) has not been automated such that the approach can be used

in a general finite element code.

1.4 Objectives and Scope

The objectives of this work are:

1. To identify those modal synthesis techniques that are suitable
for incorporation into a general-purpose FEM software system
which includes multilevel substructured modeling capabilities.

2. To design and implement the software required to perform general
purpose dynamic analysis. Specific needs include a flexible
input language, an automatic and accurate modal synthesis tech
nique, and efficient analysis-restart capabilities.

- 17 -

3. To evaluate the performance of the modal synthesis technique
chosen for implementation. Performance is evaluated in terms of
the quality of the computed results obtained from models in
which condensation is used and the efficiency with which the
analyst can restart the analysis to improve the computed
results.

While more than one of the foregoing modal synthesis methods may be

suitable for multilevel substructured modeling, only the fixed-interface

method of Craig and Bampton is studied in detail and implemented.

Reasons for this selection and details of the method are presented in

Chapter 2. Performance of the condensation technique is evaluated

through comparisons of natural frequencies, mode shapes, and strains.

The quality of the results for substructured models is measured against

results for structural models analyzed without substructuring. Changes

in modeling parameters such as substructure topology, degree of reduc-

tion, and number of levels in the substructure hierarchy are evaluated

for their effect on analysis cost and solution accuracy.

The simple finite elements (trusses, plates, shells, etc.) used in

this study are those commonly found in general finite element codes.

Elements with shape functions specially suited to dynamic response are

not used. However, both lumped and consistent mass formulations for the

individual elements are considered.

The computation of element strains is derived directly from vibra-

tion mode shapes rather than from the displacement configuration

corresponding to a given loading condition. The use of these "modal

strains n facilitates a more precise evaluation of the effects of modal

synthesis. Errors in strain from each of the vibration modes become

recognizable whereas they would be masked if the various mode shapes

- 18 -

,......
I

were superposed into a single displacement vector. Linear elastic be-

havior is assumed so element stresses will exhibit the same error

characteristics as element strains and need not be evaluated separately.

The effects of structure damping are not included in this study.

While synthesis techniques are applicable to reduction of the damping

matrix, sufficiently' reliable and complete performance studies can be

made with damping neglected.

It is recognized that forced-vibration response analysis (mode

superposition or time-history integration) is a necessary analytical

feature in general purpose dynamic analysis. However, such a capability

is not necessary to satisfy the objectives of this study.

Displacement boundary conditions applied to structural systems can

take the form of absolute constraints or relative (multi-point)

constraints. An absolute constraint imposes a fixed displacement (zero

or nonzero) to a specific nodal DOF, regardless of loads on the

structure. A relative constraint defines a linear relationship between

the displacements of two or more nodal DOF. In this study, only zero-

displacement, absolute constraints are considered.

The software developed for this study was implemented as an exten-

sion of the POLO-FINITE system [16, 43]. POLO-FINITE is a general

finite element system that supports user-defined, multilevel substruc-

tured modeling for linear and nonlinear analysis of static systems. The

data base management system and the efficient hypermatrix solution t~ch-

niques make POLO-FINITE a reliable basis on which to develop the above

solution capabilities.

A principal feature of the software developed in this study is the

analysis restart capability. Since substructuring and condensation for

- 19 -

dynamic analysis is an approximate technique, the analyst will generally

desire to verify the model by additional refinement and reanalysis. An

efficient software system permits the analyst to simply enhance the

existing model and recompute only those quantities affected by the

enhancement. This feature is rarely available in an automated, user

controlled form. In this study, analysis restart has no relation to the

checkpoint/restart procedures supported by various hardware and software

systems.

The remainder of this report is divided into chapters which discuss

the major topics covered. Chapter 2 contains a detailed review of the

fixed-interface method and its use in multilevel substructured modeling.

Details of the POLO executive system as a tool for software development

are presented in Chapter 3. Both the development and the run-time en

vironments supported by POLO are reviewed as they pertain to this study.

Software design and implementation are discussed in Chapter 4. Topics

include the structural modeling procedure, solution algorithms, and

analysis restart. The integration of data structures, system processing

modules, and element routines are discussed from the viewpoint of the

software engineer. Performance of the software resulting from this work

is examined in Chapter 5. Results from a number of example problems are

discussed. Chapter 6 presents a summary of the study and conclusions.

Topics for further investigation are also proposed.

- 20 -

....,

,.....

CHAPTER 2 FIXED-INTERFACE METHOD

2.1 General

The modal synthesis method selected for implementation in this

study is the fixed-interface method as formulated by Craig and Bampton

(10). The reasons for this selection are presented in the next section.

Section 2.3 contains a detailed review of the development of the method

and the necessary extensions of the method for use with multilevel sub

structured modeling. Procedures for analysis restart are also

developed.

2.2 Features of the Fixed-Interface Method

The goal of the fixed-interface method, as for all of the various

modal synthesis methods, is to generate stiffness and mass matrices that

accurately represent the stiffness and inertia characteristics of a

substructure with the minimum number of degrees of freedom (DOF). Two

basic operations are performed in the reduction process. First, the

substructure coefficient matrices are transformed from geometric coor

dinates to a reduced set of generalized coordinates. The transformation

matrix normally contains substructure mode shapes that adequately

describe the dynamic characteristics of the substructure. The second

operation is the assembly of the reduced substructure matrices into the

next higher level of the model hierarchy. The details of this operation

vary according to the nature of the generalized coordinates representing

each substructure. In a multilevel substructured model, the transforma

tion and assembly processes are performed recursively at each level.

- 21 -

In the fixed-interface method, all static constraint modes and some

of the fixed-fixed normal modes are selected as component modes for the

reduction transformation. The set of generalized coordinates contains

normal DOF associated with the fixed-fixed normal modes and boundary DOF

which are linked to the static constraint modes. During assembly of the

reduced substructures, displacement compatibility is enforced by equa

tions of constraint which tie common boundary DOF at the interfaces

between adjacent substructures. Since the boundary DOF retain their

physical distinction during the transformation to generalized coor

dinates, the assembly procedure is identical to that used for non

substructured models. The normal DOF are not included in the constraint

equations. A complete development of the method follows in section 2.3.

2.2.1 Efficiency of the Reduction Method

The efficiency of a dynamic reduction method is influenced by three

factors. First, the method must produce an accurate reduction in the

order (number of DOF) of the substructure stiffness and mass matrices.

An efficient method yields synthesized stiffness and mass matrices that

accurately represent the

with the minimum number

dynamic characteristics of the substructure

of DOF. Second, the degree of analyst par-

ticipation should be limited to simply the definition of the model and

specification of the solution type. A method should be automatic once

the solution process begins, hence eliminating the need for the analyst

to interpret intermediate results and restart the analysis. This is not

to imply that the analyst should surrender control of the solution

process. Instead, the analyst should be relieved of the burdensome task

of supervising the computational process. Third, the synthesis method

- 22 -

-

,.....

-

should be efficient in its use of computer resources. Given the problem

size, algorithms should be chosen that minimize the required computer

resources, particularly processor time and I/O (data transfers to and

from secondary storage). The number of arithmetic operations performed

should be predictable rather than dependent upon an arbitrary test for

convergence of an iterative process.

The fixed-interface method successfully satisfies the efficiency

criterion. The method is simple to apply and yields a significant size

reduction of properly substructured models. As will be demonstrated in

the example problems, the required user input and control is minimal.

2.2.2 Applicability to General Problems

A wide variety of dynamics problems exists for which modal syn

thesis is needed to achieve an economical and accurate solution. A

synthesis method used in a general purpose FEM system should be capable

of modeling substructures over a broad range of geometries with various

types of boundary constraint. Also helpful would be the ability to

incorporate experimental data (natural frequencies and mode shapes) into

the substructured model.

Dynamic reduction methods should lend themselves to incremental

solution procedures. By necessity, finite element analysis of a non

linear structure is performed incrementally. As the effects of

nonlinear materials and geometry occur, the coefficient matrices must be

reformulated to accurately model the current state of the structure.

The fixed-interface method has limited capability to use experimen

tal data. In the computation of substructure mode shapes for the

reduction process, all boundary nodes are fixed. As a consequence,

- 23 -

experimental testing of a structural component must match this boundary

constraint if the results are to be useful in the finite element model.

The fixed boundary conditions may prove impossible to develop

experimentally. However, the fixed-interface method is well suited to

the iterative solutions in nonlinear analysis. When linear substruc

tures are reduced and act as elastic restraint to the nonlinear region

of a model, the iterations can be performed efficiently with no need to

continuously repeat computations for the linear regions.

2.2.3 Substructure Independence

The analysis and design responsibilities of the various components

of a structure are often

groups. This separation

should not be encumbered

Substructure independence

distributed among different organizational

of responsibilities has many advantages and

by the synthesis method used in analysis.

also provides computational advantages. The

definition and analysis of individual substructures establishes natural

breakpoints in the analysis process, allowing the analyst to "step

through" a complex model, one component at a time. Also, use of effi

cient parallel processing hardware is possible when individual

substructures are treated independently. Therefore, the synthesis

method should treat each unique substructure as an isolated entity in

evaluating its dynamic response prior to system assembly. The topology

that defines substructure connectivity should not be required until the

equations at the next level of the hierarchy are ready for assembly.

Substructure independence is preserved in the fixed-interface

method. The requirement for fixed boundary nodes, that is a drawback

with respect to the previous criteron, is the key factor in satisfying

- 24 -

,..... ,

,.....

,.....

substructure independence. Consideration of substructure topology is

not necessary in the condensation and synthesis of a given substructure.

2.2.4 Ease of Reanalysis

The most reliable test for convergence of a dynamic reduction

method requires a s"econd solution of the problem with a more highly

refined model (more independent OaF). The addition of more oaF to the

model can be a relatively simple task, achieved at little expense, or it

can be as difficult and expensive as a complete reanalysis of each

substructure. The ideal synthesis method allows the simple addition of

previously neglected terms to improve the accuracy of the reduction.

These terms generally take the form of truncated substructure normal

modes.

As demonstrated in the Section 2.3.3, modification of the transfor-

mation equations for substructure reanalysis is a conceptually simple

process in the fixed-interface method. First, the eigenproblem solver

is restarted to compute the additional fixed-fixed normal modes. Then,

these new mode shapes are added to the transformation matrix and new

normal oaF are computed. All computed results related to boundary oaF

are unchanged by this process and thus need not be repeated.

2.2.5 Accuracy and Stability

Accuracy of results is important in two respects. Yell defined

modal response data is needed to accurately synthesize the higher level

structures for frequency and transient analysis. Also, the quality of

the displacement vectors is critical in recovery of strains and stresses

within the interior of lower level substructures. Accurate stresses

- 25 -

require that displacement gradients be well formed. Closely tied to

accuracy of the results is the numerical precision with which computa

tions must be performed. Operations such as orthogonalization and

triangulation can have a significant impact on final accuracy and the

need for such operations should be considered in selecting the reduction

method.

The potential for numerical instabilities in the reduction methods

can be identified by examining the formulation of the methods. Typical

problem areas are the divide-by-zero singularity and the linear depend

ence of the vectors contained in a transformation matrix.

The linear independence of the component modes in the fixed

interface transformations ensures stability of the method and accuracy

has proven favorable for many problems. In fact, it is possible to

obtain any level of accuracy desired simply by adjusting the number of

normal OOF included in the synthesis process.

The decision to implement the fixed-interface method is supported

by the above evaluation and by the role of this method as a component of

several other modal synthesis techniques [1, 25, 27]. Implementation of

the fixed-interface method will act as a basis for further research into

modal synthesis and into other areas of structural dynamics. This study

establishes the necessary first step by developing a general software

system with multilevel substructuring capabilities.

- 26 -

-

,.....

2.3 Formulation of the Fixed-Interface Method

2.3.1 Basic Formulation

Consider an isolated substructure consisting of only finite ele-

ments, such as structure SPAN in Figure 1.2. The undamped, free

vibration equation of motion of the substructure, partitioned to

separate master (m) arid slave (s) DOF, is:

s
u

m
u

2
- w.

L [~:: - ~ -~:~] - uu-
m
: -1- (O)

rfls : Mmm
(2.1)

Master DOF are those that remain after condensation and are usually DOF

at nodes on the boundary of the substructure. They are used for connec-

tivity to adjacent substructures. The slave DOF are those that are

eliminated and usually lie in the interior of the substructure. The

natural frequency wi is that of the complete structural system, not just

the isolated substructure. The presence of nonzero off-diagonal blocks

[.~s] and [Msm] L'n Eq. (2 1) . l' h f . n . Lmp Les t e use 0 a consLstent mass

formulation. When a lumped mass model is used, the mass matrix is

diagonal.

The upper half of Eq. (2.1) can be expanded to

(O) • (2.2)

Solving for {us} in terms of (um) yields a coordinate transformation

which is dependent on the unknown system vibration frequency w •. If the
1.

inertia forces on the slave DOF are assumed to be small compared to the

static forces, the former may be neglected. Thus, the frequency depend-

ence is eliminated and Eq. (2.2) simplifies to

- 27 -

Defining the coordinate transformation [~c] from (um) to (us) as

scm
(u) - [cp] (u)

(uS) can be eliminated from Eq. (2.3) to yield

(2.3)

(2.4)

(2.5)

As in static condensation, [~c] is evaluated by standard equation

ss solving techniques requiring triangulation of [K] and reduction opera-

t · th t lo·n _ [Ksm] . loons on e vec ors The columns of the transformation

matrix [~c] ar.e known as the nstatic constraint modes. n Physically, a

static constraint mode is the displaced configuration of the slave DOF

resulting from a unit displacement applied to one master DOF while all

other master OOF are held fixed.

Now attention is returned to the inertia contribution of the slave

DOF. If the set of master nOF is restrained from displacement, Eq.

(2.1) reduces to

(0) . (2.6)

The solution of this eigenvalue problem yields the matrix of fixed-fixed

normal
n ss ss modes, [~], having the same order as [K] and [M]. The com-

puted vibration frequencies, wi, are those of the isolated substructure

with its boundaries fixed.

The complete set of substructure normal n modes, [cp], plus the

static constraint modes, c
[~], provide the means to transform the dis-

placement vector (u) from geometric coordinates to an equivalent set of

- 28 -

-

generalized coordinates, {q}. However, an exact transformation does not

serve to reduce the order of the coordinate vector. To reduce the order

of the substructure mass and stiffness matrices, the transformation to

generalized coordinates is defined as

s n u f [Tf]
q

{u} - -. [T](q) (2.7)
m m u q

The fixed-interface transformation, [Tf] , is derived from the static

constraint modes and a truncated set of fixed-fixed normal modes as

[

-n I C]
-~-+~-- (2.8)

-n . n
in which [~] is a rectangular matrix of mode shapes selected from [~].

In general, the modes corresponding to the lowest natural frequencies,

are retained -n in [~]. s The slave displacements, {u }, are now de-

pendent on both the static constraint modes and the retained normal

modes of the isolated substructure. Since the full set of substructure

normal modes is not used in the transformation, the generalized coor-

dinates {q} approximately represent the geometric coordinates {u}.

Two observations regarding Eq. (2.8) are noteworthy. First, the

generalized coordinate subvector, m {q}, corresponds precisely to the

master set of geometric coordinates, {um}. This insures geometric com-

patibility between adjacent substructures when the substructure

equations are assembled at the next higher level of the hierarchy.

Secondly, as the number of mode shapes in [~n] is reduced, the transfor-

- 29 -

mation shrinks to just the static constraint modes and thus, the fixed-

interface method degenerates to Guyan reduction [23]. Likewise as more

and more mode shapes are -n f retained in [~], (T] approaches an exact

coordinate transformation.

The strain and kinetic energies for the isolated substructure are

given by

v 1/2 _~:_IT [~::-~-~:~] !-~:- ,and
m • .ms,Kmm m

u K I U

(2.9a)

T 1/2 !_~:_IT [~::-f-~:~] -~:-I
.m . .InS I • .mm .m
u M I M U

(2.9b)

where (u) is the first time derivative of (u). The displacement and

velocity vectors in Eq. (2.9) can be replaced with the generalized coor-

dinate vectors by substitution of Eq. (2.7) and (2.8). The reduced

order stiffness and mass matrices in generalized coordinates are ob-

tained by maintaining equivalence of strain and kinetic energies between

the two coordinate systems. The resulting forms are

and (2.10)

I

f f T f [(I] : (Mnm]]
[M] - (T] (M] [T] - -------1-------

(~n] : (MG]

, where (2.11)

(2.12a)

(2.12b)

- 30 -

,......

When the substructure is composed only of elements formulated with

lumped mass, the off-diagonal submatrix of equation (2.11) simplifies to

(2.13)

G and [M] are the Guyan reduced stiffness and mass matrices. They

take the forms

[Kmm] + [~s][~c] and (2.14)

[~] + [~c]T[Mss][~c] + [~c]T[Msm] + [Mms][~c]. (2.15)

The form defined for [KG] is identical to that obtained when static

condensation is applied to the stiffness in static analysis. This fact

proves useful for implementation of the synthesis procedure. For the

simpler case of a lumped mass formulation, Eq. (2.15) reduces to

The identity submatrix in [Mf]

result from the -n orthonormality of the mode shapes in [~].

(2.16)

diagonal matrix of natural frequencies corresponding the the modes

retained in [~n].

The normal coordinates are coupled to the geometric DOF only in the

reduced mass matrix (submatrices [~n] and [Mnm]). The off-diagonal

submatrices of [Kf] are null as a consequence of the equation

development.

- 31 -

Regardless of which mass matrix formulation is used, consistent or

lumped, the reduced mass submatrix, [MG] , is fully populated. The com-

putational advantage of a lumped mass formulation is therefore limited

to reduction of the lowest level substructures in the hierarchy.

Yhen time-dependent loads are applied to the slave DOF, they too

must be transformed to generalized coordinates. If the substructure is

subjected to an arbitrary virtual displacement, (Su), the work done by

the substructure forces (P) is

SW or (Su) (P). (2.17)

The condensed forces, (Fl, applied to the generalized coordinates must

do the same work during a virtual displacement consistent with (Su),

thus

or
(Su) (P).

Substituting Eq. (2.7), the condensed force vector becomes

(F)

(2.18)

(2.19)

The stiffness, mass, and loads for each substructure are parti-

tioned and condensed. Assembly of both the reduced substructure mass

and stiffness into the next higher level follows the standard procedure

for element assembly [10]. Displacement compatibility between adjacent

substructures is automatically insured by the use of the master DOF as

generalized coordinates. Although assembly of the reduced substructure

stiffness and mass is routine, an illustration of the final matrices is

useful. For an assembly of "r" substructures

- 32 -

-

,....

-

o

* [K] -

o

o o

o

,,2
t.I

r

o

o

o

o
*G K

I o o

o I o

* [M]

o 0

~n~ ...
(2.20a) (2.20b)

The master DOF from the various substructures are coupled only in the

submatrices [iG] and [~G], the assembled Guyan stiffness and mass.

The synthesis process for one level of substructuring is now

complete. After a free-vibration analysis has been performed for the

synthesized structure, it may be desirable to recover the portion of the

system mode shapes contained within the condensed substructures. This

is achieved by applying Eq. (2.7) to that portion of the system mode

shape associated with the generalized DOF from a particular

substructure.

In summary, the fixed-interface method employs static constraint

modes and a truncated set of fixed-fixed normal modes to achieve a

reduction in the order of the substructures stiffness and mass.

Geometric coordinates at internal boundaries are retained in the set of

generalized coordinates to insure displacement compatibility between

substructures.

2.3.2 Extension to Multilevel Substructuring

The fixed-interface method is extended to multilevel substructured

modeling in the following manner. Referring to the terminology of sec-

tion 1.2, assume that all substructures at level "i" have been assembled

- 33 -

either from finite elements or level "i+l" substructures (or both). The

level "i-l" substructures are defined by selecting master and slave OOF

for each substructure at level "i", condensing these substructures using

Eq. (2.10) and Eq. (2.11), and assembling as illustrated in Eq.

(2.20a,b).

A significant difference in the procedure for multilevel substruc-

tured models from that of the preceding section is the selection of

master and slave OOF. As previously mentioned, master OOF are usually

selected to lie along substructure boundaries and slaves are chosen as

the remaining OOF. For the normal OOF which exist as a result of the

synthesis of condensed substructures, no physical basis exists upon

which to make this selection. Conceptually, the normal OOF in the as-

sembled model could be identified as either master or slave OOF.

For this study, the following procedure is adopted. Since the

equations of constraint that link adjacent substructures are written

only in terms of the substructure boundary (geometric) OOF, the normal

(generalized) OOF for each substructure are grouped with the interior

OOF in the set of slaves.

As an example, consider structure "A" which is assembled from two

condensed substructures, "B" and "C". The assembled stiffness and mass

matrices for structure "A" are illustrated in Figure 2.1. The matrices

are partitioned into five zones as indicated. Zone I and II contain the

normal OOF from substructures "B" and "C" respectively. The identity

matrices in [MAl and the diagonal blocks of substructure frequencies in

[KAl are fully contained within the individual zones. This illustrates

that normal OOF from one substructure are not coupled with those from

- 34 -

-I

--I

-

...... w
e

'- --'~,-"-__ " __ ..JI~

II III IV V

-
's

MNM
s

Ie MNM
e

MN
Ms

MG
S

MN ~
Me MG

e

-
~~~~ 

I II III IV V 

Figure 2.1. Substructure Equation Assembly . 

- 35 -



adjacent substructures. The boundary OOF of substructure nBn occupy 

zones III and IV while zones IV and V contain boundary OOF from sub-

structure nc". Clearly zone IV represents the boundary OOF common to 

nB" and nc". The OOF in this zone are linked to enforce displacement 

compatiblity between the substructures. 

In one-level substructured models, this representation of structure 

"A" would form the highest level structure and the synthesis process 

would be complete. In multilevel substructured models, structure nA" 

is partitioned into its own master and slave OOF and then condensed. As 

mentioned above, master OOF are usually selected as those OOF on sub- ~ , 

structure boundaries. In this respect, the master OOF for structure "An 
....... 

I 

are selected from zones III, IV, and V. The remaining OOF in these 

three zones, along with all generalized OOF in zones I and II are 

grouped as slave OaF. The synthesized stiffness and mass matrices 

resulting from condensation of structure nA" are identical in form to 

the stiffness and mass matrices from any other condensed structure; see 

Eq. (2.10) and (2.11). An evaluation of the impact of the above 

master/slave selection procedure for multilevel substructured models 

remains a topic for future study. 

2.3.3 Substructure Reanalysis 

When modal synthesis is used to condense the substructures in a 

complex structural model, analysts will always question the accuracy of 

the reduction and thus the quality of the final results. Substructure 

reanalysis is the most obvious approach to verifying the representation 

of an individual substructure. In the fixed-interface method, substruc-

ture reanalysis is achieved simply by adding more normal OOF to the 

- 36 -



,...... 

,-

condensed substructures in question. Many of the computations performed 

in the initial reduction need not be repeated during reanalysis. 

Consequently, reanalysis is performed with some degree of efficiency 

when computed results are retained after completion of the initial 

analysis. 

The first step in substructure reanalysis is to determine which 

additional normal OOF are to be retained in the condensed substructure. 

If sufficient fixed-fixed normal modes are not available for addition to 

the transformation [Tf], the eigenprob1em solver is restarted to compute 

the required frequencies and mode shapes. Existing fixed-fixed normal 

modes are not recomputed. 

After the additional normal OOF for the substructure are computed, 

the condensed stiffness and mass matrices are assembled. Referring to 

equations (2.10) and (2.11), the Guyan reduced stiffness and mass sub-

matrices, [KG] and [MG] , remain unchanged since the normal OOF do not 

influence the static constraint modes. The only computation~ required 

are those needed to expand the number of columns in the off-diagonal 

mass submatrix, [~n]. These new columns are needed for the additional 

substructure normal OaF. 

similarly expanded. 

Savings in the assembly of "reanalyzed" substructures are also 

possible. Using the example presented in the previous section, suppose 

that additional normal OOF have been added to substructures liB" and "C." 

When the stiffness and mass matrices for structure "A" are reassembled, 

only zones I and II need to be expanded (Figure 2.1). Since the Guyan 

stiffness and mass submatrices for both liB" and "C" do not change during 

- 37 -



reanalysis, their assembly into structure nAn is also unchanged. Thus 

zones III, IV, and V are not altered, saving measurable time in struc

ture assembly. 

While the foregoing procedure is conceptually simple, implementa

tion of reanalysis capabilities in a general software system presents 

some special problems not yet considered. Details of this implementa

tion are presented in Section 4.8. 

- 38 -



,....... 

,.... 
I 
I 

CHAPTER 3 SOFTWARE DEVELOPMENT ENVIRONMENT 

3.1 General 

The fixed-interface method provides a theoretical basis to perform 

dynamic analysis of multilevel substructured FEM models. Design and 

implementation of the associated software for general-purpose analysis 

makes the procedure accessible to researchers and designers. Finite 

element researchers typically focus on developing and improving numeri-

cal algorithms, not on the design and implementation of sophisticated 

engineering software. Software for these researchers is implemented 

only to demonstrate the viability of the numerical method for a limited 

class of problems. As a consequence, the software tends to be deficient 

in the areas of user-interface, resource management, and generality. 

The programming capabilities needed to overcome these deficiencies 

are not supported by standard algorithmic languages (e.g. FORTRAN-77, C, 

Pascal). A software developer who wishes to use hierarchial data struc-

tures, for example, is required to devise his own data management 

capabilities. This task typically results in complex sequences of pro-

cedure calls from the processing routines in order to locate or create 

the necessary data tables. For advanced applications, such as substruc-

tured modeling and nonlinear analysis, implementation of the numerical 

procedure becomes a trivial task compared to the "bookkeeping" proce-

dures required to drive the crude data management routines. 

One solution to this problem is the use of an "executive" system to 

support and manage computing resources: memory, secondary storage, data 

transfers between the two, and user-interface. The POLO system 

[42, 43] provides the necessary support. The software developed during 

- 39 -



this study relies heavily on the POLO executive. The software develop

ment tools within POLO enable the areas of engineering mechanics, 

numerical methods, and computer science to be effectively synthesized 

into a functioning software system having considerable generality. The 

remainder of this chapter briefly describes the components of POLO and 

its influence on the software developed in this study. For additional 

details on the POLO executive and on the concept of software virtual 

machines, see [16] and [17]. 

3.2 The POLO Executive 

POLO does not directly solve engineering problems. Rather it sup

ports programming activities common to most engineering applications: 

POL translation, data structure definition, data base and memory manage

ment during execution, and logical control and integration of 

application subsystems. A specific application program, or subsystem, 

which runs under the control of POLO is needed to solve the engineering 

problem. The existing finite element subsystem for POLO, named POLO

FINITE, has been adopted as the starting point for the software 

developed in this study. 

POLO supports engineering software applications during the develop

ment phase and during execution of the application program (also known 

as nrun-time n). During development, POLO provides languages to define 

data structures, to symbolically access the data, and to control the 

sequence of operatons on data required for the particular application. 

At run-time, POLO support routines perform data base and memory manage

ment, translate POL input, and execute the processing routines. At 

- 40 -



--

,..... 

program termination, POLO automatically secures all data bases for sub

sequent analysis restart. 

POLO provides 

level languages: 

(HL). These two 

combine to define 

compilers and execution processors for two higher 

a data definition language (DOL) and a host language 

languages and an algorithmic language (FORTRAN-77) 

the development environment (Figure 3.1). The in-

dividual components of this environment and their inter-relationships 

are discussed in the following sections. Section 3.6 describes the run

time configuration of a POLO application program. The structure of 

POLO-FINITE as a FEM application program is presented in the next 

chapter. A more complete discussion of POLO-FINITE, including system 

performance, nonlinear analysis capabilities, and element and material 

model libraries, can be found elsewhere [16, 18, 43]. 

3.3 Data Definition Language 

The development of a POLO subsystem centers on the structure of the 

logical data space. Data structures in the POLO environment are 

primarily of the hierarchical type. Other data structures, including 

network and relational, may be defined using basic hierarchical tables 

with additional pointer manipulation by the application subsystem. Data 

structures are described to POLO with the data definition language 

(DDL). As shown in Figure 3.1, the developer's data definition is com-

piled into an internal form by the DDL compiler. The resulting form of 

the data definition resides in the DOL library. The DOL library con

tains the logical definition of and the relationships among all data 

structures defined for the application program. This library is later 

accessed by the host language (HL) development processors to interpret 

- 41 -



.j:'-
tv 

APPLICATION 
PROGRAMMER'S 

INPUT 

DATA DEFINITION 

LANGUAGE 

HOST LANGUAGE 

MODULES 

FORTRAN 

SUBPROGRAMS 

J ____ J _ _ _ J __ _ J _ _ I 

I 

I 

I 
I 

I 
I 

I 

I 
I 
I 
I 
I 

DEVELOPMENT 
PROCESSORS 

DOL 

COMPILER 

V 
~I HL 

COMPILER 

-FORTRAN LOADER 
COMPILER 

~ .,/ 

POLO 
OBJECT 

"" CODE .) 
""-----._---

APPLICATION 
PROGRAM 

~ i/ . '-. RESIDE IN 
SYSTEM 
DATA BASE 

l j_ I 

I 

I 
-~ REAL MACHINE 

EXECUTABLE 
I PROGRAM 

I 
I 
I 

Figure 3.1. POLO Development Environment 

__ J ___ J ___ .1 ._ J ____ J ____ J __ J 



.... 

,........ 

,..... 

data references made in the HL programs. At run-time, the data defini-

tion is used to map the logical data format onto a physical medium 

(direct-access disk file) for the storage of problem data. 

Figure 3.2 contains a sample data hierarchy defined for the dynamic 

analysis systems. In this example the stiffness, mass, and frequency 

analysis results are "all stored in a table named COEFFICIENTS which has 

its rows labelled (or named) and is one column wide. The COEFFICIENTS 

table actually resides in a higher level table, ELEMENTS, which contains 

other relevant structure data: nodal coordinates, element incidences, 

constraints, loads, etc. The DDL for the sample data structure is 

presented below. 

TABLE ELEMENTS LABELLED GROUPING 25 

TABLE COEFFICIENTS LABELLED 1 
NNODE INTEGER 
NROW INTEGER 
NCOL INTEGER 
TABLE STIFFNESS LABELLED NNODE 

KLOW INTEGER 
NUMBLOCKS INTEGER 
TABLE ROWS ARRAY REAL NUMBLOCKS NROW NCOL 
END OF TABLE 

TABLE MASS LABELLED NNODE 
MLOW INTEGER 
NUMBLOCKS INTEGER 
TABLE ROWS ARRAY REAL NUMBLOCKS NROW NCOL 
END OF TABLE 

TABLE LUMPEDMASS SET REAL NNODE NROW 
TABLE FIXEDMODES LABELLED GROUPING SO 

FREQUENCY REAL 
TABLE SHAPES SET REAL NNODE NROW 
END OF TABLE 

TABLE FREEMODES LABELLED GROUPING 50 
FREQUENCY REAL 
TABLE SHAPES SET REAL NNODE NROW 
END OF TABLE 

END OF TABLE 

- 43 -



COEFFICIENTS NNODE 

KLOW ••• 
t--+--+----+---t 

NUMBLOCKS ••• 
1--+--+----+----1 

ROWS • • • 

G = 50 F--...,....._---r"-
FREQUENCY ••• FREQUENCY ••• 

SHAPE 
~~~--+-- ~--+-~~+-

•••

Figure 3.2. Sample Data Structure

- 44 -

•
• •

• • •

NROW

NCOL

--I
;

r

The first three rows in table COEFFICIENTS are scalar entries. The

-- values are used to define sizes of lower level tables. The fourth row

of this table begins the definition of a labelled table named STIFFNESS.

This "table within a table" is defined simply in the DDL as shown.

Definition of other rows in COEFFICIENTS is temporarily suspended until

table STIFFNESS is "fully specified. After the three rows of the

STIFFNESS table are described, the END OF TABLE statement indicates that

the statements to follow define other rows of the COEFFICIENTS table.

For a consistent mass formulation, the mass matrix has the same

banding as the stiffness matrix. Thus the MASS table has a hierarchy

which is identical in structure to the STIFFNESS table. A different

data structure is appropriate for a lumped mass formulation in which DOF

coupling does not exist. The table LUMPEDMASS defines the values of

mass that reside at each DOF of every structure node. While both mass

tables (consistent and lumped) are specified for each structure, only

the one table that corresponds to the selected mass formulation for the

structure is created in the data base at run-time.

In a similar manner, two types of frequency analysis tables,

FIXEDMODES and FREEMODES, are defined. While both tables are defined

for any given structure, only the appropriate one is created to store

the results of the analysis. The FIXEDMODES table stores the fixed-

fixed frequencies and mode shapes for condensed substructures during

modal synthesis, while the FREEMODES table contains analysis results for
,......

a free-vibration frequency analysis of the highest level structure.

In static analysis, only the STIFFNESS table is created at run-,...... ,

time. In the problem data base, the rows of the COEFFICIENTS table

- 45 -

corresponding to the mass and mode shape tables then contain pointer

values of zero, indicating that the tables have not been created.

When a table is first referenced at run-time, it is created accord-

ing to the sizes defined in the DDL. If any of the sizing parameters

are variables, the data manager creates the table using the current

value of the variables. The sizing variables can then be changed during

execution of the application program so other tables can be created to

different sizes as required.

The FIXEDMODES and FREEMODES tables are slightly different from the

other labelled tables in the data structure. These two tables are known

as "grouped" tables and have a grouping factor of 50 (an arbitrary

choice). These tables are initially created with 50 columns. As addi-

tional columns of the table are needed, they are created in groups of 50

each. The groups of 50 columns are not necessarily contiguous in the

database. The COEFFICIENTS, STIFFNESS, and MASS tables are not grouped.

All columns required for each of these tables are allocated contiguously

in the database on the first reference to the table.

The data definition listed above is just a small part of the data

definition used in POLO-FINITE. Additional details regarding the

specific data structures developed in this study are presented in

Chapter 4.

3.4 Host Language

The second component of the POLO development environment is the

host language. After the developer has defined the data structures,

host language programs are written to drive execution of the application

subsystems. An HL program performs three primary functions: POL input

- 46 -

'-

translation, execution of FORTRAN support routines, and execution of

other POLO subsystems. These functions are directed in HL command

statements that have a basic IF-THEN syntax.

The syntax of a HL command statement takes the following form:

<label> <logical 'test> <action list> <transfer destinations>.

The label is optional and serves the same purpose as a statement label

in FORTRAN. The logical test is evaluated to determine whether or not

the action list will be executed. If the result of the logical test is

false, the actions are skipped and the "false transfer of control" is

taken. If the logical test is true, the actions in the list are ex-

ecuted and the "true transfer" is performed. The actions executed by

the HL processor typically involve numerical computations that are effi-

ciently performed in the FORTRAN support routines (matrix multiplies,

etc.).

It may not always be appropriate to perform a logical test prior to

executing a list of actions. When this is the case, a dummy test,

*EXECUTE, is performed. The result of this test is always true and the

action list is executed. A situation in which a dummy true-test is

appropriate might be the execution of initialization routines at the

entry point to a subsystem.

Data references may be associated with each action in the action

list. A data reference is a symbolic reference to tables within the

hierarchy as defined in the DDL. An example of a data reference into

the hierarchy defined in the previous section is the following:

/STRUCTURE/ELEMENTS(COEFFICIENTS, STCOL, FREEMODES, 1, SHAPES,
IMODE, INODE, 1)

- 47 -

This data reference accesses the free-vibration mode shape data for a

particular vibration mode. The reference begins by identifying the data

base that contains the required data (the name is enclosed in "I I").

Then starting with the name of a table defined at the highest level, the

hierarchy is symbolically traversed. STCOL is a variable that contains

the column number !n the ELEMENTS table which contains data for the

desired structure; variable IMODE contains the column number in the

FREEMODES table that identifies the individual mode shape of interest;

variable INODE contains the structure node number required. The

traversed rows of the labelled tables are referenced by name

(COEFFICIENTS, FREEMODES, and SHAPES). Lower levels of the data hierar-

chy are reached by appending additional subscripts to the reference.

A complete example of an HL command statement is given by:

LUMP MASS *COMPARE(MASTYP, 1),
MOVEDATA(SCRTCH, ISOLVER/STRUCTURE(LUMPEDMASS,ICOL,l,l»,
JACOBI(ISOLVER/STRUCTURE(STIFFNESS,ICOL,l,l »,
GO TO SORT_RESULTS, CONSIS_MASS

This command statement is taken from the HL program which performs

eigenproblem solution by the generalized Jacobi method. LUMP_MASS is

the statement label used as a transfer destination. In this case the

logical test is *COMPARE in which the variable MASTYP is compared to the

integer 1 for equality. A MASTYP of 1 implies that the mass formulation

for the structure is lumped. If the result of the test is true, two

subsystem actions are executed. The MOVEDATA action copies the contents

of the LUMPEDMASS table from the SOLVER data base to the array SCRTCH.

If the data reference does not include a data base specification (ex.

ISOLVER/) the data item is a variable in COMMON. Action JACOBI performs

the eigenproblem solution using the STIFFNESS table from the SOLVER data

- 48 -

-'

.....

,.....

base and the mass data previously placed into COMMON by MOVEDATA. After

the actions have been executed, control is transferred to the statement

with the label SORT RESULTS. If the result of the logical test is

false, the actions are not executed and control is transferred to the

statement labelled CONSIS_MASS.

As implied in the preceeding example, the HL programs and the

FORTRAN actions communicate through a COMMON area. When a particular

subsystem action is invoked by the HL program, the corresponding FORTRAN

subroutine is identified by variables in COMMON. Also, when data from a

data base is needed for execution of a subsystem action, the data

manager moves that data into COMMON. These two methods of subsystem

communication require that COMMON be divided into two sections. The

first section is the static COMMON area. This portion of COMMON con

tains variables required throughout execution of a subsystem (MASTYP and

SCRTCH in the previous example). The second portion of COMMON contains

the dynamic pool which is partitioned into equally-sized pages. The

data manager places the data which is referenced by an action call into

the dynamic pool. When a data reference is resolved at run-time, the

data manager moves the data from the application data bases to the

dynamic pool. Paging of existing data in the pool to make room for new

data is handled automatically.

Each HL program contains an action list which establishes the

relationship between action names referenced in the HL and the cor

responding FORTRAN subroutines. A portion of the action list related to

the previous example takes the form:

- 49 -

ACTIONS TYPE 33

JACOBI 7

END OF ACTIONS

The subsystem number 33 and the action number 7 are placed in static

COMMON to identify the FORTRAN subsystem and the subprogram which cor

respond to the JACOBI action. Frequently used actions, such as

MOVEDATA, do not appear in the action list for the application

subsystem. POLO supports these actions as an integral part of the HL in

the same manner as FORTRAN provides the intrinsic functions: SIN, COS,

etc.

The

object

library

to the

completed HL programs are compiled by the HL compiler and the

code is stored in the HL object library (Figure 3.1). This

is also a part of the system data base. The HL compiler refers

DDL library to generate appropriate instructions as the data

references are resolved. The HL compiler checks each HL program for

command syntax errors and data references which are inconsistent with

the DDL. The subsystem developer receives appropriate messages when the

compiler detects these coding errors. When subsystem development is

complete, the object form of the HL programs act as instructions for the

POLO "virtual processor." The next section contains a brief description

of the virtual processor.

- 50

3.5 FORTRAN Processing Routines

As mentioned above, POLO is not capable of solving engineering

problems by itself. The set of actions available to developers is

limited to those procedures needed for data management, POL translation,

logical control, and other utility operations (ex: MOVEDATA).

Numerical operations such as matrix addition, multiplication, and trian

gulation are not supported by the HL. Unacceptable overhead is incurred

if operations of this type (requiring loop indexing and array

subscripting) are coded in the HL. Instead, FORTRAN subroutines are

written to perform the numerical computations. The generalized Jacobi

method referenced in the previous section is a good example. Once the

data manager places the necessary data in COMMON as a result of an HL

reference, all numerical computations are efficiently performed in one

FORTRAN subroutine.

The FORTRAN subprograms are compiled with the FORTRAN compiler for

the host computer system. The resulting object code is combined with

the object code library of POLO (also compiled FORTRAN) and loaded into

a single executable program (Figure 3.1). This real machine program and

the system data base comprise the final application program.

A distinction is made here between the instructions generated by

the FORTRAN compiler and those generated by the POLO compilers (DOL and

HL). The FORTRAN compiler generates "real-machine" instructions which

are executed by the hardware processor. The POLO compilers generate

"virtual-machine" instructions which are interpreted by the POLO virtual

processor. A virtual instruction consists of an action to be performed

and a description of the data necessary to perform that action.

Execution of a virtual-machine instruction by the POLO virtual processor

- 51 -

typically results in 5-10 FORTRAN subroutine calls to the data base and

memory manager, followed by a reference to the action subprogram.

To demonstrate the link between HL programs and the FORTRAN sub-

routines, the JACOBI action is examined in more detail. Action JACOBI

is defined in the HL as action number 7 of subsystem 33. When the POLO

virtual processor interprets an instruction to execute JACOBI, it places

the integer 7 in a COMMON variable. The data reference associated with

the JACOBI action is resolved and the corresponding data is moved to the

dynamic pool if it is not already there. The location of the data and

the dimensions of the table from which it is obtained are also stored in

the COMMON area. A call to SUBROUTINE TGTY33 (subsystem 33) is issued

by POLO and control is thus transfered to the application subsystem.

The first few lines of the subsystem take the form:

SUBROUTINE TGTY33
COMMON /TGUSER/ RPOOL(l),
COMMON /PARAM/ IACTION, LOCI, LOC2, ...

GO TO(100, 200, 300, ...), IACTON

700 CALL JACOBI(RPOOL(LOCl), seRTCH, ...)
RETURN

END

The action number to execute is identified by IACTON. Subroutine JACOBI

is passed the stiffness matrix (which starts at location LOCI in the

dynamic pool) and the lumped mass vector (stored in COMMON variable

SCRTCH by a prior call to action MOVEDATA). Array dimensions are also

passed to subroutine JACOBI so the data located in vector RPOOL can be

- 52 -

-

.....

treated in its appropriate form (vector, matrix, or three-dimensional

array). The first few lines of subroutine JACOBI are:

SUBROUTINE JACOBI(STIFF, XMASS, NRSTIF, NCSTIF)
DIMENSION STIFF(NRSTIF, 1), XMASS(1)

3.6 Run-Time Configuration

The integration of POLO and the application subsystems into a

single executable program is illustrated in Figure 3.3. The POLO vir-

tual processor is the highest level driver and takes its instructions

from the compiled HL programs in the system data base. The virtual

processor drives the POL scanner, the data and memory managers, and the

application subsystems. After program initialization, the virtual

processor is instructed to read POL input from the current input device

(the user's terminal during interactive execution or a sequential disk

file during batch execution). The user's input is translated to fixed

format by the POL scanner and is placed at the top of the COMMON area.

Input is read one line at a time and acted upon as required.

The virtual processor calls the application subsystem after the

data manager has resolved the data reference and the memory manager has

placed the necessary data in COMMON. An application subsystem is com-

posed of an executive routine (ex. SUBROUTINE TGTY33) and a number of

lower level subprograms (ex. SUBROUTINE JACOBI). The application sub-

system has access to only the data in the COMMON area. The memory

manager controls all data transfers between the application data bases

and COMMON.

- 53 -

VI
+:-

·RUN HNIT!!
STRUCTURE BRIDGE
NlIItBEIl OF ELEH£lffS)0 NODES 15
ELEM[IffS ALL TYPE PLANETRUSS.

PROPERTIES E]0000. AX 0.4)
CUlRD I NATES

I 0.0 0.0

SYSTEM
DATA BASE

POL INPUT

: __ J __ J . J .) ~ _ I

APPLICATION SUBSYSTEMS
r---r---------------~--~--~ ...

VIRTUAL PROCESSOR

DATA MANAGER

MEMORY MANAGER

APPLICATION DATA BASES
FORTRAN

COMMON
Figure 3.3. POLO Run-Time Configuration

EXECUTIVE

STATIC
COMMON

SUBPROGRAMS

DYNAMIC POOL
(FIXED PAGE SIZE)

Figure 3.4 more clearly illustrates the functions of the data and

memory managers. Instructions which describe the data reference for an

action are stored in the object code of the HL. In order to make the

requested data physically present in memory, the data reference instruc

tions are passed to the data manager. The data manager converts the

instructions into a virtual address which identifies the file, page

(record), and position on the page that the requested data occupies in

the application data base. If the data does not currently exist in the

data base, the table is created. The memory manager converts the vir

tual address to a physical address. If the data is currently in COMMON,

the pool subscript (LOCI in the above example) is returned to the data

manager. If the data is not in COMMON, the memory manager makes room

for the new data by swapping an existing data page back to its disk file

and then reading the new page into the available memory location. The

pool subscript is then returned to the data manager. Since all pages in

the data base are the same size, fragmentation of the dynamic pool

during execution does not occur.

With all data references for a particular action resolved, the data

manager places the physical address and sizing information for each data

item into the static portion of COMMON. Control is returned to the

virtual processor which calls the application subsystem. At termination

of the program, the data and memory managers write all data in the

dynamic pool back to the application data bases. The data bases are

thus preserved for subsequent analysis restart.

- ss -

Ul
0\

VIRTUAL
PROCESSOR

VIRTUAL
PROCESSOR
INSTRUCTIONS

SYSTEM
DATA BASE

) J J

DATA
MANAGER

APPLICATION DATA BASES

VIRTUAL ADDRESS
(FILE, PAGE, POSITION)

PHYSICAL ADDRESS

MEMORY
MANAGER

"--___ -...I' (LOCATION IN COMMON) , ____ _

Figure 3.4. Resolution of Logical Data References

FORTRAN
COMMON

r
!

-

CHAPTER 4 SOFTWARE DESIGN AND IMPLEMENTATION

4.1 General

Most finite element researchers are concerned with only the for-

mulation and resulting behavior of numerical algorithms. Software

implementation is generally given only cursory attention. Fortunately,

software engineering is becoming more accepted as a research topic in

itself. Real-world considerations for program size, development and

maintenance costs, user interface, execution time, and data management

have led to the formal study of software development techniques. This

chapter discusses the approach to software development followed in this

study. Since a complete review of the entire implementation is neither

desirable nor practical, only a few specific examples of data structures

and computational procedures are presented for illustration.

The design and implementation of the software to perform dynamic

analysis relied heavily on the support of the POLO executive and the

existing organization of FINITE. Development of the data structures and

computational subsystems followed the same techniques that were used in

the initial development of POLO-FINITE. This approach assured a com-

patibility between existing analytical functions and new procedures

which served to minimize the need for new code. Most of the existing

subsystems in FINITE, such as the output processor, required only minor

modification. When computational procedures unique to dynamic analysis

required the development of new subsystems, they were developed so that

existing subsystems could be utilized wherever possible. For example,

the new subsystem for solution of the eigenproblem uses the triangula-

tion and load-pass subsystems already available for static analysis.

- 57 -

This chapter summarizes the design and implementation aspects of

the software developed for this study. The next section contains a

description of FINITE, illustrating the logical structure of the in

dividual subsystems and databases for both static and dynamic analysis.

The POL that facilitates- the new structural modeling and analysis

capabilities is then presented. New data structures for dynamic

analysis are described. Control of the solution process is presented in

detail. The significant solution algorithms implemented for this study

are discussed followed by a review of the restart and reanalysis proce

dures.

4.2 FINITE System Organization

FINITE is the POLO application program which supports finite ele

ment analysis. The FINITE system consists of a number of subsystems

(each containing an HL program and a set of FORTRAN subprograms), three

logical databases, and the POLO executive. The organization of the

FINITE system is illustrated in Figure 4.1. POLO lies at the center of

the system and controls execution of the various subsystems along with

all data flow to and from the databases. Obviously, some functional

dependencies must exist among the FINITE subsystems in order to solve

finite element problems. As indicated in Figure 4.1, these dependencies

are transparent to POLO. POLO treats each subsystem (and each database)

as an independent unit.

The following section describes some of the FINITE subsystems. The

function of the individual subsystems and their relationships with each

other are discussed. A general description of the three databases is

then given. Specific data structures used in problem solution are

- 58 -

U1
\0

] ----1 ---J ----I

a::
w

- 1 - - --1 --- 1

> 1------1
a::
Q

1 -1 J

POLO

Figure 4.1. FINITE System Organization

]]]

!!!
a
m
Z

J -1

presented later in the chapter. Finally, the technique for interfacing

the FINITE subsystems is presented.

4.2.1 Organization of FINITE Subsystems

Figure 4.2 illustrates the functional dependencies among the FINITE

subsystems. Subsystem DRIVER is the highest level subsystem in FINITE

and is the entry point for the command: *RUN FINITE. This subsystem

ensures that the three databases exist and processes the highest level

user input commands. Through an internal POLO "RUN" command in its HL,

subsystem DRIVER invokes one of three subsystems: LIBRARY, STORE, or

COMPUTE to continue processing user input.

Subsystem LIBRARY is used by system developers to maintain tables

that define all finite elements and nonlinear material models. Element

tables contain information on the characteristics of each element, such

as the number of nodes, the types of DOF at each node, user-definable

properties, and possible mass and nonlinear formulations. Material

model tables describe the characteristics of the material, such as

initial material properties, the type of stress-strain or load-

deformation functions that may be used, and material hardening rules.

Subsystem LIBRARY is essentially an editor which maintains the LIBRARY

database. The function of subsystem LIBRARY is transparent to the user

who is not involved with system development.

Subsystem STORE translates user input that defines the characteris-

tics of a structural model for subsequent analysis. Structural . !

geometry, loads, constraints, element selections, and solution proce- i
I
1

dures are all translated by STORE. This information is checked for

consistency and placed into the STRUCTURE database.

- 60 - I

]

CJ\
.....

')] J "j

t
STIFFNESS
AND MASS

I "I I

TRIANGULATE

FINITE SUBSYSTEMS

t
EQUIVALENT
NODAL LOADS

t
STRAIN-DISPLACEMENT
STRESS-STRAIN

ELEMENT ROUTINES

OUTPUT
FORMATS

]

Figure 4.2. Functional Dependencies Among the FINITE Sybsystems

') .]

Requests for computation and output are passed to the COMPUTE

subsystem. COMPUTE determines which type of analysis is required and

invokes the appropriate processors (LINEAR STATICS, NONLINEAR STATICS,

and LINEAR DYNAMICS). For brevity, the NONLINEAR STATICS processor and

the nonlinear material models are not presented in detail (see [16] for

a detailed description). The LINEAR STATICS branch is illustrated in

Figure 4.2 and the DYNAMICS branch is fully described in Section 4.5.

The subprograms which perform the computations for the various

finite elements are linked to the FINITE subsystems independently of

POLO. Subsystems such as ASSEMBLER and STRESS-STRAIN invoke the element

routines directly through FORTRAN subroutine calls. The element

routines are written entirely in standard FORTRAN. For instance, all

element stiffness routines have the same set of formal parameters. This

approach allows developers to implement new elements without detailed

knowledge of the FINITE system structure. Only the standardized form of

the subroutine call is needed to link a new element into the system.

4.2.2 Application Databases

The data structures for FINITE are logically partitioned into three

functional units named: LIBRARY, STRUCTURE, and SOLVER (Figure 4.1).

Each of these units is defined via the POLO DDL. During execution of

FINITE to analyze a structure, a direct access file is "formatted" with

each DDL to initialize the databases.

The LIBRARY database contains the tables that describe the element

definitions and material models which have been implemented by the sys-

tem developers. Other data on this database include geometric

- 62 -

properties of steel sections. During solution of a typical finite ele

ment problem, this database is open in "read-only" mode.

The STRUCTURE database contains the internal form of all user sup

plied structure information, along with computed results such as

stiffness, mass, loads, displacements, frequencies and mode shapes. An

extensive hierarchical data structure, similar to that shown in Figure

3.2, is defined for the logical organization of this data.

The SOLVER database contains data for numerical computations such

as triangulations, load-passing, and eigenproblem solution. Information

in the STRUCTURE database is moved to the SOLVER and reformatted in

hypermatrix form to support efficient numerical computation. After a

request for computation has been satisfied, intermediate results, such

as the triangulated stiffness, are retained in the SOLVER database for

possible use in analysis restart. Other results, such as mode shapes,

are transfered into tables associated with each structure node and

copied back to the STRUCTURE database. Section 4.4 describes hyper

matrix data structures and provides examples of SOLVER data tables used

in frequency analysis.

The separation of problem data into two databases, STRUCTURE and

SOLVER, is an arbitrary choice. It was done to anticipate size limita

tions on direct access files in some computer systems and to increase

flexibility in placement of the data on peripheral devices.

4.2.3 Subsystem Interfacing

As shown in Figure 4.2, one subsystem can be initiated by several

other subsystems. For example, subsystem TRIANGULATE can be initiated

by APPLYLOADS, ASSEMBLER, and EIGEN. The point at which TRIANGULATE is

- 63 -

initiated is determined as the analysis of a structure progresses. The

key issue is that the individual subsystems are self-contained, which

makes this flexibility possible. POLO provides only limited support for

communication between subsystems. Only information contained in the

databases is handled automatically. No facility exists that parallels

the argument list of FORTRAN subroutine calls.

To overcome this deficiency, a nrequestn vector scheme has been

implemented throughout the FINITE subsystems. The request vector is

generated by the calling subsystem and is placed at the top of a request

nstack.n The stack resides in the STRUCTURE database and is thus acces

sible to all FINITE subsystems. After generation of the request vector,

execution of the calling subsystem is interrupted and the new subsystem

is initiated. The new subsystem takes its instructions from the request

vector at the top of the stack. The request vector contains data such

as the name of the current structure, the loading condition name, and

the type of request (compute displacements, output stresses, etc.).

When a subsystem completes execution, control must be returned to

the subsystem that made the call. This function is supported by the

POLO executive. POLO maintains its own stack of executed subsystems so

the order of execution can be re-traced. This process is identical to

the management of multiple levels of subroutine calls in standard

FORTRAN programs.

4.3 User Interface for Dynamic Analysis

Implementation of the dynamic analysis capabilities required exten

sion of the FINITE user interface. Several of these extensions are

illustrated by use of the bridge example from Chapter 1. Figures 1.2

- 64 -

and 1.4 (repeated in Figures 4.3 and 4.4) illustrate the structural

model and present input to define the model for analysis. With the

application of structure loads, a static analysis could be performed to

compute nodal displacements and element strains and stresses.

Additional structure characteristics and analysis parameters are needed

for dynamic analysis. The following is a discussion of specific input

commands for frequency and mode shape computation. Full details of the

input commands for dynamic analysis are given in Appendix A.

The first addition to the model definition is the specification of

the mass of each element and structure in the hierarchy. The mass of a

structure is considered in two parts: primary and secondary. Primary

mass is the mass of the load-carrying components (elements) of the

structure. Primary mass is defined in the POL through definition of a

mass formulation indicator: LUMPED or CONSISTENT, and a new element

property: MASS DENSITY. The element definition command for the simple

elements in structure SPAN becomes:

ELEMENTS ALL TYPE ROD LUMPED E 3.0E04 AX 0.0347,
MASS DENSITY 7.34E-04

A similar command is used for elements 3-5 in structure BRIDGE.

Definition of primary mass is necessary only for finite elements. The

primary mass for a structure is assembled from that of the elements

which form the structure. Assembly of a structure's primary mass fol-

lows a procedure identical to that used in stiffness assembly.

Structures which are composed of condensed lower level substructures

obtain their mass definition directly through the condensation process.

The FINITE system accepts up to thirty DOF at each node in the

structure. These are the displacement DOF (u v and w) plus their first

- 65 -

0'\
0'\

BRIDGE

Y,'td\kh _
Xss

I 2 4 6 8
SPAN

Figure 4.3. Substructured BRIDGE Hodel

Xs

t
3 5 7

~
1 246 8

SPAN

_____ J _____ .1 .. _ J . J ... J . J

Xss

].

C1\
-...J

]

.RUN FINITE
C

] 1

C DEFINE THE BRIDGE SEGHENT: SPAN.
C UNITS ARE NKIPSN AND NFEETN.
C

STRUCTURE SPAN
NUHBER OF NODES 8 ELEHENTS 1)
ELEHENTS ALL TVPE ROD E).OE04 AX 0.0)47
COORDINATES

1 0.0 0.0
2 20.0 0.0
) 20.0 20.0
4 40.0 0.0
5 40.0 20.0
6 60.0 0.0
7 60.0 20.0
8 80.0 0.0

INCIDENCES
1 . 1)
221
)) 4
445
547
667
778
8) 5
957

10 1 2
11 2 4
12 4 6
U 6 8

END OF STRUCTURE SPAN

-I

C
C
C
C
C
C
C

DEFINE Tilt: CONDENSED VERSION OF STRUCTURt: SPAN.
RETAIN NODES 1) 7 AND 8 IN THE CONDENSED STRUCTIJIIE.

C
C
C

STRUCTURE SPAN COli
NUHBER OF !lODES 4 ELEHEIITS 1
ELEHENT 1 TlCPE SPAN CO!lDE!lSED
INCIDENCES

1 1) 7 8

END OF STRUCTURE SPAN_CON

C
C
C
C
C

C

C

C

C

C

C

c

C

---1

DEFINE THE HIGHEST LEVEL STRUCTURE AS A COHBINATION
OF TWO CONDEN~ED SPANS AND THREE SIHPLE ROD ELEHENTS

STRUCTURE BRIDGE

NUNBER OF NODES 8 ELEHENTS 5
ELEHENTS

1 2 TVPE SPAN CON ROTATION SUPPRESSED
)-5 TlCPE ROD E).OE04 AX 0.0347

COORDINATES
2 0.0 0.0
5 -20.0 20.0
6 0.0 20.0
7 20.0 20.0

INCIDENCES
1 1 4 5 2
2 2 7 8 1
) 5 6
4 6 7
5 2 6

CONSTRAINTS
1-) V 0.0
1 U - 0.0

<detinition ot 10add>

<requeste tor computation>

<requeste tor output>

STOP

Figure 4.4. POL Definition of BRIDGE Model

-J

and second spatial derivatives (u, v, w, u, ...). x x x xx Depending upon

the type of elements incident on a given structure node, it is possible

for mass to be assigned to any or all of these DOF.

Secondary mass is the mass of non-Ioad-carrying objects supported

by the structure. Examples include water in a tank and mechanical

equipment in a building. Secondary mass is always treated as a lumped

mass addition to the primary mass of the structure. There are two types

of secondary mass: nodal mass and element mass. Nodal mass is con-

centrated at a structure node. Element mass is concentrated or

distributed on the surface of an element. Element mass is resolved into

equivalent nodal mass by use of the same shape functions that resolve

element loads into equivalent nodal loads. As with primary mass, secon-

dary mass may be assigned to any of the applicable nodal DOF.

Application of secondary mass to structure SPAN could take the form:

MASS
NODAL

2 4 6 U V 1.23
ELEMENT MASS FOR ELEMENT TYPE PLANEFRAME

1-3 LINEAR U V W FRACTIONAL LA 0.0 LB 1.0 WA 0.0 WB 0.5

By this command sequence, nodes 2, 4, and 6 have mass of 1.23 units

applied to the U and V (translational) DOF. Also, elements 1-3 have a

linearly varying mass distributed along their length. The mass inten-

sity is 0.0 at the beginning of the elements and increases to 0.5 at the

end. The secondary mass command sequence is grouped with the definition

of COORDINATES, INCIDENCES, CONSTRAINTS, and LOADS.

Before frequency analysis of a structure can be performed, an

analysis method must be selected. In general, no single method is ap-

propriate for all structures in a complex hierarchy. Since eigenproblem

- 68 -

.....

,......

solution is normally a computationally expensive procedure, it is wise

to select an analysis method that is well suited to the structure being

analyzed. An analysis procedure that is effective for a small model

with a fully populated stiffness matrix will not generally be efficient

in the analysis of a large model with a tightly banded stiffness. Since

this broad variety of·structures may exist within one structural hierar-

chy, the analyst must have the capability to define a unique analysis

procedure for each structure for which frequency analysis will be

performed. Such a capability has been implemented in FINITE.

Specification of the analysis method for structure SPAN may take the

form:

FREQUENCY ANALYSIS TYPE JACOBI

where the generalized Jacobi method [4] is selected and default values

for convergence tolerance and maximum number of sweeps are implied. As

a second example, structure BRIDGE may require the following analysis

definition:

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPERTIES NUMBER OF PAIRS 4

SUBSPACE SIZE 8
ITERATIONS 10,
STURM CHECK

In this command sequence, the subspace iteration method [58] is selected

and the default values are used for all properties not specified. These

sample commands are used to define the frequency analysis method and the

associated parameters that control the solution. The frequency analysis

is invoked by one of two procedures. First, the analyst may enter an

explicit "COMPUTE FREQUENCIES" or "COMPUTE MODE SHAPES" request.

Second, a frequency analysis can be invoked automatically within FINITE

to satisfy a computational request involving a substructured model. For

example, condensation of structure SPAN to produce structure SPAN CON

- 69 -

may require fixed-fixed mode shapes and frequencies for structure SPAN.

In this case, the appropriate FINITE processor invokes the frequency

analysis of SPAN simply as another step in the condensation process.

As discussed in Chapter 2, condensation by the fixed-interface

method requires retention of a substructure's master DOF plus a selected

number of generalized "(normal) DOF. For static analysis, the definition

of structure SPAN CON uses an incidence list to identify the master DOF

from structure SPAN that are retained during static condensation (see

Figure 4.4). This same technique is used in defining master DOF in

structures to be reduced by the fixed-interface method. Substructure

normal DOF are defined by expanding the element definition command as

follows:

ELEMENT 1 TYPE SPAN CONDENSED RETAIN NORMAL MODES 1-3

In this example the lowest three frequencies and mode shapes computed in

a fixed-fixed analysis of SPAN are used to compute the three generalized

coordinates retained in SPAN_CON. This format for definition of con

densed substructures is used at all levels of the structure hierarchy.

The complete format for the above commands plus the associated

computation and output requests are presented in Appendix A. The com

mands for analysis capabilities which have not yet been implemented

(transient analysis, shock spectrum response, non-zero initial condi

tions, etc.) are also presented to illustrate the ease with which these

functions can be defined by the analyst. Implementation of these addi

tional capabilities remains a topic for future study.

- 70 -

4.4 Data Structures for Dynamic Analysis

A variety of new data structures was designed for the implementa-

tion of dynamic analysis in FINITE. The following sample data

structures are presented to illustrate their effects on the numerical

algorithms.

The sample data structure in Figure 3.2 (repeated in Figure 4.5) is

typical of that used to store user input and computed results in the

STRUCTURE database. An extensive hierarchy of pointers is established

to isolate numerical data in relatively small quantities. For example,

stiffness and mass matrix coefficients for both elements and structures

are grouped on a node by node basis. An advantage to this approach is

that element matrices and substructure matrices have identical formats.

Therefore when stiffness and mass matrix assembly is performed, the same

procedure is used for both finite elements and substructures. This

feature has a major influence on the implementation of multilevel sub

structured modeling. The more complex data structures permit the

development of simpler, yet more general, computational processes.

A disadvantage of this data structure is the overhead incurred by

the data manager in accessing the small matrices many times in trian-

gulation, loadpass, and eigensolution. Since the data are stored in

small blocks, the data manager is executed more frequently than if the

data were in larger blocks. To alleviate this problem, required data

are moved to the SOLVER database and reformatted into hypermatrices

prior to performing numerical computations. Thus, the use of the SOLVER

database permits optimal allocation of the equations on secondary

storage to minimize the time spent in data management during the solu

tion phase.

- 71 -

COEFFICIENTS r-----__ ~~~~ __ ~N~N~ODE
KLOW •••

I--+--+----+---f
NUMBLOCKS •••

1--+--+---+--1
ROWS

NCOL

• NROW • •
LUMPED MASS

FIXEDMODES
NUMBLOCKS

NNODE

FREEMODES MLOW • ••

• NUMBLOCKS • ••
•
• ROWS • • •

NROW NCOL

NROW __ ~ ___ _

NUMBLOCKS

G = 50
~...-~-,---,..;~

FREQUENCY ••• FREQUENCY •••
~~~-+- ~~--~+-

SHAPE • • • SHAPE 

• 
• • 

NROW 

• • 
• 

• 

NNODE 

Figure 4.5. Sample Data Structure 

- 72 -

• • • 

NROW ~ 

\ 
I 



r 

4.4.1 Hypermatrix Data Structures 

Hypermatrices provide the fundamental data structure used in FINITE 

to support equation solving (triangulation and load-pass) and 

eigensolution. A matrix which is partitioned by rows and columns into 

submatrices is called a hypermatrix. Figure 4.6 illustrates hypermatrix 

partitioning and the corresponding data structure for storing and 

retrieving the individual submatrices. The order of each submatrix is 

determined by the number of rows assigned to each hyperrow and the num

ber of columns assigned to each hypercolumn. These assigned values are 

selected to produce a balance among the overhead in accessing the sub

matrices, I/O performance, and memory requirements. The potential for 

zero entries in a submatrix from a banded hypermatrix also influences 

the size of the partitions. In general, the order of each submatrix may 

vary from hyperrow to hyperrow and from hypercolumn to hypercolumn. 

Currently, the maximum sizes of an individual submatrix in FINITE are 60 

rows and 60 columns. 

The data structure adopted to represent a hypermatrix is shown in 

Figure 4.6b. The first-level pointer vector contains row pointers, each 

of which locates data in the corresponding hyperrow. The second-level 

vector of pointers, the column pointers, identifies the location of each 

submatrix on the hyperrow. Two sizing vectors are used to store the 

number of rows in each hyperrow and the number of columns in each 

hypercolumn. 

Banded, symmetric hypermatrices (such as the structure stiffness 

and mass) are partitioned as illustrated in Figure 4.7a. Only sub

matrices in the lower triangle of the matrix are stored. Zero 

- 73 -



A. PARTITIONING OF A HYPERMATRIX 

HYPERROWS 
(VARIABLE SIZE) 

HYPER COLUMNS 
(VARIABLE SIZE) 

~ 
-/ 

INDIVIDUAL 
SUBMATRIX 

SCALAR ENTRY 

B. HYPERMATRIX DATA STRUCTURE 

BASE ROW COLUMN 
POINTER POINTERS POINTERS SUBMATRICES 

xxx 
xxx 
x)fx 
xxx 

xxxx 
xxxx 
xxxx 
xxxx 

xxxx 
xxxx 
xxxx 

ROW COLUMN 
SIZES SIZES 

Figure 4.6. Representation of a Hypermatrix 

- 74 -

..... 
i 



.., 
I 
; 

..
I 

1 

K 

A. PARTITIONED STIFFNESS MATRIX 

ZERO 
BLOCK 

SYMMETRIC 

NON-ZERO 
BLOCK 

B .. ASSOCIATED D-A T A STRUCTURE 

KLOW 

Figure 4.7. 

xxx 
xxx 
xxx 

Banded, Symmetric Hypermatrices 

- 75 -

SIZES 



submatrices outside the band of the matrix are not created. Zero sub

matrices within the band are created since the submatrices become non-

zero during computations. When a symmetric matrix is partitioned, 

hyperrow and hypercolumn sizes are selected so that the diagonal sub

matrices are square, thus yielding a symmetric partition. 

The data structure for banded, symmetric hypermatrices is similar 

to that for general hypermatrices. As shown in Figure 4.7b, a two-level 

pointer hierarchy is used in which the first-level pointer vector lo

cates data on the hyperrow. For banded, symmetric hypermatrices, the 

column pointers locate data from the first non-zero submatrix on the 

hyperrow through the diagonal submatrix. Since the symmetric partition 

produces row-sizes and column-sizes vectors that are identical, a single 

sizing vector is sufficient. The banding information is contained in a 

vector called KLOY. 

in the hypermatrix. 

the first non-zero 

KLOY contains one integer entry for each hyperrow 

This integer defines the hypercolumn subscript for 

submatrix on the hyperrow. Using Figure 4.7 as an 

example, the first non-zero submatrix on hyperrow 4 occurs in hyper

column 3. Thus the fourth entry in vector KLOY is 3. 

The data structure described above is just one of several ways to 

represent a hypermatrix in a hierarchical form. One alternative is 

presented in [19] in which the submatrix pointers are stored in a 

pointer matrix rather than in a two-level pointer hierarchy. This tech

nique allows the pointer matrix itself to partitioned into a hypermatrix 

creating a multilevel hypermatrix data structure. While an exhaustive 

study has not been made to identify the optimum technique (if one does 

indeed exist), the foregoing data structure has proven to be effective 

in FINITE. Even though hypermatrix data structures minimize data 

- 76 -



r 

r 
! , 

I 
I 

....... , 

management overhead, the total number of data words transfered between 

memory and secondary storage may actually increase. This is because the 

blocking procedures require the addition of extraneous zero terms to the 

database. Remedies to this problem are discussed in the following 

section. 

4.4.2 Hypermatrix Solution Algorithms 

An advantage of hypermatrix data structures is that submatrices of 

a hypermatrix can be accessed as efficiently column-wise as row-wise. 

In contrast to column (or skyline) storage of sparse matrices, a hyper-

matrix can be used effectively as a pre-multiplier, as a post-

multiplier, and as its own transpose [19]. In a virtual memory 

environment, no paging penalties are incurred when performing matrix 

multiplication, triangulation, and load-pass operations so long as no 

more than one submatrix occupies a physical record (page) on secondary 

storage. 

Computations on hypermatrices typically require no more numerical 

operations than the same computations on conventionally stored matrices. 

Economical solutions can be achieved when proper account is made of 

operations on zero entries in the non-zero submatrices and when data 

accessing procedures are tailored to the specific application. As an 

example, consider the triple-matrix product performed in subspace 

iteration. The transformation of the mass matrix from geometric coor-

dinates to subspace coordinates is 

[XlT [M] [X] (4.1) 

- 77 -



where [M] is the structure mass matrix, [X] is the set of iteration 

vectors, and [M] is the transformed mass. The conventional approach to 

this transformation is to compute the product 

[T] - [M] [X] (4.2) 

followed by the product 

[M] - [X] T [T] . (4.3) 

With this approach, the intermediate product [T] must be computed and 

held in memory or on secondary storage until all computations are 

complete. 

An alternative approach to implementation of the triple-matrix 

product does not require the temporary matrix [T]. Assume that (M] is 

partitioned as a hypermatrix with "nil hyperrows and "n" hypercolumns and 

that [X] is partitioned into "nil hyperrows and "q" hypercolumns (q«n 

for most applications). The following algorithm requires only a tem-

porary submatrix [5] to perform the triple product. 

DO i - 1, n 
DO k - 1, q 

[S] - [0] 
DO j - 1, n 

[S] - [S] + [M •. ][X. k ] 
l.J J 

END DO 
DO j - 1, n 

[M
jk

] 

END DO 
END DO 

END DO 

In the above, the subscripts identify the hyperrow and hypercolumn from 

which the associated submatrix is taken. This algorithm builds the ! 

- 78 -



product [M] incrementally where the temporary product in [S] is used as 
r 

soon as it is computed. 

...... The algorithm is modified to recognize leading zeros in the mass 

submatrices as follows. When the submatrix product [Mij ][Xjkl is com-

r 
puted, [Mij ] is examined to locate the first non-zero entry on each row. 

:-' The corresponding column subscript is then used as a lower bound for the 

inner loop of multiplies to avoid operations on zero entries. Since the 

matrix of iteration vectors, [Xl, is fully populated, no tests are per-

- T formed on the entries in [Xij ] prior to computation of [Xij ] [S]. 

The above algorithm is for the case when [M] is fully populated and 

all submatrices are stored (lower and upper triangle). When [M] is 

stored as a banded, symmetric hypermatrix, subscript adjustments are 

necessary to properly access the [Mij ] submatrices. 

There is no significant difference in operation counts between this 

algorithm and the procedure of equations (4.2) and (4.3). Also, the 

number of submatrices accessed is the same for each algorithm. The 

advantage of the new algorithm is that memory and secondary storage 

requirements are minimized by eliminating the need for the temporary 

hypermatrix [T]. The above procedure provides another advantage when 

implemented on computers with virtual memory. The use of hypermatrices 

serves to minimize operating system paging. Since the submatrices are 

of moderate size, all entries in the submatrix can normally be accessed 

without the need for paging by the operating system. Conventional 

matrix products require row-wise data access and thrashing may result 

when the matrices are large. 

- 79 -



4.5 Subsystem DYNAMICS 

Several new subsystems were needed for the implementation of 

dynamic analysis capabilities in FINITE. Likewise, most of the existing 

subsystems required either minor or major modification to handle the new 

data structures and computational procedures. For example, subsystem 

OUTPUT was simply extended to support output of natural frequencies, 

mode shapes, modal loads, and modal strains and stresses. In contrast, 

subsystem ASSEMBLER required major revision to combine mass matrix as-

sembly with stiffness assembly and to include the use of normal DOF in 

both matrices. As mentioned earlier, it is impractical to review all 

the details of the implementation. Instead, the remainder of this chap-

ter presents a selection of the software developed for the study. Both 

new subsystems (DYNAMICS and EIGEN) and modifications to existing sub-

systems (ASSEMBLER, TRIANGULATE, and LOADPASS) are discussed. 

In dynamic analysis, requests for computation and output are passed 

to subsystem DYNAMICS by subsystem COMPUTE (see Section 4.2.1 and Figure 

4.2). Subsystem DYNAMICS controls the processors that provide the 

dynamic analysis capabilities of FINITE. When a "dynamics" request is 

received, the request vector is examined to determine which function is 

requested and which structural hierarchy is involved. DYNAMICS then 

invokes lower level subsystems to satisfy the request. Current 

capabilities of subsystem DYNAMICS include frequency analysis, computa-

tion of modal loads, recovery of computed results for condensed 

substructures, and output of the various computed results. These 

capabilities are managed by four separate subsystems, as shown in Figure 

4.2. They are FREQUENCY , MODAL_LOADS, RECOVERY, and OUTPUT. The fol-

lowing is a brief overview of the first three of these subsystems. 

- 80 -

-, 



,.... Subsystem OUTPUT required only simple extension to support the various 

dynamics output requests, so it is not described here. 

Frequency analysis entails the computation of natural frequencies 

and mode shapes for a structure at any level of the structural 

hierarchy. Frequency analysis is preceded by assembly of the stiffness 

and mass matrices for the structural model. For a standard (non-

substructured) model, assembly is performed without interruption and the 

frequency analysis (subsystem EIGEN) is then invoked. The logical flow 

through the subsystem hierarchy in Figure 4.2 is the following. When a 

request for frequency analysis is translated by subsystem DRIVER, con-

trol is transfered from DRIVER to COMPUTE to DYNAMICS to FREQUENCY. 

Subsystem FREQUENCY invokes ASSEMBLER to perform the stiffness and mass 

assembly. Since the model does not include substructures, subsystem 

ASSEMBLER performs the assembly without invoking any other subsystems 

(only element stiffness and mass routines are called). When ASSEMBLER 

terminates, control is returned to FREQUENCY. FREQUENCY then invokes 

subsystem EIGEN to perform the frequency analysis. When EIGEN ter-

minates, control is transfered back to FREQUENCY, which in turn returns 

control to DYNAMICS and so on. 

If the structural model contains condensed, lower level substruc-

tures, the condensation and assembly procedure requires ASSEMBLER to run 

r other subsystems. For fixed-interface reduction of a substructure, 

subsystem ASSEMBLER interrupts its own execution and invokes subsystem ,.... 
, 

EIGEN to perform the fixed-fixed frequency analysis of the substructure. 

When EIGEN terminates, control is returned back to ASSEMBLER. Subsystem 

TRIANGULATE is then initiated to perform the reduction. After the stif-

fness and mass matrices for the current substructure have been reduced, 

- 81 -



control is again returned to ASSEMBLER and the assembly process 

continues. This process is performed recursively until all structures 

in the hierarchy have been condensed and assembled. When the entire 

structural hierarchy has been assembled, ASSEMBLER terminates and con

trol is returned to FREQUENCY. At that point, subsystem EIGEN is again 

invoked to solve the eigenproblem for the highest level structure. 

Details of the frequency analysis and condensation procedures follow 

later in this chapter. 

Computation of modal loads requires simply a transformation of a 

load vector (in geometric coordinates) to modal coordinates. The load 

vector is obtained from the prior definition of a loading condition by 

the analyst. The mode shapes computed in a frequency analysis of the 

structure are used for the transformation from geometric to modal 

coordinates. The modal loads processor permits the analyst to identify 

those vibration modes that are most likely to participate in the 

response of the structure under a given dynamic load. This information 

is useful in performing transient analysis by mode superposition. Full 

implementation of mode superposition capabilities is not included in 

this study. 

After frequencies and mode shapes have been computed for the 

highest level structure in a substructured model, the mode shapes for 

condensed lower level substructures may be recovered. The necessary 

procedures are managed by subsystem RECOVERY. A request for computation 

or output of mode shapes, modal strains, or modal stresses causes 

RECOVERY to be invoked. The transformation matrix of static constraint 

modes and substructure normal modes is used to transform the mode shapes 

from the reduced set of generalized coordinates back to the geometric 

- 82 -



coordinates of the uncondensed substructure (see Equation 2.7). This 

process is repeated recursively until the lowest level of the hierarchy 

is reached. At this point, the portion of the mode shape which cor

responds to the condensed substructure DOF can be output to the analyst. 

Recovery of modal strains and modal stresses is performed after 

mode shape recovery. Modal strains are the strains computed for the 

individual finite elements when a free-vibration mode shape is used as a 

displacement vector. Modal stresses are derived from modal strains 

through the stress-strain relations for the element. Computation of 

modal strains is useful in evaluation of the modeling and analysis pro

cedures, as is discussed in the next chapter. 

4.6 Frequency Analysis 

The efficiency and flexibility of the dynamics capabilities of 

FINITE depend heavily upon the capabilities of the eigenproblem solver. 

For this reason, frequency analysis is discussed in more detail than the 

previous topics. 

Computation of natural frequencies and mode shapes has been imple

mented in FINITE in the form of two eigenproblem solvers: the 

generalized Jacobi method and subspace iteration. Computations for both 

eigensolvers are managed by subsystem EIGEN. EIGEN may be invoked to 

solve the eigenproblem for structures at any level of the structural 

hierarchy and with any specified boundary conditions. This includes 

fixed-fixed frequency analysis for condensed substructures and free-

vibration analysis for constrained or unconstrained structures. 

Subsystem EIGEN determines the nature of the analysis from the charac

teristics of the structure and from instructions contained in the 

- 83 -



request vector. The particular solution method which is used (JACOBI or 

SUBSPACE) is selected by the analyst. Each of the two eigensolvers is 

discussed below. Data structures and details of the algorithms are 

described. 

4.6.1 Generalized Jacobi Method 

The computation of natural frequencies and mode shapes for discrete 

structural models is achieved by solution of the generalized 

eigenproblem: 

2 
[K][~] - [~ ][M][~] (4.4) 

where [K] and [M] are symmetric, positive definite coefficient matrices, 

[~] is the matrix of eigenvectors, and [~2] is the diagonal matrix of 

eigenvalues. The generalized Jacobi method [4] is one of two eigensol-

vers implemented in FINITE for solution of this problem. The 

generalized Jacobi method serves two functions in FINITE. First, it is 

used to compute all frequencies and mode shapes for small structural 

models. Second, the method is used as a component of subspace 

iteration. The generalized Jacobi method is popular because of its 

simplicity and its ability to handle ill-conditioned or singular coeffi-

cient matrices. 

In the generalized Jacobi method, [K] and [M] are iteratively 

transformed using orthogonal rotation matrices to zero the off-diagonal 

terms in each matrix. After sufficient iteration, the matrices are 

driven to diagonal form and the eigensolution is complete, yielding all 

eigenpairs for the problem. Convergence of the method is quadratic once 

the off-diagonal elements are small. Thus a high degree of accuracy in 

- 84 -

.... , 



r 
! 

r 

the solution can be achieved by continued computation at little addi-

tional cost. This characteristic has made the generalized Jacobi method 

an efficient component of the subspace iteration method (discussed in 

the next section). 

Implementation of the generalized Jacobi method in FINITE required 

a limitation on the basic formulation presented in [4]. The order of 

the problem which can be solved is currently limited to 60 DOF. This 

restriction assures that the stiffness and mass matrices will each oc-

cupy only one submatrix. This yields a memory-resident solution 

procedure. Since the generalized Jacobi method loses efficiency when 

the order of the problem is large, a corresponding hypermatrix formula-

tion which requires additional I/O is of questionable value [7]. 

4.6.2 Conventional Subspace Iteration 

The subspace iteration method [3] is used to compute the "pit lowest 

eigenvalues and corresponding eigenvectors for the generalized 

eigenproblem, Equation (4.4). In this case, [K] and [M] have order nxn, 

[rp ] 
2 has order nxq, and [w ] has order qxq (q>p). The method belongs to 

the simultaneous iteration class of eigenproblem solvers in which in-

verse iteration is performed with a set of orthogonal iteration vectors. 

In subspace iteration, a special Ritz analysis is performed to enforce 

orthogonality of the iteration vectors and to enhance convergence. 

The first step of the method is to select a set of "q" iteration 

vectors that reside in the nxq matrix [X]. When the method was 

initially proposed, Itqlt was selected as the minimum of "2p" and "p+8." 

Using "q" iteration vectors instead of just "pit vectors improves the 

- 85 -



convergence rate for 

Next, [KJ is triangulated such that 

[KJ - [L] [LJ T (4.5) 

where [LJ is the lower triangular Choleski factor of [K]. After trian-

gulation, the iteration cycle begins. 

Compute the inertia-load vectors 

[FJ - [MJ [XJ • (4.6) 

Find the pseudo-displacements corresponding to the inertia loads by 

solving for [X] in 

(4.7) 

Transform the stiffness and mass to subspace coordinates by 

(4.8) 

[XJ T [M] [XJ . (4.9) 

Using the generalized Jacobi method, solve the qxq eigenproblem for the 

subspace 

[K] [vJ - [A] pi] [1lt] • (4.10) 

Finally, compute the improved iteration vectors [X] as 

[X] - [X] [1lt] • (4.11) 

The result of equation (4.11) is used in equation (4.6) to start the 

next iteration. Convergence is achieved when the first "pit eigenvalues 

in [A] do not change (by more than a tolerance) from one iteration to 

the next. 2 At convergence, A. ~ w. and {X.} ~ {~.} for i - 1, ... p. 
1. 1. 1. 1. 

Equations (4.6) and (4.7) form the simultaneous inverse iteration 

steps, while equations (4.8) - (4.11) define the Ritz analysis. 

8q 



r 

r 

Selection of the initial iteration vectors may be based on a number 

of different procedures. The simplest approach is the following. 

Entries in the first column of [X] are taken as the diagonal terms of 

[M]. The remaining columns of [X] are unit vectors with 1.0 entries at 

coordinates with the largest miifkii ratios. This procedure attempts to 

excite the modes with the lowest natural frequencies. 

The conventional subspace iteration method was not developed in 

conjunction with any particular data structure. During implementation 

the numerical procedure must be modified to be compatible with the 

chosen data structures. A modified subspace iteration procedure was 

developed, based on the work of other researchers, to conform to hyper

matrix data structures. 

4.6.3 Hypermatrix Subspace Iteration 

In spite of its popularity, several problems have been identified 

with the use of the conventional subspace iteration method [58]. The 

most significant of these is the computational expense required to form 

and solve the subspace eigenproblem for large subspace sizes, Equations 

(4.8 - 4.10). One procedure that has found favor with researchers is 

the 

than 

evaluation of eigenpairs in groups with the subspace size, q, less 

the number of eigenpairs, p, that are required [5, 35, 58]. The 

procedure 

in which 

adopted in this study is essentially that presented in [58], 

eigenvectors are removed from the set of iteration vectors as 

they converge. To keep the subspace size constant, new iteration vec-

tors are introduced to replace the converged vectors. This causes the 

- 87 -



domain of the subspace to be shifted to the higher values in the fre

quency spectrum of the structural model. Therefore, the order of the 

subspace (q) does not place an upper limit on the number of eigenpairs 

(p) that may be computed. Origin shifts are also used to improve con

vergence rates for the higher eigenvalues. The use of hypermatrices in 

this study has prompted modifications to Wilson's procedure. These 

modifications are discussed individually, and then the complete hyper

matrix formulation is presented. 

4.6.3.1 Selection of Iteration Vectors 

For the conventional subspace iteration method, initial iteration 

vectors are selected by identifying the coordinates with the largest 

mii/kii ratios. This approach is not appropriate when the stiffness and 

mass are stored as hypermatrices. In order to store the ratios, a hy

pervector data structure is required (see Figure 4.8). Sorting the 

ratios then requires a multiple-merge sort in which each of the in

dividual subvectors is sorted, then the group of sorted vectors is 

merged into a single sorted vector. During the entire process, the list 

of ratios must remain in hypervector form so that it can be transferred 

to secondary storage as other memory requirements develop. 

As an alternative to implementation of the sorting procedure, a new 

algorithm was developed to select initial iteration vectors. Iteration 

vectors are chosen as discrete representations of a set of orthogonal 

cosine functions (see Figure 4.9). This new algorithm guarantees that 

all unconstrained coordinates will be excited by the inertia loads and 

that each vector will be orthogonal to the others in the set. This 

- 88 -



= 1 

- n 

Base 
Pointer 

Row 
Pointers Subvectors 

Figure 4.8. Hypervector Data Structure 

= Row Number 

j = Column Number 

o o o o 
j = 1 j = 2 j = 3 j = 4 

Figure 4.9. Cosine Function Iteration Vectors 

,..... - 89 -



procedure is used both for selecting the initial iteration vectors and 

for generating new iteration vectors to replace converged eigenvectors. 

Another procedure for selection of iteration vectors that is com-

patible with hypermatrix data structures is the use of randomly 

generated vectors [9]. Although they are simple to generate, the random 

vectors must be explicitly orghogonalized prior to use in the first 

iteration. 

4.6.3.2 Solution of the Subspace Eigenproblem 

The generalized Jacobi method is typically used to solve the 

eigenproblem for the subspace, Equation (4.10). In conventional sub-

space iteration, the computational effort required to form and solve the 

subspace eigenproblem becomes prohibitive as the subspace size 

increases. Transformation of [K] and [M] to [K] and [M] requires 

2 (nq + 2nq) operations and solution of the subspace eigenproblem re-

quires roughly (3q3 + 6q2) operations. Therefore, it is desirable to 

limit q to maintain efficiency of the overall solution. Yet if q is 

small, 2 2 the convergence rate (~./~ 1) is adversely affected. Selection 
~ q+ 

of q must be based on a balance between a "large" subspace size to ob-

tain good convergence rates and a "small" subspace size to maintain 

efficiency in the transformations and Jacobi iterations. 

Wilson [58] suggested that the optimum subspace size is a function 

of the bandwidth of the model. This finding provides the basis for a 

rational approach to the vector replacement procedure reviewed above. 

To maintain consistency with the generalized Jacobi method and the use 

- 90 -
.... 

; 
1 

, 



r 

r 
! 

,.... 

of hypermatrices, the number of iteration vectors (and thus the order of 

the subspace) is limited to the number of columns that can be placed in 

one hypercolumn of a hypermatrix. When a set of iteration vectors in 

[X) is generated, a hypermatrix data structure is used. The hyperrows 

are sized according to the sizing vector used for [K) and [M] (Figure 

4.4), and the number of hypercolumns is limited to just one. When the 

stiffness and mass transformations are performed using Equations (4.8) 

and (4.9), the resulting subspace stiffness [K) and mass [M) each occupy 

only one submatrix. Thus, the generalized Jacobi procedure can be used 

as a memory-resident eigensolver for Equation (4.10). Again, the cur-

rent limit on the order of the subspace eigenproblem is 60x60. 

When the stiffness and mass matrices are transformed to subspace 

coordinates, some terms in [K] and [M) may become quite large. 

Additional computations using these terms (such as computing rotation 

matrix coefficients) may produce exponential overflow. Sources of this 

problem lie in the units of measure selected by the analyst and in the 

magnitude of the inertia-load vectors, [F), relative to the structure 

stiffness [K). A simple remedy developed in this study involves scaling 

the subspace stiffness and mass prior to eigensolution. The scale fac-

tor is computed as the average of the maximum and minimum exponents of 

the diagonal terms in [K] and [M]. After eigensolution the scale factor 

is removed from the eigenvectors [w]. The scaling procedure does not 

affect the eigenvalues [A). Use of this procedure has proven successful 

in contro1ing exponent growth of the terms in the transformed stiffness 

and mass. 

- 91 -



4.6.3.3 Orthogonalization of Iteration Vectors 

When converged eigenvectors are removed from the set of iteration 

vectors and replacement vectors are inserted, two orthogonalization 

procedures must be performed. First, the replacement vectors must be 

mass-orthogonalized to the other iteration vectors in [X). This opera-

tion is performed only at the end of iterations in which replacement 

vectors are added to [X) due to removal of converged eigenvectors. The 

purpose of this operation is to force each iteration vector to converge 

to a different eigenvector. If no convergence occurs during a certain 

iteration, this orthogonalization step is skipped. 

The second orthogonalization procedure guarantees that converged 

eigenvectors do not reappear in the iteration vectors. Once an eigen-

vector has been removed from the subspace, all iteration vectors in [X) 

must be mass-orthogonalized to that eigenvector, and to all other con-

verged eigenvectors. This step must be performed at the start of every 

iteration following convergence of the first eigenvector. 

The Gram-Schmidt procedure is used most often to perform the above 

orthogonalizations [9, 58]. First, consider orthogonalization of re-

placement vectors to other iteration vectors in [X]. Assume that two or 

more replacement vectors have just been added to [X]. The set of vec-

tors can be partitioned to separate "replacement" and "other" vectors: 

[X) - [X I X ]. o r (4.12) 

Mass-orthogonalization of [Xr ] to [Xo ] is achieved by: 

A 

[X ] - [X ][X ] T [M][X ]. roo r (4.13) [X ] 
r 

The new set of iteration vectors becomes: 

- 92 -



r 
I , 
; 

,..... 

(4.14) 

Notice that the vectors in [X ] are not mass·orthogonalized to each 
r 

other as they are added to the subspace. The additional expense of this 

activity is avoided by selecting replacement vectors which are known to 

be mutually orthogonal 

After orthogonalization with respect 

(4.15) 

to [X ] by Equation (4.13), the 
o 

modified replacement vectors [X ] will converge to the highest eigenvec. 
r 

tors within the domain of the subspace: 

(X) ~ (ep), (X I) ~ (ep I)' ••• q s q. s· (4.16) 

where (X ) is the last vector in [X ], s - q+c, and "c" is the number of 
q r 

converged eigenvectors that have been removed from the subspace so far. 

Since the convergence rates for these iteration vectors are relatively 

slow (w;/w;+l for (Xq)), little change in the vectors will occur during 

the next iteration. At that time, they too will become mass.orthogonal 

through solution of Equations (4.8) . (4.11). 

Mass·orthogonalization of the full set of iteration vectors [X] to 

the "c" converged eigenvectors in [ep] follows the same procedure: 

[i] - [X] • [ep] [ep] T [M] [X] • (4.17) 

The new iteration vectors satisfy the required condition for 

orthogonality: 

(4.18) 

. 93 . 



However, in solving Equation (4.17), mass-orthogonality of the vectors 

in [X] to each other is violated. To evaluate the significance of this 

effect, consider the following. Define [a] as the mass-weighted projec-

tion of [X] onto [~] prior to orthogonalization: 

T 
[a] - [~] [M][X]: (4.19) 

After orthogonalization by Equation (4.17), the new iteration vectors 

[X] satisfy Equation (4.18), however, they have been altered such that 

(4.20) 

If the vector projections in [a] are of the order ~, the mass-weighted 

A 

projections of the vectors in [X] on each other are on the order ~2. 

Since the operation of Equation (4.17) is performed after every itera-

tion, the projection values, ~, can be expected to be small. Thus, ~ 
2 

will be smaller yet, and Equation (4.20) can be approximated by 

(4.21) 

A 

The vectors in [X] are used as [X] in the next iteration without the 

need for each vector to be individually mass-orthogonalized to the 

others. While numerical values for the terms in [a] for various example 

problems have not been examined, the above orthogonalization procedure 

has not led to any stability or convergence difficulties. 

:'--

- 94 -



-

4.6.3.4 Subspace Iteration with Hypermatrices 

A summary of the subspace iteration method implemented in this 

study is presented in the following pseudo-code. The individual proce-

dures are discussed in the following section. 

CALL INITIALIZE 
IF( SHIFT .NE. 0") CALL SHIFT K 
CALL TRIANGULATE 
GO TO $TRANS 
LOOP 

IF ( CONVERGENCE_COUNT . GT. 0 ) CALL ORTHOG _PHI 
CALL INERTIA_LOADS 
CALL LOAD PASS 

$TRANS CALL TRANSFORM 
CALL JACOBI 
CALL NEW X 
CALL TEST CONVERGENCE 
IF( CONVERGE) THEN 

CALL MOVE_PHI 
CALL REPLACE_X 
CALL UPDATE_ORTHOG 

END IF 
IF( ALL_CONVERGED) EXIT 
IF( ITERATION LIMIT EXCEEDED ) EXIT 
CALL NEW SHIFT 
IF( TlME_TO_SHIFT ) THEN 

CALL SHIFT K 
CALL TRIANGULATE 

END IF 
END LOOP 

4.6.3.5 Description of Procedures 

Procedure INITIALIZE computes the subspace size, evaluates the 

discrete cosine functions used as initial iteration vectors, and 

initializes iteration variables. If the analyst has indicated that the 

structural model contains rigid body modes, variable SHIFT is set to a 

small negative value. 

Procedure SHIFT K applies the shift to the stiffness matrix which 

is stored in hypermatrix format. The shifted stiffness is 

[K'] - [K] - SHIFT * [M]. (4.22) 

- 95 -



Procedure TRIANGULATE performs Choleski decomposition on [K] if 

SHIFT equals zero or on [K'] if SHIFT is non-zero (see Equation (4.5». 

During triangulation, the Sturm sequence check is performed. The number 

of negative terms that appear on the diagonal of [L] during decomposi-

tion identifies the number of eigenvalues below SHIFT. If the STURM 

CHECK property is specified by the analyst, this number is output during 

the solution of the eigenproblem. 

Procedure ORGHOG PHI performs Gram-Schmidt orthogonalization of the 

iteration vectors in [X] (see Equation (4.17». T The product [~][~] [M] 

is computed by procedure UPDATE ORTHOG prior to executing this proce-

dure. 

Procedure INERTIA_LOADS computes the inertia load vectors (see 

Equation (4.6». 

Procedure LOAD_PASS computes [X] by performing a forward and a 

backward load-pass on the inertia loads (Equation (4.7». 

Procedure TRANSFORM computes the projected operators for the 

subspace. In the first iteration, [K] is computed from 

[X] T [K] [X] . (4.23) 

In all other iterations, Equation (4.8) is used. [M] is derived from 

Equation (4.9) in all iterations. 

Procedure JACOBI solves the eigenproblem for the subspace, Equation 

(4.10). After solution of the eigenproblem, the eigenvalues [A] and the 

corresponding eigenvectors [w] are sorted in ascending order so that 

convergence of the vectors in [Xl can be evaluated properly. In 

- 96 -



...... 
I 
I 

r 
Wilson's implementation [58], the shift is removed prior to solving the 

subspace equations: 

([K] + SHIFT * [M]) [1lT] - [AJ [M] [1lT]. (4.24) 

Using this equation, the eigenvalues in [A] converge directly to the 

system eigenvalues [~2]. If Equation (4.10) is solved, the eigenvalues 

in [A] differ from those of [w2] by SHIFT. 

Procedure NEW X computes the improved iteration vectors [X], 

Equation (4.11). 

Procedure TEST CONVERGENCE compares the values in [A] with those 

from the previous iteration. If the difference in Ai from one iteration 

to the next is within the -6 convergence tolerance (10 is typically 

used), that eigenvalue has converged. The sort in procedure JACOBI 

forces Al to converge before A2 , and so on. Therefore, convergence 

testing terminates with the first value that fails the test. If any 

values are found to converge, variable CONVERGE is set true, and the 

convergence counter is incremented. When the required number of eigen-

values has converged, variable ALL_CONVERGED is set true. 

Procedure MOVE PHI moves the converged eigenvectors from [Xl into 

2 The converged eigenvalues are moved from [A] to [w ]. 

Procedure REPLACE_X adds new iteration vectors to [X] to replace 

the converged eigenvectors. As the replacement vectors are generated, 

they are scaled by the largest eigenvalue estimate remaining in [A] to 

control overflow problems. The replacement vectors are then mass-

orthogonalized to the other iteration vectors by Equation (4.13). 

- 97 -



Procedure UPDATE_ORTHOG updates the product [~][~]T[M] to include 

the eigenvectors which have just converged. This product is updated 

each time an eigenvector converges. The product is then used in proce-

dure ORTHOG PHI to satisfy Equation (4.18). The objective is to 

the alternative is to compute [~J[~JT[MJ minimize numerical op~rations; 

for all eigenvectors each time procedure ORTHOG PHI is executed. The 

drawback to this approach is that a fully populated, non-symmetric hy-

permatrix of the same order as [MJ must be stored. 

Procedure NEW_SHIFT determines if it is time to shift the stiffness 

matrix to improve convergence. If shifting is appropriate, variable 

TIME_TO_SHIFT is set true, and SHIFT is recomputed. The shifting 

strategy is based on the guidelines established in [58]. 

In procedure INITIALIZE, the iteration vectors are placed in [Xl 

rather than in [Xl. The inertia-load and load-pass computations are 

skipped in the first iteration, and [Xl is used immediately in procedure 

TRANSFORM. This action serves two purposes. First, since the discrete 

cosine functions are not scaled to the physical characteristics of the 

structure, 

computations. 

overflow problems are 

Skipping INERTIA LOADS 

possible during the load-pass 

and LOAD PASS reduces exponent 

growth until the iteration vectors can be properly scaled in NEW_X. 

Second, since the initial iteration vectors are not mass-orthogonal, it 

is unwise to use them in inverse iteration (INERTIA_LOADS and 

LOAD_PASS). Performing the Ritz analysis (TRANSFORM, JACOBI, and NEW_X) 

serves to mass-orthogonalize the iteration vectors so that subsequent 

inverse iterations are stable. 

- 98 -



-, 
..... 
; 

4.7 Fixed-Interface Method 

Since static condensation was functional in FINITE at the start of 

this study, extension of the system to support the fixed-interface 

method of modal synthesis was straightforward. The equations which 

define the condensed stiffness and mass matrices for a substructure, 

(2.10)-(2.16), provide the basis for the implementation. With the 

statically condensed stiffness matrix of the substructure available, the 

fixed-interface computations involve four steps: 

l. Compute the static constraint modes 
c 

[~ ], 

2. Compute the Guyan reduced mass [MG] , 
3. Perform the fixed-fixed frequency analysis, and 

4. Compute the mass coupling block [~]. 

At the conclusion of these operations, each of the individual components 

of the reduced stiffness and mass are computed separately. Assembly of 

the reduced matrices into the stiffness and mass matrices for the higher 

level structure is then performed as an independent function. These 

four steps along with the assembly procedure are discussed in detail 

below. 

4.7.1 Static Constraint Modes 

As defined in Chapter 2, a static constraint mode is the displaced 

configuration of the slave oaF resulting from a unit displacement ap-

plied to one of the master OaF while all other master oaF are held 

fixed. Equation (2.5) suggests that the static constraint modes can be 

computed by standard equation solving techniques: 

(2.5) 

- 99 -



However, it is not necessary to perform both the forward and backward 

load-pass operations. Only a special back-pass is required as described 

in the following. 

The procedure used in FINITE for static condensation involves 

"partial decomposition" [57] of the stiffness matrix. Consider the 

stiffness matrix for a substructure which is to be condensed. 

Partitioning the matrix to separate master and slave OOF yields 

[K] (4.25) 

where the superscripts on the submatrices denote master (m) and slave 

(s) OOF. Choleski decomposition is applied to completely eliminate the 

slave OOF in [Kss ]. Similarly, the master-slave coupling terms in [Kms ] 

are reduced following the standard procedures for off-diagonal terms. A 

partial decomposition is then performed on the [~] submatrix of master 

OOF coefficients to eliminate the coupling effect of the slave DOF in 

submatrix [Kms ]. The modified submatrix [Kmm ] becomes the desired con-

densed stiffness matrix for the substructure. In partitioned form, the 

partially decomposed stiffness matrix becomes 

(4.26) 

where [KG] is the statically condensed (or Guyan reduced) stiffness, 

[Lss ] is the lower triangular Choleski factor of the [Kss ] , and [Y] is 

the matrix of "partial static constraint modes." As a consequence of 

- 100 -



-, 

-

-• 
-I 
i 

.--

the condensation process, the submatrix [Y] contains the result of a 

standard forward substitution: 

(4.27) 

To 
c complete the static constraint modes [~ ], only a backward substitu-

tion is necessary: 

(4.28) 

Implementation of this backward substitution function required a 

minor addition to subsystem TRIANGULATE. TRIANGULATE is invoked by 

subsystem ASSEMBLER when stiffness and mass matrix assembly requires 

condensation of lower level substructures. After the condensed stiff-

ness is computed as described above, subsystem LOADPASS is initiated by 

TRIANGULATE to perform the backward substitution needed to complete the 

static constraint modes. The matrix [~c] is then stored in the SOLVER 

database and mass matrix condensation begins. 

4.7.2 Guyan Reduced Mass 

The second step in the condensation process is the computation of 

the Guyan reduced mass. This procedure is implemented in subsystem 

TRIANGULATE directly as defined by Equation (2.15) for a consistent mass 

formulation and Equation (2.16) for lumped mass models. Repeating those 

equations for reference: 

[Mmm] + [~C]T[Mss][~c] + [~c]T[Msm] + [~s][~c] 

[Mmm] + [~c]T[Mss][~c] 

(2.15) 

(2.16) 

The algorithm for hypermatrix triple products described earlier in 

this chapter at first appears to have application in computing [MG]. 

- 101 -



However, in computing the mass coupling block, [~n], it is more 

economical (fewer numerical operations are required) to use the conven-

tional procedure for computing triple products. The matrix product 

c T ss . G . .Inn 
[~ ] [M ] ~s used in computation of both [M ] and [n ]. Therefore, it 

is more efficient to compute the product once and hold it as a temporary 

matrix, [T] . Then [T] is used in Equation (2.15) or (2.16) to compute 

[MG] and again later to compute [~]. 

One additional facet of this step needs discussion. For consistent 

mass formulations, the off-diagonal submatrices, [Msm] and [~s] are 

included in the computation of [MG]. Since the mass matrix is 

symmetric: 

(4.29) 

d 1 h . d ('.lUs] (",c] an on y t e matr~x pro uct n r must be computed. The other 

product is obtained by simple transposition. 

When (M
G] is finally computed, it too is stored in the SOLVER 

database. 

4.7.3 Fixed-Fixed Frequency Analysis 

The normal modes used in the fixed-interface method are defined by 

the eigenvalue problem: 

(4.30) 

Solution of this problem for the selected frequencies and mode shapes is 

performed by subsystem EIGEN as described in Section 4.6. Constraint of 

the master DOF implied by Equation (4.30) is provided through equation 

- 102 -



., , 

-
-

,-

partitioning. Since the slave DOF are blocked in the top rows and 

columns of the stiffness and mass matrices, the master DOF are effec-

tively constrained during frequency analysis by ignoring entries in [K] 

and [M] below the last slave DOF. After solution, both the matrix of 

normal modes, [~n], and the associated frequencies, [~2), are saved in 

the SOLVER database. The normal modes are used in computation of the 

mass coupling block and the frequencies represent the normal stiffness 

coefficients in the reduced stiffness matrix. 

While the fixed-fixed frequency analysis is logically the third 

step in the reduction procedure, implementation followed a different 

scheme. This step is actually performed before the other three steps. 

In subsystem ASSEMBLER, the need for fixed-fixed normal modes is deter-

mined prior to invoking subsystem TRIANGULATE. If normal modes are used 

in condensation, subsystem EIGEN is called first. Upon return from 

EIGEN, ASSEMBLER initiates subsystem TRIANGULATE to do the condensation. 

Once TRIANGULATE is initiated, steps 1, 2, and 4 are completed without 

interruption because the fixed-fixed eigenpairs are already available. 

4.7.4 Mass Coupling Block 

The off-diagonal submatrix in the reduced mass matrix, [~n], con-

tains the coupling terms between the normal and the master DOF of the 

substructure. The submatrix is defined by Equation (2.12) for consis-

tent mass models and by Equation (2.13) when a lumped mass formulation 

is used. Those equations are: 

[~s][~n] + [~c]T[Mss][~n] 

[~] _ [~C]T[Mss][~n] 

- 103 -

(2.12) 

(2.13) 



For the lumped mass formulation, Equation (2.13) is computed by a stan-

dard matrix product using the temporary matrix [T] as described above. 

When a consistent mass is used, Equation (2.12) is rearranged so that 

only one matrix product is computed. The off-diagonal block [~s] is 

first added to [T] and then this sum is post-multiplied by [~n]. The 

computations actually take the form: 

c ss 
where [T] - [~][M ]. 

4.7.5 Assembly of the Reduced Stiffness and Mass Matrices 

(4.31) 

When subsystem TRIANGULATE terminates execution after performing 

the above reduction, the reduced stiffness and mass matrices areac-

tua11y broken into four components, each stored separately in the SOLVER 

database. The components are [KG] and [w2 ] which form the reduced stif-

fness and [MG] and [~n] which form the reduced mass. Subsystem 

ASSEMBLER retrieves these components from the SOLVER database and as-

semb1es them into the reduced stiffness and mass matrices. Assembly 

occurs when the actual matrices are needed to form the stiffness and 

mass for a higher level structure. 

4.8 Restart and Reanalysis 

Prior to performing the structural analysis, an analyst does not 

generally know the number of natural frequencies below a certain target 

frequency or the number of iterations required to compute a specified 

number of eigenpairs. For substructured models, the analyst must also 

- 104 -



select the number of normal OOF to retain in each condensed 

substructure. If too few normal OOF are selected, overall response of 

the structural model will be degraded. If too many normal OOF are 

selected, the reduction process becomes excessively expensive. 

Selection of the ncorrectn number of OOF to retain is based on ex

perience and judgement. However, even experienced analysts can seldom 

anticipate the number of normal OOF needed for accurate and economical 

solution of a new structural model. Analysis software must provide the 

capabilities for the analyst to gain this knowledge in an iterative 

fashion. In order to efficiently achieve such an iterative solution, 

the software must support automatic restart and partial reanalysis. 

Automatic restart is defined as the resumption of a previously 

terminated analysis without loss of computed results. For example, 

suppose that an analyst computes the first 25 frequencies and mode 

shapes for a structure and requests output of the natural frequencies 

but terminates execution of the analysis prior to obtaining mode shape 

output. Automatic restart allows access to the existing databases for 

output of the mode shapes without recomputing them. 

Partial reanalysis is the ability to make modifications to a struc

tural model and to recompute the response of the highest level structure 

without completely reanalyzing the entire structural model. For ex

ample, suppose that a structure with three condensed substructures has 

been analyzed and the analyst wants to refine the definition of the 

first substructure. A partial reanalysis involves restarting the fixed

fixed frequency analysis of that substructure, computing additional 

normal DOF, recondensing the substructure, assembling it into the 

highest level structure, and reanalyzing the highest level structure 

- 105 -



without repeating the condensation and assembly of the two unmodified 

substructures. This capability of the software is critical to the suc-

cess of the analysis of multilevel substructured models in which fixed-

interface reduction is used throughout the hierarchy of the structural 

model. 

Implementation of a general restart and reanalysis capability is 

much more complex than the computational procedure indicates (see 

Section 2.2.3). The reason is that the critical procedures are not 

computational. Instead, extensive changes in both size and content of 

previously created data structures are required. Sophisticated data 

management procedures are the prerequisite for successful restart and 

reanalysis. To begin the reanalysis, a complex traversal of the struc-

tural hierarchy is required to validate (or invalidate) existing data, 

to determine what needed data are missing, and to determine the effects 

of invalid or missing data at each level of the hierarchy. Once this 

traversal is complete, the reanalysis begins. Existing valid data is 

used wherever possible. New computations are performed only when 

necessary. 

4.8.1 Automatic Restart 

Automatic restart was an operational feature of FINITE at the start 

of this study. After termination of an analysis, the existing databases 

could be accessed again and any conventional request issued. This in-

eludes definition and displacement computation for a new static loading 

condition, output of previously computed displacements, strains, or 

stresses for a structure, and continuation of a nonlinear static 

analysis. The new dynamic analysis features are also implemented with 

- 106 -

.... , 



-, 

restart capabilities, the most powerful of which is frequency analysis 

restart. Frequency analysis restart involves continuation of a previous 

frequency analysis to compute additional eigenpairs for any specified 

structure, at any level of the structural hierarchy. Since the general-

ized Jacobi method yields all eigenpairs for a structure, frequency 

analysis restart applies only to subspace iteration. 

The analyst defines restart of subspace iteration by specifying the 

number of additional eigenpairs to compute and a value for the initial 

subspace shift. The initial shift is some value greater than the last 

converged eigenvalue but less than an estimate for the next eigenvalue 

in the spectrum. For example, suppose that in the first analysis run, 

15 eigenpairs converged with the largest eigenvalue equal to 2.SE+06. 

When this initial run terminates, FINITE outputs an estimate for eigen-

value number 16, say 4.2E+06. If the analyst wants a total of 20 

eigenvalues for the structure, parameters for restart of subspace itera-

tion would be defined as follows: 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUMBER OF PAIRS 5 ITERATIONS 10, 

MINIMUM FREQUENCY 3.3E+06 

In the above the MINIMUM FREQUENCY is the value to which a shift is 

applied before continuing the analysis. 

The key to efficient restart of subspace iteration is the re-use of 

the previous set of iteration vectors. When the initial analysis run 

terminates, several of the vectors in the iteration set will be nearly 

converged. (This is the basis for the estimate of eigenvalue number 16 

in the above example.) Since these vectors are the best known estimates 

for the real eigenvectors, they provide the optimum set of initial 

iteration vectors. Therefore, it is imperative that the software system 

- 107 -



make these vectors available for re-use. Complications for data manage

ment arise when the analyst changes another property of the analysis 

method: the subspace size. Such a change forces the hypermatrix that 

stores the iteration vectors to be resized (columns are either added or 

removed depending on an increase or decrease of the subspace size). If 

the subspace size is "increased, new "cosine-function" iteration vectors 

are added to fill out the set. 

Another major task performed prior to restarting the subspace com

putations is moving the existing eigenvectors into the SOLVER database 

and storing them in hypermatrix form. The eigenvectors are needed for 

the orthogonalization of iteration vectors after each iteration. After 

these two data management operations are performed, the frequency 

analysis is resumed. It is important to note that these data handling 

tasks are performed automatically and are transparent to the analyst. 

The analyst's contri~ution to restart is simply the selection of the 

number of additional eigenpairs and the specification of an initial 

shift. Since very few numerical operations are performed during this 

set-up phase, overhead for analysis restart is minimal. 

4.8.2 Partial Reanalysis 

As discussed in Chapter 2, an analyst often requires reanalysis of 

a model as a check on the quality of the reduction of one or more 

substructures. To obtain the check, additional normal DOF are added to 

selected substructures and the analysis is repeated. 

For efficient restart, computations must be limited to only those 

portions of the model affected by the modifications. Reanalysis begins 

with the computation of additional fixed-fixed normal modes for the 

- 108 -



-
substructures in question. When subspace iteration is specified for the 

frequency analysis, restart is initiated as described in the previous 

,- section. Th bl hi h h f i [t.21 d d h e ta es w c store t e requenc es w an mo e s apes 

[~n1 are resized (enlarged) for storage of the newly computed data. ,-
After the additional eigenpairs are determined, they are stored with 

- their counterparts from the previous analysis. 

The next step is to compute a new mass coupling block [~n1 for the 

substructure. The new mass coupling block contains one new column for 

each new mode shape in -n [rp ], with the existing columns remaining 

unchanged. Therefore, it is sufficient just to resize the matrix [~n1 

and compute the new columns by the procedure discussed in Section 4.7.4. 

The most complex step in the implementation is assembly of the 

structure stiffness and mass matrices in which the reanalyzed subs truc-

tures are used. The reanalysis procedure adds additional normal OOF to 

the condensed substructures. The geometric OOF are not affected. 

Therefore, when these substructures are re-assembled into the next level 

of the hierarchy, only the normal OOF are processed. The complication 

arises in reorganizing the hypermatrices that hold the stiffness and 

mass at the higher levels. 

Since the normal OOF are located at the top of the coefficient 

,.- matrices, the geometric OOF must be shifted down in the tables as new 

normal OOF are added. Rather than move actual blocks of numerical data, 

it is more efficient to create a new pointer hierarchy for the table and 

then swap pointers from the old to the new. 

- 109 -



Figure 4.10 

matrix. Suppose 

illustrates the procedure for resizing the stiffness 

that the existing stiffness is partitioned into 5 hy-

perrows and 5 hyperco1umns, with the first 2 hyperrows and hypercolumns 

allocated to the normal OaF. Two non-zero submatrices (N1 and N2) are 

used for the normal OOF and 5 for the geometric OOF (G1 - GS). With the 

addition of new normal OOF to the lower level substructures, a new hy

perrow and hypercolumn is added to contain the 3 normal OOF submatrices. 

Rather than create an entirely new hierarchy to store the expanded 

matrix, a new set of pointer vectors is created. Pointers to the 

individual geometric OOF submatrices, Gl '- GS ' are copied into the new 

pointer hierarchy and the old pointer structure is destroyed. Actual 

submatrices are not moved. At this point the new normal OOF sub-

matrices, Nl - N
3

, are assembled from existing and newly added data. 

Resizing and re-assembly of the structure mass matrix follows a 

similar procedure. Submatrices containing only geometric OOF are 

retained without change and submatrices containing normal OOF are com

pletely re-assembled after the new OOF are added. 

- 110 -



-
A. ORIGINAL STIFFNESS MATRIX 

PARTITIONED HYPERMATRIX DATA STRUCTURE 

Nl .-
N2 

SYMMETRIC 

G1 

G2 G3 

G4 GS 

B. RESIZED AND RE-ASSEMBLED STIFFNESS MATRIX 

PARTITIONED HYPERMATRIX DATA STRUCTURE 

N} 
,-

N2 
SYMMETRIC 

N3 

G1 

G2 G3 
-, G4 GS 

Figure 4.10. Stiffenss Matrix Resizing 

- III -



CHAPTER 5 NUMERICAL EXAMPLES 

5.1 General 

The modeling and analysis procedures developed in this study are 

demonstrated and evaluated in this chapter. Numerical studies on ex

ample structures are'performed to demonstrate two principal products of 

this research. First, the feasibility of multilevel substructured 

analysis using modal synthesis techniques in a general purpose software 

system is considered. Preliminary studies of solution accuracy and 

computational efficiency are made to demonstrate the advantages of the 

numerical procedures. Second, unique features of the software are 

demonstrated. The convenience of the flexible user interface, automatic 

restart, and partial reanalysis are all illustrated. 

Natural frequencies, mode shapes, and modal strains are computed 

for both substructured and non-substructured models. Each example 

structure is initially modeled and analyzed without substructuring to 

establish a baseline against which approximate results are compared. 

Subsequent analyses are performed on the substructured models with vary

ing topology and degrees of reduction. 

The first example involves the analysis of a cantilever box struc

ture composed of flat shell elements. This example demonstrates the 

performance of the fixed-interface method applied to multilevel sub

structured models. Both computational effort and solution accuracy are 

evaluated. Detailed comparisons of natural frequencies, mode shapes, 

and modal strains are made for this example. 

- 112 -



The second example illustrates restart, reanalysis, and the 

capabilities of the software to process rigid-body modes. Three

dimensional truss elements are used to model a structure which has the 

shape of a double tetrahedron. Emphasis in this example is placed on 

the user interface and restart capabilities. Only frequencies are con

sidered in the accuracy comparisons. 

All numerical computations were performed on a Harris 500 computer. 

On this machine, floating point numbers are represented with a 38 bit 

mantissa and a 7 bit exponent. This format represents numerical values 

which vary in magnitude from 10-38 to 10+39 with 11 - 12 decimal digits 

of precision. 

5.2 Cantilever Box 

The first example structure is a thin-walled, cantilever box, open 

on the top as shown in Figure 5.1. The structure is modeled with flat

shell elements derived from plate and membrane elements. At nodes in 

which connecting elements are not coplanar, there are six active DOF 

(three translations and three rotations). At nodes in which elements 

are coplanar, the rotation normal to the plane is constrained leaving 

only five active DOF at the node. All analyses of this structure incor

porate a consistent mass formulation. 

The box structure is analyzed using three different models. The 

first model is not substructured and contains 172 flat shell elements 

and 196 nodes. This model, named BOX_l, provides the baseline against 

which the approximate results of the substructured models are compared. 

The finite element mesh for structure BOX 1 is shown in Figure 5.2. 

Input data to generate the mesh and to perform the analysis are shown in 

- 113 -



2 ~ J, 

I II 

T6 

--. 
I 

12 " 

\ ~ 
3" Figure 5.1. Open Cantilever Bmc Hodel 

- 114 -



-

--., 

.-
-

-. 

-. 

8 

(/ 
t/ u 

->w 

WAFER 

(4 NODE FLAT 
SHEll elEMENT) 

Figure 5.2. Finite Element ltesh for Structure a0'Ll 

- 115 _ 

ex 



Figure 5.3. Since each shell element in the model is identical to all 

the others, except for orientation, a single "stand-alone" element named 

WAFER is defined first. The stiffness and mass matrices for this ele

ment are computed only once and then are used repeatedly for each 

occurrence of WAFER in structure BOX_l. In order to extend the defini

tion of the model from static to dynamic analysis, only two additions to 

the input are made. First the mass of element WAFER is defined. A 

CONSISTENT mass formulation is chosen with a MASS_DENSITY of 7.339E-04. 

Then the frequency analysis method is selected. Subspace iteration is 

used to evaluate the first 10 natural frequencies and mode shapes for 

the structure. 

The second model, structure BOX_2, uses one level of substructuring 

with condensation to reduce the number of DOF which are present in the 

highest level structure. The mesh for this model is illustrated in 

Figure 5.4 and the POL input is shown in Figure 5.5. The hierarchy of 

the structural model is shown in Figure 5.6. The first level of sub

structures contains the parent structures: structure SIDE (a side 

panel) and structure BOTTOM (a bottom panel). The condensed version 

(child) of each of these substructures contains the boundary nodes from 

the parent structure and a selected number of normal DOF. Normal DOF 

are computed by a fixed-fixed vibration analysis of the parent. The 

condensation procedure is specified in the definition of the child 

structures SIDE_CON and BOTT_CON. The highest level structure, BOX_2, 

has only 13 elements and 79 nodes (plus the normal DOF retained during 

condensation). 

Figure 5.7 illustrates the third model of the cantilever box struc-

This model contains two levels of substructuring. Input 

116 -

-



t-' 
t-' 
...... 

J "1 1 "l 
- - "' " .1 

*RUII 
C 

FIIIITE 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

C 

C 

OPEII CANTILEVER BOX STRUCTURE USED TO DEMONSTRATE THE 
PERFORMANCE OF THE FIXED-INTERFACE METHOD WITII 
MULTILEVEL SUBSTRUCTURED MODELS. 

TilE STRUCTURE USES 112 RFSIIELL ELEMENTS FORMED INTO A 
LONG STEEL BOX WIIICII IS OPEN ON TOP AND CANTILEVERED AT 
ONE END. TilE BOX IS 3.0" WIDE, 2.Z5" IIIGII, AND 12.0" 
LONG WITII CONSTANT WALL TIIICKNESS OF 0.06Z5". 

TillS IS TilE NON-SUBSTRUCTURED VERSION OF TilE MODEL. 

ELEMENT WAFER 
TliPE RFSIIELL CONSISTENT E 30000. lIU 0.3 TIIICKlIESS .06Z5 , 

SIIORT OUTPUT HASS DENSITli .0001339 NOSPRINGS 
COORDINATES -

1 0.0 0.0 
2 0.15 0.0 
3 0.15 0.15 
4 0.0 0.15 

STRUCTURE BOX 1 
NUMBER OF ELEMENTS 112 NODES 196 
ELEMENTS ALL TYPE WAFER ROTATION 

COORDINATES 
1 0.0 2.25 
4 0.0 0.0 
8 3.0 0.0 

11 3.0 2.25 
111 0.0 2.25 
180 0.0 0.0 
184 3.0 0.0 
181 3.0 Z.25 
GEII 1-4 IN X 1-111 
CEN 4-8 IN X 4-180 
GEN 8-11 IN X 8-184 
CEN 111 188 189 190 
GEN 118 191 192 193 
GEN 119 194 195 196 

0.0 
0.0 
0.0 
0.0 

12.0 
12.0 
12.0 
12.0 

Bli 11 IN Y 
BY 11 IN Y 
BY 11 IN Y 
181 
186 
185 

BY COORDINATES 

C 

C 

C 

C 

C 
C 
C 

C 
C 
C 

C 

C 

1 --1 1 -, "J 1 1 

INCIDENCES 

CEN 10 IN X 16 IN Y AS 1-160 FROM 1 2 13 12 ADD 1 IN X 11 IN Y 

161 111 118 191 188 
162 188 191 192 189 
163 189 192 193 190 
164 190 193 186 181 
165 118 119 194 191 
166 191 194 195 192 
161 192 195 196 193 
168 193 196 185 186 
169 119 180 181 194 
110 194 181 182 195 
111 195 182 183 196 
112 196 183 184 185 

CONSTRAINTS 

FIX TilE NODES AT TilE CANTILEVER WALL. 

1-11 ALL - 0.0 

FIX TilE THETA OOF WITII ZERO OUT-OF-PLANE STIFFNESS. 

12-166 BY 11, 13-161 BY 11, 14-168 BY 11 
16-110 BY 11, 11-111 BY 11, 18-11Z BY 11 
20-114 BY 11, 21-115 BY 11, 22-116 BY 11 
188-196 

FREQUENCY ANALYSIS TYPE SUBSPACE 

TIIETAX - 0.0 
TIIETAY 0.0 
TIIETAX 0.0 
TIIETAZ 0.0 

PROPERTIES NUH PAIRS 10 ITERATIONS 40 STURM CIIECK 

COMPUTE NATURAL FREQUENCIES 
OUTPUT NATURAL FREQUENCIES MODE SIIAPES 
STOP 

Figure 5.3. POL Definition of Structure BOX 1 

'} 



.... .... 
co 

.. 1 

STRUCTURE SIDE 

" 

J J J J 

STRUCTURE BOX_2 
~ . 

STRUCTURE BOTTOM 

Figure 5.4. Finite Element Hesh for Structure BOX 2 

., _ J J 



"J 

...... 

...... 
\0 

"1 "} 1 l " " J 

*RUN FINITE 
C HODEL 2B: SUBSTRUCTURED VERSION OF THE CANTILEVER BOX 

HODEL. SUBSTRUCTURES ARE REDUCED BY THE 
FIXED-INTERFACE METHOD. THERE ARE 5 NORMAL 
OCF RETAINED IN EACH SUBSTRUCTURE. 

C 
C 
C 
C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

THIS. HODEL USES ONE LEVEL OF SUBSTRUCTURING. 

ELEMENT WAFER 
TYPE RFSHELL CONSISTENT 

SIIORT OUTPU'l' 

COORDINATES 
1 0.0 0.0 
2 0.75 0.0 
3 0.75 0.75 
4 0.0 0.75 

STRUCTURE SIDE 

E 30000. l/U 0.3 THICKNESS 0.0625, 
HASS_DENSITY 0.0007339 NOSPRINGS 

NUMBER OF ELEMENTS 12 NODES 20 
ELEMENTS ALL TYPE WAFER ROTA'l'IOli BY COORDIliATES 

COORDINATES 
1 0.0 
4 0.0 

17 0.0 
20 0.0 

2.25 
0.0 
2.25 
0.0 

GEli 1-4 IN X 1-17 BY 4 

0.0 
0.0 
3.0 
3.0 
III Y 

INCIDEliCES 
GEIl 3 IN X 4 III Y AS 1-12 FROM 1 2 6 5 ADD 1 IN X 4 IN Y 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPERTIES NUM PAIRS 5 ITERATIONS 15 STURM CHECK 

COliSTRAIliTS 
5-7, 9-11, 13-15 TIIETAX - 0.0 

STRUCTURE SIDE COli 
IIUMBER OF ELEMENTS 1 IIODES 11 
ELEMEN'l' 1 TYPE SIDE COliDEliSED RETAIII NORMAL 1-5 

INCIDEIICES 
1 1-4, 8, 12, 16, 20, 19, 18, 17 

STRUCTURE BOTTOM 
NUHBER OF ELEMEliTS 16 110DES 25 
ELEMENTS ALL TYPE WAFER ROTATION BY COORDINATES 

COORDIlIATES 
1 0.0 
5 3.0 

21 0.0 
25 3.0 
GEli 1-5 III 

0.0 0.0 
0.0 0.0 
0.0 3.0 
0.0 3.0 
X 1-21 BY 5 IN Y 

" "" 1 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

1 1 I 1 

INCIDENCES 
GEN • IN X • IN Y AS 1-16 FROM 1 2 7 6 ADD 1 IN X 5 IN Y 

CONSTRAINTS 
7-9, 12-14, 17-19 TIIETAY - 0.0 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUH PAIRS 5 ITERATIONS 15 STURM CIIECK 

STRUCTURE BOTT CON 
NUMBER OF ELEMENTS 1 NODES 16 
ELEMENT 1 TYPE BOTTOH CONDENSED RETAIN NORMAL 1-5 

INCIDENCES 
1 1-5 10 15 20 25 24 23 22 21 16 11 6 

STRUCTURE BOX 2 
NUMBER OF NODES 
ELEMENTS 

79 ELEMENTS 13 

1-8 TYPE 
9-12 TYPE 

13 TYPE 

INCIDEliCES 

SIDE CON 
BOTT-CON 
SlDE:::CON 

ROTATION SUPPRESSED 
ROTATION SUPPRESSED 
ROTATION Y 90.0 

GEN 1-4 FROM 1 2 3 4 12 13 14 21 20 19 18 ADD 17 
GEN 5-8 FROM 11 10 9 8 15 16 17 25 26 27 28 ADD 17 
GEN 9-12 FROH 4-8 15-17 25-21 BY -1 14 13 12 ADD 17 
13 69-79 

CONSTRAINTS 
1-11 ALL - 0.0 

1 

18-20 26-28 35-37 43-45 52-54 60-62 TIIE'l'AX - 0.0 
22-24 39-41 56-58 THETAY O. a 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUM PAIRS 10 ITERATIONS 30 STURM CHECK 

COMPUTE NATURAL FREQUEliCIES 
OUTPUT NATURAL FREQUENCIES 
STOP 

MODE SHAPES 

Figure 5.5. POL Definition of Structure BOX 2 

"1 "") 



.... 
N 
o 

J . J 

• • • 
• • • 

• • • 
• • • 

• • • 

"'-AHELL ELEMENTS \/ SHELL ELEMENTS 

Figure 5.6. Hierarchy of Structure BOX 2 

J. J .1 ) 

••• 



~ 
tv 
~ 

J . 1 
J . 1 '. J 

'1 
'J 

STRUCTURE 
BOTTOM Ir _ 

STRUCTURE 
CHANNEL 

] 
.1 

STRUCTURE BOX_3 

Figure 5. 7. Finite Element Hesh for Structure BoX 3 

'] 1 J 
, } 

1 J 



data for this model are listed in Figure 5.8 and the structural hierar-

chy is presented in Figure 5.9. The first level of substructures is 

taken from the previous model, structures SIDE and BOTTOM, which are 

condensed into SIDE CON and BOTT_CON, respectively. The second sub-

structure level contains structure CHANNEL which consists of 4 condensed 

side panels and 2 'condensed bottom panels. The condensed version of 

--, 

CHANNEL is CHAN_CON which contains the boundary nodes from CHANNEL and a 

selected number of retained normal DOF. The highest level structure, __ 
, 

BOX_3, is assembled from two condensed channels and one condensed side 

panel. This structure contains 3 elements and 33 nodes (plus normal 

DOF) . 

One purpose of this example is to evaluate the performance of the 

fixed-interface method for the frequency analysis of a multilevel sub-

structured model. The key parameter for study is the number of normal 

DOF retained in each of the reduced substructures. Table 5.1 lists the 

various combinations of normal DOF retained in each substructure. 

Structure BOX_2 was analyzed with four different combinations of normal 

DOF. These analyses are represented as 2A through 2D. Analyses were 

performed for structure BOX_3 using nine combinations of retained normal 

DOF. These analyses are identified as 3A through 31. 

Two types of comparisons are made for the analyses of this example. 

First, solution accuracy is evaluated. The errors in computing natural 

frequencies, mode shapes, and modal strains are examined for all sub-

structured models. Approximate natural frequencies from the 

substructured models are compared directly against those for the --

baseline analysis. Mode shapes and modal strains are evaluated through 

- 122 -



t-' 
tv 
W 

0

1 J '0. 1 ..... "'J --1 .. _\ 

*RUN FINITE 
C KODEL 3E: SUBSTRUCTURED VERSION OF TilE CANTILEVER BOX 
C KODEL. SUBSTRUCTURES ARE REDUCED BY THE 
C FIXED-INTERFACE KETIIOD. THERE ARE 5 NORMAL 
C DOF RETAINED IN EACH SUBSTRUCTURE. 
C THIS KODEL USES TWO LEVELS OF SUBSTRUCTURING. C _K _____ a .. A 

C 

C 

C 

C 

C 

C 

ELEHEIIT WAFER 
TYPE RFSHELL CONSISTENT E 30000. NU 0.3 THICKNESS 0.0625, 

SHORT OUTPUT MASS DENSITY 0.0007339 NOSPRINGS 
COORDINATES -

1 0.0 0.0 
2 0.75 0.0 
3 0.75 0.75 
4 0.0 0.75 

STRUCTURE SIDE 
NUMBER OF ELEHENTS 12 NODES 20 
ELEHENTS ALL TYPE WAFER ROTATION BY COORDINATES 

COORDINATES 
1 0.0 
4 0.0 

17 0.0 
20 0.0 
GEN 1-4 IN X 

INCIDENCES 

2.25 
0.0 
2.25 
0.0 

1-17 BY 4 

0.0 
0.0 
3.0 
3.0 
IN Y 

GEN 3 IN X 4 IN Y AS 1-12 FROK 1 2 6 5 ADD 1 IN X 4 IN Y 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPERTIES NUM PAIRS 5 ITERATIONS 15 STURM CIIECK 

CONSTRAINTS 
5-7, 9-11, 13-15 TIIETAX - 0.0 

'STRUCTURE SIDE CON 

C 

C 

C 

C 

C 

NUHBER OF ELEHENTS 1 NODES 11 
ELEMENT 1 TYPE SIDE CONDElISED RETAIN NORMAL 1-5 

INCIDENCES 
1 1-4, 8, 12, 16, 20, 19, 18, 17 

STRUCTURE BOTTOM 
NUHBER OF ELEMEllTS 16 lIODES 25 
ELEHENTS ALL TYPE WAFER ROTATION BY COORDINATES 

COORDINATES 
1 0.0 
5 3.0 

21 0.0 
25 3.0 
GEN 1-5 IN 

INCIDENCES 
GEN 4 IN X 

CONSTRAINTS 

0.0 0.0 
0.0 0.0 
0.0 3.0 
0.0 3.0 
X 1-21 BY 5 IN Y 

4 XU Y AS 1-16 FROM 1 2 7 6 ADD 1 IN X 5 IN Y 

7-9, 12-14, 17-19 THETAY 0.0 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUH PAIRS 5 ITERATIONS 15 STURM CHECK 

. 1 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

1 . J . 1 '1 

STRUCTURE BOTT COli 
NUHBER OF ELEHENTS 1 NODES 16 
ELEHENT 1 TYPE BOTTOM CONDENSED RETAIN NORMAL 1-5 

INCIDENCES 
1 1-5 10 15 20 25 24 23 22 21 16 11 6 

STRUCTURE CHANNEL 
NUMBER OF NODES 45 ELEMENTS 6 
ELEMENTS 

1-4 TYPE SIDE CON ROTATION SUPPRESSED 
5-6 TYPE BOTT:CON ROTATION SUPPRESSED 

IlICIDENCES 
GEN 1-2 FROM 1-4 12-14 21-18 BY -1 
GEN 3-4 FROM 11-8 BY -1 15-17 25-28 
GEl! 5-6 FROM 4-8 15-17 25-21 BY -1 14 13 12 

CONSTRAINTS 
18-20, 26-28 
22-24 

THETAX - 0.0 
THETAY - 0.0 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS PAIRS 10 ITERATIONS 40 STURM CHECK 

STRUCTURE CHAN CON 
NUMBER OF ELEMENTS 1 NODES 22 

ADD 17 
ADD 17 

ADD 17 

ELEMENT 1 TYPE CHANNEL CONDENSED RETAIN NORMAL 1-5 

INCIDENCES 
1 1-11 35-45 

STRUCTURE BOX 3 
NUMBER OF ELEMENTS 3 NODES 33 
ELEMENTS 

1-2 TYPE CHAN CON ROTATION SUPPRESSED 
3 TYPE SIDE:CON ROTATION Y 90.0 

INCIDENCES 
1 1-22 
2 12-33 
3 23-33 

CONSTRAINTS 
12-14 20-22 
16-18 
1-11 ALL -

THETAX 0.0 
THETAY 0.0 

0.0 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUM PAIRS 10 ITERATIONS 30 STURM CHECK 

COMPUTE NATURAL FREQUENCIES 
OUTPUT NATURAL FREQUENCIES MODE SHAPES 
STOP 

Figure 5.B. POL Definition of Structure BOX 3 

J 



..... 
tv 
.j:'-

I . J J 

V SHELL ELEMENTS \LSHELL ELEMENTS 

Figure 5.9. Hierarchy of Structure BOX 3 

J .1 J 



. -

MODEL 

2A 

2B 

2C 

20 

3A 

3B 

3C 

3D 

3E 

3F 

3G 

3H 

31 

Notes 

1 

2 

SUBSTRUCTURE 

SIDE_CON (30) 1 BaTT_CON (45)1 CHAN_CON 

0 0 ---
5 5 ---

10 10 ---

15 15 ---

0 0 0 

0 0 5 

0 0 10 

5 5 0 

5 5 5 

5 5 10 

10 10 0 

10 10 5 

10 10 10 

Numbers is parenthesis indicate the number of 
interior nodal OaF in the parent substructure. 

(129)1,2 

Models 2A-2D do not contain substructure CHAN CON • 

Table 5.1 Number of Retained Normal OaF in BOX Models 

- 125 -



a pair of error norms which represent the overall quality of these ap

proximate vectors. The second comparison focuses on the costs of 

performing the analyses. Both CPU and paging requirements are examined. 

CPU requirements are measured by recording the amount of time used by 

the computer's central processor in solving the problem. Paging is 

measured as the number of page faults (or page replacements) performed 

by the POLO memory manager. 

Table 5.2 lists the first 10 natural frequencies for the non

substructured model (BOX_l) and the corresponding errors in natural 

frequencies for the substructured models. Results for only 10 of the 13 

substructured analyses are listed in the table. For models 2B, 2C, and 

20, computed frequencies for all 10 modes matched the baseline fre

quencies to 4 significant figures. Examination of Tables 5.1 and 5.2 

reveals that the substructured frequencies converge to the baseline 

frequencies when at least 5 normal OOF are retained in each 

substructure. This condition exists for models 2B, 2C, 20, 3E, 3F, 3H, 

and 31. The maximum error in any of the 10 natural frequencies for 

these models is only 2.0% with a mean error of 0.8%. 

The need to retain normal OOF in the highest level structure is 

demonstrated by the results for models 3A, 30, and 3G. In these models 

Guyan reduction is applied to condense the second level substructure 

(CHANNEL). The results for these models are sufficiently poor to 

preclude their use in practical applications. The results for models 30 

and 3G, which contain normal OOF in the first level substructures but 

not in the second, show no measurable improvement over results for model 

3A, in which Guyan reduction was used at each substructure level. The 

- 126 -



--- -]---l 

t-' 
N 
-...J 

MODE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
----_._-

--1- - -] -- - 1 -1 

w (rad/sec) 

BOX-l 2A 

50.92 0.5 

55.78 0.9 

81.61 1.5. 

89.31 1.9 

98.25 0.7 

110.3 2.5 

138.8 3.9 

153.2 3.5 

198.0 15.0 

214.1 8.4 

-----1 ---1 -----1 -----1 -----1 ----l----1 ----1 ---] -----1 ----1--1 

PERCENT ERROR IN W MEASURED AGAINST BOX-l VALUES 1 

SUBSTRUCTURED MODEL 

3A 3B 3C 3D 3E 3F 3G 3H 31 

5.5 1.7 1.7 5.5 1.2 1.2 5.5 1.2 1.2 

8.6 1.7 1.7 8.6 0.8 0.8 8.6 0.8 0.8 

9.2 2.2 2.2 9.2 0.8 0.7 9.2- 0.8 0.7 

12.8 2.9 2.9 12.8 0.9 0.9 12.8 0.9 0.9 

49.8 2.5 2.5 49.1 2.0 2.0 49.1 2.0 2.0 

68.5 3.0 3.0 68.5 0.5 0.5 68.5 0.5 0.5 

69.6 3.0 3.0 54.6 -0.4 -0.6 54.6 -0.4 -0.7 

56.2 2.9 2.9 56.1 0.2 -0.3 56.1 0.2 -0.3 

30.1 17.7 17.2 30.1 0.6 0.3 30.1 0.6 0.3 

68.8 11.5 10.4 67.3 0.6 0.4 67.3 0.6 0.3 

1 Models 2B, 2C, and 20 are exact to within 4 significant figures. 

Table 5.2 Natural Frequencies for BOX Models 

-J 



retention of normal modes in the lower level does not appear to in

fluence the quality of results for the higher level substructures if the 

later are condensed by Guyan reduction. This effect is not unexpected 

in light of the procedure developed for selection of master and slave 

DOF (Section 2.3.2). The normal DOF in structures SIDE_CON and BOTT_CON 

of models 3D and 3G are grouped as slave DOF when assembled into struc

ture CHANNEL. As such, their influence is eliminated from the model 

when Guyan reduction is applied to reduce structure CHANNEL into struc

ture CHAN_CON. 

Models 3B and 3C produce sizable errors in natural frequency, rela

tive to models 3D, 3E, 3H, and 3I. This is due to the absence of normal 

DOF in substructures SIDE CON and BOTT CON in these models. The need 

for retained normal DOF at all levels of the structural hierarchy is 

clearly demonstrated in this example. 

Model 2A, which employs Guyan reduction of all substructures, shows 

reasonable accuracy in natural frequencies. This is due to the greater 

number of nodes in the highest level structure compared to 3A, 3D, and 

3G (79 versus 33) and to the more uniform distribution of those nodes 

(compare Figures 5.4 and 5.7). 

The quality of a DOF reduction technique for dynamic analysis 

should not be evaluated solely on the basis of natural frequencies. The 

computed mode shapes and modal strains for the substructured box models 

are also examined in this example to assess the accuracy of the 

reduction. Results from the analysis of the non-substructured model 

(BOX_I) again provide a baseline for comparison. The results from the 

substructured models (2A-2D, 3A-3I) are taken as the approximate values 

for which error norms are calculated. 

- 128 -



To obtain a meaningful comparison between results from the baseline 
r , and from the substructured models, the mode shapes for the substructured 

models are transformed to the geometric coordinates of the substructures 

at the lowest level of the hierarchy (see Section 2.3.1). A one-to-one 

correspondence then exists between terms of the baseline and of the 

approximate mode shapes. 
, 

Modal strains are computed for the individual finite elements using 

the mode shapes as displacement vectors. After strains for each element 

are computed, strains at the nodes are computed as the average of the 

contributions from all elements incident on a given node. Only nodes 

which join coplanar elements are considered. Nodes along the boundaries 

of the panels are not included in the comparison since the shell element 

is not expected to perform well at these locations [8]. The six strain 

components evaluated at the nodes are: 

el au/ax, e4 a2w/ax2 

e2 av/8y es 82w/8y2 (5.1) 

au/8y + av/ax 2 e3 e6 8 w/8xay 

No changes are made in normalization of the mode shape vectors 

prior to performing the comparisons. As they are computed, the mode 

shapes are scaled to be orthonormal with respect to the mass matrix of 

the structure. For the non-substructured model (the baseline), the mass 

matrix may contain only geometric coordinates. For the substructured 

models, the structure mass contains both geometric and normal coor-

dinates (a consequence of the substructure reduction procedure). This 

- 129 -



apparent difference is not relevant since the mode shapes for the sub-

structures are recovered completely to the lowest level of the hierarchy 

where all coordinates are geometric. 

The quality of the approximate mode shapes and modal strains is 

evaluated through the computation of two error norms. The two norms, ~ 

and L2 [51], are defined by 

1 

~- n x 100% and (5.2) 

( 1 
n 
L (d

i 
- a.)2 ) 0.5 

1 1. x 100% (5.3) n 

in which: d. is the .th term in the approximate vector, 1. 
1. 

a. is the .th term in the baseline vector, 1. 
1. 

a is the largest term in the baseline vector, and max 
n is the number of terms in the baseline vector. 

Table 5.3 lists the Ll norms for mode shapes for all substructured 

models (2A-2D, 3A-3I). The values in this table exhibit the same trends 

established in Table 5.2 for the natural frequencies. Table 5.3 shows 

slightly larger error norms for modes 5 and 10 relative to the other 

modes. Apparently, an essential component of structure response for 

these modes is omitted from the models by truncation of the normal DOF. 

The models in which normal modes are retained at each level of the 

hierarchy (2B-2D, 3E, 3F, 3H, and 3I) predict mode shapes with the least 

- 130 -



~ 
w 
~ 

MODE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

] 

2A 2B 

0.3 0.1 

0.3 0.1 

0.4 0.1 

0.9 0.1 

1.6 0.1 

0.6 0.1 

1.4 0.4 

1.3 0.3 

15.8 0.2 

11. 7 0.4 

-- -1 

2C 2D 3A 

0.2 0.1 1.7 

0.3 0.4 1.8 

0.4 0.2 2.9 

0.4 0.9 12.9 

0.3 0.7 24.3 

0.6 0.3 5.1 

1.0 1.7 10.2 

1.0 0.6 13.7 

2.3 3.3 13.7 

1.7 1.6 11.2 

Table 5.3 

1 -1 1 - _ 1 --J ----) -- --J -----, -- ---l ----J ---l 

MODEL 

3B 3C 3D 3E 3F 3G 3H 3I 

0.5 0.5 1.7 0.4 0.4 1.7 0.4 0.4 

0.5 0.5 1.8 0.4 0.4 1.8 0.4 0.4 

0.5 0.5 2.9 0.3 0.3 2.9 0.3 0.3 

0.6 0.6 12.8 0.6 0.6 12.8 0.6 0.6 

1.0 1.0 24.4 1.7 1.6 24.4 1.7 1.6 

0.7 0.7 5.1 0.3 0.3 5.1 0.3 0.3 

1.6 1.6 10.1 0.6 0.6 10.1 0.6 0.6 

1.5 1.5 13.8 0.7 0.5 13.8 0.7 0.5 

7.8 8.8 13.7 0.8 0.6 13.7 0.8 0.6 

13.1 13.1 11.2 1.2 1.0 11.2 1.2 1.0 

L1 Norm for Mode Shapes BOX Models 



error. Some variability in Ll is evident for models 2B-2D while the 

norms for the other four models are virtually identical to each other. 

The L2 norms for the same mode shape vectors are listed in Table 

5.4. By design, the L2 norm emphasizes regions of the approximation 

vector where the error function (di - di ) attains its maximum value. 

Since the L2 norms are 2-5 times larger than the associated Ll norms, 

regions of "higher-than-average" error are indicated. However, the 

errors remain well within reasonable engineering accuracy for models in 

which natural frequency is well predicted. 

The Ll and L2 error norms for the approximate modal strains are 

listed in Tables 5.5 and 5.6, respectively. The effects of numerical 

differentiation of the mode shapes to obtain the strains are clearly 

shown in these tables. While the trends established in the examination 

of mode shapes are repeated for modal strains, the magnitudes of the 

error norms are larger. 

The effects of truncation of the normal DOF from the condensed 

substructures are well illustrated in this example structure. The 

natural frequencies are well predicted when normal DOF are retained in 

the reduced substructures. Computation of modal strains resulted in 

error norms that are higher than those for mode shapes. Within the 

individual modal strain vectors, the lowest values for the error func-

tion (d. - d) 
1. 

are obtained for strain components and As 

expected, error values increase for the remaining components of strain 

as the order of the numerical differentiation increases. 

- 132 -



~ 
w 
w 

MODE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

2A 2B 

0.7 0.5 

1.2 1.1 

1.2 0.8 

1.6 0.6 

2.9 0.6 

1.4 0.5 

2.9 2.0 

2.9 1.4 

22.4 1.0 

19.2 2.7 

"1 

2C 20 3A 

0.6 0.6 2.9 

1.2 1.4 3.6 

1.2 1.0 5.9 

1.2 2.2 20.8 

1.0 1.8 41.2 

1.8 1.1 12.0 

2.9 4.6 20.9 

3.0 2.1 20.8 

7.3 9.4 25.3 

5.5 5.5 23.4 

Table 5.4 

, .. )'-1 ---1 ---1 -- --J 

MODEL . 

3B 3C 3D 3E 3F 3G 3H 31 

1.0 1.0 2.9 0.9 0.9 2.9 0.9 0.9 

1.3 1.3 3.6 1.3 1.2 3.6 1.3 1.2 

1.2 1.2 5.9 0.9 0.8 5.9 0.9 0.8 

1.4 1.4 20.8 1.1 1.1 20.8 1.1 1.1 I 

1.7 1.7 41.4 2.7 2.7 41.4 2.7 2.7 

1.4 1.4 12.0 0.5 0.4 12.0 0.5 0.4 

3.2 3.2 22.0 1.3 1.2 22.0 1.3 1.2 

3.0 3.0 21.1 1.4 1.1 21.1 1.4 1.1 

13.8 15.3 25.4 1.6 1.3 25.3 1.6 1.3 

20.3 20.4 23.7 1.8 1.4 23.7 1.8 1.4 

L2 Norm for Mode Shapes BOX Models 



..... 
w 
~ 

.J 

MODE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

J 

2A 

2.4 

1.5 

2.3 

3.0 

5.8 

3.0 

3.4 

3.3 

9.5 

13.1 

J 

2B 2C 20 3A 

1.3 3.1 3.0 5.5 

0.6 1.7 2.3 4.1 

1.2 2.8 2.7 5.7 

1.2 3.1 4.6 13.9 

2.1 3.3 4.6 36.7 

1.5 4.3 3.4 10.3 

1.3 3.5 4.5 11.3 

1.4 4.0 3.3 10.5 

O.B 4.1 4.4 15.5 

1.2 4.6 4.4 9.0 

Table 5.5 

J I 

MODEL 

3B 3C 3D 3E 3F 3G 3H 3I 

3.1 3.0 5.5 2.3 2.1 5.5 2.3 2.1 

1.6 1.6 4.1 0.9 0.7 4.1 0.9 0.7 

2.4 2.4 5.7 1.6 1.4 5.7 1.5 1.4 

3.0 3.0 13.9 1.4 1.3 13.9 1.4 1.2 

5.2 5.2 37.5 4.0 3.8 37.5 4.0 3.8 

3.0 3.0 10.4 1.6 1.6 10.4 1.5 1.5 

3.7 3.7 12.2 1.9 1.6 12.3 1.9 1.5 

3.5 3.5 10.7 2.1 1.7 10.7 2.1 1.6 

10.2 11.1 15.5 1.6 1.3 15.5 1.6 1.3 

8.0 8.2 9.4 1.6 1.4 9.4 1.6 1.3 
- ~--~ '-----~ 

Ll Norm for Modal strains BOX Models 

I J 



~ 
W 
lJl 

MODE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2A 2B 

7.2 4.4 

4.0 2.2 

7.1 4.0 

7.3 3.4 

13.2 5.5 

8.7 5.0 

8.5 3.9 

9.0 4.6 

18.6 2.3 

25.9 4.4 

2C 2D 3A 

8.1 8.0 13.0 

4.5 6.1 9.7 

7.2 7.3 14.5 

7.7 11.8 26.5 

8.1 12.3 90.1 

11.2 8.6 30.4 

8.5 11.1 25.5 

4.7 8.0 21.7 

10.9 10.6 36.2 

11.9 11.8 21.6 

Table 5.6 

- , ~. 1 ~-l - --) -----, - .. ~J 

MpDEL 

3B 3C 3D 3E 3F 3G 3H 3I 

7.7 7.7 13.1 5.4 5.1 13.1 5.4 5.0 

4.2 4.2 9.7 2.6 2.4 9.7 2.6 2.4 

7.2 7.2 14.5 4.4 4.2 14.5 4.4 4.2 

7.7 7.7 26.5 3.7 3.6 26.5 3.6 3.6 

11.4 11.5 91.6 8.1 7.7 91.6 8.0 7.6 

8.8 8.8 30.5 4.9 4.9 30.5 4.8 4.9 

8.8 8.9 29.9 4.4 3.6 29.8 4.4 3.6 

9.0 9.0 22.2 5.3 4.3 22.0 5.3 4.3 

21.2 23.2 36.2 3.4 2.8 36.2 3.8 3.4 

17.5 17.9 25.0 3.7 3.3 25.1 3.8 3.4 
-'----- -~~-- -- - ~-- ------ -~-

L2 Norm for Modal strains BOX Models 



on 

For the 

eigenvalues 

-6 analyses discussed above, a convergence tolerance of 10 

was used in frequency analysis at all levels of the 

hierarchy. To check convergence, model 3E was re-analyzed with a 

tolerance of 10-10 . No improvement in frequencies, mode shapes, or 

modal strains was observed. This test verified that convergence of 

frequencies to a tolerance of 10-6 did not result in termination of the 

analysis before the mode shapes fully converged. 

The computational effort for analysis of the substructured can

tilever box models is summarized in Figure S.lO. The data are plotted 

against the CPU time and the number of page faults required for analysis 

of structure BOX_l. In all cases significant savings were realized in 

both CPU time and paging for the analysis of the substructured models. 

Also as expected, the multilevel substructured models, 3A - 3I, produced 

greater savings than did models 2A - 2D. 

For all substructured analyses, the efficiency gained in paging 

exceeds that obtained for CPU time. This result is attributed to the 

smaller databases required for the substructured models. In general, 

only a small portion of the problem data can reside in memory at anyone 

time. Since the number of pages in the working set (or dynamic pool) 

was held constant for all analyses performed in this example, propor

tionatly fewer page faults were needed to access data for the smaller 

models. Simply stated, for smaller models more of the database resides 

in the working set for longer intervals resulting in fewer page faults. 

In contrast, CPU performance is dominated by the number of computations 

required for eigensolution. Working set size has little influence on 

- 136 -



1 1 ) 1 J --1 -- -1 - -- -] ---oJ - -1 ] 

50 50 

45 45 

CPU TIME 
40 t-

% OF 0-
BOX_l 35 I I 

40 

35 

PAGE FAULTS 
VALUES 

~ U~ 30 n ~- 30 

t-' 
25 25 

w 
'-I 

20 20 

15 15 

10 10 

5 5 

0 o 
2A 2B 2C 20 3A 3B 3C 30 3E 3F 3G 3H 31 

SUBSTRUCTURED MODEL 
Figure 5.10. CPU and Paging Performance of BOX Hodels 



the CPU time for such computationally intensive problems. Thus paging 

efficiency exceeds CPU efficiency in this example. 

The accuracy and economy of the fixed-interface method for models 

using one level of substructuring has been previously noted [1,10, 27]. 

Based on the results of this example problem, computational efficiency 

is further improved" at no loss in solution accuracy when the fixed-

interface method is applied to multilevel substructured models. The 

results for models 2B and 3E clearly demonstrate the advantage of multi-

level substructuring. Computed frequencies, mode shapes, and modal 

strains are virtually identical but model 3E required only 33% of the 

CPU time and 16% of the page faults needed by model 2B. Compared to the 

baseline analysis, model 3E yielded savings of 90% for CPU time and 97% 

for paging. Similar reductions in computational effort are anticipated 

for other classes of structures. 

5.3 Double Tetrahedron 

The purpose of this example is to highlight the modeling techniques 

and computational efficiency that are provided by substructured modeling 

in dynamic analysis. Emphasis is placed on the unique modeling proce-

dures to handle a structure's rigid-body modes, to restart the frequency 

analysis of the parent structure, and to increase the number of normal 

DOF of a previously assembled child structure. While still critical to 

the success of the analysis, solution accuracy is evaluated only on the 

basis of natural frequencies. 

The example structure is a space truss built in the form of a 

double tetrahedron. The structure is modeled with simple three-

dimensional truss elements. The outline of the structure and the 

- 138 -

.... , 



r 

,....... 

support conditions are illustrated in Figure 5.11. The nine line ele

ments in the figure are actually identical joist-like members composed 

of 90 truss elements each. The geometry of one of these joists is il

lustrated in Figure 5.12. Each joist consists of 10 triangular 

transverse panels joined by longitudinal and diagonal truss elements. 

For clarity the diagonal elements are omitted from the figure. At each 

end of the joist are three additional truss elements that meet at a 

single node. These end nodes are used for connectivity to the remainder 

of the structure. Figure 5.13 shows the fully assembled structure. 

Diagonal truss elements are again omitted from the joist members for 

clarity. Since the truss elements contain only translational DOF at the 

nodes, the entire structural system contains 10 rigid-body modes: one 

rigid-body rotation for each joist about its own local x-axis and one 

rigid-body rotation of the entire structure about an axis through its 

ball-and-socket supports. 

The baseline model for this structure, given code name C1, uses a 

consistent mass formulation and no condensation of the joist members. 

Figure 5.14 lists the input data that defines this model~ Structure 

JOIST is defined only once and then used nine times with different 

orientations in structure TETRA. A lumped mass model, code named L1, is 

used as a companion to the baseline model. This second model is identi

cal in all respects except mass formulation. This change is made by 

replacing the mass formulation key word "CONSISTENT" with the key word 

nLUMPED. II The consistent mass and lumped mass analyses are examined 

separately since the natural frequencies for each are expected to differ 

slightly. The approximate models use both lumped and consistent mass 

formulations and varying degrees of condensation of the JOIST 

- 139 -



t!) 
)( 

t!) ,... 

t!) 
N 

_ 140 -

"'"' Q.I 
-e 
..9 ..... 
~ 
0 
~ 
-e 

Q.I 

~ 
~ 
\..I 
Q.I 
c-< 
III 

"'"' .0 
~ 
0 
A 

"'"' "'"' 
ll"\ 

IlJ 
~ 
~ eo .... 
~ 

....., , , 

...., 

-, 



t-' 
.j::-
t-' 

YL 

- 1 1 ---- --] -- -_oJ 

TRIANGULAR PANEL 

/-1 

Figure 5.12. Finite Element Mesh for Structure JOIST 

-1 ---- 1 

... 
XL 



-
--

-

-
-



t--' 
.p
w 

· ] ~I l' I 

aRUN FINITE 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 

STRUCTURE JOIST 

SPACE TRUSS STRUCTURE USED TO DEMONSTRATE 
RESTART OF SUBSPACE ITERATIOII, REANALYSIS or 
SUBSTRUCTURES, AND LUMPED AND CONSISTEIIT 
MASS FORMULATIOIIS. 

THE STRUCTURE USES SPACE TRUSS ELEMENTS TO BUILD A 
LONG SLEIIDER JOIST SUBSTRUCTURE WIlICIl IS TIIEN USED 
TO FORK TilE NINE SIDES OF A DOUBLE TETRAIIEDRON. 

TillS IS TilE NON-CONDENSED, COIISISTENT MASS VERSION. 

NUMBER OF ELEMENTS 90 NODES 32 
ELEMENTS ALL TYPE SPACETRUSS CONSISTENT MASS_DENSITY 0.0001339, 

E 30000. AX 0.5 

COORDINATES 
1 0.0 
2 lO.O 
3 lO.O 
4 lO.O 

29 lOO.O 
30 lOO.O 
31 lOO.O 
32 110.0 
GEN 2-29 BY 
GEN 3-30 BY 
GEN 4-31 BY 

INCIDENCES 

0.0 0.0 
6.661 0.0 

-3.333 5.0 
-3.333 -5.0 

6.667 0.0 
-3.333 5.0 
-3.333 -5.0 
0.0 0.0 

3 NOPRINT 
3 NOPRIIIT 
3 NOPRINT 

C LONGITUDINAL CHORDS 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

GEN 3 IN X 9 IN Y AS l-21 FROM 2 5 ADD 1 IN X 3 IN Y 

TRAlISVERSE PANELS 

GEN 28-31 rRoM 2 3 ADD 3 
GEN 38-41 FROM 3 4 ADD 3 
GEN 48-51 FROM 4 2 ADD 3 

DIAGOIlALS 

GEN 58-66 rROM 2 6 ADD 3 
GEII 61-15 FROM 3 7 ADD 3 
GEN 16-84 FROM 4 5 ADD 3 

PYRAMIDS AT EIlDS 

GEN 85-81 rROM 1 2 ADD 0 1 
GEN 88-90 FROM 29 32 ADD 1 0 

C 
C 

C 

C 

C 

"\ 

STRUCTURE TETRA 
NUMBER OF NODES 215 ELEMENTS 9 
ELEMENTS TYPE JOIST 

1 ROTATION Y l2l.482 Z -16.l02 
2 ROTATION Y 58.518 Z -l6.102 
3 ROTATION Y 90.0 Z 35.265 

] } 

4 ROTATION SUPPRESSED 
5 ROTATION X 60.0 
6 ROTATION X l20.0 
1 ROTATION Y 58.5l8 Z l6.l02 
8 ROTATION Y l2l.482 Z l6.l02 
9 ROTATION Y 90.0 Z -35.265 

INCIDENCES 
1 l-32 
2 l, 33-63 
3 l, 64-94 
4 32, 95-124, 63 
5 32, 125-l54, 94 
6 63, l55-l84, 94 
1 32, l85-215 
8 63, 216-245, 215 
9 94, 246-215, 215 

CONSTRAINTS 
1 215 ALL - 0.0 

C DEFINE THE FREQUENCY ANALYSIS, SHIFT FOR THE RIGID 
C BODY HODES OF TilE STRUCTURE. 
C 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUM PAIRS l5 ITERATIONS 20 STURK CIIECK, 

RIGID BODY SUIFT -lO.O 
C 

COHPUTE FREQUEIICIES 
OUTPUT FREQUENCIES 
STOP 

Figure 5.14. POL Definition of Double Tetrahedron 



substructure. Figure 5.15 contains the input for a consistent mass 

model in which four normal OOF are retained in structure JOIST_CON, the 

condensed version of JOIST. Only the two end nodes of structure JOIST 

are retained in each approximate model. The condensed substructure, 

JOIST_CON, has just 6 geometric OOF. When a frequency analysis is re

quired of a structure which contains rigid-body modes, the analyst 

specifies a small negative shift along with the other frequency analysis 

properties. This situation occurs both in the fixed-fixed frequency 

analysis of structure JOIST and in the free-free frequency analysis of 

structure TETRA. Subspace iteration is used for all frequency analyses 

performed in this example. 

Table 5.7 provides a complete list of the code names, performance 

statistics, and modeling characteristics of each of the analyses per

formed for this example. The computed frequencies for the first five 

elastic modes from analyses Cl and Ll are listed in Table 5.8 along with 

the errors in computed frequencies for each of the approximate analyses. 

The structure's rigid-body modes were accurately evaluated in all the 

analyses and need not be listed. 

The models in which structure JOIST is condensed by Guyan reduc

tion, C2A and L2A, demonstrate the inadequacy of this approach for even 

a rough approximation of frequency response. Since all interior OOF are 

eliminated from structure JOIST_CON and no normal OOF are added, the 

rigid-body rotation and the internal elastic modes of each substructure 

are lost in the condensation process. The only elastic mode that struc

ture JOIST CON can exhibit is axial deformation. For analyses C2A and 

L2A structure TETRA has only one rigid-body mode: a rotation about its 

own support axis. The elastic modes predicted in these analyses do not 

- 144 -



-- --1 

I-' 
.j:-
Ul 

- --- J. - ] , ----J --- J 

*RUN FINITE 
C DOUBLE-TETRAIIEDRON HODEL 
C CONDEIiSED, COIiSISTEIiT MASS VERSION C _& __ a __ ~&_ama&a_aa& ___ &a_aa_a ___ a_ 

C 
C TIllS HODEL RETAIIiS 4 NORMAL DOF FROH SUBSTRUCTURE 
C JOIST IN TilE COIiDENSED SUBSTRUCTURE JOIST CON. 
C -

C 

C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 

STRUCTURE JOIST 
NUMBER OF ELEHENTS 90 NODES l2 
ELEMENTS ALL TYPE SPACETRUSS CONSISTENT MASS DENSITY 0.0007ll9, 

E lOOOO. AX 0.5 

COORDINATES 
1 0.0 0.0 0.0 
2 10.0 6.667 0.0 
1 10.0 -l.lll 5.0 
4 10.0 -l.lll -5.0 

29 100.0 6.667 0.0 
lO 100.0 -l.lll 5.0 
II 100.0 -l.lll -5.0 
l2 llO.O 0.0 0.0 
GEN 2-29 BY 1 
GEN l-lO BY 1 
GEN 4-ll BY 1 

INCIDENCES 

LONGITUDINAL C/IORDS 

GEN 1 IN X 9 IN Y AS 1-27 FROH 2 5 ADD 1 IN X 1 IN Y 

TRANSVERSE PANELS 

GEN 28-l7 FROH 2 1 ADD 1 
GEN l8-47 FROH 1 4 ADD 1 
GEN 48-51 FROM 4 2 ADD 1 

DIAGONALS 

GEIi 58-66 FROM 2 6 ADD 1 
GEN 67-75 FROM 1 7 ADD 1 
GEN 16-84 FROM 4 5 ADD 1 

PYRAMIDS AT ENDS 

GEN 85-87 FROM 1 2 ADD 0 1 
GEN 88-90 FROH 29 32 ADD 1 0 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUH PAIRS 4 ITERATIOIIS 10 STURM C/IECK, 

RIGID BODY S/llFT -10.0 

"{; 

C 

C 

C 

C 

C 

C 

C 

'J J J 

STRUCTURE JOIST CON 
IIUMBER OF NODES 2 ELEMENTS 1 
ELEMENT 1 TYPE JOIST CONDEIISED RETAIN NORMAL 1-4 

INCIDENCES 
1 1 l2 

STRUCTURE TETRA 
NUMBER OF NODES 5 ELEMENTS 9 
ELEMENTS TYPE JOIST CON 

-16.102 
-16.102 

l5.265 

- I 

1 ROTATION Y 121.482 Z 
2 ROTATION Y 58.518 Z 
1 ROTATION Y 90.0 Z 
4 ROTATION SUPPRESSED 
5 ROTATION 
6 ROTATION 
1 ROTATION Y 58.518 Z 
8 ROTATION Y 121.482 Z 
9 ROTATION Y 90.0 Z 

INCIDENCES 
112 
2 1 1 
1 1 4 
4 2 1 
524 
63 .. 
1 2 5 
8l 5 
9 .. 5 

CONSTRAINTS 
1 5 ALL - 0.0 

16.102 
16.102 

-l5.265 

FREQUENCY ANALYSIS TYPE SUBSPACE 

X 60.0 
X 120.0 

PROPS IlUM PAIRS 15 ITERATIOIIS 100 STURM CIIECK, 
RIGID BODY SIlIFT -10.0 SUBSPACE SIZE 10 

COMPUTE FREQUENCIES 
OUTPUT FREQUENCIES 
STOP 

Figure 5.15. POL Definition of Condensed Double Tetrahedron 



CPU PAGE MASS CONDENSATION 
MODEL TIME FAULTS FORMULATION COMMENTS 

Cl 1000 1000 CONSISTENT DATUM MODEL: JOIST 
NOT CONDENSED 

C2A 1.7 0.2 CONSISTENT GUYAN REDUCTION 
(NO NORMAL DOF) 

C2B 10.4 0.4 CONSISTENT RETAIN NORMAL DOF 
2-4 IN JOIST CON 

C2C 11.7 0.4 CONSISTENT RETAIN NORMAL DOF 
1-4 IN JOIST_CON 

C2D 20.0 1.3 CONSISTENT RESTART OF C2C: 
ADD NORMAL DOF 5-8 

C2E 23.7 1.3 CONSISTENT RETAIN NORMAL DOF 
1-8 (VERIFY C2D) 

e-

Ll 863.8 809.9 LUMPED COMPANION TO DATUM: 
NO CONDENSATION 

L2A 1.6 0.2 LUMPED GUYAN REDUCTION 
(NO NORMAL DOF) 

L2B 9.6 0.3 LUMPED RETAIN NORMAL DOF .::-

2-4 IN JOIST CON 

L2C 10.8 0.3 LUMPED RETAIN NORMAL DOF 
1-4 IN JOIST CON 

Table 5.7 Double Tetrahedron Model Characteristics 

- 146 -



...... , 

,.:::.. , . 

.-
i 

A. CONSISTENT MASS ANALYSIS 

PERCENT ERROR MEASURED AGAINST 

w (radjsec) REDUCED MODEL 
ELASTIC 

~ 

MODE MODEL C1 C2A C2B C2C C2D 

1 8.96 27.3 -1.06 0.60 0.56 

2 9.20 27.2 -0.05 0.62 0.57 

3 10.28 139.3 0.10 0.20 0.20 

4 10.59 181.2 0.0 0.10 0.10 

5 10.63 188.0 0.0 0.09 0.09 

B. LUMPED MASS ANALYSIS 

PERCENT ERROR MEASURED 
AGAINST L1 VALUES 

w (radjsec) REDUCED MODEL 
ELASTIC 

MODE MODEL L1 L2A L2B L2C 

1 8.93 23.2 -2.54 0.08 

2 9.16 23.9 -1.72 0.10 

3 10.23 126.3 -0.10 0.0 

4 10.54 165.0 -0.10 0.0 

5 10.57 173.0 0.0 0.0 

Table 5.8 Double Tetrahedron Natural Frequencies 

C1 

C2E 

0.56 

0.57 

0.20 

0.10 

0.09 



correspond to the true behavior of the structure due to the absence of 

sufficient OaF in the final structure. In effect, Guyan reduction 

prevents 

modes. 

clearly 

the structure 

The application 

demonstrates its 

from vibrating at some of its lower natural 

of Guyan reduction to this structural model 

limited potential for accurate frequency 

analysis of substructured models. 

Guyan reduction eliminates the rigid-body modes from the condensed 

substructures in analyses C2A and L2A. This characteristic is purposely 

used in analyses C2B and L2B to reduce the number of rigid-body modes in 

structure TETRA. For these analyses, the first 4 fixed-fixed normal 

modes are computed for structure JOIST. Mode 1 describes rigid-body 

rotation of the joist about its local x-axis. Modes 2-4 are elastic 

modes with non-zero frequencies. When JOIST CON is defined, only normal 

modes 2-4 are retained through condensation. This procedure eliminates 

the rigid-body OaF from the substructure so that structure TETRA has 

only one rigid-body mode. Retention of normal modes 2-4 gives structure 

JOIST CON elastic OaF which do not exist in the Guyan reduced models. 

The frequency results for these two analyses are close to those for the 

baseline but vary erratically. Normally, convergence to the baseline 

solution is monotonic from above. For C2B and L2B, some frequencies are 

underestimated, others are overestimated, and still others are virtually 

exact. Apparently, the rigid-body OaF neglected in the definition of 

JOIST_CON has an influence on the elastic modes of the structure and 

should be retained. 

Analyses C2C and L2C include all four of the normal modes from 

structure JOIST in the condensation process, thus preserving the rigid

body mode of JOIST_CON. Input for C2C is listed in Figure 5.15. These 

- 148 -



-
.... 

-

~ 

i 

models provide a more consistent prediction of the natural frequencies 

for structure TETRA. For these two analyses, the lumped mass formula-

tion shows slightly better convergence than does the consistent mass 

formulation but the data are insufficient to draw any general 

conclusions. 

As a check on convergence of the consistent mass model, a partial 

reanalysis of C2C is performed to add the next 4 normal DOF from struc-

ture JOIST to structure JOIST_CON. The restart and reanalysis procedure 

is labeled analysis C2D. The reanalysis requires that the fixed-fixed 

. frequency analysis of JOIST be restarted to compute modes 5-8 . 

Substructure JOIST_CON is then re-defined to contain normal modes 1-8 in 

the reduction (modes 1-4 from the first analysis, modes 5-8 from the 

restart). The input commands for this analysis are shown in Figure 

5.16. Three simple steps are involved in performing the analysis. 

First subspace iteration is restarted to compute the next 4 fixed-fixed 

eigenpairs of JOIST . The analyst defines the number -of additional 

eigenpairs to compute and an initial shift value. Then, structure 

JOIST CON is re-defined to contain the first 8 normal modes from struc-

ture JOIST. Finally, the frequency analysis for structure TETRA is 

requested. Characteristics of the structural model which do not change 

are not re-defined. For instance, the COORDINATES and INCIDENCES of 

structure JOIST are not repeated. Also, the orientation of each occur-

rence of JOIST_CON in TETRA remains unchanged during reanalysis so this 

data is not repeated. To the analyst, these model changes simply aug-

ment the description of the structural hierarchy. In fact, a major 

restructuring of the problem database takes place. However, this 

restructuring is transparent to the user. 

- 149 -



* RUN 
C 

FINITE FILES=20,21,22 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DOUBLE TETRAHEDRON ANALYSIS C2D 
========-~========================== 

RESTART ANALYSIS C2C TO ADD NORMAL DOF 5-8 TO 
THE CONDENSED VERSION OF STRUCTURE JOIST. 

THE FREQUENCY ANALYSIS OF STRUCTURE JOIST MUST BE 
RESTARTED TO COMPUTE THE FIXED-FIXED FREQUENCIES 
AND MODE SHAPES. 

ACCESS STRUCTURE JOIST NONDESTRUCTIVE 
C 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPERTIES NOM PAIRS 4 ITERATIONS 20 STURM CHECK, 

RIGID BODY SHIFT -10.0 MIN FREQ 0.13E04 
C 
C DEFINE THE NEW LIST OF NORMAL DOF TO RETAIN IN 
C THE CONDENSED STRUCTURE. 
C 

ACCESS STRUCTURE JOIST CON NONDESTRUCTIVE 
C 

C 
C 
C 
C 

ELEMENT 1 TYPE JOIST CONDENSED RETAIN NORMAL 1-8 

RECOMPUTE FREQUENCIES FOR THE HIGHEST LEVEL 
STRUCTURE. 

COMPUTE FREQUENCIES FOR STRUCTURE TETRA 
OUTPUT FREQUENCIES FOR STRUCTURE TETRA 
STOP 

Figure 5.16 POL Definition for Restart and Reanalysis 

- 150 -



-, 

Analysis C2E is performed to verify the restart and reanalysis 

procedures of C2D. In analysis C2E, the first 8 fixed-fixed normal 

modes are computed for JOIST at the outset. All of these modes are then 

used in definition of JOIST CON. This complete reanalysis procedure 

would be necessary to check convergence or to improve computed results 

had restart and partial reanalysis not been possible. In this example 

the computational costs between partial and complete reanalysis are 

almost the same. This is due to the relatively high overhead needed to 

support the restart and reanalysis procedure for such a small structural 

model. For larger models, analysis restart will be significantly more 

efficient than complete re-analysis of the model. Savings will be most 

evident when the costs for performing substructure reduction (fixed-

fixed frequency analysis and the fixed-interface transformation) are a 

large portion of the cost for the entire structural analysis. 

Performance statistics for all of the double-tetrahedron analyses 

are listed in Table 5.7. The CPU and paging requirements for the 

baseline analysis are assigned values of 1000 and results for the 

remaining 9 analyses are scaled accordingly. The condensation process 

provides a drastic reduction in computational expense compared to the 

non-condensed models. CPU and paging requirements are cut by up to two 

orders of magnitude in the approximate analyses. The potential for 

economical analysis of more practical structural systems is readily 

seen. 

This example problem has demonstrated that the use of modal syn-

thesis can produce orders-of-magnitude savings in computational effort 

while maintaining excellent accuracy. The analysis restart feature is 

an essential component of the software system. When there is doubt 

- 151 -



about the quality of the reduced model, convergence testing can be con-

ducted in an economical and convenient fashion. This flexibility 

encourages proper use of the advanced modeling and analysis techniques 

by both researchers and designers. 

- 152 -



CHAPTER 6 SUMMARY AND CONCLUSIONS 

6.1 Summary 

Multilevel substructuring has been a popular technique for the 

economical analysis of complex structural models subjected to static 

loads. Modal synthesis is the collective name for techniques which 

extend the concept of substructuring to dynamic analysis. From this 

group of techniques, the fixed-interface method of Craig and Bampton was 

chosen as the focal point of study. Emphasis was placed on the im

plementation and performance of the method in POLO-FINITE, a general 

purpose software system which supports user-defined, multilevel sub

structured modeling. 

The characteristics and analytical development of the fixed

interface method were discussed in detail. Advantages and disadvantages 

of the basic method were addressed, followed by a complete development 

of the procedure. The formulation was then extended to multilevel sub-

structured modeling. 

presented. 

Procedures for restart and reanalysis were also 

Software design and implementation was a major topic in this study. 

Application of the POLO executive for software development and run-time 

support was presented. POLO's two higher-level languages, DDL and HL, 

were reviewed. The function of each was illustrated through samples of 

the software developed for dynamic analysis. Integration of the hierar

chical data structures, HL modules, and FORTRAN processing routines was 

also discussed. 

The organization and control of the FINITE subsystems was reviewed 

for linear static and dynamic analysis. The POL that supports the new 

- 153 -



modeling and analysis capabilities was discussed. Hypermatrix data 

structures and algorithms were presented as a basis for the computa

tional procedures performed in FINITE. Control of the analysis 

procedures was reviewed for each of the new analysis functions imple

mented in this study. Implementation of frequency analysis procedures 

and of the fixed-interface method were presented in detail. The effects 

of hypermatrix data structures on the implementation were emphasized 

throughout. The procedure for restart and substructure reanalysis was 

outlined. The need for an effective data management executive to sup-

port this feature was demonstrated. 

Two example structural systems were analyzed to demonstrate and 

evaluate the modeling and computational features of the FINITE system. 

These studies verified the accuracy and economy that is possible with .~ 

multilevel substructured modeling. The generality of the implementation 

was shown to reduce both modeling effort and analysis costs while in-

creasing flexibility. 

6.2 Conclusions 

The fixed-interface method provides a conceptually simple and reli

able approach for the reduction of substructures for dynamic analysis. 

The method is applicable to multilevel substructured models and is com

patible with flexible restart and reanalysis procedures. The fixed

interface method is a subset of several other modal synthesis techniques 

and thus provides an ideal choice for implementation in a general 

software system. While superior accuracy is sometimes possible with 

alternative 

important. 

synthesis methods, other considerations are equally 

Computational costs, user-interaction, and generality 

- 154 -



(application to multilevel substructured models) must also be evaluated. 

These topics remain largely unstudied because of the lack of sophistica

tion in other software systems used to evaluate modal synthesis 

techniques. 

The generality of FEM software is equally dependent on the numeri

cal algorithms that are chosen and on the software methodology used for 

implementation. General purpose software requires advanced techniques 

for data and computer resource management. Algorithmic languages do not 

support such tasks. The use of an executive system for development and 

run-time support becomes a necessity to modern analysis software. 

Restart and reanalysis are essential and natural features of dynamic 

analysis software that are generally neglected due to the complexity of 

the data management tasks. Implementation of this capability is depend

ent on the sophistication and versatility of the data manager within the 

executive. 

The two example solutions clearly demonstrated the accuracy and 

efficiency of the software resulting from this study. For the first 

time, it has been demonstrated that fixed-interface reduction of multi

level substructured models can yield impressive savings in computational 

effort while maintaining good accuracy. Also, the unique restart and 

reanalysis procedures are simple to invoke so the analyst will be more 

willing to attempt convergence studies of the structural model. 

The new modeling and computational components in FOLO-FINITE estab

lish the requisite tools for comprehensive studies in structural 

dynamics using substructured models. Extensive numerical testing is 

necessary to further evaluate the procedures for and consequences of 

substructure reduction. 

- 155 -



The effects of the equation blocking precedure selected in Chapter 

2 require additional study. Retained normal DOF are blocked as slave 

DOF when substructures containing reduced lower-level substructures as 

elements are themselves condensed. An alternative is to retain some 

normal coordinates as master DOF in higher level substructures. The 

result would be to lessen the detrimental effects of Guyan reduction (as 

illustrated in the cantilever box example, models 3A, 3D, and 3G) and to 

increase the size (order) of the higher level structure for subsequent 

analysis. 

Implementation of standard dynamic analysis functions (transient 

analysis, shock spectrum response, etc.) in the POLO-FINITE system is 

now possible. The use of substructured modeling with time history in

tegration is expected to yield significant reductions in both model 

development time and computational costs, paralleling those achieved in 

static analysis. A particularly promising area is the nonlinear 

analysis of substructured models in which the nonlinear response can be 

localized at the highest level of the hierarchy. Condensed, lower level 

substructures act as linear-elastic restraint on the nonlinear zone. As 

dynamic loading is applied, stiffness matrix updates are performed for 

only the nonlinear region. 

condensed. 

The linear substructures need not be re-

The application of time-dependent loads on reduced substructures 

presents a difficult implementation problem. Unlike static analysis, 

time-varying substructure loads cannot be simply condensed to the master 

DOF and carried forward in the hierarchy of the model. Special provi

sions must be made for time-history integration at the substructure 

level to fully evaluate these load effects. 

- 156 -

-



-

-; 

REFERENCES 

1. Bajan, R. L., Feng, C. C. and Jaszlics, I. J., "Vibration Analysis 
of Complex Structural Systems by Modal Substitution," Shock and 
Vibration Bulliten, vol. 39, no. 3, pp. 99-106 (1969) 

2. Bamford, R., Wada, B. K., Garba, J. A. and Chisholm, J., "Dynamic 
Analysis of Large Structural Systems," Synthesis of Vibrating 
Systems, ASME Booklet, Nov. 1971, Library of Congress #76-179491 

3. Bathe, K-J, and Wilson, E. L., "Large Eigenvalue Problems in 
Dynamic Analysis," Journal of Engineering Mechanics. ASCE, vol. 98, 
pp. 1471-1485 (1972) 

4. Bathe, K-J, and Wilson, E. L., Numerical Methods in Finite Element 
Analysis, Prentice Hall, (1976) 

5. Bathe, K-J, and Ramaswamy, S., "An Accelerated Subspace Iteration 
Method," Computer Methods in Applied Mechanics and Engineering, 
vol. 23, pp. 313-331 (1980) 

6. Benfield, W. A. and Hruda, R. F., "Vibration Analysis of Structures 
by Component Mode Substitution," AIAA Journal, vol. 9, no. 7, pp. 
1255-1261, (1971) 

7. Braun, K. A., Dietrich, G., Frik, G., Johnsen, T. L., Straub, K., 
and Vallianos, G., "Some Hypermatrix Algorithms in Linear Algebra," 
Proceedings, Second International Symposium on Computing Methods in 
Applied Sciences and Engineering, Versailles (December, 1975) 

8. Cook, R. D., Concepts and Applications of Finite Element Analysis, 
Second Edition, John Wiley and Sons (1981) 

9. Corr, R. B. and Jennings, A., "A Simultaneous Iteration Algorithm 
for Symmetric Eigenvalue Problems," International Journal for 
Numerical Methods in Engineering, vol. 1, pp. 647-663 (1976) 

10. Craig, 
Dynamic 
(1968) 

R. R. and Bampton, M. C. C., "Coupling of Substructures for 
Analysis," AIAA Journal, vol. 6, no. 7, pp. 1313-1319, 

11. Craig, R. R. and Chang, C-J, "Free-Interface Methods of 
Substructure Coupling for Dynamic Analysis," AlAA Journal, vol. 14, 
no. 11, pp. 1633-1635, (1976) 

12. Craig, R. R. and Chang, C-J, Substructure Coupling for Dynamic 
~A~n~a~l~y~s~i~s~~a~n~d~~T~e~s~t~i~n~g, NASA Contractors Report CR-278l, February 
(1977) 

13. Craig, R. R., "Methods of Component Mode Synthesis," Shock and 
Vibration Digest, vol. 9, no. 11, pp. 3-10, (1977) 

- 157 -



14. Craig, R. R. and Chang, C-J, "On the Use of Attachment Modes in 
Substructure Coupling for Dynamic Analysis," Proceedings of the 
18th SDM Conference, San Diego, Cal. March 1977 

15. Dodds, R. H. and Lopez, L. A., "Substructuring in Linear and 
Nonlinear Analysis," International Journal for Numerical Methods 
in Engineering, vol. 15, pp. 583-597 (1980) 

16. Dodds, R. H. and Lopez, L. A., "Generalized Software for Nonlinear 
Analysis," International Journal for Advances in Engineering 
Software, vol. 2,' no. 4, pp. 161-168 (1981) 

17. Dodds, R. H., Rehak, D. R., and Lopez, L. A., "Development 
Methodologies for Scientific Software," Software - Practice and 
Experience, vol. 12, pp. 1085-1100 (1982) 

18. Dodds, R. H., Rehak, D. R., and Lopez, L. A., "Software Virtual 
Machines for Development of Finite Element Systems," Proceedings of 
the 24th SDM Conference, Lake Tahoe, Nev., May, 1983 

19. Fuchs, G. V., Roy, J. R., and Shrem, E., "Hypermatrix 
Large Sets of Symmetric Positive-Definite Linear 
Computer Methods in Applied Methanics and Engineering, 
197-216 (1972) 

Solution of 
Equations," 
vol. 1, pp. 

20. Furuike, T., "Computerized Multiple Level Substructured Analysis," 
Computers and Structures, vol. 2, pp. 695-712 (1972) 

21. Gladwell, G. M. L., "Branch Mode Analysis of Vibrating Systems," 
Journal of Sound and Vibration, vol. 1, pp. 41-59, (1964) 

22. Goldman, R. L., "Vibration Analysis by Dynamic Partitioning," aIAA 
Journal, vol. 7, no. 6, pp. 1152-1154, (1969) 

23. Guyan, R. J., "Reduction of Stiffness and Mass Matrices," AIAA 
Journal, vol. 3, no. 2, p. 380, (1965) 

24. Hale, A. L. and Meirovitch, L., "A General Substructure Synthesis 
Method for the Dynamic Simulation of Complex Structures," Journal 
of Sound and Vibration, vol. 69, no. 2, pp. 309-326 (1980) 

25. Hale, A. L. and Meirovitch, L., "A Procedure for Improving Discrete 
Substructures Representation in Dynamic Synthesis," Proceedings of 
the 24th SDM Conference, Lake Tahoe, Nev., May 1983 

26. Henshell, R. D. and Ong, J. H., "Automatic Masters for Eigenvalue 
Economization," Earthquake Engineering and Structural Dynamics, 
vol. 3, pp. 375-383 (1975) 

27. Herting, D. N. "A 
Synthesis Method," 
Louis, Mo., 1979 

General Purpose, Multi-Stage Component Modal 
Proceedings of the 20th SDM Conference, St. 

- 158 -



-, 

-I 

28. Hintz, R. M., "Analytical Methods in Component Modal Synthesis," 
AIAA Journal, vol. 13. no. 8, pp. 1007-1016, (1975) 

29. Holze, G. H. and Boresi, A. P., "Free vibration Analysis Using 
Substructuring," Journal of the Structural Division. ASCE, vol. 
101, pp. 2627-2639, (1975) 

30. Hou, S-N, "Review of Modal Synthesis Techniques and a New 
Approach," Shock and Vibration Bulletin, vol. 4, no. 4, (1969) 

31. Hurty, W. C., "Vibrations of Structural Systems by Component Mode 
Synthesis," Journal of the Engineering Mechanics Division. ASCE, 
vol. 86, no. 4, pp. 51-69, (1960) 

32. Hurty, W. C., "Dynamic Analysis of Structural systems Using 
Component Modes," AIAA Journal, vol. 3, no. 4, pp. 678-685, (1965) 

33. Hurty, W. C., Collins, J. D. and Hart, G. C., "Dynamic Analysis of 
Large Structures by Modal Synthesis Techniques," Computers and 
Structures, vol. 1, pp. 535-563, (1971) 

34. Hurty, W. C., "Introduction to Modal Synthesis Techniques," 
Synthesis of vibrating Systems, ASME Booklet, Nov. 1971, Library of 
Congress #76-179491 

35. Jennings, A. and Agar, T. J. A., "Progressive Simultaneous Inverse 
Iteration for Symmetric Linearized Eigenvalue Problems," Computers 
and Structures, vol. 14, no. 1-2, pp. 51-61 (1981) 

36. Kidder, R. L., "Reduction of Structural Frequency Equations," AIAA 
Journal, vol. 11, no. 6, p. 892, (1973) 

37. Kubomura, K., "A Theory of Substructure Modal Synthesis," Journal 
of Applied Mechanics, vol. 49, pp. 903-909, (1982) 

38. Kuhar, E. J. and Stahle, C. V., "Dynamic Transformation Method for 
Modal Synthesis," AIAA Journal, vol. 12, no. 5, pp. 672-678, (1974) 

39. Leung, Y. T., "An Accurate Method of Dynamic Condensation in 
Structural Analysis," International Journal for Numerical Methods 
in Engineering, vol. 12, pp. 1705-1715, (1978) 

40. Leung, Y. T., "An Accurate Method of Dynamic Substructuring with 
Simplified Computation," International Journal for Numerical 
Methods in Engineering, vol. 14, pp. 1241-1256 (1979) 

41. Lopez, L. A., "POLO Problem Oriented Language Organizer, " 
Computers and Structures, vol. 2, pp. 555-572, (1972) 

42. Lopez, L. A., "FILES: Automated Engineering Data Management 
System," Journal of the Structural Division. ASCE, vol. 101, no. 
ST4, pp. 661-676 (1975) 

- 159 -



43. Lopez, L. A., "FINITE: An Approach to Structural Mechanics 
Systems," International Journal for Numerical Methods in 
Engineering, vol. 11, no. 5, pp. 851-866 (1977) 

44. MacNeal, R. H., "A Hybrid Method of Component Mode Synthesis," 
Computers and Structures, vol. 1, pp. 581-601 (1971) 

45. Meirovitch, L. and Hale, A. L., "Synthesis and Dynamic 
Characteristics of Large Structures with Rotating Substructures," 
Dynamics of Multibody Systems, Symposium held in Munich, West 
Germany, Aug. 29"- Sept. 3, 1977, pp. 231-244 

46. Meirovitch, L. and Hale, A. L., "A General Dynamic Synthesis for 
Structures with Discrete Substructures," Proceedings of the 21st 
SDM Conference, Seattle, Wash. May, 1980 ~ 

47. Meirovitch, L. and Hale, A. L., "On the Substructure Synthesis 
Method," AIAA Journal, vol. 19, no. 7, pp. 940-947, (1981) 

48. Miller, C. A., "Dynamic Reduction of Structural Models," Journal of 
the Structural Division. ASCE, vol. 106, pp. 2097-2108, (1980) 

49. Morosow, G. and Abbot, P., "Mode Selection," Synthesis of Vibrating 
Systems, ASME Booklet, Nov. 1971, Library of Congress #76-179491 

SO. Przemieniecki, J. S., "Matrix Structural Analysis of 
Substructures," AIAA Journal, vol. I, no. 1, pp. 138-147 (1963) 

51. Rice, J. R., The Approximation of Functions, Addison-Wesley (1964) 

52. Rubin, S., "Improved Component Mode Representation for Structural 
Dynamic Analysis," AIAA Journal, vol. 13, no. 8, pp. 995-
1006, (1975) 

53. Schmidt, R. J. and Dodds, R. H., Theoretical and Software 
Considerations for Nonlinear Dvnamic Analysis, SM Report No.8, 
Feb. (1983) University of Kansas, Center for Research, Lawrence, 
Kansas 

54. Shah, V. N. and Raymund, M., "Analytical Selection of Masters for 
the Reduced Eigenvalue Problem," International Journal for 
Numerical Methods in Engineering, vol. 18, pp. 89-98 (1982) 

55. 

56. 

Von Fuchs, G, Roy, J. R., and Schrem, E., "Hypermatrix 
Large Sets of Symmetric Positive-Definite Linear 
Computer Methods in Applied Mechanics and Engineering, 
197-216 (1972) 

Solution of 
Equations," 
vol. I, pp. 

Williams, F. W., "Comparison of Sparse 
Methods," International Journal for 
Engineering, vol. 5, pp. 383-394 (1973) 

Matrix and Substruture 
Numerical Methods in 

- 160 -



,....... 

-, 

57. Wilson, E. L., "The Static Condensation Algorithm," International 
Journal for Numerical Methods in Engineering, vol. 8, no. 1, pp. 
198-203 (1974) 

58. Wilson, E. L. and Itoh, T., "An Eigensolution Strategy for Large 
Systems," Computers and Structures, vol. 16, no. 1-4, pp. 259-265 
(1983) 

59. Wright, G. C. and Miles, G. A., "An Economical Method for 
Determining the Smallest Eigenvalues of Large Linear Systems," 
International Journal for Numerical Methods in Engineering, vol. 3, 
pp. 25-33, (1971) 

- 161 -



APPENDIX A USER INTERFACE AND INPUT DESIGN 

A.I General 

The most popular approach to user communication with structural 

analysis software is the problem oriented language (POL). Virtually all 

successful software ·systems use the POL approach, either by initial 

design or by the use of pre-processors to translate POL input into 

fixed-format, card images. The POL approach provides the user with 

greater flexibility by placing him in control of the input process 

rather than forCing him to conform to rigid formats and input sequences. 

The self-documenting nature of the input reduces the need for reference 

to manuals and provides a concise description of the structural model 

for other analysts. The POL is essential for interactive processing in 

which error recovery is often necessary. 

The philosophy established during the development of FINITE was to 

maintain as much independence as possible among the various components 

of a complete structural model. These components include nonlinear 

material models specification, geometric definition of the structures, 

parameters controlling nonlinear solution algorithms, and requests for 

computation and output. The primary reasons for choosing this approach 

are to provide maximum flexibility in using condensed substructures as 

elements in the higher level structures and to minimize the effect of 

changes in the structural model throughout the analysis/design sequence. 

Wherever possible, this philosophy is maintained in the extension 

to dynamiC analysis. One area does exist in which dynamic solution 

parameters must be tied directly to the geometric definition of a 

substructure. This is the frequency analysis of a substructure that is 

- 162 -

-. 



to be condensed by modal synthesis. Since economical frequency analysis 

depends upon the type of structure, the number of eigenpairs required, 

and the solution method, it is not appropriate to select just one solu

tion a1gorighm for all substructures in a complex model. Various 

substructures will have differing characteristics and may require an 

unequal number of retained normal modes for condensation. It is also 

possible 

differing 

separate, 

selection 

that one substructure could be condensed two or more times in 

ways, with varying geometric and generalized DOF, for use in 

higher level structures. Thus, it is necessary to tie the 

of the eigenproblem solution method to the structure 

definition. 

The capabilities selected for general purpose dynamic analysis, 

along with the various options and parameters that control the solutiqn, 

must be defined accurately and unambiguously by the POL. Section A.2 

presents an explanation of the capabilities to be incorporated into 

POLO-FINITE. Section A.3 lists the syntax of the commands for dynamics 

and examples of their use. As stated earlier, this appendix describes 

the POL for a complete set of analysis capabilities, including those 

that have not been implemented as a part of this study. Portions of the 

POL which have not been implemented are indicated by an "*" in the sec

tion headings. 

- 163 -



A.2 Description of the POL 

A.2.l Structure and Element Mass 

The mass of a structure can be divided into two parts: primary and 

secondary. Primary mass is the mass of the load-carrying components 

(elements) of the structure. Its definition is easily added to the 

specification of an' element through two new element properties. The 

first defines the type of mass formulation: LUMPED or CONSISTENT. The 

second is the MASS_DENSITY of the material of which the element is 

composed. The element mass matrix can then be formed using existing 

element shape functions. The FINITE system accepts up to thirty OOF at 

each node of an element. These include the translational DOF: U, V, 

and Y, and their first and second derivatives: UX, VX, WX, UY, etc. 

Depending upon the particular element formulation, it is possible for 

mass to be assigned to any or all of these DOF. 

Secondary mass is the mass of non-load-carrying components, such as 

concentrated and distributed live-loads, that are supported by the 

structure. Secondary mass is defined in a manner similar to the defini

tion of gravity loads. The secondary mass is resolved into equivalent 

nodal mass via the appropriate element load shape functions. The result 

will always be a lumped mass matrix which is added to the primary mass 

of the structure. As with primary mass, secondary mass may be as

sociated with any of the thirty nodal DOF. 

There are three types of secondary mass: nodal, element, and 

pattern. Nodal mass is mass that is concentrated at a structure node. 

Element mass is concentrated or distributed on the surface of an ---

element. Pattern mass enables the defintion of secondary mass in terms 

of a previously defined loading condition, usually gravity loading. The 

- 164 -



i 
i 

--

user must specify only the name of the loading condition to be used as 

the pattern and a value for the acceleration of gravity to support the 

appropriate conversion from force to mass. 

The commands for computation (assembly) and output of the mass 

matrix for a structure or stand-alone element follow directly from those 

for the stiffness matrix. 

A.2.2 Structure Damping - * 
Damping is typically defined only for the highest level structure, 

not for individual finite elements or substructures. Two methods are 

available for defining structural damping: modal and Rayleigh. 

Definition of modal damping requires input of the modal damping ratio 

for each vibration mode under consideration. Modal damping is ap-

plicable only to transient analysis by mode superposition. Rayleigh 

damping involves the definition of two damping ratios at two selected 

frequencies; the frequencies need not be eigenvalues of the structure. 

Rayleigh damping is applicable to transient analysis by either mode 

superposition or time-history integration. Use of Rayleigh damping 

requires that a frequency analysis be performed in order to compute the 

modal damping ratios for mode superposition or to explicitly form the 

damping matrix for time-history integration. 

Depending upon the method used to define damping, either the damp-

ing matrix or modal ratios can be output for the structure. 

A.2.3 Frequency Analvsis 

As previously mentioned, the parameters controlling the frequency 

analysis (computation of natural frequencies and mode shapes) must be 

- 165 -



defined individually for each structure for whtch the analysis is to be 

performed. No default analysis method is adopted. The syntax for 

specification of the solution method is similar to that for a nonlinear --

material. The TYPE of solution procedure is identified followed by a 

listing of the PROPERTIES which control the procedure. Solution method 

properties can be changed via analysis restart. If a substructure is to 

be condensed by Guyan reduction, no frequency analysis specification is 

required. 

The request for computation maybe made explicitly by the analyst 

or the analysis may be invoked automatically by the FINITE processors. 

Standard output included natural frequencies and mode shapes. Recovery 

of mode shapes for condensed lower level substructures is performed when 

an output request is encountered to print those quantities. 

Substructures to be recovered are specified by appending a list of sub

element numbers to the name of the structure. 

Prior to a transient analysis by mode superposition, the user may 

examine the modal content of a particular dynamic loading condition. A 

special output request facilitates selection of the modes that par-

ticipate in 

analyst may 

The frequency 

the dynamic response. After a frequency analysis the 

request output of MODAL LOADS for the loading condition. 

content of the loading can then be examined and the ap-

propriate modes selected for superposition. 

As a tool for evaluation of the quality of the results in a modal 

synthe~is analysis, MODAL STRAINS may be computed and output to the 

analyst. MODAL STRAINS are the element strains which result when a 

selected vibration mode shape is used as a displacement vector. Output 

- 166 -



r 
of MODAL STRAINS must be preceded by a frequency analysis of the 

structure. 

A.2.4 Substructure Reduction 

The procedure to request reduction of a substructure for dynamic 

analysis parallels that for static condensation. The reduction method 

is defined at the intermediate substructure level; i.e., the substruc-

ture with only one element of type CONDENSED. Guyan reduction is the 

default method. The fixed-interface method is invoked by specifying 

which substructure normal modes to retain. The modes specified must be 

within the range computed in the frequency analysis of the lower-level 

substructure which is being condensed. The retained modes need not be 

consecutively numbered. As an alternative to using substructure normal 

modes, user-supplied mode shapes can be used in the synthesis process. 

These modes could be derived from an experimental analysis or some other 

source, such as low-order polynomials. Input data describing these 

modes must be included with the definition of the structure to be 

condensed. 

Reduction can be explicitly invoked with a COMPUTE STIFFNESS ... or 

COMPUTE MASS ... command for the intermediate level substructure. 

Reduction is performed automatically when required to satisfy a request 

for a higher-level structure. 

A.2.S Initial Conditions - * 

Initial conditions can be defined for a structure prior to tran-

sient analysis. They define a starting solution, in terms of 

displacements and velocities, for the unconstrained physical DOF at time 

- 167 -



t o. For all other times the displacements and velocities from the 

previous time step are used in the integration. 

The analyst may specify initial conditions in one of two ways. 

First, he may define numerical values for each DOF with non-zero dis

placement or velocity. The default initial conditions are zero 

displacement and velocity for all unconstrained DOF. The second method 

uses the static equilibrium configuration from a previous linear or 

nonlinear analysis. This method allows the structure to be released 

from some deflected initial shape with zero initial velocity. A dynamic 

loading may then be applied as the transient response is evaluated. 

A.2.6 Dynamic Loading - * 
The dynamic loading function, P(x,y,z,t), is defined such that it 

has a' spatially-varying component, F(x,y,z), and a time-varying com

ponent, G(t): 

P(x,y,z,t) - F(x,y,z) * G(t). (A.l) 

Simply stated, the pattern of the load is fixed and its magnitude 

changes with time. 

The load pattern, F(x,y,z), can be described as either actual 

forces applied to the structure or as support accelerations. The former 

can best be defined as a static linear loading condition, while the 

latter requires an additional loading type: NODAL ACCELERATIONS. No 

special provisions are necessary for input of out-of-phase support 

accelerations. They can be recoginzed and handled automatically. 

The time-varying component of the loading function, G(t), is 

defined along with other loading data in a dynamic loading condition. 

The G(t) vs. t relation may be harmonic, impulsive, or general. the 

- 168 -

-. 



-. 

,-

....-. 
I 

dynamic loading condition must also include the loading pattern, 

F(x,y,z), which is to be used. More than one static linear loading 

condition can be combined to form the complete pattern of the dynamic 

load. Other necessary input includes the values of time t at which 

displacements are to be computed (thus defining the integration step 

size) and values of time t at which computed results are to be 

retained in the data base. This last item is important because a tran-

sient analysis of any significant duration could result in more data 

than could be effectively stored. Also, it is likely that computed 

results would be required at only a few of the many time steps for which 

displacement are computed. 

A.2.7 Transient Analysis - * 
Transient analysis yields the displacement and velocity response of 

the structure when it is subjected to time-varying loading or support 

accelerations. Two approaches are available for performing transient 

analysis: mode superposition and time-history integration. Mode super-

position requires that a frequency analysis be performed so the 

equations of motion can be uncoupled. This implies that an appropriate 

frequency analysis must be selected prior to requesting the transient 

analysis. The resulting set of independent equations is easily solved 

using one of the Lagrange interpolation formulae. Time-history integra-

tion is performed by anyone of a number of explicit, implicit, or 

hybrid operators. Specification of the transient analysis method is 

similar to that for frequency analysis: the TYPE of method is defined 

followed by the PROPERTIES list . 

- 169 -



The request for computation includes the structure to be analysed, 

the dynamic loading condition, time steps, and initial conditions. 

Results available for output include displacements, velocities, strains, 

and stresses. 

A.2.8 Shock Spectrum "Analysis - * 

The analysis of shock spectrum response is currently restricted to 

linear structures. The shock spectrum is input by defining the func

tional relationship between a spatial coordinate and a time coordinate. 

The spatial coordinate can be chosen as displacement, velocity, or ac

celeration, while the time coordinate can be either period or frequency. 

The user inputs discrete points from the spectrum and the remainder of 

the curve is constructed by linear interpolation in four-way logarithmic ~ 

coordinates. The direction of application of the shock is defined using 

direction cosines for the translational DOF (U, V, and W for 3-D 

structures). The nodes at which the shock is applied are also defined. 

Prior to computing the spectral response, a frequency analysis of 

the structure must be performed. Spectral response quantities are com

puted only after the corresponding output request has been made. 

Results available for output include spectral displacements, spectral 

velocities, spectral strains, and spectral stresses. These quantities 

can be output on a mode-by-mode basis or in some combined form. Methods 

used to combine the modal quantities include SRSS (square root of the 

sum of the squares) and PEAK_SRSS (peak response mode plus SRSS of the 

remaining modes). PEAK SRSS is also known as the Naval sum. As a 

measure of the portion of the total mass responding to the shock in each 

mode, the modal PARTICIPATION_FACTORS can also be output. 

- 170 -



,. 

r--
i , 

---. 

'I 
I 

I 

A.3 POL Syntax and Examples 

A.3.1 Syntax Conventions 

The following is a description of the conventions used in this 

section to illustrate the FINITE command syntax. 

A descriptor is used to identify the position and class of a data 

item in a particular FINITE command line. The descriptor is delimited 

by the characters "< >." The command 

NUMBER OF NODES <integer> 

implies that the word NODES is to be followed by an integer. As ap-

propriate example is: 

NUMBER OF NODES 100 

The following are definitions of the descriptors used within the 

POL: 

<integer> 

<real> 

<number> 

<integer list> 

<real list> 

<number list> 

a series of digits optionally preceded by a plus 
or minus sign. Examples are 121, +300, -8 . 

a representation of a floating point number in 
either decimal or exponential form. Real num
bers must contain a decimal point and may be 
signed. Examples are 1.0, -3.5, 5.2E-08 . 

either an integer or a real number may be input. 
The data item is converted to a real number. 

a sequence of integers. The sequence may be 
listed explicitly or defined over a range of 
integers with a constant increment. The default 
increment is 1. Examples are: 1, 2, 4, 5, 8, 
11; 1-10; 2-20 BY 2 . 

a sequence of real numbers. Real lists have the 
same form as integer lists except that there is 
no default increment. Examples are: 1.0, 1.5, 
2.0, 3.0; 0.0-2.5 BY 0.25 

either an integer list or a real list is input. 
The data is converted to real. 

- 171 -



<label> 

<string> 

a series of letters and digits beginnings with a 
letter. Labels are used as names for identify
ing various entities. Examples are: 
PLANEFRAME, DEADLOAD 10 . 

any text enclosed within single or double 
quotes. An example is: "THIS IS A STRING" 

In some instances a description of the physical meaning of the data item 

is added to the class "in the syntax of a descriptor. This is helpful in 

clarifying the use of the data item. For example a command of the form 

-, 

STRUCTURE <structure name:label> ~ 

implies that the data item following the word STRUCTURE is a label 

defining the name of the structure. 

It is not always necessary to completely spell out every word on a 

command line in order to have the command correctly translated. Many 

words can be abbreviated and these are identified in the command syntax 

by underlining. The underlined portions of words identify the minimum 

input necessary for proper command translation. Descriptors are not 

underlined but are replaced by an item of the specified class when 

applicable. If the command syntax has the form: 

NUMBER OF NODES <integer> 

the following is acceptable as input: 

MUM OF NODE 10 

When only one word from a group of words may be selected as input, 

the choices are listed one above the other and enclosed in braces, "( }It 

The command syntax 

COMPUTE I STIFFNESS 

DISPLACEMENTS 

implies that any of the following commands are acceptable: 

- 172 -

-



COMPUTE STIFF 

COMPUTE DISPlACEMENTS 

COMPUTE DISPL 

When an entire word or phrase in the command is optional, it is 

enclosed within parentheses. The command with the syntax 

NUMBER (OF) NODES <integer> 

can be issued as 

NUM NODES 100 

When more than one word from a group of words may be selected, the 

group is enclosed in brackets, "( ]" The command 

OUTPUT DISPlACEMENTS 

STRAINS 

STRESSES 

implies that the user may request 

OUTPUT DISPL STRAINS 

Brackets and braces are combined to allow more flexibility in 

designing commands. The command syntax 

<integer> X <number> 

x 

implies that the user may enter data of the form: 

1 X 0.0 Y 0.0 Z 5.0 

2 X 1.0 Z 5.0 

Continuation of an input line onto a second physical line is ac-

complished by placing a comma at the end of the line to be continued. 

Comments may be placed in the data by placing a "C" in column land 

a blank in column 2 of the comment line. 

- 173 -
, I 



One method for line termination is to place dollar-sign "$" on the 

line. All entries on the line following the "$" are ignored by the 

translator and may be used for comments. 

A.3.2 Syntax and Examples 

A.3.2.l Specification of Mass 

Example of the command to specify primary mass: 

ELEHENT 1 TYPE CSTRIANGLE CONSISTENT E 30000. NU 0.3, 
nASS_DENSITY 0.000734 

Example of the commands to specify secondary mass (nodal, element, and 
secondary) : 

MASS 
NODAL 

2 U V W 20.0 THETAX THETAY 5.0 
ELEHENT HASS FOR TYPE PLANEFRAl1E 

3 UNEAR U V W FRACTIONAL LA 0.25 LB 0.75 WA 3. a WB 8.0 
1 CONCENTRATED U V W L 3.6 H 5.0 
2 CONCENTRATED THET AZ L 3.6 H 3.0 

USE LOADING DEAD LOAD G 386.4 

Assembly command: 

COMPUTE MASS (FOR) ! STRUCTURE! 
ELEMENT 

<label> 

Ex: COMPUTE HASS STRUCTURE TRUSS 

Output command: 

OUTPUT MASS (FOR) 

!
STRUCTURE! <label> 
ELEMENT 

Ex: OUTPUT MASS ELEMENT WAFER 

- 174 -

--. , 

...... 



, I 

A.3.2.2 Specification of Damping - * 

Modal damping: 

DAMPING 110DAL IRATIOS ! 
PERCENTS 

«mode list:integer list> <number>] 

Ex: DAMPING 110DAL RATIOS 1 0.01 2 0.015 3-10 0.02 

Rayleigh damping: 

DAMPING RAYLEIGH FREQUENCIES I <number> <number> 
PERIOD 
RATIOS I <number> <number> 
PERCENTS 

Ex: DAMPING RAYLEIGH FREQ 100.0 2000.0 PERCENT 2.0 5.0 

Output command: 

OUTPUT DAMPING I l1ATRIX I ((FOR) 
RATIOS 
PERCENTS 

STRUCTURE <label» (, ) 

((FOR) 110DES <integer list» 

Ex: OUTPUT DAMPING RATIOS STRUCTURE FRAME 110DES 1-10 

- 175 -



A.3.2.3 Specification of Frequency Analysis 

Definition of the frequency analysis method: 

EEEQUENCY ANALYSIS (TYPE) JACOBI 
SUBSPACE 

PROPERTIES "<list or properties:label:integer:real> 

Ex: FREQUENCY TYPE SUBSPACE 
PROPERTIES NUH PAIRS 10 ITERATIONS 8 STURM CHECK 

Properties for the two analysis methods, JACOBI and SUBSPACE, are 
listed in Tables A.l and A.2 respectively. 

computation request: 

COHPUTE f(NATURAL) FREQUENCIES] ((FOR) STRUCTURE <label» 
~HODE) SHAPES 

Ex: COHPUTE FREQ STRUCTURE FRA11E 

Standard output request: 

OUTPUT r(NATURAL) FREQUENCIEsl ((FOR) STRUCTURE <label» (,) 
L(HODE) SHAPES J 

((FOR) HODES <integer list» 

Ex: OUTPUT SHAPES STRUCTURE FRAME HODES ALL 

Example of mode shape recovery for condensed substructures: 

OUTPUT HODE SHAPES STRUCTURE HIGHEST/2/1/2 HODES 1-5 

Modal loads output request: 

OUTPUT HODAL WADS ((FOR) STRUCTURE <label» ( ,) 
(FOR) WADING <label> 

Modal strain output request: 

OUTPUT DYNAMIC STRAINS (FOR) STRUCTURE <label> ... 

- 176 -

-, 



;-, 

,........, 

I 

Command 

TOLERANCE <number> 

(NUMBER) (OF) SWEEPS <integer> 

RIGID (BODY) (SHIFT) <number> 

Default 

1. OE-06 

15 

. FALSE. 

Description 

Convergence tolerance 

Maximum number of 
sweeps. 

Shift for rigid body 
modes. 

Table A.l Properties for JACOBI Frequency Analysis Method 

Command Default 

(NUMBER) (OF) PAIRS <integer> 0 

(NUMBER) (OF) ITERATIONS <integer> 0 

MAXIMUM (FREQUENCY) <number> 

TOLERANCE <number> 

SUBSPACE (SIZE) <integer> 

STURM (CHECK) 

JACOBI (TOLERANCE) <number> 

(NUMBER) (OF) SWEEPS <integer> 

RIGID (BODY) (SHIFT) <number> 

NOSHIFT 

FREEZE (VECTORS) 

-none-

1. OE-06 

function 
of model 
bandwidth 

. FALSE. 

1.0E-12 

15 

. FALSE. 

. FALSE. 

. FALSE. 

Description 

Number of eigenpairs 
to be computed. 

Maximum number of 
iterations. 

Largest eigenvalue 
to compute. 

Convergence tolerance 

Number of iteration 
vectors to use. 

Perform Sturm 
sequence check. 

Convergence tolerance 
for Jacobi iterations 

Maximum number of 
sweeps for Jacobi 
iterations. 

Shift for ridid body 
modes. 

Surpress positive 
shifting. 

Surpress replacement 
of converged vectors. 

Table A.2 Properties for SUBSPACE Frequency Analysis Method 

- 177 -



A.3.2.4 Specification of User-Supplied Mode Shapes - * 
Command sequence: 

ALTERNATE (HODES) <name:label> ((TITLE) <string» 

<specification of DOF order: U V W UX ... > 

[ 
MODE <11lOde number: integer> ] 
[ <node numbe~:integer> [ <DOF value:number> ]] 

Ex: ALTERNATE MODES LAB_TEST 
U V W 
MODE 1 

1 0.3 0.0 0.2 
2 0.1 0.0 0.1 
3 0.6 0.0 0.4 

MODE 2 
1 0.0 1.0 0.1 
2 0.0 0.5 0.5 
3 0.0 2.0 0.2 

A.3.2.S Specification of Substructure Reduction 

Element declaration for intermediate level substructure: 

ELEHENt 1 TYPE <structure name:label> CONDENSED (,) 

I RETAIN (NORl1AL) (HODES) <integer list> I 
USE ALTERNATE (HODES) <label> \ 

Ex: ELEMENT 1 TYPE CHANNEL CONDENSED RETAIN 1-10 

A.3.2.6 Specification of Initial Conditions - * 
Command sequence: 

INITIAL CONDITIONS <label> ((TITLE) <string» 

DISPLACEMENTS 
[<node list:integer list><DOF list:labels> - <number>] 

VELOCITIES 
[<node list:integer list><DOF list:labels> - <number>} 

USE DISPLACEMENTS ((FOR) STRUCTURE <label» (,) 
(FOR) LOADING <label> 

Ex: INITIAL CONDITIONS PRE LOAD 
USE DISPLACEMENTS FOR LOADING PULL 

- 178 -

--

-



, I 

----r 
i 

A.3.2.7 Specification of Dynamic Loadin~ - * 
Input of support accelerations as F(x,y,z): 

LOADING <label> «TITLE) <string» 
(NODAL) ACCELERATIONS 

[<node list:integer list> <DOF list:labels> <number>] 

Ex: LOADING QUAKE 
ACCELERATIONS 

1-3 U 2.0 
1-3 V 1.S 

Definition of the loading condition: 

LOADING <label> «TITLE) <string» 

[ 
DYNAl1IC ] 
NONLINEAR 

Definition of G(t) within the dynamic loading condition: 

For a harmonic variation of G(t): 

HAR110NIC PERIOD <number> (PHASE (ANGLE) <number» (,) 
(COMBINE) [<pattern name:label> (FACTOR) <number> (,)] 

For a general variation of G(t): 

GENERAL (COHBINE) [<label> [I ~~RS I <number liSt>] ] 
For an impulsive variation of G(t): 

IMPULSIVE (SHAPE) HALF-SINE DURATION <number> (,) 
RECTANGULAR 
POS-TRIANGULAR 
NEW -TRIANGULAR 

(COMBINE) [ <label> (FACTOR) <number> ] 

Step size definition within the dynamic loading condition: 

[ (TIME) STEPS <integer list> «TITLE) <string» (,) 
<number list> (SECONDS) ] 

Selection of the individual steps to save in the data base: 

SAVE (TIME) ~S <integer list> 

Note that the last step computed is always saved, even if not in the 
integer list or if the command is not given. 

- 179 -



Ex: LOADING VIBRATE 
DYNAHIC 

Il1PULSIVE HALF _SINE DURATION 0.5 QUAKE 1. 0 
STEPS 1-100 0.005-0.500 BY 0.005 
SAVE STEPS 5 -100 BY 5 

A.3.2.8 Specification of Transient Analysis - * 
Definition of the transient analysis method: 

TRANSIENT ANALYSIS (TYPE) MODE-SUPERPOSITION 
NEWMARK 
CENTRAL-DIFFERENCE 

PROPERTIES <lise of propereies:label:ineeger:reaL> 

Computation request: 

COMPUTE [DYNAHIC ] DISPLACEMENTS ((FOR) STRUCTURE <label» (,) 
NONLINEAR . 

. [LOADING <labeL> (TIME) STEPS <ineeger lise>] 
INITIAL CONDITIONS <label> 
INCLUDE ~ES <ineeger lise> 

Output request: 

OUTPUT [DYNAl1IC ] 
NONLINEAR 

[ 

DISPLACEMENTS I «ineeger lise» (,) ] 
VELOCITIES 
STRAINS 
STRESSES 

((FOR) STRUCTURE <labeL» (,) 
(FOR) LOADING <label» (TIME) STEPS <ineeger lise> 

- 180 -



~ 
! 
I 

I 

l 
~ 

I 

l 
~I 

l 

A.3.2.9 Specification of Shock Spectrum Analysis - * 
Definition of the spectrum: 

(SHOCK) SPECTRIlM <name: label> ((TITLE) <string» 

DISPLACEMENTS 
VELOCITIES 
ACCELERATIONS 

\ PERIODS -I I FREQUENCIES 

DIRECTIONS (,) 

<number list> 

<number list> 

<node list:integer list:> [I ~ I <direction COSine:number>] 

Ex: SPECTRIlM SHAKER "EARTHQUAKE ONE" 
DISPLACEMENTS 0.0 1.0 1.0 0.0 
FREQUENCIES 0.0 5.0 100.0 1500.0 
NODES 1-4 
DIRECTIONS U 0.5 V 0.6 W 0.624 

Output request: 

OUTPUT DYNAMIC 

[ 

~CEMENTS ] 
VELOCITIES 
STRESSES 
STRAINS 
PARTICIPATION-FACTORS 

((FOR) STRIlCTURE <label> (,) 

(FOR) 

[

(EQBJ (SHOCK) SPECTRUM <label>] 
MODES [<integer list>] 

SRSS 
PEAK-SRSS 

«integer list» (,) 

Ex: OUTPUT DYNAMIC STRSINS 1-100 STRIlCTURE FRAME 
MODES 1-15, SRSS 

SPECTRIlM SHAKER, 

- 181 -



· End of Document 


