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1. INTRODUCTION

This interim report is submitted in partial fulfillment of the Total Main
Rotor Isolation system program conducted under contract NAS1-16969 for NASA-
Langley/AVSCOM. The objective of this contract is to develop a main rotor
vibration isolation system that will achieve total isolation at minimum weight
with no degradation in vehicle stability, handling qualities, alignment
tolerance, or reliability and maintainability. In accordance with the program
contract, "total main rotor isolation" is defined as 90% (or greater) isola-
tion of the helicopter fuselage from forces and moments input at the rotor
hub.

The developmental program for the isolation system consists of four phases.
The first phase included component and system analysis, and detailed design.
Results were reported to the Government in an oral review presented at BHTI.
The results of individual component vibration tests (phase two) were submitted
on October 21, 1983, in an informal letter report to Dr. F. D. Bartlett of
AVSCOM (Structures Lab - LaRC). The third phase of the program consisted of
bench vibration tests of the assembled isolation system to evaluate the over-
all system performance for hub excitations in all six degrees of freedom.
Phase four will include testing of the isolation system installed on the heli-
copter, with a series of shake tests, ground runs, and flight tests being per-
formed to evaluate complete system performance.

This report concerns the system bench vibration test phase (phase three) of
the Total Main Rotor Isolation System program. In addition to static and
dynamic test results from the system bench tests, the information presented in
the oral review and the letter report is included as background material.

BACKGROUND

During the 1970's several antiresonant isolation concepts were developed to
isolate the fuselage from the helicopters' main rotor oscillatory forces.
These include the Kaman DAVIl, Boeing Vertol IRISZ, and Bell Nodal Beam3. A1l
of these concepts use a spring and a mechanically amplified mass to develop
isolation at the main rotor excitation frequency. An example of this type of
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anti-resonant isolator concept is the Bell Nodal Beam installation on the 206L
light helicopter. Key design features of the 206L Nodal Beam are: steel
flexure located to operate as both spring and tuning weight, elastomeric bear-
ings to reduce damping, and incorporation of a Focused Pylon to isolate pitch
and roll.

Although the Nodal Beam provides excellent isolation performance (over 90%
isolation to vertical and roll excitations at the blade passage frequency), it
has several inherent drawbacks. Typically, weight penalties are substantial,
ranging from 1.8 to 2.5% of design gross weight. Other shortcomings include
nonlinearities due to changes in spring rate with large amplitudes of motion,
excessive damping, mechanical complexity, the space required for moving
weights and arms, and cost. As a result of these factors, an alternate method
of achieving the same isolation performance was developed.

LIVE Isolation?

In 1972, research was begun at BHT using a hydraulic fluid in cylinders with
different areas to amplify the motion of a tungsten piston which acted as a
tuning weight. This concept progressed to a very compact system using a high
density, low viscosity liquid (mercury) as both the "hydraulic fluid" and the
tuning weight.

The action of this Liquid Inertia Vibration Eliminator (LIVE) unit is shown
schematically in cross section in Figure la and 1b. An inner cylinder is
bonded to an outer cylinder with a layer of rubber as in a coaxial bushing
rubber spring. Cavities, top and bottom, are enclosed, creating reservoirs
for the "hydraulic fluid." The inner cylinder is attached to the transmis-
sion, and the outer cylinder is attached to the fuselage. The hole or "tuning
port" through the inner cylinder connects the upper and lower reservoirs.

To understand the action of the LIVE system, it is useful to compare it to the
mechanically amplified inertia isolator, Figure 2, since their actions and
reactions are analogous. In the LIVE system, the area ratio of the outer
cylinder to the tuning port is analogous to the length ratio of arms on the
mechanical spring, and the inertial effect of high density 1liquid in the
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tuning port is analogous to the 1inertial effect of the tuning weight on the
arm. Therefore, if the spring rate of the elastomeric spring, the weight of
the liquid in the tuning port, and the area ratio of the LIVE system are equal
to their counterparts on the nodal beam, then the LIVE system will isolate the
same frequency with the same efficiency as the nodal beam system. This action
can be seen in Figure 1lb where an oscillatory force is applied to the trans-
mission atachment lug. This applied oscillatory force creates an oscillatory
reaction force in the outer cylinder due to the strain in the rubber spring
(F1 = KD). At the same time, the liquid is pumped through the tuning port
creating oscillatory accelerations of the liquid mass.

These accelerations create oscillatory pressures in the upper and lower reser-
voirs out of phase with the force created by the rubber spring. The size of
the tuning port is chosen such that the force on the outer cylinder due to the
pressure in the reservoir (Fp = PA) cancels the force due to the rubber
spring, and the outer housing is nodalized at the excitation frequency.
Figure 3 shows the static and dynamic motions the isolator goes through as
different flight conditions are encountered.

Analysis of LIVE System Motions

To further understand the dynamics involved in the LIVE system, an analysis of
the equations of motion is summarized here. Two assumptions are made about
the system to simplify the analysis: (1) zero damping and (2) harmonic
motion. For this analysis, refer to Figure 4a for a simplified schematic of
the LIVE system. Let the pylon mass be attached to the inner cylinaer, and
the fuselage be attached to the outer cylinder. There are four unknowns to
solve for: xi, x2, x3 and P.

Notice that the mass of the liquid in the reservoir must have the same verti-
cal motion as m3. Due to the principles of hydraulics there 1s a constraint
equation that causes the motion of any one body to be proportional to the
difference in the motion of the other two bodies. This can be seen by fixing
m3 (the fuselage) and forcing a displacement on m; (the pylon) and observing
the motion of my (the tuning weight). The equation of this motion 1s:

(8]
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bxz - axo . .
X1 = Th=ay Constraint equation (1)

By observing the dynamic loads applied to the free body diagram of mp in
Figure 4b, a force balance yields:

-mjx1 = Fsin(wt) + 2P(b-a) - K(x3-x1) (2)
Similarly a force balance of mp in Figure 4c yields:

-mpxp = 2Pa (3)
and a force balance of m3 in Figure 4d yields:

-m3x3 = K(x3-x1) - 2Pb (4)

These four equations then give us the necessary information to solve for the
four unknowns. This yields:

P = -w?mpxp/2a; x1 = bx3 - ax2
’ ~(b-a)
Fsin(wt) (a(b-a)mzw?+Ka?)
w2a2(my+mp+m3)K-w" (mmobo+mym3al+momz(b-a)2)
Fsin(wt) (b(b-a)w2mp-Ka?)
w2a2(my+mp+m3)K-w" (mmob2+mim3al+mom3(b-a)2)

X2 =

(5)

X2 =

To solve for the isolation frequency set x3 = 0, then:

b Ka _ 1| ka2 172
E mgmz - ——'b_a 0 or f1 = ﬁl———(——)}mzb b-a (7)

to determine the tuning mass required for a given area ratio and spring rate:

Mo = Ka2
2 = T2nf1)2 b(b-a)

the resonant frequency 1s:



1
fn=ﬁ‘

Kaz(m1+m2+m) 172 (8)
mimob + mpm3(b-a)é + mm3as

BHT's experience shows the LIVE system has these advantages over the mechani-
cal inertia isolators:

1.

Reduced complexity
Bearingless
Motion safety stops inherent to the concept

Smaller envelope for installation (no external masses moving through
Targe amplitudes)

Linear response at high g's
Much lower weight and cost

Very low reliability and maintainability requirements



2. DESIGN AND ANALYSIS

The total main rotor isolation system was designed with the objective of iso-
lating all six degrees-of-freedom (D.0.F.) of pylon motion from the helicopter
fuselage. The six D.0.F. system was designed to utilize Liquid Inertia
Vibration Eliminator (LIVE) isolators which have been successfully employed in
other helicopter vibration reduction programs at BHT. A Bell Model 206LM was
selected as the baseline helicopter, and the analysis and hardware design was
undertaken with this as the subject ship. The 206LM is a 1914 kg (4000 1b)
class, turbine-powered helicopter modified with a four-bladed soft-inplane
flexbeam rotor system and skid gear designed to avoid ground resonance. The
jsolation system selected for the baseline helicopter during the analysis
phase was the six LIVE system, using the LIVE unit in a pinned-pinned Tlink
configuration.

The mechanics of a classical pinned-pinned link is such that only axial loads
can be transmitted; no moments can be input through the spherical bearings at
its ends. If the LIVE unit in the link is tuned to isolate the blade passage
frequency, then no oscillatory loads at the blade passage frequency in any
direction will be transmitted through the 1link. By using six pinned-pinned
isolator links attaching the pylon to the fuselage (in any configuration that
is statically stable in all six degrees of freedom) and no other attachments,
then every attachment will isolate the blade passage frequency and no oscil-
latory loads will be transmitted to any degree of freedom.

A representative LIVE isolator for the six D.O.F. application 1s shown in the
cross-section view of Figure 5. The 1nner member is attached to the pylon,
and the outer member is attached to the fuselage. The two members are bonded
to the elastomer that fills the annulus between them. This elastomer (working
in shear) acts as a spring which reacts to the static and dynamic loads placed
on the isolator. Pressurized liquid mercury fills the center port in the
inner member and both cavities at the ends of the isolator. No air space
remains in the isolator.

10
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In operation, the 1liquid mercury oscillates within the LIVE unit, and isola-
tion is achieved when the force due to pressure created by the motion of the
mercury cancels the spring force due to the displacement of the rubber. By
altering the spring rate and port diameter, the LIVE unit can be tuned to
jsolate the desired blade-passage frequency.

The six D.0.F. isolation system and 206LM helicopter was analyzed using a
NASTRAN computer model. The NASTRAN model has a rigid fuselage and the fully
flexible pylon from the 206LM. Figure 6 shows the undeformed system model.
Figures 7a - 7e illustrate the pylon mode shapes at various frequencies. The
placement of pylon modes is of interest in order to avoid coincidence with
various excitation frequencies of the baseline helicopter.

The NASTRAN analysis was also implemented to calculate response curves for the
six D.0.F. system. These curves are included in Figures 8 - 13 and show the
calculated baseline helicopter c.g. response to hub inputs corresponding to
the six degrees-of-freedom. These plots indicate that an idealized six D.O.F.
system has the potential to provide better than 95% isolation to the fuselage.

The final configuration of the six D.0.F. system is shown in Figure 14. The
isolator mounting hardware replaces the standard 206LM hardware with minimal
changes to the helicopter and transmission assemblies. The isolators are man-
ufactured by Lord Kinematics.

While the six D.0.F. system offers significant potential improvement in vibra-
tion isolation, it suffers an attendant weight penalty. Table 1 provides a
weight comparison of a rigidly mounted, non-isolated mounting system and the
six D.0.F. isolation system. The driveline weight calculations are 1included
because more flexures are required to allow increased pylon motion with the
isolated system. As the table indicates, a total weight difference of 69.6
1bs exists between the six D.0.F. isolation system and the non-isolated one.
As a basis of comparison, the focal pylon-nodal beam isolation system used on
the Bell 206L has a weight penalty of 128 1bs (3.2% gross weight), while 1s0-
lating 3 degrees-of-freedom.

12



The weights listed for the six D.0.F. system correspond to fully adjustable,
steel-bodied isolators. Reducing the degree of adjustability of the isolators
would result in some weight reduction. Also, the replacement of steel compo-
nents with parts made from aluminum and/or composite materials would result in

a substantial weight savings, reducing the weight penalty of the six D.O0.F.
isolation system even further.

13
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TABLE 1. A COMPARISON OF WEIGHTS FOR NON-ISOLATED AND ISOLATED
PYLON MOUNTING SYSTEMS

NON-ISOLATED (RIGID) ISOLATED (6 D.O.F.)
Rigid Link (6 req'd) 1.83 1b ea Isolator (6 req'd) 12.34
1b ea
Conventional Clevis Mount Conventional Clevis Mount
w/Hardware (6 req'd) 1.75 1b ea w/Hardware (2 req'd) 1.75
1b ea
Driveshaft Flexure Double Clevis Mount
(2 req'd) 0.37 1b ea w/Hardware (2 req'd) 6.10
1b ea
*Additional Driveshaft Driveshaft Flexure
Length (1.40 in. req'd) 0.17 1b (6 req'd) 0.37
1b ea
(.35 in/f]eﬁure x 4 flexure
X .424 in¢ x .283 1b/in3)
TOTAL SYSTEM WEIGHT: TOTAL SYSTEM WEIGHT:
6 x 1.83 1b/link =‘10.98 1b 6 x 12.34 1b/isol. =74.04 1b
6 x 1.75 1b/mount = 10.50 1b 2 x 1.75 lb/mount = 3.50 1b
2 x 0.37 1b/flexure = 0.74 1b 2 x 6.10 1b/mount = 12.20 1b
Add. Driveshaft Length = 0.17 1b 6 x 0.37 1b/flexure = 2.22 1b
22.39 1b 91.96 1b

ISOLATED SYSTEM - NON-ISOLATED SYSTEM
91.96 - 22.39

WEIGHT PENALTY

WEIGHT PENALTY = 69.57 1b

*Due to the reduction in number of flexures required for the non-isolated
system, additional driveshaft length must be added.
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3. COMPONENT VIBRATION TESTS

Before testing the complete six D.0.F. isolation system, each individual
isolator was tested and tuned. By adjusting the internal volume of mercury,
and therefore changing the oscillating mass, all of the isolators were tuned
to isolate approximately 26.3 Hz (4/rev) vibration.

The hardware involved in the isolator tuning process is shown in Figures 15
and 16. A 758-1b weight is suspended from the isolator, which was itself hung
from an electromagnetic shaker. A 150-1b weight is attached above the isola-
tor. The 150-1b weight simulates the portion of the pylon weight, and the
758-1b weight simulates the portion of the fuselage weight that must be sup-
ported by each of the four isolators on the 206LM baseline helicopter. (The
other two isolators in the six D.O.F. system do not support any vertical
load.) This combination of weights places the vertical natural frequency of a
individual unit in this test approximately equal to the natural frequency of
the installed system on the.baseline helicopter.

Figure 17a is a measured response plot slowing the acceleration of the
"fuselage" (isolated side) normalized by the "pylon" (non-isolated side)
acceleration for isolator S/N LKO010. This plot was generated by sweeping the
frequency of a 500-1b dynamic input force (approximately twice the maximum
expected load per isolator) from 10 to 57 Hz. The figure shows a resonance at
12 Hz and an isolation valley at 26.3 Hz with a transmissibility of over 90%
and no amplification at 8P (52.6 Hz). For the remainder of the tuning tests
the frequency range investigated was from 10 to 30 Hz to cut test time 1n half
and increase frequency resolution. Figures 17b, 17c, and 17d show a test of
linearity with input forces at 200, 300, and 500 1b, respectively. These
figures show that the isolation frequency and the transmissibility are
effectively unchanged with force input, with a slight reduction in the
isolation frequency with increasing force. The frequency reduction 1s a
result of the dynamic spring rate of the elastomer decreasing slightly with
increasing oscillatory motion. Figures 18 - 21 show the final tuning of all
eight isolator units with a 500-1b force input. The 1solation frequencies and
the transmissibility ratios are summarized in Table 2.
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TABLE 2. [ISOLATOR PERFORMANCE AT 500 LB INPUT FORCE

Isolator Figure Tuned Isolation % of Desired Transmissibility

Serial No. No. Frequency - Hz Isolation Frequency Ratio @ 26.3 Hz
LKooo1 18 27.7 105% .040
LK0002 18 27.8 106% .035
LK0005 19 26.8 102% .032
LK0ooo07 17d 27.4 104% .033
LKoo10 19 26.4 100% .034
LKo012 20 26.6 101% .030
LK0013 20 27.7 105% .035
LK0014 21 25.8 98% .040
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Figure 22a is included to illustrate some characteristics of the isolators.
The figure shows the measured response of a single isolator system to an
oscillatory input force of 100 1b. The plot demonstrates that as pylon weight
is reduced, the resonant frequency of the system increases, while the isola-
tion frequency remains unchanged. Recalling equations 7 and 8, the resonant
frequency f is dependent upon isolator stiffness, area ratio, and the pylon,
tuning weight, and fuselage masses. The isolation frequency, however, is
dependent only on isolator parameters; stiffness, area ratio, and tuning
weight.

Damping affects the magnitude of response both at resonance and anti-resonance
(isolation). Its presence is desirable to limit the peak response at reso-
nance, but damping also limits the degree of isolation that can be achieved.
Zero damping would provide optimum isolation performance. For this reason,
the isolators use low viscosity fluid and low-damped elastomer.

Figure 22b shows the measured response of a double isolator system to an
oscillatory input force of 100 1b. To generate this plot, two isolators were
mounted side by side (in parallel), while supporting the same pylon and fuse-
lage weight used previously. Therefore, isolator stiffness and tuning weight
were doubled with respect to the single isolator setup. Doubling the system
spring rate yields the same resonant frequency that the system would have with
the original single isolator spring rate and half the pylon weight. The
response of the double isolator system shows a distinct similarity to the
response of the single isolator setup with 43% pylon weight. As noted before,
the resonant frequency shifted upward due to increased stiffness, while the
isolation frequency was unchanged. The actual 1solation valley magnitude also
compares closely to the 43% pylon weight case.

Figure 22a points out an important correlation between the placement of the
resonant and isolation frequencies and the transmissibility at the isolation
valley frequency. As the frequency separation between resonance and anti-
resonance decreases, whether due to increased stiffness or decreased pylon
mass, the isolation performance suffers dramatically. Therefore, in addition
to minimizing damping, 1t 1s desirable to obtain as much frequency separation
between isolation and any resonance as possible. The 1mportance of this sepa-
ration 1s discussed in the Results section of this report.
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4. ENDURANCE TEST OF AN ISOLATOR UNIT

In order to assure safety of flight, and to establish some baseline data for
service-life projections, a representative "LIVE" isolator was subjected to an
endurance test. The apparatus used in the test is shown in Figure 23.

The subject isolator was mounted horizontally, and was retained between a sta-
tionary clevis and a clevis mounted on the oscillating output shaft of a
hydraulic shaker. Forces on the input (shaker) and output (isolated) sides of
the isolator were monitored with strain gages, and relative motion between the
inner and outer cylinders was measured with an LVDT.

Isolator S/N LKOOO2 was used in this test. The test was run with a mean iso-
lator tension displacement of 0.10 inch and an oscillatory displacement of
+0.02 inch, corresponding to expected Vy levels. The subject isolator was
tested without failure for 106 cycles at 26.3 Hz, for a total time of 108.5
hours. During the test, a mercury vapor detector was used to monitor the iso-
lator for leaks, of which none were detected.

The photographs of Figures 24 - 25 show the internal condition of the subject
isolator after the endurance test. As illustrated in Figure 24, some slight
erosion of the elastomer surface has occurred. This is believed to have been
caused by cavitation of the mercury, as evidenced by the flow lines of micro-
scopic elastomer particles left on the surface. These elastomer particles
are also evident on the metal surface of the isolator end cap (Figure 25).
This minor erosion had no effect on the performance of the i1solator, and after
cleaning off the residue, the surfaces appeared as smooth as when molded.

This endurance test demonstrated that these "LIVE" 1solators can withstand
static and dynamic loadings equivalent to those expected in flight. Further-
more, these tests indicate that the 1solators are not affected by continuous
cyclic loadings.
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Figure 25.

Internal Condition of LIVE Isolator End Cap After Testing.
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5. SIX D.0.F. TEST METHODS AND PROCEDURES

The six degree-of-freedom isolation test setup is shown in the photographs of
Figures 26 - 33. A 206LM transmission was used in the test program, and six
"LIVE" isolators provided for the pylon's static mounting and constraint
requirements, in addition to providing vibration isolation capabilities. The
jsolators were attached to mounting brackets which were bolted to a l-inch
thick aluminum plate. This plate was bolted solidly to the floor.

Strain gages for measuring axial forces were affixed to the isolated (roof-
mounted) rod end of each of the six isolators. Also, accelerometers were
mounted on the non-isolated (pylon-mounted) side of each isolator. These
accelerometers were oriented axially with respect to the isolators. Addi-
tional accelerometers were attached to the pylon assembly in various locations
and orientations according to the input force/moment direction. Pylon accel-
erometer orientation for each input is listed in Table 3. Input hub shear
magnitudes were measured with piezoelectric load cells. Strain gages were
used to measure input moments.

As the figures illustrate, static and oscillatory forces and moments corres-
ponding to the six degrees-of-freedom can be input to the main rotor hub.
Figures 26 and 27 show oscillatory lateral shear force and roll moment inputs,
respectively. Oscillatory longitudinal shear and pitch moment inputs are
shown in Figures 28 and 29. Figures 30 and 31 show the test setup for verti-
cal shear 1nputs, and the static and oscillatory yaw moment inputs are
depicted in Figures 32 and 33, respectively.

Static tests were performed to determine the coefficients of a 6 x 6 calibra-
tion matrix which would later be used to determine transmissibilities of the
s1x D.0.F. system during dyramic testing. The calibration matrix relates mea-
sured orthogonal input forces and moments at the hub to reacticn forces mea-
sured at the 1solator roof mounts.

For the matrix determination, static loads (3 shears, 3 moments) corresponding
to the six degrees-of-freedom were applied to the hub individually. Referring
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Six D.0.F. System with Roll Hub Moment Input.



LY

Belt Helicopier SITTNEN

Figure 28. Six D.0O.F. System with Lomgitudinal Hub Force Iriput.'




8Y

Figure

29.

Six D.O.F. System with Pitch Hub Moment Input.



Six D.0.F. System with Vertical Hub Force Input (Front View).

Figure 30.
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Figure 31.

Six D.0.F. System with Vertical Hub
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Force Input (Rear View).
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Figure 32.

Six D.0.F. System with Yaw Hub Moment Input.
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Figure 33.

Six D.0.F. System with Static Yaw Hub Moment Input.
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TABLE 3. PYLON ACCELEROMETER ORIENTATION FOR 6 D.O.F. ISOLATION TEST

Z2Or=T =0 Z0m—>@O0r-

Main Rotor
Hub (Input)

Mast
Center

Transmission
(top)

Transmission
(bottom)

VERTICAL
SHEAR
Vertical
Fore/Aft

Fore/Aft

Fore/Aft

HUB INPUT
LONGITU-

LATERAL DINAL YAW ROLL PITCH
SHEAR SHEAR MOMENT MOMENT MOMENT
Lateral Fore/Aft FOﬁ?GAft Lateral Fore/Aft
2
Lateral Fore/Aft Fore/Aft None Fore/Aft
Lateral Fore/Aft Fore/Aft Lateral Fore/Aft
Lateral Fore/Aft Fore/Aft Lateral Fore/AFt




to Fig. 34, the loads were applied at the origin of the hub-fixed (XpYHZy)
coordinate system, and the reaction forces at the isolator mounts were mea-
sured. These input and reaction forces are then used to define the force
determination (calibration) matrix.

MEASURED RIGID BODY MEASURED
ISOLATORl  — CALIBRATION| ye ) INPUT
REACTION( — MATRIX LOAD
FORCE @ HUB
(6 x 1) (6 x 6) (6 x 1)
RIGID BODY MEASURED MEASURED) -1

o CALIBRATION| — JISOLATOR INPUT

MATRIX — {Reactiond X § LOAD

FORCE @ HUB

By inverting the calibration matrix and multiplying by the reactions at the
six 1isolators, equivalent, orthogonal forces and moments in the isolator
mounting coordinate system are determined.

EQUIVALENT RIGID BODY -1 MEASURED
ISOLATOR S CALIBRATION ISOLATOR
REACTIONS - MATRIX X REACTION
INXYZ FORCE
SYSTEM

Therefore, this coordinate system translation provides for the direct determi-
nation of transmissibilities for various dynamic force and moment inputs at
the hub.

In the dynamic portion of the six D.0.F. system test, frequency sweeps and
harmonic analyses were implemented to determine the degree of 1solation and
the system responses to varying input force and moment directions, magnitudes,
and frequencies. Input force levels ranged from approximately 20% to 200% of
expected maximum dynamic loads, and 1nput moments ranged from approximately
33% to 100% of the maximum anticipated torques. The results from both the
static and dynamic tests are included in the section that follows.
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Figure 34. Coordinate Axes Used for Static Calibration Tests.



6. TEST RESULTS

As was discussed in the preceding section, the static tests yielded a rigid
body calibration matrix. By inverting this matrix and multiplying by the mea-
sured reaction loads at the isolators, equivalent orthogonal reactions in the
XYZ system were determined. The inverted rigid body calibration matrix is
shown in Figure 35.

After the individual isolators were tuned and the static calibration was com-
plete, dynamic testing of the six D.0.F. apparatus commenced. Responses of
the system to oscillatory hub loads of varying magnitude and direction were
determined.

Figures 36 - 38 show the isolation system's measured responses to hub inputs
corresponding to the six degrees-of-freedom of the system. The predominant
pylon resonances are noted for each case. The pylon pitch and roll modes
(Figures 36 and 37) are resonances of the rigid pylon mass rotating about the
roof on the isolator spriﬁg system. In the vertical mode, Figure 38, the
pylon translates vertically above the roof. The yaw mode, Figure 38, is
characterized by rotation of the transmission case on the isolator springs
about ~the mast axis. The shuffle modes are longitudinal and lateral motions
of the transmission case on the isolator springs as it pivots about a point
near the hub. The mast-bending modes are dominated by bending of the mast as
the primary spring in the system.

The resonant frequencies and response magnitudes are affected by hub mass.
The addition of mass to the hub tends to lower the resonant frequencies and
reduce the system's responses. In order to obtain response magnitudes which
are representative of those expected in flight, no hub mass was used in the
tests reported here.

Since the rotor hub mass is significant in these modes, the actual pylon
pitch, roll, and vertical modes will occur at lower frequencies than these
test results indicate when the pylon 1s 1nstalled on the 206LM. The fore/aft
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EQUIVALENT INVERTED MEASURED
; ISOLATOR RIGID BODY ISOLATOR
REACTIONS »p = CALIBRATION x REACTION
l IN XYZ MATRIX FORCE
SYSTEM *
FORCE X E r-:0.836 0.815 -0.814 -0.902 0.814 -0.993 ISOLATOR #1 AXIAL FORCE
FORCE Vv -0.087 -0.011 -0.517 0.020 0.086 0.436 ISOLATOR #2 AXIAL FORCE
FORCE Z \ =1 G.477 0.649 -0.101 0.532 0.651 0.051 >< ISOLATOR #3 AXIAL FORCE
MOMENT X -0.644 -0.464 -1.867 0.581 0.683 1.691 ISOCLATOR #4 AXIAL FORCE
MOMENT Y 1.798 -1.820 2.917 1.956 -1.844 3.239 ISOLATOR #5 AXIAL FORCE
MOMENT Z 1-6.701 0.690 -0.062 0.698 -0.726 0.08?_ ISOLATOR #6 AXIAL FORCE

Figure 35. Matrix Transformation Used to Determine Reaction Forces in
Roof Mounting Plane.
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and lateral mast-bending mode, the shuffle mode, and the yaw _mode freqencies
will be essentially unchanged since the hub mass is relatively ineffective in
these modes.

Figure 39 shows the responses of Figures 36 - 38 transposed to a single plot.
The composite plot illustrates that the system's actual isolation frequency is
shifted upward from the desired 26.3 Hz (4/rev) frequency. Although the iso-
lators had been individually tuned to isolate 26.3 Hz (4/rev) vibration, the
system's isolaticn frequency was determined to be approximately 30.5 Hz.

The shift in isolation frequency was determined to be caused by a change in
spring rate in the isolators. After their manufacture, the isolators were
immediately shipped to BHT, and individual tuning commenced. A1l of the
isolators were tuned within one month of their cure date, and due to program
delays, the six D.0.F. tests were not performed until nine months later. Over
this time, the elastomer in the isolators apparently continued to cure, and
the spring rate increased. Since the isolators were tuned at a different
stage of elastomer cure (and, therefore, spring rate), their tuned frequency
was no longer 26.3 Hz when the six D.O.F. system was finally assembled and
tested. Due to the shift in tuned frequency, the system's isolation
performance at 4/rev is substantially worse than optimum. Figure 40
reiterates this reduced performance level by comparing the system
transmissibilities at 4/rev to the best performance (minimum transmissibility)
over the frequency range tested.

In order to verify that the tuning of the isolators had actually changed, they

were re-tested individually after the six D.O0.F. tests were completed. The
results of the re-test are discussed in the section that follows.
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7. TIME EFFECTS ON .ISOLATOR PERFORMANCE

In order to examine why the isolation performance of the complete six D.O.F.
system was not on par with that of the individual isolators, the original
individual isolator tuning and test apparatus was again set up. This was done
to provide vertification that the isolators' spring rates (and, therefore,
tuned frequency) had changed as suggested in the Test Results section of this
report.

Figures 41 - 44 show the responses of the individual isolators measured after
the six D.0.F. system bench tests were completed. The plots show the
acceleration of the fuselage weight divided by the input force as the
frequency of the input force varied. Table 4 and a comparison of these plots
with those made after the initial isolator tuning indicate a shift of the
response for each isolator to a slightly higher frequency. The largest upward
shift in isolation frequency is 6.3 Hz; the smallest is 0.8 Hz. The resonant
frequencies of the isolator% have shifted upward accordingly.

This overall upward shift in responses indicates that the spring rates of the
isolators increased somewhat as time passed between their initial tuning and
completion of six D.O0.F. system testing. The stiffer isolators are now tuned
to provide isolation at a frequency above the desired 26.3 Hz and, therefore,
transmissibility at 4P (26.3 Hz) increases. The relatively small transmissi-
bility increase in each of the individual isolators results i1n a more signif-
jcant degradation 1n 1solation performance for the complete six D.0.F. system.
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TABLE 4. ISOLATOR PERFORMANCE AT 500-LB INPUT FORCE BEFORE AND AFTER 6 D.O.F. TESTING
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TUNED ISOLATION TRANSMISSIBILITY

ISOLATOR FREQUENCY - Hz RATIO @ 26.3 Hz
SERTAL NUMBER BEFORE AFTER BEFORE AFTER
LK0001 27.7 . 29.8 0.040 0.182
LKO002 27.8 34.1 0.035 0.381
LKOOOS 26.8 28.6 0.032 0.145
LK0007 27.4 28.2 0.033 0.130
K0010 26.4 29.0 0.034 0.150
LK0O12 26.6 28.2 0.030 0.095
LKCN13 27.7 29.1 0.035 0.163
LK0014 25.8 28.3 0.040 0.104




8. CONCLUSIONS

The test results reported herein support the following conclusions:

1)

2)

4)

A1l six D.0.F. of pylon motion can be isolated using pinned-pinned “"LIVE"
links which have been tuned independently. The isolators can be tuned to
jsolate a desired frequency, the transmission/isolator system can be assem-
bled, and the isolation frequency of the system will be the same as that of
the individual isolators. Therefore, no "on-ship" or "post-assembly" sys-
tem tuning is required after the individual isolators are tuned.

The six D.0.F. system with fully adjustable, steel-bodied isolators has a
weight penalty of 69.6 1bs, which represents approximately 1.7% of design
gross weight for the 206LM. This weight penalty is greater than the 1.0%
GW design goal. By limiting isolator adjustability and replacing some
steel components with aluminum ones, the 1.0% GW weight penalty goal can be
met.

Results from the endurance test of an isolator unit indicate that the LIVE
isolators can withstand static and dynamic Tloadings equivalent to those
expected 1n flight. Furthermore, these tests indicate that the isolators
are not affected by continuous cyclic loadings.

During the six D.0.F. system bench test, the system was not properly tuned
to 1solate the desired (4/rev) frequency. Due to incomplete curing of the
1solators' elastomer at the time of tuning, their spring rates increased
over time, and therefore the tuning of the individual 1solators changed
(according to their spring rate and degree of cure at the time of tuning).
The stiffer spring rates produced a higher isolation frequency than desired
for the individual isolators, and therefore for the complete six D.O.F.
system.

The 1isolators can be retuned to provide 6 D.0.F. isolation at 4/rev. This
tuning can be achieved by either softening the spring rates or reducing the
tuning port diameter. For the next flight test phase of this program,
spring rate reduction, attained by removing some elastomer length from the
isolators, is the more desirable alternative. Reducing the isolator spring
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rates will have the effect of lowering the system's resonant frequencies,
in addition to shifting the isolation frequency to 4/rev. Placing the
pylon modes farther away from 4/rev will result in improved isolation at
the 4/rev isolation valley.

At this time, the isolators' spring rates have been reduced by machining an
appropriate amount of elastomer to provide 4/rev isolation tuning. Also, a
Bell Model 206L-1 is being modified to the 206LM configuration. After a
tuning check of the individual isolators, the six D.0.F. isolation system will
be installed on the subject helicopter, and the flight testing phase of the
program will be initiated.
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