June 4, 1986

Semiannual Status Reports
Covering the Period from December 1, 1985 to May 31, 1986
Grant No. NAGW-661

Measurements of H02 Chemical Kinetics with a New Detection Method

BY:
Long C. Lee and Masako Suto
Department of Electrical & Computer Engineering
San Diego State University
San Diego, CA 92182

Prepared for:

NASA Headquarters
Washington, D. C. 20546
Attention: Dr. R. F. Hampson
Code EE

I. Introduction

This report covers the period from December 1, 1985 to May 31, 1986 for the research program currently supported by NASA under Grant No. NAGW-661 basic. In this program, the reaction rate constant of $\text{HO}_2 + \text{O}_3$ has been measured with a discharge-flow-tube apparatus. The HO_2 radical was detected by the $\text{OH}(A-X)$ photofragment emission produced from photodissociative excitation of HO_2 at 147 nm. In the meantime, the optical emissions produced by the vacuum ultraviolet excitation of chemical species in the flow tube were investigated and used to examine the possibility for their interference with the HO_2 detection. The research results are summarized below.

II. Research Accomplished

A. Reaction Rate Constant of $\text{HO}_2 + \text{O}_3$

A discharge-flow-tube apparatus has been constructed and used to measure the reaction rate constant of $\text{HO}_2 + \text{O}_3$. The flow tube consisted of three coaxial tubes. The innermost tube was a movable Teflon tube of 2 mm ID, and the second tube was a movable Teflon coated Pyres tube of 1 cm ID and 70 cm long. The main reactor was a Teflon coated Pyres tube. Two sizes of tubes were used - one 4.8 cm ID and the other 2.2 cm ID.

HO_2 was produced by the reaction sequence:

$$\text{Cl} + \text{CH}_3\text{OH} \rightarrow \text{CH}_2\text{OH} + \text{HCl}$$

$$\text{CH}_2\text{OH} + \text{O}_2 \rightarrow \text{HO}_2 + \text{CH}_2\text{O}$$

The Cl atom was produced by microwave discharge of a trace amount of Cl_2 in He. The HO_2 was detected by monitoring the
OH(A-X) emission from photodissociative excitation of HO₂ by a Xe resonance light at 147 nm,

\[\text{HO}_2 + h\nu(147 \text{ nm}) \rightarrow \text{OH}(A^2\Sigma^+) + \text{O} \]
\[\text{OH}(A^2\Sigma^+) \rightarrow \text{OH}(X^2\Pi) + h\nu (306-320 \text{ nm}). \]

The concentrations of Cl and the consequent reaction products (such as CH₂OH, CH₂O and HO₂) were limited to low values such that the requirements for the pseudo-first-order reaction were satisfied. HO₂ could be regenerated by the reaction sequence:

\[\text{HO}_2 + \text{O}_3 \rightarrow \text{OH} + \text{2O}_2 \]
\[\text{OH} + \text{O}_3 \rightarrow \text{HO}_2 + \text{O}_2 \]

The regeneration was greatly reduced by adding C₂F₃Cl or C₃H₈ as the OH scavenger.

The reaction rate of HO₂ + O₃ at room temperature was measured as a function of reaction time and O₃ concentration. The reaction rate constants measured with different flow tubes sizes and different OH scavengers are consistent to be \((1.9 \pm 0.3) \times 10^{-15} \text{ cm}^3/\text{s}\). A computer simulation modeling for the reaction kinetics occurring in the flow tube was carried out to confirm that the secondary reactions were negligible at the low HO₂ concentrations used in the experiment. This current reaction rate constant agrees very well with the value of \(2 \times 10^{-15} \text{ cm}^3/\text{s}\) measured by the Laser-magnetic-resonance technique. Our results are described in more detail in a paper entitled "Reaction Rate Constant of HO₂+O₃ Measured by Detecting HO₂ from Photofragment Fluorescence" which is attached in this report as Appendix A.
We are measuring the HO2+O3 reaction rate constant in the temperature range of 200-350 °C. The result will be presented in the next report.

B. Photofragment Emissions for VUV Excitation of Chemical Species in the Flow Tube

When the chemical species in the flow tube are excited by the 147 nm photons, they may produce UV light to interfere with the OH(A-X) emission from photoexcitation of HO2. Thus, the optical emissions from the vacuum ultraviolet (VUV) excitation of chemical species in the flow tube are needed to interpret our data. The fluorescence spectra of various chemical species were investigated using synchrotron radiation as a light source. The emission spectra were also produced by excitation of the chemical species with intense atomic lines, and they were dispersed to identify the emitting species.

The OH(A-X) emission from photoexcitation of CH3OH has been observed and the result has been reported in an earlier paper (J. B. Nee, M. Suto and L. C. Lee, Chem. Phys. 98, 147 (1985)). The result for photoexcitation of Cl2 has been recently published in the Journal of Chemical Physics which is attached in this report as Appendix B. The spectroscopic data of HCl, CH2O, C3H8 and C2F3Cl have been obtained and analyzed. Their results will be summarized in papers and published in scientific journals. Among all these molecules studied, only C2F3Cl emits at 147 nm. The cross section for the emission in the 300-330 nm region is, however, quite small such that this emission does not seriously
disturb the measurement of HO2 concentration by the photofragment emission method.

In summary, the photofragment emissions of all chemical species in the flow tube have been investigated, and their possible interferences to the OH(A-X) emission produced by photoexcitation of HO2 have been examined. It is concluded that the possible optical emissions from other chemical species do not interfere the measurement of HO2 concentration by the photofragment emission method. Thus, our measurement of the HO2+O3 reaction rate constant is not affected by the optical emissions from chemical species other than HO2.
Appendix A

"Reaction Rate Constant of HO₂+O₃ Measured by Detecting HO₂ from Photofragment Fluorescence"
ABSTRACT

The rate constant for the reaction $\text{HO}_2 + \text{O}_3 \rightarrow \text{OH} + 2\text{O}_2$ was investigated in a discharge-flow system at room temperature. HO_2 was produced from the reaction sequence: $\text{Cl} + \text{CH}_3\text{OH} \rightarrow \text{CH}_2\text{OH} + \text{HCl}$ and $\text{CH}_2\text{OH} + \text{O}_2 \rightarrow \text{HO}_2 + \text{CH}_2\text{O}$. HO_2 was detected by the $\text{OH}(A-X)$ fluorescence produced from photodissociative excitation of HO_2 at 147 nm. A computer modeling of the reaction kinetics occurring in the flow tube was carried out to confirm that contributions from secondary reactions were negligible at low HO_2 concentrations. The rate constant was determined from first order decay of HO_2 in excess O_3. The measured reaction rate constant of $\text{HO}_2 + \text{O}_3$ is $(1.9 \pm 0.3) \times 10^{-15}\text{ cm}^3/\text{s}$, which agrees well with published data.
I. INTRODUCTION

The reaction of odd hydrogen radicals, in particular, the reaction sequence

\[
\begin{align*}
\text{HO}_2 + \text{O}_3 & \rightarrow \text{OH} + \text{2O}_2 \\
\text{OH} + \text{O}_3 & \rightarrow \text{HO}_2 + \text{O}_2
\end{align*}
\]

(1) (2)

has been implicated as major depletion reactions for O\(_3\) in the lower stratosphere and important radical reactions in the troposphere. Several direct measurements of \(k_2\) have been undertaken\(^1\)\^-\(^3\) but to date only the laser magnetic resonance (LMR) detection\(^4\) of \(\text{HO}_2\) has been employed to directly measure \(k_1\). In this present study, we demonstrate that the discharge-flow technique with photofragment emission (DF-PE) detection\(^5\)\^-\(^6\) of \(\text{HO}_2\) can be used to directly measure the rate constant of reaction (1).

\(\text{HO}_2\) was produced by microwave discharge of \(\text{Cl}_2\), which then reacted with \(\text{CH}_3\text{OH}\) and \(\text{O}_2\) by\(^6\)

\[
\begin{align*}
\text{Cl} + \text{CH}_3\text{OH} & \rightarrow \text{CH}_2\text{OH} + \text{HCl} \\
\text{CH}_2\text{OH} + \text{O}_2 & \rightarrow \text{HO}_2 + \text{CH}_2\text{O}
\end{align*}
\]

(3) (4)

\(\text{HO}_2\) was detected by monitoring the \(\text{OH}(A^2\Sigma^+ \rightarrow X^2\Pi)\) emission from photodissociative excitation of \(\text{HO}_2\) by a Xe resonance light at 147 nm,\(^6\)

\[
\begin{align*}
\text{HO}_2 + h\nu (147 \text{ nm}) & \rightarrow \text{OH}(A^2\Sigma^+) + \text{O} \\
\text{OH}(A^2\Sigma^+) & \rightarrow \text{OH}(X^2\Pi) + h\nu (306-320 \text{ nm})
\end{align*}
\]

(5) (6)

The experimental conditions were such that the requirements for pseudo-first order reaction were satisfied. Regeneration of \(\text{HO}_2\) via reaction (2) was greatly reduced by adding OH scavengers.\(^4\)\^-\(^7\) Two reagents, \(\text{C}_2\text{F}_3\text{Cl}\) and \(\text{C}_3\text{H}_8\), were used as OH
scavengers in our experiments.

Since the measurement of reaction rate constant involves many experimental parameters, it is essential to apply different techniques to verify agreement among reported values. Both the methods of production and detection of \(\text{HO}_2 \) for the study of reaction (1) in this experiment are different from previously reported experiments.\(^4,7-9\) This work reports the second direct measurement for the rate constant of reaction (1).

II. EXPERIMENTAL

The schematic diagram of the experimental apparatus is shown in Fig. 1. The experimental chamber consisted of a flow tube assembly and a gas cell. The flow tube consisted of three coaxial tubes. The innermost tube was a movable teflon tube of 2 mm i.d. through which \(\text{CH}_3\text{D}_2 \text{H} \) and \(\text{O}_2 \) were fed. The second tube, a teflon coated Pyrex, was also a movable injector of 1 cm i.d. and 70 cm long. Chlorine atoms were produced upstream by a microwave discharge of a trace of \(\text{Cl}_2 \) in \(\text{He} \). Helium was also used as a carrier gas and its flow rate (\(Q_1 \)) was regulated by a mass flow controller (MKS instruments). The production of \(\text{HO}_2 \) was completed in this tube.

The main reactor was also a teflon coated Pyrex tube. Two sizes were used, one of 4.8 cm i.d. and the other 2.2 cm i.d. both 60 cm long. \(\text{O}_3 \) and the OH scavenger, \(\text{C}_2\text{F}_3\text{Cl} \) or \(\text{C}_3\text{H}_8 \), were introduced into the flow tube upstream. \(\text{O}_3 \) was produced, prior to use, by a high voltage a.c. discharge of \(\text{O}_2 \) at atmospheric pressure and stored on two silica gel traps at 195 °K. The \(\text{O}_3 \) was purified before use by pumping on the silica gel \(\text{O}_3 \) traps
down to a few torr, where the O₃ concentration measured by absorption of 253.7 nm agreed with the pressure measured by an MKS Baratron manometer. O₃ was introduced into the flow tube with He as a carrier gas with the He flow rate (Q₂) regulated by another controller. The elution rate of O₃ was controlled by varying both the flow rate and the temperature of the trap. The partial pressure of O₃ was monitored by the attenuation of the 253.7 nm Hg line at two positions, upstream of the flow tube and downstream after the gas cell. Both measurements agreed within experimental uncertainty, indicating O₃ loss in the flow tube was negligible.

HO₂ radicals reacted with O₃ in the main reaction tube. The partial pressure of all gases were fixed, and the reaction times were varied by moving the position of the HO₂ injector tube. The reaction time is a function of the linear flow velocity which in turn is dependent on the total flow rate. The total flow rate (discussed in detail below) was determined for the flow conditions of each experimental run. The pressures in the flow tube and in the gas cell were monitored separately by two Baratron manometers (MKS). The ratio of total pressures (P_{tube}-P_{cell})/P_{cell} ~ 0.05. Since the pressure drop was so small, no corrections for Poiseuille drop were made (discussed in Section C of Results).

The carrier gas was in excess over the reactants, so the total flow rate was dependent largely on the He flow rate. The total flow rate was determined as follows. First, the volume of the chamber, V_T, was determined using Boyle's Law with a calibrated (at room temperature) 1000 cm³ container as a
reference volume, \(V_1 \). A known pressure of He, \(P_1 \), was contained in \(V_1 \) and then expanded to the total volume, \(V_2 = V_T + V_1 \), and the pressure in \(V_2 \), \(P_2 \), was recorded. Thus, \(V_2 = P_1 V_1 / P_2 \) in cm³. With the flow rates of He, \(Q_1 \) and \(Q_2 \), kept constant, the chamber was isolated from the pump and the increase in pressure per min, \(\Delta P / \Delta t \) in torr/min, was recorded. The total standard flow rate, \(Q_T \), was obtained using:

\[
Q_T = V_2 \left(\frac{273}{760} \right) \left(\frac{\Delta P / \Delta t}{T} \right)
\]

(8)

where \(T \) is temperature in K, and \(Q_T \) is the flow rate in standard cubic centimeter per minute (SCCM). This equation was used to verify the instrumental flow rate settings \(Q_1 \) and \(Q_2 \). For the kinetic experiments, the ratio of \(\Delta P / \Delta t \) was determined for each individual run with all the major reactants in the flow as well.

The linear flow velocity in the tubes was derived from:

\[
v = V_2 \left[\left(\frac{\Delta P / \Delta t}{(60P)} \right) \right] \left(\frac{1}{\pi r^2} \right)
\]

(9)

where \(P \) is the total pressure, \(P = (P_{\text{tube}} + P_{\text{cell}}) / 2 \), at which the experiment was performed, \(r \) is the radius of the flow tube and \(v \) is in cm/sec. The error estimates at 95% confidence level^10 are: \(V_2 \) (± 2%), \(T \) (± 1%), \(P \) (± 5%), \(\Delta P / \Delta t \) (± 7%), and \(r \) (± 1%). The resultant error in \(Q_T \) or \(v \) is ± 9%. The total flow rates were typically in the range of 150-250 SCCM with the 4.8 cm i.d. and 80-100 SCCM with the 2.2 cm i.d., for which the linear flow velocities in the main reaction flow tube were in the range 100-130 cm/s and 150-200 cm/s, respectively.

The gas cell was a six-way-stainless steel-cross of 3 inch o.d. \(\text{HO}_2 \) radicals were detected by monitoring its \(\text{OH}(\text{A} \rightarrow \text{X}) \) photofragment emission. A sealed \(\text{Xe} \) resonance lamp with a \(\text{MgF}_2 \) window was used as a light source. The light source intensity
was monitored by a CsI photodiode (Hamamatsu R1187). A gas filter (1% CH₄ in Ar at atmospheric pressure) was used to cut-off the 129.5 nm line in the Xe lamp so that only the 147 nm line transmitted into the gas cell. The OH(A-X) emission from HO₂ was detected at the direction perpendicular to both the light source and the gas flow by a cooled PMT (EMI 9558 QB). A narrow band pass filter (310 ± 10 nm) was used to isolate the OH(A-X) band. The signal from the PMT was processed by an ORTEC counting system and the output fed to an IBM PC. The carrier gas flow rates, the total pressure, and the intensities of the 147 nm and 253.7 nm light sources were also simultaneously recorded by the computer.

The gas mixture of 2.0% Cl₂ in He and the lecture bottles of C.P. grade C₂F₃Cl (> 99.0%) and C₃H₈ (> 99.0%) were supplied by Matheson. The CH₃OH (supplied by Fisher, purity > 99.9%) vapor was carried by He into the gas cell. The concentration of CH₃OH was determined from the ratio of the CH₃OH vapor pressure (120 torr at room temperature) to the pressure of the carrier gas. O₂ was supplied by Amerigas and He of UHP grade (99.999%) was supplied by M.G. Scientific. Gases were used as delivered.

III. RESULTS AND DISCUSSION

A. Detection of HO₂ Radicals

The photofragment emission intensity can be described by,

\[I_f = C\sigma_f[HO_2] I_0 \exp(-\sigma_{ini} I)/ (1 + \eta_{pnt} ni_{ki}) \]

where \(C \) is a constant including the geometric factor and the PMT detection efficiency, \(\sigma_f \) is the cross section for the OH(A → X)
fluorescence produced from excitation of HO$_2$ at 147 nm, [HO$_2$] is the HO$_2$ concentration, I$_0$ is the light source intensity of the Xe lamp, l is the path length of the light source from the MgF$_2$ window to the center of the PMT view region, τ is the radiative lifetime of the OH(A-X) transition; n_i, σ_i and k_i are the concentrations, the absorption cross sections at 147 nm, and the quenching rate constants of OH*(A) by various species in the flow tube, respectively. The exponential term represents the attenuation of the light source intensity at 147 nm by various species in the flow tube. The denominator represents the reduction in OH emission by the quenching of OH*(A) by the various gases.

The absorption cross sections for O$_2$, O$_3$, CH$_3$OH, C$_2$F$_3$Cl, and C$_3$H$_8$ at 147 nm were determined from the slope of the linear plot of absorbance versus pressure for each gas and are 1.4×10^{-17}, 4.41×10^{-18}, 1.30×10^{-17}, 1.80×10^{-17} and 7.67×10^{-18} cm2, respectively. The absorption cross-section of Cl$_2$ is < 10^{-18} cm2. The attenuation of light source intensity by all gases for the optical path from the MgF$_2$ window to the detection region of about 1 cm was estimated to be about 10% at a typical experimental condition such as [O$_3$] = 2.5×10^{15} cm$^{-3}$, [O$_2$] = 1.0×10^{15} cm$^{-3}$, [CH$_3$OH] = 1.0×10^{14} cm$^{-3}$, [Cl$_2$] = 6.5×10^{13} cm$^{-3}$ and [C$_2$F$_3$Cl] = 4×10^{15} cm$^{-3}$ (or [C$_3$H$_8$] = 6.5×10^{15} cm$^{-3}$).

The quenching term ($\sum_{i=1}^{n} n_i k_i$) of OH*(A) by all gases in the flow tube is estimated to be about 1.6 and 2.6 with C$_2$F$_3$Cl and C$_3$H$_8$ as scavengers, respectively, assuming that the quenching rate constants of OH*(A) by all the gases are equal to the gas kinetic constant (3×10^{-10} cm3/s). The OH(A-X) emission intensity
may thus be reduced by a factor of 2.6 or 3.6, depending on C$_2$F$_3$Cl or C$_3$H$_8$ being used as the OH scavenger. With such attenuation, the light source intensity was still strong enough for the detection of HO$_2$ radicals.

The photofragment emissions in the UV region from photoexcitation of various gases used in this experiment were also studied. The OH(A-X) emission was observed from excitation of CH$_3$OH at 147 nm with fluorescence cross section12 of 3×10^{-21} cm2. An intense photofragment emission in the UV region (280-380 nm) was observed from excitation of C$_2$F$_3$Cl at 147 nm. The fluorescence cross section of C$_2$F$_3$Cl has been measured in the 105-170 nm region;13 however, when a narrow bandpass filter (310 ± 10 nm) was used, the fluorescence signal was greatly reduced such that it only contributed a small constant background. The other molecules do not fluoresce in the UV region when excited at 147 nm.

From the above results, it is conclusive that the relative HO$_2$ concentration in the gas cell can be measured from the OH(A-X) emission. The estimated minimum detectable [HO$_2$] is $\sim 10^9$ molecule/cm3. In each measurement of the HO$_2$ + O$_3$ reaction rate, flow conditions, which included gas flow velocities, gas flow rates, gas pressures, and microwave discharge power were fixed, except for the reaction time which was varied by changing the position of the movable injector. Since the gas pressures in each measurement were kept constant, the light attenuation, quenching, and emission due to species other than HO$_2$ were constant so that the relative [HO$_2$] is proportional to the OH(A-
X) fluorescence intensity observed. For a fixed [O₃], relative [HO₂] was measured as a function of the reaction time.

B. HO₂ Concentrations and Secondary Reactions

The calibration of HO₂ by reaction with NO to give NO₂ and OH, where the [OH] was measured by OH(A-X) resonance fluorescence,⁵ proved difficult for this chemical system. Instead, the [HO₂] was estimated by a titration method using CH₃OH as titrant and the data were compared with a kinetic model. For [Cl₂] = 5.5x10¹³ cm⁻³ and [O₂] = 1.3x10¹⁵ cm⁻³ kept constant, the data of If versus [CH₃OH] are plotted in Fig. 2 for two reaction times, 45 and 65 msec, inside the central tube (1 cm i.d.) and for an additional 10 and 20 msec to the detection region, respectively. The error bars in If represent one standard deviation and that in [CH₃OH] is the instrumental uncertainty of the pressure manometer. The reactions for the kinetic model are summarized in Table 1. The calculations were carried out using a program which uses the Gear routine for the solution of differential equations.¹⁴

The reactions in the model are similar to those considered by Takacs and Howard in their modeling of the self-reaction of HO₂.¹⁵ The estimates for the wall losses were deduced from other experimental data. Wall loss rate for HO₂ was not greater than 1.5 s⁻¹ in the central tubing (deduced from the intercepts of Figs. 9-11 as discussed later). When the O₂/CH₃OH injector was positioned so that the residence time of Cl was about 40 msec before interacting with CH₃OH and O₂, no fluorescence from HO₂ was detected, thus an upper limit to Cl loss rate is 25 s⁻¹. The wall loss rate of CH₂OH was estimated to be 185 s⁻¹ for a
halocarbon wax coated tube of 1.24 cm i.d. at comparable flow velocities used in our experiments.6

In the modeling, at each [CH₃OH], the [O₂] was given and [Cl] was varied to give the best fit to the data. Best agreement was obtained between computer calculations and experiments when $1 \times 10^{11} < [\text{Cl}] < 2 \times 10^{11}$ cm$^{-3}$ and wall loss rate of Cl was 10 s$^{-1}$. Wall loss rates of HO₂ and CH₂OH contributed insignificantly to the curve fitting. Experimental and calculation data were normalized at [CH₃OH] = 1×10^{14} cm$^{-3}$ and compared in Fig. 2.

First, ignoring wall losses of HO₂, Cl and CH₂OH, plots (a) and (b) of Fig. 2 are the simulation curves with [Cl] = 1×10^{11} and 2×10^{11} cm$^{-3}$, respectively. Plot (c) is with $k_w(\text{HO₂}) = 1.5$ s$^{-1}$ for [Cl] = 1×10^{11} cm$^{-3}$. There is no substantial change in the simulation curve when $k_w(\text{HO₂})$ is considered. The same curve as (c) was obtained when $k_w(\text{CH₂OH}) = 200$ s$^{-1}$ was included in the modeling. Curve (d) is obtained when $k_w(\text{Cl}) = 10$ s$^{-1}$ and $k_w(\text{CH₂OH})$ and $k_w(\text{HO₂})$ were set at zero. Including $k_w(\text{Cl})$ improved the curve fitting at smaller [CH₃OH]. However, the change in curve (d) was not significant when wall losses from HO₂ and CH₂OH were considered. The [Cl] represents the Cl entering the central reactor. The amount of Cl formed in the discharge region is possibly high but wall losses and atom recombination can also be high so that the resulting [Cl] is low.

Complications in the treatment of our kinetic data for the HO₂ + O₃ reaction could arise from (i) interference of the OH fluorescence from photodissociation of H₂O₂ and (ii) contributions from secondary reactions. These are discussed
H₂O₂ is produced in the reaction of HO₂+HO₂. H₂O₂ is also photodissociated when irradiated by 147 nm photons:

\[H₂O₂ + hν (147) → OH^*(A²Σ^+) + OH(A²Π) \]

Thus, the OH(A-X) emission (reaction 6) from H₂O₂ will also be detected. The H₂O₂ fluorescence cross section at 147 nm is \((H₂O₂) = 5 \times 10^{-19} \text{ cm}^2 \). The fluorescence from photodissociation of H₂O₂ will add a background that may interfere with the data analysis. However, this additional signal in a typical experimental condition was quite small such that it is negligible as discussed below.

A summary of the experimental conditions are given in Table II. The flow velocities correspond to an average reaction time of 80 msec in the central tube. The typical concentrations of reactants are: \([\text{CH}_3\text{OH}] = 1.2 \times 10^{14}\), \([\text{O}_2] = 1.3 \times 10^{15}\) and \([\text{Cl}_2] = 5.5 \times 10^{13}\). Using these concentrations and assuming that wall losses for HO₂, CH₂OH and Cl are negligible so that the maximum contribution from secondary reactions can be obtained, the modeling predicts an \(9.7 \times 10^{10} \leq [\text{HO}_2] \leq 1.9 \times 10^{11} \text{ cm}^{-3} \) and \(1.1 \times 10^9 \leq [\text{H}_2\text{O}_2] \leq 4.5 \times 10^9 \text{ cm}^{-3} \) after 80 msec of reaction for \(1 \times 10^{11} \leq [\text{Cl}] \leq 2 \times 10^{11} \text{ cm}^{-3} \). Since \([\text{H}_2\text{O}_2]\) is two-orders of magnitude smaller than \([\text{HO}_2]\), the contribution of H₂O₂ to the fluorescence is expected to be quite small if the fluorescence cross sections of HO₂ and H₂O₂ are the same order of magnitude. This is indeed true as justified below.

The fluorescence cross section of HO₂, \(\sigma (\text{HO}_2) \), can be deduced from the current experimental data. CH₃OH, like HO₂ and H₂O₂, is also photodissociated by 147 nm photons to give OH*(A)
which subsequently emits in the 310 ± 10 nm region. The σ(HO$_2$) can be obtained by calibration against the CH$_3$OH emission whose fluorescence cross section12 at 147 nm is known, σ(CH$_3$OH) = 3x10$^{-21}$ cm2. Using the [HO$_2$] from the modeling, we have $5x10^{-20} \leq \sigma$(HO$_2$) $\leq 1x10^{-19}$ cm2. Thus, σ(HO$_2$) is about a factor of 5 to 10 smaller than σ(H$_2$O$_2$). Considering the low [H$_2$O$_2$], its contribution to the observed fluorescence is less than 10%. This percentage will be considerably reduced when the [HO$_2$] is kept low.

To further verify that the [Cl] is indeed small in our experiments, and thus, the [HO$_2$] and [H$_2$O$_2$] are likewise small, the fluorescence intensity was monitored as a function of [Cl$_2$] as shown in Fig. 3. The plot of If versus [Cl$_2$] is linear for the case without or with O$_3$. The plots (a) and (b) are fit to the respective data, where [Cl] = 1011 cm$^{-3}$ is assumed for an initial [Cl$_2$] = 5.5x1013 cm$^{-3}$ and σ(H$_2$O$_2$) = 3 σ(HO$_2$). This linearity extends to about three times the [Cl$_2$] used in the HO$_2$+O$_3$ experiments (C$_3$H$_8$ was used as the OH scavenger to inhibit reaction (2) for the data when O$_3$ was added). If σ(H$_2$O$_2$) = 10 σ(HO$_2$), is assumed, the dependence deviates from the linearity as shown in plots (c) and (d). When [Cl] = 2x1011 cm$^{-3}$ is assumed for an initial [Cl$_2$] = 5.5x1013, and σ(H$_2$O$_2$) = 10 σ(HO$_2$) then the dependence deviates further from the linearity as shown in plots (e) and (f). For plot (f), the H$_2$O$_2$+O$_3$ reaction rate constant is assumed equal to the HO$_2$+O$_3$ reaction rate constant (Section D). If the H$_2$O$_2$+O$_3$ reaction is slower, then the nonlinearity will occur sooner at lower [Cl$_2$]. To obtain the
linear relationship, the $H_2O_2 + O_3$ reaction must be faster than the $H_2 + O_3$ reaction, at least five times faster or at the order of 10^{-14} cm3/s. There is no indication in the available literature that suggests this reaction rate constant to be greater than k_1. These results clearly indicate that the upper limit of the $[Cl]$ is 2×10^{11} cm$^{-3}$ and $\sigma(H_2O_2) < 10^{-9} \sigma(HO_2)$. For a typical experimental condition, the concentrations of reactants in the central tube, where $[CH_3OH] = 1.2 \times 10^{14}$ cm$^{-3}$, $[O_2] = 1.3 \times 10^{15}$ cm$^{-3}$, and $[Cl_2] = 5.5 \times 10^{13}$ cm$^{-3}$, the kinetic model predicts that the signal due to H_2O_2 is only a few percent of HO_2. Thus, the analysis of the $HO_2 + O_3$ reaction rate constant is not significantly interfered with by the secondary product of H_2O_2.

The predicted $[HO_2]$ originating from the injector is less than 1.9×10^{11} cm$^{-3}$ and the concentration of all other radical products formed in the central tube are negligible compared to $[HO_2]$, thus, the loss rate of HO_2 by other reactions is negligible when compared with the $HO_2 + O_3$ reaction. Radical concentrations are small because, for the $[CH_3OH]$ and $[O_2]$ used in the experiment, all Cl atoms are readily converted to HO_2 within a msec and the probability for the formation of radicals involving Cl and its secondary products is thus small. The O_3 used is in the range $4 \times 10^{14} \lesssim [O_3] \lesssim 3 \times 10^{15}$ cm$^{-3}$, hence, the loss rate of HO_2 from $HO_2 + HO_2 + H_2O_2 + O_2$ (1.5×10^{-12} cm3/s) is minimal when compared with $HO_2 + O_3$. Analysis of our $HO_2 + O_3$ reaction (Section D) at all $[O_3]$ was consistent with a pseudo-first order loss rate for HO_2.

C. Flow Tube Parameters

The flow dynamics in a flow tube reactor are complicated by
the change of pressure along the length of the tube and the change of transport velocity of radicals caused by diffusion.18,19 The linear flow velocity in the central tube of 1 cm i.d. was about 10^3 cm/s which is 4.84 times faster than that in main reactor tube of 2.2 cm i.d.. The pressure drop will be large if the linear flow velocity, v, is fast and the tube radius, r, is small, that is, $(\Delta p/l) \propto (v/r^2)$ where $(\Delta p/l)$ is the pressure drop across the tube length. However, even if there is a pressure drop in the central tube and hence an [HO$_2$] gradient, the initial [HO$_2$] at the point entering the main reaction flow tube should be constant for a given experimental set-up. This assertion is supported by the evidence that in the central tube where HO$_2$ is formed, a 60% change in v does not disrupt the linear dependence of [HO$_2$] on [Cl$_2$] (Fig. 3). The pressure gradient in the main reactor (2.2 cm i.d. and 60 cm long) is small (about 0.05). No corrections were made for this gradient, because this does not introduce any serious problem as shown in the next section.

There is no apparent complication arising from back diffusion. When the [Cl$_2$] was increased, the [HO$_2$] proportionally increased. If the addition of Cl$_2$ or increased HO$_2$ production caused changes in the flow velocities of the gases or the transport velocity of the radical then the linearity would not hold.

As shown in Fig. 3, changing the linear flow velocity and addition of O$_3$ and the OH scavenger did not affect the linear dependence of [HO$_2$] on [Cl$_2$]. This linearity held for different
reaction distances. Such linearity again indicates a low \([\text{HO}_2]\) and the \([\text{HO}_2]\) is distributed uniformly in the tube. The partial pressure of the He carrier gas is at least a factor of seven greater than the sum of the partial pressures of the additive gases and at least four orders of magnitude greater than \([\text{HO}_2]\). Thus, the flow conditions and the gas pressures apparently constituted good mixing. This uniform distribution of \([\text{HO}_2]\) ensures that the reaction of \text{HO}_2 with \text{O}_3 was spatially uniform in the flow tube.

The above discussion concludes that (1) there was no substantial pressure gradient in the main reactor; (2) since the \([\text{HO}_2]\) was low (Section B), its transport velocity was the same as the carrier gas; and (3) the reactant gases were well mixed in the system. Thus, the experimental conditions were appropriate for studying the \text{HO}_2+\text{O}_3 reaction.

D. Reaction Rate Constant of \text{HO}_2+\text{O}_3

In the measurements of reaction rates, \([\text{O}_3]\) was in the \(4.5 \times 10^{14} - 3 \times 10^{15} \text{ cm}^{-3}\) range which was much larger than the \([\text{HO}_2]\) in the reaction flow tube. With \([\text{C}_2\text{F}_3\text{Cl}]\) of about \(3 \times 10^{15} \text{ cm}^{-3}\) or \([\text{C}_3\text{H}_8]\) of about \(6 \times 10^{15} \text{ cm}^{-3}\), reaction (2) \((k_2 = 6.5 \times 10^{-14} \text{ cm}^3/\text{s})^4\) was negligible since it is much slower than the reaction rates of \text{OH}+\text{C}_2\text{F}_3\text{Cl} \((6 \times 10^{-12} \text{ cm}^3/\text{s})^4\) or \text{OH}+\text{C}_3\text{H}_8 \((1.1 \times 10^{-12} \text{ cm}^3/\text{s})^{13}\) by about two-orders of magnitude. Thus, the decay of \text{HO}_2 due to reaction with \text{O}_3 can be represented by the psuedo-first-order approximation.

The psuedo-first order reaction rate, \(K\), for a given \([\text{O}_3]\) is

\[
K = -v \frac{d(\ln(I_f))}{dz}
\]
where \(v \) is the linear flow velocity in the main reactor, \(z \) is the reaction distance from the tip of the 1 cm tube to the \(\text{HO}_2 \) detection point in the gas cell, and \(I_f \) is proportional to \([\text{HO}_2]\). The bimolecular rate constant, \(k_1 \), is obtained from the slope of \(K \) versus \([O_3]\) since \(K = k_1[O_3] \).

Sample first-order \(\text{HO}_2 \) decay plots, \((\ln(I_f)\) versus \(z)\) are shown in Figs. 4 and 5 with \(\text{C}_2\text{F}_3\text{Cl} \) and \(\text{C}_3\text{H}_8 \) as the \(\text{OH} \) scavengers, respectively. For each experimental run, the movable \(\text{HO}_2 \) injector was moved 50 cm at 5-cm intervals. The \(z=0 \) points in Figs. 4 and 5 were set at about 6 cm from the \(\text{HO}_2 \) detection point. The reaction time between \(\text{HO}_2+O_3 \) was increased for each increase in distance. Each plot was linear for the range of \(0 < [O_3] < 3 \times 10^{15} \text{ cm}^{-3} \) used in these experiments which indicate that (i) the \(\text{OH} \) product from reaction (2) was effectively removed by the scavengers, and (ii) \(\text{HO}_2+\text{HO}_2 \) reaction is negligible as indicated by the small decrease rate of \([\text{HO}_2]\) at \([O_3]=0\). This is consistent with predicted \([\text{HO}_2] < 1 \times 10^{11} \text{ molecule/cm}^3\). The experimental data is summarized in Table II.

The first-order rates of reaction (1) versus \([O_3]\) are shown in Figs. 6 and 7 for \(\text{C}_2\text{F}_3\text{Cl} \) and \(\text{C}_3\text{H}_8 \) as \(\text{OH} \) scavengers, respectively. The vertical error bars represent one standard deviation which includes the uncertainties in the determination of \(v \) and the linear least square fit of \(\ln(I_f) \) versus \(z \) (as in Figs. 4 and 5). The horizontal error bars represent the standard deviation in determining \([O_3]\). The lines are linear least squares fit. The bimolecular rate constants obtained from the slopes of Figs. 6 and 7 are \(1.7 \times 10^{-15} \) and \(2.0 \times 10^{-15} \text{ cm}^3/\text{s} \), respectively. A reasonable estimate of the precision is about
17% using a 95% confidence level from the errors: \(k_1 \) (±10%), \(K \) (±10%), \([O_3] \) (±5%), and \(v \) (±9%). Adding a systematic error of 10%, the experimental resultant error is 20%. The intercepts represent \(HO_2 \) loss to the walls of the reactor. The intercept of \(K_0 = 0.3 \) s\(^{-1}\) in Fig. 6 and \(v \) 0 in Fig. 7 are quite small, suggesting the apparent \(HO_2 \) loss due to the walls being quite small.

The reaction rate constants were also measured using a flow tube of 4.8 cm i.d. The results are shown in Fig. 8. With \(C_2F_3Cl \) as the OH scavenger, the slope gave \(k_1 = (1.5 \pm 0.4) \times 10^{-15} \) cm\(^3\)/s, and with \(C_3H_8 \), \(k_1 = (2.1 \pm 0.5) \times 10^{-15} \) cm\(^3\)/s. The experimental uncertainties for the measurements with such large flow tube are relatively high. The flow velocity and the gas mixing in a large flow tube are more difficult to control than that of a small tube. Nevertheless, \(k_1 \) values obtained from the larger flow tube are in agreement with the small one.

IV. CONCLUSION

The current \(k_1 \) value at room temperature (298 K) determined from Figs. 6 and 7 is \((1.9 \pm 0.3) \times 10^{-15} \) cm\(^3\)/s, where error limit represents 95% confidence limit. This is in good agreement with the absolute rate constant of \(2 \times 10^{-15} \) cm\(^3\)/s measured by the LMR method\(^4\) and the value of \(1.7 \times 10^{-15} \) cm\(^3\)/s indirectly measured by photolysis of dry \(H_2- \) \(\text{O}_2- \) \(\text{O}_3 \) mixtures.\(^9\) In the indirect measurements, \(k_1 \) was determined from relative rates with the \(2\text{HO}_2 \rightarrow \text{H}_2\text{O}_2+\text{O}_2 \) reaction as the competing reaction. The lower \(k_1 \) values derived from relative rates from early photolysis
results7,8 were reconciled to the later determination9 by taking into account that in the presence of water vapor the self-reaction of HO\textsubscript{2} increases.

The Arrhenius parameters in the temperature range 230-365 K indicate a low value for the A-factor (1.3\times10^{-14} \text{ cm}^{-3}/\text{s}) for a simple atom-transfer mechanism.4 The reaction rate constants at different temperatures will be further measured in our laboratory to verify the Arrhenius parameters. The reaction rate constants at various temperature are needed in the stratospheric modeling, since temperature changes with height in the stratosphere.

ACKNOWLEDGEMENT

The authors wish to thank Dr. W. B. DeMore, D. L. F. Keyser, Dr. M. T. Leu, and Dr. M. J. Molina at the Jet Propulsion Laboratory, Dr. C. J. Howard at the NOAA Environmental Research Laboratory, Dr. D. M. Golden at the SRI International, Dr. R. F. Hampson at the National Bureau of Standard, and Dr. J. B. Nee, Dr. W. C. Wang and Dr. X. Y. Wang in our laboratory for useful discussion and suggestions. The HO\textsubscript{2} detection method is based on the work supported by the NSF under Grant No. ATM-8412618. This work is supported by the NASA under Grant No. NAGW-661.
Table I

<table>
<thead>
<tr>
<th>Number</th>
<th>Reactions</th>
<th>Rate Constants (\text{cm}^3/\text{molec. \cdot s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{CH}_3\text{OH} + \text{Cl} \rightarrow \text{CH}_2\text{OH} + \text{HCl})</td>
<td>(6.30 \times 10^{-11})^a</td>
</tr>
<tr>
<td>2</td>
<td>(\text{CH}_2\text{OH} + \text{O}_2 \rightarrow \text{CH}_2\text{O} + \text{HO}_2)</td>
<td>(1.40 \times 10^{-12})</td>
</tr>
<tr>
<td>3</td>
<td>(\text{CH}_2\text{OH} + \text{Cl} \rightarrow \text{CH}_2\text{O} + \text{HCl})</td>
<td>(3.00 \times 10^{-10})^b</td>
</tr>
<tr>
<td>4</td>
<td>(\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2)</td>
<td>(1.50 \times 10^{-12})</td>
</tr>
<tr>
<td>5</td>
<td>(\text{Cl} + \text{H}_2\text{O}_2 \rightarrow \text{HCl} + \text{HO}_2)</td>
<td>(4.10 \times 10^{-13})</td>
</tr>
<tr>
<td>6</td>
<td>(\text{Cl} + \text{HO}_2 \rightarrow \text{HCl} + \text{O}_2)</td>
<td>(3.20 \times 10^{-11})</td>
</tr>
<tr>
<td>7</td>
<td>(\text{Cl} + \text{HO}_2 \rightarrow \text{ClO} + \text{OH})</td>
<td>(9.10 \times 10^{-12})</td>
</tr>
<tr>
<td>8</td>
<td>(\text{OH} + \text{HO}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2)</td>
<td>(7.00 \times 10^{-11})</td>
</tr>
<tr>
<td>9</td>
<td>(\text{OH} + \text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + \text{HO}_2)</td>
<td>(1.70 \times 10^{-12})</td>
</tr>
<tr>
<td>10</td>
<td>(\text{ClO} + \text{HO}_2 \rightarrow \text{HOCl} + \text{O}_2)</td>
<td>(5.00 \times 10^{-12})</td>
</tr>
<tr>
<td>11</td>
<td>(\text{OH} + \text{HCl} \rightarrow \text{H}_2\text{O} + \text{Cl})</td>
<td>(6.60 \times 10^{-13})</td>
</tr>
<tr>
<td>12</td>
<td>(\text{ClO} + \text{OH} \rightarrow \text{Cl} + \text{HO}_2)</td>
<td>(1.20 \times 10^{-11})</td>
</tr>
<tr>
<td>13</td>
<td>(\text{ClO} + \text{ClO} \rightarrow \text{Cl} + \text{ClO}_2)</td>
<td>(1.60 \times 10^{-14})</td>
</tr>
<tr>
<td>14</td>
<td>(\text{ClO} + \text{ClO} \rightarrow \text{Cl}_2 + \text{O}_2)</td>
<td>(7.80 \times 10^{-15})</td>
</tr>
<tr>
<td>15</td>
<td>(\text{OH} + \text{HOCl} \rightarrow \text{H}_2\text{O} + \text{ClO})</td>
<td>(1.80 \times 10^{-12})</td>
</tr>
<tr>
<td>16</td>
<td>(\text{OH} + \text{CH}_3\text{OH} \rightarrow \text{H}_2\text{O} + \text{CH}_2\text{OH})</td>
<td>(1.00 \times 10^{-12})</td>
</tr>
<tr>
<td>17</td>
<td>(\text{Cl} + \text{CH}_2\text{O} \rightarrow \text{HCl} + \text{HCO})</td>
<td>(7.30 \times 10^{-11})</td>
</tr>
<tr>
<td>18</td>
<td>(\text{HCO} + \text{O}_2 \rightarrow \text{CO} + \text{HO}_2)</td>
<td>(5.50 \times 10^{-12})</td>
</tr>
<tr>
<td>19</td>
<td>(\text{Cl} + \text{HOCl} \rightarrow \text{Cl}_2 + \text{OH})</td>
<td>(1.90 \times 10^{-12})</td>
</tr>
<tr>
<td>20</td>
<td>(\text{Cl} + \text{O}_2 \rightarrow \text{ClO}_2)</td>
<td>(4.90 \times 10^{-17})^c</td>
</tr>
<tr>
<td>21</td>
<td>(\text{Cl} + \text{ClO}_2 \rightarrow \text{Cl}_2 + \text{O}_2)</td>
<td>(1.40 \times 10^{-10})</td>
</tr>
<tr>
<td>22</td>
<td>(\text{Cl} + \text{ClO}_2 \rightarrow \text{ClO} + \text{ClO})</td>
<td>(8.00 \times 10^{-12})</td>
</tr>
<tr>
<td>23</td>
<td>(\text{OH} + \text{CH}_2\text{O} \rightarrow \text{H}_2\text{O} + \text{HCO})</td>
<td>(1.00 \times 10^{-11})</td>
</tr>
<tr>
<td>24</td>
<td>(\text{HO}_2 + \text{CH}_2\text{O} \rightarrow \text{Adduct})</td>
<td>(4.50 \times 10^{-14})^d</td>
</tr>
<tr>
<td>25</td>
<td>(\text{HO}_2 + \text{wall} \rightarrow \text{products})</td>
<td>(k_w(\text{HO}_2)^e)</td>
</tr>
<tr>
<td>26</td>
<td>(\text{CH}_2\text{OH} + \text{wall} \rightarrow \text{products})</td>
<td>(k_w(\text{CH}_2\text{OH}))</td>
</tr>
<tr>
<td>27</td>
<td>(\text{Cl} + \text{wall} \rightarrow \text{products})</td>
<td>(k_w(\text{Cl}))</td>
</tr>
</tbody>
</table>
All reactions unless otherwise stated are similar to those considered in Reference 15 and the rate constants compared with Reference 16. The rate constant 6.30×10^{-11} reads 6.30×10^{-11}.

Added to the list of reactions, while a negligible step in comparison to the CH$_2$OH+O$_2$ reaction because of our high [O$_2$], this step was necessary in the simulation of the data in Reference 6. The gas kinetic value was assumed for the rate constant.

Cl + O$_2$ + M + ClO$_2$ + M with M principally He at 1.5 torr.

Added to list for completion.

Wall lost rates. See text.
Table II
Summary of Experimental Conditions

<table>
<thead>
<tr>
<th>Run</th>
<th>[O₃] ((10^{15} \text{ cm}^{-3}))</th>
<th>[Cl₂] ((10^{13} \text{ cm}^{-3}))</th>
<th>[CH₃OH] ((10^{14} \text{ cm}^{-3}))</th>
<th>[O₂] ((10^{15} \text{ cm}^{-3}))</th>
<th>[C₂F₃Cl] ((10^{15} \text{ cm}^{-3}))</th>
<th>p** (torr)</th>
<th>v (cm/s)</th>
<th>d(lnIₓ)/dz ((10^{-2} \text{ cm}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5.70</td>
<td>1.11</td>
<td>1.43</td>
<td>3.34</td>
<td>1633</td>
<td>203</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.451</td>
<td>5.64</td>
<td>1.13</td>
<td>1.43</td>
<td>3.69</td>
<td>1699</td>
<td>216</td>
<td>0.35</td>
</tr>
<tr>
<td>3</td>
<td>0.830</td>
<td>5.57</td>
<td>1.13</td>
<td>1.43</td>
<td>3.60</td>
<td>1687</td>
<td>173</td>
<td>1.02</td>
</tr>
<tr>
<td>4</td>
<td>1.16</td>
<td>5.57</td>
<td>1.23</td>
<td>1.46</td>
<td>3.53</td>
<td>1651</td>
<td>165</td>
<td>1.52</td>
</tr>
<tr>
<td>5</td>
<td>1.34</td>
<td>5.51</td>
<td>1.12</td>
<td>1.39</td>
<td>3.50</td>
<td>1690</td>
<td>183</td>
<td>1.18</td>
</tr>
<tr>
<td>6</td>
<td>1.73</td>
<td>5.24</td>
<td>1.10</td>
<td>1.43</td>
<td>3.56</td>
<td>1664</td>
<td>190</td>
<td>1.85</td>
</tr>
<tr>
<td>7</td>
<td>2.13</td>
<td>5.51</td>
<td>1.13</td>
<td>1.30</td>
<td>3.50</td>
<td>1834</td>
<td>190</td>
<td>2.20</td>
</tr>
<tr>
<td>8</td>
<td>2.43</td>
<td>3.11</td>
<td>1.10</td>
<td>1.36</td>
<td>3.43</td>
<td>1717</td>
<td>197</td>
<td>2.34</td>
</tr>
<tr>
<td>9</td>
<td>3.00</td>
<td>4.54</td>
<td>1.44</td>
<td>1.04</td>
<td>3.18</td>
<td>1714</td>
<td>235</td>
<td>2.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run</th>
<th>[C₃H₈] ((10^{15} \text{ cm}^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.642</td>
</tr>
<tr>
<td>12</td>
<td>1.25</td>
</tr>
<tr>
<td>13</td>
<td>1.52</td>
</tr>
<tr>
<td>14</td>
<td>1.99</td>
</tr>
<tr>
<td>15</td>
<td>2.25</td>
</tr>
<tr>
<td>16</td>
<td>2.61</td>
</tr>
</tbody>
</table>

*Tube radius is 2.2 cm i.d.

**Total cell pressure
REFERENCES

FIGURE CAPTIONS

Figure 1 Schematic diagram of experimental apparatus.

Figure 2 Emission intensity versus [CH$_3$OH] with [Cl$_2$] = 5.5x1013 cm$^{-3}$ and [O$_2$] = 1.3x1015 cm$^{-3}$, for a reaction time of 65 msec (•) and 45 msec (○) in the central tube. See text for discussion.

Figure 3 If versus [Cl$_2$]. Concentrations in cm$^{-3}$: [O$_3$] = 0, [CH$_3$OH] = 1.1x1014, [O$_2$] = 1.3x1015, v = 292 cm/s (○); [O$_3$] = 2.0x1015, [CH$_3$OH] = 1.2x1014, [O$_2$] = 1.3x1015, [C$_3$H$_8$] = 6.4x1015, v = 183 cm/s (□), for z = 20 cm. (a) - (f) are the modeling curves (see text).

Figure 4 First order decay plots with C$_2$F$_3$Cl as OH scavenger. See Table II for experimental condition: (a) run 1, [O$_3$] = 0; (b) run 3, [O$_3$] = 8.30x1014 cm$^{-3}$; (c) run 7, [O$_3$] = 2.13x1015 cm$^{-3}$.

Figure 5 First order decay plots with C$_3$H$_8$ as the OH scavenger. See Table II for experimental condition (a) run 11, [O$_3$] = 6.42x1014 cm$^{-3}$, (b) run 12, [O$_3$] = 1.25x1015 cm$^{-3}$, and (c) run 15, [O$_3$] = 2.25x1015 cm$^{-3}$.

Figure 6 K versus [O$_3$] with C$_2$F$_3$Cl as the OH scavanger. The tube radius was 2.2 cm i.d. The slope is $k_1 = 1.7x10^{-15}$ cm3/s.
Figure 7 Same as Figure 6 but with C₃H₈ as the OH scavenger, \(k_1 = 2.0 \times 10^{-15} \text{ cm}^3/\text{s} \).

Figure 8 K versus [O₃]. The tube radius was 4.8 cm i.d. The slope is \(k_1 \). Plot (a) with C₂F₃Cl as the OH scavenger, \(k_1 = (1.5 \pm 0.4) \times 10^{-15} \text{ cm}^3/\text{s} \) and plot (b) with C₃H₈, \(k_1 = (2.1 \pm 0.5) \times 10^{-15} \text{ cm}^3/\text{s} \).
Fig. 1
Fig. 4

(a) \([O_3] = 0\)
\[V = 203 \text{ cm/s}\]

(b) \([O_3] = 25.6 \text{ mtorr}\)
\[V = 197 \text{ cm/s}\]

(c) \([O_3] = 65.9 \text{ mtorr}\)
\[V = 165 \text{ cm/s}\]
Fig. 5

(a) $[O_3] = 19.8 \text{ mtorr}$
$v = 197 \text{ cm/s}$

(b) $[O_3] = 38.5 \text{ mtorr}$
$v = 198 \text{ cm/s}$

(c) $[O_3] = 69.4 \text{ mtorr}$
$v = 172 \text{ cm/s}$
Fig. 6
Fig. 7
Fig. 8