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CHAPTER I

INTRODUCTION

The use of horn antennas for feeds in compact range measurement

systems and other applications creates a need for an efficient means of

designing such antennas. Often it is desirable to do as much of the

design work as possible "on paper" before constructing a physical model

to test. Such an approach is usually cheaper and less time-consuming.

One may make use of one or more analytical techniques to obtain a

fairly accurate idea of how closely the particular antenna design will

meet the required specifications before building it. For example,

aperture integration may be used to find the main beam of the field

pattern but it requires a knowledge of the field distribution across the

aperture. Unfortunately, the exact distribution cannot be determined

without a physical model so an approximate distribution, such as the

geometrical optics field, is normally used.

The moment method can provide an "exact" solution to the problem.

An integral equation which the fields must satisfy is found. From this

equation, a system of N simultaneous linear equations in N unknowns is

obtained and solved using linear algebra techniques. Typically, these



N unknowns specify the current distribution associated with the body,

and the result may be used to calculate the fields. For bodies which

are large with respect to wavelength, the number of unknowns is large,

and the computation time necessary to obtain a solution may become

intolerable. Thus, the moment method is an excellent low frequency

method. It can be used to analyze electrically large structures;

however, it may require large amounts of computation time at the higher

frequencies.

The uniform geometrical theory of diffraction is a good high

frequency method which has the added advantage that it breaks down

"gracefully" as the frequency decreases. This method modifies the

geometrical optics solution by including a diffracted field such that

the total field is smooth and continuous. A diffracted field may be

associated with a discontinuity in the incident or reflected field as

well as with a discontinuity in the rate of change or "slope" of the

fields [1,2,3]. These discontinuities in the fields are the result of

discontinuities in the extent or curvature of perfectly conducting

bodies.

The uniform geometrical theory of diffraction (herewith referred to

as UTD) can in many cases provide accurate results with relatively short

computation time. For instance, it has been used to calculate both

E-plane and H-plane patterns for the standard pyramidal horn [4,5,6]

such as shown in Figure 1.
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SIDE VIEW (E-PLANE) TOP VIEW (H-PLANE)

Figure 1. Pyramidal horn geometry.



In this report, an aperture-matched horn antenna with the geometry

shown in Figure 2 is considered. In comparison to the standard

pyramidal horn, the aperture-matched horn has a smoothly curved surface

attached to the aperture edges. In this case the curved section is

circular in shape, i.e., the radius of curvature is constant. Another

curved section is added between the flared walls of the horn and

waveguide junction. Thus, the sharp edges of the pyramidal horn are

eliminated. The rolled edges allow much of the energy striking the edge

to travel along the curved surface gradually shedding away from the

surface into the sidelobe and backlobe regions. The result is a broader

main beam with lower sidelobes and backlobes. In addition, the curved

surfaces decrease the amount of energy reflected back into the throat of

the horn resulting in a lower VSWR (voltage standing wave ratio). This

property is important for feed horns in compact range systems where the

antenna is used to transmit and/or receive.

The method of moments and the UTD are used to calculate the far

field E-plane pattern of the aperture-matched horn antenna. The moment

method may be conveniently used to find both E-plane and H-plane

patterns at low frequencies when the horn dimensions are small with

respect to wavelength. It may also be used at higher frequencies, but

the computation time increases. The UTD solution discussed in this

report provides good results for the E-plane pattern at higher

frequencies with much less computation time. Thus, the pattern
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Figure 2. Aperture-matched horn geometry (E-plane side view),



behavior can be examined over a specified bandwidth. Also, the moment

method solution is used to calculate the VSWR of the antenna.

Chapter II discusses the moment method solution for the E-plane

pattern while Chapter III discusses the DTD solution for the E-plane

pattern. In Chapter IV, a number of geometries are considered. The

moment method and UTD solutions for the E-plane are compared and a brief

analysis of the effects of changing various parameters of the horn

geometry on the pattern and VSWR is made. Chapter V is a short summary

with appropriate conclusions.



CHAPTER II

BACKGROUND AND THEORY FOR MOMENT METHOD SOLUTION

A moment method solution was obtained by using the reaction concept

of Rumsey [7]. Consider the exterior scattering problem illustrated in

Figures 3, 4, and 5. Impressed electric and magnetic currents (J-j .M^)
•> •>

generate electric and magnetic field intensities (E,H) in the presence

of a conducting body in free space.

From the surface-equivalence theorem of Schellkunoff [8], an

equivalent problem may be obtained by replacing the body by the

following surface current densities:

Js = n x H (2.i)

and

->• •+• *.
Ms = E x n (2.2)

A

where the unit vector n is the outward directed normal to the surface S.

By definition, the source currents (J.,M.) generate the incident fields

(E-,H,) in free space. The scattered fields are defined as



Figure 3. The source (J^ ,M.j) generates the field (E,H) with
scatterer.

SCATTERER
OR

FREE SPACE

Figure 4. The interior field vanishes when the currents (
are introduced on the surface of the scatterer.

i '-I'.-B! i \

FREE SPACE '

Figure 5. The exterior scattered field may be generated by
in free space.



Es * E - ^ (2.3)

and

Hs - H - H1 . (2.4)

- > • • » •
The surface currents generate the scattered fields (ES,HS) exterior to

the body and (-E^,-H^) in the interior region.

One now places an electric test source Jm in this region as

illustrated in Figure 6. Since there is a null field in the interior,

the reaction of this test source with the fields of the other sources is

zero. By reciprocity, this reaction is equivalent to the reaction of

the remaining sources with the field of the test source such that

> • > • • * • - > • . . . - > • • > • • > • > •
f / (J «E - M «H )ds + / ( f ( J .«E - M. «H )dv = 0JM s m s m ! ' i m i m

-• -•
where (Em,Hm) are the free space fields of the test source. This

equation is a statement of the "zero-reaction theorem" of Rumsey [7] and

is used to solve this problem.
->• -»•

Let us determine the surface current distributions (JS,MS) from

which the scattered fields may be calculated. To do this, one expands

these functions in finite series with N unknown expansion coefficients.

For our purposes, it is assumed that the body is a perfect conductor of
->•

electricity so that Ms vanishes. Let us also consider a two-dimensional
-»•

problem in which Js is only a function of the position a around the
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Figure 6. An electric test source Jm is positioned in the interior of
the scattering region.

contour C of a cylinder. For the TE polarization in which the electric
>

field is transverse to the z-axis, a magnetic line source is used and J-j

is zero. The integral equation, Equation (2.5), becomes

f J •£ dt = // M. »H dsJc s m i m

Let us represent the electric current distribution as

(2.6)

JSU) n n(*) (2.7)

where the complex constants (In) are samples of the function JSU), and
-»•

the vector basis functions are denoted by JpU)« The test source and

the basis functions have unit current density at their terminals.

10



Substituting Equation (2.7) into Equation (2.6), one obtains the

following simultaneous linear equations:

N
111 = V with m = 1,2,3,...N ,7f;, n mn m K«

where

Z = -/ J (i) • E di = -/ J (4) • E dimn n n m mm n

V = -//.M. • H ds = / 0 (£ ) • E.d*
m 11 m mm i

and the integrations extend over the region where the integrand is

non-zero.

For computational speed and storage, it is advantageous to have a

symmetric impedance matrix Z^p. Furthermore, the test sources should

yield a well-conditioned set of simultaneous linear equations. For

these reasons, and to obtain closed forms for some of the integrals in
•>

Equations (2.9) and (2.10), one uses test sources Jm of the same size,
-»•

shape, and functional form as the expansion functions Jn. Finally, the

interior test sources are placed a small distance 5 from the surface S

and the limiting form of the integrals is taken as 5 tends to zero.

For ease of computation, the basis functions are chosen to be

sinusoidal strip dipoles. Such a planar strip dipole is illustrated in

Figures 7 and 8. This dipole lies in the xz-plane and has infinite

length in the z-direction. The surface-current density is

11



Figure 7. A planar strip dipole with edges at xi and X3 and
terminals at X2.

I

^

Figure 8. The current-density distribution 0 on the sinusoidal strip
dipole.
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+ * sin(k(x-x1))
J = x sin(k(x2-x1)) (2.1D

for x. < x < x , and

* * sin(k(x3-x)l
J =x sin(k(x3-x2)) (2-12)

for x? < x < x_ Figure 9 illustrates a strip V-dipole. The distance

along the dipole arms is measured by the coordinates s and t,

respectively, with the origin at the terminals 0. The surface-current

density is

A sin(k(Sl-s))

"S sin(ks1) (2.13)

on arm s, and

+ „ sintk^-t))
J = t s lnOctj) (2-14)

A A

on arm.t. The unit vectors s and t are perpendicular to the z-axis. In

both dipoles, the current density vanishes at the end points and is

unity at the terminals 0. The current density is continuous across the

terminals, but it does have a slope discontinuity there. Note that when

<|> = 180°, the V-dipole reduces to the planar dipole.

13



Figure 9. Nonplanar strip dipole with edges at si and
terminals at 0.

and

14



The fields of the sinusoidal strip dipole may be obtained by

considering the superposition of two strip monopoles with sinusoidal

current distributions and a common end point. The fields of the strip

monopole shown in Figure 10 are discussed in reference [9], Using these

results, let us calculate the various elements Zmn of the impedance

matrix and the elements Vm of the excitation column in Equation (2.8).

Consider a perfectly conducting polygon cylinder with contour C
>

which may be open or closed. Let JSU) denote the surface-current

density induced on the cylinder. In this case, the cylinder is open, so
>

currents will flow on both sides of the thin conducting surface, and Js

will denote the total current density.

SOURCE

Figure 10. An electric strip monopole and the coordinate system.

15



Figure 11 illustrates a perfectly conducting polygon cylinder
•>

illuminated by a parallel magnetic line source MI. Let Ij and \2 denote
>

the current density Js at the corners of the polygon. The current
•>

density 0$ vanishes at the edges 0 and 3. Let us define two strip

dipole mode currents on the cylinder. Mode 1 extends from point 0 to

point 2 and has terminals at point 1. Mode 2 extends from 1 to 3 with

terminals at 2. Each mode has a sinusoidal current distribution and

unit terminal current as in Equations (2.13) and (2.14). Now let us
-»•

represent Js(£) as the superposition of the two modal currents with

weightings l\ and 1%. This gives a piecewise-sinusoidal expansion for
>
J s( fc) with two unknown constants 1^ and l£.

In the exact solution, the tangential electric field vanishes

everywhere on contour C. Thus, if one moves an electric test probe to

the conducting surface, as in Figure 12, the open-circuit voltage at

its terminals will read zero. To determine N current samples, one makes

N independent probing tests. The probes may be real (thin-wire

V-dipoles) or hypothetical (electric line sources or strip dipoles).

Now suppose one adjusts the currents In until all the probes read zero.

This procedure yields a stationary solution for the currents In and,

under favorable conditions, tends to the rigorous solution as N

increases.

Let Zmn denote the mutual impedance between test-probe m in Figure

12 and mode current In in Figure 11. The open-circuit voltage

induced in the probe is the sum of the voltage contributions from

16



Figure 11. Perfectly conducting polygon cylinder with parallel

magnetic line source M...

Mi PROBE 2

PROBE I

Figure 12. Electric test probes 1 and 2 are moved to the conducting
surface.

17



Js and Mi. This voltage must vanish at each probe, leading again to

Equations (2.8) to (2.10).

Linear algebra techniques are used to solve these simultaneous

linear equations and determine the current distribution JgU) and the

scattered fields (ES,HS). The theory and method outlined above, as well

as the appropriate computer programs, were generously provided by J.H.

Richmond [9]. Duality may be used to obtain a solution for the case of

TM polarization.

Figures 13 to 16 illustrate the various horn geometries used for

the moment method solution. The horn is modelled by a two-dimensional

open cylinder composed of a number of strips of infinite length and

finite width. For accurate results, the strips should have widths of no

more than a quarter of a wavelength. In general, the widths should be

small enough to obtain a good convergent solution. For the E-plane, the

source is a magnetic line source located on the end wall of the

waveguide at the center of the waveguide section.

Figure 13 is a cross-sectional view in the E-plane of a

conventional pyramidal horn. The geometry is described by four

parameters: input waveguide width w, input waveguide length XL,

half-flare angle a, and aperture width h. The length XL of the input

waveguide should be at least one wavelength to insure that the

evanescent modes from the line source have decayed sufficiently. Thus,

when the electromagnetic waves reach the throat of the horn, only the

dominant waveguide mode is present. The range of values for the

half-flare angle a is 0°<o<90°. The walls of the cylinder are

18



X
LINE SOURCE

Figure 13. Two-dimensional pyramidal horn geometry for moment method
solution.

divided into segments which have widths of approximately \/8 on the

waveguide section and X/5 on the straight flare sections. The segment

widths are smaller on the waveguide section because they are located

closer to the line source than those on the flare sections. Thus, the

fields and currents are stronger on the waveguide section and the

smaller segments provide a more accurate model of the actual current

distribution.

Figure 14 shows a pyramidal horn with a circularly curved throat

section. Note that the junctions between this curved throat section and

the waveguide and flare sections are smooth; that is, the waveguide and

flare walls are attached tangentially to the circularly curved throat

19



\

LINE SOURCE

Figure 14. Two-dimensional pyramidal horn with curved throat
geometry for moment method solution.

section. This geometry is described by the same parameters as the

dihedral horn in addition to the radius of curvature of the throat

section Aj_. The segments of the throat section have widths of

approximately x/8 for the same reasons discussed earlier.

Figure 15 is a pyramidal horn with a rolled edge flare section.

Note that the rolled edge also has a circular curvature and forms a 180°

circular arc. The parameter A2 denotes the radius of curvature of the

rolled edge section. This section has segment widths of approximately

•A/5.

Finally, Figure 16 illustrates the most general geometry treated in

this report: an aperture-matched horn with circularly curved throat and

rolled edge sections. All six parameters (w, XL, ex, h, Aj, and A2) are

needed to describe this geometry.

20



Figure 15. Two-dimensional pyramidal horn with rolled edge geometry
for moment method solution.

21



Figure 16. Two-dimensional aperture-matched horn geometry for moment
method solution.

22



One advantage of an aperture-matched horn is a relatively low VSWR.

Only a fraction of the incident wave travelling down the waveguide is

reflected back to the source. This characteristic makes it desirable

to calculate and predict the VSWR for such a horn geometry.

The field in the waveguide section is the sum of an incident wave

travelling from the source to the aperture and a reflected field

travelling from the aperture to the source. At any given point in the

waveguide, the two waves add or subtract depending on their relative

phase. The result is a standing wave pattern from which the VSWR and

equivalently the reflection coefficient can be obtained.

The moment method solution is used to calculate the magnitude of

the field at a number of points along the waveguide section. The minima

and maxima of the standing wave pattern are determined from these

values. The VSWR is given by

|EMAX! |HMAX[

VSWR = T T = TT T (2.15)|MMIN'

where (E......̂,....) and (E..T..,H.....) are the maximum and minimum fieldMAX MAX M1N MIN

magnitudes, respectively. The reflection coefficient p can then be

calculated from elementary considerations:

P * P ej (2.16)

23



VSWR-1
|P| = VSWR+1 (2.17)

and

6 = 2kxn - (2n-l),r (2.18)

where k is the wave number and xn is the distance from the n
tn minima in

the waveguide to the aperture.

24



CHAPTER III

BACKGROUND FOR UNIFORM GEOMETRICAL THEORY

OF DIFFRACTION

Complete uniform geometrical theory of diffraction solutions for

the standard pyramidal horn have been obtained for both the E-plane and

H-plane patterns by Peters, Rudduck, and Yu [5,6], The UTD wedge

diffraction solutions were utilized in these papers. The corresponding

two-dimensional geometry for the moment method solution is illustrated

in Figure 13.

Burnside and Chuang [10,11] used a hybrid approach to obtain a

solution for an aperture-matched horn design consisting of a dihedral

horn with a rolled edge flare section as shown in Figure 15. This

hybrid approach combined moment method and UTD techniques to obtain a

numerically derived solution for the diffraction coefficient of a source

mounted on a perfectly conducting planar surface smoothly terminated by

a circular cylinder as shown in Figure 17.

Two such surfaces may be attached as shown in Figure 18 to model

a horn geometry. A magnetic line source at the vertex generates the

field from the throat of the horn. Note that the throat region appears

25



MELD
POINT 0

LINE SOURCE

Figure 17. Two-dimensional geometry for a source mounted on a perfectly
conducting planar surface smoothly terminated by a circular
cylinder.

L I N E SOURCE

Figure 18. Two-dimensional geometry for pyramidal horn with rolled edge
for UTD solution.

26



as an electrically small radiator; as expected, its pattern is smooth

across the horn flare angle and zero otherwise. Thus, the pattern is

dominated by three terms: direct throat radiation and two diffraction

terms from the edge junctions. The resulting solution agrees quite well

with measurements and complete moment method solutions.

The aperture-matched horn design shown in Figure 16 has, in

addition to the rolled edge flare section, a circularly curved throat

section. Thus, a more accurate model is needed to include the effects

of the curved section on the source field from the throat. Secondly, to

decrease computation time a "pure" UTD solution is preferable to the

hybrid approach. In other words, one needs a UTD solution of the

diffraction coefficient for a source mounted on a perfectly conducting

planar surface smoothly terminated by a circular cylinder.

Such a diffraction coefficient is obtained by empirically modifying

a previous solution of a diffraction coefficient for a perfectly

conducting two-dimensional surface with a discontinuity in surface

curvature [12] as shown in Figure 19. The diffraction coefficient and

the necessary parameters are given by

- ChU2)F(X2)

cos* + cos*1 (3.1)

where

-i o
' (3.2)

27



REFLECTED RAY

S ..DIFFRACTED RAY

Figure 19. Geometry for a perfectly conducting two-dimensional surface
with a discontinuity in surface curvature.
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= ~2ml,2 COS (3.3)

ml,2 (3.4)

ss 1

L = (3.5)

X = 2kL (3.6)

2(cos<j) +

'-s+I1

o
'

(3.7)

F(x) = 2j/x e
00 . 2

jx e"jt dt (3.8)

and

V ( T ) -J5. 2t
—i P »
W 2 ( r ) 6 dr (3.9)

Note that V ( T ) and W2( t ) are Fock type Airy functions given by

2jV( t ) = (3.10)

29



where

1 dt

with e being a positive number however small; further,

and

~ ' (3.13)

This d i f f rac t ion coefficient is derived for the case where the source is

off the conducting cylinder (4> '*0 ) .

Let us assume that a^ becomes i n f i n i t e and <|>'=0 so that grazing

incidence occurs as shown in Figures 20 and 21. Notice that there now

exists a lit region (0<<J><ir) and a dark region (Tr<<t><2ir) where the

incident f i e ld is blocked by the conducting cylinder. The necessary

modifications are described in Appendix A. The resulting diffracted

f i e l d for TE polar izat ion is given in the lit region (0<<|)<ir) by

e-jks

H ( Q ) = z H 1 ( Q , ) D h-/=^~ (3.14)

where H^Q,) is the field incident on the junction at the point Q.,J J
s is the distance from Q. to the field point, and

u

30



FIELD
POINT

Q

LINE SOURCE

Figure 20. Two-dimensional geometry for the lit region (0<<(><ir) field
for a line source mounted on a perfectly conducting planar
surface smoothly terminated by a circular cylinder.
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Figure 21. Two-dimensional geometry for the shadow region (ir<(()<2ir)
field for a line source mounted on a perfectly conducting
planar surface smoothly terminated by a circular cylinder.
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cos(*I*L) FIX^ + Ch(52). F(X2 )

Dh =
COSiJ) + COSi])1 (3.15)

'-Jir/4 -j(5z) /12
e e (3.16)

cos

= (1/2

(3.17)

(3.18)

ss'
L = TTT*- (3.19)

X = 2kL (3.20)

Xl =

o
kL(cos<|> + cos<|>')

8cos2 ±-}

and,

(cos4>

4cos

(3.21)

(3.22)
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In the shadow region (ir<<|><2Tr), the diffracted field is given by

H(Q) = zH^QjjCtj,
(3.23)

where

Th = nu e-jkt F(Xd)
(3.24)

= (l/2ka2)1/3
(3.25)

t = (3.26)

(3.27)

(3.28)

C =
HL(Q)

Hc(Q)

SB

P

Dh -75

-jks _

-jks

SB

(3.29)
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and sd is the distance from the creeping wave launch point Q-p to the

field point. The functions F(x) and q*(x) are defined in Equations

(3.8) to (3.13). This coefficient is found to give good results for

s1 > 1.5X and a2 > 0.5X (see Appendix A for details).

The aperture-matched horn is modelled by the two-dimensional

geometry shown in Figure 22 with the x-axis being the axis of symmetry
->•

of the horn. A plane wave with the E field polarized in the y-direction

is incident in the waveguide. The field strikes the junctions at
->• -»•

and QJ12 resulting in the diffracted fields HJI and HJ2.

Consider a circular aperture of radius (R.) centered at the apex

(P) of the horn. The radius (R.) is such that the aperture is at the

junctions (Q1C1 and Q1CO) between the curved throat sections and the
UOJ. do£

walls of the horn. The creeping wave fields which travel around the

curved section and strike the junctions (Q. C 1and Q1CO) will also
dbl

produce diffracted fields. However, it is assumed that the creeping

waves have attenuated substantially by the time they reach the second

junction. Thus, to a first-order approximation, this term may be

neglected. Considering only first-order terms, the field distribution

across the aperture has three contributions: the incident waveguide

field H^Q) and the two diffracted fields Hj^Q) and Hj2(Q) from

junctions Qj^ and QJ12, respectively.

The horn aperture with the various regions are illustrated in

Figure 23. The aperture fields are given by

H(Q) = ̂ (Q) + H t Q ) + H (3.30)

35



Figure 22. Two-dimensional aperture-matched horn geometry for UTD
solution.
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Figure 23. Circular aperture field distribution
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in region II, and

H(Q) = H^ ln' • "d (3.31)

in regions I and III. The component fields at the point Q = UntY.) in

the aperture are

» "^
= z e (3.32)

-jksj
* i
z H (Q.,,) Dk1 —~p=-— in regions II and III

Jll ni /S|

ZH1((WC1 in region I
(3.33)

and

-K4

H>) =

.

ZH'(QJ12)

; H'djj,,)

-jks2
e

Dh2 /sT
c.

-ik

e
C2 Th2 A

n

2

d

in regions I and II

III

where s, ,,, s , D , C. „, and -r. are as defined in Equations

(3.14) to (3.29) applied to junction Q... 0. For plane wave incidence
Jll ,£

in the near field, the constant C is given by
l »*-
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m/2 q*(0) e-jir/4 + AsT^ (l-2H1(Qj l l§2))

1«2 2m/2-q*(0) e^/4 - rtsTT (3.35)

where

m = (3.36)

and q*(0) is the appropriate Fock integral evaluated at zero.

Once the aperture field distribution is known, one may replace the

original geometry with the wedge geometry shown in Figure 24.

Neglecting, for the moment, the finite termination of the perfectly

conducting wedge at the rolled edges of the horn, the resulting geometry

is an infinite two-dimensional wedge of angle equal to 2a.

The magnetic field (H7) must satisfy the scalar Helmholtz

equation in this source-free wedge-shaped region which is given by

vV + kV = 0 (3.37)z z

where k is the free space wave number. The accompanying boundary

conditions are obtained from the condition on the tangential electric

field at the perfectly conducting boundaries such that

(3.38)
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KNOWN APERTURE
FIELD DISTRIBUTION

Figure 24. Two-dimensional wedge geometry for calculating the incident
field from the throat.
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at <{> = ± a. Also, H (p,<|>) must satisfy the radiation conditions as

p -*• » for e^ time dependence. Thus, an appropriate solution for

is

CO

H'(P,*) = I A cos (-5+ ) H<2)(kp) (3.39)
n=0

where An are constants to be determined. For kp large, as in the far

field, one finds that

For n=0, this approximation is good to within about 10% error for

p > 0.2X. Then, Equation (3.37) becomes

-jkp „,
r » ,_njr_

a *J (3.41)

e ^ _ , nir

n=0

where

Cn = jnAn\/^ ' (3.42)

On the circular arc aperture, p = R. so that

-jkR.
e

(3.43)
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where Hz«(<|>) is the known aperture distribution. Equation (3.43) is

simply a Fourier cosine series representation of H A(<|>). The

coefficients % are found by multiplying both sides of Equation (3.43)
mr

by cos (~~̂  <(>) and integrating over the interval -a < 4> < a. The

result is

• " ' M r 0 , v /nif •>
To~ e / HzAU) cos (— <D) d<(, (3.44)

-a

where

en "
1, n = 0

2, n * 0 (3.45)

which is Neumann's number.

Once the coefficients (An) have been calculated, Equation (3.41)

gives the field (Ĥ ) for large p. Provided H .(<(>) is a relatively

smooth function across the circular aperture, the series will converge

rapidly and only the first few terms or modes will be significant. The

infinite series of Equation (3.41) becomes a finite series for the

incident throat field of the horn such that

i n7r
HZ(P,*) = /£- I Kn cos(̂ — <(.) (3.46)

where N is a finite number such that An for n > N are relatively small.

Note that each mode in the series has the same p dependence as a line
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source field coming from the apex, and each can be treated as such in

the subsequent DTD analysis.

The geometry of the problem now reduces to that of Figure 25. Note

that it is identical to the model used by Burnside and Chuang [11]

except that the incident field from the throat of the horn is modified

to account for the curved throat sections. In a first-order solution

there are three contributions: the incident throat field and the two

diffracted fields from the junctions Qj2i and Qj22- Tne incident throat

field is given by

Hn'(Q) =
"* e"jkp ? v ,™ ^ • •z — }_. A cos (~ <|>J in region I

= n
_

n=0
0 in regions II, III, IV, and V

(3.47)

where the A are defined in Equation (3.44). The diffracted fields H
*d?and H from the junctions at QJ21 and QJ22 are, respectively, given by

in regions I and V

in regions II and III

in region IV
(3.48)
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Figure 25. Two-dimensional aperture-matched horn geometry for UTD
solution with a modal expansion of the throat field.
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and

Sd2(Q) -

s-jkP2

S*T

-jkP2

in re910ns I anc'

d in regions IV and V

in region III

(3.49)

where PI 2> P^ 2, Dhl 2, CT ?, and rhl 2 are as defined in Equations

(3.12) to (3.27) applied to the QJ21 _ junction. For the far field for

a line source incident on the junction one finds that

m/2~ q*(0)

2m/2~ q*(0) (3.50)

where

m = (1/2 k A2)
1/3

(3.51)

and q*(0) is the appropriate Fock integral evaluated at zero.
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CHAPTER IV

RESULTS AND ANALYSIS

The purpose of this chapter is twofold. Results obtained from the

theory discussed in the previous two chapters are presented and analyzed

to determine the validity of the theory. Secondly, the value of the

particular aperture-matched horn design considered in this report as

well as the effect of changing various design parameters are discussed.

Consider first the two-dimensional geometry for the standard

pyramidal horn shown in Figure 26(a). The frequency is 10 6hz, and the

remaining parameters are given in the figure. The pattern obtained by

the moment method solution is shown in Figure 26(b), and the calculated

VSWR is 1.35.

Next, a rolled edge of radius A2 = 7.62 cm is added to this

pyramidal horn as illustrated in Figure 27(a). Note that this is the

two-dimensional geometry treated by Burnside and Chuang in Reference

[11]. The resulting moment method pattern is shown in Figure 27(b). As

expected, the main beam of the pattern is broader than that of the

pyramidal horn, and the side lobes are much lower. The sharp edges of

the pyramidal horn diffract the energy into the main beam region where

it interferes with the incident field from the throat. The rolled
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\
LINE SOURCE

(a). Two-dimensional geometry for pyramidal horn (E-plane),
f = 10 GHz, w = 1.016 cm, XL = 10.16 cm, a = 45°,
h = 7.85 cm.

Figure 26. Moment method solution for standard pyramidal horn.
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(b). E-plane field pattern for pyramidal horn obtained by
moment method solution. VSWR = 1.35.

Figure 26. (Continued).

48



(a). Two dimensional geometry for pyramidal horn with rolled edge
section (E-plane).
f = 10 GHz, w = 1.016 cm, XL = 10.16 cm, a = 45°,
h = 7.85 cm, A£ = 7.62 cm.

Figure 27. Moment method solution for pyramidal horn with rolled edge.
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(b) E-plane field pattern for pyramidal horn with rolled edge
section obtained by moment method solution. VSWR = 1.35.

Figure 27. (Continued).

50



edges, on the other hand, allow the energy to creep around the curved

section and gradually shed off into the side.lobe region. The

calculated VSWR is 1.35.

Figure 28(a) illustrates the aperture-matched horn with a curved

throat section with a radius of 3.05 cm. The corresponding pattern

shown in Figure 28(b) is almost identical to that of Figure 27(b).

However, the calculated VSWR is 1.04. This is almost an 87% reduction

in the reflection coefficient at the throat of the horn. Thus, the

rolled edges improve the pattern by making it broader and reducing the

side lobes; in addition, the curved throat section serves mainly to

reduce the VSWR.

The frequency dependence of the field pattern and VSWR of the

aperture-matched horn is examined in Figure 29 using the moment method

approach. At the low frequencies, the antenna is small with respect to

a wavelength. As is typical for electrically small antennas, the

pattern has a broad main beam with relatively high side lobes. As the

frequency increases, the main beam becomes narrower, and the side lobes

become lower. The VSWR decreases as the horn, particularly the radius

of curvature of the throat, becomes larger with respect to the

wavelength.

The results of the UTD approach are also shown in Figure 29. UTD

is a high frequency technique, and the field plots clearly show this

property. The solution, however, agrees quite well with the more exact

moment method results at frequencies as low as 6 GHz (X = 5 cm). At

this frequency, the radius Aj of the throat section is about 0.6X. This

is quite close to the low frequency limit of the diffraction coefficient
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(a). Two-dimensional geometry for aperture-matched horn
(E-plane).
f = 10 GHz, w = 1.016 cm, X2 = 10.16 cm, a = 45°,
h = 7.85 cm, A^ = 3.05 cm, A2 = 7.62 cm.

Figure 28. Moment method solution for aperture-matched horn.

52



ORIGINAL
Qf POOR QUALITY

=* 0
I 1—'—r—•—i r
120 150 180 210 2MO

RNGLE IN DEGREES
270

-r
300 330 360

(b). E-plane field pattern for aperture-matched horn obtained
by moment method solution. VSWR = 1.04.

Figure 28. (Continued).
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(a). Two-dimensional geometry for aperture-matched horn (E-plane).
w = 1.016 cm, a = 45°, h = 7.85 cm, A! = 3.05 cm,
A2 = 7.62 cm, f varies.

30 60 90 120 ISO
flNGLE IN DEGREES

180

(b). E-plane field patterns for f = 2 6hz. VSWR = 2.52.

Figure 29. Moment method and UTD solutions for aperture-matched horn
as the frequency (f) is varied.
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(c). E-plane field patterns for f = 4 6hz. VSWR = 1.37

MM
UTD

0 30 EO 90 120 ISO 180
RNGLE IN DEGREES

(d). E-plane field patterns for f = 6 6hz. VSWR = 1.10.

Figure 29. (Continued).
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(e). E-plane field patterns for f = 8 6hz. VSWR = 1.06,
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(f). E-plane field patterns for f = 10 Ghz. VSWR = 1.04,

Figure 29. (Continued) .
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(g). E-plane field patterns for f = 12 6hz. VSWR = 1.02.
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(h). E-plane field patterns for f = 14 6hz. VSWR = 1.02.

Figure 29. (Continued).
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which is valid for Aj > 0.5X. In addition, the apparent source

distance s1 (denoted by Rs in Figure 25) for the rolled edge is only

1.1X. This is outside the range of validity of Dpr,, and it probably

accounts for the disagreement with the moment method solution in the

region outside the flare angle. Above 6 GHz, the DTD patterns are

within l.dB of the moment method patterns in the main beam region.

There are several geometrical parameters of the aperture-matched

horn which may affect the performance of a particular design. For

instance, Figure 30 illustrates the pattern behavior as the radius of

curvature Aj of the throat section is varied. The results are obtained

from the moment method. As Aj decreases, the geometry approaches that

of Figure 27(a). In fact, the pattern in Figure 30 (Aj = 0.75 cm =

0.25X) is almost identical to the pattern in Figure 27(b). As A^

increases, the VSWR decreases. This is expected since a larger radius

of curvature provides a more gradual transition from the waveguide to

horn modes. Thus, there is a smaller reflection coefficient associated

with the junction.

The corresponding patterns obtained from the UTD approach are also

shown in Figure 30. For Aj = 0.75 cm = 0.25X, there is a slight

disagreement with the moment method pattern which dips at 0°. This is

probably due to the fact that A^ is only a quarter of a wavelength,

i.e., the low frequency case. However, another discrepancy occurs for

larger values of A^. Specifically, for Aj = 6 cm = 2X, the main beam

begins to become too broad in the UTD solution.
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(a). Two-dimensional geometry for aperture-matched horn (E-olane)
I - 10 GHz, w = 1.016 cm, a = 45°, h = 7.85 cm, A2 = 7.62 cm
AJ varies. c
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UTD
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RNGLE IN DEGREES

(b). E-plane field patterns for Aj = 0.75 cm. VSWR = 1.23.

Figure 30. Moment method and UTD solutions for aperture-matched horn
as the radius of curvature (Ai) of the throat section is
varied.
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(c). E-plane field patterns for AI = 1.50 cm. VSWR = 1.08,
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(d). E-plane field patterns for AI = 3.05 cm. VSWR = 1.04.

Figure 30. (Continued).
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(e). E-plane field patterns for AI = 6.00 cm. VSWR = 1.03.
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(f). E-plane field patterns for A! = 9.00 cm. VSWR = 1.02,

Figure 30. (Continued).
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One possible explanation is suggested by the geometry shown in

Figure 31. As Aj increases with the other parameters remaining fixed,

the length R|_ of the straight sides of the horn decreases. The form of

the modal expansion of the field across the circularly curved throat

aperture assumes the region is bounded by an infinite two-dimensional

wedge of angle 2a. However, as RL becomes smaller, this approximation

becomes less valid as the wedge structure vanishes. Also, note that as

AI increases, the radius of curvature R^ of the throat aperture

increases. Thus, the throat aperture is closer to the horn aperture.

The diffracted fields from the rolled edge junctions may then need to be

included in the field distribution across the throat aperture.

The effect of varying the radius of curvature A£ of the rolled edge

section is examined in Figure 32 using the moment method solution. The

most noticeable change in the pattern as A2 increases is a decrease in

the level of the side lobes. In addition, the VSWR drops slightly. The

UTD solution results are also shown in Figure 32 and agree well with the

moment method solution for ty greater than one wavelength. However for

smaller values of A£, the UTD patterns exhibit a slight slope

discontinuity at the shadow boundaries at 45° and 315°. The main beam

of the UTD pattern disagrees with the moment method results, too. This

behavior may be attributed to the low frequency limitations of the UTD

diffraction coefficients.

Figure 33 illustrates the dependence of the pattern on the

half-flare angle using the moment method approach. Clearly, as a

increases, the width of the main beam increases. The calculated VSWR
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Figure 31. Aperture-matched horn geometry for a large value of the
radius of curvature (Aj) of the throat section.
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(a). Two-dimensional geometry for aperture-matched horn (E-plane).
f = 10 GHz, w = 1.016 cm, o = 45°, h = 7.85 cm, Aj = 3.05 cm,
A >•» w a r»i f\fvaries.

30 BO 90 130 ISO 180
RNGLE IN DEGREES

MM
UTD

(b). E-plane field patterns for A£ = 0.75 cm. VSWR = 1.05.

Figure 32. Moment method and UTD solutions for aperture-matched horn
as the radius of curvature (A2) of the rolled edge section
is varied.
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(c). E-plane field patterns for A2 = 1.50 cm. VSWR = 1.04.
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(d). E-plane field patterns for Ag = 3.00 cm. VSWR = 1.04,

Figure 32. (Continued).
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(e). E-plane field patterns for cm. MSWR » 1.04.
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(f). E-plane field patterns for A2 = 9.00 cm.y VSWR = 1.04.

Figure 32. (Continued).
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(a). Two-dimensional geometry for aperture-matched horn (E-plane)
f = 10 GHz, w = 1.016 cm, h = 7.85 cm, Aj = 3.05 cm,
A2 = 7.62 cm, a varies.
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(b). E-plane field patterns for a = 15. VSWR = 1.07.

Figure 33. Moment method and UTD solutions for aperture-matched horn
as the half-flare angle (a) is varied.
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(c). E-plane field patterns for a = 30. VSWR = 1.03.
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(d). E-plane field patterns for a = 45. VSWR = 1.04.

Figure 33. (Continued).
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(e). E-plane field patterns for a = 60. VSWR = 1.03,
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(f). E-plane field patterns for <x = 75. VSWR = 1.03.

Figure 33. (Continued).
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(g). E-plane field patterns for a = 90. VSWR = 1.03,

Figure 33. (Continued).
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remains relatively constant. The corresponding UTD results are also

shown in Figure 33. The UTD solutions agree well with the moment method

patterns for a less that 60°. However, for a = 60°, the UTD results

begin to disagree with the moment method results. Since the aperture

width is held constant, the length RL of the straight sides of the horn

decreases as a increases. Also, the curved throat aperture becomes

closer to the horn aperture. Thus, the infinite wedge approximation

breaks down again. Note that if both a and h were increased so that RL

did not decrease, the UTD solution would remain valid.

The moment method patterns shown in Figure 34 indicate that as h

increases, the main beam exhibits a ripple. This is expected since a

large aperture is likely to have a greater phase variation across it.

Jhe VSWR is relatively constant as h varies. The UTD patterns as h is

varied are also shown in Figure 34. There is excellent agreement with

the corresponding moment method results, except for h = 3 cm. For such

small values of h, the length RL of the straight sides of the horn is

small so that the infinite wedge approximation is no longer valid.

As an example, consider the aperture-matched horn geometry shown in

Figure 35. It represents the E-plane cross-sectional view of a horn

which was actually designed for use in a compact range. The design

requirements include a main beam which is relatively flat with less than

1 dB of variation within a 50° beamwidth. The backlobes must fall to

approximately 40 dB below the maximum. The frequency range of

operation is from 8 GHz to 12 GHz. In addition, a low VSWR is

necessary since the same horn is used to transmit an incident field and

receive the resulting scattered field.
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(a). Two-dimensional geometry for aperture-matched horn (E-plane)
f = 10 GHz, w = 1.016 cm, a = 45°, Aj = 3.05 cm,
A2 = 7.62 cm, h varies.
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(b). E-plane field patterns for h = 3.00 cm. VSWR = 1.04.

Figure 34. Moment method and UTD solutions for aperture-matched horn as
the aperture width (h) is varied.
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(c). E-plane field patterns for h = 7.85 cm. VSWR = 1.04.
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(d). E-plane field patterns for h = 9.00 cm. VSWR = 1.04.

Figure 34. (Continued).
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(e). E-plane field patterns for h = 12.00 cm. VSWR = 1.04,
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(f). E-plane field patterns for h = 15.00 cm. VSWR = 1.04.

Figure 34. (Continued).
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Figure 35. Compact range aperture-matched horn geometry (E-plane side
view), w = 1.1016 cm, a = 45°, h = 7.8486 cm,
A = 3.048 cm, A£ = 7.62 cm, 83 = 3.81 cm.
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The calculated and measured patterns are shown in Figure 36. The

moment method results show excellent agreement with the measured

patterns. The UTD solutions are within 1 dB of the measurements inside

the flare angle of the horn, and they are well within 3 dB of the

measurements out to the broadside direction. The discrepancies in the

backlobes may be attributed to the inability to accurately model the

structures feeding the horn. Also, higher order terms may be needed in

the diffraction coefficient. In any case, both the UTD and the moment

method solutions agree well with the measured patterns in the major

regions of interest.

The measured VSWR of the horn is shown in Table 1. As indicated

by the moment method solution, the VSWR is higher at the lower

frequencies but excellent after about 9.5 GHz. The VSWR had to be

traded off against the pattern requirements in that the rolled throat

section was directly affecting the VSWR and main beam pattern. As the

throat radius increased, the VSWR improved but the main beam pattern had

too much taper. As a compromise, the throat radius was chosen to

provide the pattern requirement which was much more critical in the

design. One should note that a VSWR of 1.2 is typical of most

traditional horn antennas, so these results still exceed the VSWR

performance of most horn antennas.

Clearly, this design does satisfy the necessary specifications. At

this point, however, an absorbing material was added to the rolled edges

of the horn to further improve its performance.
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Another property of interest for such a feed antenna is the phase

of the field. It is very necessary to have a relatively constant

phase across the main beam of the feed antenna. Figure 37 shows the

measured phase for the compact range horn with the absorbing material on

the rolled edges. Note that the phase remains relatively constant as a

function of angle as well as frequency. This is characteristic of

aperture-matched antennas since the main beam is dominated by the

throat term.

In conclusion, the aperture-matched horn can be designed using

these analytic techniques to provide uniform patterns across a wide beam

width with low backlobes, low VSWR, a wide frequency response, and

constant phase center.

TABLE 1

MEASURED VSWR VERSUS FREQUENCY FOR COMPACT RANGE
APERTURE-MATCHED HORN ANTENNA WITH ABSORBING

MATERIAL ON ROLLED EDGES

Frequency (GHz)

8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0

VSWR

1.16
1.12
1.08
1.04
1.02
1.03
1.04
1.03
1.04
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a. E-plane field patterns for f = 8 GHz,

Figure 36. Comparison of calculated and measured E-plane field patterns
for compact range aperture-matched horn.
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b. E-plane field patterns for f = 9 GHz.

Figure 36. (Continued).
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d. E-plane field patterns for f = 11 GHz,

Figure 36. (Continued).
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e. E-plane field patterns for f = 12 GHz.

Figure 36. (Continued).
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CHAPTER V

SUMMARY AND CONCLUSIONS

In summary, an aperture-matched horn can be designed to have a

broader main beam and lower side lobes than standard pyramidal horns.

In addition, it has a lower VSWR. For certain applications,

particularly for compact range feed antennas, these characteristics are

essential.

Two methods for calculating the E-plane field pattern for such an

aperture-matched horn were considered. In both approaches, the actual

three-dimensional horn geometry was approximated by a two-dimensional

geometry such that any coupling effects between the E- and H-planes are

neglected.

Moment method techniques were used to calculate the field by

solving an integral equation obtained from the reaction concept. The

VSWR was determined from an internal field. In fact, this method gives

accurate results provided one uses at least four current samples per

wavelength. However, at high frequencies, the number of unknowns

becomes large resulting in intolerably large amounts of computation

time.

84



The UTD approach presented in this report helped overcome this

problem. A diffraction coefficient for a source mounted on a pefectly

conducting planar surface smoothly terminated by a circular cylinder was

obtained. Using this,coefficient, the field distribution across a

curved aperture in the throat of the horn was calculated. Next, this

distribution was expanded in a series of cylindrical modes. The

resulting series provided the field incident from the throat of the horn

such that UTD techniques could then be used to calculate the far field

pattern. This method requires much less computation time than the

moment method. However, the UTD is a high frequency technique; it fails

at low frequencies where the horn dimensions are electrically small.

At high frequencies, the UTD solution converges asymptotically to the

.exact solution. Specifically, a discrepancy occurs when the radius of

curvature of the circular cylinder is less than one half of a

wavelength. Also, there is a discrepancy when the distance from the

source to the junction is less than 1.5 wavelengths.

Ordinarily, one would expect the UTD solution to be valid at even

lower frequencies. The disagreement described above suggests that this

UTD diffraction coefficient may be Improved. Perhaps the addition of

higher order terms may help the low frequency behavior. In any case,

the diffraction coefficient obtained here works very well for

electrically large horns.

The UTD solution also becomes inaccurate when the horn geometry

loses its wedge-shaped appearance. Then the infinite wedge

approximation used to obtain the modal expansion of the throat field

breaks down. This occurs whenever the length RL of the straight sides
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of the horn becomes too small. When this happens, the curved throat

aperture becomes very close to the planar horn aperture; In fact, it may

even extend beyond the horn aperture.

Fortunately, the UTD approach works well for the type of geometry

typically encountered in practice. For low frequencies where the UTD

fails, the moment method approach is suitable. Together, the two

methods may be used to efficiently design an aperture-matched horn to

operate over a broad range of frequencies. It is suggested that the UTD

be used to initially design the horn; then, the moment method should be

used to "fine tune" the result in that it represents a more complete

solution. On the other hand, one should beware when the moment method

and UTD do not agree, particularly at high frequencies. It is entirely

possible that the moment method is being applied in an incomplete sense

such as a lack of current segments needed to realistically represent the

horn geometry under test. At low frequencies, the UTD solution may be

suspect, but then an accurate moment method solution would involve a

relatively small number of unknowns and therefore little computation

time. Together, the two methods allow one to quickly and efficiently

design an aperture-matched horn.

This analytic approach was used to design an aperture-matched horn

to feed a compact range measurement system. The requirements for this

feed antenna were very stringent and necessitated many iterations on the

computer. However, the desired performance has achieved based on

experimental verification. In fact, the calculated results agreed very

well with the prototype measurements. Thus, this design procedure

has been sucessfully applied in this application.
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APPENDIX A

EVALUATION OF THE DIFFRACTION COEFFICIENT FOR A SOURCE
MOUNTED ON A PERFECTLY CONDUCTING PLANAR SURFACE SMOOTHLY

TERMINATED BY A CIRCULAR CYLINDER

Consider only the hard case, i.e., the electric field transverse to

the z-direction. The diffraction coefficient for a perfectly conducting

two-dimensional surface with a discontinuity in surface curvature [12]

is given by

) - Ch(52)F(X2)

cos<|> + cos<t>' (A.I)

where

C h<«l ,2> *

ml,2

•1,2

,1/3

1 / 2 I 1 q U1>2)

(A.2)

(A.3)

(A.4)
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- ss
L - s + s1 (A.5)

X = 2kL cos^ (-J—} (A.6)

ka. 2(cos<)) +
21

V1.2

s s

(A.7)

F(x) = dt (A.8)

VT) ,§
(A.9)

in which V(T) and V^Ct) are the Fock type Airy functions given by

2jV(x) = W^T) - W2(r) ;
tt - t /3

e dt

(A.10)

with e being a positive number however small, and

V'(t) =
«V(t) 6W2(T)

(A.ll)



Consider the quantity C. U.)F(Xj) for the far field (s*») with

plane wave incidence (s'->-<») as a. approaches infinity. Then

L -» » (A. 12)

X * - . . (A. 13)

and
x l * " - . . • (A.14)

For large arguments, the transition function F(X) approaches unity so

that

F(X) -»> 1 (A. 15)

and

For large negative arguments, the Pekeris function has the asymptotic

form given by

Thus for the far field with plane wave incidence, one obtains
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Aim C.(C,)F(X1) = Aim
n x

2cos(̂ -)

COS1

J?l
e e

4m:

= - cos

(A.18)

This term may be modified for the general case, i.e., s and s' finite,

by multiplying by the transition function F(XI) which takes into account

the necessary range dependence. Also for grazing incidence (<|>'=0), the

parameter X^ is reduced by a factor of four to insure continuity at the

shadow boundary.

Hence, in the lit region (0<<|><Tr), the field for a source mounted on

a perfectly conducting planar surface smoothly terminated by a circular

cylinder is given by

H(Q) « (A.19)

where H^Q,) is the field incident on the junction at point Q., s is the
d d

distance from Q, to the field point, and the appropriate diffraction
d

coefficient is
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Ch(f-2)F(X2)

cos<|) + cos 4>' (A.20)

a2

(l/2kaJ1/3

ss'
L = s + s1

X = 2kL cos

'2
kL(cos<|) + cos*1)

and

712

2
(cos<(> + cos*')

s s cos

qU2)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)
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The functions F(x) and q*(x) are given in Equations (A.8) through

(A.11). The geometry is shown in Figure 20.

In the shadow region (Tr<<|><2ir), there is no incident field, and the

diffracted field is a creeping wave field. It can be described by the

diffraction coefficient of Pathak, Burnside, and Marhefka [2] but needs

to be multiplied by an appropriate constant which is chosen to insure

field continuity at the shadow boundary. Hence, in the shadow region

(TT<<j»<2ir), the field for a source mounted on a perfectly conducting

planar surface smoothly terminated by a circular cylinder is given by

d

H(Q) = zH^Q.) C T.-7-r- (A.28)

where sd is the distance from the creeping wave launch point Qj to the

field point and

(l/2ka2)
1/3

- q (A.29)

(A.30)

rn2t

C = 1*2 " *il

(A.31)

(A.32)

s + s (A.33)

92



The geometry is shown in Figure 21. The constant C is the ratio of the

field HL(Q) in the lit region to the field H$(Q) in the shadow region,

both evaluated at the shadow boundary SB such that

c = HL(Q)
i e-J'ks

+ H1(QJ)Dh -75—

SB (A.34)

Clearly, as one approaches the shadow boundary,

Hx)CTh rjksd HL(Q)
HS(Q) * HL(Q) = H1(Q) + H i(QJ)Dh

SB

(A.35)

and hence, the field is continuous.

The resulting diffraction coefficient for a source mounted on a

perfectly conducting planar surface smoothly terminated by a circular

cylinder is given by

'PC

_e-jir/4 cos(*l4l) F(X1) + ChU2)F(X2)

/2irk

HL(Q)

Hc(Q)

COS<() + COS<f>'
in the lit region

-ejkt /Z

Sb

F(X°) ^

in the shadow region

where the various parameters are as defined previously.
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For suitable dimensions, the coefficient DpQ agrees quite well with

the numerically derived diffraction coefficient of Burnside and Chuang

[10] as shown in Figures A.I and A.2. Note that both the magnitude and

phase of the diffraction coefficients divided by the source distance s'

are compared as both the cylinder radius &% anc' ^ne source distance s'

are varied. Clearly, the agreement is good for 33 > 0.5X and

s1 > 1.5X. For the dimensions typically encountered in an

aperture-matched horn design, the diffraction coefficient Dpc is an

excellent engineering approximation. Horns of smaller dimensions may be

easily handled with the moment method.
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(a). Two-dimensional geometry, s1 = 3X.
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(b). Magnitude and phase of Dp
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Figure A.I. Comparison of UTD diffraction coefficient and numerically
derived diffraction coefficient of Burnside and Chuang as
the radius of curvature (a?) of the cylinder is varied.
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Figure A.I. (Continued).
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Figure A.I. (Continued).
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Figure A.I. (Continued).
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Figure A.I. (Continued).
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Figure A.2. Comparison of UTD diffraction coefficient and numerically
derived diffraction coefficient of Burnside and Chuang as
the source distance (s1) is varied.
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Figure A.2. (Continued).
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Figure A.2. (Continued).
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