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CHAPTER 1

INTRODUCTION

The use of horn antennas for feeds in compact range measurement
systems and other applications creates a need for an efficient means of
designing such antennas. Often it is desirable to do as much of the
design work as possible "on paper" before constructing a physical model
to test. Such an approach is usually cheaper and less time-consuming.

One may make use of one or more analytical techniques to obtain a
fairly accurate idea of how tlosely the particular antenna design will
meet the required specifications before building it. For example,
.aperture integration may be used to find the main beam of the field
pattern but it requires a knowledge of the field distribution across the
aperture. Unfortunately, the exact distribution cannot be determined
without a physical model so an approximate distribution, such as the
geometrical optics field, is normally used.

The moment method can provide an "exact" solution to the problem.
An integral equation which the fields must satisfy is found. From this
equation, a system of N simultaneous linear equations in N unknowns is

obtained and solved using linear algebra techniques. Typically, these



N unknowns specify the current distribution associated with the body,
and the result may be used to calculate the.fields. For bodies which
are large with respect to wavelength, the number of unknowns is large,
and the computation time necessary to obtain a solqtion may become
intolerable. Thus, the mohent method is an excellent low frequency
method. It can be used to analyze electrically large structures; |
however, it may_require large amounts of computation time at the higher
frequencies,

The uniform geometrical theory of diffraction is a good high
frequency method which has the added advantage that it breaks down
"gracefully" as the frequency decreases. This method modifies the
geometrical optics solution by including a diffracted field such that
the total field is smooth and continuous. A diffracted field may be
associated with a discontinuity in the incident or reflected field as
well as with a discontinuity in the rate of change or "slope" of the
fields [1,2,3]. These discontinuities in the fields are the result of
discontinuities in the extent or curvature of perfectly conducting
bodies. » _

The uniform geometrical theory of diffraction (herewith referred to
as UTD) can in many cases provide accurate results with relatively short
- computation time. For instance, it has been used to calculate both
E-plane and H-plane patterns for the standard pyramidal horn [4,5,6]

such as shown in Figure 1.
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Figure 1. Pyramidal horn geometry.



In this report, an aperture-matched horn antenna with the geometry
shown in Figure 2 is considered. In comparison to the standard
pyramidal horn, the aperture-matched horn has a smoothly curved surface
attached to the aperture edges. In this case the curved section is
circular in shape, i.e., the radius of curvature is constant. Another
curved section is added between the flared walls of the horn and
waveguide junction. Thus, the sharp edges of the pyramidal horn are
é]iminated. The rolled edges allow much of the energy striking the edge
to travel along the curved surface gradually shedding away from the
surface into the sidelobe and backlobe regions. The result is a broader
main beam with lower sidelobes and backlobes. 1In addition, the curved
éurfaceé decrease the amount of energy reflected back into the throat of
the horn resulting in a lower VSWR (voltage standing wave ratio). This
property is important for feed horns in compact range systems where the
antenna is used to transmit and/or receive.

- The method of moments and the UTD are used to calculate the far
field E-plane pattern of the aperture-matched horn antenna. The moment
method may be conveniently used to find both E-plane and H-plane
patterns at low frequencies when the horn dimensions are small with
respect to wavelength, It may also be used at higher frequencies, but
the computation time increases. The UTD solution discussed in this
report provides good results for the E-piane pattern at higher

frequencies with much lTess computation time. Thus, the pattern
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Figure 2. Aperture-matched horn geometry (E-plane side view).



'behavior can be examined over a specified bandwidth. Also, the moment
method solution is used to calculate the VSWR of the antenna.

Chapter 11 discusses the moment method solution for the E-plane
pattern while Chapter III discusses the UTD solution for the E-plane
pattern. In Chapter IV, a number of geometries are‘considered. The
moment method and UTD solutions for the E-plane are compared and a brief
analysis df the effects of changing various parameters of the horn
geometry on the pattefn and VSWR is made., Chapter V is a short summary

with appropriate conclusions.



CHAPTER II

BACKGROUND AND THEORY FOR MOMENT METHOD SOLUTION

A momént method solution was obtained by using the reaction concept
of Rumsey [7]. Consider the exterior scattering problem illustrated in
Figures 3, 4, and 5. Impressed electric and magnetic currents (Ei,ﬁi)
generate electric and magnetic field intensities (E,ﬁ) in the presence
of a conducting body in free space.

From the surface-equivalence theorem of Schellkunoff [8], an
equivalent problem may be obtained'by rep]acing the body by the
following surface current densities:

> - > -
Jg =N xH (2.1)

and
> > -
M = E xn (2.2)

where the unit vector n is the outward directed normal to the surface S.

> >
By definition, the source currents (Ji’Mi) generate the incident fields

(Ei’ﬁi)'in free space. The scattered fields are defined as
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Figure 3. The source (Jij,Mj) generates the field (E,H) with
scatterer,
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Figure 4, The interior field vanishes when the currents (Jg,Ms)
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Figure 5, The exterior scattered field may be generated by (JS.MS)
in free space.
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(2.3)

and

> > > ‘
HS = H - H1. . (2.4)

The surface currents generate the scattered fields (Es,ﬁs) exterior to
the body and (-Ei,-ﬁi) in the interior region.

One now places an electric test source jm in this region as
illustrated in Figure 6., Since there is a null field in the interior,
the reaction of this test source with the fields of the other sources is
zero., By reciprocity, this reaction is equivalent to the reaction of
thé remaining sources with the field of the test source such that

> > e >
fIQ@E - MR )ds + [[1(J € - W R )av = 0 (2.5)
where (Eﬁ,ﬁh) are the free space fields of the test source. This
equation is a statement of the "zero-reaction theorem" of Rumsey [7] and
is used to solVe this problem.

Let us determine the surface current distributions (js,ﬁs) from
which the scattered fields may be calculated. To do this, one expands
these functions in finite series with N unknown expansion coefficients,
For our purposes, it is assumed thaf the body is a perfect conductor of
electricity so that ﬁs vanishes. Let us also consider a two-dimensional

.’
problem in which Jg is only a function of the position & around the
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Figure 6. An electric test source Jy is positioned in the interior of
the scattering region.

contour C of a cylinder. For the TE polarization in which the electric
.)
field is transverse to the z-axis, a magnetic line source is used and Jj

is zero. The integral equation, Equation (2.5), becomes

> >

> >
chS°Emd2 = [f Mi°HmdS . (2.6)

Let us represent the electric current distribution as

. N
J (2) = § 14 (2) (2.7)
n=

where the complex constants (I,) are samples of the function 35(2), and

+
the vector basis functions are denoted by Jn(2). The test source and

the basis functions have unit current density at their terminals.
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Substituting Equation (2.7) into Equatibn (2.6), one obtains the

following simultaneous linear equations:

N ,
nzllnzmn N Vm with m = 1,2,3,...N (2.8)
where
> >
2 =-fd (2) « Ed=-[J (2) +Eds (2.9)
> > > >
Vo= =[f M e Hds = [J (2)e E.de (2.10)

and the integrations extend over the region where the integrand is
-non-zero.

For computational speedAand storage, it is advantageous to have a
symmetric impedance matrix Zy,. Furthermore, the test sources should
.yield a well-conditioned set of simultaneous linear equations. Foh
these reasons, and to obtain closed forms for some of the integrals in
Equations (2.9) and (2.10), one uses test sources 3m of the same size,
shape, and functional form as the expansion functions Sn- Finally, the
interior test sources are placed a small distance § from the surface S.
and the limiting form of the_integra]s is taken as 8§ tends to zero.

For ease of computation, the basis functions are chosen to be
sinusoidal strip dipoles. Such a planar strip dipole is illustrated in
Figuresl7 and 8, This dipole lies in the xz-plane and has infinite

length in the z-direction, The surface-current density is

11
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Figure 7. A planar strip dipole with edges at x3 and x3 and
terminals at xp, :

>
Figure 8. The current-density distribution J on the sinusoidal strip
dipole.
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sin(k(x-x1))

J = x sin(k(xz-xl)) | ' (2.11)

b4

for x1 < x < x2, and

sin(k(x3-x))

J =x sin(k(x3-x,)) (2.12)

¥
>

for x, < x < X Figure 9 illustrates a strip V-dipole. The distance

2 3.
along the dipole arms is measured by the coordinates s and t,
respectively, with the origin at the terminals 0. The surface-current

density is

R . sin(k(sy-s))

on arm s, and
» o~ sin(k(ty-t))
U7 TSkt (2.14)

on arm t. Thé unit vecﬁors ; and € are perpéndicu1ar to the z-axis. In
both dipoles, the current density vanishes at the end points and is

unity at the terminals 0., The currént density is continuous across the
terminals, but it does have a slope discontinuity there. Note that when

¥ = 180°, the V-dipole reduces to the planar dipole.

13



Figure 9, Nonplanar strip dipole with edges at sj and t; and
terminals at O,
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The fields of the sinusoidal strip dipoie may be obtained by
considering the superposition of two strip monopoles with sinusoidal
current distributions and a common end point., The fields of the strip
monopole shown in Fiéure 10 are discussed in reference [9]. Using these
results, let us calculate the various elements Zy, of the impedance
matrix and the elements Vp, of the excitation column in Equation (2.8).

Consider a perfectly conducting polygon cylinder with contour C
which may Be openior closed. Let 35(2) denote the surface-current
density induced on the cylinder. In this case, the cylinder is open, so
currents will flow on both sides of the thin conducting surface, and 35

will denote the total current density.

o SOURCE h

Figure 10. An electric strip monopole and the coordinate system.

15



Figure 11 illustrates a perfectly conducting polygon cylinder
illuminated by a parallel magnetic line source ﬁi. Let I; and I2 denote
the current density 35 at the corners of the polygon. The current
density 35 vanishes at tHe edges 0 and 3. Let us define two strip
dipole mode currents on the cylinder. Mode 1 extends from point 0 to
point 2 and has terminals at point 1. Mode 2 extends from-1 to 3 with
terminais at 2. Each mode has a sinusoidal current distribution and
unit terminal cﬁrrent'as in Equations (2.13) and (2.14), Now let us
represent 33(1) as the superposition of the two modal currents with
weightings I1 and Ip. This gives a piecewise-sinusoidal expansion for
'35(2) with two unknown constants Iy and Is.

In the exact solution, the tangential electric field vanishes
everywhere on contour C, Thus, if one moves an electric test probe to
the conducting surface, as in Figure 12, the open-cfrcuit voltage at
jts terminals will read zero. To determine N current samples, one makes
N independent probing tests. The probes may be real (thin-wire
_ V-dipoles) or hypothetical (electric line sources or strip dipoles).
Now suppose one adjusts the currents I, until all the probes read zero.
This procedure yields a stationary solution for the currents In and,
under favorable conditions, tends to the rigorous solution as N
. increases. |

Let Zpn denote the mutual impedance between test-probe m in Figure

12 and mode current I, in Figure 11. The open-circuit voltage

induced in the probe is the sum of the voltage contributions from

16
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Figure 11. Perfectly conducting polygon cylinder with parallel

3 * ‘»
magnetic line source Mi'

o M PROBE 2\

p

Figure 12. Electric test probes 1 and 2 are moved to the conducting
surface,
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35 and ﬁi. This voltage must vanish at each probe, leading again fo
Equations (2.8) to (2.10).

Linear algebra techniques are used to solve these simultaneous
linear equations and determine the current distribution 35(2) and the
scattered fields (Es,ﬁs). The theory and method outlined above, as well
as the appropriate computer programs, were generously provided by J.H.
Richmond [9]. Duality may be used to obtain a solution for the case of
TM polarization,

Figures 13 to 16 illustrate the various horn geometries used for
the moment method solution., The horn is modelled by a two-dimensional
bpen cyiinder composed of a number of strips of infinite length and
finite width, For accurate results, the strips should have widths of no
more than a quarter of a wavelength. In general, the widths should be
small enough to obtain a good convergent solution. For the E-plane, the
source is a magnetic line source located on the end wall of the
waveguide at the center of the waveguide section.

Figure 13 is a cross-sectional view in the E-plane of a
conventional pyramidal horn. The geometry is described by four
parameters: 1input waveguide width w, input waveguide length x|,
half-flare angle a, and aperture width h, The length x_ of the input
waveguide should be at least one wavelength to insure that the
evanescent modes from the line source have decayed sufficiently. Thus,
when the electromagnetic waves reach the throat of the horn, only the
dominant waveguide mode is present. The range of values for the

half-flare angle a is 0°<a<90°. The walls of the cylinder are

18



LINE SOURCE

— v

"Figure 13. Two-dimensional pyramidal horn geometry for moment method
solution, ‘

_divided into segments which have widths of approximately A/8 on the
waveguide section and A/5 on the straight flare sections. The segmént
widths are smaller on the waveguide section because they are located
closer to the line source than those on the flare sections. Thus, the
fields and currents are stronger on the waveguide section and the
smaller segments provide a more accurate model of the actual current
distribution.

Figure 14 shows a pyramidal horn with a circularly curved throat
section. Note that the junctions betwéen this curved throat section and
the waveguide and flare sections are smooth; that is, the waveguide and

flare walls are attached tangentially to the circularly curved throat

19
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LINE SOURCE

Figure 14, Two-dimensional pyramidal horn with curved throat
geometry for moment method solution,

section. This geometry is described by the same parameters as the
dihedral horn in addition to the radius of curvature of the throat
section A, The segments of the throat section have widths of
approximately x/8 for the same reasons discussed earlier.

Figure 15 is a pyramidal horn with a rolled edge flare section.
Note that the rolled edge also has a circular curvature and forms a 180°
circular arc. The:parameter A2 denotes the radius of curvature of the
rolled edge section. This section has segment widths of approximately
A/5.

Finally, Fiqure 16 illustrates the most general geometry treated in
this Eeport: an aperture-matched horn with.circular1y curved throat and

rolled edge sections. A1l six parameters (w, x_, a, h, Aj, and Ap) are

needed to describe this geometry.

20



LINE SOURCE

Figure 15. Two-dimensional pyramidal horn with rolled edge geometry
for moment method solution.
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Figure 16. Two-dimensional aperture-matched horn geometry for moment
method solution.
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One advantage of an aperture-matched horn is a relatively low VSWR.
Only a fraction of the incident wave travelling down the waveguide is
reflected back to the source. This characteristic makes it desirable
to calculate and pred%ct the VSWR for such a horn geometry,

The field in the waveguide section is the sum of an incident wave
travelling from the source to the aperture and a reflected field
travelling from the aperture to the source. At any given point in the
waveguide, the two waves add or subtract depending on their relative
phase, The result is a standing wave pattern from which the VSWR and
equivalently the reflection coefficient can be obtained.

The moment method solution is used to calculate the magnitude of
the field at a number of points along the waveguide section. The minima
‘and maxima of the standing wave pattern are determined from these

values. The VSWR is given by

Eyax!  1Hyax |
VSWR = = 2.15
Emin| [Hyrn! (2.15)

where (EMAX’HMAX) and (EMIN’HMIN) are the maximum and minimum field

magnitudes, respectively. The reflection coefficient p can then be

calculated from elementary considerations:

23



VSWR-1 . '
| o] = VSWRFT ' (2.17)

and

§ = 2kx_ - (2n-1)n : ' (2.18)

where k is the wave number and Xp is the distance from the nth minima in

the waveguide to the aperture.

24



CHAPTER III

BACKGROUND FOR UNIFORM GEOMETRICAL THEORY
OF DIFFRACTION

Complete uniform geometrica1 theory of diffraction solutions for
the standard pyramidal horn have been obtained for both the E-plane and
H-plane patterns by Peters, Rudduck, and Yu [5,6]. The UTD wedge

diffraction solutions were utilized in these papers. The corresponding
two-dimensional geometry for the moment method solution is illustrated

in Figure 13,

Burnside and Chuang [10,117 used a hybrid épproach to obtain a
solution for an aperture-matched horn design consisting of a dihedral
horn with a rolled edge flare section as shown in Figure 15, This
hybrid approach combined moment method and UTD techniques to obtain a
numerically derived solution for the diffraction coefficient of a source
mounted on a pérfectly conducting planar surféce smoothly terminated by
a circular cylinder as shown in Figure 17,

Two such surfaces may be attacﬁed as shown in Figure 18 to model
a horn geometry. A magnetic line source at the vertex generates the

field from the throat of the horn., Note that the throat region appears

25



Figure 17,

Figure 18,

 LINE SOURCE

- FIELD
POINT Q-

Two-dimensional geometry for a source mounted on a perfectly
conducting planar surface smoothly terminated by a circular

cylinder.

\$FRACTED
\ELD

€-0
€oot"

LINE SOURCE

Two-dimensional geometry for pyramidal horn with rolled edge
for UTD solution.
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as an electrically small radiator; as expected, its pattern is smooth
across the horn flare angle and zero otherwise. Thus, the pattern is
dominated by three terms: direct throat radiation and two diffraction
terms from the edge junctions. The resulting solution agrees quite well
with measurements and complete moment method solutions.

The aperture-matched horn design shown in Figure 16 has, in
addition to the rolled edge flare section, a circularly curved throat
section. Thus, a more accurate model is needed to include the effects
of the curved section on the source field from the throat. Secondly, to
decrease computation timeva “"pure" UTD solution is preferable to the
hybrid approach. In other words, one needs a UTD solution of the
diffraction coefficient for a source mounted on a perfectly conducting
-planar surface smoothly terminated by a circular cylinder.

Such a diffraction coefficient is obtained by empirically modifying
a previous solution of a diffraction coefficient for a perfectly
-conducting two-dimensional surface with a discontinuity in surface
curvature [12] as shown in Figure 19, The diffraction coefficient and

the necessary parameters are given by

oim/8 € (E)F(X)) = C, (£,)F(X,)

Dy, = STk cos¢ + cosd’ (3.1)
where L
$-9"
: Cf2eesF) 1T 2
h(g]_,z) - 3y 5 2 wx F(X) + m1,2 k 4a (51’2)
— . ; -
-jn/4 "J(El 2) /12
e e (3.2)
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REFLECTED RAY

SOURCE DIFFRACTED RAY

Figure 19, Geometry for a perfectly conducting two-dimensional surface
with a discontinuity in surface curvature,
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and

Note

|
J
nN
3
—

3

n
—
—
~
N
-

Q

—
-

>
1]
~N
x
—
O
Q
w
~nN
—~~
N

kal,z(cos¢ + cos¢')2

X1,2°
N 4-9' 1 14 %,2 49
4cos (_7?__) [1+(_§_+ ETJ — COS(‘2 )1
Y
F(x) = 2jvx 3% [ e™I% dt
53
. 1 = V(1) -jg) Lt
q (51’2) = /?_o{ NZI(‘{‘) e ” dr

that V(t) and Wp(t) are Fock type Airy functions given by

2iV(1) = Nl(r) -

Wo(1)

29
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where

1 ao-je 3

Wi(t) == | 3.11

2 T3 (3.11)
with € being a positive number however small; further,

V(1)

Vi(t) = a1 (3.12)
and

' W5 (1)

W = N2 .

2(7) = —= (3.13)

This diffraction coefficient is derived for the case where the source is
off the conducting cylinder (¢'#0).

Let us assume that aj becomes infinite and ¢'=0 so that grazing -
incidence occurs as shown in Figures 20 and 21. Notice that there now
exiéts a 1it region (0<¢<m) and a dark region (w<¢<2n) where the
incident field is blocked by the conducting cylinder. The necessary
modifications are described in Appendix A. The resulting diffracted
field for TE po]arfzation is given in the 1it region (0<¢<m) by

N . e-jks _

H(Q) = 2H'(Q))D, —7= (3.14)

where'Hi(QJ) is the field incident on the junction at the point Q,,

s is the distance from QJ to the field point, and
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FIELD
POINT

LINE SOURCE

Figure 20. Two-dimensional geometry for the 1it region (0<¢<n) field
for a line source mounted on a perfectly conducting planar
surface smoothly terminated by a circular cylinder.
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" LINE SOURCE

1

FIELD POINT
Q

Figure 21. Two-dimensional geometry for the shadow region (m<p<2n)
field for a line source mounted on a perfectly conducting
planar surface smoothly terminated by a circular cylinder.
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_e-in/8 cos(ﬁ%il) F(X;) + Ch(55) F(X5)

Dh = J2nK cos$ + cos¢’ (3.15)
2cos("7 ) |1 T 7 .
c (g, = LR LA JE ) |
§n/d -i(Ep) %12
€ e . (3.16)
$-¢'
£y = - 2m2 cos (‘77——} (3.17)
= /
m, (1/2 ka2)1 3 v | (3.18)
ss' ,
L= 5+5% (3.19)
¢-¢'
X = 2kL cosz( 5 ) (3.20)
"2
kL(cos¢ + cos¢')
X = T
1 2 (40
8cos” (77 ) : (3.21)

and,

ka, (cos¢ + cos¢')2

Xp = =5’ T 1 5 . (3.22
2 Acos (¢2¢ ][1 + ( s t3r ) a2/2 cos (¢2¢ H ( )
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In the shadow region (w<¢<2m), the diffracted field is given by

. d
-jk
s ey e IKS (3.23)
H(Q) = zH (QJ)CTh ‘;gaf
where
-3 TFxY) x T

T, =M, e Ikt 7% sem -~ A (8] e Jn/4 (3.24)

_ 1/3
m, = (1/2ka2) (3.25)
t=a, |- & | (3.26)

m,t .
-E=-a_2—= m2 |¢2 - ¢1‘ (3.27)
d _ k s'sd 52
X" = 57sT 2n3 (3.28)

- . . endks

B (Q) H'(Q) + H'(Qg) Dy 75—

C = Iﬂ;ﬁi— = . e-jksd (3.29)
; _
Q) —75T
SB _ _l lsB
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and sd is the distance from the creeping wave launch point Qt to the
field point. The functions F(x) and q*(x) are.defined in Equations
(3.8) to (3.13), This coefficient is found to give good results for
s' > 1,51 and a, > 0.5x (see Appendix A for details).

The aperture-matched horn is modelled by the two-dimensional
geometry shown in Figure 22 with the x-axis being the aiis of symmetry
of the horn. A plane wave with the E field polarized in the y-direction
is incident in the waveguide. The field strikes the junctions at Q317

> >
and Q12 resulting in the diffracted fields Hjy and Hjo.

. Consider a circular aperture of radius (RA) centered at the apex
(P) of the horn., The radius (RA) is such that the aperture is at the
junctions (QJSI and QJSZ) between the curved throat sections and the
walls of the horn, The creeping wave fields whiéh travel around the

curved section and strike the junctions (Q -and QJSZ) will also

Js1
produce diffracted fields. However, it is assumed that the creeping-
waves have attenuated substantially by the time they reach the second
junction. Thus, to a first-order approximation, this term may be
neglected. Conéidering only first-order termé, the field distribution
across the aperture has three contributions: the incident waveguide
field H'(Q) and the two diffracted fields K3 (@) and Hd,(Q) from
junctions lel and QJ12’ respectively.

The horn aperture with the various regions are illustrated in

Figure 23. The aperture fields are given by
> -)i -)d . +d
H(Q) = H(Q) + H};(Q) + Hy,(Q) (3.30)
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Figure 22. Two-dimensional aperture-matched horn geometry for UTD
solution.
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Ju \

Figure 23, Circular aperture field distribution,
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in region II, and

H(Q) = K] (@) + H3,(Q) (3.31)

in regions I and III. The component fields at the point Q = (XA’YA) in

the aperture are

- . =3kX

i _
H(Q =ze M (3.32)
- -jks
| z H (lel) Dh1 fgf in regions II and III
>d
H1.(Q) =
J1 -jksd
A € . .
z H (lel) C1 T ——jzg;'— in region I
- (3.33)
and
- -jks
z H (QJIZ) th /EE- in regions I and II
>d
H1,(Q) =
92 -jks}
-~ i e
z H (QJIZ) 02 T "jzsg"f in region III
(3.34)

d
where 51’2, 51’2, Dh1,2’ C1,2’ and Th1,2

(3.14) to (3.29) applied to junction Q

are as defined in Equations

11,2° For plane wave incidence

in the near field, the constant C is given by

1,2
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m/Z q (0) eI% 4 /ST (1-247(Qy11,2))
C, , = —

1,2 2/ q (0) 34 - /s (3.35)

where

m.= (1/2kA1)1/3 (3.36)

and q*(O) is the appropriate Fock integral evaluated at zero.

Once the aperture field distribution is known, one may replace the
original geometry with the wedge'geometry shown in Figure 24.
Neg1ecting, for the moment, the finite termination of the perfectly
conducting wedge at the rolled edges of the horn, the resulting geometry

is an infinite two-dimensional wedge of angle equal to 2a.

The magnetic field (H;) must satisfy the scalar Helmholtz

equation in this source-free wedge;shaped region which is given by .

2 i 2,1 _ 3.37
VHY + K°H) = 0 (3.37)
where k is the free space wave number. The accompanying boundary

conditions are obtained from the condition on the tangential electric

field at the perfectly conducting boundaries such that

i 1 3H;(p,¢)
Elesd) =536 =0 (3.38)
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\ KNOWN APERTURE

\/FIELD DISTRIBUTION
\

Figure 24. Two-dimensional wedge geometry for calculating the 1nc1dent
field from the throat.
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at ¢ = * a. Also, H;(p,¢)’must satisfy the radiation conditions as

p + = for ert time dependence. Thus, ah appropriate solution for

Hi(p,¢) is

Hy(os8) = T Acos (% ¢ ) W) (ko) - (3.39)

where A, are constants to be determined. For kp large, as in the far

field, one finds that

A -
H(2) (kp) < / = netlve, (3.40)

For n=0, this approximation is good to within about 10% error for

p » 0.2\, Then, Equation (3.37) becomes

o-Jkp

Hi(0,8) = I K cos(—g— ¢) '

Z Ps /_p_ n::o n a (3.41)
where

& _.n /_"‘J

Ap =37 AN . : (3.42)
On the circular arc aperture, p = RA so that

. e-JkRA o nw

-‘ - ———— = y

HZ(RA’q’) '/K nzo Kn CQS( a ¢) HZA(¢) (3.43)
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where HzA(¢) is the known aperture distribution. Equation (3.43) is
simply a Fourier cosine series representation of HzA(¢). The
coefficients Kn are found by multiplying both sides of Equation (3.43)

nm .
by cos (3 ¢) and integrating over the interval -a < ¢ < a. The

result is

en’RA -jkR a

A nw
o= T2a e ] Hp(e) cos (Tae) do (3.44)
where
l 1, n=20
€n =
_ 2, n#0 (3.45)

which is Neumann's number.

Once the coefficients (Kn) have been calculated, Equation (3.41)
gives the field (Hl) for large p. Provided H_,(¢) is a relatively
smooth function across the circular aperture, the series will converge
rapidly and only the first few terms or modes will be significant. The
infinite series of Equation (3.41) becomes a finite series for the

incident throat field of the horn such that

e-Jkp

W (0,8) = —= g R cos(—5
P = c
z P p=0 M

a“ $) (3.46)

where N is a finite number such that RA for n > N are relatively small.

Note that each mode in the series has the same p dependence as a line
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source field coming from the apex, and each éan be treated as such in
the subsequent UTD analysis.

The geometry of the problem now reduces to that of Figure 25. Note
that it is identical to the model used by Burnside and Chuang [11]
except that the incident field from the throat'of the horn is modified
to account for the curved throat sections. In a first-order solution
there.are three contributions: the incident throat field and the two
diffracted fields from the junctions Qjp; and Qjpp. The incident throat

field is given by

(3.47)

‘—A .
> z ) cos (7 ¢ in region
H'(Q) = 7P s M *
l 0 in regions II, III, IV, and V

where the Kn are defined in Equation (3.44). The diffracted fields il

N
and Hd2 from the junctions at QJ21 and QJ22 are, respectively, given by

- -jkpy
.y e A
z H (QJZI)Dhl '“vtaf in regions I and V
'kd

*41 -JKp
1) =y . e

z H'(Qy51)€; 14 jj?= in regions II and III

0 ' in region IV

(3.48)
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Figure 25. Two-d’imensiona]l aperture-matched horn geometry for UTD
solution with a modal expansion of the throat field.
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and

— ik
- o JKp2
z H'(Q,,,)0,, Vo in regions I and II
Jk g
>d —JKp2 ‘
A% = | . e
z H(Q)55)Ch1p0 7;g= in regions IV and V
0 ' in region II1
(3.49)
d . . .
where Py,2° pl’z, Dh1,2’ Cl,z’ and Th1,2 are as defined in Equations

-(3.12) to (3.27) applied to the QJ21 2 junction. For the far field for

a line source incident on the junction one finds that

w2 q*(O) e=dn/4 _ /kRg
c = > in/d _
L2 vz q7(0) e ™% - /iRy (3.50)

where

1/3
m = (172 k A (3.51)

and q*(0) is the appropriate Fock integral evaluated at zero.
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CHAPTER IV

RESULTS AND ANALYSIS

The pdrpose of this chapter is twofold. Results obtained from the
theory discussed.in thé previous two chapters are presented and analyzed
to determine the validity of the theory. Secondly, the value of the
particular aperture-matched horn design considered in this report as
well as the effect of changing various design parameters are discussed.

Consider first the two-dimensional geometry for the standard
pyramidal horn shown in Figure 26(a). The frequency is 10 Ghz, and the
remaining parameters are given in the figure. The pattern obtained by
the moment method solution is shown in Figure 26(b), and the calculated
VSHR is 1.35.

Next, a rolled edge of radius Ap = 7.62 cm is added to this
pyramidal horn as illustrated in Figure 27(a). Note that this is the
two-dimensional gedmetry treated by Burnside and Chuang in Reference
[11]. The resulting moment method pattern is shown in Figure 27(b). As
-expected, the main beam of the pattern is broader than that of the
pyramidal horn, and the side Tobes are much lower. The sharp edges of
the pyramidal horn diffract the energy into the main beam region where

it interferes with the incident field from the throat. The rolled
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LINE SOURCE
-1
(a). Two-dimensional geometry for pyramidal horn (E-plane).
f = 10 GHz, w = 1,016 cm, x| = 10.16 cm, a = 45°,
h =7.85 cm,

Figure 26. Moment method solution for standard pyramidal horn.
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(b). E-plane field pattern for pyramidal horn obtained by
moment method solution. VSWR = 1,35,

Figure 26. (Continued).
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LINE SOURCE

(a). Two dimensional geometry for pyramidal horn with rolled edge
section (E-plane).
f
h

10 GHz, w = 1.016 cm, x_ = 10.16 cm, o = 45°,
7.85 cm, Ap = 7.62 cm.

Figure 27. Moment method solution for pyramidal horn with rolled edge.
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(b) E-plane field pattern for pyramidal horn with rolled edge
~ section obtained by moment method solution. VSWR = 1.35.

Figure 27. (Continued).
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edges, on the other hand, allow the energy to creep around the curved
section and gradually Shed off into the side lobe region., The
calculated VSWR is 1.35,

Figure 28(a) illustrates the aperture-matched horn with a curved
throat section with a radius of 3.05 cm. The corresponding pattern
shown in Figure 28(b) is almost identical to that of Figure 27(b).
HoWever, the calculated VSWR is 1,04, ' This is almost an 87% reduction
in the ref]éction'coefficient at- the throat of the horn, Thus, the
rolled edges improve the pattern by making it broader and reducing the
side lobes; in addition, the curved throat section serves mainly to
reduce the VSWR,

The frequency dependence of the field pattern and VSWR of the
‘aperture-matched horn is examined in Figure 29 using the moment method
approach, At the low frequencies, the antenna is small with fespect to
a wavelength, As is typical for electrically small antennas, the
‘pattern has a broad main beam with relatively high side lobes. As the
frequency increases, the main beam becomes narrower, and the side 1obes
become lower. The VSWR decreases as the horn, particularly the radius
of curvature of the throét, becomes larger with respect to the
wavelength,

The results of the UTD approach are also shown in Figure 29. UTD
is a high frequency technique, and the field plots clearly show this
property. The solution, however, agrees quite well with the more exact
moment method results at frequencies as low as 6 GHz (A = 5 cm). At
this frequency, the radius A; of the throat section is about 0.6X. This

is quite close to the low frequency limit of the diffraction coefficient
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(a).

Figure 28.

Two-dimensional geometry for aperture-matched horn
(E-plane).

f = 10 GHz, w = 1,016 cm, Xp = 10.16 cm, a = 45°,
h =7.85 cm, Aj = 3.05 cm, Ay = 7.62 cm,

Moment method solution for aperture-matched horn,
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(b). E-plane field pattern for aperture-matched horn obtained
by moment method solution. VSWR = 1,04,

Figure 28. (Continued).
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(a). Two-dimensional geometry for aperture-matched horn (E-plane).
" w=1,016 cm, o = 45°, h = 7.85 cm, A; = 3.05 cm,
Ao = 7.62 cm, f varies,
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(b). E-plane field patterns for f = 2 Ghz, VSWR = 2.52.

Figure 29. Moment method and UTD solutions for aperture-matched horn
as the frequency (f) is varied.

54



ORIGINAL PAOE
FPREE 13
OF POOR QUALTY

20.00

“10.00

0.00
{
+

|

MAGNITUDE IN DB
-10.00

-20.00

-30.00

;0 éD S0 150 1;0 Igﬂ
ANGLE IN DEGREES

(c). E-plane field patterns for f = 4 Ghz, VSWR = 1,37
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(d). E-plane field patterns for f = 6 Ghz, VSWR = 1.10,

Figure 29, (Continued).
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(e). E-plane field patterns for f = 8 Ghz, VSWR = 1,06,
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Dpc which is valid for A} >.0.5x. In addition, the apparenf source .
distance s' (denoted by Rg in Figure 25) for fhe rolled edge is only
1.1x. This is outside fhelrange of validity of Dpc, and it probably
accounts for the disagreehent with the moment method.solution in the
region outside the f]arg angie. Above 6 GHz, the UTD patterns are
within l_dB_of the moment method patterns in the main beam region.

There are several geometrical parameters of the aperture-matched
horn which may affect the performance of a particular design. For
instance, Figure 30 illustrates the pattern behavior as the radius of
curvature A; of the throat section is varied. The results are obtained
from the moment method. As A; decreases, the geometry approaches that
of Figure 27(a). In fact, the pattern in Figure 30 (A} = 0.75 cm =
0.251) is almost identical to the pattern in Figure 27(b). As Ay
increases, the VSWR decreases., This is expected since a larger radius
of curvature provides a more gradual transition from the waveguide to
horn modes. Thus, there is a smaller reflection coefficient associated
with the junction.

The correspondjng patterns obtained from the UTD approach are also
shown in Figure 30. For Aj = 0.75 cm = 0.25\, there is a slight
disagreement with the moment method pattern which dips at 0°., This is
probably due to the fact that A; is only a quarter of a wavelength,
i.e., the low frequency case. However, another discrepancy occurs for
larger values of A;. Specifically, for Ay =l6 cm = 2Xx, the main beam

begins to become too broad in the UTD solution.
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(a). Two-dimensional geometry for aperture-matched horn (E-plane).
f =10 GHz, w = 1,016 cm, « = 45°, h = 7,85 cm, Ao = 7.62 cm,

Ay varies.
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(b). E-plane field patterns for A1 = 0.75 cm. VSWR = 1.23.

Figure 30. Moment method and UTD solutions for aperture-matched horn

as the radius of curvature (Aj) of the throat section is
varied, :
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(c). E-plane field patterns for A} = 1,50 cm. VSWR = 1.08.
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(d). E-plane field patterns for A = 3.05 cm. VSWR = 1.04.

Figure 30. (Continued).
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- (e). E-plane field patterns for A} = 6.00 cm. VSWR = 1.03.
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(f). E-plane field patterns for A} = 9.00 cm. VSWR = 1.02.

Figure 30. (Continued).
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One pbssible explanation is suggested by the geometry shown in
Figure 31. As A increaseé with the other parameters remaining fi*ed,
the length Rp of the straight sides of the horn decreases. The form of
the modal expansion of the field across the circularly curved throat
aperture assumes the region is bounded by an infinite two-dimensional
wedge of angle 2a. However, as R becomes smaller, this approximation
becomeé lTess valid as the wedge structure vanishes. Also, note that as
A1 increases, the radius of curvature Rp of the throat aperture
increases. Thus, the throat aperture is closer to the horn aperture.
The diffracted fields from the rolled edge junctions may then need to be
included in the field distribution across the throat aperture.

The effect of varying the radius of curvature Ay of the rolled .edge
section is examined in Figure 32 using the moment method solution. The
most noticeable change in the pattern as Ap increases is a decrease in
the level of the side lobes. In addition, the VSWR drops slightly. The
UTD solution results are also shown in Figure 32 and agree well with the
moment method solution for Ao greater than one wavelength. However for |
smaller values of Az, the UTD patterns exhibit a slight slope
discontinuity at the shadow boundaries at 45° and 315°. The main beam
of the UTD pattern disagrees with the moment method results, too. This
~behavior may be attributed to the low fEequency limitations of the UTD
diffraction coefficients.

Figure 33 illustrates the dependence of the pattern on the
half-flare angle using the moment method approach. Clearly, as a

increases, the width of the main beam increases. The calculated VSWR
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f = 10 GHz

w=1.02cm
@ = 45°
h=7.85cm
Aﬁ6cm
A,=7.62cm
HORN R =0.78X

|~ APERTURE R,= 1.O7A

APERTURE

Figure 31. Aperture-matched horn geometry for a large value of the
radius of curvature (Al) of the throat section.
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(a). Two-dimensional geometry for aperture-matched horn {E-plane),
f =10 GHz, w = 1,016 cm, a = 45°, h = 7.85 cm, A} = 3.05 cm,
Ao varies,
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(b). E-plane field patterns for Ao = 0.75 cm. VSWR = 1.05.
Figure 32, Moment method and UTD solutions for aperture-matched horn

as the radius of curvature (Ap) of the rolled edge section
is varied.
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-~ (c). E-plane field patterns for Ap = 1.50 cm. VSWR = 1.04.
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(d). E-plane field patterns for A = 3,00 cm. VSWR = 1.04.

Figure 32, (Continued).
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(a). Two-dimensional geometry for aperture-matched horn (E-plane).
f = 10 GHz, w = 1.016 cm, h = 7.85 cm, A} = 3.05 cm,
Rp = 7.62 cm, a varies.,
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(b). E-plane field patterns for a = 15, VSWR = 1.07.

Figure 33. Moment method and UTD solutions for aperture-matched horn
as the half-flare angle (a) is varied.

67



ORIGINAL PAGE 1S

OF POOR QUALITY

i S

=
x

UtD -----

5
!
!
S I
i i
H | 2]
i i o
e e -4 - Lew
i [&]
| | w
P U SR [ -
i : z
! : . z
; ;
i SPY.<q SRR WU S -1
h . [
: =
i ¥ [+ 4
ok ol S S VD N ¥ -
1 1
i .
i
| i °
r T T - T
0002 . 0g-ot 000 ¢0°01- 0o-o2- . 00°0€- 00 0h-

80 NI 30NLINIGW

VSWR = 1,03.

30.

E-plane field patterns for «

(c).

i
i
¢
i
'
T

UTD -----

80 80 120
ANGLE IN DEGREES

|
T
30

og-ot

00°0 00°01- 0002
80 NI 30NLINIHW

T
00°CE~

0G 0N~

E-plane field patterns for a = 45

VSWR = 1,04,

(d).

(Continued).

Figure 33.

68



ORIGINAL PACE ¢
EIS
OF POOR qQuaLity

20.00

1

10.00

o
8
o 51
DO
z
=
gg
52
-
z
] MM
a8
= 2]
s UTD —----
b

-30.00

0 30 50 180

-40.00

60 90 120 1
ANGLE IN DEGREES

~ (e). E-plane field patterns for a = 60. VSWR = 1,03.

| 10.00 20.00

0.00

MAGNITUDE IN DB
-10.00

-20.00

1 ;
| i
R

-30.00

4
i

;
|
I
T
9

T T il

-40.00

T T
0

0 30 50 120 150 180
ANGLE IN DEGREES

(f). E-plane field patterns for a« = 75, VSWR = 1,03,

Figure 33, (Continued).

69



1
)
1]
)}
[ ]
b -]
xE
o
o
gt R, i i o
|
? 1 o
- # - -t I,h.r
i
H | [%2]
! m I+
A 3
? ; o
i ! : a
1 H =3
| ml. [ A &
; i ot w 2
¥ ! )
: sl i ! i atd
P L R T SR RSNy 17T
: p . i ! ]
i i | 2 z
H j ; i <
ISR i 8
y i |
H 1 i
! ! A -
I T T T T T
00°02 000t 000 aaai- Qg 02~ 00 ‘o€~ 00 Oh-

80 NI 300LINgHW

VSWR = 1,03,

E-plane field patterns for a = 90,

(9).

(Continued).

Figure 33.

70



remains re]étive]y constanf. The correéponding UTD results are also
shown in Figure 33. The UTD solutions agree well witﬁ the moment method
patterns for o less that 60°., However, for & = 60°, the UTD results
begin to disagree with the moment method results. Since the aperture
width is held constant, the length R; of the straight sides of the horn
decreases as a increases. Also, the curved throat aperture becomes
closer to the horn aperture. Thus, the infinite wedge.approximation
breaks down.again., Note that if both a and h were increased so that Ri
did not decrease, the UTD solution would remain valid.

The moment method patterns shown in Figure 34 indicate that as h
increases, the main beam exhibits a ripple. This is expected since a
large aperturé is likely to have a greater phase variation across it.
The VSWR is relatively constaﬁt as h varies. The UTD patterns as h is
varied are also shown in Figure 34. There is excellent agreement with
the corresponding moment method results, except for h = 3 cm. For such
small values of h, the length R of the straight sides of the horn is
smé]] so- that the infinite wedge approximation is no longer valid. ‘

As an example, consider the aperture-matched horn geometry shown in
Figure 35. It represents the E-plane cross-sectional view of a horn
which was actually designed for use in a compact range. The design
requirements include a main beam which is relatively flat with less than
1 dB of variafion within a 50° beamwidth., The backlobes must fall to
approximately 40 dB below the maximum. ~The frequency range of
operatidn is from 8 GHz to 12 GHz. 1In addition, a low VSWR is
necessary since the same horn is used to transmit an incident field and

receive the resulting scattered field.
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(a). Two-dimensional geometry for aperture-matched horn (E-plane).
f = 10 GHz, w = 1,016 cm, o = 45°, A} = 3.05 cm,
Ap = 7.62 cm, h varies.

; 20.00
[]
1
{
i
I

10.-00

0.00
1

=10.00

MAGNITUDBE IN OB

-20.00

~30.00

|

30 60 ;0 120 ]
ANGLE IN DEGREES

-40.00

T
[ S0 180

(b). E-plane field patterns for h = 3,00 cm, VSWR = 1.04,

Figure 34. Moment method and UTD solutions for aperture-matched horn as
the aperture width (h) is varied.
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Figure 34, (Continued).
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Figure 35. Compact range aperture-matched horn geometry (E-plane side
' view). w = 1,1016 cm, a = 45°, h = 7,8486 cm,
Ay = 3.048 cm, Ay = 7.62 cm, By = 3.81 cm.
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The calculated and measured patterns are shown in Figure 36. The
moment method results show excellent agreement with the measured
patterns. The UTD solutions are within 1 dB of the measurements inside
the flare angle of the hdrn, and they are well within 3 dB of the -
measurements out to the broadside direction. The discrepancies in the
backlobes may be attributed to the inability to accurately model the
structufes'feeding the horn. Also, higher order terms may be needed in
the diffraction-coefficient. In any case, both the UTD and the moment
method solutions agree well with the measured patterns in the major
regions of interest.

The measured VSWR of the horn is shown in Table 1, As indicated
by the moment method solution, the VSWR is higher at the lower
frequencies but excellent after about 9.5 GHz. The VSWR had to be
traded off against the pattern requirements in that'the rolled throat
section was directly affecting the VSWR and main beam pattern. As the
throat radius increaséd, the VSWR improved but the main beam pattern had
too much taper. As a compromise, the throat radius was chosen to
provide the pattern requirement which was much more critical in the
design, One should note that a VSWR of 1.2 is tybica] of most
traditional horn antennas, so these results still exceed the VSWR

. performance. of most horn antennas, |

Clearly, this design does satisfy the necessary specifications., At

this point, however, an absorbing material was added to the rolled edges

of the horn to further improve its performance.
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Another property of interest for such a feed antenna is the phase
of the field. It is very necessary to have a relatively constant
phase across the main beam of the feed antenna. Figure 37 shows the
measured phase for the compact range horn with‘the absorbing material on
the rolled edges.: Noté that the phase remains relatively constant as a
function of angle as well as frequency. This is characteristic of
aperture-matched antennas since the'mafn beam is dominated by the
throat term. .

In conclusion, the aperture-matched horn can be designed using
these analytic techniques tb provide uniform patterns across a wide beam
width with low backlobes, low VSWR, a wide frequency response, and |

_constant phase center.

TABLE 1

MEASURED VSWR VERSUS FREQUENCY FOR COMPACT RANGE
APERTURE-MATCHED HORN ANTENNA WITH ABSORBING
MATERIAL ON ROLLED EDGES

Frequency (GHz) VSWR
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a. E-plane field patterns for f = 8 GHz.
Figure 36. Comparison of calculated and measured E-plane field patterns

for compact range aperture-matched horn.
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CHAPTER V

~ SUMMARY AND CONCLUSIONS

In summary; an aperture-matched horn can be designed to have a
broader main beam and lower side lobes than standard_pyramida] horns.
In addition, it has a lower VSWR. For certain applications,
particularly for compact range feed antennas, these characteristics are
essential,

Two methods for calculating the E-p]ané field pattern for such an
aperture-matched horn were considered. In both approaches, the actual
three-dimensional horn geometry was approximated by a two-dimensional
geometry such that any coupling effects between the E- and H-planes are
neglected.

Moment method techniques were used to calculate the field by
solving an integraf equation obtained from the reéction concept. The
VSWR was determined from an internal field. In fact, this method gives
.accurate results provided one uses at 1e§st four current samples per
wavelength., However, at high frequencies, the number of unknowns
becomes large resulting in intolerably large amounts of computation

time.
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The UTﬁ approéch preséﬁted in this feport helped overcome this

_problem. A diffraction coefficient for a source mountéd on a pefectly
conducting planar surface smoothly terminated-by a circular cylinder was
obtained. Using this,coefficient, the field distribution across a
curved aperture in the throat of the horn was calculated. Next, this
distribution was expanded in a series of cylindrical modes. The
resulting series provided the field incident from the fhroat of the horn
such that UTD techniques could then be used to calculate the far field
pattern. This method requires much less computation time than the
moment method. However, the UTD is a high frequency technique; it fails
at low freqdencies where the horn dimensions are electrically small.
At high frequencies, the UTb solution converges asymptotica]ly'to the
\éxact\solution. Specifica]]y; a discrepancy occurs when the radius of
curvature of the circular cylinder is less than one half of a
wavelength.. Also, there is a discrepancy when the distance from the
source to the junction is less than 1.5 wavelengths.

| 0rdinari1y,_one would expect the UTD solution to be valid at eQen
lower frequencies. The disagreement described above suggests that this
UTD diffraction coefficient may be improved. . Perhaps the addition of |
higher order terms may help the low frequency behavior. 1In ény case,
the diffraction coefficient obtained here works very well for
electrically large horns.

The UTD solution also becomes inaccurate when the horn geometry

loses ifs wedge-shaped appearance. Then the infinite wedge
approximation used to obtain the modal expansion of. the throat field

breaks down. This occurs whenever the length RL of the straight sides
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of the horn becomes too sma]].‘ When this héppens, the curved throat .
aperture becomes very close to the planar horn aperfuré; in'fact, it may
even extend beyond the horn aperture. | |

Fortunately, the'UTD approach works well for the type of geometry
typically encountered in practice. For low frequencies where the UTD
fails, the moment method abproach is suitable. Together, the two
methods may be used to efficiently design an aperture-matched horn‘to
operate over a'broad range of frequencies, It is suggested that the UTD
‘be used to initially design the horn; then, the moment method should be
used to "fine tune" the result in that it represents-a more complete
solution. On the other hand, one should beware when the moment méthod
and UTD do not agree, particularly at high frequencies. It is entirely
possible that the moment method is being applied in an incomplete sense
shch as a lack of current segments needed to realistically represent the
horn geometry under tést. At low frequencies, the UTD solution may be
suspect, but then an accurate moment method solution would involve a
re]at19e1y small number of unknowns and therefore littie computation
time. Together, the‘two methods allow one to quickly and efficiently
design an aperturefmatched horn,

This analytic approach waé used to design an aperture-matched horn
to feed a compact range measurement system, The reqdirements for this
feed antenna were very stringent and necessitated many iterations on the
computer. However, the desired berformance has achieved based on
experimental verification, In fact, the calculated results agreed very
well with the prototype measurements. Thus, this design procedure

has been sucessfully applied in this application.
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APPENDIX A

EVALUATION OF THE DIFFRACTION COEFFICIENT FOR A SOURCE
MOUNTED ON A PERFECTLY CONDUCTING PLANAR SURFACE SMOOTHLY
: TERMINATED BY A CIRCULAR CYLINDER

Consider only the hard case, i.e., the electric field transverse to
the z-direction. The diffraction coefficient for a perfectly conducting
two-dimensional surface with a discontinuity in surface curvature [12]
is given by |

o-d174 € (E)F(X)) = Cp(Ex)F(X,)

D, = V2mk cosé + cos¢' ' (A.1)
where

: [2cos(CF) T V[I;:- 5 |
Chlgy ) = a1,z V2V w F(X) +m o a(g ) l
L 3 -
- e ’ : (A.2)
§),2 = ~2m , cos( . (A.3)

- 1/3 .
m o= (1/2ka1,2) (A.4)
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L=5+5 A | - (A.5)
oot (5 o

o kal’z(cos¢ + cos¢')2
X =
1,2 ' ' a . (A.7)
4cos(i;_) [,1+'(_§_ + %.) _15_2_ cos(i?_)]
T _.t2
F(x) = 2jvx eI [ e J dt : (A.8)
VX
1 = V') -jE. .t
* 1,2 dr

TP R b A (A.9)

in which V(1) and wz(r) are the Fock type Airy functions given by

1 =i -3
2jV(rt) = Wl(r):- WZ(T) : WI(T) = 7= / e / dt

2 we'-FjZ'rr/3
(A.10)
With € being.a positive number however small, and
' SV(T ' 6WZ(T)
! = . =
v (T) - St ’ NZ(T) - St . (A.ll)
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Consider the quantity Ch(El)F(Xl) for the far field (s+=) with

plane wave incidence (s'+=) as a, approaches'infinity. Then

L += (Aa2)
X > C (A13)
and-

For large arguments, the transition function F(X) approaches unity so

that
F(X) » 1 , (A.15)
and

F(X)) > 1 . (A.16)

For large negative arguments, the Pekeris function has the asymptotic

form given by

* 1 2. _: 3 .
4 (1) = g7 - V2 T (1-35) e P12 (A.17)

Thus for the far field with plane wave incidence, one obtains
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) 1
gim C (&, )F(X,) = &im —_— ey
2> h*"1 1 a > _ 2y ‘_ 2/2nk COS(}—Z?—)

|
[2rS
1

- Yy ~ - ll + —T -
- 2/27k cos(¢2¢ ) J k | 4m%c053f$§2‘) |
J'Ei/lz j"/4— -J'Ei’/lz -jn/4 -4
e e e e =-cos(7 ) .
- (A.18)

This term may be modified for the general case, i.e., s and s' finite,
by multiplying by the transition function F(X;) which takes into account
the necessary range dependence. Also for grazing incidence (4'=0), thé
parameter X; is reduced by a factor of four to insure continuity at the
shadow Boundary.

Hénce, in the 1it region (0<¢<m), the field for a source mounted on
a perfectly conducting planar surface smoothly terminated by a circular
cylinder is given by

R . e-jks

H(Q) = zH'(Q,)D, —7= | | (A.19)

where Hi(QJ) is the field incident on the junction at point QJ, s is the
distance from QJ to the field point, and the appropriate diffraction

coefficient is

90



i/ cos(¢5¢')F(X1) + C(Ex)F(X,)

Dy = VoK cosé + cosé' (A.20)
: 2cos
_ Ch(EZ) = ““7;-—‘- 1/2 / X F(X) +m, / 'q (gz)
© € (A.21)
o=-¢' :
g, = -2m, cos(“7 ) (A.22)
o 1/3 :
m, = (1/2ka2) | (A.23)
ss'
L =5+ (A.24)
o’ |

kL(cos¢ + cos¢'52

X = T — A7 ’ A.26
1 8 cosz(¢2¢ ) (A-26)

and

ka, (cos¢ + cos¢')2

X, = — , 3 (A.27)

4cps(f%3l)[1+L% +-ér) i C°5(¢;¢')]
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Thg functions F(x) and q*(x) are given in Equations (A.8) thrdugh
(A.11). The geometry is shown in Figure 20.

In the shadow regionv(n<¢<2n); there is no incident field, and the
diffracted field is a creeping wave field. It can be described by the
diffraction coefficient .of Pathak, Burnside, and Marhefka [2] but heeds
to be mulitiplied by an appropfiate constant which is chosen fo insure
field continuity -at the. shadow boundary. Hence, in the shadow region
(n<¢<2n), the field for a source mounted on a perfectly conducting

planar surface smoothly terminated by a circular cylinder is given by

.. .d
e-JkS

A(Q) = EHi(QJ) Cr, @ (h.28)

where sd js the distance from the creeping wave launch point Qj to the

field point and

ikt (2 TF(xd) * | _ju/a
T, =m, eV [} _I e -9 (8)) e an/ (A.29)
1/3
m, = (1/2ka,) !/ (A.30)
t = a8 - 4l | (A.31)
m2t
£ = g- =M, |¢2 - ¢1| _ (A.32)
¢ ood 2
d __ks' s E
X = Sl + Sd zmz . (Ao33)
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The geometry is shown in Figure 21. The constant C is the ratio of the
field H (Q) in the 1it region to the field Hg(Q) in the shadow region,

both evaluated at thelshadow boundary SB such that

i i e-Jks
) H (Q) H'(Q) + H'(Qy)Dy —75—
= Hs(Q) N -jksaf *
’ - s~ Wi 0.y ¢ (A.34)
9/ T™h ~/sa
Clearly, as one approaches the shadow boundary,
ued .
H' ()07, 7 = Ty | Hg(@) » H (Q) = K'(Q) + H'(Q)D, —7=
|58
(A.35)

and hence, the field is continuous.
The resulting diffraction coefficient for a source mounted on a
-perfectly conducting planar surface smoothly terminated by a circular .

cylinder is given by

_e=3n/4 cos(&8) F(X)) + Cy(5))F(Xy)

V2nk _ cosé + cos¢’

in the 1it region
(0<p<m)

PC ~

in the shadow region
(w<p<2m)

where the various parameters are as defined previously.
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For suitable dimensions, the coefficient Dpc'agrees quite well with
the numerically derived diffraction coefficient of Burnside and Chuang
[10] as shown in Figures A.l and A.2. Note that both the magnitude and
phase of the diffraction C6efficients divided by the source distancé s'
are compared as both the cylinder radius as and the source distance s'
are varied. Clearly, the agreement is good for as > 0.5) and
s' > i.SX. “For the dimensions typically encountered in an
aperture-matched-horn design, the diffraction coefficient Dpc is an
excellent engineering approximation. Horns of smaller dimensions may be

easily handled with the moment method.
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