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I. INTRODUCTION

The method of moments (MM) has proven to be an effective technique

for the analysis of microstrip antennas [1-5]. Most of the previous

work has concentrated on analyzing microstrip antennas near first

resonance. In the method of moments analysis of the microstrip antenna

the two most important quantities to be evaluated are:

1. the self or mutual impedance between the microstrip expansion

and test modes which comprise the elements in the impedance

matrix

2. the mutual impedance between the microstrip modes and a

vertical current filament in the dielectric, representing a

coaxial feed, and which comprise the elements in the right-hand

side vector.

Chapter 2 finds the exact near zone fields of the microstrip modes.

These fields are in terms of the Sommerfeld integrals. These fields are

used to determine the mutual impedances, which are also in terms of the

Sommerfeld integrals. Using the method of Pozar [6], efficient methods

for the evaluation of the integrals are presented. Finally, entire

domain expansion and test modes are described which would permit the

analysis of the microstrip antenna over a broad frequency range.



II. PATCH DIPOLES ON A GROUNDED PLANAR DIELECTRIC SLAB

A. INTRODUCTION

To analyze the mutual coupling between patch dipole modes on a

grounded dielectric slab, the electric field due to a patch dipole mode

is needed. A general solution to the field equations pertaining to a

microstrip patch on a grounded dielectric slab is presented in Section

B. The surface current on the patch is introduced only through the

boundary conditions; this simplifies the calculation, which is performed

in the Fourier transform domain. The solution is essentially of the

Green's function type even though the Green's function is not

constructed explicitly. It is exact in the sense that both the

dielectric slab and the ground plane are taken into account rigorously.

Thus, surface waves and coupling to adjacent antenna elements can be

accurately determined. An efficient evaluation of the Green's function

is also discussed. A general expression for the mutual impedance

between two rectangular patch dipoles is presented in Section C. An

eJ^t time dependence is assumed and suppressed throughout this chapter.

B. THEORY AND GENERAL SOLUTION

The geometry under consideration is shown in Figure 2.1. The

grounded dielectric slab is infinite in extent in the x,y directions

with uniform thickness t. A microstrip patch is printed on the slab at

the dielectric-air interface with current density Js. since both

regions 1 and 2 are source free, an arbitrary field that satisfies



Maxwell 's equations can be constructed from two scalar functions [7]:

*mi wnich generates a TM field and \pei which generates a TE field, where

i = 1 for the region inside the dielectric, and i = 2 for the region

outside the dielectric. Both scalar functions ty . and ty . satisfy the

scalar wave equation:

(v2 + k2) = 0 (2.1)

where k. =
in region 1 (i = 1)

k in region 2 (i = 2)

MICROSTRIP
PATCH

\, REGION 2: C0

REGION I : crc0 :\ > \ \ \ j \ \ \ \ \ \ \ \

DIELECTRIC SLAB

\ \ \.\ \ \ \ N \ \ \ V \ \ V \ V V*k » ^ »

GROUND PLANE

Figure 2.1. Geometry of a microstrip patch printed on a grounded
dielectric slab.



kQ is the free space propagation constant, and ef is the relative

dielectric constant in region 1.
A

Upon multiplying \|» ^ and \|»el. by the unit vector z, one can

construct the fields as [7]

1
En-(F) = - vx(z*e1(r)] +—7? x v x (z+ra1(r)) , (2.2)

- vx(z*m1(p))
 +1^TV x v x (z+e1(r)) (2.3)

where e^ = ere0 and &i = e0. The explicit form of the field components

can be found in Appendix A.

Since the structure is infinite in the x-y plane, the four scalar

wave functions can be represented in terms of their spectral functions

(or 2-D plane wave expansions) as follows:

in region 1

_*el<?L

1 »
4̂ //

in region 2

Jel(kx,ky)sinkzl(z+t)_

-j(kxx+kyy)
dkxdky ,

(2.4)

4lr

1 -
-//

- j k • r
(2.5)



where

2 2 2
k i- | f— | C.

r o - kx - ky 0 , Im 0 ,

_ / 2 2 2
z2 / ko kx ky , Re k > 0 , Im k < 0 ,

and

k = xkx + yky

r = xx + yy + zz

(2.6)

It should be pointed out that using Equations (2.4,5) in (2.2,3) will

automatically satisfy:

a. the boundary condition at the conducting ground plane:

z x E = 0 at z = -t ;

b. the radiation condition as r = |r| -»• »; and

(2.7)

c. the criterion for the integrals in (2.5) to converge as z •* <*>.

To specify the fields uniquely, the boundary conditions at the

dielectric-air interface must be satisfied:

and

z x (E9 - E,) = 0 at z = 0 ,

z x (H2 . HJ) = Js at z = 0

(2.8)



Without loss of generality, the current density is assumed to be Fourier

transformable and to have both x and y components. Hence, J can be

written as

:,y) = xJsx(x,y) + yJ (x,y)

dkxdky

(2.10)

Use of Equations (2.8) and (2.9) will determine completely the

spectral functions T | » . , I | > . (1=1,2). The algebraic details are carried

out in Appendix A. Only the field components are listed below:

region 1 (-«> < x,y < °° , -t < z < 0)

jkvk.

-j(kxx+kyy)

, - .y vel we e rmlJ o r

sinkzl(z+t)dkxdk
(2.11)

-j »
E l ~ x Ft

y i (r) = 47r2 //
J -00

j kykzl ~
k ii> -, + it ,x yel we e yml

-j(kxx+k y)
\ J o isinkzl(z+t)dkxdky (2.12)



-j -j(k x+k y)
coskzl(z+t)dkxdky .

(2.13)

- •<

cosk .(z+t)dk dk
^ J> /\ y '

(2.14)

HylCr) -

-J(k x+k y)
• y cosk (z+t)dkdk

and

2., 2,

Hzl(r) -

(2.15)

-j(kxx+ky)
; x y sinkzl(z+t)dkxdky ;

(2.16)

region 2 (-« < x , y < « » , 0 < z < » )

4n2

kxkz2 -

k it ,, + toy QC. me iri£
J 0

-J(kxx+k y+k ?z)
e " dkxdky •

(2.17)



V̂

Jj \ ^0

I!

8



where

coy

*el = , 2 2 Lkxjsv ~ Vsx' . (2.23)
(kx

2+k>e.
 XS* *SX

sink , t
*

2 sy ' • (2.24)
y;ue

V = " 2 2 Lkxdsx VsyJ ' (2-26)

De = kzlcoskzlt + jkz2sinkzlt p (2.27)

and

Dm = erkz2coskzlt + ̂ zl51""̂ ^ ' (2.28)

It should be pointed out that there are two dyadic Green's

functions, 51 and G2, associated with the grounded dielectric slab. S1

corresponds to the case where the field points are inside the substrate

(region 1), and B2 corresponds to the case where the field points are



outside the substrate (region 2). Only six components of each dyadic

Green's function are considered since the surface current on a

microstrip patch has no z-component. These components can be identified

from Equations (2.11) through (2.13), and (2.17) through (2.19) as

follows:

(2-29)

where

1 = 1,2

k = xkx + yky

F' = xx1 + yy'

A A A

r = xx + yy + zz

a = x,y,z

B = x,y

and g are obtained from the electric field components which typically

have the following form:

(2.30)

It follows from Equation (2.30) that the calculations of either

electric fields or mutual impedances will invariably involve the

numerical evaluation of an integral of the form:

10



F<kx'ky>

which, however, can be facilitated by changing to polar coordinates k,<(>

where

kx = kcos<)> , (2.32)

ky = ks1n+ . (2.33)

Thus,

2TT

r = / kdk / -̂ -5 - d<() . (2.34)
C. o em

The contour C|< for the k integration is shown in Figure 2.2. The branch

cuts for the branch points k = ±k0 are defined by the analytic

properties that

/
2 2k£ - k < 0 on the entire top Riemann sheet;

b) Re k 2 > 0 in the first and third quadrants; and

c) Re kz2 < 0 in the second and fourth quadrants.

However, k = ± /e~ k are not branch points since the integrand is a
/ 2 " 2

single-valued function of k j = / erkQ -k . The branch cuts are also

shown in Figure 2.2.

11



Im k

BRANCH CUTS

COMPLEX k PLANE

0 K.
'CD

SURFACE WAVE POLES

Figure 2.2. Proper contours of integration and branch cuts in the
complex k plane.
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The denominator in the integrand of Equation (2.24) defines the

surface wave modes. These modes are determined by the roots of

Dg = 0 (for the TE waves) , (2.35)

Dm = 0 (for the TM waves) . (2.36)

/ 2 2
Substituting a = kQt/er-l and a = t / ^0~^ into Equations (2.35) and

(2.36) and rearranging terms yields, respectively,

/ 2 2
/ a -a + acota = 0 , (2.37)

/ 2 ? ~
- ep / a -o + crtana = 0 . (2.38)

It can be demonstrated that if e is real and e * 1, the roots of

Equations (2.37) and (2.38) are real and located inside the segment

kQ < k < ̂ J<0. If N
e,Nm represents the number of roots for the TE, TM

case, respectively, then it can be shown that

0 , for a < ir/2
e

n , for (n-l/2)n < a < (n+l/2)n, n = 1,2,3,....

and

Nffl = n+1 , for mr < a < (n+l)ir, n = 0,1,2

13



It is noted that the dominant TM mode has a zero cutoff frequency. For

lossy dielectric (Im er * 0), the roots just move off the real k-axis

with the form k = k -jk., k. > 0. The exact root locations can be

determined by using the Newton-Rhapson procedure.

For efficient numerical evaluation of the integral in Equation

(2.34), the new contour C^ is adopted by deforming C. (as shown in

Figure 2.2). The integration along C^ is performed by computing the

Cauchy value of the integrals around the surface wave poles. Assuming

the surface wave poles constitute an ordered set as fp , &=l,2,...,n},
XT

Equation (2.34) can be written as

r = fcim
6-K>+

-6 -<S -6

e m

I \ d<() Residue
1=1 o DeDm

(2.39)
k=P,

In the case of lossy dielectric, the integrations from p -6 to
Jt

p +6, fc=l,2,3,...^n, can be evaluated analytically without indenting

the contour C^. This is done by using two terms of a Taylor series

expansion of D D about p , and by taking the value of the numerator
G i l l X»

F(k,<|>) at k=p^ throughout the interval.

In actual numerical evaluation of (2-39), it is found [6] that 6 ~

0.001k0 is adequate, and the infinite integral should be terminated at k

no less than 150 k0 for the self impedance calculation. For the mutual

14



impedance calculation, however, this infinite integral tends to converge

more slowly as the separation between the two dipole modes becomes

larger, and hence will involve an exhorbitant amount of computer time.

Special treatment is required to improve the computational efficiency,

which is dealt with in the next chapter.

C. MUTUAL COUPLING ANALYSIS

In order to employ the method to analyze the mutual coupling

between microstrip patch antennas, one needs to evaluate the elements

of the impedance matrix and the voltage vector. Assuming the Galerkin

form of the moment method is chosen, and the basis and weighting
A A

functions (modes) are members of the set (Dm = xJmx + yJ : m=l,2,

..., N < »}, the mutual impedance between mode J and mode J is defined

as

zmn = -ŝ m(F) • Jn(F')ds' , (2.40)

and the element of the voltage vector is defined as

v = / E (r) • J.(r')d ' (2.41)

where E is the electric field excited by mode m, and J. is the

impressed current source. As presented in Appendix B, the exact

expressions for z and v are given by

15



zmn ~ " 4i:2 '>
—CD

kxkz2

k k _
y z2

kxkz2
mn

(2.42)

m

where

-J(kxx f + k y f )
dkxdky »

(2.43)

jerkz2
"ml (2.44)

(2.45)

(2.46)

16



ym xm J(kxx+k y)
r r .1 Iv \ / \o •> HvHw in n~l\

~ym "xm

"yni "xm

yn xr
J • = f fnx J J

yn xn

-y

V>
Jmy = / /" Jmy(x'y)e " dxdy ' (2.48)

(2.49)

T - f" r1'V " / /

(2.50)

<() is the angle between the x-axis of mode m and the x'-axis of mode n;

2x and 2y are the widths of mode m on in the x and y directions,

respectively, and likewise, 2x , 2y are the widths of mode n in the

x',y' directions (see Figure 2.3). Also, (x,,y,r) denotes the

coordinates of the feed location with respect to the (x,y) axis centered

on mode m.

17



MODE n

n

MODEm

-^- X

FEED

Figure 2.3. Geometry of patch dipoles m and n.
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As k = /|<z + |<2 •»• oo, the Integrands in Equations (2.42) and
x y

(2.43) become highly oscillatory. This will cause numerical difficulty

in evaluating z and v accurately. To rectify the situation, it is

important to note the asymptotic behavior of these integrands as k tends

to infinity. Defining

v*
kxkz2

m2

1 j
o>e0

and

T2 = kx

kykz2

one can rewrite Zmn as

m

kykzlkz2

sinkzjt

(2.51)

sinkzit

(2.52)

mn VSin<t>mn] ' Jny'

(2.53)

19



kt ktNoting that kzl, k~ -»• -jk, sink -t -»• e and cosk -t •»• e as k -»• »,
i 7one can approximate, for large k, J

kt (2.54)

m

and hence,

(2.55)

^o
IkT
° k(er+l)

(2.56)

k(eP+l)

"2 Ur+D 2"
ko ^--ky -kxkyV > ^'^

Similarly,

dkxdky (2.58)

where

T3 = "

j sinkzt
(2.59)

and, for large k,

1
'3 a - 2k0

k(er+l)
r (2.60)

20



The asymptotic forms of T., T2 and T3 will be utilized in the next

chapter to improve the computational efficiency of zmn and vm.

Finally, the proper choice of the dipole modes Jm> m=l,2,...,N, and

their corresponding transforms are discussed in Appendix C.

21



III. IMPROVING THE COMPUTATIONAL EFFICIENCY

A. INTRODUCTION

As mentioned in the last chapter, the integrals for zmn or vm

converge slowly (especially for large separation between two dipole

modes, or a dipole mode and the impressed source) when k •> ~. Moreover,

as k becomes large, the corresponding integrand will get highly

oscillatory, and will require very small step size in the numerical

integration scheme. All these translate into large amounts of

computer-time, and hence high costs. It is, therefore, of great

interest to improve the computational efficiency of zmn or vm. As

suggested by Pozar [6], it is useful to construct an integral that have

two different representations such that the first can be evaluated

easily, while the second will have the identical asymptotic behavior as

that of zmn or vm. It is then reasonable to expect the integral for the

difference of zmn or vm and the constructed integral to converge much

faster because of their identical asymptotic forms. The total value of

zmn or vm can be recovered by adding back the constructed integral which

is evaluated via its first representation. With such manipulation, the

overall efficiency for calculating zmn or vm can be improved.

This chapter is devoted to the construction of such integrals. In

particular, Section B will concentrate on the integral representations

which exhibit asymptotic behavior identical to those of zmn and vm. The

alternative representations (which can be evaluated easily) will be

discussed in Section C.

22



B. MUTUAL COUPLING IN A GROUNDED HOMOGENEOUS MEDIUM

In this section, an analysis similar to that of Chapter 2 will be

repeated for a homogeneous dielectric half space D bounded by a

conducting plane, where u and e e are the constitutive parameters.

Consider a conducting patch S of current density J in the x-y

plane situated at a distance t from the ground plane in D (Figure 3.1).

The vector potential A due to J is given by

Vi

3s(r') ds
1 , z>-t (3.1)

where ke = w/u0e0
ee

A A A

r = xx = yy + zz ,

r = xx1 + yy

r = r-r1 = x(x-x ') + y(y-y') + zz , r = |r I ,s ' s1

and,

^ = r-r1 + z2t = x (x -x ' ) + y(y-y') + z(z+2t)

23



Homogeneous dielectric half space D

FIELD POINT
x , y , z )

GROUND PLANE

(IMAGE SOURCE)

Figure 3.1. Patch current source J in homogeneous dielectric half
space D.
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Employing the identity

-J\R . -j[k (x-x1 ) + k (y-y1) + k |z-z ' | ]
// 1 e dkxdky ,

(3.2)

where R = |R| = |x(x-x ' ) + y(y-y') + z(z-z ' ) | , and

, with Imkz < 0 , (3.3)

one can write

e - e dkx dky ds1 , z > -t,

(3.4)

where

k
y(y-y') + k

z lz l . (3.5)

1 = <l>1(r,kx,ky) = k x (x-x ' ) + ky(y-y') + (3.6)

It is well-known that the electric field E at reD is given by

E ( r ) =
-Jn0

A(r) +- w (3.7)

where and k o

25



Since

9 3 a
Sx Mr) + 37 A (F) + 37 A (F)x •/ y £

4
"'

- -j*.
e 5 - e

e - e dk,dkvds' (3.8)

one will find

vv-A(r) =
A 3

3y v«A(r) (3.9)

1 CD

4

- - - i

(e s - e ') J s y(r ' )

-j*4

-kvk, fsgn(z) e - e M J^(F ') - kvkz (SWW e
J sx y z y^

I dk dk ds1
x y

26



Next it follows from Equations (3.4), (3.9) and (3.7) that

E(F) =
-Jn0 . 2 2

p \e - keKo x Jsx<F'>

2 2
eeko - ky

- e

S9n(z)e
- J

dk d k d s 1

-J */

(3.10)

Now one can readily formulate the mutual impedance z between

dipole mode m and mode n as

(3.11)

where Em denotes the electric field in D excited by mode m with current
A . A

density 3m(r) e{Ja(r) = x J^ + yJay : a=l,2 N, which exists

on the surface patch $m. The definitions of f and r' are obvious from

Figure 3.2. Observing that

27



xEmx(F+Fl)

= x1 Emv(r+F') cos* + E (F+r1) sin*"mx mn my'

mx' ') Sln»mn +Emy (F+F ') cos*«

(3.12)

and

Jn(F') = (3.13)

and making use of Equation (3.10), one can rewrite Equation (3.11) as

mn T ffo -°° " kxky Jmy

Jnx'cos*mn ' Jny'sin<|)mn

o - V kxkyjmx Jnx'sin*mn + Jny'cos<f>mn

dkxdky , (3.14)

where J_Y, J , Jnv, and Jn4. are defined in Equations (2.47), (2.48),
IIIA "IjT MA Mjr

(2.49) and (2.50).

28



mn

Figure 3.2. Configuration of dipole modes m and n in the z=0 plane.

29



Letting the impressed source J. be a current filament of uniform

amplitude I.., normal to the ground plane, and situated at (x̂ , yf) with

respect to the center of dipole mode m in the z=0 plane, i.e.,

J.(F) = zli6(x-xf)6(y-yf), -t < z < 0 (3.15)

the mutual impedance between mode m and the impressed source ^ can be

written as

or

0

* z) d

1
// T. kxkz Jmx + kykzjmy

-j(kxx f + kyyf)-

o
/
-t

" JXz -jk 2t - jk r
e + e dzdkdkx y

kxjmx + kyjmy 1 - e

-j(kxx f + kyyf)
dkxdky (3.16)

30



In order to compare the asymptotic forms of the integrands of z'mn

and vm with those of zmn and vm in Chapter 2, it is convenient to

express z and v in the following forms:

o
Z - —2- ftzmn 4ir JJ

—00

Jnx'cos<()mn ' Jny's 1 n*mn
rd
*2 Jnx'sin<()mn

e-J<
kxxmn + V.J § (3a?)

A jr

vm =
TdT dkxdky (3.18)

where

TV = (3.19)

Td _
I o ""2 ~ i2k k eJ K^

(3.20)

and

T" = 2k k eKoKzee
kxjmx + kyjmy

-J2kzt
(3.21)

31



As k = / 1C + k^ -»• » , k -»- -jk, and thus one can write, for large k,x y z

- kxky (3.22)

T
u „
o ~

and

To *

2k keKoKee

-Jn0
2k keKoKee

* k - Vy

kx Jmx ky Jmy

(3.23)

(3.24)

Comparing Equations (2.51), (2.52) and (2.53) with Equations

(3.22), (3.23) and (3.24), it is readily seen that choosing

ee =
(er+1)

2 (3.25)

will make Ta = T, a=l,2,3, for large k. In other words, if one

considers the grounded, homogeneous, dielectric half space D with e

specified by Equation (3.25), then the following integrals:

r = z - zmn mn run (3.26)

-J
ff

—CO

d f

Jnx'cos*mn

Jnx's1n*mn+VC°S*mn
_ •-

32

-j(kxxmn
dkxdky



and

P = v - vdm m m

.

T TdT3"T3

-J(kxxf+kyyf)
dkdk.

will converge rapidly since the functions (T - T ), a=l,2,3, vanish

identically for large k. One can compute rmn and P according to

Equations (3.26) and (3.27), and zmn and vm via the alternative forms to

be discussed in the next section, whereby z and v can be evaluated

efficiently as

mn mn mn ' 'c

and

v = P + vd ('•m rm m • v-

C. ALTERNATIVE FORMS OF zdp and vjj

In this section, expressions of zmn and v are obtained directly

from the vector potential that employs the homogeneous space Green's

function instead of its plane wave expansion. Thereby the resulting

expressions are easier to compute, especially when the two dipole modes,

or the dipole mode and the impressed source are well separated and t is

not too small.

33



Referring to Figure 3.2, the vector potential Am due to dipole mode

m can be written in terms of the Green's function of the homogeneous

half space D as follows:

F+F-) -
bm

"jkeRmns

^mni Jm(x,y) dxdy, (3.30)

for F = xxmn + yymn, and r'eSn. where

mns

= |x(xmn

y(ymn

- x)

mn +y'cos*mn ' *> I

and

mni

' lRmns

Making use of Equation (3.7), it can be shown (by direct calculation)

that the electric field at r+F1 due to mode m is given by

E
m(F+F') =7finr / dxdy

e Sm
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A *

(3.31)

where
9 9 "J *̂ ô

= (l+JkeR-k^R^) e /R3 (3.32)

Q2(R) =
2.2, e e/R3 (3.33)

R = |R|, R is the unit vector in the direction of R,

ke = and ne =

From the definitions of z and v , it is seen that

dx'dy'3n(x',y') dxdy {(3m(x.y)Q1(R|lins)

mni
(3.34)

and

vm= / dzJ.(xf,yf,z)
-t

dxdy {(Jm(x,y)Ql(Rfs)
m
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Rf1)

where J^x^ ,y,r,z) is defined in Equation (3.15),

Rfs = x(xf-x) + y(yf-y) + zz , Rfs = |R~S|

and

Rfi = x(xf-x) + y(yf-y) + z(z+2t) , Rf. = |Rf. |

It may be remarked that in computing z and v using Equations

(3.34) and (3.35) one will encounter some numerical difficulty (namely,

the loss of accuracy due to the differencing of two terms of almost

equal values) when t is small. In such case, it is appropriate to

expand the Q, and Q2 functions as Taylor series, and to keep the first

few leading terms. Expansions about z=-t may be most adequate.
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IV. SUMMARY

This report has presented expressions for:

1. the self or mutual impedance between microstrip expansion and

test modes

2. the mutual impedance between a microstrip mode and a vertical

current filament in the dielectric.

These are the main quantities needed in an MM solution of the microstrip

antenna. Methods for the efficient evaluation of the impedances are

presented. Finally, expansion modes are described which would be useful

in analyzing the microstrip antenna over a wide frequency band.
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APPENDIX A

DETERMINATION OF SPECTRAL FUNCTIONS

Expanding Equations (2.2) and (2.3) in rectangular coordinates and

making use of (2.4) and (2.5) yields the following:

In region 1 (dielectric),

_
Eyl(r) = 3x *el

3y *el juie 3x3z Mill

39

y)
sinkzl(z+t)dkxdky

(A.I)

y sink_,(z+t)dk^

(A.2)



erko

-J
47T2

y"' coskzl(z+t)dkxdky ,

(A.3)

"'el ay

jkx kzl -J(k x+k v)
coskzl(z+t)e

 x r dkxdky

(A.4)

Hyi(r) = I *
el - ax

±L_
4lT2

jk

coskzl(z+t)dkxdky ,

(A.5)

erko ^ *el

1 2 2 ~
4,2

-co g V *el e sink,,(z+t)dk dk
Zl X j

(A.6)
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In region 2 (air),

3y 9X3Z V

kxkz2 ~ -J(k x+k v+k 2z)
~ ~ r

dkxdky ,

Hvo(r) = 7
32

W jo)po 3x3z *& r 3y Vm2

(A.7)

3X 3y3z
t.

kykz2 x+k v+k ?
r dkxdky .

1 32 2

2 + k2!
V

V e

-J(k x+k v+k Z2z)

y '

(A.8)

(A.9)

k x k z 2

' ky*hi2

-J(k x+k v+k 2z)x z*

(A.10)
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Hy2 ( r ) =
32

3y3z
_

- ax V

4lr2

ky kz2

V ~ -J(kxx+k y

dkxdky ,

dkxdky .

(A.l l )

(A. 12)

Enforcing the boundary conditions at z=0 (dielectric-air interface)

specified by Equations (2.8) and (2.9) leads to

Exl ~ Ex2 at z = 0 (A.13)

Eyi = Ey2 at z = 0 (A.14)

H x 2 - H x l = J s y a t 2 = 0

-Hy2 + Hyl ' Jsx at

(A.15)

(A.16)

Use of Equations (A.13), (A.I) and (A.7) gives

42



Ve2
kxkz2 ~

Similarly, use of (A.14), (A.2) and (A.8) gives

kx*e2 V = Mel + (A.18)

Use of (A.15), (A.4), (A.10) and (2.10) gives

kx kz2 „

_ ""o *e2 " ky*m2_
-

jkxk z l

_ <%
T|I _ If |hrel y yml

Use of (A.16), (A.5), (A.11) and (2.10) gives

coskzlt = -jJsy

(A.19)

kykz2 .
ip..9 + ktf\)>_9uyft 6t x nit *

JVzl

_ ^0

ih + If ^hyel x rml coskzlt = -jJsx

(A.20)

Adding (A.17) multiplied by ky to (A.18) multiplied by kx yields

x + ky)+els1nkzlt

(A.21)
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Adding (A.17) multiplied by kx to (A.18) multiplied by (-ky) yields

2 2 ~

" jkzl
V = 7~ ^^zl* V • (A.22)

Adding (A.19) multiplied by kx to (A.20) multiplied by (-ky) yields

("Si + fl
o>y0 z z z x sy y sx ^^

Adding (A.19) multiplied by ky to (A.20) multiplied by kx yields

(A.24)

Using (A.21) in (A.23) leads to

Ulio .

*el =
 (k2 + k2)D [kx jsy - Vsxl (A.25)
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,t

*e2 = (777)7 k*Jsy " Vsx {A-26)x y e

where

De = kzlcoskzlt + Jkz2 ŝ zi* • . (A. 27)

Using (A. 22) in (A. 24) leads to

-JVz2

-k -sink ,t

45

(A.28)

(A-29)

where

Dn, = Erkz2 "̂ zl* + jkzl ̂ ẑl* • (A-30)



APPENDIX B

MUTUAL IMPEDANCE BETWEEN TWO PATCH DIPOLE MODES

In this appendix, the exact expressions for the mutual impedance

(zmn) between surface patch dipole modes Jm and Jn on a lossy grounded

dielectric slab is presented. The mutual impedance (v) between dipole

mode J and the impressed source current 3. is also presented. These

calculations are essential in solving a microstrip antenna problem by

the moment method. zmn and v form the elements of the impedance matrix

and voltage vector, respectively.

Figure B.I shows two dipole modes, J and J , located on the

surface of a grounded dielectric slab with parameters UQ and ereQ. The

ambient medium is free space with parameters u and e . Mode m is

centered with respect to the (x,y) coordinate system. The center of

mode n coincides with the origin of the (x',y') system which is

displaced from the center of mode m by a position vector (X0»y0)« The

x'-axis is at an angle a with respect to the x-axis.
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GROUND PLANE

Figure B.I. Two expansion dipole modes on a grounded dielectric slab.
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The mutual impedance between modes m and n is given by

(B.I)
n

where E denotes the electric field excited by J , and the integration

is over the surface of mode n in the z=0 plane with

A A A A

r1 = x ' x 1 + y'y' = x(x'cosa-y'sina) + y(x'sina+y'cosa) (B.2)

r o = x x 0 + y y 0 . (B.3)

Without loss of generality, it is assumed that

(B.4)

where r = xx + yy and

Jn(F') = x ' J n x , ( F ' ) + y ' J n y , ( F ' ) . (B.5)

It then follows from (2.17), (2.18), (2.24) and (2.26) that, at z=0,
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kykz2 ~

ueo

dkxdky

where

kz2 = ko-Vk » I>"kz2 < 0, Rekz2 > 0

* ^ v*\s *J v* • I X . J I I I \ A ^ • w \ **» /«' l l t ^* »•x y x y[x ' .y ' .a) = x ' ( k x cosa+ kvsina) + y'(-kxsina + kvcosa) , (3.9)

coyosinkzit

*e2

V

y' e

-kzls1nkzlt

x y' m

kzi ' ~r"o "x "y

De = kzlcoskzlt

Dm = en
kz2coskzlt

x+k y)
y
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and

j(k x+k y)
Jmy(x,y)e y dxdy

Also one may note that the tangential component of Effl(F +F1) on the

surface of mode n is given by

~ n ~ w n

nn wn
/ / Jnx ' ( x l ' y l )-hn -wn

-j[x'(kxcosa+k sina)+y'(-kxsinofk cosa)]

50

= xl [Emx (Fo+F ' )coSa + Emy(Fo+F')sina]

Emy(Fo+Fl)coSa]

Combining (B.I), (B.5) and (B.17) yields

zmn = * /" /° {[Emx(Fo+F '
-hn ~wn

+ t-Emx (Fo+F ' )s ina+

(B.18)

Next let

dy'dx1



and

hn Wr

V̂ x'V
n wn n

-h
ny'

-j[x' (k coso+k sina)+y'(-k sina+k ,cosa)]

Use of (B.6), (B.7), (B.19) and (B.20) in (B.18) leads to

(B.2Q)

mn 4TT2

kykz2

toe0

kxkz2

kxkz2

:'V

kykz2

dkxdky (B.21)

z in Equation (B.21) represents the most general expression for

the mutual impedance between two rectangular dipole modes on a planar

grounded dielectric slab.
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Referring to Figure B.2, the mutual impedance between dipole mode

J and impressed source J. is defined as

vm = / Em(r)'J.j(r)dv . (B.22)

Since source Jn- can be reasonably modeled as a vertical filament of

constant current inside the dielectric, it is represented by

J.(r) = zl.6(x-xf)6(y-yf) , -»<x,y<~ , -t<z<0 (B.23)

where I-j is the magnitude of the feed current and (xf.yf) denotes the

filament location in the x-y plane, with respect to the center of

mode m.

Making use of (2.13), one can write

(B.24)

°° (kx+ky) ~ -J(kxx+k v)
_// ^7 V e I? coskzl(z+t)dkxdky

Inserting (B.23) and (B.24) into (B.22) and carrying out the volume

integration gives

2 2

vm =
(kx+ky) ~ -J(kxxf+kyyf)

(B.25)
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REGION 2

•° J,m

€o€r REGION 1

•^•x

J|:Ii8(x-)

GROUND PLANE

SSSS' /S /S

IMPRESSED SOURCE

Figure B.2. A dipole mode 3 and an impressed current source J.
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In both (B.24) and (B.25)
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APPENDIX C

PATCH DIPOLE MODES

In this appendix, the specific patch dipole modes and their

corresponding Fourier transforms are presented. In using the moment

method to analyze the performance of a microstrip patch antenna at

higher order resonant frequencies, it is appropriate to employ the

entire functions as the expansion dipole modes. On rectangular patches,
A

the x polarized current modes will have the form

Jmn(x,y) = x {sin 2L*- (*+Lx) cos 2!^ (y+Ly)} , (C.I)

where m=l,2,3,..., n=0,l,2,3,..., -L < x < L and -L < y < L withx x y y

L * 0 * L . It should note that the dipole modes J have doublej\ j niri

subscripts instead of single subscripts which appear in Chapters 2 and

3. The double subscripts allow the modes to vary as simusoidal

functions in both the x-and y-coordinates.

It is easy to show that the Fourier transforms of J assume the

following forms:
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where

jdV+iy)

xVkx> Yn V (C.2)

nnr
coskxLx

mir
1- 2U

2 ~
, m=l,3,5,.

sinkxLx

Itlir 2 -
, m=2,4,6,...

and

j2coskyLy

, n=l,3,5,
_

2Lyky

2s1nkyLy

j n — U j L j H j * . *

\f ,Ky | 1- 2Lyky

(C.3)

(C.4)
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