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I. TINTRODUCTION

The method of moments (MM) has proven to be an effective technique
for the analysis of*microstfip antennas [1-5]. Most of the previous
work has concentrated on analyzing microstrip antennas near first
resonance. -In the method of moments analysis of the_microsfrip antenna

" the two most important quantities to be evaluated are:

1. the self or mutual impedance between the microstrip expansion
and test modes which comprise the elements in the impedance

matrix

2. the mutual impedance between the microstrip modes and a
vertical current filament in the dielectric, representing a
coaxial feed, and which comprise the elements in the right-hand

side vector.

Chapter 2 finds the exact near zone fields of the microstrip modes.
These fie]ds'are in terms of the Sommerfeld integrals. These fields are
used to determine the mutual impedances, which are also in terms of the
Sommerfeld iﬁtegra]s. Using the method of ﬁozar [6], efficient methods
for the evaluation of the integra]s are presented. Finally, entire
domain expansion and test modes are described which would permit the

analysis of the microstrip antenna over a broad frequency range.



II. PATCH DIPOLES ON A GROUNDED PLANAR DIELECTRIC SLAB
A. INTRODUCTION

To analyze the mutual coupling between patch dipole modes on a
grounded dielectric slab, the electric field due to a patch dipole mode
is needed. A general solution to the field equations pertaining to a
microstrip patch on a grounded dielectric slab is presented in Section
.B. The surface current on the patch is introduced only through the
boundary conditions; this simplifies the calculation, which is performed
in the Fourier transform domain. The solution is essentially of the
Green's function type even though the Green's function is not
.constructed explicitly. It is exact in the sense that both the
dielectric slab and the ground plane are taken into account rigorously.
Thus, surfacé waves and coupling to adjacent antenna elements can be
accurately determined. Ah efficient evaluation of the Green's function
is also discussed. A general expression for the mutual impedance
between two rectangular patch dipoles is presented in Section C. An

eJut time dependente is assumed and suppressed throughout this chapter.

B. THEORY AND GENERAL SOLUTION

The geometry under consideration is shown in Figure 2.1. The
grounded dielectric slab is infinite in extent in the x,y directions
with uniform thickness t. A microstrip patch is printed on the slab at

the dielectric-air interface with current density Js- Since both

regions 1 and 2 are source free, an arbitrary field that satisfies



Maxwell's equations can be constructed from two scalar functions [7]:
wmi which generates a TM field and Vo which generates a TE field, where
i = 1 for the region inside the dielectric, and i = 2 for the region
outside the dielectric. Both scalar functions VUi and Vo satisfy the

scalar wave equation:

4 oo (F)
(v2 + kf) " =0 , (2.1)
i (1) :
- 2 . , .
erko in region 1 (i = 1)
where k? = 2
Ko in region 2 (i = 2) ,

MICROSTRIP
PATCH

. N

REGION 2: €,

REGION | : €,€

DIELECTRIC SLAB ~ "GROUND PLANE

Figure 2.1. Geometry of a microstrip patch printed on a grounded
dielectric slab.



ko is the free space propagation constant, and ér is the relative

dielectric constant in region 1.
Upon multiplying Vi and Yai by the unit vector ;, one can

construct the fields as [7]

- . 1 .

E;(F) = - vx(zp;(F)) + jos; © <7 (zvy: (F)) (2.2)
- SO | .

Hy(F) = vx(zyp; (F) + Jou VX7 x (2994 (7)) ’ (2.3)

where €1 = epeg and €2 = gg. The explicit form of the field components
can be found in Appendix A.

Since the structure is infinite in the x-y plane, the four scalar
wave functions can be represented in terms of their spectral functions

(or 2-D plane wave expansions) as follows:

in region 1

~

Y . (1) 1 » v (k,,k )cosk_,(z+t) ik x+k_y)

e e T B e Y dkky
_yel(r)__ -co _yel(kx,ky)s1nkzl(z+t{_

| (2.4)

in region 2

¥ o (F) 1o | ook k) [ iker

" a1 D A IS I T (2.5)
bea(P) | T = | ug (koK) Y '
a2\ /_ _el'Vtxy/_



where

kzl=/erk§-kf-k§ LReky,y >0, Imk, <0 ,
kzz—/kg—ki—kz yRek, >0, Ink,<0 ,
kK = §k + §k + Ek s (2.6)
X z2
and _
Fo=oxx + §y + 2z .

It should be pointed out that using Equations (2.4,5) in (2.2,3) will

automatically satisfy:
a. the boundary condition at the‘conducting'ground plane:
2 X El =0 atz=-t ; (2.7)
b. the radiation condition as r = |F| » =; and
c. the criterion for the integrals in (2.5) to converge as z + <,

To specify the fields uniquely, the bouhdary conditions at the

dielectric-air interface must be satisfied:

=0 at z =20 s (2.8)

and



Wwithout loss of generality, the current density is assumed to be Fourier

transformable and to have both x and y components. Hence, 55 can be

written as

Js(xy) = x3g, (x,y) + ydg (%,¥)

] e N B
=7 [f {XJSX(k k. ) + yd_ (k

=j(k_x+k y)
4 x*Ky sy X,ky)}e x" Ty dk dk .

y

(2.10)

Use of Equations (2.8) and (2.9) will determine completely the

spectral functions ;mi’;ei(i=1’2)' The algebraic details are carried

.out in Appendix A, Only the field components are listed below:

region .1 (-o < X,y <@ , -t < z < 0)

. |~ jkxkzl B
- 3 2 ~ ~
Ex1(r) = 42 {i ky Vo1 - we €, ¥m1
-3 (kyx+kyy)
e s1nk21(z+t)dk dk .
_ Xy :
(2.11)
-] - jkykZI -
Eyl(r) - Z;E.{i kX ¢e1 * we €n lpml
k) k_. (z+t)dk_dk
e sink,q (z+t)dk dk , (2.12)



. 2.2 . '
_me (k) L i(kxrky)
Ezl(r) = 13 _o{ = Wy © coskzl(z+t)dkxdky s
(2.13)
i - [ B
Hea(F) =12 {0{ ou, Ye1 = Ky¥mi
-3k x+k y)
e Y cosk, g (z+t)dk dk,
(2.14)
_ —jkykzl -
Hyl(r) = m L{ wh ‘bel + kx\pml
-3 (k x+k y)
e Y cosk y (z+t)dk,dk
(2.15)
and
e (k) L k)
Hzl(r) =12 o Yy © s1nkzl(z+t)dkxdky ;
(2.16)
regionZ(-w<x,y<w, 0 < Z< =)
- Kk, —
R K] -3k yek,p2)
EXZ(r) T 4n2 L{ ky lpe2 ¥ meo II)m2 | & dkXdky ’
(2.17)



v .
2 o R(Pah e
- ~ - / 3 x y 12
Eyzu-\ = S-L \(7(» Q’ez meg \\’“\2 e dkxdky ’
(2.18)
(2.19)

2y 72 d\axd\"y

b2 ©

-30“ x-\'\(. y-’r\( Z\
Ky 227 g g%
% ¥

o - \kaz‘l

— ‘- ‘L / ~ ~

sz\r\ e ,Suo\ Wy Vo2 ky'n2

: ’ (2.20)
—x. X i
y 2 |
2 ® . . El{%ah e
“ zﬁﬂ N S’Sw ,-;g Va0 ¥ (A2 xo Y 12 gk B¢y 5
| (2.21)
(2,2’2\

and



where

muo
"I; = kj -kj] s (223)
el 2.2 X sy Y SX .
(kx+ky)De'
_ wuos1nkzlt [ _ ~ ] | _
Vo= "5 o5  |k,d., - k,J R (2.24)
e2 2,,2 X sy Yy SX .
(kx+ky)De
- Jerksa % 3]
Y, = =« T |k .J_._, + k .Jd . (2.25)
ml 2,,2 X" SX y- sy .
(kx+ky)Dm
_ kzlsinkzlt 3 ~ ]
Y2 T 7 T 22 Lkdgy +kd > (2.26)
m2 2,,2 X SX y sy .
(kx+ky)Dm
De = kzl°05kzlt + jkzzsinkzlt . , (2.27)
and
Dm = erkiZCOSkzlt + jkzlsinkzlt . (2.28) ‘

It should be pointed out that there are two dyadic Green's
functions, G! and G2, associated with the grounded dielectric slab. &l
corresponds to the case where the field points are inside the substrate

(region 1), and ® corresponds to the case where the field points are



outside the substrate (region 2). Only six components of each dyadic
Green's function are considered since the surface current on a
microstrip patch has no z-component. These components can be identified

from Equations (2.11) thfough (2.13), and (2.17) through (2.19) as

follows:
oG == [ o Rk j-.-|dk dk
CagtTr ) Ty 1) GaptToRxeky) € Xy ? (2.29)
where
i o=1,2
k = xkX + yky
Fo= ;X' + §Y'
Fo=oxx + §y + 22
a = X,¥,2
B = X,y

and gls are obtained from the electric field components which typically

have the following form:

Ei(F) = JJ [glx(F,kx,ky)S;X(kx,k ) + gly(F,kx,ky)ng(kx,ky)]dkxdky.
(2.30)
"It follows from Equation (2.30) that the calculations of either
electric fields or mutual impedances will invariably involve the

numerical evaluation of an integral of the form:

10



Fkgoky)

P= [~ dk.d ,
Il D D, xdKy (2.31)

which, however, can be facilitated by changing to polar coordinates k,¢

where
K, = kcos¢ , (2.32)
ky = ksing . (2.33)
Thus,
2n  F(k,d)
r=[kdk [ 55— dé . (2.34)
Ck o em

The contour Cy for the k integration is shown in Figure 2.2. The branch
cuts for the branch points k = tk, are defined by the analytic

properties that

a) Im kZ2 = Im / kg - k2 < 0 on the entire top Riemann sheet;
b) Re k22 > 0 in the first and third quadrants; and
c) Re kz

, < 0 in the second and fourth quadrants.

However, k = % /E: ko are not branch points since the integrand is a

/[ 2 2
single-valued function of kZl = erko -k . The branch cuts are also

shown in Figure 2.2,

11



COMPLEX k PLANE
- BRANCH CUTS

SURFACE WAVE POLES

Figure 2.2. Proper contours of integration and branch cuts in the
' complex k plane.
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The denominator in the integrand of Equation (2.24) defines the

surface wave modes. These modes are determined by the roots of

o
]

0 (for the TE waves) s (2.35)

D
m

0 (for the TM waves) . (2.36)

Substituting a = kot/er-l and o = t v erkg-k2 into Equations (2.35) and

(2.36) and rearranging terms yields, respectively,

v az-o2 + ocoto = 0 s (2.37)
-c v a2-02 + otano = 0 . (2.38)

r

It can be demonstrated that if € is real and €. * 1, the roots of
Equations (2.37) and (2.38) are real and located inside the segment
k, < k <Yek . If NN represents the number of roots for the TE, ™

case, respectively, then it can be shown that

I 0 , for a < n/2
n o, for (n-1/2)m < a < (n+1/2)7, n =1,2,3,.... ,

and

N =n+tl , for nt < a < (n+l)w, n = 0,1,2,.... .

13



- It is noted that the dominant T mode has- a zero cutoff frequency. For
Iossy dielectric (Im € # 0), the roots just move off the real k-axis
with the form k = kr'jki’ k_i > 0. The exact root locations can be
determined by using the Newton-Rhapson procedure.

For efficient numerical evaluation of the integral in Equation
(2.34), the new contour C_ is adopted by deforming Ck (aslshown in
Figure 2.2). The integration along C. is performed by computing the
Cauchy value of the integrals around the surface wave poles. Assuming

the surface wave poles constitute an ordered set as {pz, 2=1,2,...,n},

Equation (2.34) can be written as

P1=8  Pp,-6 p.-6 ® 2m F(k,d)
T = M'm 1 + 21 4+ eee + nf + f kdk j DD d¢
s+ot o p1+6 pn_1+6' pn+6 0 em
Ig: ‘2[‘" F(k9¢)
- jw d¢ Residue . 2.39
=1 o DeDm _ ( )
k—pz

In the case of lossy dielectric, the integrations from pl-c to

p£+6, 2=1,2,3,...5n, can be evaluated analytically without indenting
the contour C_. This is done by using two terms of a Taylor series
expansion of DeDm about Pg> and by taking the value of the numerator

F(k,9) at k=p2 throughout the interval.

‘In actual numerical evaluation of (2-39), it is found [6] that § ~
0.001ky is adequate, and the infinite integral should be terminated at k

no less than 150 k, for the self impedance calculation. For the mutual

14



impedance calculation, however, this infinite integral tends to converge
more slowly as the separation between the two dipole modes becomes
larger, and hence will involve an exhorbitant amount of computer time.
Special treatment is required to improve the computational efficiency,

which is dealt with in the next chapter.

C. MUTUAL COUPLING ANALYSIS

In order to‘employ the method to analyze the mutual coupling
between microstrip patch antennas, one needs to evaluate the elements
of the impedance matrix and the voltage vector. Assuming the Galerkin
form of the moment method is chosen, and the basis and weighting
functions (modes) are members of the set {Jm = ;me + §me: m=1,2,
-+es N <=}, the mutual impedance between mode J and mode J,  is defined

as

Zon = -Sﬁ Em(r) . Jn(r')ds' N (2.40)

and the element of the voltage vector is defined as
where Em is the electric field excited by mode m, and Ji is the

impressed current source. As presented in Appendix B, the exact

expressions for z, and v, are given by

n

15



j = - X z2
Zan T 7 4n2 {i (kyweZ T e wmz)cos¢mn
~ kykz? ~ v .«
- (kxwez T we ¢m2)51n¢mn Inx!
- kxk22 N . _ kyk22 _ —_
- (kywez * wed l"mz)sm‘i’mn * (kx e2 ~ we wmz]cos¢mn jny'
~jlkox + koy )
. x"'mn y7mn
dkxdky s (2.42)
. 2,,2
Vm T T a2 {o{ we e kg Y1 ® sink,,t dk, y °’
(2.43)
where
jerk22
¥ : (k.3 +kJ ) . 2.44
ml 2,,2 xmx © “y“my (2.44)
(kyc+ky )0
_ muosinkzlt . _
Vo= —5 5 (kJ  -kJ ) , 2.45)
e2 2,,2 X" my y mx (2.
(kx+ky)De
_ kzls1nkzlt ) -
Yoo = (k J . + k., J s (2.46)
m2 2,,2 X mx y my .
(kx+ky)Dm

16



J(k x+k,y)

Yp X
Jﬁx = jm Iy (Xsy)e " dxdy (2.47)
-ym - m .
Ym  *m J(kyx+kyy)
ny = J f me(x,y)e dxdy (2.48)
Ym Xm
Y yn v Xn ] ]
nx' - / "]nx'(x ')
Yn %
~j[x'(k cos¢__+k sing ) + y'(-k sin¢ +k cos¢ )]
o X mn "y mn X mn "y M2yt dy!
(2.49)
5 yn Xn 1 ]
Joyt = 1 [ dpy (YY)
Y Xp
-j[x'(kxcos¢mn+k sing,) + y'(-k, sing, +k cos¢mn)]
e y y dx'dy"'
(2.50)

is the angle between the x-axis of mode m and the x'-axis of mode n;

2xm and Zym are the widths of mode m on in the x and y directions,

respectively, and likewise, 2xn, Zyn are the widths of mode n in the

x',y' directions (see Figure 2.3). Also, (xf,yf) denotes the

coordinates of the feed location with respect to the (x,y) axis centered

on mode m.

17



y
A
MODE m
/
T y
zym —P- X
l ¢ yf).\\—FEED
———————— me—"‘

Figure 2.3. Geometry of patch dipoles m and n.
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As k = Jki + ki + », the integrands in Equations (2.42) and

(2.43) become highly oscillatory. This will cause numerical difficulty

in evaluating z__ and i accurately. To rectify the situation, it is

mn
important to note the asymptotic behavior of these integrands as k tends

to infinity., Defining

kx kzZ
T1 ) ky Vo2 * Twe,  ¥m2
Kok kJ ) kxkz1K ktf J—S'kt
_ 1 [ koky | kydp - y Inx | - Kxkzikzz | Kydp,-kydgy 1nKz1
T uweg De - _ m - 1o+ ),
X y
(2.51)
and
ky K,o
Ty = Ky Y2 = Tweg Vw2
) — — —
1 kokx | ko Jo -k 3, kykz1kz2 | k 3 +k J sink,1t
R y”y mx x“mx "y my
WE De _ _ Dm _ _ (k + k )’
x Uy
(2.52)
one can rewrite Zy, as
_j o - -
Z Wfi {T)[Jrc088 0 = 3 yrsine ] - To[d,,ising Iny!
-3k x )
X"mn y'mn
cos¢mn]} dk dky . (2.53)

19
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kt

kt

- Noting that kzl’ k22 +> -jk, sjnkzlt + SZ__and coskzlt »e " as k + o
one can approximate, for large k, J 2
D, = -jke* -, (2.54)
(epr1) oF , (2.55)
Dy = -3k ™3
“and hence,
(
T e 1 2 ) kz_] J -k k. J (2.56)
N - 2k 2 - - J Y .56
1 0 k(ep+1) 0 X | mx X'y my
—— | - —
{
T, = + e : At kz_- J -k k. J 2.5
2% 7 2%ko k(ept1) ) 2 - Ky | dny Kkydme o (2257)
—— - :
Similarly,
-jlj = “jlk xe + k ye)
- x"f yyf
Voo Z;z—‘{i Ty e dkxdky , (2.58)
where
J sinkzt N ‘
T3 = - weg Dy (kamx + kmey) s - (2.59)
and, for large k,
3% = 2%, (kydo + kydny) . (2.60)
k(ep+l)
2



The asymptotic forms of T,, T, and T3 will be utilized in the next

1* 2

chapter to improve the computational efficiency of Zon and Vi
Finally, the proper choice of the dipole modes 36, m=1,2,...,N, and

their corresponding transforms are discussed in Appendix C.

21



III. IMPROVING THE COMPUTATIONAL EFFICIENCY
A. INTRODUCTION

As mentioned in the last chapter, the integrals for zy, or v
converge slowly (especially for large separation between two dipole
modes, or .a dipole mode and the impressed source) when k ; o, Moreover,
as k becomes large, the corresponding integrand will get highly
oscillatory, and will require very small step size in the numerical
integration scheme. All these translate into large amounts of
computer-time, and hence high costs. It is, therefore, of great
‘interest to improve the computational efficiency of zy, or vy, As
suggested by Pozar [6], it is useful to construct an integral that have
two different representations such that the first can be evaluated
easily, while the second will have the identical asymptotic behavior as
that of zy, or vy. It is then reasonable to expect the integral for the
difference of zy,, or vy and the constructed integral to converge much
faster because of their identical asymptotic forms. The total value of
Zpn Or vy can be recovered by adding back the constructed integral which
is evaluated via its first representation. With such manipulation, the
overall efficiency for calculating zy, or vy can be improved.

This chapter is devoted to the construction of such integrals. In
particular, Section B will concentrate on the integral representations
which exhibit asymptotic behavior identical to those of zy, and vp. The
alternative representations (which can be evaluated easily) will be

discussed in Section C.

22



B. MUTUAL COUPLING IN A GROUNDED HOMOGENEOUS MEDIUM

In this section, an analysis similar to that of Chapter 2 will be
repeated for a homogeneous dielectric half space D bounded by a

conducting piane, where Mo and €o€e are the constitutive parameters.

e
Consider a conducting patch S of current density Js in the x-y
plane situated at a distance t from the ground plane in D (Figure 3.1).

The vector potential R_due to Js is given by

-jk.r =jk.r.

e s e 1
_ 1 e e -,
A(r)= 4—1,£ e - T J(F') ds' , 2>-t (3.1)
where kg = wWugegea s
Fo=xx = 9y + 22 .
FUo= xx' + Qy‘ .
P = P=r' = x(x=x") + yly-y') + 2z , ro = |i|

and,

23



Homogeneous dielectric half space D

H92€0€e

FIELD POINT
(x,y,2)

=

JS
-l |
o r ,
l -
t ] ri
]
//7//////////177/////////K/////////
]
t ! GROUND PLANE
B
.-Js

( tMAGE SOURCE)

Figure 3.1. Patch current source J in homogeneous dielectric half
space D, S
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Employing the identity

-jk R o ~ilk, (x=x") + k (y-y') + k_|z-z'|]
e ¢ 1 44 e % y z dk,dk,
R =32r = k;
o (3.2)
where R = |R] = |;(x-X') + ;(y-y') + 2(2-2')]1 , and
k=T ——r , withInk, <0 |, (3.3)
z " Ky - Ky - K z
one can write
) 1 = Jg(F') O SN L ¥ ,
A(r) = e g{i 3%, e -e dkx dky ds', z > -t,
‘ - - (3.4)
where
bg = dg(roky k) =k (x=x') + k (y-y') + k,|z] (3.5)
b5 = o5(rokysky ) =k (x=x") + k (y-y") + k,(z+2t) (3.6)
It is we]]-kndwn that the electric field E at reD is given by
.. e T2 01 T
E(r) = &g | ko A(F) + 55 7 - A(r) , (3.7)
where g = figleg 2 ko T w/ige; :
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"~ Since

v e A(r) = X AX(F) + ‘a—jAy(r) t+ 32 AZ(F)
@ "-5¢S =365 -,
s £££ 72k, -k, | e - e Joulr
. - -j¢s, -3¢ ., .
-Jky e - e sz(r ) dkxdkyds (3.8)
one will find
L T2 -3 ~ 3 -
VeA(F) = | x3x + ¥ 3y + 237 | VA(F) (3.9)
1 oo 1 - - 2 -j¢s -j¢-i - X
= 4 b Tk x| ke fe T -e T I (F) - Kk
-Jég -3¢, -
(e -e ) Jg(rt) 4
N -j¢s -Jé; -, -j¢s -Jd, -
+y —kxky (e - e ) Jsx(r ) - k. (e -e ) sz(r )

y

_'M)S "j¢-i -,
'kxkz <sgn(z) e - e ) Jsx(r ) - k kZ (sgn(z) e




Next it follows from Equations (3.4), (3.9) and (3.7) that

_ =jnp o 1 0@ 1
Er) = X5 7 1T Fokzee (

> >

-_ . -j ¢S -j ¢-i> a - 2 2
kxkydsy(r ) e -e +y ( oKy - ky

= -y —j ¢S -j ¢-i
sz(r ) - kxkydsx(r ) e - e -
~ -, - -j ¢S -J- ¢~i
-2 kkaJSX(r ) + Kykzdsy(r')> (sgn(z) e -e

dkxdkyds' . (3.10)

Now one can readily formulate the mutual impedance zgn between

dipole mode m and mode n as'

z =< f E_ (r+r') o J (r") ds' . (3.11)
g m n

where Em denotes the electric field in D excited by mode m with current

density Dm(F) s{Ja(F) = Q'Jax + §J ! o<1,2,...,N, which exists

ay
on the surface patch S . The definitions of T and r' are obvious from

Figure 3.2. Observing that
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Em(r+r ) = xme(r+r ) + yE

o it : -._I
y -me(r+r ) sing, + Emy(r+r ) cosé.. | +
zEmZ(r+r') (3.12)
and
3 g} - " = A.l gl |
Ip(r') = xd .(r') +y Jny.(r ) , (3.13)

and making use of Equation (3.10), one can rewrite Equation (3.11) as

4 _ d ° 1 2 2 o~ ~
Zgn = 4n‘k0 {i J2kzee (egky = Ky) Iy - KKy Imy
Jnx.cos¢mn - Jny.sin¢mn +
e oD T i T s 3 B
(eeko - ky) me - ky mex Jnx.smcbmn + Jny.cos¢mn
— =ik o+ Koy )T '
e X mnooyTmn dk,dk, , (3.14)

~ ~

where me, me, Jnx

(2.49) and (2.50).

, and Shy' are defined in Equations (2.47), (2.48),
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Figure 3.2. Configuration of dipole modes m and n in the z=0 plane.
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Letting the impressed source 31 be a current filament of uniform
amplitude Ii’ normal to the ground plane, and situated at (xf, yf) with

respect to the center of dipole mode m in the z=0 plane, i.e.,
Ji(F) = 2138(x-xg)8(y-yg), -t <z <0, (3.15)

the mutual impedance between mode m and the impressed source Ji can be

written as
d _S g2y . 54z
Ym =V Em(r) Ji(r)dv
0
= {t Ii Emz(xf’ Yes 2) dz
-jnOIi © - o ~
= 41r2ko {i j2kzse Kykz g + kyszmy
‘e-j(kxxf +kyye)”
0 “‘jkiz -ijZt - Jk.z—
S e + e dzdk_dk
-t . Xy
or
4 dnoli = g . . -j2k t=
=itk ox. + k
xXf Ye)
e y'f d dk, i (3.16)



In order to compare the asymptotic forms of the integrands of zg

d .
and vm with those of Z,

express zﬂn and vﬂ in the following forms:
S S A s
mn o 4n 1 nx' €05%mn = Yny'S1Ndy,
~ - “jlkox o+ koy )
x”mn yYmn
+ Jny.cos¢mn e
d _ -jlj = d ‘j(kxxf + ky.Yf)
Ym = 4% {i T3 e dkxdky
where
d__"M0 |, .2 2.3 ~ T
T1 = 3% ke (eek0 - kx) me - kxkydmy
0°ze
QU N RPN ST kT
2 " 3%k k_e eto T "y) Ymy T "x"y“mx
0°z e
and

w o

n and Y

31

n

n

in Chapter 2, it is convenient to

d|~ .
N T2 Joxrsingp, +
dkxdky R (3.17)
, (3.18)

. (3.19)

. (3.20)

(3.21)



k:

d

L5

d

Tz

and

d

T3

Il

R

R

2 2
x+ky+oo,kz
Mo [, 2 2.7

3 (e k- = ko ) d

kokee eo X mx
5 (e k- -k, )
_kokee e’ o y my

T2 (i T v by Ty
2

kokee X “mx y “my

+ -jk, and thus

one can write, for large k,

me R (3.22)
Imx R ' (3.23)
. (3.24)

Comparing Equations (2.51), (2.52) and (2.53) with Equations

(3.22), (3.23) and (3.24), it is readily seen that choosing

will make T
a

considers the grounded, homogeneous, dielectric half space D with e

(er+1)

d

Ta, a=1,2,3, for large k.

(3.25)

In other words, if one

specified by Equation (3.25), then the following integrals:

mn

il

Z - 2Z d
mn mn
-j o
o N
d |'~

(T

d
10

y

~

e
(3.26)
Jnx.cos¢mn - me.sin¢mn -
| -J(kxxmn + kyymn) "
Xy

(T2-T2) Jnx.sin¢mn+J 1COSO I
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and

d .
Pm =V - vm (3.27)
Sl e (T ) =k ek ye)
= - y'f
= {i T3-T3 e dkxdky .

will converge rapidly since the functions (Ta - Tg), a=1,2,3, vanish

identically for large k. One can compute T

Equations (3.26) and (3.27), and Zgn and vg via the alternative forms to

n and Pm according to

be discussed in the next section, whereby Zn and vy can be evaluated

efficiently as

(3.28)

and

_ d
Vo = Pt Yy . (3.29)

C. ALTERNATIVE FORMS OF zgn and vﬂ

In this section, expressions of zgn and vﬂ are obtained directly
from the vector potential that employs the homogeneous space Green's
function instead of its plane wave expansion. Thereby the resulting
expressions are easier to compute, espécia]]y when the two dipole modes,
or the dipole mode and the impressed source are well separated and t is

not too small.
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Referring to Figure 3.2, the vector potential Rm due to dipole mode
m can be written in terms of the Green's function of the homogeneous

half space D as follows:

l_-'jkeRmns 'jkeRmni_
- _ 1 e e -
Am(r+r') =T é Roms - “Roni Jm(x,y) dxdy, = (3.30)

-~

for r = ¥y : r
XXon + Yoo and r eSn, where

Rins = |Rans!
- " ] ] : -
= |x(xmn + x'cosg - y'sing x) +
° ] : ]
* ¥y, * x'sing  + y'cose - ¥)|
and
Rmm‘ B |Rmn1'|
= |Rone f z2t | .

Making use of Equation (3.7), it can be shown (by direct calculation)

" that the electric field at r+r' due to mode m is given by

Jn - - -
E_(F+7") = Tk £ dxdy | ()0 (R 1+(3y (x.)
€ o

-~ ~ -

'Rmns)RmsQZ(Rmns))
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- G0 (R) + (3 (x,y) R IR Qp(RM L)) : (3.31)

-ik_R
(14kgR- k2R2) e & /3 , (3.32)

where Ql(ﬁ)

-JkeR
(3+J3k R-kg R ) e /R3 4 . (3.33)

Q,(R)

R = |R|, R is the unit vector in the direction of

i
-

ke = w ]Joeoee and ne = Vuo/€o€e

d

d ., .
an and Ve it is seen that

From the definitions of z

d ] |J [] ] ji
mn é dx'dy'Jn(x’,y") - 4k,

n

N
n

ém Ixdy {(J (x,y) Ql(Rmns) *

+ (3 06y R ) R QR ) - (3 (x,y)Q (R ) +

- A ~ -

(Jm(x,y) * Rmni) Rmm‘ QZ(Rmn'i))} ’ (3-34)

+

and

a4 ° _ Jne
Vo = ft dzJi(xf,yf,z) . jr]:" g dxdy {(Jm(x,y)Ql(Rfs] +
m

+ (Jm(xs.Y) . ﬁf ) fSQZ F-ifs ) - ,.Y)Q]_(Rf.') +
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+ (Jm(x,Y) . ﬁf-i) éfin(ﬁfi)]} | . (3.35)

where Ji(xf,yf,z) is defined in Equation (3.15),

N

fs = X(Xf-X) + Y(Yf'Y) + 2z s Rfs = |R;S|
and

ﬁfi = X(Xf'x) + Y(Yf'Y) + z(z+2t) s Rfi = |ﬁf1| .

It may be remarked thaf in computing zgn and vi using Equations
(3.34) and (3.35) one will encounter some numerical difficulty (namely,
the loss of accuracy due to the differencing of two terms of almost
equal values) when t is small. In such casé, it is appropriate to
expand the Q1 and 02 functions as Taylor series, and to keep the first

few leading terms. Expansions about z=-t may be most adequate.
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Iv. SUMMARY
This report has presented expressidns for:

1. the self or mutual impedance between microstrip expansion and

test modes

2. the mutual impedance between a microstrip mode and a vertical

current filament in the dielectric.

These are the main quantities needed in an MM solution of the microstrip
antenna. Methods for the efficient evaluation of the impedances are
presented. Finally, expansion modes are described which would be useful

in analyzing the microstrip antenna over a wide frequency band.
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APPENDIX A

DETERMINATION OF SPECTRAL FUNCTIONS

Expanding Equations (2.2) and (2.3) in rectangular coordinates and

making use of (2.4) and (2.5) yields the following:

In region 1 (dielectric),

3 1 32
(r) Ty Yo1 * Jue, 93z ml
N “ilkeetkyy)
4,,2 ” {y el ™ ue, K, ¥} e sink,) (z+t)dk dk
(A.1)
E (: 3 1 32
yl(r) = Y1t jmel 3y 93X ¥m1
e P _'__ | “Jlkxrkyy)
= 12 Lf, {kybay * kykzl\p 1he sink,) (z+t)dk dk,
(A.2)
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D S LA
E,(r) = Jue, [ 922 ek, ) ¥n1

2 2
k .
s [X+‘!(y] ~ o =(kxtkyy)
= 4n2 {i @elw %“¥ e coskzl(z+t)dkxdky .
| ) (A.3)
W (R = 1 @ 2
‘ il(n)”Tv }wﬁo axsz Ye1 * dy ¥m1
ik, k B .
qi = x zl ~ -J(kxx+kyy)
= A2 {i oy Yoy - ky¢h1 coskzl(z+t)e dkxdky s
(A.4)
W (R = 1 32 k)
yl(r) jmuo dyaz wel ¢ %nl
| o,
" [T o Vel * Kehm | cosk y (z+t)dk dk,
(A.5)
- 1 32 2
Hzl(r) = Juu, ( 222 ¥ £rkg ) Vo1
w12 o~ sdlkxeky)
= a2 I ™ (ky + k) ¥y @ sink,) (z+t)dk dk .
(A.6)
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In region 2 (air),

Eomy .2 192
x2(r) T ey Va2 * jue, 3x92 ¥m2
~ kxkzg ~ -j(kxx+kyy+kzzz)
4n2 ff {k yVe2 * we, Yn2t © dkxdky
- 3 1 32
yz(r) ax Ve2 Juwe, 3ydz ¥m2
- = ~ kyk ~ -j(k_x+k_y+k_,2)
_ =i XyXz2 Xy 22
" 4q2 Ii {kxweZ - we, Ym2! € dkxdky
- 1 2
EzZ(r) = jue, (32 az2 * )
' 2 2
-j @ (ky + ky) ~3(kyxtk y+k,52)
a2 1T b e dk,dk,,
() - 1 32 3
xz(r) B Jou, xdz Ve2 y V2
kx kzZ ~ ~ (k x+kyy+k
4w2 j! Wi, Ve2 - Ky¢m2 € dk xdk
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(A.7)

(A.8)

(A.9)

(A.10)



1 32

HyZ(r) = jwuo dydz '¢e2 - ax Ym2
"« .
_ _J_ ) Y z2 ~ ~ -J(kXX+kyy+k222)
T 492 {i wh, ‘pe2 * kx"me e » dkxdky ’
(A.11)
-, 1 82 )
sz(r) B Juu, ( 322 ¥ %o ) Y2
2 2
oo (k) -3k, Xtk Yk 2)
= e Voo © dk dk,
(A.12)

Enforcing the boundary conditions at z=0 (die]ectric-air interface)

specified by Equations (2.8) and (2.9) leads to

Ex1 = Ex2 at z=0 (A.13)
Eyl = E‘y2 | at z=20 | (A.14)
Hep = My = Jg, at z=0 | (A.15)
-Hyz + Hyl = Jsx at z =20 . (A.16)

Use of Equations (A.13), (A.1l) and (A.7) gives
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2 = [kyver = Ge e Kzt ikt (A

~ J!ZZN _ ~ j ~ L. .
kx¢e2 T we “mZ - [kxwel + We € kxkzl¢h1] S1nkzlt * (A.18)

0 r

Use of (A.15), (A.4), (A.10) and (2.10) gives

kxk22 ~ ~ jkxkzl ~ ~ ~
Wi Vo2 - ky"’mz - W, Vo1 ~ kywhl COSkzlt N 'sty .
(A.19)
Use of (A.16), (A.5), (A.11) and (2.10) gives
k_ykzz ~ ~ jk_ykzl ~ ~ ~
- Wi, Yoo * kxq’mZ * W, a1 * Ky¥m COSkzlt = 'JJsx .
(A.20)
Adding (A.17) multiplied by ky to (A.18) multiplied by kyx yields
2 2 ~ 2 2 ~
(kx + ky)tpe2 = (kX + ky)wels1nkzlt
Va2 = Sink, ity . (A.21)
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~Adding (A.17) multiplied by ky to (A.18) multiplied by (-ky) yields

-ijI 2 2 o~
we, Yn2 = wey €, (kx * ky) ¥m1 Smkzlt

Adding (A.19) multiplied by ky to (A.20) multiplied by (-ky) yields

k 2 k
N SR S ks
Wil (kx * ky)q’eZ -J Wi, ( x ¥ ky)COSkzlt Vel ~ J[kydsx - kasy]
2 2
(ki + ky) . 5 N ~
wu, [kZICOSkzltwel * Jk22¢e2] = kasy - kstx . (A.23)
Adding (A.19) multiplied by ky to (A.20) multiplied by k, yields
k2 2 ~ 2 2 ~ o Y 3
~(ky + ky)"’mz + lky ky)‘meCOSkzlt B 'J[kydsy * stx]
2 2~ ~ o~ ~
(kx + ky)[-\pmz + ‘I)m].COSkZ].t] = _J[kydsy + kx‘]sxl hd (A.24)
Using (A.21) in (A.23) leads to
~ “Ho ~ ~
ST [kedsy = kydsx ] (A.25)

k2 2
(ke * k)0,
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muosinkilt

v, = 75— [k, - k] (A.26)
e2 x" sy y sx .
(ky + )0,
where
Dy = kjqcosk qt + Ko sinkzlt . _ - (A.27)
Using (A.22) in (A.24) leads to
~ 'jsrkzz [ ~ ~ |
Y1 < 2 2 Kedsx * Kkyd (A.28)
Yy sy
(ky + k)0,
5 -kzlsinkzlt [ 5 N ]
Vo = 2 2. tkd., +k,J (A.29)
m2 X SX y sy *
_ (k, + ky)Dm
where
D, = epk o cOsk, t ¢+ jkZl sink ,t | . (A.30)
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APPENDIX B

MUTUAL IMPEDANCE BETWEEN TWO PATCH DIPOLE MODES

In this appendix, the exact expressions for the mutual impedance
between surface patch.dipole modes Jm and Jn on a lossy grounded

(z

dielectric slab is presented. The mutual impedance.(vm) between dipole

ITIﬂ)

mode Jm and the impressed source current Ji is also presented. These
calculations are essential in solving a microstrip antenna problem by
the moment method. Zin and Vo form the elements of}the impedance matrix
and voltage vector, respectively.

~ Figure B.1 shows two dipole modes, J

m and Jn, located on the

surface of a grounded dielectric slab with parameters M and €n€qe The
ambient medium is free space with parameters Mo and €0 Mode m is
centered with respéct to the (x,y) coordinate syétem. The center of
mode n coincides with the origin of the (x',y') system which is

- displaced from the center of mode m by a position vector (xo,yo). The

x'-axis is at an angle a with respect to the x-axis.
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GROUND PLANE

Figure B.1. Two expansion dipole modes on a grounded dielectric slab.
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The mutual impedance between modes m and n is given by

z = - [ E_(F+F')d (F')ds’ (B.1)
n

where Em denotes the electric field excited by Jm’ and the integration

is over the surface of mode n in the z=0 plane with

+ ;‘y' = ;(X'COSa-y'Sina) + ;(x'sina+y'c05a) (B.2)

A

Fo = XXg * ¥Y, K (B.3)
Without loss of generality, it is assumed that

In(F) = X3 (F) + ya (F) (8.4)

Jo(F) = X0 (F') + "0 (F) . (B.5)

It then follows from (2.17), (2.18), (2.24) and (2.26) that, at z=0,

-k x g+ o)

(B.6)
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Ji e - kykzo ~  =i(k,x +k y )
= =y _ =d y'Zz KXo ™y Yo
Emy(ro+r ) = {i [kx¢e2 T we tnp le

"j¢(X', ' )
. e Y »a dkxdky (B.7)

where

' / 2 2 2
kz2 =- ko-kx-ky N Imkzz < 0, Re‘(zz >0 [ (B.B)

$x"aytaa) = xi{kycosa + kysina) + yi{ksina + kycosa) -, (8.9)

~ wpgsinkz1t ~ ~

= T ooam LK -k s
Vo2 (k)2(+k§)De x"my mex] | (B.10)
Ym2 = (k§+k§)Dm (kI + kmey] ’ (B.11)

/2 2 2 (B.12)
kZl - erko‘kx'ky ’ .

De = kzlcoskzlt + jkzzsinkzlt s (B.13)
D, = €pk pcosk t + jkzlsinkzlt s (B.14)
. - (ko x+k_y)

- Xy
me(kx,ky) = {i Iy (XsY)e dxdy s (B.15)
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and

Jlk x+k y)

~ _ o X y
me(kx’ky) = !i me(x,y)e dxdy . (B.16)

Also one may note that the tangential component of Em(Fo+F') on the

surface of mode n is given by

E xme(rO+r ) + yEmy(Po+P )

MORED

B ||

A

noant noan! :
x'[me(ro+r Ycosa + Emy(ro+r )sinal

~

+ y'[-E, (F+F')sina + Emy(ro+r')cosal . (B.17)
Combining (B.1), (B.5) and (B.17) yields
hn Wp - - - ey s .
2. = - g 7 {[Epy(Fg*rt)cosa + Ep (Fo+F')sinald v (x'sy')
=Nn -Wp
+ [-me(Fo+F?)sina + Emy(Fo+F')c05a]Jny.(x',y')}dy'dx' .
(8.18)
Next let
g logkyo) = I T 0ty eI g
nx' Kx2lys® ~ nx'\X oY Y
_ =Mn -Yn :
hp Wy
= 1 ae )
-hp -wp
-j[X'(kxc05a+kysina)+y'(-kxsina+kyc05a)]
e | dy" dx' (B.19)
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and
hn W

~ n n . : ) )
= vy amd 90Xy aa) e
Jny'(kx"‘y’“) -r{n _vf‘n Jny.(x y')e dy ' dx
hn Wp '
= f f Jny'(x"y.)
-hp -wp

-j[x'(kxc05a+kysina)+y'(-kxsina+k cosa)l’

. e y dy'dx' . (8.20)

Use of (B.6), (B.7), (B.19) and (B.20) in (B.18) leads to
| _ kekzp

(ky¢e2+ wey q;mz)COSa

J 9
Zon T T 4n2 1

- 00

kyk22 —

- (ky¥gp - weg Upp)sina

Joxt (kg oky @)

- kxk22 kyk22 —

(kyweZ * T oeg th]Sin“ * (kxwez T weg an)cosa

~ =jlkx + k. y )

. %% %0 ¥’ o »
Iyt (kyskyaa)| dk,dk, : (B.21)

Zin in Equation (B.21) represents the most general expression for
the mutual impedance between two rectahgular dipole modes on a planar

grounded dielectric slab,
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Referring to Figure B.2, the mutual impedance between dipole mode

Jm and impressed source J; is defined as

E (F)-Ji(F)dv . (B.22)

Since source 31 can be reasonably modeled as a vertical filament of

constant current inside the dielectric, it is represented by
J;(F) = 21, 8(x-xc) 8(y-ye) , -=Xx,y<= , -t<z<0 (B.23)

where I; is the magnitude of the feed current and (xf,yf) denotes the
‘filament location in the x-y plane, with respect to the center of
mode m.

Making use of (2.13), one can write

2 2
) -j @ (kyxtky) o -j(kxx+kyy)
E (M) =am2 [ e e Vg @ cosk,y (z+t)dk dk, .

-0 or

(B.24)

Inserting (B.23) and (B.24) into (B.22) and carrying out the volume

integration gives

2 2 '
1 e (kytky) L =Gk Xtk ye)
-2y y £l .
e s1nkzltdkxdky .

(B.25)
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REGION 2
F’Ov €° fm

{—>x

T
o

t Ko, €Cr REGION | Ti =1 8(x-x) 3(y-yg)

GROUND PLANE IMPRESSED SOURCE

Figure B.2. A dipole mode Jm and an impressed current source 31..
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" In both (B.24) and (B.25)

~ Jerkz2 ~ ~
b1 T T (k§+k§)Dm [3xdmx * kmey] (B.26)
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APPENDIX C
PATCH DIPOLE MODES

In this appendix, the specific patch dipole modes and their
corresponding Fourier transforms are presented. In using the moment
method to analyze the performance of a microstrip patch antenna at
higher order resonant frequencies, it is appropriate to employ the
entire functions as the expansion dipole modes. On rectangular patches,

the ; polarized current modes will have the form
- S DU PLLE nr_
Jpn(%s¥) = x {sin 207 (x+L,) cos 20 (y+L )} (c.1)

where m=1,2,3,..., n=0,1,2,3,..., -L, < x <L and -L <y <L, with
Lx #0 ¢.Ly. .It should note that the dipole modes jmn have double
subscripts instead of single subscripts which appear in Chapters 2 and
3. The double subscripts allow the modes to vary as simusoidal
functions in both the x-and y-coordinates.

It is easy to show that the Fourier transforms of amn assume the

following forms:
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Jmn(kx’ky) =

where

and-

Yn(ky) = ﬁ

L Jlk x+k_y)
=/ 2T (x,y) e X2 Y dxdy
L
y X
= XX (k,) ¥ (k) ,
- - coskax
Lx v
, m=1,3,5,...
k2 - T 2~
x | 1 Lxkx
= sink L
= sin
L, XX
-, m=2,4,6,...
k2 - mw _ 2 —
x | 1 2L yky
j2cosk L
Jecoskyly
, n=1,3,5,...
A L &
Ky | T 2lyky
2sink
sin yLy
, n=0,2,4,...
|~ am 7
ky | 1-

(C.2)

(C.3)

(C.4)





