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SPECTRAL METHODS IN FLUID DYNAMICS

M. Y. Hussaini
Institute for Computer Applications in Science and Engineering

T. A. Zang
NASA Langley Research Center

ABSTRACT

Fundamental aspects of spectral methods are introduced. Recent

developments in spectral methods are reviewed with an emphasis on

collocation techniques. Their applications to both compressible and

incompressible flows, to viscous as well as inviscid flows, and also to

chemically reacting flows are surveyed. The key role that these methods

play in the simulation of stability, transition, and turbulence is

brought out. A perspective is provided on some of the obstacles that

prohibit a wider use of these methods, and how these obstacles are being

overcome.
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INTRODUCTION

In certain areas of computational fluid dynamics spectral methods

have become the prevailing numerical tool for large-scale calculations.

This is certainly the case for such three-dimensional applications as

direct simulation of homogeneous turbulence, computation of transition

in shear flows, and global weather modeling. For many other applica-

tions, such as heat transfer, boundary layers, reacting flows, compres-

sible flows, and magnetohydrodynamics, spectral methods have proven to

be a viable alternative to the traditional finite difference and finite

element techniques.

Spectral methods are characterized by the expansion of the solution

in terms of global and, usually, orthogonal polynomials. Since the mid-

nineteenth century this has been a standard analytical tool for linear,

separable differential equations. Nonlinearities present considerable

algebraic difficulties, even on a modern computer. These were

surmounted effectively in the early 1970"s, and only then did spectral

methods become competitive with alternative algorithms. By the present

time, however, spectral methods have been refined and extended to the

point where many problems in fluid mechanics are only tractable by this

technique.

Numerical spectral methods for partial differential equations were

originally developed by meteorologists. Though this approach was

proposed by Blinova in 1943 and Haurwitz and Craig in 1952, the first

numerical computations were conducted by Silberman (1954). The expense

of computing nonlinear terms remained a severe drawback until Orszag

(1969) and Eliasen, et al (1970) developed the transform methods that

still form the backbone of many large-scale spectral computations.



These methods and others used in fluid mechanics prior to 1970 are

now termed spectral Galerkin methods: the fundamental unknowns are the

expansion coefficients and the equations for these are derived by the

techniques used in classical analysis. The advent of computers made

feasible an alternative dlscretization, termed the spectral collocation

technique, in which the fundamental unknowns are the solution values at

selected, collocation points and the series expansion is used solely for

the purpose of approximating derivatives. This approach was proposed by

Kreiss and Oliger (1971) and Orszag (1972).

Many useful versions of spectral methods have been developed since

1971 and especially during the 1980"s. This review will discuss many of

the recent innovations and will focus on the collocation technique since

it is the version most readily applicable to nonlinear problems. We

will survey applications to both compressible and incompressible flows,

to viscous as well as inviscid flows, and also to chemically reacting

flows. In the interests of brevity we shall not cover the applications

to meteorology, magnetohydrodynamics, astrophysics, and other related

fields. Moreover, we will restrict ourselves to the three-dimensional

applications of well-established algorithms while discussing some two-

and even one-dimensional applications of more novel spectral methods.

Let us mention here some other articles for those interested in

additional historical references, applications in other fields, and

theoretical developments on the numerical analysis of spectral methods.

The monograph by Gottlieb and Orszag (1977) describes the theory and

applications developed prior to 1977. It will be referenced hereafter

as GO. The following five years are covered in the proceedings edited



by Voigt, et al (1984). Fluid dynamical applications, especially

multigrid techniques, are discussed by Zang and Hussaini (1985c).

Compressible flow applications are covered by Hussaini, Salas, and Zang

(1985). The role of spectral methods in meteorology is explained by

Jarraud and Baede (1985). The book by Canuto, et al (1987) contains a

detailed description of many spectral algorithms and presents an

exhaustive discussion of the theoretical aspects of these numerical

methods. It will be referenced hereafter as CHQZ.

FUNDAMENTALS

The motivation for the use of spectral methods in numerical

calculations stems from the attractive approximation properties of

orthogonal polynomial expansions. Suppose, for example, that a

function u(x) is expanded in a truncated Chebyshev series on [-I,1]:

N

UN(X ) = _ an rn(X ) (I)

n=0

where Tn(X) = cos(n arc cos x). The classical form of the expansion

coefficients (or spectra) is

1

an = (2/Cn) /u(x) Tn(X)(l - x2)-I/2dx

I_

(2)
-I

where co = 2, and cn = I for n > i. The substitution x = cos e

converts this into a Fourier cosine series. A simple integratlon-by-

parts argument (GO, Ch. 3) reveals that
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np a . 0, as n + _, for all p > 0 (3)n

provided that u is infinitely differentlable. Consequently, the

approximation error decreases faster than algebraically. This rapid

convergence is referred to as infinite order accuracy, exponential

convergence, or spectral accuracy. Our primary concern in this review

is on numerical methods for partial differential equations that exhibit

spectral accuracy for infinitely dlfferentiable solutions.

The approximation just described is typical of spectral Galerkln

methods. An alternative approximation, termed spectral collocation, is

one of interpolation. It retains the expansion (I), but replaces the

condition (2) for the expansion coefficients, with the condition

UN(Xj) = u(xj) (4)

where xj are special, so-called collocation, points in [-I,I]. For

most problems, the optimal choice of these collocation points is

x = cos(_j/N). (5)J

This choice of collocation points yields an extremely accurate

approximation (CHQZ, Ch. 2) to the integral appearing in Eq. (2):

N

an = (2/N_n) _ _j-I u(xj)Tn(Xj ), (6)
j=0



where, T0 = _N = 2 and _n = I, otherwise. Whether (2) or (6) is used

for the expansion coefficients, the expansion (I) is differentiated

analytically to form the approximations to whatever derivatives are

required for the problem at hand.

A graphical distinction between traditional approximations and

spectral ones is provided in Figure i for the simple task of estimating

the derivative of the function 1 + sin (2_x + _/4) on [-i,i] from the

values of the function at a finite number of grid points. A finite

difference or finite element method uses local information to estimate

derivatives whereas a spectral method uses global information. In this

figure a second-order (central) finite difference method is compared

with a Chebyshev spectral collocation method. The finite difference

approximation estimates the derivative at, say, x = 0, from the parabola

which interpolates the function at x = 0 and the two adjacent grid

points. A separate parabola is used at each grid point. The spectral

approximation, on the other hand, uses all the available information

about the function. If there are N + 1 grid points, then the

interpolating polynomial from which the derivative is extracted has

degree N and the same polynomial is used for all the grid points.

Note that the local method produces a second-order accurate derivative,

with the error decreasing as I/N 2, whereas the error from the global

method decreases exponentially.

An essential aspect of any spectral method is the choice of

expansion functions. Consider first the case of a bounded, cartesian

domain. Fourier series are the most familiar expansion functions, but

they are only appropriate for problems with periodic boundary



conditions. The appropriate collocation points on [0,2_] are

xj = 2_j/N, j = 0,1,-.-,N-I. (7)

In the general, non-periodic case, normalized to [-I,I], the appropriate

class of functions is the Jacobi polynomials. The proper collocation

points are generally -i, +i and the extrema of the last polynomial

retained (CHQZ, Ch. 2). The most commonly used Jacobi polynomials are

the Chebyshev and Legendre ones.

On an unbounded domain, the obvious choices of Laguerre or Hermite

polynomials are rarely advisable. Not only are fast transforms unavail-

able, but these expansion functions have relatively poor resolution

properties (GO, Ch. 3). A better approach is to combine a mapping with

a Fourier or Chebyshev series in the mapped variable. Boyd (1986) has

shown that spectral accuracy can be achieved for u(x) on (-_, _)

with the mapping x = x, cot _, and a full Fourier series in _,

provided that u(x) exhibits at least algebraic decay at =. Moreover,

if u(x) has exponential decay, then a Fourier cosine series will

suffice. The latter case is equivalent to a Chebyshev series in n with

x = x, n/!(l - n2). Spalart (1984) noted that the odd (or even)

Chebyshev polynomials work well on [0,_), when combined with an expo-

nential mapping, provided that u(x) decays faster than exponentially.

The process of numerical differentiation is particularly simple

when the expansion functions are trigonometric polynomials. Starting

from uj, the values of u at xj, one computes



N-I

ak = (I/N) _ uj exp(-ikxj), k = N N- _ , _ + I,..., N 1 (8)• 7-

j=0

and then uses

N/2-1

k_N/ ik ak exp (ikxj) (9)=- 2

to approximate du/dx at _. The Fast Fourier Transform (FFT) can be

used to evaluate both the sums given above. The total cost of computing

the derivative in this manner is 5N log 2 N + N real operations. (All

operation counts given in this review presume, for simplicity, that N

is a power of 2 and that the complex FFT is used; however, FFTs which

allow prime factors of 3 and 5 are just as efficient and are widely

available and real to half-complex FFTs offer a 20% savings (Temperton

(1983)).) The FFT can also be used to differentiate functions which are

expanded in Chebyshev series, since expansions in these special Jacobi

polynomials reduce to cosine series. Morever, in terms of the Chebyshev

coefficients, derivatives are obtained by simple recursion relations

(CHQZ, Ch. 2). For Chebyshev series the total operation count for

differentiation is 5N log2 N + 16 N.

For the classical expansion functions the matrix which represents

differentiation, i.e., dqu/dx q = Dqu, is known in closed form

(Gottlieb, et al (1984)). Unlike the differentiation matrices for

alternative, local discretizatlons, these matrices are full. Hence, the

matrix-vector multiplication which produces the derivative at the collo-

cation points costs 2N2 operations. These operation counts suggest

that for N > 16, transform methods are faster for differentiation
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than matrix multiplies. On modern scalar and vector computers the

transform methods become faster than the matrlx-vector multiply methods

for N between 16 and 32 (CHQZ, Ch. 2).

An important issue in many applications of Chebyshev spectral

methods is the manner in which the boundary conditions are enforced.

Dirichlet boundary conditions are generally straightforward. Neumann

boundary conditions may be enforced by altering the boundary values to

ensure the desired normal derivative or by building the boundary

condition into the differential operator (Streett, et al (1985)). For

hyperbolic systems, characteristic boundary conditions are a virtual

necessity (Gottlieb, et al (1981), Salas, et al (1985)). Canuto and

Quarteroni (1986) discuss how to implement characteristic boundary

conditions for implicit time discretizations. Chebyshev spectral

methods have the advantages (over standard finite difference schemes)

that they require the same number and type of boundary conditions as the

analytical formulations of the problem, and that no special difference

formulae are required at the boundary.

The spectra of the discrete differentiation operators Dq are an

important characteristic of numerical methods. For Fourier approxima-

tions to periodic problems, these are obvious: purely imaginary and

growing as N/2 for DI, negative real and growing as N2/4 for D2.

Indeed, for periodic problems such as ut + ux = 0, the Fourier

eigenvalues are exactly equal to their analytic counterparts. This

means that Fourier spectral methods propagate the numerical solution

with zero phase error. This is illustrated in Figure 2 for the problem

whose solution is u(x,t) = sin(_ cos(x-t)). The lagging phase of the



finite difference solution is apparent, whereas the Fourier solution is

indistinguishable from the true one. Of course, in realistic problems,

variable coefficients or nonlinear terms will introduce non-zero (but

still relatively small) phase errors.

Figure 3 displays the eigenvalues of a Chebyshev approximation to

d/dx on [-I,I] with homogeneous Dirichlet boundary conditions at

x = +I. The eigenvalues are predominantly imaginary but do have

negative real parts. The absolute value of the largest eigenvalue grows

as N2. These eigenvalues may be surprising at first sight. After all,

the periodic discrete problem has purely imaginary eigenvalues, whereas

the non-periodic continuous problem has no discrete eignevalues.

Nevertheless, Figure 3 does convey the nature of the eigenvalues of the

discrete problem and these are crucial for both time differencing

methods and iterative schemes. The eigenvalues of Chebyshev

approximations to d2/dx 2 with homogeneous Dirichlet boundary

conditions at x = -i and x = +I are real and negative and the

largest eigenvalue grows as N4 (Gottlleb and Lustman (1983)).

In practice, when one is solving an evolution problem such as ut =

Lu, where the operator L contains all the spatial derivatives, one

combines a spectral discretization of L with a standard finite

difference technique for the time derivative. The Leap Frog, Adams-

Bashforth, Crank-Nicolson, and Runge-Kutta schemes are the ones most

commonly used (CHQZ, Ch. 4). The stability regions of these schemes

depend upon the spatial operators. The stability properties of Fourier

methods are qualitatively the same as those for second-order central

difference spatial operators. However, the precise stability limit is



I0

typically a factor of (1/_) n smaller for Fourier approximations,

where n is the order of the highest spatial derivative which appears

in L.

The stability properties of Chebyshev methods are more subtle. For

example, Leap Frog is unconditionally unstable for advection problems,

such as ut + ux = 0, since the discrete eigenvalues of the spatial

operator have negative real parts. On the other hand, second-order

Adams-Bashforth and Runge-Kutta methods are strictly stable (and not

weakly unstable like their Fourier counterparts) for the same reason.

The typical time-step limitations on Chebyshev methods are I/N 2

for first derivative operators and I/N 4 for second derivative ones.

These are far more stringent than the analogous restrictions for uniform

grid finite difference approximations. They arise from the crowding of

the collocation points near the boundaries (see Figure I). Although

this crowding necessitates small time-steps, it is required for the high

spatial resolution of the method and is quite advantageous for problems

with boundary layers. This is, however, a substantial disadvantage for

problems with very little structure near the boundaries. It can be

alleviated to some degree by mapping, but a mapping to a uniform grid is

counter-productive because it destroys the spatial accuracy.

This Chebyshev time-step limitation disappears when implicit time

discretizations are employed. The principal difficulty is obtaining

efficient solutions of the resulting implicit equations, since the

matrices which represent the differentiation operators are full. In

some special cases, fast direct solution methods are available. These

typically require low-order polynomial coefficients and, in multi-
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dimensional problems, at most one non-periodic direction (GO, Chs. 9 and

i0, Moser, et al (1983)).

The use of implicit techniques in more general situations requires

iteratlve methods. This has been one of the major developments of the

current decade (CHQZ, Ch. 5). Let us denote a typical linear, implicit

system arising from a spectral discretizatlon as Lsp u = f . The

simplest iterative scheme -- Richardson's method -- is just

f

(10)u + u + _If.- L u)
sp

where _ is an acceleration parameter. The matrix Lsp will be full

and will have eigenvalues which grow rapidly as the number of grid

points increases. The fullness of the matrix does not preclude

iterative methods since transform techniques for differentiation permit

the matrix-vector product Lsp u to be computed in O(N log 2 N)

operations rather than O(N2). The slow convergence which results from

the large eigenvalues of Lsp can be ameliorated by preconditioning.

In this case the basic iterative scheme is

u . u + _H-IIf - Lsp u) (II)

where H is a preconditioning matrix. This will accelerate convergence

if H is a good approximation to Lsp , and it will be relatively

inexpensive if H is readily inverted. The former condition is met by

low-order finite difference (Orszag (1980)) and finite element (Deville

and Mund (1985)) approximations to Lsp. Although the latter condition
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certainly holds for one dimensional problems, these particular

preconditionings become increasingly expensive to invert as the

dlmensionality of the problem increases.

The most attractive approach to very large problems is to combine a

less accurate but more readily inverted preconditioning with multigrid

techniques. Spectral multigrid methods take advantage of the fact that

most iterative methods are highly effective in reducing the error

components corresponding to the upper half of the eigenvalue spectrum,

but are very inefficient on the remaining, low frequency components.

Thus, in a multigrid method one combines iterations on the desired grid

with (much cheaper) iterations on successively coarser grids. The

details of this method are admittedly subtle, but they have been

carefully described in a series of papers (Zang, et al (1982, 1984),

Streett, et al (1985), Phillips, et al (1986)). Brandt, et al (1985)

have demonstrated that many periodic problems can be successfully solved

in this manner without the need for any preconditioning.

Another recent innovation has been the development of spectral

multidomain techniques. These allow spectral methods to be applied to

geometries for which a single, global expansion is either impossible, or

else inadvisable due to resolution requirements which vary widely over

the domain. In a multidomain technique the full domain is partitioned

into (not necessarily disjoint) subdomains. These may be patched

together at interfaces or else they may overlap. The crucial part of

the patched multidomain methods are the interface conditions. These may

be expressed explicitly as continuity conditions (Orszag (1980), Kopriva

(1986)), may arise from a variational principle (Patera (1984)), may
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consist of integral constraints (Macaraeg and Streett (1986)), or may be

enforced by a penalty method (Delves and Hall (1979)). The spectral

element method of Patera is to date the most highly developed of

these. Many techniques, such as isoparametric elements (Korczak and

Patera (1986)), have been borrowed from conventional finite element

methodology. Indeed, there are many similarities in this approach to

the p-version of the finite element method (Babuska and Dorr (1981)).

Figure 4 illustrates a spectral element grid as well as the computed

solution for flow past a cylinder (Karniadakis, et al (1986)). In all

cases convergence is achieved with a fixed number of subdomains while

the number of grid points on each subdomain increases. The spectral

overlapping subdomaln methods were devised by Morchoisne, et al (1983),

and are currently being investigated extensively in Europe.

INVISClD FLOW

Perhaps the simplest fluid dynamical problems are those which are

steady, inviscid, incompressible and irrotational. In terms of the

velocity potential _, these are described by the Laplace equation

V2 _ = 0 (12)

with Neumann conditions on the boundaries. Spectral methods can be

quite effective on such elliptic problems and also on the slightly more

general class of problems described by

V2 _ - _ = f (13)
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with Dirichlet, Neumann or mixed boundary conditions. These more

general methods could easily be applied to the idealized flow problem

described above.

Spectral methods have been developed for such Poisson/Helmholtz

problems in a variety of geometries. Direct methods are straightforward

when at most one of the directions requires non-periodlc boundary

conditions, and hence a Chebyshev polynomial representation. Constant

coefficient equations become diagonal in the periodic directions. In a

cartesian non-periodic direction the equation can be reduced to a quasi-

tridiagonal form (GO, Ch. 10) if the domain is finite and a penta-

diagonal form if it is infinite and the cotangent mapping is used (Cain,

et al (1984)). Otherwise, a matrix diagonalization technique can be

employed (Murdock (1977), Haidvogel and Zang (1979)). Direct methods

for problems with 2 or more non-periodic directions have been discussed

by Haidvogel and Zang (1979), Haldenwang, et al (1984), and LeQuere and

Roquefort (1985). Some extensions to three non-periodic directions are

described by Haldenwang, et al (1984) and Tan (1985). Iterative methods

allow efficient treatment of more general geometries, especially for

exterior problems. See Canuto, et al (1985) and Deville and Mund (1985)

for some standard techniques. Especially for very large problems of

this type, spectral multigrid methods appear to be the most efficient

(Zang, et al (1982, 1984)).

Compressible potential flow is described by a similar, but

nonlinear equation

V • (p V i) = 0 (14)
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where the density p is a quadratic function of V_. For subsonic

flow this problem is elliptic. Streett, et al (1985) have demonstrated

the great efficiency that spectral multigrld methods achieve for this

case. They have applied these techniques to the two-dlmenslonal flow

past a circular cylinder. Using a mere 2000 grid points they have

obtained an estimate for the free stream Mach number at which the flow

first becomes sonic. It agrees to 6 digits with the results of van Dyke

and Guttman (1983) based on a Raylelgh-Jensen expansion.

For transonic flow, the potential equation is of mixed type, with a

supersonic pocket embedded in a subsonic flow. There will be a sonic

line and usually a shock which terminates the supersonic region. The

challenging numerical task is to obtain a converged solution to the

discrete, nonlinear potential equation. Spectral multigrid methods have

proven competitive with finite difference methods and achieve substan-

tial economies in storage (Streett, et al (1985)).

Still within the confines of invlscid flow, one can obtain the

effects of vortlclty by resorting to the Euler equations

_--@-P+ V • (pq) = 0_t

8_ I Vp. (15)

_s
_t + _ VS = 0,

where _ is the velocity, p is the pressure, S is the entropy, and

p = pY es/s0. As is the case for all numerical methods, the real
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delicacy is the treatment of sonic lines and shock waves. The

discontinuities arising from shocks are especially troublesome for

spectral methods. The global nature of these approximations induces

oscillations in the solution which are essentially of a Gibbs phenomenon

type. The high frequency component of the solution decays very slowly.

This part of the spectrum must be filtered to produce a presentable

approximation. A detailed mathematical analysis of filtering techniques

in Fourier spectral methods for linear, hyperbolic problems with

discontinuous solutions has been presented by Majda, et al (1978). A

post-processing procedure that involves matching the computed solution

with simple discontinuities has been discussed by Abarbanel, et al

(1985).

The first applications of spectral methods to compressible flows

focused on the treatment of shock waves in one-dimenslonal problems

(Gottlieb, et al (1981), Zang and Hussaini (1981), Taylor, et al

(1981)). As is the case with finite difference methods, spectral

methods for problems involving shocks require some type of explicit or

implicit numerical dissipation. In solutions to partial differential

equations the explicit dissipation may take the form of a linear,

spectral filter, or it may consist of an artificial viscosity term which

is added to the Euler equations. This artificial viscosity may be

nonlinear. Approximations based on Chebyshev polynomials may be stable

without any explicit dissipation since the Chebyshev derivative operator

contains implicit dissipation (Gottlieb, et al (1981)).

Most investigations have confined themselves to problems whose

solutions (even in two-dimensions, Sakell (1984)), were either piecewise
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constant or else plecewise linear. No one has yet exhibited a spectral

solution to a problem with both shock waves and complex flow structure

in which spectral accuracy was attained (Hussainl, et al (1985a)).

The difficulties that shock capturing spectral methods exhibit are

not due to any intrinsic difficulty in resolving transonic and super-

sonic flows. Kopriva, et al (1984) solved the Ringleb flow problem,

which is a smooth two-dimensional transonic flow with a closed form

solution, by a Chebyshev spectral method. They were able to exhibit the

usual sPectral accuracy on this class of problems.

The shock-fittlng approach popularized by Morettl (1968) for finite

difference schemes was adapted to spectral dlscretlzations by Salas, et

al (1982). This technique avoids the Gibbs phenomenon by treating the

shock as a boundary rather than as an interior region of the flow. It

is applicable to flows which contain a few, geometrically simple shocks.

Some problems for which high resolution results have been obtained by

this method are the shock-vortex iteractlon (Salas, et al (1982)), the

shock-turbulence interaction (Zang, et al (1983), and the blunt body

problem (Hussalnl, et al (1985b)).

BOUNDARY LAYER

In many aerodynamic applications the boundary layer equations are

an economical and useful model of viscous effects, especially when

coupled interactively with an invlscid model for the outer flow (AGARD,

1981). In similarity variables the two-dlmenslonal boundary layer is

described by



18

(v 8f 8f - _f
_n _) - v _- B(f 2 11 - 2_f _ = 0

(,16)

_v _f

_-_+ f + 2_ _= 0

where f is the non-dimensional streamwise velocity, v is the normal

velocity, n is the normal coordinate, and _ is the streamwise

coordinate. The boundary conditions are f = v = 0 at n = 0 and

f + I as n . =. An inflow condition is required at some _ = _0"

Chebyshev spectral approximations to the similar version of this

system (_/_ = 0) are fairly straightforward to obtain by simple

preconditioned iterative schemes (Streett, et al (1984)). This work

demonstrated that a combination of domain truncation (typically at

n = 15) and grid stretching (to pack grid points near the solid

boundary) is quite effective. A mere 20 collocation points will

usually yield values for the wall shear and displacement thickness that

have 3-digit accuracy, while 30 points produce 5-digit accuracy.

The full non-similar equations are more challenging since there is

a Chebyshev approximation in two directions. Streett, et al (1984) used

an alternating direction type of preconditioning to obtain a solution.

For non-similar flow roughly 20 polynomials in $ (coupled with 25 in

n) are required for 3-digit accuracy. They found that the Chebyshev

approximation in $ produced a substantial improvement over a simpler,

mixed scheme which used finite differences in _ together with

Chebyshev collocation in n. The global nature of the streamwise

approximation is especially useful for handling separated flow. In this

case marching techniques in _ are ineffective for finite difference
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approximations. Figure 5 displays the streamlines and skin friction

from a fully spectral solution of separated boundary layer flow. The

arrow marks the region of the flow which is most sensitive to the

numerical resolution. To obtain 4-digit accuracy in the skin friction

here requires 40 collocation points in the normal direction and 26 in

the streamwise direction. The corresponding requirements for a standard

second-order finite difference method are 240 and 200 points

respectively. Moreover, the spectral solution requires only 10% of the

CPU time taken by the finite difference method.

NAVIER-STOKES FLOW

Much of the current enthusiasm for spectral methods is attributable

to their success on simple, yet computationally intensive problems in

viscous, time-dependent, incompressible flow. The pioneering

simulations of three-dimensional homogeneous, isotropic turbulence by

Orszag and Patterson (1972) were particularly influential. Subsequent

calculations of three-dimensional transition and turbulence in simple

wall-bounded flows have also been persuasive. Algorithms for these

problems are substantially more difficult and time-consuming than those

for homogeneous flows. The presence of non-periodic boundary conditions

makes purely Fourier methods inappropriate and detailed simulations of

transition problems typically require an order of magnitude more time-

steps than do turbulence problems. The simplest class of such problems

consists of flows which are assumed to be periodic in two directions,

e.g., Poiseuille flow and Taylor-Couette flow for cylinders of infinite
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length. In these cases, ones needs a Chebyshev discretizatlon in only

one direction. Several types of multidomain spectral techniques are

currently being explored to extend further the class of viscous problems

that are amenable to spectral methods.

In many applications the preferred version of the Navier-Stokes

equations is

uV 28t +__ x q= - VP + g

(17)

V.q= 0.

The velocity is denoted by _, the pressure by p, the vorticity by

= V x _, the pressure head by P = P + (I/201q_J2, and the kinematic

viscosity by v. This so-called "rotation" form is favored because, as

noted by Orszag (1972), the use of the rotation form guarantees that

Fourier collocation methods conserve kinetic energy. One can easily

show that momentum is conserved as well. The conservation of kinetic

energy is especially important for numerical reasons. In practice, it

means that if the time differencing scheme is operated at time-steps

below its stability limit, then nonlinear instabilities will not occur.

Homoseneous Turbulence

Homogeneous, isotropic turbulence is perhaps the one fluid

dynamical problem for which strictly periodic boundary conditions in all

spatial directions are justifiable. Hence, Fourier spectral methods are

ideally suited for this class of problems. Moreover, since the
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nonlinearities of the Navier Stokes equations are at worst quadratic,

Fourier Galerkin methods are the most natural and efficient spectral

technique for this problem (Orszag and Patterson (1972). Rogallo (1981)

developed a linear coordinate transformation that permits simulation of

flows with constant strain, shear and rotation within the confines of

periodic boundary conditions. Rogallo (1981) and Basdevant (1983) have

discussed techniques for minimizing the storage, CPU time and I/0 costs

of such algorithms.

The original simulations of Orszag and Patterson were on 323

grids _. By the early 1980"s, 643 simulations were fairly routine.

Rogallo (1981), Kerr (1985) and Lee and Reynolds (1985) have performed

numerous 1283 simulations. By fully exploiting the special symmetries

of the Taylor-Green vortex, Brachet, et al (1983) achieved a simulation

of this flow at a Reynolds number of 3000 with an effective resolution

of 2563 .

Fourier collocation approximations to this problem are also

possible. For these approximations use of the rotation form of the

Navier-Stokes equations is crucial. (Galerkin approximations to the

inviscid form of these equations will automatically conserve momentum

and kinetic energy in the absence of time differencing errors).

The review by Rogallo and Moin (1984) discusses many applications

of these techniques to problems in homogeneous turbulence. Here we need

mention only the most recent applications. A primary goal of most of

the simulations of isotropic turbulence has been to establish

numerically the existence of an inertial range. The inertial range has,

of course, been established experimentally, but only for Reynolds
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numbers exceeding I0,000. Even though the high resolution calculations

of Brachet, et al (1983) were performed at a Reynolds number of 3000,

which is uncomfortably low by experimental standards, they did achieve

the first plausible inertial range in a numerical simulation of

turbulence. Bardlna, et al (1985) and Dang and Roy (1985) have

simulated the evolution of turbulence intensity in rotating flow. Wu,

et al (1985) have performed calculations of compressed turbulence. Lee

and Reynolds (1985) have analyzed the structure of turbulence in

axlsymmetrlcally contracting and expanding flow. Moln, et al (1985)

have used numerical simulations to extract the large-scale vortical

structures of some turbulent shear flows. Kerr (1985) has examined

high-order correlations and small-scale structure in Isotropic

turbulence involving passive scalars.

A few applications, all using the collocation technique, have been

made to compressible, homogeneous turbulence. Felereisen, et al (1981)

simulated subsonic turbulent flows with uniform shear. They used a

collocation method, in part because a Galerkln method is much more

cumbersome and costly for problems with more than quadratic

nonlinearities. Compressible, two-dlmenslonal turbulence has been

investigated by Leorat, et al (1985) and by Delorme (1984), the former

with a fairly standard scheme and the latter with an implicit time-

differencing method based on the ideas of Lerat, et al (1982).

Linear Stability

Most investigations of stability and transition in wall-bounded

flows rely, at least in part, upon the results of linear stability
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theory. The Orr-Sommerfeld equation has been the basis for many

investigations of the stability of incompressible parallel flows (Drazin

and Reid (1981)). This eigenvalue problem is described by a fourth-

order ordinary differential equation. The Chebyshev approximation

developed by Orszag (1971) for the temporal stability problem has been

adopted and extended by many investigators. (A separate development of

Chebyshev methods for ordinary differential eigenvalue problems has been

conducted by Ortiz. See Chaves and Ortiz (1968) and, more recently,

Ortiz and Samara (1983).) Leonard and Wray (1982) developed a Galerkin

method for pipe flow which uses special Jacobi polynomials. Spalart

(1984) demonstrated that for exterior flows (such as the parallel

boundary layer) the use of only half the usual Chebyshev basis was

advisable. Boyd (1985) has developed methods in the complex plane which

are useful for flows in which the critical layer is well-separated from

the wall. Von Kerczek (1982) has used Chebyshev polynomials for

assessing the stability of oscillatory plane Poiseuille flow. Mac

Giolla Mhuiris (1986) has used the Galerkin technique to examine the

linear stability of some axisymmetric flows which are relevant to the

vortex breakdown problem.

The spatial stability versions of these problems are more difficult

because the eigenvalue enters nonlinearly. Chebyshev methods for time-

independent but spatially growing perturbations of Poiseuille flow are

discussed by Bramley and Dennis (1982). Bridges and Morris (1984a,

1984b) solved by a spectral method the more difficult, general spatial

stability problem of self-similar boundary layers.

These methods have been extended, in the manner of Floquet theory,
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to include weakly nonlinear effects. In addition to a Chebyshev

discretlzatlon in the direction normal to the wall, one includes several

Fourier harmonics in the streamwlse direction. Orszag and Patera (1983)

and Herbert (1983a) have used this approach to determine the neutral

stability surface of finite amplitude two-dimensional Tollmlen-

Schllchtlng waves in channel flow. In turn, the linear stability of

these neutral finite amplitude waves can be examined. Thus, the linear

stability of some special, temporally and spatially varying flows can be

examined. Orszag and Patera (1983) have used this technique to study

the interaction of two-dimensional and three-dimensional Tollmien-

Schllchtlng waves in channel flow. Herbert (1983a, 1983b, 1984) has

performed a detailed study of channel and boundary layer flows. He h_s

unravelled the details of fundamental and subharmonlc instabilities in

parallel flows.

Transition

Transition to turbulence is highly nonlinear and a full simulation

of the Navier-Stokes equations is required for its investigation. The

primary difficulty of algorithms for incompressible flows is the

simultaneous enforcement of the incompresslblity constraint and the no-

slip boundary condition. This constraint is most easily but least

rigorously satisfied in splitting methods, of which the Orszag-Kells

(1980) algorithm is the prototype. The splitting errors of this method

are 0(I) near the boundary for the normal pressure gradient and

diffusion terms (Deville 1985). They appear to cause no serious errors

in the channel flow problem. However, Marcus (1984a) decisively
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demonstrated that the boundary errors produce serious inaccuracies in

Taylor-Couette flow -- as both the spatial and temporal discretizatlons

are refined, the algorithm appears to converge to answers that disagree

with experiments in the third digit. Marcus (1984a) and Klelser and

Schumann (1984) devised an influence matrix technique which completely

eliminates the splitting errors at a modest extra cost. Marcus found

that the results of this algorithm agreed with the experimental results

to the full 4 digits that were available. He ascribed the sensitivity

of the rotating cylinder problem to the fact that its dynamics are

driven by the motion of the boundary rather than by a mean pressure

gradient.

A procedure for reducing, although not entirely eliminating the

splitting errors at the boundary, was devised by Fortin, et al (1971)

for finite element methods (re-discovered later by Kim and Moin (1985)),

and applied to spectral algorithms by Zang and Hussaini (1986). It

consists of modifying the boundary conditions for the intermediate steps

of the algorithm so that both the no-slip and divergence-free conditions

are satisfied at the end of the full tlme-step to a higher order in the

size of the time-step.

The big advantage of these splitting techniques is that they

require the solution of only Polsson equations (for the pressure) or

Helmholtz equations (from a Crank-Nicolson dlscretlzatlon of the viscous

term). These positive definite, scalar equations are much easier to

solve numerically that the indefinite, coupled equations that arise in

unsplit methods. The Orszag-Kells, Marcus and Kleiser-Schumann

algorithms resort to direct solution methods of the type discussed in
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section 3. The Zang-Hussaini algorithm employs iterative techniques so

that it is applicable to a wider class of problems. The most sophis-

ticated and powerful of the iterative techniques is the spectral multi-

grid method. It makes the cost of a single time-step of order

N3 log 2 N, even for problems with variable geometric terms and transport

coefficients. In contrast, a parallel flow problem, even with uniform

transport coefficients, requires order N4 operations per step by

direct methods.

One way to avoid the splitting errors is to integrate the

incompressible Navier-Stokes equations in a single step that couples the

divergence-free constraint with the momentum equations. The numerical

difficulty of this approach is that one must invert a larger set of

equations (it involves the pressure as well as the three velocity

components), which is indefinite. In a few special cases direct

techniques are viable (Moin and Kim (1980)). The preconditioned

iterative scheme of Malik, et al (1985) has been applied to channel flow

(Zang and Hussaini (1985a)) and to the heated boundary layer (Zang and

Hussaini (1985b)), a problem which involves variable transport

coefficients, and also in a verification of weakly nonlinear stability

theory for stagnation point flow (Hall and Malik (1986)).

Many of the numerical problems caused by the incompressibility

constraint can be avoided by an expansion in functions which are

divergence-free (Ladyzhenskaya 1969, Temam 1977). Leonard and Wray

(1982) first applied this idea to spectral methods. They devised a set

of basis functions for pipe flow which are both divergence-free and

satisfy no-slip boundary conditions. Similar basis functions have been
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developed for straight and curved channels (Moser, et al (1983)) and for

the parallel boundary layer (Spalart (1984)). This class of methods can

be quite economical of storage since only two variables per grid point

are required to specify the flow field. (However, in actual

implementations it may be more efficient in terms of CPU time to store

several additional quantities per grid point.) The efficiency of these

methods is dependent upon the bandwidth of the matrices which arise from

the implicit treatment of the viscous terms. In the examples cited

above, the bandwidth is quite small, roughly of order I0. This

requirement has dictated the use of special Jacobi polynomials rather

than Chebyshev ones in pipe and boundary layer flow. As a consequence,

transform methods are not applicable in the non-periodic direction.

Hence, the cost of evaluating the nonlinear terms increases as N4

rather than as N3 log 2 N. Moreover, in even slightly more general

cases, the matrices can be completely full.

Orszag and Patera (1983) performed a parametric study of the

secondary instability in channels and pipes, demonstrating that

subcritical instabilities exist at Reynolds numbers as low as 1100.

Kleiser and Schumann (1984) replicated many of the features of the

Nishioka, et al (1980) experiments on channel flow transition. Both

groups also obtained good quantitative agreement with the predictions of

weakly nonlinear theory. The subharmonic instabilities that were

predicted by Herbert's (1983b), (1984) weakly nonlinear analysis (and

are also in evidence in boundary layer experiments, Saric, et al 1984),

were reproduced by Spalart (1985) and Laurien (1986) for the boundary

layer and by Zang and Hussaini (1985a), and by Singer, et al (1986) for
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channel flow. The existence of a similar nonlinear instability of

center modes in channel flow was uncovered by Zang and Hussainl

(1985a). A detailed comparision of nonlinear effects on the laminar

flow control techniques of pressure gradient, suction and heating in

boundary layer flow was made by Zang and Hussalnl (1985b). Krist and

Zang (1986) have performed a detailed study of the resolution require-

ments for simulation of the later stages of transition to turbulence in

channel flow. The spanwise direction places the greatest demands on the

resolution because of the very sharp spanwlse gradients which occur near

the tip of the characteristic hairpin vortex. Figure 6, which is

extracted from that work, illustrates the structure.

Marcus (1984a, 1984b) has performed a careful numerical study of

non-axisymmetrlc instabilities in classical Taylor-Couette flow. He has

produced 4-diglt agreement with the wave speeds measured by King, et al

(1984) for both the one wavy-vortex and the two wavy vortex states.

Marcus and Tuckerman (1986a, 1986b) have simulated axlsymmetric

spherical Couette flow. Unlike previous workers they did not assume

equatorial symmetry. This was a crucial factor in their success in

reproducing the transitions between 0, I, and 2 vortex states observed

by Wimmer (1976).

Inhomogeneous Turbulence

In several cases these algorithms have been used to simulate

turbulence in wall-bounded flows. Orszag and Patera (1983) performed a

643 simulation of turbulent channel flow which reproduced the turbulent

velocity profile, including the law of the wall behavior. Moser, et al
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(1984) computed turbulent flow in a curved channel on a 1282 x 64

grid. They reproduced some of the data on low-order turbulence

statistics and exhibited some of the effects of curvature. Spalart and

Leonard (1985) have done some analyses of pressure gradient effects in

turbulent boundary layers.

More Realistic Geometries

As noted above, there is a substantial increase in cost when there

is more than one inhomogeneous direction in the problem. The Kleiser-

Schumann influence matrix technique has been extended to two non-

periodic directions by LeQuere and Roquefort (1985), who used it to

study thermal convection in a square cavity. Streett and Hussaini

(1986) similarly extended the split algorithm of Zang and Hussaini

(1986), and used it to study the effect of finite length cylinders in

Taylor-Couette flow. Ku and Taylor (1985) have developed an algorithm

for three non-periodic directions. This method presently treats only

the pressure term implicitly. Thus, there can be a severe time-step

limitation arising from the viscous terms. Morchoisne (1984) has

developed a number of methods for problems with more than one non-

periodic direction. In general iteratlve techniques are used for

solving the resulting implicit equations. There has not yet been any

systematic comparison of these methods. Leonard (1984) has derived a

set of divergence-free basis functions for 2 nonperiodic directions, but

an efficient solution technique for the implicit equations has not yet

been devised.

Several of the multidomain spectral methods have been applied to
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viscous problems. Morchoisne (1984) has performed some sample calcula-

tions of channel flow. The spectral element has been used to calculate

heat transfer in a two-dimensional, grooved channel (Ghaddar, et al

(1984)) and to investigate stability and resonance phenomena in imbedded

cavities in channel flows (Ghaddar, et al (1986a, 1986b)). Other

applications include two-dimenslonal flow past a cylinder and flow past

three-dimensional roughness elements (Karniadakis, et al (1986)).

Spectral/Finite Difference and Quasi-Spectral Methods

Heretofore, this review has been confined to numerical fluid

dynamical work which employed spectral discretizations in all coordinate

directions. There have, of course, been numerous computations which

used mixed spectral/finlte difference methods, i.e., algorithms with

spectral discretlzatlons in some directions and finite differences in

the others. The parallel boundary layer transition calculations of Wray

and Hussalnl (1984) fall into this category. They used a Fourier

spectral method in two periodic directions and second-order finite

differences in the normal direction. They demonstrated that, despite

the neglect of non-parallel effects, these simulations could reproduce

features observed experimentally by Kovasznay, et al (1962), up to the

so-called "two-splke stage" of transition. A slightly different

spectral/finite difference method was used by Moin and Kim (1982) in

their large-eddy simulations of turbulent channel flow and by Biringen

(1985) in a study of active control in channel flows. More recently,

Eidson, et al (1986) have used a similar algorithm in a high resolution

direct simulation of a turbulent Raylelgh-Benard flow.

Another alternative to true spectral methods are what might be
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termed quasi-spectral methods. Such algorithms employ Fourier expan-

sions in all directions but infinite-order accuracy is not attained due

to non-periodlc physical boundary conditions in at least one

direction. The simulations by Riley and Metcalfe (1980) of a time-

developing mixing layer fall into this category. In this idealized flow

the mean velocity is solely a function of the transverse coordinate

y. Although the flow extends to y = ±=, Riley and Metcalfe computed on

a finite domain in y and used sine or cosine expansion to enforce

free-slip boundary conditions in y. Quasi-spectral methods have also

been used by Curry, et al (1984) to study Benard convection.

True spectral methods have been developed for the time developing

mixing layer. Cain, et al (1984) use a cotangent transformation in y

combined with a Fourier method. Metcalfe, et al (1986) use hyperbolic

tangent or algebraic transformations combined with a Chebyshev method.

Riley and Metcalfe (1980) find that large amplitude two-dlmensional

disturbances have a pronounced effect upon the evolution of a turbulent

mixing layer. Metcalfe, et al (1986) find that the mixing layer

exhibits three-dimensional secondary instabilities similar to those

which occur in wall-bounded flows. They appear to account for the

mushroom-shaped features which are observed experimentally. Cain, et al

(1981) have performed large-eddy simulations of this problem.

REACTING FLOWS

An emerging application field for spectral methods is reacting

flows. These flows are especially challenging because they contain
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sharp gradients in both space and time and because most real flows

involve dozens or even hundreds of species. Flame fronts and shock

waves are an additional complication. Some of the important features

are mixing rates, ignition, and flame holding.

There are a number of simplifying assumptions which lead to more

tractable, but less realistic, models of reacting flows. The most

drastic of these is that the reactions proceed without heat release and

that the Mach number is so low that the flow may be trated as incompres-

sible. Riley, et al (1986) have performed some three-dimensional

simulations of a 2 species, time-developing mixing layer. They used a

quasi-spectral method and obtained good agreement with both similarity

theory and experimental data.

McMurtry, et al (1986) employed a low Mach number approximation

which includes some mild heat release effects but neglects the acoustic

modes. They performed some two-dimensional calculations which indicate

that the first-order effect of heat release is to reduce the rate of

mixing.

Drummond, et al (1986) applied a Chebyshev spectral method to a

supersonic quasi-one-dimensional diverging nozzle flow with a simple but

quite stiff 2 species hydrogen-air reaction. The spectral method

proved to be quite economical compared with a benchmark finite

difference result. The Chebyshev grid point distribution was quite

well-adapted to the sharp gradients at the nozzle inflow, but less well-

suited to the fairly uniform outflow region.
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PERSPECTIVE

A decade ago spectral methods appeared to be well-suited only to

problems governed by ordinary differential equations or by partial

differential equations with periodic boundary conditions. And, of

course, the solution itself needed to be smooth. Some of the obstacles

to wider application of spectral methods were: i) sensitivity to

boundary conditions; 2) treatment of discontinuous solutions; 3)

resolution and time-step limitations imposed by the standard spectral

grids; and 4) drastic geometric constraints.

Substantial progress has been made on the implementation of Neumann

boundary conditions, on characteristic boundary conditions for

hyperbolic systems, and on the use of pressure and intermediate boundary

conditions in incompressible flow. There have been some theoretical

advances on filtering techniques for discontinuous solutions to linear

problems. Moreover, the development of shock-fittlng techniques has

opened a new field of applications to compressible flows with shock

waves. Some efficient direct solution techniques have been devised

which enable severe viscous time-step limitations to be overcome in

certain special geometries. The development of preconditioned iterative

methods and, in particular, spectral multigrid techniques have radically

expanded the class of problems which can be handled efficiently by

spectral methods. Moreover, they lend much greater flexibility

(combined with mapping techniques) to the grid point distribution.

Finally, various multidomain techniques have expanded the range of

spectral methods to many problems of real, practical interest.
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CAPTIONS

I. Comparison of finite difference (left) and Chebyshev spectral (right)

differentiation. The solid curves represent the exact function and the

dashed curves their numerical approximations. The solid lines are the

exact tangents at x = 0 and the dashed lines the approximate tangents.

The error in slope is noted as is the number of intervals N.

2. Finite difference (circles) and Fourier spectral (diamonds) approximations

after one period to a simple wave equation whose exact solution is

represented by the curve.

3. Eigenvalues of the Chebyshev first derivative operator for N = 16.

4. A spectral element grid (top) and the corresponding numerical solution for

flow past a circular cylinder (courtesy of G. E. Karniadakis and A. T.

Patera).

5. Streamlines (top) and skin friction (bottom) from a Chebyshev spectral

solution of the boundary layer equations (courtesy of C. Streett).

6. Streamwise (left) and spanwise (right) vorticity at four streamwise

locations for a hairpin vortex in low Reynolds number channel flow

transition. Only the lower half of the channel is shown.
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