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ABSTRACT

In this paper a partially reinforced cylinder containing an axial through
crack is considered. The reinforcement is assumed to be fully bonded to the
main cylinder. The composite cylinder is thus modelled by a nonhomogeneous
shell having a step change in the elastic properties at the z=0 plane, z being
the axial coordinate. Using a Reissner type transverse shear theory the
problem is reduced to a pair of singular integral equations. In the special
case of a crack tip touching the bimaterial interface it is shown that the
dominant parts of the kernels of the integral equations associated with both
membrane loading and bending of the shell reduce to the generalized Cauchy
kernel obtained for the corresponding plane stress case. The integral equa-
tions are solved and the stress intensity factors are given for various crack
and shell dimensions. A bonded fiberglass reinforcement which may serve as
a crack arrester is used as an example.

1. Introduction

In studying the failure of structures for the purpose of calculating
the fracture mechanics parameters, a very large variety of structural compo-
nents may locally be modelled as relatively thin-walled plates or shells.
Nearly all "pressure boundaries" and piping as well as some important parts
of aerospace and hydrospace structures may be cited as examples of such com-
ponents. From a viewpoint of structural integrity two of the important
questions one may be concerned with in this respect are the life estimate
based on the subcritical growth of an existing flaw and the residual strength
or the load carrying capacity 'of the structure based on the criticality of
a dominant flaw. In most cases the two questions may be adequately dealt
with by idealizing the component with a plate or a shell and the flaw with a

(*)This study was supported by NSF under the Grant MEA-8414477 and by NASA-
Langley under the Grant NGR-39-007-011,

(**) Permanent address: Department of Mechanical Engineering, Middle East
Technical University, Ankara, Turkey.
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part-through or a through crack, by calculating the appropriate fracture

mechanics parameter (e.g., the stress intensity factor), and by applying a
suitable criterion along with the baseline characterization of the material.

In relatively thin-walled structures the inherently three-dimensional
crack problem is approximated by a "plate" or a "shell" problem, that is, by
suppressing the thickness coordinate through the use of a plate or a shell
theory. In the earlier studies of the subject the classical plate and shell
theories were used to solve the problem (see, for example, [1] for review).
However, particularly in problems requiring the calculation of the stress
intensity factors, the necessity of using a higher order theory has now
been well-established. For example, it has been shown that by using a Reissner
type transverse shear theory [2] (and hence by satisfying the boundary condi-
tions on the crack surfaces for all stress and moment resultants separately)
one could obtain an asymptotic stress state around the crack tips which is
identical to that given by the in-plane and anti-plane elasticity solutions
(see, for example, [3], [4] and [5]). Furthermore, it has also been shown
that in the limiting case of small crack lengths these plate and shell results
approach that of plane elasticity not only for the internal but also for the
edge cracks [6], [7], [8]. Other results obtained by using a transverse
shear theory for various crack-shell geometries and loading conditions may
be found in [9]-[12].

With the exception of [7], [8] and [13], in all crack studies in shells
that appeared in literature the shell is assumed to be "infinite" in the
sense that the interaction of the perturbation field of the crack with the
boundaries of or with other geometric discontinuities in the shell are assumed
to be negligible. The interaction of the stress field around the crack with
a stress-free boundary and with a fully clamped boundary in a cylindrical
shell was considered in [7] and [8], respectively, where the special case
of the crack intersecting the boundary has also been studied. In [13] the
interaction of a crack field with a circumferential line stiffener in a cylin-
drical shell was studied by using the classical shell theory. In this paper
we consider the somewhat more general problem of a nonhomogeneous cylindrical
shell containing an axial crack. The problem studied is that of two relatively
long cylinders having the same radii and different mechanical properties
that are joined along their boundaries at a plane perpendicular to their
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common axis (Fig. Ib). The model may be used to simulate composite cylinders,
cylinders with reinforcing layers, and homogeneous cylinders having a step
change in thickness (Fig. la and b). Such solutions are needed or may be
very useful in, for example, crack arrest studies in pipes and containers
with reinforcements.

2. General Formulation of the Problem

The analytical problem under consideration is described in Fig. Ib.
The actual problem may arise, for example, from a reinforced shell shown in
Fig. la. Since "shell theory" is used in formulating the problem, whatever
the actual configuration and composition of the medium for Xo>0, it has to
be reduced to a homogeneous shell having the same radii as the semi -infinite
cylinder occupying X2<0. The first step in the solution of the problem is,
therefore, the determination of the elastic properties Ep, v2 of an ("infin-
itely" long) equivalent shell of thickness h in terms of Ep vp E1 , v1,
h, h~ and R. where E' and v1 may or may not be the same as E-, and v-|. This
step is briefly described in Appendix B where the composite cylinder is
assumed to consist of fully-bonded thick-walled cylinders under axi symmetric
plane strain condition and the equivalency of the radial displacements and
axial strains is used to determine E2 and v2-

Details of the formulation of a homogeneous shallow shell containing a
through crack by using a Reissner type transverse shear theory may be found,
for example, in [9]- [11] and will not be repeated here. Thus, referring to
Appendix A for the definition of normalized and dimensionless quantities,
in terms of the displacement w, stress function <j> and the auxiliary functions
fy and n, the basic equations for the nonhomogeneous cylindrical shell shown
in Fig. Ib may be expressed as follows:

> (1=1> y<0» 1=2> y>0>
= 0, (i=l, y<0; i=2, y>0) , (2)

^-w = 0, (i=l, y<0; i=2, y>0) , (3)

v.)
1 V2fl-n = 0, (i=l, y<0; i=2, y>0) (4)
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where the constants x^, y.. and K. (i=l,2) are defined in Appendix A, v. is
the Poisson's ratio, it is assumed that the cylindrical surfaces of the com-
posite shell are free of tractions and the crack surface stress and moment
resultants are the only nonzero external loads. The functions \i> and fi are
related to the rotations as follows:

3Q . .
' *

.
x 3x 2 3y ' y 3y 2 3x

(i=l, y<0; i=2, y>0) . (5)

The normalized membrane, moment and transverse shear resultants are given by

M - 3 < $ > M _ 3 < j ) M _ 3j)
Nxx "§F ' Nyy ~ ~vF • V " ' '

3$ 36 33 33

"xx • h?7 <TT + V11 '̂ • Myy ' 15f (vi ~ST

1-v. 38 36
Mxy ' TS -T^TF + ̂  ' (1=' ' y<°; 1=2> y>0) '

Eliminating <j>, from (1) and (2) it may be shown that

x l - K . V 2 ) - = 0 , (i=l, y<0; 1=2, y>0) . (9)

If we express the solution of (9) by

+ f j f2(y,B)cos6xd3 , (y<0)
w(x,y) = <"

00

I [ f3(y,e)cos8xds , (y>o) ,

(10)

and assume the solution of the ordinary differential equations resulting
from (9) and (10) of the form
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m, x m?y
f^x.o) = R^cOe , f2(y,0) = R2(B)e * ,

m^y
f3(y,g) = R3(g)e ^ , (11)

The characteristic equations giving m, , nu and m- may be obtained as follows:
I £ O

a2)] = 0 , (12)

= 0 , (13)

= 0 . (14)

We designate the roots of (12)-(14) by m.., i=l,2,3, j=l,...,8 and note that,
' J

properly ordered, they have the following properties:

, m . - m . , (i=l,2,3, j=l,2,3,4) . (15)

Assuming that the composite shell shown in Fig. Ib is loaded symmetrically,
it is sufficient to consider the problem for x>0 only. Also, since the
external loads acting on the crack surfaces are statically self-equilibrating,
the functions f-,, f2 and f? must vanish at infinity and may, therefore be
expressed as

4 m,.x
f,(x,a) = E R^Me 1J , x>0 , (16)

fo(y,S) = £ R2l-(e)e
 2j , y<0 , (17)

* j=5 ̂

,JJ , y>o , (is)
j=i

Similarly, if we let
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*(x,y) = — 03
CO

2
!-
7T

g2(y,(3)cosgxde, (y<0)

, (y>0) ,

from (1), (2), (10) and (16)-(18) it may be shown that [10]
fy

X 4 R-ii(a) m,.X

-
j=5 P2j

, (y<0)

g,(y,3) =
A2

^ e OJ , (y>0)
3j

where

2 2 n 2 2o 2 2 o>,. = m,,-a2 , p?. = m?.-B
2 , p., = m.,-32

IJ I J £.J ^-J ^J *J J

Assuming now the solution of (3) and (4) of the form

CO

+ — h2(y,e)sin3xd3

o

, (y>o)

(y<0)

— CX)

CO

^T •k1(x,a)e"1ayda + k2(y,s)cosBxdp

° °
oo

? f
f kq(y,$)cosexd3 , (y>0)
( I f < J

(y<0)

It can be shown that

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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1 > rr = -l>2 + „ ni. \ ]%» (x >°)> (26)

h 2 (y ,B) = A2(e)e r2y, r2 = [e2 + 2 >]% , (y<0) , (27)
^i \ ^** *i /i i

f-jy o ?
ho(y,6) = A.(s)e 3 , r,; = -[e2 + —rf—-y]^, (y>0) , (28)

O O O »^o\ ' "™^'o/c. c

k^X.a) = E -^ T - e 1 3 , (x>0) , (29)1 j=l Klplj"'

k2(y,B) = E D .-. e , (y<o) , (30)
^ j=5 Klp2j '

k3(y.B) = s D .1 e , (y>0). (31)
J j=l K2p3j '

The preceding formulation contains fifteen unknown- functions R, . ,
( j = l , . . . » 4 ) , R2 .j , (j=5,...,8), R3j., (j=l, . . . ,4), and AI , ( i=l ,2 ,3) , which
are determined from the fol lowing boundary and continuity conditions
(see Fig. Ib and Appendix A):

u(x,-0)=u(x,+0), v(x,-0)=v(x,+0), w(x,-0)=w(x,+0), (x>0) , (32)

Bx(x,-0)=ex(x,+0), 6y(x,-0)=6y(x,+0), (x>0) , (33)

E1Nyy(x,-0)=E2Nyy(x,+0), E1Nxy(x,-0)=E2Nxy(x,+0)> (x>0) , (34)

E1Myy(x,-0)=E2Myy(x,+0)s E1Mxy(x,-0)=E2Mxy(x,+0), (x>0) , (35)

B^x.-O) = B2Vy(x,+0) , (36)

Nxy(0,y)=0, Mxy(0,y)=0, Vx(0,y)=0, (y<0) , (37)

Nxx(0,y) = F^y) , (-d^y^) ,

u(0,y) = 0, (-~<y<-dr -b^y^) , (38a,b)
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Mxx(0,y) = F2(y), (-d̂ ŷ ) ,

3x(0,y) = 0, (-cô -d-j, -b^y-cO) , (39a,b)

where F, and F2 are the crack surface tractions obtained from the solu-
tion of the uncracked shell under the given external loads. Note that
for y>0 the assumed solution has the proper symmetry and gives

Nxy(Ojy)=Mxy(0,y)=Vx(0,y)=6x(0,y)=u(0,y)=0 , (y>0) . (40)

It is seen that once the functions w, $, ij> and n are determined, e . , N. .,
I I J

M. . and V., (i,,j=x,y) may be expressed in terms of R. . and A. by using
(5)-(8). To complete the formulation of the problem the displacements u
and v need to be determined. This may be done by using the Hooke's law
and the following kinematic relations

e.-, = i (u. ,+u. ,+Z .iu ,+Z .u, .) , (i,j=l,2) , (41)
IJ C. I jj J,l jl O , J ,J O,l

where the function Z(x, ̂ 2) describes the middle surface of the shell.
For the cylindrical shell under consideration Z 9=0, Z ,,=-l/R and refer-,£ - j I I

ring to Appendix A we find

. . ,
ay 9x i ax v

f=VviNxx- (43)

where i=l for y<0 and i=2 for y>0. From (42), (43) and the formulation
given in this section it can be shown that

2
X,2 r° 4 (2+v, )a2-m,. m-,..x-iay .

z — 4 - 110(^6^ da

= p 1J 1J

X,2 °° 8 (Z+vJml-B2 m2,yA k R2j(6)ee J Slnexde
2

x w(x,y) , (x>0, y<0) , (44)
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9 r n v ? m . - 6 nu.y
-fz z ^ R3 , (0)Be JJ sinaxdg
y2 >Q j=l P3j -30

2

- X w(x,y) , (x>0, y<0) , (45)

. X,2 r° i* m, .x-iay

— CO w w

X 9 oo
, 1 f 8 m2i ?i^

- —•—4- £ -T*- Ro,-(8)(B2+v,mS.)e J cosgxdg,
1T Vl I ^_C Po4 <-J I '-JI •* j-o tj

0

(x>0, y<0) , (46)

2 °°

v(x,y) = - |--T- f z ^7 R3,-(B)(32+v2m|.)e 3j cosgxda ,
2 Q j=l 3j

(x>0, y>0) . (47)

3. The Integral Equations

Referring to the general formulation of the problem given in the
previous section it is seen that the first thirteen conditions (33)-(37)
are homogeneous and may be used to eliminate thirteen of the fifteen
unknown functions R.. and A^ (i=l,2,3; j=l,...,4; k=l,2,3).The mixed boun-

I J K

dary conditions (38) and (39) would then give the integral equations to
determine the remaining two. To derive the integral equations we first
introduce the following new unknown functions which are the complements of
the known crack surface tractions F^ and F2:

My) =^ru(+0,y) , G?(y) = ~ BY(+0,y) , (y<0) . (48)
I djr f- oj A

From the solution given in the previous section and from (48) it may be
shown that
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4 •
E

.„ J=1

(1-v,)
(50)

By inverting (49) and (50) and by using (33)-(37) one may express all fif-
teen unknown functions R. . and A. in terms of G, and G^. From (38b),
(395) and (48) it may be observed that

^y) = Q, (1=1,2; -- <y<-dr -

and (38b) and (39b) would be identically satisfied if

(51)

f-
bl

j G.(y)dy = 0, (1-1,2) . (52)

From the formulation of the problem the conditions (38a) and (39a) may be

expressed as

1 ,
Nxx(+0,y) = lim ( 7 - )
xx

2

o A., 2 m -

m, -x-iay
J

co'"""e|ri(y) •

Mxx(+0,y) = lim
XX

m,2 -v,a
2

r,x-iay

m,, x-iay
da

(53)

m y

= F2(y), (-d̂ ŷ ) . (54)
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If we now write R. . and A. in terms of G-i and G? and take into13 j '
account (51), (53) and (54) become

"bl
I Hkj(y,t)G.j(t)dt = Fk(y), (k=l,2, -d̂ ŷ ) , (55)

CO

Hkj(y,t) = lim {j Bk:j(x,a)e
i(t'y)ada + J Ck..(y,e)cos3xd3} , .(56)

— oo O

where B. . and C.., (k,j=l,2) are known functions. The derivation of these
functions are rather lengthy but quite straightforward and will not be
reproduced in this paper. From the viewpoint of obtaining the correct
singular behavior of G, and 62 near and at the end points y=-d, and y=-b^
and a sufficiently accurate solution of the system of integral equations
(55), it is essential that the dominant parts of the kernels given by (56)
be separated. This can be done by examining the asymptotic behavior of
Bkj.(x,a) and Ckj.(y,e), (k,j=l,2), for |a|-*=°and 3-*=°, respectively, by
separating the asymptotic terms Bj. and Ck- and by evaluating the corre-
sponding integrals in closed form. A key step in this process is the deter-
mination of the roots of the characteristic equations (12)-(14) (see,
for example, [10]). It may then be shown that for large values of |a| and
3 the roots have the form

«,.--l.l(H '" ^

"

+ .-.) » (J=5,...,8) , (58)

Also-, from (26)-(28) it may be seen that for |a|»l and e»l we have

ri = -

(60a-c)
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After evaluating the dominant kernels the integral equations (55)
may be expressed as

{[kls(y,t)+k11(y,t)]G1,(t)+k12(y,t)62(t)}dt =

1 (61)

~bl
(l-v1

2)|-"{k21(y,t)G1(t)+[k2s(y,t)+k22(y,t)]62(t)}dt

"dl

where
1 u-i vol"3 r£-v-^/r£-v'9'-i: 1 6C-

k, (y,t)=k2s(y,t)« T^TT - (- ^-r-^ —) ?iv" + (-e
I O t.O U jr \^T V*^ O •Jr L-^

(63)

;(64)

and the kernels k..j(yst), (i,j=l,2) are bounded in the closed interval
' J

-d-j<_(y,t)<_-b, (including the case b-,=0). The dominant or singular kernels
k. and the bounded kernels k.., (i,j=l,2) are obtained from the integrals

1 o 0 '

of the form:
00 00

k l s(y»t) = lim '{[ Bllaj(x,a)e1(t'y)otda + [ C l l co(y,B)cos&xde}, (65)

[Blj(0,a)-Blja,(0,a)]e
1(t-y)ada

, (j=l,2) . (66)
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The important point to observe about the integral equations is that, as in
the homogeneous shells, only the diagonal kernels contain singular, terms
and the dominant kernels k, and k2 corresponding to membrane and bending
loads are identical. This physically expected result is possible again-
because of the use of a transverse shear theory in formulating the problem.
Also, it can easily be shown that the dominant kernel k, found for the
nonhomogeneous shell in this study is identical to that obtained for two
dissimilar bonded half planes with a crack perpendicular to the interface
under plane stress conditions which is given in [14]. The plane stress
problem is, of course, a limiting case of the shell problem and this, too,
is the expected result.

4. The Stress Intensity Factor

After solving the integral equations, clearly any desired field quan-
tity may be obtained from integrals with appropriate kernels having G-j
and G2 as the density functions. For example, it may be observed that
before going to the limit, (53) and (54) give N (x,y) and M (x,y) every-

XX XX

where in the shell. In particular we note that (55) or (61) and (62) are
valid for x=0 outside as well as within the cut -d,<y<-b, . Thus, through
a simple asymptotic analysis of (61) and (62) one can obtain the stress
intensity factors at the crack tips which, for b>0, are defined by (Fig.

lb) __
M-b.xJ = lim /2(x?+b) o^CO.x-.x,) , (67)

1 6 x2-v-b+0
 L ' ' *• J

M-d,x,) = lim /-2(x9+d) a^ (0,x9,x.J . (68)
1 6 x2+-d-0 ^ n d J

In the shells the in-plane stress components are obtained by combining
membrane and bending stresses as follows:

aij(x1,x2,x3) = afj + a
b.. , (i,j=l,2) (69)

12x

" ' 1 • - i * ' x > ' (u=1-2) • (70)
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Now for b>0 from (61)- (63) it is seen that the dominant kernels k, and
-1k«s consist of (t-y) only and hence the solution of the integral equations

may be expressed as [15]

G,(y) = - - p , (j=l,2; -d̂ -b,) (71)
J ^ ] ]

where P, and V* are unknown bounded functions. By substituting from
Appendix A and (71) into (61) and (62) and using (67)-(70), it can be
shown that

E, _ _ _ ,
M-b.x,:) = - -y-Tim /-2(x?+b) -f- [u, (+0,x?)+x̂ 611 (+0,x?)]1 J * x2-*-b-0 ^ 3X2

— •^-/a-EP^-b^ +̂ P2(.bl)] , "(72)

E ^— ^ a
/2(x?+d) -£- Cu1(+0,x?)+x3B11(+0,x?)]^ ax2 ' 2 J 1 1 ^

- - G [PT (-^ ) +^P2(-d1)] - (73)

In the case of b=0 from (63) it is seen that the dominant part of
the kernel is a generalized Cauchy kernel, that is it contains, in addi-
tion to (t-y)" , terms which become unbounded as the> variables y and t
approach the end point -b-|=0 (Fig. Ib). The contribution of these terms
to the singular behavior of the solution at y=0 can be studied by assuming
the solution of the integral equations (61) and (62) as

6j(y) = Sj(y)(-y)
Y(y+d1)

a) . (-l<Re(Y,a>)<0) , (74)

and by following the function theoretic method (see, for example, [14]
and [15]). Thus, by substituting from (74) into (61). and (62), the charac
teristic equations giving y and u may be obtained as follows:

2c.
- Y(Y+2) - ( + — ) = 0 , (75)
C6 C6
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cos™ = 0 . (76)

At the crack tip y=-d-| which is embedded in a homogeneous medium (76)

gives u=-l/2. The characteristic equation (75) found for y is identical
to that given in [14] for the plane stress case and its examination would

show that for all material combinations the equation has only one root

satisfying -l<Re(r)<0 and this root is always real. In [14] it was found
that for the plane problem in the small neighborhood of the singular point

y=0 located at the interface the stress state has the form

k,
a,,(r,e) =-!-rY-f(0) , i,j=r,e) . (77)

where r and 9 are the polar coordinates and the functions f. . are dependent
' J

on the bimaterial constants Ek, vk, (k=l,2) and are given in [14].. The

constant k, is again defined as the stress intensity factor and is obtained
from the calculated values of aQO(r,0) by normalizing fQO(0)=l . Thus,

0 O DO

in the present shell problem the stress intensity factor at the crack tip

y=0 may be defined as

MO'X-j) = lim ./2~ x̂ cr-n̂ x̂ x,) . (78)

To evaluate the stress intensity factor k-j(0,x3) the asymptotic expression

of a, , for Xp>0 is needed. This can again be obtained in terms of G-| and
G2 from the basic formulation of the shell given in this paper. After
somewhat lengthy but straightforward analysis it may be shown that

E7 3c,+c1+2Y(c1+cfi)
M0,x3) = - -2- (.

 6
C I l 6 ) lim1 3 C

x3B11(+0,x2)]

3 C x . + C + 2 c + C ) X

• <79'
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Also, at the crack tip Xp—d the expression

E, _ _ _ ,
M.-d,x-) = -y-lim /2(x?+d) -f- [û +O.xJ + x,enl (+0,x?)] (80)1 J * 3X2 ' ^

is still valid and by using (48) and (71) can be written as

kl("d>x3) "."FT^^lHi) +TS2("dl)] '

5. Results

For b>0 the integral equations (61) and (62) subject to (52) may
easily be solved by using the Gauss-Chebyshev quadrature formulas described
in, for example, [14] by assuming the solution in the form (71). The
stress intensity factors may then be obtained from (72) and (73). From
(72) and (73) it is seen that the values of the bounded functions P-, and
PP at the end points -d, and -b-j are associated with respectively the
membrane and the bending components of the stresses near the crack tips.
For the pressurized shell shown in Fig. Ib, one can, therefore, define the
following normalized stress intensity factors:

Mr,,0) k,(r,,h/2)-k,(r,,0)
— ~ L J — —

where r,=-b and ̂ -d and the stress intensity factors k^r^x^), (j=l,2)
are given by (72) and (73). For b=0 the definition of the normalized
stress intensity factors at r2=-d would remain the same as in (82) and
may be obtained from (81), At r-,=-b=0 we have

kn(0,0) k,(0,h/2)-k,(0,0)
UO) = —L—- , MO) = — -L (83)

where k-j is given by (79). In(82) and (83) R^ is the inner radius of the cylinder.
The reinforced shell shown in Fig. la is considered as an example.

The main shell having properties E,,v, is steel and the reinforcing shell
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is a fiber reinforced composite. The dimensions of four different
cylinders used in the analysis are shown in Table. 1. The table also

shows the elastic constants ^^2 °^ t'1e eclu''vaTent homogeneous shell
shown in Fig. Ib. The derivation of E2»

V2 and tne soluti°n °f the nonhomo-
geneous shell in the absence of any cracks giving the crack surface
loads F-| and F2 are given in Appendix B (see, (61) and (62)). It should
be noted that F, and F« are functions of y=X2/a. One may also note that

the effective elastic constants E2»
V2 as wel1 as F1'F2 are dePendent on

the axis! constraint in the cylinder. In the examples it is assumed that
either there is no axial constraint (labeled as a cylinder with "open
ends") or the ends of the cylinder are "closed", corresponding to the
total axial force in the internally pressurized cylinder P=0 and P=irR?p,
respectively (Eq. B6).

Table 1. Dimensions and the effective, material constants
(E2»v2) °f

 tne composite shell used in numerical
examples.

Shell #
El {GPa
vl
E1 (reinforcing shell ){P^

v1 (reinforcing shell)
h (thickness) {™*

R (mean radius) {™'

h0 (reinforcing shell ){2 K s ' ' m
R/h
Open Ends:
E2 *GPa

V2
-Y
Closed Ends:

2 GPa

V2_Y

1
3x10'

207

0.3

2xl07

138

0.1
1

0.0254

100
2.54

1
0.0254

TOO

50.2xl06

346

0.2214

0.449518

50.06xl06

345

0.2272

0.440538

2
3x10'
207

0.3

2xl07

138

0.1
0.615

0.0156

23.6925
0.6018

0.615
0.0156

38.524

49.72xl06

343

0.2174

0.450677

49.37xl06

340

0.2321

0.450728

3
3x1 Oy

207

0.3

2xl07

138

0.1
0.5

0.0127

17.75
0.4509

0.5
0.0127

35.5

49.66xl06

342

0.2168

0.450827

49.28xl06

340

0.2327

0.450886

4
3x1 Oy

207

0.3

2xl07

138

0.1
0.404
0.0103

11.798
0.2997

0.404
0.0103

29.203

49. 48x1 O6

341

0.2153

0.451265

49.03xlOb

338

0.2345

0.451323
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For these two cases the values of E£ and v~ calculated from Appendix B are
given in Table 1.

The stress intensity factors obtained by using dimensions and proper-
ties of four different shells shown in Table 1 are given in Tables 2-5.
The normalized stress intensity factors given in the tables are defined
by (82) for b>0 (or oa) and by (81) and (83) for b=0 (or c=a). One may
observe that as the relative distance of the crack to the interface c/a
increases the stress intensity factors approach those given for the homo-
geneous shell [9]. The tables also show that the membrane component k
of the stress intensity factor (which is by far the dominant part) decreases
with the decreasing crack distance to the boundary. Even though the
results found for "open" and "closed" ended cylinders are different, for
the axial through crack geometry under consideration the differences seem
to be relatively insignificant. It should be emphasized that the tables
show the stress intensity factors normalized with respect to (pR./h)/a
which is the corresponding flat plate (or plane stress) result under the
same membrane loading as the shell. Thus the variation in the stress
intensity factors as a function of a/h and R/h is entirely due to curvature
and thickness effects.

In Tables 2-5 the membrane and bending components of the stress inten-
sity factors are given separately. In all cases, the calculated bending
components were such that the stress intensity factors on the outside sur-
face x3=h/2 were greater than that on the inside surface. Figures 2-5
show the stress intensity factor k,(c.,h/2), (c-=-d,-b,0) obtained from
(72), (73), (79) and (81) for some selected shell-crack geometries. The
effect of reinforcement may be clearly observed from Figures 2 and 3. The
asymptotic behavior of k, (-b,h/2) as c->a is due to different definitions of
k, for b>0 and b=0 as given by (67) and (78). For these two cases the
cleavage stress in the close neighborhood of the crack tip may be expressed
as (Fig. lb)

M-b,h/2)
b, b>0, x9>-b) , (84)

-18-



all(0'x2) =
,h/2) k1(0,h/2)r,%+Y

, b=0). (85)

Thus, since l/2+y>0 (see Table 1), the stress intensity factor defined on
the basis of the conventional square root singularity becomes

lim k,(-b, h/2) = 11m /2r
b+0 ' r-K)

b->0

lim k, (0,h/2)r̂ +Y = 0 . (86)
r+0 '

Figures 4 and 5 show the normalized stress intensity factors on the
outside surface xv=h/2 for b=0 obtained from (79) and (81). Here, too,
it may be seen that even for a relatively very shallow shell (shell no. 1),
there is considerable curvature and thickness effect.
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Table 2. Membrane component k of the normalized stress
intensity factor in a pressurized composite shell
with'open'ends which contains an axial crack.

Shell

No.

1

2

3

4

c/a
a/h

1

2

3

10

1

2

3

10

1

2

3

10

1

2

3

10

V-b>

1.0

1.812

1.878

1.973

3.097

1.849

1.998

2.198

4.426

1.853

2.013

2.227

4.581

1.866

2.053

2.304

4.980

1.1

0.695

0.722

0.759

1.203

0.721

0.782

0.862

1.730

0.724

0.788

0.876

1.790

0.733

0.809

0.912

1.947

1.5

0.778

0.819

0,874

U447

0.812

0.900

1.010

2.057

0.817

0.910

1.027

2.125

0.829

0.937

1.073

2.297

2

0.809

0.864'

0.934J

.1.534'

0.851

0.962

1.088

2.101

0.867

0.973

1.107

2.164

0.871 i

1.004

1.156

2.327

10

0.978

1.050

1.082

K542

1.041

1.100

1.175

2.096

1 .046

1.106

1.189

2.161

1.057

1.124

1.225

2.326

km(-d)

1.0

0.789

0.841

0.903

1.442

0.830

0.929

1.042

1.999

0.835

0.940

1.058

2.062

0.848

0.969

1.102

2.225

1.1

0.798

0.852

0.918

1.472

0.840

0.944

1.061

2.036

0.845

0.956

1.078

2.100

0.860

0,985

1.123

2.264

1.5

0.820

0.885

0.960

1.532

0.869

0.988

1.113

2.091

0.875

1.000

1.131

2.155

0.890

1.031

1.177

2.319

2

0.839

0.916

0.998

1.549

0.895

1.027

1.152

2.096

0.902

1.039

1.170

2,160

0.919

1.071

1.214

2.324

10

0.990

1.049

1.079

1.542

1.041

1.097

1.176

2.096

1.049

1.104

1.189

2.161

1.058

1.123

1.226

2.326



Table 3. Bending component k|j of the normalized stress intensity
factor in a pressurized composite shell with open ends
which contains an axial crack.

Shell

No.

1

2

• 3

4

c/a
a/h

1

2

3

10

1

2

3

10

1

2

3

10

1

2

3

10

km(-b>

1.0

0.005

0.047

0..087 i

0.225

0.033 .

0.101

0.1541

0.164

0.037

0.107

0.161

0.148.

0.046 i

0.120

0.176

0.102

1.1

0.002

0.021

0.042

0.134

0.015

0.046

0.074

0.124

0.017

0.050

0.078

0.108

0.021

0.055

0.086

0.099

1.5

0.008

0.035

0.062

0.202

0.026

0.069

0.108

0.211

0.027

0.080

0.117

0.197

0.032

0.082

0.124

0.186

2

0.014

0.044

0.075

0.212

0.034

0.081

0.123

0.207

0.036

0.086

0.128

0.200

0.043

0.096

0.140

0.172

10

0.039

0.046

0.064

0.197

0.043

0.071

0.110

0.198

0.044

0.074

0.114

0.192

0.047

0.083

0.126

0.172

km(-d>

1.0

0.015

0.042

0.069

0.191

0.043

0.076

0.111

0.200

0.036

0.079

0.115

0.194

0.041

0.088

0.126

0.178

l.T

0.016

0.044

0.072

0.196

0.035

0.079

0.114

0.202

0.038

0.082

0.119

0.197

0.043

0.091

0.129

0.179

1.5

0.020

0.050

0.078

0.204

0.041

0.085

0.121

0.207

0.043

0.089

0.125

0.201

0.049

0.097

0.135

0.181

2

0.024

0.055

0.082

0.203

0.046

0.089

0.123

0.203

0.047

0.092

0.127

0.197

0.053

0.099

0.136

0.177

10

0.037

0.043

0.064

0.198

0.039

0.070

0.110

0.198

0.040

0.074

0.114

0.193

0.042

0.082

0.125

0.172
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Table 4. Membrane component km of the normalzied stress intensity factor
in a pressurized composite shell with closed ends which contains
an axial crack.

Shell

No.

i
1

;

2

' 3

. 4

c/a
a/c

1

2

3

10

1

2

3

10

1

2

3

10

1 .

2 :
3
10

y-b>
1.0

1.909

1.969

2.059

3.158

1.932

2.074

2.265

4.446

1.936

2.087

2.293

4.593

1.944

2.122

2.363

4.977

1.1

0.735

0.759

0.795

1.229

0.760

0.818

0.897

1.750

0.764

0.825

0.910

1.810

0.773

0.846

0.946

1.966

1.5

0.820

0.856

0.907

1.458

0.851

0.932

1.037

2.059

0.856

0.942

1.053

2.126

0.867

0.968

1.098

2.297

2

0.848

0.897

0.959

1.533

0.887

0.986

1.104

2.098

0.892

0.997

1.122

2.161

0.905

1.026

1.169

2.324

10

0.985

1.047

1.081

1.542

1.039

1.099

1.176

2.096

1 .044

1.106

1.189

2.161

1.055

1.124

1.226

2.326

km(-d)

1.0

0.828

0.872

0.929

1.448

0.865

0.954

1 .059

2.001

0.869

0.964

1.075

2.063

0.882

0.990

1.117

2.227

1.1

0.836

0.883

0.942

1.475

0.874

0.968

1.077

2.036

0.879

0.978

1.093

2.100

0.892

1.006

1.136

2.265

1.5

0.857

0.912

0.979

1.531

0.900

1.006

1.123

2.089

0.905

1.018

1.139

2.153

0.920

1.047

1.184

2.318

2

0.874

0.938

1.011

1.546

0.923

1.039

1.156

2.095

0.929

1.051

1.173

2.159

0.944

1.080

1.216

2.324

10

0.994

1.047

1.078

1.542

1.042

1.097

1.176

2.096

1.046

1.104

1.189

2.161

1.056

1.123

1.226

2.326
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Table 5. Bending component k^ of the normalized stress intensity
factor in a pressurized composite shell with closed ends
which contains an axial crack.

Shell

No.

1

2

3

4

c/a
a/h

1

2

3

10

1

2

3

10

1

2

3

10

1

2

3

10

-kb(-b)

1.0

0.010

0.051

0.091

0.230

0.038

0.105

0.158

0.171

0.042

o.m
0.165

0.156

0.050

0.125

0,180

0.112

1.1

0.003

0.023

0.042

0.135

0.016

0.048

0.076

0.125

0.019

0.051

O.Q80

0.119

0.022

0.058

0.088

0.101

1.5

0.010

0.035

0.061

0.199

0.026

0.068

0.107

0.219

0.027

0.072

o.m
0.203

0.033

0.081

0.123

0.184

2

0.014

0.042

0.072

0.209

0.033

0.079

0.120

0.205

0.035

0.083

0.125

0.200

0.041

0.092

0.137

0.179

10

0.034

0.045

0.061

0.197

0.040

0.071

0.110

0.198

0.041

0.074

0.114

0.192

0.045

0.083

0.126

0.172

kb(-d)

1.0

0.015

0.041

0.067

0.190

0.033

0.074

0.109

0.199

0.034

0.078

0.114

0.195

0.039

0.086

0.124

0.179

1.1

0.016

0.042

0.069

0.195

0.034

0.076

0.112

0.202

0.036

0.079

0.117

0.197

0.042

0.089

0.127

0.180

1.5

0.019

0.047

0.074

0.203

0.038

0.082

0.118

0.207

0.040

0.085

0.122

0.201

0.046

0.092

0.134

0.181

2

0.022

0.051

0.078

0.203

0.041

0.085

0.119

0.203

0.044

0.088

0.123

0.197

0.050

0.096

0.134

0.177

10

0.032

0.042

0.064

0.198

0.037

0.070

0.110

0.198

0.038

0.074

0.114

0.193

0.041

0.083

0.125

0.172
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APPENDIX A

Normalized quantities used in the formulation
of the composite shell problem

x = x,/a, y = x~/a, z = x^/a, b, = b/a, c-, = c/a, d, = d/a , (Al)
I C, O I I I

u = u-,/a, v = u2/a, w = u3/a, BX = 3-j, 8 = 62 , (A2)

r F(x1,x2)/(E1ha
2) , y < 0 ,

*(x,y) = < (A3)
I F(xlsx2)/(E2ha

2) , y > 0 ,

|-ai.]./E1 , y < 0 ,
a R(x,y,z) = < (a,6=x,y; i,j=l,2) , (A4)

(a.j/E2 , y > 0 .

f N-./(E1h) , y < 0 ,
N «(x,y) =< (a,B=x,y; i,j=l,2) , (A5)
a8 [ N../(E?h) , y > 0 ,

f ̂/(Ê ). , y < o,
= < (a,e=x,y; i,j=l,2) , (A6)

f Vk/(B1h) , y < 0 ,
V (x,y) = < (Y=x,y; k=l,2) , (A7)
Y I Vk/(B2h) , y > 0 ,

EL = 5E./02JH-V.)) , KI- = E^CB^) , (i=l,2) , (A8)

^ = 12(l-v?)a2/h2 , xj = 12(l-v?)aV(R2h2) , (1=1,2) . (A9)
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APPENDIX B
Solution of the uncracked composite shell problem

The first problem here is the determination of elastic constants E2
and v2 of a cylindrical shell which has the same stiffness as a long layered
cylinder (see Fig. la and Ib for X2»0). The second problem is the solu-
tion of the bonded shells shown in Fig. Ib in the absence of any cracks
in order to determine the crack surface tractions F-j(y) = N11(0,x2)/(hE1)
and F2(y) = M, i(0,x2)/(h

2E.|) which are used in the perturbation solution
of the cracked shell as the input functions. In the first problem we
use the following basic (axi symmetric) solution of a thick-walled cylinder
under plane strain conditions:

arr(r) = A + £ , aee(r) - A - £ ,

w(r) = z v £ v Ar - - vezzr , (a<r<b) , (Bla-c)

where A and B are unknown constants and w is the radial displacement.

For the three cylinders we have (Fig. 1)

a-j = R. , b1 = Rn.+h, A = A-j , B = B-j , v = v1 , E = E-j , (B2)

a2 = R^h, b2 = R..+h+h2> A = A2, B = B2> v = v' , E = E1 , (B3)

a3 = Ri» b3 = Ri+hj A = A3> B = B3» v = V2» E = E2 '

where the dimensions R^ , h, h2 and the elastic constants E, , v, , E'

and v1 are known. The bounday and continuity conditions

* = -p • °2rr(b2} = °» alrr (bl} = °2rr(a2) •

= w2(a2) , o3rr(&3) = -p , a3rr(b3) = 0 (B5)

are used to eliminate A^ and B^, (i=l.,2,3). Additional information
needed to account for e is
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£zz = (azz-varr-vaee)/E • azzdA = P

A

where P is the total axial force. If the cylinder is fully constrained
e =0, if there is no axial constraint, P=0 and, if the ends of the
cylinder are closed and if it is subjected to an internal pressure p,
then P = irR.p. In this problem it is assumed that the cylinders 1 and

2 are fully bonded along r=b-|=a2 giving
 £-\Zz

=£2zz'
The two shells are said to be equivalent if

£3zz = elzz • W3^R) = wl^ ' (B7a,b)

where R = R^h/2. After eliminating A. and B^ (i=l,2,3), (B7a) and (B7b)
would give the equivalent (or effective) elastic constants E2 and v2 in
terms of E^ , v^ , E1, v1, R^ , h and h2>

The next problem is the evaluation of the stresses in the bonded
shell shown in Fig. Ib in the absence of any cracks. Referring to [16]
and Fig. Ib, the solution of the "open-ended" or axially unconstrained
cylindrical shell problem may be expressed as

, x2<0 ,
(B8)

R2

where

&1 = 30-v^/RV , B2 = 3(l-v|)/R
2h2 , (B9)

and the constants C, ,...,0, are determined from

u3(-0) = u3(+0) , U3(-o) = u3(+0) , (BIO)

Dl

-27-



E^3 E2h
3

Dl = 12(l-vi) ' D2 =

Note that (Bll) represents the continuity of I!,? and V2. Equations

(B8), (BIO) and (Bll) may be shown to reduce

CrC3 = pR2(E2-E1)/(hE1E2) ,

C1+C2 = (C4"C3^2/el ' -

C2 = -DgBfC^D^2) ,

C2"C1 = (C4+C3)D2e2/(Dl$3)' (B13a-d)

After determining C^,...,C^ from (B13), by observing that [16]

Elh d2

Nll(x2} = -lTu3(x2) • MII^) =-v1D l 'd^u3 (x2 ) •

(x2<0) , (B14)

the input functions F-, and F9 may be expressed as (see (38a), (39a) and(*\ \. £. .
Appendix A)

Q. f\\/

] , (y<0) , (B15)

2v1D,81 61 ay1 ,1 1
F2(y) = h^E e [-^sina^y + C2cosB-|ay] , (y<0) . (B16)

Similarly, if the ends of the pressurized composite cylinder shown

in Fig. Ib are closed, following [17] we find

r*\
' ' Note that F-j and ̂ 2 usecl in tne perturbation problem, correspond to

the membrane and bending resultants obtained from the uncracked
cylinder with the opposite sign.
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v,-2

rV2* PR2

, (x2<0)

, (x2>0)

] , (y<0) ,

(B17)

(B18)

2v, D, a? Bi ay
F2(y) = h2E. e (-B^i , (y>0) , (B19)

where B, ,...,6. are obtained from the solution of the following system:

BrBs - ^1 2E2

B2 = -

B2-B1 (B4+B3)D232/(D131
3) (B20a-d)
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Fig. 1 Geometry and notation for a reinforced cylindrical shell con-

taining an axial crack.
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Fig. 2 Normalized stress intensity factors on the outside surface of
an "open-ended" reinforced cylindrical shell containing an
axial through crack (Shell No. 1, R/h = 100).
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Fig. 3 Normalized stress intensity factors on the outside surface of
an "open-ended" reinforced cylindrical shell containing an axial
through crack (Shell No, 3, R/h = 35.5).
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Fig. 4 Normalized stress intensity factor at the crack tip x2=0
on the outside surface x.,= h/2 in "open-ended" reinforced
cylindrical shells (see Table 1 for the dimensions of the
shells and for the values of a=-y for each shell).
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Fig. 5 Normalized stress intensity factor at the far end x~=-d
of a through crack intersecting the interface in "open-ended"
reinforced cylindrical shells (see insert in Fig. 4 for
geometry and Table 1 for dimensions of the shells).




