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by

0. Selcuk Yahsi*™ and F. Erdogan
Lehigh University, Bethlehem, PA 18015

ABSTRACT

In this paper a partially reinforced cylinder containing an axial through
crack is considered. The reinforcement is assumed to be fully bonded to the
main cylinder., The composite cylinder is thus modelled by a nonhomogeneous
shell having a step change in the elastic properties at the z=0 plane, z being
the axial coordinate. Using a Reissner type transverse shear theory the
problem is reduced to a pair of singular integral equations. In the special
case of a crack tip touching the bimaterial interface it is shown that the
dominant parts of the kernels of the integral equations associated with both
membrane loading and bending of the shell reduce to the generalized Cauchy
kernel obtained for the corresponding plane stress case. The integral equa-
tions are solved and the stress intensity factors are given for various crack
.and shell dimensions. A bonded fiberglass reinforcement which may serve as
a crack arrestor is used as an example.

1. Introduction

In studying the failure of structures for the purpose 6f calculating
the fracture mechanics parameters, a very large variety of structural compo-
nents may locally be modelled as relatively thin-walled plates or shells.
Nearly all "pressureAboundaries“ and piping as well as some important parts
of aerospace and hydrospace structures may be cited as examples of such com-
ponents. From a viewpoint of structural integrity two of the important
questions one may be concerned with in this respect are the life estimate
based on the subcritical growth of an existing flaw and the residual strength
or the Toad carrying capacity of the structure based on the critica]jty of
a dominant flaw. In most cases the two questions may be adequately dealt
with by idealizing the component with a plate or a shell and the flaw with a
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Langley under the Grant NGR-39-007-011,

(**) Permanent address: Department of Mechanical Engineering, Middle East
Technical University, Ankara, Turkey,
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part-through or a through crack, by calculating the appropriate fracture
mechanics parameter (e.g., the stress intensity factor), and by applying a
suitable criterion along with the baseline characterization of the material.
In relatively thin-walled structures the inherently three-dimensional

crack problem is approximated by a "plate" or a "shell" problem, that is, by
suppressing the thickness coordinate through the use of a plate or a shell
theory. In the earlier studies of the subject the classical plate and shell
theories were used to solve the problem (see, for example, [1] for review).
However, particularly in problems requiring the calculation of the stress
intensity factors, the necessity of using a higher order theory has now
been well-established, For example, it has been shown that by using a Reissner
type transverse shear theory [2] (and hence by satisfying the boundary condi-
tions on the crack surfaces for all stress and moment resultants separately)
.one could obtain an asymptotic stress state around the crack tips which is
identical to that given by the in-plane and anti-plane elasticity solutions
(see, for example, [3], [4] and [5]). Furthermore, it has also been shown
that in the 1imiting case of small crack lengths these plate and shell results
approach that of plane elasticity not only for the internal but also for the
edge cracks [6], [7], [8]. Other results obtained by using a transverse
shear theory for various.crack-shell geometries and loading conditions may
be found in [9]-[12]. S

~ With the exception of [7], [8] and [13]1, in all crack studies in shells
that appeared in literature the shell is assumed to be "infinite" in the
sense that the interaction of the perturbation field of the crack with the
boundaries of or with other geometric discontinuities in the shell are assumed
to be negligible. The interaction of the stress field around the crack with
a stress-free boundary and with a fully clamped boundary in a cylindrical
shell was considered in [7] and [8], respectively, where the special case
of the crack intersecting the boundary has also been studied. In [13] the
interaction of a crack field with a circumferential line stiffener in a cylin-
drical shell was studied by using the classical shell theory, - In this paper
we consider the somewhat more genefa]_prob]em of a nonhomogeneous cylindrical
shell containing an axial crack. The problem studied is that of two relatively
long cylinders having the same radii and different mechanical properties
that are joined along their boundaries at a plane perpendicular to their
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common axis (Fig. 1b). The model may be used to simulate composite cylinders,
cylinders with reinforcing layers, and homogeneous cylinders having a step
change in thickness (Fig. 1a and b). Such solutions are needed or may be

very useful in, for example,. crack arrest studies in pipes and containers
with reinforcements.

2. General Formulation of the Problem

The analytical probiem under consideration is described in Fig. 1b.

The actual problem may arise, for example, from a reinforced shell shown in
Fig. la. Since "shell theory" is used in formulating the problem, whatever-
the actuallconfigurdtion and composition of the medium for x2>0, it has to
“be reduced to a homogeneous shell having the same radii as the semi-infinite -
cylinder occupying x2<0. The first step in the solution of the problem is,
therefore, the determinatiqn of the elastic properties EZ"VZ of an ("infin-
itely" long) equivalent shell of thickness h in terms of E], V1s E', V',

h, hé and Ri where E' and v' may or may not be the same as E-l and vy This
step is briefly described in Appendix B where the composite cylinder is
assumed to consist of fully-bonded thick-walled cylinders under axisymmetric
plane strain condition and the equivalency of the radial displacements and
axial strains .is used to determine E2‘and V.

Details of the formulation of a homogeneous shallow shell containing a
through crack by using a Reissner type transverse shear theory may be found,
for example, in [9]-[11] and will not bé repeated here. Thus, referring to
Appendix A for the definition of normalized and dimensionless quantities,-
in terms of the displacement w, stress function ¢ and the auxiliary functions
v and @, the basic equations for the nonhomogeneous cylindrical shell shown
in Fig. 1b may be expressed as follows:

2

, |

“o-(i/ug) 57 =0, (i1, y<0; i=2, y>0) (1)
2 |

v fug (1-;72) 4% = 0, (i=1, y<0; i=2, y>0) , (2)

K,-Vzlb-lb-w = 09 (i=]3 ,Y<O; i=23 .y>0) ’ (3)

Ki(]-\)i) .

——— 7?2 = 0, (i=1, y<0; i=2, y>0) (4)
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where the constants Ais b and K (i=1,2) are defined in -Appendix A, vy is
the Poisson's ratio, it is assumed that the cylindrical surfaces of the com-
posite shell are free of tractions and the crack surface stress and moment
resultants are the only nonzero external loads. The functions y and q are
related to the rotations as follows:

PRI R ST+ S |’} ki {T-vi) 59
X X 2 Yy Yy oy 2 ox * -

(i=1, y<0; i=2, y>0) . (5)

The normalized membrane, moment and.transverse shear resultants are given by '

Nxx=g_2%;Nyy=g_i%’ny='§%" | .‘(6)
Mex = ﬁ%?'(%;§ * ;i %g¥) » My = ﬁ%?'(vi 25% ¥ i§¥) ’

My = hi? ]'Z“i(aaix + 8:)3’) , (=1, y<0; i=2, y>0) , | | (7)
-VX=§—¥+BX=Vy=g—§+By-- | - (8)

Eliminating ¢, from (1) and (2) it may be shown that

2
V49 + A% (1=, 72) -g-yvé =0, (i=1, y<0; i=2, y>0) . (9)

If we express the solution of (9) by

x© 2

J'é%'J f1(x,a)e_iayda + %-fv f,(y.8)cospxde , (y<0) ,
w(x,y) = o 7 | ~(10)

[+

l %‘f fi(y,8)cosexds , (y>0) ,

o]

and assume the solution of the ordinary differential equations resulting
from (9) and (10) of the form



X

_ my m,y
f](X,a) = R](a)e ’ f2(¥93) = R2<B)e s

R3(B)em3y ] ’ (]])

fa(y,8)

The characteristic equations giving mys My and my may be obtained as follows:

m8-4a2m6+6a“mq-(4oc2+)< Au)a“m2+a”[a“+)\u(]+K 22)]1 =0, (12)
1 1 1 1™ 1 1 1
8 (n2ee MY 6ufratinn 1 ¥a2er YVt pa62, 08 _ |
ms (48 +,<]x])m2+(63 +e 1B +>\-|)m2 4g ma+8 0A . (13)
b, 6 2, b 2
ma- (48240 It (6844 )A 0B 24N Ima-48Emo4e8 = 0 (14)

We designate the roots of (12)-(14)'by ms s i=1,2,3, j=1,...,8 and note that,
properly ordered, they have the following properties: :

Re(m; ;)<0, m , (i=1,2,3, §=1,2,3,4) . | (15)

ij+4 M3
Assuming that the composite shell shown in Fig. 1b is loaded symmetrically,

it is sufficient to consider the problem for x>0 only. Also, since the
external loads acting on the crack surfaces are statically self-equilibrating,
the functions f1, f2 and f3 must vanish at infinity and may, therefore be
expressed as

L m.l . X ) .
fllxa) = £ Ryslade 0, %00, (16)
| =1 Y : » |
8 mzjy
fo(y,8) = I R,.(B)e ™ ", y<0 , (17)
2 125 2] .
J= .
4 Mysy
fa(ys8) = I Ry:(gle 0, y»0 , | (18)
=1

Similarly, if we let



[e-] o]

J Z_'IH_J' g.'(x,u)e-myda + % J 9,(y,8)cospxds, (y<0)
o(xoy) =< == ' ° e
l %.J gs(y,s)cossxds > (y>0)

(o]

from (1), (2), (10) and (16)-(18) it may be shown that [10]

. A y R (a) my .X
g (xs0) == —za? 1 4—e T, (00), (20)
9| i=1 F1j :
2 2
A7y s m5:R,.(B) m,.y :
glys8) = 1 ALAL—e W, (ya) (21)
13=5 2j _
A3 4 myRas(B) moy
g3(v.8) =35 1 I, (o) (22)
: 2 j=1 3]
where
27 _ 2 5, 2 _ 2 2 _ .2 5

Assuming now the solution of (3) and (4) of the form

Cr o )

Q%J h-'(X,Ot.)e-1a‘yd0L +%J hz(y,8)51nBXdB ) (y<0) »
a(x,y) =< -o 0 (24)

co

I h3(y,6)s1'n8xd6 » (y>0)

o]

AN

(.é%_J »k](x,a)e-]ayda + 2 [ ky(y,8)cosexds , (y<0) ,

vxy) =¢ o (25)
l'% f ky(y,8)cosexds , (y>0)

o]

It can be shown that



' ryX ;
h(xa) = Ajlade |, vy = -[a? + —](1—2—];] (x:0), (26)
ro¥ ) 2 %
hy(y,8) = Ay(B)e &, r, = [p2 + E;TT:§§7J » (y<0) , (27)
na(ys8) = Aq(8)e Sy 1y = -[82 + —2— 1%, (y>0) (28)
3 y: . 3 > 13 EETT:;ET s \Y s |
y R -(a) My .X
ky (x50) = z —l%;E-T-e 0% (x0), : (29)
'8 R .(8) Mm,.Yy
kp(y,8) = 2 B~ e, (ya), (30)
j= 5 K1P23™
w Ras(B) myy :
k3(y,8)-= p 33 e 33 s (y>0). ' ' (31)

j=1 koP357 ]

The preceding formulation contains fifteen'unknown-functionS‘le,
(3=1,...54), R 25 (3=5,...58), R3 s (j=1,...54), and A (i=1,2,3), which
are determined from the following boundary and cont1nu1ty conditions
(see Fig. 1b and Appendix A):

u(%s-0)=u(x,40) , ¥(xs-0)=v(x,40), w(x,-0)w(x,40), (x:0) » (32)
By(x5-0)=8, (x;+0), 8, (x,-0)=8, (x,+0), (x>0) , (33)
E]Nyy(x,-0)=E2Nyy(x,+0), EqNyy (X,=0)=E,N,  (x,40), (x:0) (34)

Myy(x,vo)éEéMyy(x,+0), By, (X,-0)=EpM, (x,40), (x20) (35)
BV, (x,-0) = B,V (x,40) , . (36)
ny(o,y)=6, My (023120, ¥,(0,9)=0, (y<0) , (31)

.NXX(O’y) = F](Y) > (‘d]<y<'b]) s

u(0,y) = 0, (-oo<_y<-d1, -b.l<y<0) . A (38a,b)

-7-



MXX(O"Y) = FZ(.Y)s ("d'|<.y<"b'|) s
-BX(O,y) = 0, (-o<y<=dy, -by<y<0) , ~ (39a,b)

where F] and F2 are the crack surface tractions obtained from the solu-
tion of the uncracked shell under the given external loads. Note that
for y>0 the assumed solution has the proper symmetry and gives

(0,y)=M,, (0,y)=V, (0,y)=6, (0,y)=u(0,y)=0 , (y>0) . (40)

ny

It is seen that once the functions Wy ¢y ¥ and Q are determined, 61, Nij’

Mij and Vi’ (1,j=x,y) may be expressed in terms of Rij and Ai by using
(5)-(8). To complete the formulation of the problem the displacements u
and v need to be determined. This may be done by using the Hooke's law

and the following kinematic relations

=1 +7 ;s
iy =7 (Uy,5M,17,13,5%2,343,4) » (123=1.2) wl
where the function Z(x1,x2) describes the middle surface of the shell.

- For the cylindrical shell under consideration Z ,=0, Z ;4=-1/R and refer-
ring to Appendix A we find '

AN aN aN A2 o0
32U _ xy _ Zyy xx , "1 3%
CayZ T 2] =7 x Vi Tax T ;2 ay? X (42)
av = -
3y - Ny Vifx o (43)

where i=1 for y<0 and i=2 for y>0. From (42), (43) and the formulation
given in this section it can be shown that '

: 2
Cy A2 (2+v, )a2-m, . m, X-iay
1M 4 ] 1 13 do,
u(x,y) = ————zf z z Ry ;(a)m, e
2wt = Pl R
A2 (7 g (24vg)m3.-p2 m, .y
+ %._lz_f y ]z zJ R, (8)ge 237 singxds
Mooy Py J
A 2
+u—]2—x wix,y) » (x50, y<0) , | (44)
1
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A2 oy (2+v,)m2.-g2 m,.y
u(x,y) = %‘;gz'f z g .33 R3j(8)8e 377 singxds
2 o Jj=1 3j
A22
* ooz x w(x,y) , (x>0, y<0) , (45)
2
A2 oy m, X=-iay
_ 1 o 1]
v(x,y) = - —L‘—z‘f g —— Ry:(a)(m?,+v,a2)e do
2 u.‘ mj':] p-lj 13 15 1

A 2 m -y
2 M J 8 2J 2 23
-2 1 5 R,.:(B)(B%24v,m5.)e Y cosgxdg,
" o 379 pZJ 2] ] ZJ

(x>0, y<0) , (46)

-]

2 Ap° 4 m33 e 5 1. M35
V(X,Y) =S -—— 2 R (B)(B +v,m )e cosBgxdp ,
. T pZ: 3] 273

(x>0, y>0) . (47)

3. The Integral Equations

Referring to the general formulation of the problem given in the
previous section it is seen that the first thirteen conditions (33)-(37)
are homogeneous and may be used to eliminate thirteen of the fifteen
unknown functions Rij and Ak (i=1,2,3; j=1,...,4; k=1,2,3).The mixed boun-
dary conditions (38) and (39) would then give the integral equations to
determine the remaining two. To derive the integral equations we first
introduce the following new unknown functions which are the complements of
the known crack surface tractions F] and FZ:

G, (y) = u(+0,y) » Goly) = gy-sx( 0,y) , (y<0) . (48)

From the solution given in the previous section and from (48) it may be
shown that

—l

J

pi(e)ee Vo (49)

- i
G] (.Y) - = 2," 'l .E] p]‘]

=

. A zf° ., (]+v])a “P1; .
J



By inverting (49) and (50) and by using (33)-(37) one may
teen unknown functions Rij and Ak in terms of G, and G
(39b) and (48) it may be observed that '

1 2°

Gi(y) = 0, (i=1,2; -w<y<=dy, =by<y<0) ,

and (38b) and (39b) would be identically satisfied if
-b, '

J 6;(y)dy = 0, (i<1,2)

-d,

-expressed as

(50)

express all fif-
From (38b),

(51)

(52)

From the formulation of the problem the conditions (38a) and (39a) may be

A 2. : m, . X=iay
. 1 1 gt 13
N (+0,y) = Tim - (21 J ;LR (a)e do
XX x>+0 &7 M0 ) 4e PRy W
Ay 2 ¢ g mE. m, .y
+ %-(510 J z E%i sz(s)e 23 cosBxdg = F1(y) s
1) 3=5 P2j
(-dy<y<-b;) , (53)
w 2 2 ;
. 1 y m]j-\)-‘a m”x-wy
M. (+0,y) = 1im Ny f z R,:(a)e da
XX x40 }ﬁ?‘ 2w R K]p”-l 1]
. 2
Fk (T=vy ) > - ® 2
1 1/ J . Y‘-'X lay 2 g B V1m2j sz
- —— | arA (a)e dcx-—J'[E —= R,:(B)e
41T - ] ‘I i o J-:s ]pzj 2\]
kq (T-v )2 r.y
- —J——E—l—-srzAz(B)e 2 Jcosaxds} = Fo(y), (-dy<y<-b;) . (54)

-10-




If we now write Ri' and A; in terms of Gy and G and take into
account (51), (53) and (54) become

-b

1
[ Hglnney (0t = R, (1,2, ~deyeey) (55)

J=1 .
~d,
ij(y,t) 11m0 {J J(x,a)ei(t'y)ada + I ij(y,B)cosBde} R (56)
X+
-0 - (o}

where Bk' and CkJ’ (k,j=1,2) are known functions. The derivation of these
functions are rather lengthy but quite straightforward and will not be
reproduced in this paper. From the viewpoint of obtaining the correct
singular behavior of G] and G2 near and at the end points y=-d] and y=-b]
and a sufficiently accurate solution of the system of integral equations
(55), it is essential that the dominant parts of the kernels given by (56)
be separated. This can be done by examining the asymptotic behavior of
BkJ( X,0) and CkJ(y, B), (k,j=1,2), for [a|+= and g+=, respectively, by
separating the asymptotic terms BkJ and CkJ and by evaluating the corre-
sponding integrals in closed form. A key step in this process is the deter-
mination of the roots of the characteristic equations (12)-(14) (see,

for example, [10]). It may then be shown that for large values of |ao| and
B the roots have the form

2
m]j=-|al(1 +%}-§g§;—+...), (3=1,...,4) , . (57)
mys = 8(1 +;§—~3— 223 +...) 5 (355,....8) , (58)
2
Mgy = -8(1 + ;%% ;%%-+ eee) 5 (3=1,...,4) . (59)
Also, from (26)-(28) it may be seen that for |a|>>1 and 8>>1 we have
M=l o ]1v],a - )y = 81k E;TT};TTEY-- )
ry = =B(1 + —ryo—ygz = +e0) - (60a-c)
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After evaluating the dominant kernels the integral equations (55)
may be expressed as
-b

o
J {[k]s(.Vst)+k]]A(.Yst)]e].(t)"'k]2(.Yst)62(t)}dt = ZWF] (.Y)’ ('d‘|<.y<‘b'l) »
-d
' (61)
-b]
(192 thoy (9306 (€14 kg (3,8 gy (v, 1) 16 (1)
-d, .
h]J'-I .
= 2?" —a_ Fz(}’): ("d] <yf‘b]) ’ ’ (62)
where

c1(3c3+2c4)+2c2c5) 1, (6c3) y
C]C6 t+y C6 (t+.y)Z

- pye
k]S(Y9t)"kzs(yst)‘ t'y (

4c

_ __§_ 2 X
(CG) 1%%?7? ’ , (63)

: c]=-3+\)2-(] +\)-I )Ez/ E-I ’ C2=] +E2/E~| s C3=] +V2"(1+V‘| )EZ/E] ’
C4=-V2+V]E2/E]v,,Q5=3'V2—(3-91)E2/E] s C6=]+V2+(3;V])E2/E]" :(64)

and the kernels kij(y,t), (i,3=1,2) are bounded in the closed interval
-d]_<__(y,t)5_-b1 (including the case b]=0). The dominant or singular kernels
kis and the bounded kernels kij’ (1,=1,2) are obtained from the integrals
of the form:

o

kig(yst) = 1im'{f B]]m(x,a)ei(t-y)ada + f C1wlYsB)cosBxdp}, (65)
x-+0
- o

058D = [ T8150,00-8; 5, (0,00 ¥ )%

-0

Ity g (a8 1ds , (31.2) (66)

(o)
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The important point to observe about the integral equations is that, as in
the homogeneous shells, only the diagonal kernels contain singular terms
and the dominant kernels k]s and k25 corresponding to membrahe and bending
loads are identical. This physically expected result is possible again:
because of the use of a transverse shear theory in formulating the problem.
Also, it can easily be shown that the dominant kernel k]s found for the
nonhomogeneous shell in this study is identical to that obtained for two
dissimilar bonded half planes with a crack perpendicular to the interface
under plane stress conditions.which is given in [14]. The plane stress
problem is, of course, a limiting case of the shell problem and this, too;
is the expected result.

4. The Stress Intensity Factor

After solving the integral equations, clearly any desired field quan-

tity may be obtained from integrals with appropriate kernels having'G1
and 62 as the density functions. For example, it may be observed that
before going to the limit, (53) and (54) give Nxx(x,y) and Mxx(x,y) every-
where in the shell. 1In particular we note that (55) or (61) and (62) are
valid for x=0 outside as well as within the cut_-d1<y<-b]. Thus, through

a simple asymptotic analysis of (61) and (62) one can obtain the stress
intensity factors at the crack tips which, for b>0, are defined by (F1g
1b)

k](-b,x3) = 1im /2(x2+5) c]](O,xz,x3) s - (67)
,X2+-b+0 :
ky(-d,x5) = Tim /~2(x4d] on(o;xz,x3) ) (68)
X2+-d-0

In the shells the in-plane stress components are obtained by combining
membrane and bending stresses as follows:

975 (X1 2Xp2%3) - GTJ- * o?j , (1,3=1,2) (69)
12x

m _1 b 3

%ij ~ FNij(Xl’x2)~f % j —hTM,J(prg) , (i,3=1,2) . (70)

-13-



Now for b>0 from (61)-(63) it is seen that the dominant kernels k1S and
kZS consist of (t-y)'] only and hence the solution of the integral equations
may be expressed as [15] ‘

Pj (y) ' .
T o (j=] 223 'd] <.Y<'b'| ) (7] )
['(y+d])(y+b])]

Gj(Y) =

where P, and P, are unknown bounded functions. By substituting from
Appendix A and (71) into (61) and (62) and using (67)-(70), it can be
shown that

&l

Ky (=b,x5) = = =~ Tim T2TX,7B) —— [uq (+0,%, )#X,8++ (+0,%,) ]
177 2 x>0 27 35 - 2/773P T2

& X3
- 5 /@ [Py(-by) + == Py(-by)] , (72)
E;

ky(-dx3) = = Tim /2Tx,#d] % [uy (40,x,) x5 814 (+0,x,) ]
x2—>-d+0 002

E, X3 '
7 72 [Pyl-dq) + = Py(-dy)T . (73)

In the case of b=0 from (63) it is seen that the dominant part of
the kernel is a generalized Cauchy kernel, that is it contains, in addi-
tion to (t-y)'], terms which become unbounded as the variables y and t
approach the end point -b]=0 (Fig. 1b). The contribution of these terms
to the singular behavior of the solution at y=0 can be studied by assuming
the solution of the integral equations (61) and (62) as

65(y) = S5 (=) "y, (-1<Re(v,0)<0) (74)

and by fo]loWing the function theoretic method (see, for example, [14]
and [15]). Thus, by substituting from (74) into (61). and (62), the charac-
teristic equations giving y and w may be obtained as follows:

2c 3c

. 3 2¢
cosmy - 7;;‘Y(Y+2) -

+2¢ o
it _E5 ., (75)
6 1% .
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cosmw = 0 . (76)

At the crack tip y=-d, which is embedded in a homogeneous medium (76)
gives w=-1/2. The characteristic equation (75) found for y is identical
to that given in [14] for the plane stress case and its examination would
- show that for all material combinations the equation has only one root
satisfying -1<Re(y)<0 and this root is always real. ‘In [14] it was found
that for the plane problem in the small neighborhood of the singular point
y=0 located at the interface the stress state has the form

k .
= __] Y. RE
0;5(rs6) =5 fi5(8) » 1,3=r.8) , (77)

where r and 6 are the polar coordinatgs and the functions fij are dependent
on the bimaterial constants E , v, (k=1,2) and are given in [14]. The
constant‘k] is again defined as. the stress intensity factor and is obtained
from the calculated values of cee(r,O) by norma]izingrfee(0)=1. Thus,

in .the present shell problem the stress intensity factor at the crack tip
y=0 may be defined as '

ky(0,x5) = l;m%o VZ Xy Y011(0,%55%4) (78)
To evaluate the stress intensity factor k](O,x3) the asymptotic expression
of CoR for x2>0 is needed. This can again be obtained in terms of G1 and
62 from the basic formulation of the shell given in this paper. After
somewhat lengthy but straightforward analysis it may be shown that

E 3c6+c1+2y(c]+c6)

=. 2 ; )Y 8
k](O,x3) T a C1C6Sinny ) l‘f+0 ( x2) 3x2 [u1(+0,x2)
2
+ X3B-”(+0,X2)]
3c.tcy+2(cqtc )y X
_ -y 6 -1 16 73
T E2a C]Cssin'ny )[51(0) + a SZ(O)] ’ (79) '
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Also, at the crack tip x2=-d the expression
(-d,x,) = El-1im V20, # ) == [u(+0,X,) + X487 (+0,x,)]" (80)
14-@sX3) = 7 270 gy HIVTEX) T XgP R

is still valid and by using (48) and (71) can be written as

E] ' X3

5. Results

For b>0 the integral equations (61) and (62) subject to (52) may
easily be solved by using the Gauss-Chebyshev quadrature formulas described
in, for example, [14] by assuming the solution in the form (71). The
stress intensity factors may then be obtained from (72) and (73). From
(72) and (73) it is seen that the values of the bounded functions P1 and
P2 at the end points -d] and -b] are associated with respectively the
membrane and the bending components of the stresses near the crack tips.

. For the pressurized shell shown in Fig. 1b, one can, therefore, define the
following normalized stress intensity factors:

_ k](rj,O) _ k](rj,h/Z)-k1(rj,0)

k (r. —_ .,k (r; R (82)
™3 (pry/myva T I (pRo/n) VE

where ri=-b and r,=-d and the stress intensity factors k](rj,x3), (j=1,2)
are given by (72) and (73). For b=0 the definition of the normalized
stress intensity factors at r,=-d would remain the same as in (82) and
may be obtained from (81), At r1=-b=0 we have

k1(0,0) _ k1(0,h/2)-k1(0,0)

k (0) = ————, k (0) = ' (83)
" (pR;/h)a™" (PR /h)a”Y

where Ky is given by (79). In(82)and (83) R; 1s the inner radius of the cylinder.
The reinforced shell shown in Fig. la is considered as an example.
The main shell having properties E],v1 is steel and the reinforcing shell
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is a fiber reinforced composite.
cylinders used in the analysis are shown in Table. 1.

The dimensions of four different
The table also:

shows the elastic constants E2,v2 of the equivalent homogeneous shell
shown in Fig. 1b. The derivation of E2’“2 and the solution of the nonhomo-
geneous shell in the absence of any cracks giving the crack surface

Toads F, and F, are given in Appendix B (see, (61) and (62)).

It should

be noted that_F] and F2 are functions of y=x2/a. One may also note that

the effective elastic constants Ez,v2 as well as F1’F2 are dependent on
the axisl constraint in the cylinder.
either there is no axial constraint (labeled as a cylinder with "open
ends") or the ends of the cylinder are "closed", corresponding to the
total axial force in the internally pressurized cylinder P=0 and P=nR$p,

respectively (Eq. B6).

In the examples it is assumed that

Table 1. Dimensions and the effective material constants
(Ez,vz) of the composite shell used in numerical
examples. ‘
Shell # 1 2 3 4
E - (psi 3x107 3x107 3x107 3x107
1 GPa 207 207 207 207
v 0.3 0.3 0.3 0.3
. . . psi 2x107 2x107 2x107 2x107
E' (reinforcing sheH){GPa 138 38 138 138
v' (reinforcing shell) 0.1 0.1 0.1 0:1
. - .in. 1 0.615 0.5 0.404
h (thickness) {n 0.0254 | 0.0156 0.0127 | 0.0103
. - .1in, 100 .23.6925 17.75 11.798
R (mean radius) {n 2,54 | 0.6018 | 0.4509 | 0.2997
» . in. 1 0.615 . 0.5 0.404
h, (reinforcing shell){ 0.0254 | 0.0156 | 0.0127 | 0.0103
R/h 100 38.524 "~ 35,5 ©29.203
Open Ends:
E -{psi 50.2x106| 49.72x106{ 49.66x106| 49.48x106
2 GPa 346 343 342 341
Vo ' 0.2214 0.2174 0.2168 0.2153
-y 0.449518| 0.450677 | 0.450827 | 0.451265 °
Closed Ends: ‘ .
E -{psi §0.06x'|06 49.37x106 | 49.28x106 | 49.03x10°%
2 GPa 345 340 340 338
2 00,2272 0.2321 0.2327 0.2345
=Y "10.440538| 0.450728 | 0.450886 | 0.451323
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For these two cases the values of E2 and Vo calculated from Appendix B are
given in Table 1.

The stress intensity factors obtained by using dimensions and proper-
ties of four different shells shown in Table 1 are given.in Tables 2-5.
The normalized stress intensity factors given in the tables are defined
by (82) for b>0 (or c>a) and by (81) and (83) for b=0 (or c=a). One may
observe that as the relative distance of the crack to the interface c/a
increases the stress intensity factors approach those given for the homo-
geneous shell [9]. The tables also show that the membrane component km
of the stress intensity factor (which is by far the dominant part) decreases
with the decreasing crack distance to the boundary. Even though the
results found for "open" and "closed" ended cylinders are different, for
the axial through crack geometry under consfderation the differences seem
to be relatively insignificant. It should be emphasized that the tables
show the stress intensity factors normalized with respect to (pRi/h)/E
which is the corresponding flat plate (or plane stress) result under the
same membrane loading as the shell. Thus the variation in the stress
intensity factors as a function of a/h and R/h is entirely due to curvature
and thickness effects. |

In Tables 2-5 the membrane and bending components of the stress inten-
sity factors are given separately.  In all cases, the calculated bending
components were such that the stress intensity factors on the outside sur-
face x3=h/2 were greater than that on the inside surface. Figures 2-5
show the stress intensity factor k1(ci,h/2), (ci=-d,-b,0) obtained from
(72), (73), (79) and (81) for some selected shell-crack geometries. The
effect of reinforcement may be clearly observed from Figures 2 and 3. The
asymptotic behavior of k](—b,h/2) as c»a is due to different definitions of
k] for b>0 and b=0 as given by (67) and (78). For these two cases the
cleavage stress in the close neighborhood of the crack tip may be expressed
as (Fig. 1b) '

U]](O,Xz) s —_—, (Y‘=X2+b, b>0, X2>-b) . ) (84)

r
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ky(0,h/2) k](o,h/z)r’/"’+Y
vZ r Y 2r

017(0,%,) = ,'(r=x2>o, b=0). (85)

Thus, since 1/2+y>0 (see Table 1), the stress intensity factor defined on
the basis of the conventional square root singularity becomes

Tim ky(-b, h/2) = Tim V2r 07;(0,%,) = Tim k](o,h/z)r'/z+Y =0. (86)
b-0 r-0 r-0
b0

Figures 4.and 5 show the normalized stress intensity factors on the
outside surface x5=h/2 for b=0 obtained from (79) and (81). Here, too,
it may be seen that even for a relatively very shallow shell (shell no. 1),
there is considerable curvature and thickness effect.
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Table 2. Membrane component km of the normalized stress
intensity factor in a pressurized composite shell
with open ends which contains an axial crack.
Shell kn(=b) k. (=d)

No ¢/a h- , - 1 A '

‘1 a/h 1.0 1.1 1.5 2 10 1.0 1.1 1.5 2 10
1 1.812 |0.695 |0.778 | 0.809 | 0.978 ||0.789 |{0.798 |0.820 | 0.839] 0.990
2 1.878 |0.722 |0.819 | 0.864'| 1.050 {{0.841 {0.852 {0.885 | 0.916| 1.049
! 3 1.973 {0.759 {0,874 0.934j 1.082 ||0.903 |0.918 [0.960 | 0.998] 1.079
10 [3.097 [1.203 |1:447 |.1.534"].1.542 ||1.442 {1.472 |1.532 | 1.549] 1.542
1.849 (0,721 |0.812 | 0.851 | 1.041 {{0.830 |0.840 |0.869 | 0.895| 1.041
5 1.998 {0.782 {0.900 ‘0.962 1.100 {|0.929 {0.944 10.988 | 1.027} 1.097
2,198 (0.862 |1.010 | 1.088 | 1.175{|/1.042 [1.061 |1.113 | 1.152]| 1.176
10 (4.426.{1.730 {2.057 | 2.101 | .2.096 {{1.999 |2.036.{2.091 | 2.096| 2.096
1 1.853 |0.724 (0.817 | 0.867 | 1.046 }}0.835 |0.845 |0.875 | 0.902) 1.049
3 2 2.013 }0.788 }0.910 0.97$ 1.106 |{0.940 10.956 |1.000 | 1.039| 1.104
3 2,227 10.876 {1.027 | 1.107 | 1.189 |;1.058 |1.078 |1.131 | 1.170( 1.189

10 }4.581 {1.790 |2.125 | 2.164.}.2.161 {|2.062 |2.100.}2.155.|.2,160| 2.161
1 1.866 |0.733 [0.829.| 0.871:| 1.057 {{0.848 [0.860 {0.890 | 0.919] 1.058
‘ 2 2.053 .{0.809 {0.937 | 1.004 | 1.124 {{0.969 {0,985 .{1.031 | 1.071} 1.123
4 3 2.304 {0,912 [1.073 | 1.156 | 1.225({1.102 |1.123 [1.177 | 1.214] 1.226
10 14.980 {1.947 [2.297 |.2.327 .| 2.326.){2.225 12.264 {2.319 | 2.324) 2.326
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Table 3.

Bending component kb of the normalized stress intensity
factor in a pressurized composite shell with open ends
which contains an axial crack.

Shell kp(-P) km('d)
No c/a .
* a/h 1.0 1.1 1.5 2 10 1.0 1.1 1.5 2 10
1 0.005 {0.002 {0.008 | 0.014 | 0.039 {|0.,015 |0.016 |j0.020 { 0,024 0,037
1 2 10.047 .0.021 0.035 | 0.044 | 0.046 |[0.042 [0.044 [0.050 | 0.055| 0.043
3 0.087 {{0.042 {0.062 | 0,075 | 0.064 {{0.069 [0.072 |0.078 | 0.082| 0.064
10 0.225| 0.134 |0.202 | 0.212 | 0.197 |[0.191 [0.196 {0.204 | 0.203( 0.198
1 0.033 .|0.015 (0.026 | 0.034 | 0.043 {{0.043 [0.035 |0.041 0.046| 0.039
2 2 0.101 {0.046 0.069 0.081 | 0.071 {{0.076 {0.079 {0.085 0.089 0.070
3 0.154' {0.074 {0.108 | 0.123 | 0.110 |{{0.111 [0.114 {0.121 0.123( 0.110
10 |(0.164 {0.124 i0.211 0,207 | 0.198 |{0.200 0.202 0.207 | 0.203| 0.198
0'037, 0.017 {0.027 | 0.036 | 0.044 |}0.036 {0.038 |0.043 | 0.047| 0.040
.3 0.107 |0.050 {0.080 | 0.086 | 0.074 |[0.079 |0.082 |0.089 | 0.092| 0.074
3 0.161 (0.078 |0.117 | 0.128 | 0.114 (10,115 |0.119 {0.125 | 0.127} 0.114
10 [0.148. 0.]08 0.197 | 0.200 | 0.192 {{0.194 |0.197.{0.201 | 0.197{ 0.193
1 0.046 110,021 |0.032 | 0.043 | 0.047 {|0.0471 |0.043 [0.049 | 0.053| 0.042
2 0.120 |0.055 {0.082 | 0.096 | 0.083 {j0.088 {0.091 (0.097 { 0.099{ 0.082
4 0.176 [0,086 [0.124 0.140 0.126 [{0.126 |0.129 [0.135 | 0.136| 0.125
10 10.102 |0.099 {0.186 | 0.172 0.172 0.178 {0.179 |0.181 0.177| 0.172
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Table 4. Membrane component k, of the normalzied stress intensity factor
in a pressurized composite shell with closed ends which contains
an axial crack.
Shell kp(-D) k: (-d)
No. ¢/a :
ajc 1.0 1.1 1.5 2 10 1.0 1.1 1.5 2 10

1 1.909 [0.735 |0.820 | 0.848 | 0.985//0.828 |0.836 |0.857 | 0.874] 0.994
‘ 1 2 1.969 [0.759 {0.856 | 0.897 | 1.047({0.872 |0.883 [0.912 | 0.938]| 1.047
} 3 2.059 10,795 {0.907 | 0.959 | 1.081(|0.929 |0.942 {0.979 | 1.011} 1.078
| 10 {3.158 |1.229 [1.458 | 1.533 | 1.542|{1.448 [1.475 {1.531 | 1.546]| 1.542
1 1.932 (0.760 |0.851 | 0.887 | 1.039({0.865 |0.874 [0.900 | 0.923| 1.042
2 2 2.074 {0.818 |0.932 | 0.986 | 1.099|0.954 [0.968 |{1.006 | 1.039}{ 1.097
3 2.265 10.897 {1.037 | 1.104 | 1.176||1.059 }1.077 |1.123 | 1.156| 1.176
10 [4.446 (1.750 |2.059 | 2.098 | 2.096 {}2.001 2.036 [2.089 | 2.095| 2.096
1 1.936 {0.764 |0.856 | 0.892 1;044 10.869 |0.879 (0.905 | 0.929| 1.046
, 2 2.087 [0.825 (0.942 | 0.997 | 1.106(]|0.964 |0.978 |1.018 | 1.051}| 1.104
3 3 2.293 (0,910 {1.053 | 1.122 | 1.189{{1.075 |1.093 {1.139 | 1.173| 1.189
10 [4.593 {1.810 |2.126 | 2.161 | 2.161|2.063 |2.100 |2.153 | 2.159] 2.161
l 1 11.944 |0.773 |0.867 | 0.905 | 1.055{{0.882 {0.892 [0.920 | 0.944| 1.056
4 2 :|2.122 |{0.846 {0.968 | 1.026 | 1.124{|0.990 |{1.006 {1.047 | 1.080| 1.123
3 2.363 [0.946 [1.098 | 1.169 | 1.226({1.117 [1.136 [1.184 | 1.216| 1.226
10 14.977 |1.966 [2.297 | 2.324 | 2.326 ||2.227 (2.265 |2.318 | 2.324| 2.326
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Table 5. Bending component ky of the normalized stress intensity
factor in a pressurized composite shell with closed ends
which contains an axial crack.
Shell —kb(-b) kb(-d)
No. c/a _ '
a/h 1.0 1.1 1.5 2 10 1.0 1.1 1.5 2 10

1 0.010 {0.003 (0.010 | 0.014 | 0.034 [|0.015 {0.016 |0.019 | 0.022| 0.032
1 2 0.051 }0.023 [0.035 | 0.042 | 0.045 {{0.041 {0.042 {0.047 | 0.051| 0.042
3 0.091 |0.042 {0.061 } 0.072 | 0.061 {|0.067 {0.069 [0.074 | 0.078] 0.064
10 10.230 {0.135 [0.199 | 0.209 | 0.197 (]0.190 }0.795 0.203 | 0.203| 0.198
0.038 {0.016 {0.026 | 0.033 | 0.040 }|0.033 |{0.034 {0.038 | 0.041| 0.037
0.105 [0.048 [0.068 | 0.079 | 0.071 {{0.074 |0.076 |0.082 | 0.085| 0.070
2 0.158 {0.076 |0.107 | 0.720 | 0.110 |{0.109 (0.112 {0.118 | 0.119} 0.110
10 ]0.171 |0.125 {0.219 | 0.205 | 0.198 0.199 0.202 [0.207 | 0.203| 0.198
1 0.042 [0.019 [0.027 | 0.035 | 0.041/[0.034 [0.036 |0.040 | 0.044] 0.038
' 2 0.111 }0.051 |0.072 | 0.083 | 0.074 {|0.078 {0.079 {0.085 | 0.088| 0.074
3 3 °]0.165 !0.080 |0.111 | 0.125 | 0.114.){0.114 |0.117 [0.122 | 0.123] 0.114
10 [0.156 {0.119 |0.203.| 0.200 | 0.192 {{0.195 |{0.197 {0.201 | 0.197| 0.193
1 0.050 |0.022 {0.033 | 0.047 | 0.045 ||0.039 |0.042 |0.046 | 0.050| 0.041
2 0.125 |0.058 [0.081 | 0.092 | 0.083 }|0.086 |0.089 [0.092 | 0.096| 0.083
4 3 0.180 (0.088 {0.123 | 0.137 | 0.126 }|0.124 (0,127 {0.134 | 0.134; 0.125
10 10.112.10.101 {0.184 | 0.179 | 0.172 }{0.179 |0.180 |0.181 | 0.177} 0.172
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APPENDIX A
Normalized quantities‘used in the formulation
of the composite shell problem

X = x]/a, y = xz/a, zZ = x3/a, b] = b/a, 61 = ¢c/a, d] = d/a ,
u = u1/a, v = uz/a, W = u3/a, By = By» ?y = By »
F(x],xz)/(E]haz) » Yy <0,
d(xsy) = <t Fxe x0)/ (Eoha2) .y > 0
1272 2 s ’
%5/F s ¥ < 0 |
UaB(x,y,Z) = < (G,B=X,y; i,j=],2) s
%i/Ep s ¥ > 05 |
. ( Nij/(E]h) s ¥ <0, |
NGB(X,Y) =< ‘ (G,B=X,y; i3j=]92) ’
| [ N5/ (Eph) , y >0, -
h2
Mij/(E]h ),y <0,
MaB(X,Y) =< 5 (Q,B=X,y; iaj=132) ’
l Mij/(EZh ) s ¥ > Oa
( Vk/(B]h) H) y < 0 ’
VY(x,y)'= < (v=x,y3 k=1,2) ,
v Ly >0,
) , Y .
B, = 5E;/(12(1+v;)) , 5 = E;/(Byuy) 5 (i=1,2) ,

L
Uz

12(1-v§)a2/h2‘, x? = 12(1-v§)a“/(R2h2) , (i=1,2) .
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APPENDIX B
Solution of the uncracked composite shell problem

The first problem here is the determination of elastic constants E2

and vy of a cylindrical shell which has the same stiffness as a long layered

cylinder (see Fig. la and 1b for x2>>0). The second problem is the solu-
tion of the bonded shells shown in Fig. 1b in the absence of any cracks
in order to determine the crack surface tractions Fl(Y) = N]1(0,x2)/(hE])
and Fz(y) = M]](O,xz)/(th]) which are used in the perturbation solution
of the cracked shell as the input functions. In the first problem we
use the following basic (axisymmetric) solution of a thick-walled cylinder
under plane strain conditions: '

_ B _ B
Orr(r) =Atsz, 0ee(r) =A-17>

. _—=2u2
w(r) = 129220 pe LI B b (aara) (Bla-c)

where A and B are unknown constants and w is the radial displacement.
For the three cylinders we have (Fig. 1)

a7 = Rys by = Ryth, A= Aj, B =By v=v, E=E, (B2)
3y = Ry*h, by = Ryththy, A= A,, B =B,, v=1v' E=E, (B3)
a3 = Ry, by = Ri+h, A=Ay, B=Bg, v=v,, E=E, (B4)

where the dimensions Ri’ h, h2 and the elastic constants E1, vy E'
and v' are known. The bounday and continuity conditions

S1peldy) = -p s °2rr(b2) =0, °1rr(b1) = 02rr(32) )

wy(by) = wy(ay) 5 oy (a3) = -p , o3 (bg) =0 (85)

are used to eliminate A; and B, (i=1,2,3). Additional information
needed to account for e, is
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€,5 = (crzz-vcrr-vcee)/E s f GZZdA =P (B6a,b)
A

where P is the total axial force. If the cylinder is fully constrained
ezz=0, if there is no axial constraint, P=0 and, if the ends of the
cylinder are closed and if it is subjected to an internal pressure p,
then P = nR?p. In this problem it is assumed that the cylinders 1 and
2 are fully bonded along r=b1=a2 giving €177 €272

The two shells are said to be equivalent if

€327 = €122 » ¥3(R) = W1(R)" (B7a,b)

where R = Ri+h/2. After eliminating A, and B, (i=1,2,3), (B7a) and (B7b)
would give the equivalent (or effective) elastic constants E2 and v, in
terms of E], vys E', V', Ri’ h and h2. .

The next problem is the evaluation of the stresses in the bonded
shell shown in Fig. 1b in the absence of any cracks, Referring to [16]
and Fig. 1b, the solution of the "open-ended" or axially unconstrained
cylindrical shell problem may be expressed as

B1X 2
(e 2(C1c0531x2+C251'n31 x2) - ELRH R x2<0 .
' 1

ua(x,) = , (B8)
: e (C3c058,%,+C,sTNE X, - EEH3 Xy>0

where |

L

B = 301-v])/R%? , gy = 3(1-v)/R%h2 (89)
and the constants C],...,C4 are determined from

u,(-0) = u,(+0) —g—-u (-0) = —g—.u (+0) (B10)

‘3 3 ’ dx2 '3 dx2 3 ’

d2 o d? d3 . d3 e
D-l ’d';(z' U3(-0) = DZ a')z'z- U3(+0), D-l -@3 U3(-0) = DZ &g U3(+0'), (B]])
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E.h3 E.h3

. - 'I _ 2
Dy = warrEy D2 = =gy (812)

Note that (B11) represents the continuity of M22 and V2. Equations
(B8), (B10) and (B11) may be shown to reduce

(]
\
o
[

= 2
1 3 pR (Ez‘E])/(hE]Ez) s

(]

+

o
t

] 2 - (C4‘C3)62/B] 9.
= _N r2 2
C, = -D,83C,/(D;87) »

C,mCy = (c4+c3)uzs§/(ols3). (B13a-d)

After determining C],...,,C4 from (B13), by observing that [16]

E1h-

= _ G
N1 () = = g ug(xp) 5 Myplxp) = -y ax3 u3(xp)
(,<0) 5 (B14)
the input functions F.l and F, may be expressed as (see (38a), (3%9a) and

Appendi x A)( )

1 Biay ' . PR
~ F](Y) =ge [C]cosB]ay + C251n81ay]»-hE] , (y<0) , (B15)

2,087 Bqay
Fo(y) = w=——e  [-Cysingjay + C,cosg,ay] , (y<0) . (B16)
2 h E1 1 1 2 1

Similarly, if the ends of the pressuriied composite cylinder shown
in Fig. 1b are closed, following [17] we find

(*) Note that F7 and F2 used in the perturbation brob]em, correspond to
the membrane and bending resultants obtained from the uncracked
cylinder with the opposite sign.
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B+ X . V) 2
e 1 2[B]cosslx2+stms]x2] + (—%?—) %%F s (x2<0) R
u(x,) = <
32 =B4X Va=2 2
272 . 2 R
te [B3c0582x2+8451n82x2]-+(—7?—) %EF . (x2>0) .
(B17)
Biay
Fi(y) = %-e 1 (B,cosB,ay+Bysing ay) - é?% > (y<0) , (818)
| 2vDi8 BpaY
Fz(y) = J7E e (-BTS1n81ay+BzcosB]ay) » (y>0) , (B19)

1
where B1,...,B4 are obtained from the solution of the following system:

" 2-v
- 2E

2 ,
3= (7 ) |

2 s

.I
82,= 'B4D282/(D]8]) s

B,-B; = (B4+B3)Dzs§/(o]s?) ] - ' (B20a-d)
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Fig. 1 Geometry and notation for a reinforced cylindrical shell con-
taining an axial crack.
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Fig. 2 Normalized stress intensity factors on the outside surface of
an "open-ended" reinforced cylindrical shell containing an
axial through crack (Shell No. 1, R/h = 100).
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Fig. 3 Normalized stress intensity factors on the outside surface of
an "open-ended" reinforced cylindrical shell containing an axial
through crack (She1ll No. 3, R/h = 35.5).
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Fig. 4 Normalized stress intensity factor at the crack tip x2=0
on the outside surface x3=h/2 in "open-ended" reinforced
cylindrical shells (see Table 1 for the dimensions of the
shells and for the values of a=-y for each shell).



Fig. 5 Normalized stress intensity factor at the far end x2=-d
of a through crack intersecting the interface in "open-ended"
reinforced cylindrical shells (see insert in Fig. 4 for
geometry and Table 1 for dimensions of the shells),





