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ABSTRACT

An automatic history matching algorithm is developed based on bi-cubic

spline approximations of permeability and porosity in a single-phase, two-

dimensional areal reservoir from well pressure data. The regularization

feature of the algorithm, the theoretical details of which are described by

Kravaris and Seinfeld3 ,4 is used to convert the ill-posed history matching

problem into a well-posed problem. The algorithm employs the conjugate

gradient method of Nazareth9 as its core minimization method. A number of

numerical experiments are carried out to evaluate the performance of the

algorithm. Comparisons with conventional (non-regularized) automatic history

matching algorithms indicate the superiority of the new algorithm with respect

to the parameter estimates obtained. A quasioptimal regularization parameter

is determined without requiring a priori information on the statistical

properties of the observations.

*The research for the third author was partially supported under the National
Aeronautics and Space Administration under NASA Contract Nos. NASI-17070 and
NASI-IBI07 while he was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center,
Hampton, VA 23665.
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INTRODUCTION

The process of estimating unknown properties, such as permeability and

porosity, in a mathematical reservoir model to give the best fit to measured

well pressure and production data is commonly called "history matching."

Because the properties in an inhomogeneous reservoir vary with location,

conceptually an infinite number of parameters is required for a full

description of the reservoir. From a computational point of view, a reservoir

simulator contains only a finite number of parameters, corresponding to each

grid block or element in the spatial domain. In field scale simulations, it is

not unusual for the reservoir domain to consist of the order of 10,000 grid

blocks, and consequently 20,000 or more parameters may need to be estimated

simultaneously. This potential large dimensionality of the unknown parameters

distinguishes the reservoir history matching problem from other parameter

estimation problems in science and engineering. Moreover, the standard

reservoir history matching problem is mathematically ill-posed, and this

inherent ill-posedness, coupled with such a large number of unknown

parameters, lies at the root of the difficulties in its solution. The ill-

posedness of the history matching problem manifests itself by numerical

instabilities in the estimated parameters. Such instabilities are well

documented in the petroleum engineering and hydrology literaturel,2.

The principal approach that has been used to alleviate ill-conditioningin

the parameter estimates is to decrease the number of unknown parameters, and,

if possible, utilize any available information to constrain the space of

unknown parameters. One commonly used approach for reducing the number of

unknown parameters is to divide the reservoir into a relatively small number

of zones and to assume uniform properties within each zone. While this



approach is effective in reducing the number of unknowns, sufficient a priori

information is usually not available to enable specification of the zones on

any physical basis. Moreover, even though limiting the dimension of the

parameter space, zonation does not alleviate the fundamental ill-posed nature

of the problem. An alternative to zonation is to use prior information

expressed in the form of an assumed probability distribution for the reservoir

properties. If certain a priori knowledge is assumed about the parameter mean

values and correlations, the history matching objective function can be

modified to include a term penalizing the weighted deviations of the

parameters from their assumed mean valuesI. A form of Bayesian estimation can

then be used to determine the unknown parameters. While it has been shown

that better conditioned estimates may be obtained when a priori statistical

information is emp!oyed than when it is not sufficient knowledge of the nature

of the unknown parameters is generally not available to specify the parameters

needed to carry out a Bayesian estimation.

The critical problems in generating an effective algorithm for history

matching are twofold: (I) The original problem must be defined in a manner

that alleviates the ill-posed nature of the problem; and (2) An efficient

computational algorithm must be developed for solving the large, constrained,

nonlinear minimization problem that results from any history matching problem.

With respect to the inherent ill-posedness of the history matching

problem, Kravaris and Seinfeld3,_ have shown that the concept of regularization

can be applied rigorously to the estimation of spatially-varying parameters in

partial differential equations of parabolic type. The regularization.idea,

first advanced by Tikhonov_8,has been widely used in the solution of ill-posed

integral equations, but had not heretofore been developed for the estimation



of parameters in partial differential equations. In short, regularization of a

problem refers to solving a related problem, called the regularized problem,

whose solution is more "regular" (in a certain sense) than the solution of the

original problem and approximates (in a certain sense) the solution of the

original problem. More precisely, regularization of an ill-posed problem

refers to solving a well-posed problem, whose solution gives a physically

meaningful answer to the origina! ill-posed problem. The regularization

formulation of parameter estimation measures the "non-smoothness" of the

estimated parameter as a norm of the parameter in an appropriate Hilbert

space. No prior information about the parameter is required other than a

general idea of the degree of smoothness desired in the estimated field. The

only unspecified parameter is that reflecting the relative weight given to the

smoothness norm versus the usual least-square objective function.

Banks and co-workerss-8 have found that the use of spline representations

for spatially-varying parameters in one-dimensional partial differential

equations of both parabolic and hyperbolic type leads to well-conditioned

estimates. Although their numerical results were obtained for low levels of

spline discretization, it seems that the spline representation itself may

impart a degree of smoothness to the parameter distribution that could

circumvent some of the ill-conditioning inherent in the finite-difference or

zonation representation of the unknown parameters. The use of two-

dimensional, bi-cubic spline approximations for reservoir history matching is

an additional new feature of the work reported here.

The object of this work is to present an automatic history matching

algorithm based on the concept of regularization together with bi-cubic spline

approximations for the estimation of permeability and porosity in a single-



phase, two-dimensional areal reservoir simulation. The two critical problems

cited above are addressed in the algorithm. First, the regularization

formulation converts the history matching problem to a mathematically well-

posed problem. Second, we use a particularly efficient numerical minimization

method, the conjugate gradient method of Nazareth9, as the core technique for

the minimization. We present the results of extensive numerical testing of the

algorithm in which both permeability and porosity distributions are estimated.

Of particular interest will be the effects of the degree of regularization and

of the order of the spline approximation on the behavior of the estimates.



HISTORYMATCHINGBY REGULARIZATION

The problem of history matching may be viewed in a general way by

expressingthe reservoirmodel, or simulator,as the nonlinear operator

equation,
a

Ks --u (I)

where e represents the reservoirparameters,K is the operator representing

the reservoirmode!, and u is the observedportionof the model'soutput,such

as the well pressures. The history matching problem is just the inverse

problem to Eq. (I),that is given u and K find _. This inverseproblem is

well-posed if:

(a) For every u there existsa solutiona

(b) The solutionis unique

(c) The solutionis stable,i.e.,small perturbationsin u imply small

perturbationsin e.

If any of (a),(b) or (c) is false, the inverse problem is ill-posed.

Establishinguniquenessof e given u for operatorsK typicalof reservoir

simulators is an extremely difficultproblem, and at this time uniqueness

results are only availablefor very specialcasesI°. It can be shown readily,

however, that the inverseproblem to Eq. (I)for spatially-varyingparameters

in parabolicpartialdifferentialequationsis unstable3,and the estimationof

a from u is an ill-posedproblem. As we noted in the Introduction,the ill-

posednessmanifestsitselfby highlyill-conditionedestimatesin conventional

automatichistorymatchingapproaches.

Let us now be more specificand considerunsteady flow of a slightly

compressibleoil with viscosity_ in a two dimensional,areal reservoirof unit

thickness,spatialdomain f_and boundary_flin which fluid is beingwithdrawn



from Nw wells located at (Xw,Yw), w = 1,2,...,Nw. The fluid properties, _ and

c, are assumed to be known whereas the porosity _ and permeability k are

assumed to be unknown. The pressure distribution in the reservoir is governed

by

Nw

(k_-_ --V. Vp) + _-- qw6(X-Xw)6(y-yw) (2)
W--I

in _ x[0,T]

_P = 0 on _ x [0,T] (3)_n

p(x,y,0) --Po(X,y) in _ (4)

where _p/_n is the outward normal derivative of p on the boundary _ and [0,T]

is the time interval over which data are available. Because of the small size

of the well bores relative to the reservoir dimensions, the well flow rates

are represented as point sink terms in the pressure equation. If there exist

observed pressures at Nt times at Nobs locations, Pk,nobs, k = 1,2,...,Nobs, n

-- 1,2,...,Nt, then the customary history matching least-squares objective

function is

Nt Nobs

JLS -- >-- _- (Pk,n°bs - P(xk,Yk,tn))2 (5)
n=1 k=1

The conventional history matching problem can be viewed therefore as a non-

linear optimization problem of minimizing the sum of squares of differences

between the observed and predicted pressures subject to the constraint of the

reservoir model, Eqs. (2)-(4).



In the regularization approach we minimize an augmented objective

function, called the smoothing functional, denoted by JSM, that consists of the

sum of the least-squares term, JLS, and a stabilizing functional, JST. The

stabilizing functiona! for a parameter e(e--¢or k) is of the form

JST--Ile112H3( ) (6)

where I] I]2H3(fl) iS a norm defined in the Sobolev space H3(_).* Thus the

overall objective function to be minimized is

JSM : JLS + B(_JST (7)

Where Be is a weighting coefficient chosen to reflect the degree of importance

given to JST.

The minimization of JSM is performed over an appropriate finite-

dimensional subspace of H3(fl),the so-called space of approximants which can be

spanned by cubic spline functions. Thus the infinite-dimensional parameter

spaces for k and ¢ are reduced to finite-dimensional spaces by cubic spline

approximations, and the finite dimensional minimization of JSM is carried out

by an appropriate numerical minimization method.

*The Sobolev space H3(fl)is the set of functions that are square-integrable

over fland have square-integrable derivatives up to order 3. The norm of H3(fl)

is given by equation (A.12) of Appendix A.



BICUBIC SPLINE APPROXIMATION OF PERMEABILITY AND POROSITY

A general approach to representing the spatial variation of reservoir

properties is through the use of bicubic spline functions, in which a parameter

e(x,y) is represented as

Nys Nxs

e(x,y) = _- _-- bx(£x,x)We£x,£y by(£y,y) (8)
£y=I £x=I

where

bx(£x'X)= X*4(4-_x+ _-_s) £x = 1,2,...,Nxs (9)

by(£y,y) = X*4(4-£y + Y)_Ys £Y = 1,2,...,Nys (10)

and where ×*4( ) is the cubic B-spline function,



X 3

-6- x [o,13

I x-1 (x-l) (x-l)
x _ [1,2]_+_+" 2 2

(x-2)3
4 _ (x_2)2. x E [2,3] (11)x*4(x)= _ 2

I _ x-3 + (x-3)2 (x-3)3
"G --2- 2 _[ x e [3,4]

0 otherwise

Axs and Ays are the grid distancesof the spline grid along the x- and y-

directions,respectively. With this approximation,e(x,y)is replaced by the

set of unknown coefficients,We£x,£y , £x = 1,2,...,Nxs and £y = 1,2,...,Nys.

The grid used for spline representationof the unknown propertiesneed

not necessarilycoincidewith that on which the actual reservoirmodel is

solved. The reservoirmodel will be solvednumericallyusing finite-difference

approximationson the block-centeredgrid system shown in Figure I. Figure I

also shows the splinegrid system. The finite-differencegrid can be expressed

compactlyas Nx = {ixlix = 1,2,...,Nx}, Ny = {iyliy= 1,2,...,Ny} and NN = {ill

= ix + Nx(iy-1),ix e Nx, iy _ Ny} = {ili= 1,2,...,N},whereN = NxNy.

The finite-differenceapproximationof the pressure equation can be

writtenin compact notationas



i0

Nw

Qc_i(pin- pin-l) : _ QL,j k(i,j) (pjn_ pin) . _- qw_i,iw (12)U
JeJi w=1

for i E NN, n --1,2,...,Nt

where

Ji = {JlJ : i-Nx, i-I, i+I, i+Nx} N NN

Q = AxAy/At

= I Ay/Ax if j = i-I, i+I and j e NNQL,j

Ax/Ay if j i-Nx, i+Nx and j e NN

6i,iw is the Kronecker delta, and k(i,j)--(ki + kj)/2. The initial condition is

Pi° : Po, i e NN.

The least-squares objective function is then written as

N Nt Nobs

JLS = _- _- >-- (Pk,n°bs -pin) _i,ik (13)
I=I n=1 k--1

where we assume that tn - tn_I = At for n --I, ...,Nt.
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HISTORY MATCHING ALGORITHM

The problem we now seek to solve is to minimize the augmented objective

function JSM, given by Eq. (7), with respect to the spline coefficients

We_x,_X, _x -- 1,2,...,Nxs and _y -- 1,2,...,Nys, subject to the pressure

equation (12). To obtain an algorithm to solve this problem two steps are

required. First, we must compute the gradient of JSM with respect to each

We_x,_y, and, second, that gradient is then used in a numerical minimization

method to minimize JSM. The calculation of these gradients represents the

most time consuming part of updating the parameter iterates. In a problem as

large as history matching in a candidate algorithm these derivatives must be

able to be calculated directly, not requiring the individual derivatives

3pin/_Wa_x,_y._,_5 Those algorithms based on an optimal control, or

variational, formulation possess this necessary property. First, we solve the

reservoir simulator equation, Eq. (13), from t = 0 to t _ T, then solve the

adjoint system equation, Eq. (A.7), backward starting from t = T with the

terminal condition, Eq. (A.8),to t = O, and at the end of each time step during

the solution of adjoint system, compute the functional derivative of JLS with

respect to permeability, Eq. (A.9),or porosity, Eq. (A.IO),at the simulator

grid cells. Then, one computes the derivative of JLS with respect to the

spline coefficient W e, Eq. (A.11), the derivative of JST with respect to We,

Eqs. (A.12-19),and the derivative of JSM with respect to We, Eq. (A.20).

Because of the large dimensionality of We_× . , one seeks to use an,_y

algorithm that is as efficient as possible. The essential consideration in the

choice of a method is the computational time needed to minimize the objective

function. Most of multivariate minimization methods can be divided into two

groups: conjugate gradient methods and quasi-Newton methods. The quasi-
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Newton methods are preferred for moderate sized problems, but the conjugate

gradient methods become superior to the quasi-Newton methods as the number of

variables gets large (Scales _7suggested 250 as a turning point). Although we

treat 30-204 variables in our examples, the number is larger for field

applications. The conjugate gradient algorithm of Nazareth9 was chosen as the

core minimization method in the present code.

The remainder of this work is devoted to the numerical evaluation of the

algorithm on the estimation of permeability and porosity distributions in a

single-phase, two-dimensional areal reservoir, as modeled by Eq. (2). We want

to evaluate the algorithm on a well-defined test problem for which the "true"

property distributions are known a priori. For this reason, we will specify

the true parameter values, generate our own pressure data by solving the

reservoir model with these values, and then try to recover the true parameter

values by using the history matching algorithm.

Permeability level and distribution is the principal reservoir property

used to match pressure behavior. Porosity is usually better known than

permeability, and values from log and core data are often used as initial

guesses for _. (Porosity in the aquifer is generally less well known than in

the reservoir itself and can be more readily varied than ¢ in the reservoir.)

Aside from aquifer permeability and porosity which are generally not well

known, reservoir permeability is usually more uncertain than porosity.

It is difficult to determine the optimal value of the regularization

parameter even if we know the statistical properties of measurement error of

the well pressure data. We will choose a set of values of the regularization

parameter so that they form a geometric sequence and determine the optimal

regularization parameter from the "quasioptimal" value of the regularization
I
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parameter _e which minimizes llBe 3we/_Bel 12.

The data for the cases we will study are given in Table I. Although this

set of data is hypothetical, every effort has been made to have the example

conform to an actual field simulation.

An important question concerns starting the algorithm. Convergence

difficulties are sometimes experienced when the initial guesses of the

parameters are far from their actual values. To attempt to alleviate this

problem and to generate an algorithm that is as "hands-of_' as possible, we

begin the estimation by determining the unknown parameters as uniform over the

entire region. Thus, to start, we estimate single values of k and ¢ for the

entire region, called _ and @, that minimize JLS. These values then serve as

starting points for the full history matching algorithm. The rationale behind

this strategy is that convergence problems should not be encountered in

estimating a single parameter. The single value, while not accurate in its

spatial detail, nevertheless serves as a good starting point for the full

algorithm. This strategy has been emp!oyed in the results to be presented

shortly. The single variable minimization is carrried out in our code by the

secant method.

Table 2 gives the results of this first step for the estimation of ¢ when

k is known and the estimation of k when ¢ is known. Listed in Table 2 are the

true values of ¢ and k, the initial guesses to start the second method, the

minimizing parameter value e(_ --€ or k), and the values of JLS, JST, and JSM

for various values of the regularization parameter 8 at the minimum. The true

¢ and k surfaces are shown in Figures 2 and 3, respectively. To simulate

measurement error, uniformly distributed random numbers are added to the

pressure data generated from our presumed true permeability and porosity
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distributions.The resultingdata are shown in Figure 4.
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ESTIMATION OF SPATIALLY-VARYING PERMEABILITY AND POROSITY

We will investigate the effect of the choice of regularization parameter

(Be), degree of spline approximation (NxsXNys), and the number of observation

wells in the estimation of _ when k is known and the estimation of k when ¢ is

known.

We will use six observation wells for values of the regularization

parameter B@ = O, 0.01, 0.1, I, and 10 atm 2 for the estimation of _ and Bk = 0,

0.01, 0.1, I, and 10 atm2/darcies2 for the estimation of k and spline grids

NxsXNys _ 5x6, 7x9,and 12x17, where 12x17 is the maximum possible value for

the pressure grid we are using for both the estimation of € and the estimation

of k. As a special case, we will use 18 observation wells for the estimation

of k with Bk -- I atm2/darcies2 adn NxsXNys = 7x9. Finally, in all our

simulations, we assumed that the root mean square error in pressure

measurements to be o = 0.3 atm (thus O/Po = 0.2% and the corresponding JLS

value is 18.96 atm2).

The estimation of ¢ started with uniform value of € --0.184 and the

smoothing functional JSM was minimized until the change in spline coefficient

W_, and the gradient of JSM with respect to We satisfy the convergence

criteria given by

[IW€,new - W_'°ldl[ < el (14.a)

I[GSMWqbl[< _2 (14.b)

The same strategy was employed for the estimationof k, where the starting

value of k = 0.241 darcies(0.243darciesfor 18 observationwells) was used.

Tables 3 and 4 summarize the historymatching results for all the cases

studied.
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Effect of Regularization

We expect that, as the regularization parameter increases, the value of

the least-squares objective function, JLS at convergence will increase, but the

stabilizing functional, JST, will decrease, since a larger value of

regularization parameter means more regularization on the parameter to be

estimated at the expense of less exact fitting of the observed well pressure

data.

This expectation turned out to be true, with some exceptions for the

terms JST(m.I), m = 0 and I, in the stabilizing functional during the

estimation of k as shown in Table 4(a). That is, JST(I) for Bk = 0.1

atm2/darcies2 is slightly greater than that for Bk = 0.01 atm2/darcies2 and

JST(2) for Bk = 10 atm2/darcies2 is greater than those for _k = 0.1 and I

atm2/darcies2. But, the total stabilizing functional, JST, and its component,

JST(4), that represents the third order derivative term and is most important

among the four terms, JST(m.1), m --O, I, 2, and 3, decreases strictly without

exception as Bk increases.

Table 3(a) shows that JST(4) terms for true @ is close to that for

estimated @ with B@ = I atm 2 for which JLS and B_JsT are balanced, but Table

4(a) shows that JST(4) terms for true k is close to that for estimated k with

B@ is betweeen 0.1 and 0.01 atm2/darcies 2 for which JLS is 10 - 100 times as

large as _k JST. This means k can be regularized more easily than _ can. It

is interesting to compare these numerical indicators of performance with the

surfaces and profiles in Figures 5 and 6 . The estimated parameter surfaces

are too bumpy compared to the true surfaces (Figures 2 and 3) when small

regularization parameters are used and in the non-regularized case. Note the

"bump" in Figure 5.a or the inflection point at Y/YL : 0.8 in curves 1(Bk=O) and
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2(Bk=0.01 atm2/darcies2) of Figure 6. On the other hand, the parameter

estimates become too flat for large values of regularization parameters, as

shown in Figure 5.c and curve 5 in Figure 6, as compared to Figure 2 and curve

6 in Figure 6.

To determine the optimal regularization parameter, Il_edWe /d_112 can be

approximated by Il(W2_-W_e)/(_nB_,a-_nBe,1)l12where Be,1 and Be,2 denote two

different regularization parameters and W_e and W2e, respectively, are the

corresponding spline coefficients that minimize JSM and II'I12denotes Euclidean

vector norm. Table 5 summarizes the results for the estimation of _ and the

estimation of k. The optimal B_ = 0.1 to I atm 2 for the estimation of _ and

the optimal _k _ 0.01 to 0.1 atm2/darcies_ for the estimation of k which agree

with the above investigation.

Table 4 also shows that, in the estimation of k, the JST(I) term, which is

proportional to the Euclidean norm of k(x,y),in the domain _ is smaller than

that calculated from the true k. This behavior can be explained from Eq. (2),

which shows that the pressure value is governed by the gradient of k with

respect to the space variables rather than the value of k itself. Thus the

value of k can be reduced to some extent without changing the values of

pressure significantly during the estimation of k.

Effect of Spline Approximation (NxsXNys)

The measurement error (JLs for true parameters) is 18.96 atm 2 while JLS

for Be = 0 is 20.67 atm 2 for the estimation of _ and JLS for Bk --0 is 21.26

atm 2 for the estimation of k. This can be explained by the fact that the

spline approximation has the effect of smoothing instead of fitting the noisy

measured data in detail.
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It is clear that the measured data can be better fit with more

parameters, thus we expect that values of JLS should decrease as the dimension

of spline grid, NxsXNys, increases. At the same time the estimated parameters

are expected to be less regular for larger values of NxsxNys. This

expectation turns out to be true in our examples in the estimation of both

and k. The value of JST(4) for the true _ is closer to that for the estimated

when NxsXNys = 7x9, and the values of JST(4) for the true k lies between

those of the estimated k for NxsXNys --7x9 and 12x17. However, if we want the

values of JST(4) not to be greater than that of true k, we conclude that

NxsXNys = 7x9 is the best value for the IOx15 pressure grid in our example.

Figures 7 and 8 show the effect of spline approximation on the estimation

of _ and k, respectively. We can observe ill-conditioning in the estimation of

k from Figure 8c (NxsXNys = 12x17) which can be explained since the ratio of

spline grid to pressure grid (h) is only 1.09, so that we have 204 unknown

spline coefficients to be estimated as compared with 210 measured pressure

data.

Effect of Number of Observation Wells

The regularization effect is relatively less important for more

observation wells and thus the values of JST and the terms in JST, JST(m+1), m

= O, I, 2, and 3 are larger as shown in Table 4(c). As one can see in Figure

9, the estimated k for 18 observation wells is closer to the true k than that

for six observation wells. Note that JLS for 18 observation wells case is

closer to the true value than that for six observation wells with any set of k

and NxsxNys is.
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CONVERGENCE OF THE ALGORITHM

When we seek the minimum of JSM with respect to We(_ --_ or k) with the

conjugate gradient algorithm, we need up to NxsXNys conjugate directions to

find the approximation of the inverse of the Hessian matrix. However, the

algorithm employed here uses 5 to 10 conjugate directions to find the

approximation of the inverse of the Hessian matrix. On the whole, the

algorithm requires I0 to 20 different inverse Hessian matrix evaluations which

correspond to 0.5 to I hour of CPU time on a VAX11-780 for a single history

match.

The algorithm determines the minimum of JsM(We . s6We) along s, the step

size, by trial and error. In some cases, if s is too large, some elements of

W_ . s6We have negative values that are physically impossible. Thus, in the

implementation of the algorithm a limit on the size of s was employed.
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CONCLUSIONS

In this study we have developed and tested an automatic history matching

algorithm for estimating spatially-varying porosity and permeability in a

single phase areal reservoir. The algorithm is based on spline approximations

of the parameters and a regularization formulation. In the regularization

approach to parameter estimation by introducing the stabilizing functional as a

measure of "non-smoothness,, one can control the properties of the parameter

estimates as well as the history match.

We have presented results of a detailed numerical evaluation of the

performance of the history matching method. In this example, we found that

the permeability distribution is estimated somewhat better than the porosity

distribution at comparable levels of spline approximation and degree of

regularization. It was also found that increasing the value of the

regularization parameter leads to estimated property distributions that are

smoother than those obtained for smaller values of the regularization

parameter. Some exceptions to this behavior were found at small values of the

regularization parameter that can be attributed to inherent numerical ill-

conditioning in estimation problems of this size. There appears to be an

optimal level of spline approximation in the case of the example studied. The

optimum was a 7x9 grid, for which the ratio of the size of the spline grid to

that of the pressure grid is 2.5. This optimal value of approximation appears

to represent a trade-off between a low dimensional spline grid that has as few

unknown parameters as possible and a high dimensional spline grid that is more

able to represent the details of property distributions but introduces more

unknowns and therefore inherently more ill-conditioning in the optimization

step.
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Based upon the optimal spline approximation, the optimal regularization

parameters are B_ --0.1 to I atm 2 for the estimation of _ and Bk = 0.01 to 0.1

atm2/darcies_ for the estimation of k which are determined from the

"quasioptimal" condition of regularization and give the same magnitude of the

values of measure of "non-smoothness" compared to the true profiles.

Finally, we can suggest a history matching strategy:

I. Choose simulator and spline grid systems. The number at the spline

coefficients need not be as large as the number of simulator grid

cells.

2. Find uniform initial guess of parameter to be estimated which minimizes

JLS and calculate JLS/JST at convergence.

3. Choose the regularization parameter value approximately the same as

JLS/JST above and find a set of spline coefficients that minimizes JSM.

4. Step (3) can be repeated to evaluate the result for the different

regularization parameter values around the JLS/JST value determined in

Step (2), so that we can find the "optimum" value of regularization

parameter discussed in the previous section.
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APPENDIXA. GRADIENTOFTHEOBJECTIVEFUNCTIONWITHRESPECTTOTHEUNKNOWN

PARAMETERS

Let us begin by supposing that we want to minimize the least-squares

objective function, JLS' given by Eq. (5), with respect to permeability k

and porosity _ subject to Eqs. (2)-(4). By adjoining the model of Eq. (2)

to JLS by means of an adjoint function _(x,y,t),

Nn___tN°bs

Iobs 2

JLS = _ _ [Pk,n - p(x,y,t))6(X-Xk)6(y-yk)6(t-tn)

+ _(x,y,t)E-c¢_tP(x,y,t)+ v./kv p(x,y,t))
N

w

+_qw 6(X-Xw) 6(Y-Yw)] } dtdxdy (A.I)w=l

then minimizing JLS leads to the following equationsgoverning _(x,y,t),

Nt Nobs

-2_ _ {'{Pk,n°bS_ p(x,y,t))6(X_Xk)6(y_yk)6(t_tn)}
n=l k=l

in _ x [0,T] (A.2)

= 0 on a_ x [0,T] (A.3)an

(x,y,T)= 0 in _ (A.4)

where n has the direction outward normal to the boundary, and the functional

derivatives of JLS with respect to k and @at (x,y) _ _ are
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T
1 V_(x,y,t) -Vp(x,y,t) dt (A.5)G_s(X,y ) -

o in_

rr

o
in f_ (a.6)

The first order necessary condition for a local minimum of JLS is that p

and _ satisfy Eqs. (2)-(4) and (A.2)-(A.4), respectively, and that

G_s(X,y)_ = 0 (for the estimation of k) or G_s(X,y) = 0 (for the estimation of @)

for al_ (x,y) E _. The gradients G_s(X,y) and G_s(X,y) are used in the so-

called optimal control algorithms for history matching. As noted, since these

gradients can be calculated directly without requiring the sensitivity coefficients,

_p/_k and _p/_@, these optimal control algorithms are computationally attractive

for history matching.

The adjoint equations (A.2)-(A.4) can be written in a finite difference

form corresponding to Eq. (12) as

QL,j(
J_Ji

N
obs

_ , obs n)_ (A.7)-2 £Pk,n - Pi i,i k
k=l

for i _ I_N and n = 1,2,..., Nt

Nt+l
_/i = 0 i • li N (A.8)
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where J i = {i-Nx' i-I, i+l, i+Nx} n~N and the derivatives of JlS with

respect to k. and ¢. are, ,

L" (n n n n)Ql . ~. - ~.)(p. - p.,J J , J ,
jEl.,

Nt
¢ _ "" n( n n-lGlS , i --Qc LJ ~i Pi - Pi )

n=l

(A.9)

= Qc {~~ -~~)p~}, ,
for i E r~N

(A.I0)

In our algorithm, k and ¢ are represented by the bi-cubic spline approxi

mation Eq. (8), and the actual unknown parameters are the coefficients,

w~ £ and W! £. Thus, we need to obtain the derivatives of the overall
x' y x' y

objective functional J SM with respect to W~ £ and W! £. These gradients
x' y x' y

are then the values used directly in the conjugate gradient minimization

method.

let the Nxs x Nx matrix Bx have elements Bx'£x,i
x

= bx(£x,(i x - i)~x)

and the Nys x Ny matrix By have elements B £ i = b (£ ,(i - !)~y). Then
y, y' y y y y

the derivative of J lS with respect to the elements of Wa(a = k or ¢) is

Nx Ny

G
Wa

='"' ~ B GalS . B .lS,£,£ LJ i-J x'£x,i "y'£y"y
x Y i =1 i =1 x

x Y

£ =
x 1, ... , Nxs and £y = 1, ... , NyS (A.1l)

where i = i + N (i -1). Thus Eq. (A.ll) relates the gradient of the least-x x y

squares objective function with respect to the spline coefficients to that
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with respect to the individual reservoir parameters at each grid point of

the simulator.

Eq. (A.II) expresses the gradient of the least-squares portion, JLS'

of the overall objective function, JSM" We need to obtain the gradient of

JSM" Let us consider the second component of JSM' namely the stabilizing

functional, JST' given by Eq. (6) which is

(1) + r a(2) + (3) + ,(4) (A.12.1)JST = _IJsT _2 ST C3JsT _4uST

N N

fTJST(1): _2(_,n) d_dq (A.12.2)
o o

N N

ST = Lia_j + _aTl] ]d_dTl (A.12.3)
o o

N N

st = L/-_] + 2 i a_an] + /-_ -2-] d_dq (A.12.41o o

N N

0(4) f_42 f_c_\2 b_c,/2 f_c,/q
o o

(A.12.5)

where C1 > O, C2 _ O, C3 _ O, _4 > 0 and _ = x/Ax and n = y/Ay. Using _ and n

rather than x and y, bx(&x,X ) and by(_y,y) in Eqs. (9) and (10) and their
derivatives are

bx(_x,X) = X*4(4-Zx + _/h x) (A.13.1)

by(_y,y) = X*4(4-_y + n/hy) (A.13.2)

dm bx(Zx'X) - ml X,4(m)(4__x + _/hx), m = 1,2,3 (A.13.3)
d_m hx
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dnmdmby(R,y,y) _ hml X,4(m)(4__y + n/hy), m : 1,2,3 (A.13.4)
Y

x,4(m)( X,4( =
where -) denotesm-thderivatives of -), hx = &Xs/&X, and hy

&ys/&y. Combining Eqs. (8), (A.12), and (A.13)

=

HsT,_x,_y,mx,my 2 _1 AOx Oy_x ,y,my

IAlX m A_y m + AOx AZY )+ C2\ _x' x gy' y _x'mx-_y'my

2x Oy Ix+ C3 A_x,mxA_y,my + 2A_ m A!yx' x _y,my

AOx a2Y
+ _x,mx.._y,my)

IA3X Oy + 2x ly
+ C4_ _x,mxA_y,my 3A_x,mxA_y,my

+ 3Alx A_; + AOx a3Y ) (A.14)_x,mx ,my _x,mx_y,my

Nxs Nys

W_ = _ _ W_ (A.15)
GST,_x,_y HsT,_x,_y,mx,my Nx,mym =1 m =1

x y
N N

XS VS

W W_

=I _ =I
x y

where

N -3

fxs ( )A_x(m)x,mx= hl-2mx X*4(m) 4-_x +ihx X*4(m) 4_mx +lhx do

m : 0,1,2,3 (A.17)



27

N -3

ly + n d nn'_x'_Y + n X*4(m) 4-my^(m)y = h -2m X,4(m) __,y
o

m : 0,1,2,3 (A.18)

or in the matrix form,

20 129 60 1

129 1208 1062 120 1

60 1062 2396 1191 120 1

I 120 1191 2416 1191 120 I

AOX_ hx ........................7!
i 120 1191 2416 1191 120 I

I 120 1191 2396 1062 60

I 120 1062 1208 129

i 60 129 20

- 6 7 -12 -I

7 40 -22 -24 -I

-12 -22 74 -15 -24 -i

-1 -24 -15 80 -15 -24 -I

AlX 1 .....................

= "ff-_.lhx -I -24 -15 80 -15 -24 -I

-I -24 -15 74 -22 -12

-I -24 -22 40 7

-I -12 7 6
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- 2 -3 0 I

-3 8 -6 0 I

0 -6 14 -9 0 I

I 0 -9 16 -9 0 I
A2X_ 1

3!h 3 .....................
x I 0 -9 16 -9 0 1

I 0 -9 14 -6 0

1 0 -6 8 -3

1 0 -3 2

1 -3 3 -1

-3 10 -12 6 -1

3 -12 19 -15 6 -1

-1 6 -15 20 -15 6 -1
A3X =__II

h5 .....................
x -I 6 -15 20 -15 6 -1

-1 6 -15 19 -12 3

_ -1 6 -12 10 -3

-1 3 -3 I

(A.19)

and A°y, Aly, A2y, and A3y have the analogous expressions to Eq. (A.19).

Finally, we obtain the gradient of overall objective function JSM

with respect to W_ as

W_ = ^W_ + W_

GsM,_x_y _LS,_x_y B_ GST,_x_y (A.20)
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Weighting Factor Cm+1, m = O, 1, 2, and 3 in Eq. (A.12.1)

In the stabilizing functional in Eq. (A.12.1), we have four undetermined

constants, namely the weighting factors, Cm+1, m = O, 1, 2, and 3, which are

arbitrary except for the conditions that CI > O, _2 >_O, C3 i> O, and _4 > tJ.

We can set these constants in a systematic way by using the fact that we want

the four terms in Eq. (A.12.1), each of which is a weighting factor Cm+1

multiplied by j_+l), described in Eqs. (A.12.2)-(A.12.5), to be of about

#

equal magnitude• We assume that hx, the ratio of the size of the spline grid

to that of the simulator grid along x-direction is not much different from hy,

the ratio along the y-direction, and we let h = (h h.)½. Then, the ratio of
xy

.l(m+l)
terms vST -, m = O, 1, 2, and 3 in Eq. (A.12) is approximately

j(1) (2) i(3) : j(4) = h2 1 1 (A.21)
ST: JST:°ST ST : i

and this suggests values for the weighting factors, Cm+I, m = O, 1, 2, and 3

as C1 = I, C2 = h2" _3 = h4; C4 = h6 where ¢1 is independent of h
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NOTATION

A(m) matrix defined by Eq. (A.19) m = 0,I,2 and 3X ' '

A_m) matrix defined by Eq. (A.19), m : 0,1,2, and 3
(m)x

A_xmx quantity defined by Eq. (A.17)

(m)y quantity defined by Eq. (A.18)
A_ymy

bx(Ax,X) cubic spline function defined by Eq. (9)

by(Ay,y) cubic spline function defined by Eq. (10)

Bx NxsXNx matrix of spline function values

By NysXNy matrix of spline function values

c compressibility, atm-l[pa -1]

G_s(X,y), G_s(X,y) functional derivative of JLS with respect to k

and _ at (x,y)

G_S,i,G_s,i derivative of JLS with respect to the values of k and

at the grid point of the simulator, i = 1,2,..., N
wk w_

GLS,_x,_y ' GLS,_x,_y derivative of JLS with respect to the values of

Wk and W_ ,Ay_x'_y x

GWk W_

SM,_x,_y ' GSM,_x,_y derivative of JSM with respect to the values of

W_ _y and W_x' _x'_y

Wk W_

GST,_x,_y, GST,_x,_y derivative of JST with respect to the values of

Wk and W_
_x,_y _x,_y
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H3(_) Sobolev space of order 3 on the domain

HsT,_x,_y,mx,my quantity defined by Eq. (A.14)

h (h.oh)2

hx AXs/AX

hy AYs/AY

i,ix,iy indices for simulator grid, i = i x + Nx(iy-l)

JLS least squares objective function, Eq. (5)

JSM smoothing functional, Eq. (7)

JST stabilizing functional, Eq. (6)

j_+l) terms in stabilizing functional defined by Eq. (A.12),

m = 0,1,2, and 3

3. a set of integers which indicate the neighborhood ofl

i-th grid block

k permeability, darcies [m2]

ki permeability values at thei-th simulator grid, darcies [m2],

i = I,..., N

_x,_y indices for bi-cubic spline approximation grid, _x : I,...,

Nxs; _y = I,o.., Nys

N NxNy, total number of simulator grid blocks

Nobs number of observation locations

Nw number of wells

Nt number of observation times

Nx,Ny number of simulator grid blocks along x- and y-directions

Nxs,Nys number of nodes along x- and y-direction of spline grid

_N set of integers from I to N

_x' My set of integers from I to Nx and Ny
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p pressure, arm [Pa]

pObS observed pressure, arm [Pa]

Po initial pressure, atm [Pa]

qw volumetric flow rate per thickness of reservoir of well w, ft2/day
[mIs]

Q AxAy/At

QL Ay/Ax or Ax/Ay

t time, days [s]

T time periods over which observations are available, days [s]

wk,w_ NxsXNys matrix of spline coefficient of k and

x spatial variable, miles[m]

xL extent of domain in x-direction, miles [m]

y spatial variable, miles[m]

YL extent of domain in y-direction, miles [m]

Greek Letters

unknown parameter to be estimated (_ = k or _)

Bk regularization parameter for the estimation of k,

atm2/darcies 2 [pa2/m 2]

B_ regularization parameter for the estimation of _, atm2[ Pa2]

At time interval of observation, days [s]

AX,Ay simulator grid spacings, mile [m]

AXs,AYs spline grid spacings, mile [m]

_(.) Dirac delta function

6i,j Kronecker delta

_m+l weighting factor of Sobolev norm li-!IH3(_) , m : 0, I, 2, and 3
n y/Ay

viscosity, centipoise [Pa.s]
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x/&x

o standard deviation of measurement error, atm

porosity

X.4(.) cubic B-spline function, Eq. (11)

adjoint variable

spatial domain of reservoir

_ boundary of reservoir

SI Metric Conversion Factors

atm xi.01325 E+05 = Pa

atm2/darcies 2 x1.054 E+34 = pa2/m 4

centipoise xl* E-03 = Pa.s

2darcies x9.869 E-13 = m

days x1.157 E-05 = s

ft2/day x1.075 E-O.6 = m2/s

miles xi.609344" E+03 = m

*Conversion factor is exact.
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Table I. Specifications of Reservoir for History Matching Example

Oilfield units SI units

Dimension of reservoir 12.4x18.6(mi) 20,000x30,000(m)

Compressibility of system 1.2x10-S(atm-_) 1.2x10-_0(pa'_)

Viscosity of fluid 2.0 (cp) 2.0x10-3(Pa.s)

Number of production wells I I

Production rate 500 (ft2/day) 5.376x10-_(m2/s)

Initial pressure 150(atm) I.52xiO_(Pa)

Pressure grid IOxl5 I0xl5

Number of observation wells 6 6

Number of well pressure data per each well 35 35

Time interval of well pressure data 10 (days) 8.64x106(s)

Total number of data points 210 210
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Table 2. True Values of Porosity and Permeability, the Uniform

Values of @and k that Minimize JLS' and the Corresponding

Starting Values of JLS' JST' and JSM

Parameter to be k(1)estimated

True Value 0.2-0.05 sin(_x/xL) 0.3-0.1 sin (_X/XL)

•sin (2_y/yL) .sin (2_y/yL)

Initial guess 0.25 and 0.15 0.25 and 0.35

that minimizes
0.184 0.241

JLS

JLS 44.6 41.0

JST 5.1 8.7

JSM B@= 012) 44.6 Bk = 0(3) 41.0

0.01 44.7 0.01 41 .I

0.I 45.1 0.I 41.9

1 49.7 1 49.7

I0 95.6 I0 128.0

(I) units are darcies

(2) units are atm2

(3) units are atm2/darcies 2
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Table 3. Estimation of

(a) Final values of performance indices fo o = 0.3 atm and

NxsXNys = 7x9 as a function of B_ (atm_)

a

B# JSM JLS JST j(1) j(2)v102 j(3)xlO 3 ,(4),^3.ST ST " ST uST x/u

0 20.67 20.67 15.55 6.47 5.30 30.24 193.63

0.01 20.86 20.76 9.47 6.47 2.67 I0.96 61.64

0.I 21.60 20.85 7.48 6.44 1.76 5.11 18.75

1 27.61 21.16 6.45 6.28 0.75 1.47 1,79

I0 81.69 24.09 5.76 5.74 0.20 0.12 0.09

true 7.09 6.17 2.63 7.48 1.88

aCl=l, c2=h 2, _3=h4, c4=h6, with h = 2.5

(b) Final value_ of performance indices for a = 0.3 atm and

B# = I atm_ as a function of NxsXNys

a (i) (2)xi02 ,(3),_3 _(4) 03NxsXNys h JSM JLS JST JST JST uST xlu _ST xl

5x6 5 27,86 21.38 6.47 6.29 0.50 0.04 0.002

7x9 2.5 27.61 21.16 6.45 6.28 0.75 1.47 1.79

12x17 1.09 27.17 20.78 6.40 6.31 3.11 18.38 14.78

a _1=1' _2=h2' _3=h4' _4=h6
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Table 4. Estimation of k

(a) Final values of performance indices fo5 o = O.3_atm and

NxsXNys = 7x9 as a function of Bk (atm:/darciesZ) b

Bk JSM JLS JSTa a(1) _(2) _^2 j(3 (4ST eST xlu sT)X103 JsT)xI03

0 21.26 21.26 20.46 11.68 7.81 36.75 28.05

0.01 21.59 21.44 14.86 11.36 5.56 18.14 9.99

0.I 22.82 21.49 13.36 11.38 4.79 12.33 4.84

1 33.42 22.18 11.24 10.54 3.83 5.36 1.04

I0 114.7 35.70 7.90 7.39 4.98 2.86 0.33

true 17.54 13.88 10.50 29.97 7.50

a CI=1 ' c2=h2, c3=h4, c4=h6 with h = 2.5

(b) Final valuRs of performance indices for a = 0.3 atm and

Bk = 1 atm_/darcies _ as a function of NxsXNys

(I) _(2)xi02 _(3)xi03 j(4)vln3
NxsXNys h JSM JLS JSTa JST °ST uST ST ^'_

5x6 5 35.70 23,48 12.22 11.30 1.30 0.39 0.02

7x9 2.5 33.42 22.18 11.24 10.54 3.83 5.36 1.04

12x17 1.09 31.59 21,68 9.91 9.53 12.43 81.60 68.91

a C1=1' c2=h2 ' g3:h 4, _4=h6"

(c) Final values of performance indices for o = 0.3 atm, Bk =
I atm2/darcies 2, and NxsxNys = 7x9 with different number of
observation wells

# of j(1) a(2) 2 j(3)vln3 j(4)v_n3
wells JSM JLS JSTa ST ST xlO ST ^_ ST ^_

6 33.42 22.18 11.24 10.54 3.83 5.36 1.04

18 76.96 63.33 13.62 11.96 5.00 11.28 3.74

a_l=l, _2=h2, _3=h4, _4=h6 with h : 2.5.

bTo convert from atm2/darcies 2 to SI units see Notation.
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dW_

Table 5. Values of II B_ II 2

(a) Estimation of qb

(3dp II (3_bdW_/d(3##II2

0.01, 0.I 0.167

0.I, 1 0.148

1, I0 0.169

(b) Estimation of k

a

13k II (3k dwk/d(3kll 2

0.01, 0.I 0.211

0.I , 1 0.229

1 , I0 0.456

aunits are darcies. To convert to SI units see Notation.
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FIGURECAPTIONS

Figure I. Pressure and spline grid system, pressure grid: lOx15;
spline grid: 5x6; 7x9; 12x17
(0 = Observation well; P = production well)

Figure 2. True _(x,y) surface

_(x,y) = 0.2-0.05 sin (_X/XL)sin (2_y/yL)

Figure 3. True k(x,y) surface

k(x,y) = 0.3-0.1 sin (_X/XL)sin(2_y/yL) darcies

Figure 4. Simulated pressure data vs. time for a : 0.3 atm

1. (3.1,3.1) a
2. (9.3,3.1)
3. (3.1,9.3)
4. (9.3,9.3)
5. (3.1,15.5)
6. (9.3,15.5)

aunits are miles

Figure 5. Estimated qbsurface for o = 0.3 atm, NxsXNys= 7x9, andfrom ton down: 2
B@: 0 atm

0.01
0.I
1

I0

Figure 6. Cross-sectional plot of k(XL/2,Y) vs. y for _ = 0.3 atm
NxsXNys= 7x9 and

I. _k = 0 atm2/darcies 2
2. 0.01
3. 0.I
4. 1
5. I0
6. true values
7. initial guess

Figure 7. Cross-se_tional plot of q_(XL/2#) vs. y for _ = 0.3 atm,

B@:1 atm_, and

i. NxsXNys: 5x6
2. 7x9
3. 12x17
4. true values
5. initial guess

Figure 8. Estimated k surface for _ = 0.3 atm, _k=latm2/da rcies2
and

from .,top .,down:
mxsXmys = 5x6

7x9
12x17
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Figure 9. Estimated_nd true _ surfacesfor o = 0.3 atm,
Bk = I atm /darcies , NxsXNys = 7x9, and from top down:

6 observationwells
18 observationwells
true k
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