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SIGNIFICANT ACCOMPLISHMENTS

This Semiannual Report covers research conducted under NASA Contract NAG5-459 for the
period 1 August 1984 through December 31, 1985.

Our effort on behalf of the Crustal Dynamics Project during that period focused on the
development of methodologies suitable for the analysis of space-geodetic data sets for the
estimation of crustal motions, in conjunction with results derived from land-based geodetic data,
neo-tectonic studies, and other geophysical data. These methodologies were used to provide
estimates of both global plate motions and intraplate deformation in the western U.S. Significant
accomplishments include:

1. Results from the satellite ranging experiment for the rate of change of the baseline length
between San Diego and Quincy, California indicated that relative motion between the North
American and Pacific plates over the course of the observing period during 1972-1982 were
consistent with esimates calculated from geologic data averaged over the past few million years.

2. This result, when combined with other kinematic constraints on western U.S.
_deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data,
places limits on the possible extension of the Basin and Range province, and implies significant
deformation is occurring west of the San Andreas fault.

3. A new methodology was developed to analyze vector-position space-geodetic data to
provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the
reduction of large, inhomogeneous data sets, and takes into account the full position covariances, |
errors due to poorly resolved earth orientation parameters and vertical positions, and reduces baises
due to inhomogeneous sampling of the data.

4. This methodology was applied to the problem of estimating the rate-scaling parameter of a
global plate tectonic model using satellite laser ranging observations over a five-year interval. The
results indicate that the mean rate of global plate motions for that interval are consistent with those
averaged over several million years, and are not consistent with quiescent or greatly accelerated

plate motions.

5. This methodology was also used to provide constraints on deformation in the western
U.S. using very long baseline interferometry observations over a two-year period. Motions



 relative to a fixed North American plate frame were consistent with global plate tectonic models at
Vandenburg, but were less at Monument Peak, Califonia, suggesting significant deformation west
of the San Andreas may be occurring between those sites.

PROBLEMS AND RECOMMENDATIONS
None

DATA UTILITY
Not applicable

FUNDS EXPENDED
As of 31 December 1985, a total of $72,720 had been spent;, out of the current fund = —4~

limitation of $136,500.



“APPENDIX I

RELATIVE MOVEMENT OF TECTONIC PLATES
IN CALIFORNIA OBSERVED BY

SATELLITE TLASER RANGING

Abstract: A satellite laser ranging experiment conducted by NASA since 1972
has measured the relative motion between the North America and Pacific plates in
California. Based on these measurements, the 896-km distance between San Diego
and Quincy, California. is shortening at 62 + 9 mm/yr. This geodetic estimate is
consistent with the rate of motion between the two plates, calculated from geolog-
ical data to be 53 + 3 mm/yr, averaged over the past few million years.

Lasers capable of tracking near-earth orbiting satellites have been providing
important geodetic data for more than a decade. Beginning in 1972 with the San
Andreas Fault Experiment (SAFE),. short-term tectonic motions along a baseline
spanning the San Andreas system have been monitored by satellite laser ranging )
(SLR) in an effort to improve our understanding of earthquake hazards in California
(Fig. 1). This experiment, which continues as part of NASA's Crustal Dynamics
Project, has measured the variations in the 896-km distance between two tracking
sy;tems located on opposite sides of the fault with an accuracy unachievable by
classical geodetic techniques.

Previous reports (1, 2, 3) have shown the technique to be capable of monitor-
ing short-term (710 yr) tectonic movements at the centimeter-per-year level. In
this paper and the one which follows, we analyze the ‘entire data set collected
over the 1l-year period 1972-1982 and discuss some of its tectonic implications. In
particular, we shall show that space geodetic techniques are beginning to place
more stringent constraints on large-scale deformation of .the western United States
than those derived from classical geological and geophysical observations (4).

Mobile laser systems were used throughout the tracking campaigns. campaigns.
Both sites were reoccupied approximately every two years for a duration of several
months in order to satisfy certain criteria of data acquisition and, earlier on,
tracking geomeﬁry. The first results were obtained by tracking a low orbiting
spacecraft, Beacon Explorer-C (BE-C), launched in 1965 and equipped with an array
of laser retro-reflectors to provide, among other objectives, a spaceborne target for
laser engineering studies. [n 1976, a dedicated Laser Geodynamics Satellite

(LAGEOS) was launched into a high earth orbit with the sole purpose of providing;_;m
an optimal target for global laser tracking in the context of geodynamic jnyestiga-i .

tions.
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 Fig. 1: Map of California showing Quincy-Otay Mt. and Quincy-Monument
Pk. baselines measured by satellite laser ranging.
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In satellite laser ranging, the observed quantities are the nearly instantaneous
ranges from a ground station to a spacecraft and the times at which these dis-
tances are measured. If the evoiution of the orbit and the variations of the earth
rotational parameters are known accurately, then the positions of the observing
stations (to within an arbitrary shift in absolute longitude) can be caiculated in the
geocentric reference frame used to describe the satellite motion. Analysis of
satellite laser ranging data requires careful consideration of: \

(1) the accuracy with which the motion of a near-earth satellite subjected to
complex gravitational and non-conservative forces can be modeled,

(2) the accuracy of the observations themselves, which limits the available
approaches, and

(3) the requirements of globally distributed tracking support.

BE-C, a low-altitude spacecraft with a compiex shape, posed a difficult tra-
jectory modeling problem. Orbital accuracy was severely degraded if more than a
few revolutions were analyzed simultaneously; that is, analysis had to be restricted
to relatively short arcs. A special data reduction technique was consequently dev-
ised to accommodate data collected from two tracking .sites only. In spite of its
intrinsic limitations for measuring absolute baselines, this technique is capable of
detecting changes in the inter-station distance by using uniform tracking geometry
and identical force models \for each bi-yearly analysis (2, 5).

The launch of LAGEOS at high altitude provided a well-designed laser target
far less sensitive to poorly known perturbing forces such as short wavelength
gravity and atmospheric drag. With the deployment of a worldwide network of
more advanced laser systems, trajectory accuracies achievable for LAGEOQOS
approach the quality of the laser tracking itself, leading to improved estimates of
the gravity field at long wavelengths and to highly accurate earth rotational
parameters (6, 7). Furthermore, the SAFE line has been incorporated as part of
the several hundred lines measured annually in the context of NASA's Crustal
Dynamics Project. so that a special data reduction technique is no longer required.
Unlike the baselines obtained from BE-C tracking, those derived from LAGEOS are
believed to be accurate in an absolute sense (they do, however, depend on the
values of GMQ and the speed of light used in the reduction procedure).

LAGEOS observations are analyzed in various ways. We have derived robust
three-dimensional station positions by combining twelve monthly orbital arcs into
annual solutions. In this case, errors arising from weaker data sets and force
model imperfectiof\s are reduced through averaging over an entire year.

In addition to-these~annual solutions, we also computed sglected sul;set.--solul-_"
tions with finer temporal sampling, which extend the capabilities of SLR to resolve
_relatively short (<1000 km) baselines, using vastly smailer data sets ( from a few

Tine 3
_.‘_' A
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weeks or less). These rely on a short-arc technique, called Baseline Estimation
from Simuitaneous Tracking (BEST) and involve simultaneous ranging from several
sites. Although absclute station positions may be contaminated by unaveraged data
and force model errors, these errors cancel in baseline calculations and therefore
do not bias the rate-of-change estimates (8).

The use of two different spacecraft results in an iﬁhomogeous set of baseline
estimates, which complicates the retrieval of an average rate-of-change for the
entire time period covered by the data. Another source of inhomogeneity stems
from changes in the locations of ground stations during the experiment. The
southern site was changed from Otay Mountain near San Diego, California, to
Monumeat Peak, ~50 km away, in 1981, and the northern site, located near Quincy,
California, was moved by about 500 m in 1980. An adequate ground survey tying
the two locations with an accuracy comparable to the SLR measurements is avail-
able in the latter case, but not in the former. We are therefore dealing with a
data set properly described as the juxtaposition of four subsets, each internally
homogeneous but having unknown relative offsets in baseline length. These subsets
are listed in Table 1, and the individual data points are plotted in ‘Fig. 2. For -
clarity of graphical presentation, the baseline for each subset is arbitrarily offset
by 0.4 m.

We have analyzed the observations presented in Fig. 2 under the assumption
that the baseline rate-of-change remained constant.for the entire 1l-year period
covered by the data. The time-dependent baseline length for the ith data subset
(i=1,...,4) is therefore given by a modeling equation of the form

Byit) = B - (tt)) + B, B (1)

Table 1: SLR data sets used to derive the rate-of-change of the Quincy-San
Diego baseline.

Set Satellit — Baseli T Solution No. r.m.s. Cumulative
No. atellite aselne Type Pts. (mm)jt* Importance

BE-C Quincy-Otay Mt. Special 4 89. 0.26
LAGEOS Quincy-Otay Mt. Annual 3 37 0.58
LAGEOS Quincy-Mon. Pk. Annual 2 <1 0.06

1
2
3
4 LAGEQOS - Quincy-Mon. Pk. BEST 14 43 0.10
M - ..

+ Misfit with respect to constant-rate solution of Fig. 2.
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Fig. 2: Variations in the Quincy-San Diego baseline length from SLR meas-
urements between 1972 and 1982. Constant-rate solution was fitted simul-
taneously to the four data subsets listed in Table 1 and shown here with

_ arbitrary 0.4 m offsets. Error bars are standard deviations obtained from
individual baseline estimates.

where the intercept B? is the absolute baseline length at the fiducial time to' and
B is a constant rate-of-change.

Because of the offsets in the observed baseline lengths, the B?_fs as well as B
must be considered a priori unknown; hence, the data generate a system of 23
equations in 5 unknowns. The four intercepts are only of ancillary interest, so it
is not necessary to solve for their values directly. We therefore applied . an
appropriate projection operator to the linear system to anml’ulate the dependence
of the data on these parameters and then solved for B by least -squares. . The

weights used in the least-squares criterion were':chosen to be proportional to the N
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standard errors depicted on Fig. 2. These formal errors of estimation are
appropriate as relatire weights within each homogeneous data subset, but there
remains a subjective choice regarding the weighting of different subsets with
respect to each other. In view of the earlier discussion, we down-weighted the
BE-C data reiative to the LAGEOS data by a factor of two in order to reflect the
greater reliability of the latter. This has the practical effect of nearly equalizing
the weights of the most reliable BE-C points and the least reliable LAGEOS points
in the inversion. : ‘
The least-squares formulation permits calculation of "data importances”, addi-
tive quantities which represent the information contributed by each datum or data
subset to the solution (3). In the present case, since we are estimating the single
scalar quantity B, the data importances of the projected system sum to unity. - The
cumulative data importances for the four data subsets are listed in Table 1.

The rate-of-change estimate obtained by the least-squares procedure is
B =~ -61.7 + 8.7 mm/yr, (2)

where the uncertainty is the standard error of estimation. The r.m.s. residual for
this solution is 52 mm, and the weighted r.m.s. residual is 29 mm. As seen on
Fig. 2, this solution satisfies all but five observations at the one-sigma level, and
all but one of the BEST estimates at the two-sigma level.

The misfit to the 1972 BE-C measurement is no cause for concern, since it
was the first coilected for the SAFE baseline and is the most uncertain. Its indi-
vidual importance is only 0.04; that is, it contributes but a small fraction of the
information used to estimate B. In fact, completely removing this first point from
the data set merely changes the answer to -59.9 *+ 8.9 mm/yr, which is not
resolvable from the value quoted abave.

The absolute baseline lengths retrieved from the BE-C data and the LAGEOS
data for Quincy-Otay (subsets 1 and 2 of Table 1) differ by 0.76 m. While such a
discrepancy was not unexpected in view of the differences in data reduction tech-
niques. its size indicates BE-C force-model errors that were somewhat larger than
anticipated. However, our claim that the rate is not contaminated by the bias in
absolute baseline length is supported by the consistency of the baseline changes
between 1976 and 1979 for both spacecraft.

As for the poorly fitted BEST points, it must be noted that this data reduc-
tion technique, while minimizing the effects of dynamic errors on the baseline esti-
mate, is quite susceptible to intermittent anomalies which occasionally occur-in the
laser data. Its reliance on a limited set of strictly simultaneous observations (in
freality. manufactured laser “normal points” at two minute intervals) allows little

averaging of the errors arising from anomalous data. causing an occasional spurious

-10-
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baseline estimate. Fortunately, including the three outliers evident in Fig. 2 does
not affect the slope estimate derived from the BEST subset. This subset
comprises the majority of the data points but does not dominate the estimation of
B; in fact, owing to its short time spanm, its cumula_tive data importance is only
0.10.

By far the most important group of observations is the set of three annual
LAGEQS solutions for the Quincy-Otay baseline between 1976 and 1982 (subset 2);
its cumulative importance is nearly 0.6. These data cover approximately 5 years of
observations, so they provide a good constraint on the slope. Subset 2 alone
yields a rate of -53.6 + 11.4 mm/yr, again nat significantly different from Eq. 2.

Tapley et al. (7) produced an independent set of eleven estimates for the
Quincy-Monument Pk. baseline from bimonthly arcs between October, 1981 and
November, 1983. For this twa year period, they deduce a rate-of-change of -64 +
9 mm/yr. Their data reduction technique is different from ours, and they extend
the coverage by a full year beyond the BEST soiutions shown on Fig. 2. It is
encouraging, therefore, that their value is in good agreement with Eq. 2.

Assuming the Quincy site lies on a rigid North America plate (NOAM) and the
Otay Mt./Monument Pk. sites on .a rigid.Pacific plate (PCFC), we can compute the
baseline rate-of-change using the PCFC-NOAM instantaneous angular velocity vector
derived from plate-tectonic data. The eleven-plate model RM2, which satisfies a
globally distributed set of marine magnetic rates, transform-fault directions and
slip-vector azimuths (10), yields B = -52.9 + 2.7 mm/yr, consistent at the one-
sigma level with the SLR estimate of Eq. 2. This removes the discrepancy noted
by Smith et al. (2), who derived a preliminary SLR rate of -90 + 30 mm/yr from
the 1972-1977 BE-C observations. As shown in Fig. 2, the BE-C and LAGEOS
paints prior to 1979, taken alone, do indeed suggest a higher value, which could
indicate some temporal variation in the apparent rate, b;xt the hypothesis that the
* deviations from a constant-rate model are random statistical fluctuations cannot be

rejected at even a low confidence level (11).

Demosthenes C. CHRISTODOULIDIS
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Appendix 2

CONSTRAINTS ON WESTERN U.S. DEFORMATION

FROM SATELLITE LASER RANGING

Abstract: The rate of shortening between San Diego and Quincy, California.
measured by satellite laser ranging (SLR) is substantially greater than that implied
by the rate of slip measured on the San Andreas fault. When combined with other
kinematical constraints on western U.S. deformation. these comparisons limit the
extension rate across the Great Basin to be less than 9 mm/yr and imply signifi-
cant deformation of the Pacific plate west of the San Andreas. Along the central
California margin, the integrated rate of deformation is estimated to be 18 + 5
mm/yr and entails compression perpendicular to the San Andreas, as well as right-
lateral strike-slip motion parailel to it. Within the framework of our tectonic
modei, the SLR data limit the integrated deformatlon rate across the Southern
California Borderiands to be less than 7 mm/yr.

The rate-of-change of the Quincy-San Diego baseline (Fig. 1) measured in
NASA's San Andreas Fault Experiment (SAFE) since 1972, and more recently by .
NASA’s Crustal Dynamics Prozect is (1)

. - B = 617 + 8.7 mm/yr, 1

The value calculated from the plate-tectonic model RM2 (2) is -52.9 + 2.7 mm/yr,

which assumes Quincy lies on a rigid North America plate (NOAM) and San Diego
on a rigid Pacific plate (PCFC). The geodetic estimate of the SAFE baseline
shortening rate observed over an eleven-year period is thus compatible with plate
motions averaged over a much longer interval (1-3 million years in the case of
RM2). However, neither is easily reconciled with the hypothesis that PCFC-NOAM
relative motion is localized on the San Andreas fauit. . We consider two fiducial
points juxtaposed on either side of the fauit zone, r‘é’ just to the west of the San
Andreas and ré just to the east, and let VsSA be the (steady-state} velocity vector
of the former with respect to the latter. In central California, where the fault
best approximates a simple transform, a range of geological and geodetic observa-

tions local to the fault zone provides the estimate (3, 4)

[ 34 + 3 mm/yr ..
- {2).

v
_SA l NAL'W + 2°

The RM2 PCFC- NOAM velocxty vectox‘r calculated at the fiducxal locatxon )
rc = 36°N, 120.6°W (Fig. 1) is = - .. '3;' L A

-13- .
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Westera U.S. Dedormation from SIR OF POOR QUALITY

N\ NORTH AMERICAN PLATE

PACIFIC PLATE

Mg. 1 Oblique Mercator projection of the western United States about the
RM2 PCFC-NOAM pole of rotation, showing major Quaternary fauits and
reference points used in oar vector caiculations. C is the fiducial point on
the San Andreas fauit where the vectors in Bqs. 2-6 are specified. AB is
the line along which the expansion rate of the Great Basin is defined.
Triangies are SLR statons at Quincy (Q) and San Diego (S), California.
Fauits are from (5) and (6); lettered features are the Gariock faunit (G),

Hoegri fauit (H), San Andreas fauit (SA), San Gregorio fault (SG), Sierra

Nevada front (SN), Wasatch front (WF), and Walker Lane (WL).

-14-



Western U.S. Deformation from SLR

[ 55.9 + 2.7 mm/yr
| N35.5°W *+ 1.9° .

The discrepancy between Eqs. 2 and 3 is significant at the two-sigma level in both
rate and azimuth; it is thought to be a measure of the present-day tectonic defor-
mation integrated across a broad zone of PCFC-NOAM interaction that extends from
the continental margin of California to the Rocky Mountains (2, 5). *

How the deformation represented by this discrepancy is partitioned east and
west of the San Andreas is a question of considerable geological interest and
seismogenic implications. If Von is the velocity of the fiducial point rE in the
reference frame rotating with NOAM and vep is the velocity of rvcv in the PCFC
frame, then the discrepancy vector VpN - VSA by definition, must equal
YeN - Yep the deformation distributed over a plate boundary zone must sum up to
the relative plate velocity. YeN thus summarizes the deformation occurring on the
NOAM side of the San Andreas, whereas vep summarizes the deformation on the
PCPFC side. We have formulated these vectors in terms of frame-independent

{3).

The distribution of Quaternary faulting shown in Fig. '1, as well as the
observed seismicity, defines an essentially rigid Sierra Nevada-Great Valley block
(SNGV) extending from the San Andreas eastward to the Sierra Nevada fronmt (5).
The relative motion between this block and NOAM is taken up primarily by defor-
mation in the Great Basin of Nevada and western Utah. Stress and strain orienta-
tion data pertaining to Quaternary deformation of the Great Basin constrain the
direction of this motion to be approximately N60°W (7). These constraints have
been used to construct a one-parameter family of kinematical models parameterized
by the total rate of expansion across the Great Basin from south-central Utah to
northern California (along the line AB in Fig. 1)}3). We define a normalized velo-
city vector GCN by the equation

voylx) = « GCN' (4)

where « is a dimensionless parameter such that « X 10 mm/yr is the opening rate
for this path. In other words, Vo is the unique velocity which would describe
the local SNGV-NOAM motion at rc if the Great Basin were expanding at a total
rate of exactly 10 mm/yr along AB. As documented in (3), the data compiled by
Zoback and Zoback (7) yield the conditional estimate )

s e
AR A0S
ot

-15-
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[ 10.1 £ 0.7 mm/yr
<

Ve (5)

|l N63°W + 5°

The estimation procedure, which is based on a numerical search over possibie
SNGV-NOAM pole positions, explicitly accounts for sphericity of the earth's sur-
face (on a flat earth, the moduius of GCN would be exactly 10 mm/yr).

The locus of Vo Parameterized by « is compared with the discrepancy vector
oN - YSA in the upper vector diagram of Fig. 2. Clearly, the opening of the
Basin and Range is not in the right direction to account entirely for the
discrepancy, regardless of the value of . This implies that some deformation
must be occurring west of the San Andreas fauit.

Given the definitions embodied in Eq. 4 and the constraints imposed by the
plate-tectonic boundary conditions, the vector summarizing deformation west of the
San Andreas can be recast in the form

vcplx) = « ¥y - Opy - Vsa), , ® .

and an estimate of v-p conditional on « can be derived from Eqs. 2, 3 and 5.
This expression and the corresponding equation for the variance matrix of vCP(cx)
yield the lower vector diagram in Fig. 2. The locus of veplx) is a straight line in
the direction of GCN' and its two-sigma error ellipse sweeps a band approximately
12 mm/yr wide, broadening slightly with increasing «. For values of x near zero,
Veplx) is subparailel to the San Andreas and could be accommodated by predom-
inantly right-lateral faulting localized along, say, the San Gregorio-Hosgri fault sys-
tem, which parallels the California coastline (Fig. 2). On the other hand, if the
Great Basin extension rate were as great as 20 mm/yr (x = 2), as some students
of Basin-and-Range deformation have advocated (3), then Vop would be essentially
perpendicular to the San Andreas and would imply compression across the California
margin with very little strike-slip motion. Interpretations of recently published
seismic reflection profiles traversing the southern part of the Hosgri fault favor
this modei (10).

The SLR observations discussed in (1) provide an upper bound on « that
excludes this latter possibility. Assuming the Quincy site lies on SNGV and the
San Diego sites (Otay Mt. and Monument Pk.) on PCFC, we can derive an estimate
of B conditional on « by the same procedure used to obtain Eq. 5. The result is

.. . . EERY P

B = .(52.9 - 7.9x) + (7.29 + 0.49a2)! mm/yr. . (7

-16-
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. Western U.S. Deformatioa from SLR OF POOR QUALITY
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Fig. 2: Mag: Lambert conformal conic projection of central California show-
ing major zones of Quaternary fauiting (8). Lettered fauit zones are the
Big Pine (BP), Calaveras (C), Hosgri (H), Nacimiento (N), Pilarcitos (P), Rin-
conada (R), San Andreas (SA), San Gregorio (SG), Santa Lucia Bank (SLB),
and Santa Ynez (SY). C is the fiducial point at 36°N on the San Andreas
used in vector calculations. Upper imset: Velocity diagram in the tangent
plane at C showing discrepancy vector YoN - YSA and vector 'CN(C’
describing Basin-and-Range deformation; &« = 1 corresponds to an opening
rate of exactly 10 mm/yr across the Great Basin along iine AB in Fig. 1.
Brror ollipees are two-sigma. Lower imset: Velocity diagram at C showing-
which describes deformation west of the San Andreas. Danhed line is -

|ocnl parameterized by & Rrror euipm are two-izna A
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*

As « increases from zero, the total expansion of the Great Basin accelerates, and
the agreement between Eqs. 1 and 7 degrades. If «x were as great as two, for
example, then the value of the SAFE baseline rate-of-change would be -37.1 + 3.1
mm/yr, which is not consistent with the SLR resuits.

A formal upper bound on « can be obtained from Eqs. 1 and 7 by applying a
one-sided chi-square test; at the 95% confidence level, we find « < 0.80. If
instead of Eq. 2 we use the estimate of -64 + 9 mm/yr given by Tapley et al.
(11), this bound is reduced to 0.56. The chi-square test assumes the standard
deviations assigned a priori to the SLR data are exact; scaling these uncertainties
to the root-mean-square misfit provided by the constant-slope solution reduces the
standard error of B in Eq. 1 to 8.3 mm/yr, and applying the appropriate one-sided
F test gives «x < 0.89.

The SLR measurements thus limit the extension rate of the Great Basin to be
less than 9 mm/yr. This is consistent with, but more stringent than, the upper
bounds obtained from direct geological and geophysical observations of Basin-and-
Range deformation (12). Moreover, through Egq. .7, the SLR data constrain the
vector v~p to have a significant projection parallel to the San Andreas; the lower -
bound on this component of motion is 5 mm/yr, and it is likely to be comsiderably
larger (Fig. 2). In fact, our resuits are consistént with strike-slip rates of 6-17
mm/yr inferred from post-Pliocene offsets along the San Gregorio-Hosgri fault sys-
tem (13). Hence, a model with purely compressive deformation along the California
margin is excluded. We note, however, that « is constrained by observations in
the Great Basin to be greater than 0.1 (12), requiring the component of Vep Per-
pendicular to the San Andreas to be greater than zero, as implied by geological
observations of regional compression west of the fault (10).

We infer that the rate of deformation west of the San Andreas is large. For
x = 0.9, our best estimate of Vep has a magnitude‘ of 16 mm/yr, and it is
increases to 21 mm/yr for x = 0.1. These estimates are one measure of the
seismogenic potential of the central California margin. '

We have assumed throughout this analysis that the San Diego sites are rigidly
attached to PCFC. Any geologically plausible deformation west of these sites --
accommodated, say, on offshore faults within the seismically active California
Borderlands-- would imply a decrease in the magnitude of B relative to Eq. 7 and,
hence, would lower our upper bound on x. For example, the block-tectonic model
of southern California developed by Bird and Rosenstock (14) predicts that the San
Diego sites move with respect to PCFC at ~3 mm/yr in the direction ~N40°W;

..such ‘a motion would lower our bound on « from 0.9 to about 0.6. Conversely, a
__lower bound on x can be used to place an upper bound on the rate at which the .
'.'"San Diego sites translate with respect to PCFC. Assuming this motion is N4O°W,
‘and adopting « > 0.1, we find that this rate must be less than 7 mm/yr to be
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consistent with the SLR data. The integrated rate of deformation across the
Southern California Borderlands is therefore inferred to he less than that across
the central California margin. Presumably, the difference between these deforma-
tion vectors is taken up by the northward compression of the western Tranverse
Ranges (14).

The preliminary results in this report point the way to future applications of
SLR and other space-geodetic techniques in the study of regional deformation. In
particular, they illustrate the advantages of combining SLR measurements with
other geological, geophysical and geodetic data sets. When considered in the con-
text of regional kinematical models constructed from such data sets, the SLR
observations from a single California baseline yield quantitative constraints on the
distribution of deformation in the western United States. Much more stringent
constraints can be expected from the large set of North America baselines
currently being measured under the auspices of NASA's Crustal Dynamics Project
(15). Space-geodetic observations should be especially useful in fixing the rates of
regional deformation that are difficuit to measure with conventional techniques but
are critical to the assessment of seismogenic potential./ .
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Abstract

Satellite laser ranging observations to Lageos during 1978-1983 are used to
analyze the vector rate-of-change of annual station positions for comparison with
global plate tectonic models. We develop an algorithm suitable for the reduction of
large, inhomogeneous space-geodetic data sets, which accounts for the full position
covariances, and coordinate transformations between epochs. Tectonic motions are
isolated by reducing systematic errors in radial position determination  and
contaminations due to errors in earth-orientation parameters. This is accomplished
by forming a linear system of equations which describe differenced station position
vectors as a combination of tectonic motion model parameters, and nuisance
parameters which comprise non-tectonic motions such as rigid-body rotations. The
system is normalized with thé square-root of the covariance matrix, and then
rendered insensitive to the nuisance parameters by the application of projection
operators. Model parameters are estimated from the resulting reduced system' by
generalized-inverse techniques. This methodology is applied to the problem of rate
scaling of global plate tectonic models. The model is parameterized by ym ,, where m |
is an a priori model of tangential relative velocity vectors, such as RM2; thus, v =1
implies that the mean rate of motion of the observing stations is identically equal
to the RM2-predicted rates.. We find 7y = 0.95 £ 0.16, indicating that the mean rate of
SLR-derived motions for a five-year interval are consistent with RM2, which is
averaged over a 2-m.y. interval We find that the data do not place significant
constraints on possible errors in marine magnetic anomaly timescales, but are not

consistent with an interval of quiescent or accelerated plate motions.
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In uction

Satellite laser ranging (SLR) and very-long baseline interferometry (VLBI) are
space-geodetic techniques currently capable of determining relative locations of
widely separated positions on the earth's surface to within sub-decimeter accuracy
(Shapiro, 1983). Results from interferometry with the Global Positioning System
(GPS) are achieving similar accuracies (Bock et al, 1985). This capability raises the
possibility of detecting and monitoring relative plate motions and deformations.
Analysis of the rate of change of baseline length between many stationi positions are
in -good agreement with predictions based on global plate tectonic models (e.g. Smith
et al, 1979; Christodoulidis et al., 1985; Tapley et al., 1985; Clark et al., 1985), although
some significant discrepancies do exist (e.g. Minster and Jordan, 1984), These
treatments of space-geodetic data concentrate on the scalar baseline lengths, which
are relatively insensitive to systematic errors due to coordinate transformations
between epochs. However, the data are intrinsically three-dimensional. Thus, if the
errors can be removed or reduced in a systematic manner, an analysis of the rate of
change of the geocentric position vector could provide additional insight, especially
with regard to directions of motion. As these data sets grow, the need for efficient
algorithms capable of handling large, inhomogeneous, multiple-epoch data sets
becomes increasingly critical. In this paper, we present the nucleus of such an
algorithm, and then, using data derived from laser ranging to the Lageos satellite, we
apply this algorithm to the problem of rate scaling of global plate tectonic models.

We first examine the nature of the satellite laser ranging data and some of its
inherent difficulties. In May 1976", Lageos (Laser Geodynamics Satellite) was
launched into a nearly circular orbit at an elevation of 5900 km and an inclination of

109.8° to the equatorial plane. The satellite is a sphere 60 cm in diameter, weighing

-24-



411 kg, and is covered with 426 retroreflectors. The satellite’s design and orbit
minimize the forces due to solar radiation pressure, earth albedo, and atméspheric
drag, and thus, Lageos very nearly defines an artifical reference frame in earth
orbit. Ground-based laser systems measure the round-trip pulse propagation time
and, using an adc;pted value for the speed of light, calculate the range. In theory, if
the satellite's position is known perfectly, the location of the laser site may be
determined after a number of ranges have been obtained. In practice, of course, the
problem is considerably more difficult. Since ranges to Lageos, in general, are not
made simultaneously, the orientation of the earth with respect to the satellite
reference frame must be determined for the time of the observation. This requires
knowledge of a complex set of motions which include earth precession, nutation,
polar motion, and rotation, as measured by UTI1. The satellite's position is controlled
by the external forces which act upon it; these include the earth's gravity field,
luni-solar and planetary gravity fields, solid-earth and oceanic tides, solar radiation,
and earth albedo. Range measurements are affected by refraction of the laser pulse
in the atmosphere, tidal displacements, pulse detection accuracy, and are scaled by
the adopted value for the speed of light. Thus, the accuracy of the station positions
depends critically upon the accuracy of the earth-orientation, force, and
measurement models. One such set of models and the procedure for reducing raw
range values to station position coordinates used by Goddard Spéce Flight Center is
called SLS.1AP, and is described in Christodoulidis er al. (1985), and Smith et al. (1985).
The data that we utilize is derived from an improved set of models, denoted by SL6, and

are solutions for annual geocentric vector positions and covariances derived from

observations of Lageos between 1978 and 1983.
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Methodology

We now consider the problem of constraining plate tectonic motions and
deformations from space-geodetic networks. Ideally, the analysis procedures should
be capable of handling data derived from disparate techniques such as SLR, VLBI, and
GPS simultaneously, taking into account the coordinate transformations and scaling
parameters particular to each. For example, the natural coordinate system for SLR
has an origin at the earth center of mass, whereas VLBI- uses an origin at the solar
system barycenter; also, SLR, unlike VLBi, is sensitive to the adopted value of the
earth gravitational mass. Any. estimation of parameters by inversion techniques
should account for possible errors in the data, therefore the analysis must
incorporate the full covariance matrix corresponding to the data. Another potential
problem arises from non-uniform sampling of network stations from epoch to epoch.
Usage of homogeneous data sets, i.e. including only stations that are sampled during
every epoch, is often too restrictive and ignores important sources of information.
However, inhomogeneous sampling may introduce biases in the estimation of station
parameters due to changing network geometry, which result in unequal weighting-
between successive epochs. For example, one epoch may preferentially sample "fast"
plates. The approach we have taken is similar to that used by Jordan and Sverdrup
(1981) for the estimation of earthquake location, whereby we form a linear system of
equations which describe differenced station position vectors as a combination of
tectonic motion model parameters and nuisance parameters, which comprise
non-tectonic motions such as rigid-body rotations. The system 1is normalized with
the square-root of the covariance r;latrix, and then rendered insensitive to the

nuisance parameters via application of projection operators, a process which we term

"denuisancing”.
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Let us consider a simplified algorithm tailored to the specific problems presented
by SLR observations. First, if all the data is processed in a consistent manner, such as
with the SL6 model, scaling of the network due to the adopted value for the speed of
light will be uniform and hence negligible. Similarily, the earth center of mass,
which is an implicit function of the assumed gravity model, is constant for all epochs.
Thus, representation of scaling or transformation of coordinate systems may be
safely ignored. Errors in earth-orientation parameters, such as polar motion and
UTI1, will result in  rigid-body rotation of the entire network about the earth center of
mass. However, absolute plate motions, which are relative plate motions defined in a
particular angular velocity reference frame, will tradeoff exactly with rigid-body
rotations. Therefore, we may only resolve relative ;_Jlaté motions from the data and
will treat rigid-body rotations as nuisance parameters. Some provision should be
made for differences between errors in site motion tangential and radial to the
surface of the earth, which arise from inhomogeneous sampling of ranges. For
example, lasers may range at all horizontal azimuths, but may not range at vertical
angles below the horizon; thus, systematic errors in satellite location and in the
atmospheric refraction model are expected to map primarily into the. radial
components of position. Therefore, radial components may also need to be treated as
nuisance parameters. Finally, tectonic motions may bias the denuisancing of
rotations, since incomplete sampling of the plate system might introduce rotations of
tectonic origin. This subtle problem may be minimized if prior information about
the motions is known; the a priori tectonic model is subtracted from the data before
denuisancing, and then is added to the resulting model after the inversion has been
completed. This process, which we term “"bias stripping”, causes the component of the
solution which is not constrained by the. data to coincide with the a priori model, thus
care must be exercised in the choice of the a priori model.

With these considerations in mind, we may formulate a specific approach. We
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define x to be a vector composed of the three-component geocentric vector station

positions for all stations sampled during all epochs under study. These positions will

A
have associated covariances defined by V= <(x-<x>)'(x-<x>)T>, where the brackets

denote expected value, and the T transpose. x and Q’,’x are the quantities supplied by
the SLé6 solution. This covariance matrix is not an accurate reflection of the true
errors associated with the station coordinates due to systematic errors in the_ normal
point ranges used to derive the SL6 solution. Normal points are formed by grouping
raw ranges to Lageos from a laser site into 2 minute bins, and then finding average
ranges from those samples; this data compression, which can typically be two orders
of magnitude, is useful computationally and reduces biases due to uneven sampling of
the orbit of Lageos. The precision of ranges is on the order of 2-9 cm, and thus the
formal precision of the normal points is generally on the order of 1 cm or Iless.
However, due to systematic orbit model errors, which propagate as the square of time,
_'the actual accuracy of the normal points is more on the order of 10-15 cm over a 30
day orbital arc. To reconcile this problem, 'SL6 uniformly assigns each normal point a

formal uncertainty of 100 cm, which means that the stated covariances are probably

an overestimation of the errors. A more realistic estimate of covariance might be

A
V,= v2 V., where v2 is a scalar to be determined a posteriori by the

sampling variance, which is a function of the weighted error vector and the number
of degress of freedom.

We define

d =E"x (1a)

A A T
Vd=E‘Vx‘E (1b)

where E is the operator composed of 1's, 0's, and -1's which difference vector

positions between successive epochs for all sampled stations. d therefore represents
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the apparent vector motions of the stations from epoch to epoch. Based on the
previous discussion, we consider a decomposition of these motions into rigid-body
rotations, tectonic motions, such as rigid plate motions and internal plate
deformations, radial motions and errors. We construct a linearized set of equations of

the form:

A'm +B'n=4d (2)

where m is a vector composed of model parameters corresponding to tectonic
motions, and n is a vector composed of nuisance parameters. The particular
representation of these vectors will depend on the desired parameterization. For
example,. if rigid-body rotations are to be denuisanced from the system, n will be
composed of the three-component angular velocity vectors corresponding to the
rotations between successive epochs, and B will be composed of the 3x3
anti-symmetric infinitesimal rotation matrices times the epoch-time differences for
each station sampled. m may be the denuisanced vectors of motion, in which case A
will be the identity matrix; or, as discussed in the following section, m may be a
rate-scaling parameter and A the vectors corresponding to an a priori global plate
tectonic model. Explicit representations of these matrices will be given for the
specific application of rate scaling of global tectonic models; however, we wish to
emphasize that this is a completely general formulism capable of handling many
possible parameterizations, provided the system is linear or can be linearized.

We normalize the system by weighting with the square-root of the covariance

matrix
A v A A
A'm+ B'n=d (3)
A A . . . -
where A = Vd'llz' A, etc.; note that the carat now indicates normalization by
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A
\' d1/2. The system is denuisanced by applying
A A +
QB=I' B.B'1 (4)

where the dagger_ denotes the Moore-Penrose generalized inverse (Penrose, 1955). Qg

is the projection operator which projects (3) into the null space of II;T, thus

rendering the system insensitive to the nuisance paramete‘rs; it is both symmetric

and idempotent (Qg = QBT =Qp°Qp). Multiplying both sides of (3) by (4), and making
A

use of the fact that Qg B = 0, we find

A A
Qp A m = Qy-d. (5)

The model parameters are estimated by taking thé generalized inverse of the left
hand side of the reduced system (5)
~ AL A
m=(QB' A)"QB'd, (6)
with the associated unscaled covariance matrix

AL AL
o = Qg AT QpQp AT (7a)

<
I

A AL
= (AT Qg )", (7b)

. . 2 . e
We now estimate the covariance scaling parameter v~ by comparing the misfit
between the model and the data; this is defined by the normalized error vector, which

is a random variable found by substituting (6) into (5):

A - A A
e =QB' d - QgA'm (8a)
A AL A
= (l‘(QB'A)'(QB' A)!)'QB' d. (8b)
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The squared length of the normalized error vector divided by the covariance scaling
parameter is itself a random variable and is chi-squared distributed with N-M degrees

A
of freedom, where N is the rank of the reduced data space Qg d, and M is the rank of

A A
the projection operator (QB°A)'(QB' A)T (e.g., Jordan and Sverdrup, 1981). Thus, it
has the expected value

A

A
<el-e> /v2 - N-M. (9)
The observed misfit is one realization of this error process, and can thus be used to

estimate v2. This estimate is called the normalized sampling variance:

A A

A
s2 = el-e /(N-M). (10)

Application of bias stripping is a simple extension of the method outlined above.
Let m be the a priori model which is assumed to be known perfectly; that is, let m g
have zero variance (m, = < m  >). The a priori ~model is removed from the linear

system (2):

A*(m-m_)+B'n = d-A"m,. (11)

The equations are normalized with the square-root of the covariance matrix in (1),
since m , has zero variance, and applying the appropriate denuisancing and

generalized-inverse techniques, we find the estimate of the model parameters

~

A A A
m -m_ +@QpgA)Qy(d-Am) (12a)

A A A A
Qg A Qp d+ d-@Qpa)QgraNm,.  (12b)
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It is straightforward to show that the unscaled covariance matrix, the normalized
error vector, and the sampling variance are given by (7), (8), and (10) respectively;
this follows from the 'fact that m ﬁas zero variance. The first term in (12b) is
equivalent to (6), the result obtained with bias stripping. The second term projects
m , into the model space which is unconstrained by the data. Thus, the component of
the model which is not constrained by the data is made to coincide with the a priori
model.

We have described a very general approach for the estimation of model
parameters and variance scaling in the presence of nuisance parameters. We now
apply the methodogy outlined above to the specific problem of the rate scaling of

global plate tectonic models.

Rate Scaling of Global Plate Tectonic Models

As an introduction to this problem, we briefly describe one successful model of
plate tectonic motions obtained by Minster and Jordan (1978), hereafter denoted by
RM2. RM2 is a relative motion model based on the assumption that the earth's surface
is composed of eleven plates which are rigid spherical caps moving tangentially to
the surface. Directions of motion are estimated from azimuths of transform faults and
earthquake slip vectors, and rates of motion are estimated from marine magnetic
anomalies. No data are used from locations where the assumptions do notr appear to be
valid, such as regions of deformation at continent-continent boundaries. Magnetic
anomalies 2, 2', and, occasionally, 3 are employed, thus the obtained rates are
averaged over a 2-m.y. interval. One-s'igma errors for the rates are on the order of 5
to 10%.

As an application of the algorithm decribed in the previous section, we estimate
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from the SL6 solution the RM2 rate-scaling parameter y. That is, we assume that the
orientation of the relative angular velocity vector for each pair of plates is known
perfectly and that the rate of rotation is of the form yw, where ® is the RM2 angular
rate of rotation. Thus, the relative niagnitude of the RM2 rates are assumed to be
known perfectly, but they may be scaled according to y. For example, y = 1 implies that
the relative velocities of the observing stations are identically equal to the
RM2-predicted values, whereas ¥y < 1 implies that the observed mean rates are slower
than RM2. Thus, we seek to characterize the data by a single model parameter. Such
a characterization maximizes the resolution of the model parameter at the expense of
greater variance. As such, it represents a logical first assessment of the data, and will
help to ascertain the appropriateness of RM2 as an a priori bias-stripping model. The
rate-scaling parameter y is a useful description of mean global plate motion, and
facilitates comparison of mean rate estimates derived from geophysical and geodetic
techniques representing timescales over many orders of magnitude. The utility of
such comparisons will depend on the assumption that the relative directions of plate
motion do not change substantially over the averaging interval. For example,
estimations based on plate reconstructions over the last 80 m.y. (e.g., Davis and
Solomon, 1981) which include major reodrganization of plate geometry, are possible,
but will be degraded due to poorly-matched motions. RM2 provides a reference
estimate of y based on marine magnetic anomalies averaged over a 2-m.y. interval,
whereas space-geodetic data offer independent estimates which samplevthe last 10
years.

We now adapt the methodology of the previous section to the problem of
estimating y from SLR data. Let d be the vector composed of the SLé6-derived

. .
geocentric vector station motions, with associated covariance Vg, as given by (1). To

compare d to RM2-predicted tangential motions, we must reduce biases due to

rigid-body rotations and radial motions from the data. An infinitesimal geocentric
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rigid-body rotation may be represented by p-Q, where Q is a three-component

rotation vector, and p is the 3x3 anti-symmetric matrix

0 z -y
. p= -z 0 x (13)
y x O
where x,y,z are the nominal cartesian station coordinates (e.g., Goldstein, 1980). We

define B to be composed of the p;'s corresponding to motion of the ith station, and n
be composed of the ij's corresponding to motion between the jth and kth epochs; in
this way, the rigid-body rotations described by n n{ay be treated as nuisance
parameters. The assumption of infinitesimal rotation is valid for the observed
centimeter motions; such rotations are additive, allowing data from inhomogeneously
sampled networks to be fully utilized in a simultaneous inversion over all sampled

epochs. For example, for a two station network where station 1 is observed during

three epochs, and station 2 is observed in the first and last epochs, we would define

py 0 -
Qp,
Q,;
P2 P2

[ 4
To remove radial components of motion and all covariances between tangential

and radial motions, we convert from geocentric to local geodetic coordinates via the
transformation matrix J, which has jacobian block diagonal elements corresponding
to the nominal station positions, and isolate the local north and east components of
motion by removing the rows and columns corresponding to vertical components via
the tangential selection matrix T, which .is simply composed of 1's and 0';.

Thus, we define

d’=Fd (15a)
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A A
Vd,=F'Vd'FT (15b)

B’=F' B (15¢)

where F =T-*]. Because of the linear relationship between local geodetic velocities
and angular l;ate of rotation (Minster et al., 1974), we may parameterize the model by
ym ,, where m is the vector composed of predicted RM2-derived velocities in local
geodetic coordinates multiplied by the time difference between the epochs. The RM2
velocities are calculated with respect to a fixed plate; the choice of the fixed plate is

arbitrary since it  results in a rigid-body rotation the network which is removed by

application of Qupg, as given in (5). Thus, we may define the system:

Ym,+B"n=4d". : (16)

Noting the equivalence of (16) to (2), where y = m, and m, = A, we find from (6):

-~ A A
'Y= (QBl.mo)T‘ QB" d, N (17)
which, being scalar, has unscaled variance, given by (7)

A
6.2= (m,TQg - m ) (18)

and v2 is estimated from (8) and (10).

This method does not account for possible biases in model estimation due to
tectonic motion; we previously suggested that such contaminations might be reduced
by bias stripping with an a priori model of tectonic motion. [t is straightforward to

show, however, that this procedure is applied implicitly when estimating the
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rate-scaling parameter.  Define y(a) = 8y + a, where o is a constant. We bias strip using
am , as the a priori model; thus, a = 0 corresponds to no bias stripping, and o = 1 is

equivalent to” bias stripping with m . Then (16) becomes

ym,+B"n=d"-am, (19)

It follows that

-~ A T A A A

5= Qg my' Qprd’ - a(Qps my'Qpsm, (20)
and

-~ A T A A A

W) = Qg m)™ Qprd’ + all-Qp myf- Qg m ]  (21)

A A

Note that (Qpg- mo)T'QB,'m0 is an idempotent scalar projection operator, and must

. _ _

equal either 0 or 1. Qp.~ m  is the relative motion model in a no net-rotation frame;

for non-trivial cases this will be non-zero and therefore the projection operator
equals 1. The quantity in the square brackets of (21) vanishes and we find the
estimate of the rate-scaling parameter is not a function of o; hence, bias stripping s
implicitly contained in this particular formulation.

The nominal station positions (shown in Figure 1) and distribution of normal
points for the stations used in the estimation of the rate-scaling param;ter are listed
in Table 1; the inhomogeneous sampling of network geometry which is evident from
this distribution provides some justification for the multiple-epoch denuisancing
procedures described above. The data, which consist of 52 local geodetic motion
vectors corresponding to 23 stations sampled over 6 epochs (1978-1983), are listed in
Table 2; coverage includes S of the 11 RM2-defined plates. These vectors with their
associated tangential error ellipses (1 sigma, unscaled) are shown in Figure 2; this
figure provides some sense of the distribution and quality of the formal errors of the
data--it does not portray the often significant covariance between station motions.

Applying the above methodology to the complete five-year interval data set, we
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obtain:
; =095+ 0.16 (one sigma).

A

A
The one-sigma level of confidence is obtained from s? = 0.355, and 0'72 = 0.072 .

Additional 'estimations based on epoch-subsets are listed in Table 3; for example, using
all the stations with data in both 1982 and 1983, which we denote {5,6}, the one-year
interval estimate of vy is 0.51 * 0.50. These results are plotted as a function of the
number of data vectors utilized in each solution in Figure 3. In all but four cases, the
SLR-derived rate-scaling parameter is consistent with the RM2-reference value (y =
1) at the one-sigma level of confidence. One exception, {3,4,5}, is very nearly
consistent' (1.275 % 0.270), and the remaining exceptions ({1,2}, {1,2,3}, {1,2,3,4}) all
include data from the first epoch, 1978. This epoch was sparsely sampled, using
measurement techniques which have been subsequently refined; it 1is therefore
possible that these data may be subject to systematic errors not accoumed. for by SL6.
If the 1978 data is ignored, estimates of the rate-scaling parameter averaged over a
one-year interval vary between 0.44 and 1.31, and show less variability for longer
intervals. In summary, we find that the SLR-derived mean rate of motion among the
observing stations for a five-year averaging interval, and even for intervals as short

as one year, are consistent with RM2.

Discussion
This result supports previous scalar baseline rate-of-change analyses indicating

that the direct measurement of plate tectonic motions is feasible using space-geodetic

techniques (e.g., Christodoulidis e al, 1985); however, we find that an analysis of the
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vector motions associated with network station position provides additional
information and constraints on "instantaneous” plate motions. For example, the usé
of RM2 as an a priori model of tectonic motion appears to be reasonably justifiable, as
the improvement in results for longer averaging interval indicates. It should be
noted that estimation of the rate-scaling parameter assumed that RM2 is known
perfectly with the exception of the absolute magnitude of the rates. In reality, RM2 is
a model with associated covariance due to errors in azimuths and magnetic anomalies;
however, the errors associated with RM2 are small compared to those of SLR data, and
therefore are not likely to make any substantial contribution to the estimation of the
rate-scaling parameter. Further experimentation with alternative a priori models
which may provide additional improvements, such as NUVEL-1 (Demets et al.,, 1985),
should, of course, be pursued. As data coverage becomes more extensive, global plate
tectonic models based solely on space-geodetic data may ultimately supplant those
based on less instantaneous data; these improved models will help to reduce biases in

the estimation of model parameters.

Another notable feature of this vector analysis is the estimation of the sampling

variance :2 = 0.355. Previous estimates of the sampling variance, which have been
on the order of 0.10 to 0.15 (D. Smith, private communication), have relied on the
analysis of single scalar baseline lengths, under the assumption that additional
variances corresponding to other baselines, even if they are larger, will not increase
the overall variance of the system. This assumption is valid provided the variances
are uncorrelated. This is not the case for the SLR data; use of the full covariance
matrix as well as a wunified algorithm which»considers all the data simultaneously
indicate that the previous estimates of sampling variance are too small by a factor of
2 or 3. .

We now consider some of the broader geophysical implications of these results.

We have found that the SLR-derived mean global plate rates for a S5-year interval
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agree with the 2-m.y. average RM2 rates; this suggests possible limitations for the
temporal variability of mean global motion. Anderson (1975) proposed that observed
tectonic motions in the vicinity of plate boundaries, such as subduction zone
trenches, may be_relatively stationary for long periods (30-100 yr), except for brief
(5-10 yr) “"breaking cycles" in which the accumulated stress along the boundary is
released. During such a cycle, the plate motions near the boundary are accelerated.
Episodic motion at plate boundaries is, of course, well documented; Anderson, from
observations of seismic migration patterns such as the Aleutian sequence between
1899 and 1905, suggested these episodic motions are correlated and that the
compression of the oceanic lithospheric plate between breaking cycles may extend
well into the interior of the plate. One possible implication of this model is that global
plate motions may be "jerky"; that is, quiescent except for relatively short periods of
accelerated motions. The five-year SLR-derived mean rate of motion is not consistent
with either a quiescent, or accelerated interval of plate motions. One-year estimates
display graeater variablilty but are, with the exception of the 1978 data, also
consistent with RM2. Possible interpretations of systematic temporal variations must
be regarded with some skeptism due to the sparcity of data, and to the
previously-mentioned systematic improvements in data collection techniques which
may not be accurately modeled by SL6. Clearly, many additional ye:lars of space-
geodetic data collection are required before strong constraints may be placed_ on
temporal variation in mean plate motion.

The sampling frequency of the SLR data severely restricts efforts to make
interpretations regarding longer averaging intervals; this point is illustrated in
Figure 4 which shows estimates of global rate-scaling parameter as a function of the
sampling interval. Space-geodetic data provide the most recent estimates averaged
over the shortest intervals; it is easily possible to imagine temporal variations of

motion over the entire spectrum of timescales out to 2 m.y. or more. For example,
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Vogt (1985) suggests, from a detailed examination of the magnetic lineations at six
accreting plate boundaries, that opening rates have been up to 7-35% faster over the
last 1 m.y. than over the period 1-2 m.y. Other geological techniques may provide
cfude estimates _for timescales intermediate between space-geodetic and marine
magnetic anomaly intervals. Estimates of slip rate at plate boundaries based on
paleoseismicity, such as those obtained by trenching on the San Andreas Fault by
Sieh and Jahns (1984), sample averaging intervals of 1000-10000 vyears. A robust
estimate of y would require many such estimates of slip rate over the same time
period; the natural paucity of suitable sites will hinder such an effort.  Furthermore,
the rates obtained by Sieh and Jahns (1984) are consistent with more recent geodetic
estimates but show a large discrepancy with RM2 rates;” Minster and Jordan (1984)
suggest that distributed deformation both east and- west of the San Andreas may
account for this ‘discrepancy. Thus, care must be exercised when measurements
obtained at plate boundaries are used to estimate global plate motion. Despite such
obstacles, ‘the wvariability of the rate-scaling parameter over different timescales
warrants further investigation, because such variations might be a reflection of the
dynamical processes ~ which drive the observed plate motions.

As'has been noted, RM2 rates are derived from observations of marine magnetic
anomalies; errors in the magnetic anomaly timescale will therefore result in scaling
errors of the RM2 rates. Under the assumption that global plate motion has been
nearly uniform over the last 3 m.y., space-geodetic data offer an independent
constraint on possible errors in the magnetic anomaly timescale. RM2 wuses the
magnetic anomaly timescale of Talwani er al. (1971) for the estimation of the age of
anomalies 2, 2' and 3. In a more recent compilation of anomaly timescales, Ness et al
(1980) point out several disadvantages of the Talwani scale. First, it was obtained from
profiles over the Reykjanes Ridge, which is a slow spreading ridge; such profiles tend

to have poorer resolution due to contamination of normal and reversed blocks from
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subsequent flows. Second, it is a hybrid scale, constructed by assuming the age of the
-end of anomaly 5 (9.94 m.y.) of Heirtzler et al. (1968) to be correct, assigning residuals
from the Heirtzler scale to be due to errors in that scale, and then compromising on
tﬁe age of the 3.1' anomaly from considerations of magnetostratigraphy. Finally, it
does not incorporate the change in K-Ar decay and abundance constants suggested by
the International Union of Geological Sciences in 1977; this change alone would
result in a 2.68% decrease in RM2 rates (Mankinen and Dalrymple, 1979). Ness et al.
(1980) propose a new anomaly timescale which displays systematic differences with
the Talwani scale. Table 4 compares the chronologies, and the corresponding
rate-scaling parameter obtained by dividing the age from the Talwani scale by teh
age from the Ness scale. These estimates of y are shown in Figure 4. The variability of
these estimates provides some measure of the possible errors in the RM2 marine
magnefic anomaly timescale; we find that the variations lie well within the formal
error bars of the SLR-derived estimate. Although there are indications that the
anomaly timescale used to determine the RM2 rates - may be in error, the quality of the

SL6 data set is not at present sufficient to place useful constraints on that error.

Conclusions

We have developed a general methodology for the analysis of space-geodetic data
with the goal of constraining plate tectonic motions. The generalized-inverée
analysis of the vector rate-of-change of the geodetic network accounts for the full
covariance of the station motions and reduces contaminations due to rigid-body
rotations and poorly-constrained vertical motions. We have demonstrated the
applicability of these algorithms to obtain the RM2 rate-scaling parameter, which we
believe to be a useful "description of mean global plate motion worthy of further

investigation via other geophysical and geological techniques. An estimate of the
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rate-scaling parameter from a five-year interval of laser ranging to the Lageos
satellite is found to be near unity and consistent with RM2 rates. There is a
suggestion that the magnetic anomaly timescale on which RM2 1is based predicts
féster rates than more recent timescales, but SLR data do not as yet place any
constraints on this error. In addition, the mean rate of motion of the plates argues
against the suggestion that the plates are in a period of quiescent, or accelerated
motion.

An obvious extension of this analysis would be the inclusion of VLBI data  which
presently offer useful network stations in Europe. More complicated
parameterizations of the model are under consideration. Examination of wvertical
motions would provide a further test of consistencz, and might indicate areas of
active deformation. Grouping the stations by assumed plate might yield constraints
on the directions of tectonic motions, as well as the stability of the plates themselves.
Allowing individual stations to move with constant velocity might reveal anomalous
behavior at plate boundaries. Space-geodetic datasets have begun to place useful
constraints on global plate motions. It is clear, however, that efficient algorithms to
handle the rapidly accumulating space-geodetic data, which are capable of treating
the problems associa.ted with each technique in a self-consistent manner, will be

crucial for the detection and monitoring of temporal variations in plate motions.
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Epoch- Resul

-~ A A

Epochs #Data Y o, % o:{z

1,2 3 -3.470 0.450 0.009- 22.540

2,3 11 0.439 1.090 0.392 3.028

34 8 1.308 0.673 0.348 1.303

4,5 11 1.248 0.372 0.179 0.770

5,6 9 0.514 0.501 0.345 | 0.726

1,23 15 -0.226 0.816 0.368 1.810

234 22 0905 0423 0.315 0.568

34,5 21 1.275 0270 __ 0.279 0.260

45,6 21 0.969 0.258 0.277 0.241

1,2,3,4 27 0.587 0.389 0.363 0418

2,345 35 1.184 0.232 0.287 0.187

34,56 2 1.120 0.194 0.341 0.110

1,2,3,4,5 41 0.963 0.218 0.327 0.145

2,3,45,6 46 1.061 0.171 0.335 0.087

1,2,3,4,5,6 52 0.947 0.160 0.355 0.072
Table 3. Results from estimation of- rate-scaling parameter based on epoch-subsets of
the data. Epoch 1 = 1978, epoch 6 = 1983, etc; #Data = number of relative motion vectors

observed during interval; the other quantities are defined in the text; all stations used

for each estimation. .



Table 4. Comparison of Talwani et al. (1971) and Ness et al. (1980) marine magnetic

anomaly timescales,

Anomaly Talwani(m.v.)

ll

2'

with corresponding estima‘e

0.00
0.89
1.71

243
284
2954
3.04
3.10

3.78
3.88
401
4.17
431
441
448

0.91
1.66

247

291
2.95

3.07

3.17
34
3.86 -
3.98
4.12
4.26
441
4.49
4.59

of

rate-scaling parameter.

¥(T/N)
1.000
0.978
1.030

0.934
0.976
0.997
0.992
0978

0.979
0.975
0.973
0.979
0977
0.982
0.976
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Figure tion

Figure 1. Nominal SLR station positions used to estimate rate-scaling parameter,
Station locations corresponding to site number are listed in Table 1.
Figure 2. Data, consisting of apparent tangential vector motions of network sites

positions between successive epochs with associated tangential one-sigma

(unscaled) error ellipse, used to estimate rate-scaling parameter. Also listed in
Table 2.

Figure 3.  Estimate ' of rate-scaling parameter as a function of total number of motion
vectors utilized in epoch-subset trials. Dashed line is the RM2 reference estimate.
Error bars are one-sigma (scaled by sampling variance). Values listed in Table 3.

Figure 4. Estimate of rate-scaling parameter as a function of the temporal averaging
interval. RM2 is the reference estimate with | m.y. error bars, One- and
five-year SLR-derived estimates have errors as in Figure 3. Values listed in Table

3. NLC-80 are estimates derived from the comparison of the Talwani et al. (1971)
marine magnetic anomaly timescale, upon which the RM2 rates are based, and
Ness et al. (1980) timescale, as listed in Table 4. Variability of NLC-80 about RM2 is

well within the five-year SLR-derived one-sigma level of confidence.
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