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ABSTRACT

Finite dimensional approximation schemes that work well for distributed

parameter systems are often not suitable for the analysis and implementation

of feedback control systems. The relationship between approximation schemes

for distributed parameter systems and their application to optimal control

problems is discussed. A numerical example is given.
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Introduction

In the past few years there has been a rapid development of computational

methods for identification and control of systems governed by functional and

partial differential equations. The recent literature on this topic is

extensive and we will not attempt a review of the area. The purpose of this

paper is to show, via a fairly simple example, that care must be taken to

ensure that finite dimensional approximations of distributed parameter systems

preserve important system properties (i.e., controllability, observability,

stabilizability, detectability, etc.). Moreover, if the particular scheme

used to construct the finite dimensional model does not take into account

these system properties, then the model may not be suitable for control design

and analysis.

Clearly, controllability and observability properties of the finite

dimensional models depend on both the distributed parameter system and the

type of approximation scheme used to construct the lumped model. It is also

important to note that although a particular numerical scheme may be

convergent (i.e., consistent and stable) and well suited for simulation of

open-loop dynamics, the scheme may not be suitable for use in the design and

analysis of feedback control systems. A finite dimensional model to be used

in a LQR type design algorithm should be based on a numerical scheme that

approximates both the distributed parameter system and its adjoint (see [2],

[5], [7], [8]). The basic ideas can best be illustrated by a simple example.

A Hybrid Control System

Hybrid control systems are systems governed by coupled partial and

ordinary differential equations. Such systems occur in large flexible
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structures and are typical models for boundary control problems when actuator

dynamics and/or tip masses are included in the analysis. We shall focus on

the simple cable-sprlng-mass system shown in Figure I. The cable of length L

has lineal density o and is under tension T. The device at the right end

of the cable maintains the tension and provides no impedence to the vertical

motion of the mass m. Let y(t,x) denote the displacement of the cable from

the x-axls and u denote an applied force acting on the mass.

The energy of the mechanical system (Kinetic plus potential) is given by

L 2
2 t,L) (I)E(t) = f {cYt(t,x) + Ty_(t,x)}dx + ky2(t,L) + mYt( .0

for 0 J t < +_. There are several possible state space models of this

system. We shall consider the approach followed in [3] and formulate the

problem in the state space

Z = L2(0,L ) x L2(0,L ) x _x I_ (2)

If zI = coi(_i,$2,qi,_ 2) and z2 = coi(_i,_2,_i,$2), then the inner product

defined by

L L

<zl,z2> = f T_l(X)_l(X)dx + f c_2(x)_2(x)dx + knl_I + m_2_2 (3)0 0

leads to the energy norm [zl2 = <z,z> for the system described in Figure

1. Moreover, if we identify Zl(t,x ) = Yx(t,x), z2(t,x) = Yt(t,x) '

_l(t) = y(t,L) and _2(t) = _l(t) = Yt(t,L), then the system can be

described by the hybrid system (here a2 = T/a > 0):
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Zl(t,x) -_ z2(t,x) 0
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with boundary conditions z2(t,0) = 0 and z2(t,L) = B2(t).

Define the operator A on the domain

, W I'D(A) = {z = coi(41 _2,ni,_2)14i € 2(0,L), i=1,2

and _2(0) = 0, 42(L) = n2} (5)

by

m

41 42

42 a24_

A = , (6)

nI n2

-k

_n2_ _ nl - m (I (L)m



where "prime"denotes d
d--x. The operator B:11+Z is definedby

:]
Bu = 01 u. (7)
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With A and B as above the control system in Figure 1 may be realized as

_(t) = Az(t) + Bu(t) (8)

with initial data

z(0) = z0 = col(_l,¢2,nl,n2). (9)

It can be shown that A generates a C0-semigrou p on Z and for suitably

restricted initial data solutions to (8) - (9) are equivalent to solutions of

the system

Ytt(t,x) a2= Yxx(t,x)

(1o)

mYtt(t,L) = -ky(t,L) - TYx(t,L ) + u(t).

Note that (formally) the system (4) is the symmetric hyperbolic form of (I0).

In order to define an output operator we let

1 fL/k += ¢(x)dx
Mk(€) 2"_ Llk -



denote the mean-value operator at L/k. Define C :Z+_ by
g

- _I-- ClM2(_l)

_2 ClMl(_l)

C = (II)

ql c2M4(@2)

_q2_ c2M2(@2)

c2n2

c3n I

where _ > 0 is small (s < 10-3 is sufficient for the numerical results

presented below) and ci, i = 1,2,3 are positive constants. The operator

C acting on z(t) "observes" the "average" slopes and velocities at
€

L L and L and the displacement at x = L.
x - 4' 2

Consider the problem of minimizing

T

J(u) = f {IJCz(t)ll2 + Rlu(t)12}dt, (12)0

where z(t) is the mild solution to (8) - (9) and 0 < T < += is fixed.



In order to solve this optimal control problem, one must introduce some

type of approximation scheme. We shall discuss two schemes to compare their

use in the solution of the above optimal control problem.

The first scheme is detailed in [3] and was used to estimate parameters

in the system described in Figure I. We shall give a brief description of the

scheme. Divide the interval [0,L] into N = 2k subintervals with nodes

xi = iL/N, i = 0,1,2,...,N. Let h (x) denote the unique continuous,

piecewise-linear function satisfying h_(x_)v = 6iJ ° These functions are the

so-called hat or Chapeau functions. For i = 0,1,2,...,N define u_
Z

u_ = col(h_(.),0,0,0), and for i = 1,2,...,N define v_ _ Z by
by

N
v i = col(0,h (.),0,h (L)). Let v 0 denote the vector

N
v0 = col(0,0,1,0). Consider the finite dimensional subspace zNZ_ defined

by

N
ZN = span{ui,vi, i = 0,1,2,...,N} (13)

and let pN denote the orthogonal projection from Z onto ZN. Note that

the set {u_, i = 0,1,...,N} {v_, i = 0,1,...,N} is a basis for ZN

and dim ZN = 2(N + I).

Moreover, it is important to note that D(A) C ZN for each

N=2 k (k=l,2,...) and hence we may define an approximating operator AN by

AN = pNApN (14)

and approximating operators BN:R .ZN by BN = pNB and cN:zN._ by

cNz N = C ZN, respectively.



Using these definitions one can show that the sequence of finite

dimensional models

_N(t) = ANzN(t ) + BNu(t)

zN(0) = z_ = PNz 0 (15)

yN(t) = cNzN(t)

provides a stable and consistent approximation to the distributed parameter

system (8) - (9) with output defined by (ii). Moreover, since this problem is

skew-adjoint, this scheme provides a stable and consistent approximation to

the adjoint system.

This particular scheme was used in [3] to estimate various system

parameters in the system model. It worked quite well when used for such

parameter estimation problems. However, when one attempts to use system (15)

to compute suboptimal gain operators by minimizing the functional

T

jN(u) = f {IICNzN(t)H2 + Rlu(t)12}dt, (16)
0

then a number of problems occur (both theoretical and numerical). First it is

easy to see that the symmetric hyperbolic/hybrid equation (4) with boundary

conditions

z2(t,0) = Yt(t,0) = 0 and z2(t,L ) = Yt(t,L) = _2(t)

does not take into account the (physical) constraint y(t,0) = 0. In

particular, there is a "rigid translation" mode present in the distributed



parameter model (8) - (9) that leads to a lack of controllability in the

finite dimensional model (15). However, there are other problems with this

particular scheme that lead to the loss of controllability/observability

properties and effect the performance of numerical algorithms based on the

model (15). Note that the symmetric-hyberbolic form (4) of the wave equation

(i0) requires that a condition of continuity be satisfied. In particular, the
i

condition

Ytx(t,x) : Yxt(t,x) (17)

that is implied by (4) is not reflected in the approximating system (15).

There should be a continuity condition relating the "elements" u_
that

approximate Yx(t,x) and the "elements" v_ that approximate Yt(t,x).

The use of finite elements that satisfy such continuity conditions has been

proposed for various plate and beam models in order to prevent so called

"locking" elements (see [6]).

In order to see how these considerations can lead to "better" finite

dimensional models for control, we construct a second approximation scheme.

N = col(0,h_(-),0,h_(L)) and e_ = col(d h_(.),0,h_(L),0) forLet fi

i = 1,2,...,N. Define WNc Z to be the finite dimensional space

N i = 1,2, ,N} (18)WN = span{e_,fi, ...

and note that dim WN = 2N. Let QN:z.wN denote the orthogonal projection

onto WN. Since WN does not contain D(A) it is not possible to define AN

by AN = QNAQN. A rigorous deriviation of the approximating operator AN

relies on the theory of sesquilinear forms and is similar to the approach used



in [i] and [8]. The basic idea is to expand the state z(t,x) in the basis

N and use the weak form of (8) - (9) to construct the
elements e_ and fi

finite dimensional model• In particular, let

-N
Zl(t,x)

N

z2(t,x)
N

N N N N

zN(t,x) = = _ Yi(t)ei(x) + wi(t)fi(x)
i=l

_l(t) (19)

N
_2 (t)

and substitute zN(t,x) into the weak form of (4) (see [I], [8]) to obtain a

finite dimensional model for the coefficients y_(t) and w_(t).1 If one

defines xN(t) _ _N by

y_(t)

y_(t)

xN(t) = y_(t) , (20)

w (t)
N

w2(t)

wN(t)



I0

then the resulting finite dimensional model becomes the 2N-dlmensional system

of the form

MN£N(t) = FNxN(t) + GNu(t)

(21)

N N

x (0)= x0

with output

yN(t) = DNxN(t), (22)

where DN is a matrix representation of the operator C restricted to

WN ,
x_ is the vector of coefficients of the (representation of the)

and

projection of z0 onto WN.

This particular scheme has a number of nice features that make it

suitable for control design. First observe that in (19) one can show that

3 N 3 23--{Zl(t'x) = _ z (t,x) (23)

and

•NYi(t) = w (t), i = 1,2,...,N. (24)

Thus, the continuity condition (17) is preserved. Moreover, the expansion

(19) removes the uncontrollable "rigid translation" mode that appears in the

model (15) and numerical checks show that the finite dimensional model (21) is

controllable.
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Control synthesis was attempted with both finite dimensional models. The

numerical algorithm used for computing the (time-varying) feedback gain

operator is based on Chandrasekhar factorization of the Riccati operator

equation (see [4], [9]). The system parameters and initial conditions are the

same as in [3]. The time interval is [0,48 sec], the output weights are

CI = 50., C2 = 25., C3 = I. and the control weight is unity.

Several numerical experiments were attempted with the design model

(15). Various values of the grid parameter N were tried, system parameters

were varied and we even added viscous damping to the model. None of the

results were satisfactory.

On the other hand, numerical results with the new model, described by

equations (19) - (22), were quite good. Shown in Figures 2 - 5 are

comparisons of open-loop and closed-loop responses for both Yx(t,x) and

Yt(t,x) at several locations along the cable. These results were obtained

with grid parameter N = 16. Several simulations were run with the gain

operator fixed at its steady-state value. To the scale shown, the graphs were

not distinguishable from those presented here.

Note that both schemes are convergent to the original distributed

parameter model and both finite dimensional models are sufficient for various

simulation and identification studies. However, the important point is that

the second scheme preserves a number of system properties that make it more

suitable for control design.
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Figure 3: Time History of yl6(t, L)
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