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ABSTRACT

Executable assertions can be used to test flight control software.
However, the techniques used for testing flight software are different
from the techniques used to test other kinds of software. This is
because of the redundant nature of flight software. An experimental
setup for testing flight software using executable assertions is
described. Techniques for writing and using executable assertions to
test flight software are presented. The error detection capability of
assertions is studied and many examples of assertions are given. The
issues of placement and complexity of assertions as well as the language
features to support efficient use of assertions are also discussed.

KEYWORDS; Executable assertions, software testing, flight software,
digital flight control system.
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1 INTRODUCTION

The complete software testing process involves generation of test

data, determination of expected behaviour, program execution,

observation of behaviour, and comparison of observed behaviour with the

expected behaviour. The expected behaviour is usually determined by

hand calculations, simulation, or by alternate solutions to the same

problem. The test data can be generated either randomly, exhaustively,

or by using some kind of functional or structural analysis. Software

testing techniques can either be static (peer review, walkthrough, flow

analysis, symbolic execution) or dynamic (including the use of monitors

or counters). [Adrion 82] and [Ramamoorthy 75] contain very good

surveys of software testing and automated testing tools, respectively.

Executable assertions can be used for dynamic testing of software.

An executable assertion is a logical statement about the program

variables or a block of code, such that, if there is no error during

execution, the assertion statement results in a true value. Assertions

not only serve as a good medium for documentation, but they are also

useful for testing purposes throughout the lifecycle of software. They

can be used for validation during the design phase and for exception

handling and error detection during the operation phase.

Assertions can be written by making use of either the specifications

or some property of the problem or algorithm. Assertions are usually

based either on the inverse of the problem, the range of variables, or



the relationship between variables. Some examples of assertions from

[Hecht 76] [Mahmood 83] are as follows:

(1) If the problem is to find the discrete Fourier transform of an N

point input sequence x ( j ) , then Parseval's relationship can be used

as an assertion

, k = 0 to N-1

where X(k) is the discrete Fourier transform.

(2) If the problem is to find eigenvalues of a NxN matrix then the

following must be true

i = 1 to N

where Aii are the diagonal elements and L± are the eigenvalues.

(3) The longitude calculation by a routine in flight control software

can be checked by

New_Long ^ Prev_Long + (Prev_Long - Next_Prev_Long) - K

and

New_Long ^ PrevJLong + (Prev_Long - Next_Prev_Long) + K

where K represents the threshold for the test.



Assertions have been used in program verification [Floyd 67] [Hoare

691 [Manna 69] [Luckham 75] [King 76], in program testing [Stucki 75]

[Andrews 81], and for reasonableness checks in the recovery block scheme

of software fault tolerance [Horning 74] [Randell 75] [Carter 79]. The

use of executable assertions for detecting hardware and software faults

has also been suggested in [Saib 77] [Andrews 78] [Andrews 79].

[Leveson 83] describes the use of assertions for increasing the safety

of systems. The objective of this paper is to study the use of

executable assertions for testing flight software. The error detection

capability of assertions has also been studied in [Glass 80] [Andrews

81]. However, the software used in those studies was different. Also,

this study of assertions has a different emphasis, covering all aspects

from writing of assertions to use of assertions. The paper is organized

as follows: (a) the digital flight control system used in the

experiments is discussed in Section 2, (b) Section 3 describes the

experimental setup used to write assertions and test flight software,

(c) writing of assertions and testing of flight software is explained in

Section 4, and (d) Section 5 discusses some of the language features

which would make understanding and writing assertions easier.

2 DIGITAL FLIGHT CONTROL SYSTEM

The software analyzed in this experimental study is a part of a

digital flight control system, which is an integrated system that
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provides autopilot and flight director modes of operation for automatic
^

and manual control of a commercial airplane during all phases of flight

[DFCR-96 80] [Bendixen 831. It includes two identical flight control

computers known as FCC-201; each FCC-201 includes two CAPS-6 (Collins

Adaptive Processing System) processors, referred to as Channels A and B.

Figure 1 shows the architecture of the dual-dual redundant system

containing two FCC-201 computers, and Fig. 2 gives the organization of

each FCC-201 computer.

The flight control software is written in AED (Automated Engineer

Design), an ALGOL like language. From a functional point of view it

consists of five major parts: (a) control and navigation, (b) logic, (c)

testing and voting, (d) input/output, and (e) executive. The executive

software can be divided into two major groups, foreground and

background. The foreground tasks consist of time critical functions

such as command generation and executive monitoring. The background

programs perform non-time-critical operations like processor self-test

and memory checksum. Figure 3 describes the foreground software

structure and the timing relationship. The software consists of one

segment performing pitch rate inner loop calculations at a rate of 60

per second. After every third execution of the 60 per second segment,

the multipath software segment is restarted. This means that the

multipath segment is executed 20 times per second. The multipath

software segment contains segments which are executed at three different

rates: 20, 10, and 5 times per second. At the end of each foreground
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execution, the executive schedules the background process.

Synchronization between the two channels is performed 20 times per

second. The software programs of the two channels are not identical,

but there is some overlap. Functions performed by each of the two

channels are shown in Table 1.

3 EXPERIMENTAL SETUP

The experimental setup of the flight simulator at NASA-AMES Research

Center is shown in Fig. 4. More details can be found in [Defeo 82]. A

PDP-11/60 is used to modify the flight software (insert assertions and

errors), under the UNIX operating system. The flight software is

compiled at a different location and the compiled code is transferred to

the PDP-11/60 via a modem link. The executable code is then transferred

to the flight computers. The PDP-11/60 is then used to simulate the

airplane in real-time under the RSX operating system. Some important

parts of the experimental setup are as follows:

(a) CAPS TEST ADAPTER (CTA): Each CTA is dedicated to one processor

and allows the operator access to the associated CAPS transfer bus

directly from its front panel control or from the HP terminal. Some

of the capabilities provided by the CTAs are: (1) Display of

transfer bus address and data, (2) examine and modify any bus-

addressable location, (3) monitor the contents of a selected

address, etc.



Table 1 Flight Software Functions

CHANNELS A and B

1 PITCH AUTOLAND
2 ROLL AUTOLAND
3 YAW AUTOLAND
4 TOGA
5 ENGAGE LOGIC
6 SERVO MONITORING
7 SYNCHRONIZATION
8 INSTRUMENTATION
9 ANUNCIATION
10 YAW SAS
11 INNER LOOPS

CH. A

1 ROLL OUTER
2 ALT ALERT
3 MODE LOGIC
4 GLARESHIELD
INTERFACE

5 SENSOR
COMPARISON {

CH. B

1 PITCH OUTER
2 AUTOTHROTTLE
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(b) MODULAR DIGITAL INTERFACE CONTROL UNIT (MDICU): It is a CAPS-6

based data distributor whose primary function is the control of the

flow and format of the simulated aircraft parameters generated by

the PDP-11/60 and of the control commands generated from the flight

computers. This function enables the closed loop operation. The

HP-2645 terminal provides direct operator control over the operation

of the MDICU.

(c) PDP-11/04: The PDP-11/04 is used as an interface between the

PDP-11/60 or the HP-2645 and the FCC. The PDP-11/04 combined with

the HP-2645 can duplicate all the functions of the CTA. It can also

be used for uploading and downloading blocks of FCC memory into

internal devices and the PDP-11/60.

(d) PDP-11/60: It is the central element of the experimental setup.

It supports two distinct environments: A code-developing (static)

environment and a dynamic environment where the flight software can

be exercised in closed loop real-time. In the dynamic environment

the PDP-11/60 holds the aircraft model. The flight data is

transmitted from the PDP-11/60 to the MDICU, which converts the data

so that the flight computers can use them. The flight computers

compute control surface commands which are fed back to the flight

equations.
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4 TESTING FLIGHT SOFTWARE

The flight software was tested in the heading select mode (change of

direction) at constant speed and constant altitude. Initial testing was

done using the setup shown in Fig. 4 at NASA-AMES Flight Software

Verification Laboratory [DeFeo 82]. The simulations for the second

phase of testing, as described in Sec. 4.2, were performed on Stanford's

DECSYSTEM-20.

Ideally the assertions should be written from the specifications.

However, since no specifications were available, extensive simulations

were performed to understand the software. The purpose was not only to

study what the programmers have written but also to find out why they

have written it. In order to limit the complexity of the problem, only

the portion of flight software which is responsible for changing the

heading (direction) of the plane was studied.

The heading is changed by rolling the plane. As long as the bank

(roll) angle is greater than zero, the plane continues to turn. The

banking (roll) of the plane itself is controlled by the ailerons on the

wings. The ailerons must be opened for the specified amount of time to

achieve the required bank angle. The longer the ailerons are kept open,

the larger the bank angle will become. The larger the bank angle, the

faster the plane turns. For correct and safe turning of the plane, the

plane must be banked to the correct angle by opening the ailerons for a

specified amount of time. When the heading error (difference of where
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the plane is and where it should go) falls below a fixed value, the

straightening of the plane should begin by again opening the ailerons

for a specified amount of time.

The timing relationship between the relevant procedures and the data

flow from the input (selected heading) to the output (commands to the

ailerons) is shown in Fig. 5. A brief description of each of the

modules is as follows:
i

(1) A_LAT_COM: This module computes heading and airspeed gain (KTAS)

for use by the HDG_SEL module.

(2) HDG_SEL: This module performs the heading select computations

using selected heading, true heading and yaw rate. It generates a

roll-attitude command (LAT_LIM_CMD) which is passed to the LAT_LIMITER

module. As long as the heading error is greater than a fixed value,

the LAT_LIM_CMD remains constant at 0.5. When the heading error

becomes less than the fixed value, the LAT_LIM_CMD becomes

proportional to it.

(3) LAT_LIMITER: This module performs magnitude and rate limiting

(where the limits depend on the airspeed) of the roll-attitude command

from the HDG_SEL module and generates LAT_CPL_CMD which is passed to

the A_LAT_COUPL module. The LAT_CPL_CMD increases at a fixed rate to

a fixed value. The rate of change and the maximum value is determined

by the airspeed. Consider the following two lines of code taken from

this module:
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TAS HDG-SIN HDG-COS

j
_t_

A LAT COM

i
! HEADING

! KTAS

SEL_HDG YAWJtATE
i !

-LAT LIM CMD-

HDG SEL
i ii i
.i i

ii

LAT_LIMITER
5/sec

*{ A_LAT_COUPL j.
LAT CPL CMD i 20/sec i

-LAT INN CMD-

TAS

LAT INNER
20/sec

!~»»ROLL_CMD
!~»-ROLL_RATE_CMD
!-»>DELA CMD

ROLL ROLL RATE AIL POS

Fig. 5 Data Flow
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RATE_LIMIT = 0.006667 • KRTAS;

MAGJLIMIT = 0.203067 « KRTAS;

Then MAG_LIMIT/RATE_LIMIT = 30.45. As the module is executed 5 times

a second, this means that the LAT_CPL_CMD will reach its maximum value

in about 6 seconds irrespective of the airspeed. (This is an example

of the case where it is important to know the intent of the programmer

and not just the code). When LAT_LIM_CMD decreases below a fixed
i

value, the LAT_CPL_O1D becomes proportional to it.

(1) A_LAT_COUPL: This module performs coupling between the outer loop

modules and the LAT_INNER module. It generates LAT_INN_CMD which is

passed to the LAT_INNER module. The LAT_INN_CMD is just the filtered

version of the LAT_CPL_CMD.

(5) LAT_INNER: This module performs the inner loop computations for

the lateral axis. It includes roll attitude and rate feedback, lead-

lag compensation, command limiting, aileron limit override logic, etc.

The output generated by this module includes ROLL_CMD, ROLL_RATE_CMD,

and DELA_CMD (command to the ailerons). For correct and safe turning

of the plane, the DELA_CMD should achieve its maximum value between 3-

6 seconds and should return to a mean value of about zero after 9

seconds.

Waveforms of some of the important variables are shown in Fig. 6.

U.1 TESTING - PHASE ONE

Initially the assertions were inserted only in the LAT_INNER module.

Table 2 contains examples of some of those assertions. Table 3 shows a
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0.5
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Fig. 6 Waveforms of Some Variables
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Table 2 Initial Assertions

(a) ABS(LAT_LIM_CMD) ^ 0.5

(b) ABS(LAT_CPL_CMD) « 0.11

(c) ABS(LAT_CPL_CHG) ^ 0.003U

(d) ABS(LAT_INN_CMD) ^ 0.18333

(e) ABS(ROLL) x< 0.165

(f) ABS(HDG_CHG) N< 0.0046

(g) TIME TO CHANGE HEADING N<
MAXIMUM TIME

(h) HEADING ERROR DECREASES
MONOTONICALLY

Table 3 A Program Segment with an Assertion

Define Procedure LAT.INNER to be

begin

if R.TEST.COMPL
then begin

RL8 = RL8.D = DLIMITCRL8.D + RL11.D + RL11.D.S, 0.258);
RL11.D.S = RL11.D;
RL13 = LIMIT(RL7 + RL8, 0.171M29)/ 0.203333;
end

else RL13 = TEST.CMD (RAM.PTR (R.TEST.PTR));

DELA.CMD = RL13;

COMMEMT ASSERT IBS(DELA.CMP) < 0.13;

end;
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segment of the LAT_INNER module with an assertion inserted in it. The

program is processed by a preprocessor which converts all the inserted

assertions in compiler recognizable code. It was found that only 25 %

of the errors inserted in the software were detected by these initial

assertions. The two main reasons for the low detection rate were the

inadequacy of the first set of assertions used and the nature of flight

control software.

The flight control system is very redundant in hardware and

software. Examples of the hardware redundancy are replication and

hardware limiters. The software redundancy comes from the software

limiters and from voting on the input and output. This redundancy tends

to mask errors. As an example, consider the variable LAT_LIM_CMD

(output of HDG_SEL module). Its value is limited to 0.5, as long as the

heading error is greater than a fixed value. This makes the output

independent of the input conditions. Similarily, LAT_CPL_CMD (generated

by the LATJLIMITER module) increases at a fixed rate to a fixed value.

This makes the LAT_CPL_CMD independent of the input changes. Another

aspect of flight software which makes it different from the other

software is that it contains a great number of boolean variables and

decision points. This makes it difficult to write the same kind of

assertions as were written for the other kind of more computational

intensive software. For such a computational intensive code it is easy

to use range assertions. This is not true for the flight software.
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The inadequacy of the assertions used was the other reason for low
»

error detection. Ideally the assertions should be written during the

design phase from specifications. The lack of any specification

document made it very difficult to write good and meaningful assertions.

Some of the main flaws in the assertions used were as follows:

(a) The assertions were only placed in the last module (LAT_INNER).

It is very difficult to write such global assertions which can take
i

every possible condition into consideration. The complexity of

assertions starts to approach the complexity of the program itself.

One solution is to use many simple assertions at various points in the

program. Placement of assertions is very important for good error

coverage. This has also been discussed in [Milli 81] and is confirmed

by the present study.

(b) Most assertions were based on worst case conditions. However,

many errors did not cause the worst case conditions to be exceeded.

(c) Some of the assertions only checked the maximum value. However,

in the case of some errors, the maximum value achieved by the

variables during a certain time frame was much less than the correct

value. It was not possible to check for the minimum value because the

correct minimum value of variables is zero most of the time. One

solution is to make time a parameter of assertions. Then the values

of a variable can be sampled at particular times and checked to be

within a maximum and minimum range.
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4.2 TESTING - PHASE TWO

In order to improve the turnaround time, the relevant portions of

the software were rewritten in PASCAL and the simulation was done on

Stanford's DECSYSTEM-20. The assertions were written by using the

information . about the range or the state of variables at different

points in the program and by making use of the inverse relationships.

Most of the variables used in the assertions were either the output of

modules or the input from sensors. Assertions were placed at the output

of modules and before limiters and filters implemented in the software.

Some examples of assertions inserted in each of the modules are as

follows:

(1) HDGJSEL:

(a) IF ABS(hdg_error • tas) >, 0.02442 then ABS(lat_lim_cmd) =

0.5.

(2) LATJLIMITER:

(a) Time for lat_cpl_cmd to reach maximum lies between 5.5 and

6.5 seconds.

(b) IF ABS(lat_cpl_cmd) is decreasing then

(i) ABS(hdg_error) ^ Constant.

(ii) ABS(0.055556 • lat_cpl_cmd) = (0.155556 - 0.2222 »

krtas) * (seljidg - 0.736667*yaw_rate - hdg).

(3) A_LAT_COUPL:

(a) Maximum value of lat_inn_cmd ^ maximum possible value of

lat_cpl_cmd.
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(b) Time for lat_inn_cmd to reach maximum lies between 6 and 9

seconds.

(c) lat_inn_cmd, lat_cpl_cmd, and lat_lim_cmd must all be reset

to zero.

(4) LAT_INNER:

(a) lat_inn_cmd = 0.5 * (r!5+0.764«roll+0.1525*roll_rate).

(b) ABS(rl7) ^ 0.032. i
(c) Time for DELA_CMD to reach maximum lies between 2.5 and 6

seconds.

(d) ABS(dela_cmd) ^ 0.13.

The above assertions can be divided into three main classes, range

assertions, inverse assertions and state assertions. Examples of

assertions based on the range of variables are as follows:

(a) ABS(LAT_CPL_CMD) ^0.11.

(b) MAX. VALUE OF LAT_INN_CMD ^ MAX. POSSIBLE VALUE OF LAT_CPL_CMD.

(c) ABS(ROLL) <: 0.165.

(d) ABS(HEADING CHANGE) ^ 0.0046/sec.

(e) ABS(DELA_CMD) ^ 0.13.

Examples of assertions based on the inverse relationships are as

follows:

IF ABS(LAT_CPL_CMD) IS DECREASING THEN

(i) ABS(HEADING-ERROR) ̂  CONSTANT.

(ii) ABS(0.055555 * LAT_CPL_CMD) = (0.155556 - 0.2222 « KRTAS) »

(SEL HDG-0.736667*YAW RATE-HDG).
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These assertions are based on the fact that the LAT_CPL_CMD decreases

only when the LAT_LIM_CMD (and hence the heading error) has decreased to

a specified value. At that time the LAT_CPL_CMD becomes proportional to

the LAT_LIM_CMD which is itself proportional to the heading error given

by sel_hdg-0.736667*yaw_rate-hdg.

Assertions in flight software which check the state of variables are

based on the observation that the values of variables can be divided

into three distinct regions. The first region is where the value of a

variable is increasing, the second is where the value becomes constant,

and the third is where a variable returns to its initial value. This

can also be seen in Fig. 6. For such variables the following conditions

can be checked: (a) rate of increase of variables, (b) maximum value

attained by the variable, (c) time to reach maximum value, (d) time when

the variable starts returning to its initial value, and (e) rate of

change when the variable is returning to its initial value. Examples of

assertions which check the state of variables are as follows:

(1) TIME FOR LAT_CPL_CMD TO REACH MAXIMUM LIES BETWEEN 5.5 AND 6.5

SECONDS.

(2) TIME FOR LAT_INN_CMD TO REACH MAXIMUM LIES BETWEEN 6 AND 9

SECONDS.

(3) LAT_INN_CMD, LAT_CPL_CMD, AND LATJLIM_CMD MUST ALL BE RESET TO

THEIR INITIAL VALUE.

(4) TIME FOR DELA_CMD TO REACH MAXIMUM LIES BETWEEN 2.5 AND 6

SECONDS.
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The software was seeded with errors, one at a time, and executed to

see how many of the seeded errors cause assertion violations. Error

types and frequencies were similar to those in the NASA-AMES data base

of errors. The insertion of errors was done independently from the

writing of assertions. The results of the experiment are given in Table

4. Currently, the software is only partially asserted, that is, the

current assertions only check for the errors in the software which is
i

executed during the heading select mode. It can be seen that 66 % of

all the errors inserted in the partially asserted software were

detected. Some of the reasons for undetected errors are as follows:

(a) The default value assigned to the variables by the compiler was

the same as the initial value of the variables. So the error caused

by deleting the initialization statement was not detected.

(b) In the case of some boolean statements, the final result was

independent of the value of some variables. Any error in the value of

those variables could not have been detected.

(c) Some of the errors were in a section of code which was not

executed during this phase of testing.

(d) Some errors changed the name of one boolean variable into another.

However, since the value of both variables was the same, the error was

not detected.

(e).Some errors simulated the condition of a multiple sensor failure.

Such errors could not have been detected.
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Table 4 Preliminary Experimental Results

ERROR TYPE

DATA HANDLING

LOGIC

DATABASE

COMPUTATIONAL

TOTAL

ERRORS
INSERTED

22

19

19

21

81

% ERRORS
DETECTED

PARTIALLY
ASSERTED

63.6

47.3

78o9

76.1

66.6

FULLY
ASSERTED

90.9

84.2

94.7

80.9

87.6
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The error coverage can be increased to more than 87 % by fully

asserting the software, that is, by writing assertions for all of the

flight modes. The current assertions only check for the errors in the

software which is executed during the heading select mode. Errors in

the software which have no effect on the results are redundant.

However, these errors would be caught by a different set of assertions,

written specifically to check that particular flight mode. Currently,
i

assertions are being written for two other modes: altitude select mode

and autoland mode. It is believed that the use of these assertions

would increase the error coverage to more than 87 %. More extensive

assertion testing of flight software will provide more definitive

results.

5 LANGUAGE FEATURES

Currently assertions can only be a single logical statement. This

is very restrictive. Consider the following assertion:

IF ABS(HEADING-ERROR«TAS) > 0.024 THEN ABS(LAT_LIM_CMD) = 0 . 5

Using the current format the above assertion would be written as

ASSERT ((ABS(HEADING-ERROR«TAS) > 0.024) AND (ABS(LAT_LIM_CMD)=0.5)) OR

(ABS(HEADING-ERROR*TAS) < 0.024)

This restriction makes it difficult to write and understand

assertions. Usually assertions require extra code to be inserted. It

must be possible to write assertions which consist of procedures,
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functions, and a sequence of statements. The presence of the following

features in programming languages greatly facilitate the use of

executable assertions:

(1) Provisions to conditionally execute an assertion, that is the

assertion is only executed if a certain condition holds.

(2) Being able to use functions, procedures, or sequence of

statements in assertions.

(3) Being able to refer to previous values of variables.

(4) Provisions for specifying the range (max., min.) of variables.

(5) Being able to check the initial and final value of variables.

(6) Provisions for conditionally compiling assertions.

The use of executable assertions has been supported in the past by

either developing new languages like EUCLID [Popek 77] or by using a

preprocessor for recognizing the assertions and converting them into

compiler recognizable code [Stucki 75]. Many languages have been

extended to support the use of executable assertions. Some of the above

mentioned features have been included in these languages. [Chow 76] and

[Taylor 80] discuss in detail some of the features needed to facilitate

the use of executable assertions. [Krieg-Bruckner 80] [Luckham 84]

describe the extension of ADA to support specifications and assertions.

Their ANNA (Annotated ADA) is the most recent language which supports

assertions. It contains many of the above mentioned features, which

make the use of assertions very easy.
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Executable assertions can be used for detecting errors throughout

the lifecycle of software. They can be written using the information

provided in the specifications. Sometimes the writing of assertions is

not easy, but it can help increase the reliability of software. The use

of assertions forces programmers to explicitly write their assumptions

and goals, thereby not only providing good documentation but also

increasing their own understanding of the problem. Techniques for

writing and using assertions to test flight software were presented.

Language features to support efficient use-of assertions were also

discussed. Many examples of assertions that check the inverse

relationships, range of variables, rate of change of variables, and time

spent by variables in different states were given. The experimental

setup for testing flight software was described. Preliminary

experimental results show that assertions can detect more than 66 % of

the errors. The error coverage can be increased to more than 87 % by

using a different set of assertions for different flight modes. This

also reduces the complexity of individual assertions. In order to get

high error coverage it is important to place assertions intelligently.

Instead of using a few complex assertions many simple assertions must be

used. It must be pointed out that the use of assertions by itself does

not solve the problem of test data generation. It provides the means

for checking the output, once appropriate inputs are applied. However,
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the use of excutable assertions combined with other testing techniques

results in a very good and efficient testing methodology.
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