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ABSTRACT

A lateral guidance algorithm which controls the location of the li n e
of intersection between the actual and desired orbital planes (the hinge
line) is developed for the aerobraking phase of a lift-modulated orbital
transfer vehicle. The on-board targeting algorithm associated with this
lateral guidance algorithm is simple and concise which is very desirea-
ble since computation time and space are limited on an on-board f l i g h t
computer. A variational equation which describes the movement of the
hinge line is derived. Simple relationships between the plane error,
the desired hinge line position, the position 6ut-of-plane error, and
the velocity out-of-plane error are found. A computer simulation is
developed to test the lateral guidance algorithm for a variety of oper-
ating conditions. The algorithm does reduce the total burn magnitude
needed to achieve the desired orbit by allowing the plane correction and
perigee-raising burn to be combined in a single manuever. The algorithm
performs well under vacuum perigee dispersions, pot-hole density dis-
turbances, and thick atmospheres. The results for many different oper-
ating conditions are presented.
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CHAPTER 1

INTRODUCTION

1.1 Background

Orbital transfer vehicles (OTV's) have been the focus of consider-

able research efforts in recent years. The main mission of the OTV is

to carry pay loads between low Earth orbit (LEO) and geosynchronous orbit

(GEO). The velocity decrement necessary in transferring from GEO to LEO

can either be done all propulsively or assisted by using aerobraking.

Aerobraking is a maneuver in which the OTV enters the Earth's upper

atmosphere and uses the aerodynamic forces generated to reduce its

velocity and control its trajectory before returning to LEO. Even

though the OTV s t i l l needs to use propulsive maneuvers to attain the

desired circular orbit when using aerobraking, a major portion of the

necessary velocity decrement (roughly 8000 ft/sec) is attained with no

expenditure of fuel if the OTV uses aerobraking. This fuel savings cre-

ates more payload space on the OTV and increases the payload weight

which the OTV can carry. This increase in payload capacity and the
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reduction in fuel requirements makes an OTV which uses aerobraking more

desirable than one which just uses propulsive maneuvers.

Drag modulation and l i f t modulation are the two basic approaches in

designing an aerobraking OTV. A drag-modulated OTV only uses drag to

control its trajectory and requires that the lift forces generated are

small. The drag is modulated by changing the OTV drag coefficient (CD)

and cross sectional area (A) by inflating and deflating a balloon-like

bag, called a ballute, attached to the vehicle [1,2]. The advantage of

this approach is that the vehicle's structural design can be more sym-

metric and no attitude control is needed; however, the actual control of

the ballute's shape in the upper atmosphere is not a t r i v i a l problem.

Unfortunately, drag modulation does not provide a way to adjust the

orbital plane since the components of the velocity and position vectors

normal to the desired orbital plane (ie. out-of-plane errors) can not be

controlled.

The OTV considered in this thesis flies with a constant angle of

attack and a near constant L/D and is aerodynamical ly similar to the

Apollo command module. The OTV trajectory is controlled by modulating

the l i f t direction with roll adjustments to regulate the l i f t component

in the current orbital plane (ie. in-plane). The roll angle is varied

by using the OTV roll jets while in the atmosphere. The presence of

l i f t forces not only allows control of the trajectory, depth of pene-
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tration into the atmosphere, and hence the velocity decrement, but also

enables the vehicle to control its velocity and position out-of-plane

errors. Therefore, the lift-modulated OTV can adjust its orbital plane

unlike the drag-modulated OTV. This -is a very important capability

since the velocity increment needed to correct just a one degree plane

error for a 150 nautical m i l e circular orbit is 443 ft/sec.

There are many different guidance algorithms for controlling a lift-

modulated OTV during the aerobraking maneuver [3,4,5], In general these

algorithms solve for the required l i f t component in the current orbital

plane (ie. in-plane) and the roll angle needed to achieve it. There-

fore, there w i l l be some li f t component normal to the current orbital

prane (ie. out-of-plane) remaining which w i l l change the orb i tal «• plane

of the OTV generating a plane error. Another common characteristic of

these algorithms is that only the magnitude of the roll angle is speci-

fied and not its sign. This extra degree of freedom can be exploited by

developing an appropriate lateral guidance algorithm. The purpose of

this lateral guidance algorithm would be to minimize the velocity incre-

ments normal to the current orbital plane needed to place the OTV in its

target orbit. Particularly, the large velocity increment needed to cor-

rect plane errors can be greatly reduced by using a lateral guidance

algorithm which controls the orientation of the OTV orbital plane.
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1.2 Motivation

The OTV considered in this thesis controls its trajectory by regu-

lating the in-plane l i f t component. The magnitude of the in-plane l i f t

component is adjusted by directing a portion of the l i f t vector out-of-

plane. Plane errors are inevitable when out-of-plane l i f t forces are

present, because the out-of-plane l i f t forces w i l l change the orbital

plane of the OTV. Since plane errors can only be corrected when the OTV

is at the line of intersection between the desired and actual orbital

planes, the plane error can not be nulled during the aerobraking maneu-

ver. The plane error must be corrected impulsively at a high cost when

the OTV leaves the atmosphere and is at the line of intersection between

the desired and actual orbital planes. Therefore, designing a lateral

guidance algorithm which reduces the velocity increment needed to cor-

rect the plane error is desireable.

There are several different approaches in designing a lateral guid-

ance algorithm which w i l l reduce the velocity increments needed to cor-

rect plane errors. One obvious approach is to develop an algorithm

which controls the size of the plane error. The plane error consists of

errors in both the inclination and ascending node. A lateral guidance

algorithm which controls the plane error is described in reference [6];

this algorithm uses roll reversals to minimize the plane error by

attempting to zero the velocity out-of-plane error (ie. the velocity

13



component normal to the desired plane). The plane error, however, can

not realistically be zeroed, since the number of roll reversals allowed

is limited. This limitation is due to roll jet fuel consumption and

structural dynamics considerations. Also, l i m i t i n g the number of roll

reversals performed is desireable, since roll reversals require the in-

plane lift component to differ from the commanded in-plane value tempo-

rarily which might generate undesircable transients.

Further insight in developing a lateral guidance algorithm can be

gained by examining the orbital mechanics of the post-aerobraking maneu-

vers. The OTV performs a deorbit burn at GEO which puts it in an e l l i p -

tical transfer orbit with an apogee altitude of 19,323 nautical miles

and a vacuum perigee altitude of 41 nautical miles. The aerobraking

guidance law is designed to reduce the apogee altitude to 150 nautical

miles by the time the OTV exits the atmosphere. However, atmospheric

density disturbances, guidance errors, and navigation errors w i l l make

the actual apogee altitude slightly different from the desired value of

150 nautical miles. Once the OTV leaves the atmosphere, its velocity

must be adjusted in order to attain the desired target orbit. The

required changes in velocity are referred to as burns. The post-aerob-

raki ng maneuvers consist of three separate burns. The perigee-raising

burn is made at apogee and raises the perigee to the desired circular

altitude. The circularization trim burn is made at perigee and circu-

larizes the orbit. The ci rcularization trim burn is needed to correct
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for the difference between the actual post-aerobraking apogee altitude

and the desired value. The plane correction trim burn is performed at

the line of intersection between the target and actual orbital planes,

known as the hinge line, and corrects the plane error. The total burn

magnitude is the sum of these three burns. The perigee-raising burn

accounts for a large majority of the total burn magnitude while the two

trim burns only make up a small fraction of the total burn magnitude.

The velocity increment needed to correct the plane change can be

reduced further by correcting some of the plane error with the perigee-

raising burn. A plane change can be made with a very small increase in

the burn magnitude simply by placing a portion of the perigee-raising

burn vector out-of-plane (ie. normal to the current orbital plane).

Combining a plane change burn with another type of burn is called a dog-

leg maneuver. A dog-leg maneuver places the perigee-raising burn vector

out-of-plane and makes an in-plane and out-of-plane orbital correction

with just one burn. By performing a dog-leg maneuver, small plane

errors can be corrected at l i t t l e cost. A maximum velocity increment

saving of 39.2 ft/sec can be achieved by using a dog-leg maneuver to

correct a 0.1 degree plane error when circularizing at apogee from an

i n i t i a l e l l i p t i c a l orbit with an apogee altitude of 150 nautical miles

and a perigee altitude of 45 nautical miles. Unfortunately, this maxi-

mum saving is only possible when the hinge line and the apsidal line

(the line connecting perigee and apogee) coincide. When the apsidal
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line is 90 degrees away from the hinge line, a dog-leg maneuver is not

possible and the plane error must be corrected entirely with the trim

burn.

The on-board targeting algorithm which finds the minimum total burn

magnitude is extremely complicated when only the plane error magnitude

is controlled by the lateral guidance algorithm. Only part of the plane

error can be corrected by a dog-leg maneuver since the apsidal line and

the hinge line w i l l not necessarily coincide. The amount of plane error

to be corrected by the dog-leg maneuver depends on the angle between the

hinge li n e and apsidal line. The proportion of the plane error cor-

rected by a dog-leg maneuver increases as the angle between the hinge

line and apsidal line decreases. An analytical method for determining

the portion of the plane error to correct on the dog-leg maneuver which

w i l l minimize the sum of the burn magnitudes is extremely difficult to

develop if it exists at a l l . Therefore, an iteration process is used to

determine the plane change made by the dog-leg maneuver which produces

the minimum total burn magnitude. This iteration process is computa-

tionally slow and not very efficient in the on-board flight computer.

Significant fuel savings can be attained if the burn magnitude

required to correct plane errors can be reduced. The goal of this the-

sis is to develop a lateral guidance algorithm for aerobraking which

controls the size of the plane error and then the location of the hinge

16



line. This approach in designing a lateral guidance algorithm is advan-

tageous, because it not only reduces the required velocity increments

but also simplifies the on-board targeting algorithm. If the hinge l i n e

and the apsidal line are assumed to coincide in designing the on-board

targeting algorithm, a complex iteration process is no longer needed and

the plane error .can be corrected completely with the dog-leg maneuver.

Any residual plane errors which occur due to errors in this assumption

can be corrected with a small trim burn. This simple and concise burn

sequence algorithm is desirable since it w i l l be computationally fast in

the OTV on-board f l i g h t computer.

17



1 .3 Thesi s Qutli ne

Chapter 2 provides background information necessary to develop the

lateral guidance algorithm. Equations are derived which explain the

behavior of the hinge line. Relationships are found between the plane

error, the velocity and position out-of-plane errors, and the location

of the hinge line. The calculation and selection of the guidance con-

trol parameters are discussed. The aerobraking guidance law used when

testing this lateral guidance algorithm is presented. F i n a l l y , the

post-aerobraking burn sequence algorithm is explained.

Chapter 3 contains the complete description of the lateral guidance

algorithm development. An overview of the different segments of the

algorithm is given. Then the development of each segment is examined in

detai1.

Chapter 4 analyzes and presents the test results from the computer

simulations performed on the algorithm. The computer programs used in

the simulation are presented. The reference trajectories flown by the

OTV are described. The testing methodology and the performance criteria

are discussed. F i n a l l y , the results of the numerous tests are given.

18



Chapter 5 summarizes the conclusions drawn from this thesis and

recommends areas of continued research to improve this lateral guidance

algorithm.

Appendix A contains the computer source code for the lateral guid-

ance algorithm and the other programs used in the simulation.

19



CHAPTER 2

FUNDAMENTALS OF THE LATERAL GUIDANCE LOGIC

2.1 Derivation Of The Hinge Line Rate Equation

A fundamental understanding of the variational behavior of the hinge

line is required to design an efficient lateral guidance algorithm. By

knowing the physical processes involved, the lateral guidance control

parameters can be easily selected. The location of the hinge line is a

function of the orbital elements. Under normal circumstances, when the

vehicle is a point mass operating only under the gravitational influence

of a spherical body in a two-body system, the orbital elements and the

location of the hinge line are constant. However, if the vehicle is

subjected to disturbing accelerations, the orbital elements and the

location of the hinge line w i l l no longer be constant. Disturbing

accelerations are caused by the non-spherical shape of the Earth, the

gravitational forces of other bodies outside the two-body system, aero-

dynamic forces, and other non-gravitational forces. An equation which

describes the behavior of the hinge line when the OTV experiences dis-
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turbing accelerations is derived using orbital mechanics and the vari-

ation of parameters techniques developed in reference [7].

Figure 2.1 shows the coordinate systems and the associated Euler

angles used to describe the location of the hinge line. Three rectangu-

lar coordinate systems are used to facilitate the derivation of the

hinge line variational equation. The hinge li n e coordinate system is

defined by unit vectors in the direction of the hinge l i n e (j_n) and the

angular momentum vector (_Lh) of the current orbit, while the direction

of the third unit vector (ij is chosen to complete the right-handed

coordinate system. The apsidal line coordinate system is defined by

unit vectors along the apsidal l i n e (_Le) and the angular momentum vector

(ih) of the actual orbit, while the third unit vector (î) is chosen to

complete the right-handed coordinate system. Both the apsidal line and

hinge l i n e coordinate systems are allowed to rotate relative to inertial

space, and, therefore, the direction of their unit vectors can vary with

time. F i n a l l y , a reference coordinate system which is fixed in inertial

space is defined by three unit vectors associated with the reference

plane. The first unit vector (ix) lies along the line of intersection

between the reference plane and the equatorial plane and points towards

the ascending node. The second unit vector (iz) is perpendicular to the

reference orbit and is positive in the north direction. The third unit

vector (iy) completes the right-handed coordinate system and is in the

plane of the reference orbit.

21
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Figure 2.1

Reference Geometry For Hinge Line
Coordinate System
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The equations which relate the unit vectors of the different coordi-

nate systems are given in reference [7] as:

in = cos * ix + sin * iy . (2.1)

1^ = -sin 41 cos 8 ix + cos 5 iy + sin ~8 j^ (2.2)

ih= s i n * s i n 5 i x - cos * sin 8 i + cos 8 j^ (2.3)

where the plane error (&) is the angle between the reference and actual

orbital planes, p is the angle between the hinge line and the apsidal

line, and the longitude of the hinge line W is the angle between the

hinge l i n e and the reference direction ix. The angle 3 is defined to be

positive if the apsidal line is south of the reference plane and nega-

tive if the apsidal line is north of the reference plane. These three

angles 5, (3, and 41 are the Euler angles and may be considered as orbital

elements. ..

A variational equation for the longitude of the hinge line (40 w i l l

describe how the location of the hinge l i n e varies in response to dis-

turbing accelerations. From reference [7], the following rule for

deriving variational equations for orbital elements is given:

Apply the usual rules of differentiation to any two-body indentity.
Treat the radius vector (rJ as a constant, the orbital
elements as variables, and replace the time rate of change of the
velocity vector (yj by the disturbing acceleration
vector (ad) .

 7
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The angular momentum vector (hj is a good indication of the location

of the hinge line since it is always perpendicular to the orbital plane.

A variational equation for the longitude of the hinge line w i l l be

developed from the variational equation of the angular momentum vector

(hj . In inertial reference coordinates, the current angular momentum

vector is expressed as:

h = h [ s i n 4 ' s i n 5 i x - cos * sin 5 j. + cos 5 i2] (2.4)

where h is the magnitude of the angular momentum vector. Applying the

differentiation rule stated above to equation 2.4, one obtains:

dh/dt = (sin * sin 8 ix - cos * sin 8 i + cos 8 iz)dh/dt

+ (cos * i + sin * i ) sin 8 d4>/dtA y

+ (sin «li cos 8 ix - cos * cos 8 iy - sin 8 iz)d8/dt (2.5)

or, by substituting equations 2.1, 2.2, and 2.3 into equation 2.5:

dh/dt = sin 8 d<l»/dt j_n - d8/dt !„, + dh/dt ih (2.6)

An equation for the variation of ^ is found by taking the scalar product

of equation 2.6 with j_n and by rearranging terms:

d>P/dt = [1/h sin 8] dh/dt . in (2.7)

In order to replace the scalar product in equation 2.7 with a more

convenient and meaningful term, another variational equation must be

24



derived for the angular momentum vector. The definition of the angular

momentum vector is:

ll= £ x y (2.8)

where £ is the radius vector and y. is the velocity vector. Applying the

differentiation rule to equation 2.8, one obtains:

dH/dt = £ x ad (2.9)

where ad is the disturbing acceleration vector. Substituting equation

2.9 into 2.7,

d*/dt = (£ x ad • in)/(h sin 5) (2.10)

but,

£ x ad • in = ̂  X £ . fld (2.11)

and,

. in x £d = r sin T, ih (2.12)

where TI is the angle from the hinge line to the current radius vector.

Replacing T\ with a term involving 3 is desirable since the ultimate goal

of the guidance algorithm is to drive 0 to zero (ie. make the hinge line

and the apsidal li n e coincide). As seen in Figure 2.2, a simple

relationship between (3 and r\ is:

T, = v - p (2.13)

where the true anomaly (v) is the angle between the apsidal line (ig)

and the radius vector CrJ . The minus sign in equation 2.13 is due to

the sign convention for p. Substituting equations 2.11, 2.12, and "2.13

into equation 2.7:

d*/dt = (1/h sin 6) [r sin (v - p) ] j_h . a.d (2.14)
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actual orbital plane

hinge line

radius vector

apsidal line

Figure 2.2

Reference Geometry For The Definition of Eta
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The scalar product in equation 2.14 represents the component of the

disturbing acceleration vector normal to the current orbital plane. For

the aerobraking maneuver:

ih • ad " LIFTM sin <i> (2.15)

where LIFTM is the magnitude of the l i f t acceleration and <J> is the roll

angle which measures the rotation of the l i f t vector about the relative

velocity vector. The l i f t vector is straight up and in the current

orbital plane when the roll angle is 0.0 degrees and is normal to the

current orbital plane when the roll angle is 90 degrees. By substitut-

ing equation 2.15 into equation 2.14, one obtains:

d«l>/dt = [r sin (v - p) ] LIFTM sin <J>/(h sin 6) (2.16)

Equation 2.16 shows the physical forces and variables which effect

the movement of the hinge line when the OTV is experiencing aerodynamic

forces. Only the l i f t forces normal to the current orbital plane (ie.

out-of-plane) can cause the hinge l i n e to vary position, and the

location of the hinge l i n e can be controlled just by changing the sign

of the roll angle. Therefore, a lateral guidance algorithm can be

designed to control the location of the hinge line, but with the con-

straint that 3 does not equal the true anomoly (ie. the hinge line and

27



the radius vector do not coincide). If 3 should equal the true anomoly,

then the right-hand side of equation 2.16 would equal zero and the

location of the hinge line could no longer be changed.

28



2.2 Plane Error Relations

Parameters which describe the velocity and position out-of-plane

errors (ie. the components of the velocity and position vectors normal

to the desired orbital plane) are developed in reference [6] as:

VY = iz . y (2.17)

RY = iz . £ . (2.18)

where RY and VY are the components of the radius and velocity vectors

normal to the desired orbital plane respectively. RY and VY depend on

the current position and velocity which make them poor indicators of the

degree of the out-of-plane errors.

More meaningful indicators of the out-of-plane errors are obtained

in reference [6] by defining the following angles:

eR = RY/R (2.19)

ev = VY/V (2.20)

where R is the magnitude of the radius vector and V is the magnitude of

the velocity vector. 6R and 6V represent the angle between the desired
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orbital plane and the radius vector and that plane and the velocity vec-

tor, respectively.

As discussed previously, the goal of the lateral guidance algorithm

is to make the hinge line and apsidal line coincide (drive 3 to zero).

The right spherical triangle which results from this orbital geometry is

shown in Figure 2.3 as viewed from the side. The curent OTV angular

position from the hinge 1ine is now the true anomaly (v) , since the

hinge li n e goes through perigee. One side of the spherical triangle

represents the actual orbital plane and its length is the value of the

true anomaly. The other side of the spherical triangle represents the

desired orbital plane, and the angle between this side and the side

representing the actual orbital plane is the plane error (8). F i n a l l y ,

the third side is a great circle which is perpendicular to the desired

orbital plane and connects that plane to the current OTV position. The

length of this side is ©R and the angle it forms with the side repres-

enting the actual orbital plane is related to 0V as shown in Figure 2.3.

The dashed l i n e in Figure 2.3 represents a great circle which passes

through the current OTV position and is parallel to the desired orbital

plane. The angle between this great circle and the actual orbital plane

is 0V since the velocity vector is tangent to the actual orbit.
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actual orbital

desired orbital plane

Figure 2.3

Desired Orbital Geometry When The Hinge Line
And Apsidal Line Coincide
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A relationship between the plane error and 0V and 0R is obtained by

using the spherical trigonometric relations developed in reference [8]:

cos (8) = sin (90° - 0V) cos6R (2.21)

but,

sin (90° - 0V) = cosev (2.23)

solving for 6V,

0V = arccos [cos6/coseR] (2.24)

Equation 2.4 shows that when 6R is very small,, the plane error is

approximately equal to Gv. In the l i m i t as OR approaches zero, the

plane error is equal to Gv. The relation between the plane error, Gv,

and 6R expressed in equation 2.24 does not depend on the apsidal l i n e

and the hinge line coinciding (3 being zero).

In reference [6], the desired value of 6V was zero in order to m i n i -

mize the plane error. However, the desired value for 6V is different

from zero for 0 to equal zero. Figure 2.3 shows that for a given 6R,

the desired plane error is given as:

6desired ~ arcsin Cs'n ©p/sin v] (2.25)

The desired value of 0V is now:

©V desired = arccos tcos 8desired/cos QJ <2-26)

In the v i c i n i t y of perigee, equations 2.25 and 2.26 are ill-defined;

therefore, a lateral guidance algorithm based on these equations can
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only be used if the vehicle is not near perigee. As in reference [6], a

lateral control logic based on a phase plane design could be developed.

When the magnitude of 6V differs from 0V des1red by a fixed l i m i t , a roll

reversal would be commanded. The determination of this fixed l i m i t pre-

sents a major problem, because there is no exact relationship between 3

and the difference between 6V and 6V des1red-
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2.3 Selection And Calculation Of The Control Parameters

A lateral guidance algorithm which causes the hinge line and apsidal

line to coincide can either be based on the angle between the hinge line

and apsidal. l i n e (3) or on 0V. The magnitude of 3 is an important con-

trol parameter, since it determines the performance of the on-board tar-

geting algorithm (see section 2.5). The angle 3 wi 1 1 therefore, be the

basis for the lateral guidance algorithm developed in this thesis as

opposed to 8V, which was the basis of the algorithm developed in refer-

ence [6]. This approach to designing an algorithm is desirable since 3

can not be directly adjusted when controlling 0y.

The position of the apsidal line as well as the position of the

hinge line varies during the aerobraking maneuver. Unfortunately, the

variation of the apsidal line makes the magnitude of 3 an ambiguous

indicator of how the hinge line is moving with respect to the apsidal

line. When the rate of change of the apsidal l i n e is greater than the

rate of change of the hinge line, the magnitude of 3 w i l l be increasing

even though the hinge line is moving towards the apsidal line. This

situation could cause an undesireable roll reversal command since the

lateral guidance algorithm is unaware of the direction the hinge li n e is

moving. To avoid this situation, another control parameter is needed

which relates the position of the hinge line to some other reference

di rection.
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The argument of perigee (u>) , which is an orbital element, represents

the angle between the apsidal li n e and the intersection between the

actual orbital plane and the equatorial plane (the line of nodes). A

si m i l a r parameter for the hinge line is obtained by defining a to be

the angle between the hinge line and the lin e of nodes. Furthermore,

the value of a is restricted to lie between 90 degrees and -90 degrees.

The angle a is used by the lateral guidance algorithm to measure how the

hinge line is moving with respect to the apsidal line. A simple

relationship between a, 3, and the argument of perigee is:

3 - « - u. (2.27)

as shown in Figure 2.4.

Another important control parameter for the lateral guidance algo-

rithm is the true anomaly (v) which is also an orbital element. The

a b i l i t y to control the position of the hinge li n e is severely limited if

3 and the true anomaly are approximately equal, as discussed in section

2.1. Consequently, one goal of the lateral guidance algorithm is to

prevent the hinge line from entering inside a certain region around the

current OTV position.

The four control parameters (a, 3, the true anomaly, and the argu-

ment of perigee) needed by the lateral guidance algorithm can be easily

obtained when measurements of the position vector and the velocity vec-

tor are available. All the orbital elements can be determined from the
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Geometric Definition of Alpha
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position and velocity vectors. The hinge line vector is formed by tak-

ing the vector product of the actual angular momentum vector and the

angular momentum vector of the desired orbital plane. F i n a l l y , 0 is

found by using equation 2.27.

A subroutine has been written which calculates the orbital elements

and the control parameters from position vector and velocity vector mea-

surements. The source code for this subroutine, called ORBITS4A, is

given in Appendix A.
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2.4 TJie Aerobraking Guidance Law

The lateral guidance algorithm developed in this thesis is compat-

ible with any aerobraking guidance law that does not specify the sign of

the roll angle command. The aerobraking guidance law used to evaluate

the performance of the lateral guidance algorithm is essentially the one

developed in references [3,4,and 9]. The guidance output is the in-

plane.value of the l i f t to drag ratio (L/D) needed to achieve the

required drag acceleration and altitude rate. The commanded in-plane

L/D is obtained by modulating the direction of the l i f t vector. The

guidance is divided into three phases: a constant attitude phase, a

down control phase, and an up control phase.

The constant attitude phase and the down control phase are described

in references [4 and 9]. The constant altitude phase keeps the direc-
i

tion of the l i f t vector constant (ie. constant roll angle) until the

total acceleration due to the aerodynamic forces exceeds 0.05 g's, when

the down control phase begins. The constant roll angle chosen for the

evaluation of the lateral guidance algorithm is 90 degrees, since a l i f t

vector which is completely out-of-plane generates the biggest possible

i n i t i a l plane error. A large i n i t i a l plane error is desired to evaluate

the performance of the lateral guidance algorithm under the worst possi-

ble operating conditions.
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The down control phase modulates the l i f t vector to achieve a pene-

trating trajectory with a constant altitude rate. This type of trajec-

tory is called an equilibrium glide trajectory. Associated with the

equilibrium glide trajectory is a reference L/D, a reference drag accel-

eration profile, and a reference altitude rate profile. Once the equi-

librium glide trajectory is achieved, the guidance effectively controls

to a reference drag acceleration profile.

The commanded in-plane L/D required to attain the equilibrium glide

condition is equal to the reference L/D plus correction terms based on

the drag acceleration error and the altitude rate error. The drag

acceleration error is the difference between the actual drag acceler-

ation measured by the accelerometers and the calculated reference drag

acceleration. A derived altitude rate calculated from the drag acceler-

ation measurements is defined in reference [9], since measurements of

the OTV current altitude are assumed to be unavailable in reference [9].

The altitude rate error used in reference [9] is then the difference

between the derived altitude rate and the reference altitude rate.

Unfortunately, the equation for the derived altitude rate is highly

inaccurate in the presence of short term density disturbance (reference

10) which results in poor performance of the aerobraking guidance law.

Therefore, for the performance evaluation of the lateral guidance algo-

rithm, altitude rate measurements are assumed to be available from navi-
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gation and the altitude rate error is now the difference between the

actual altitude rate and the reference altitude rate.

The down control phase ends and the up control phase starts when the

OTV velocity is within 5500 ft/sec of the desired exit velocity. The up

control phase modulates the direction of the l i f t vector to achieve an

exit trajectory which maintains a reference constant altitude rate (see

reference 3). The reference constant altitude rate required to achieve

the desired exit velocity is calculated from the present drag acceler-

ation at every guidance cycle. A reference in-plane L/D needed to have

a constant altitude rate is also calculated every guidance cycle. The

up control phase controls to the reference in-plane L/D with feedback on

the altitude rate error. The altitude rate error is the difference

between the actual altitude rate and the reference constant altitude

rate.

The down control phase and the up control phase are both sensitive

to drag acceleration measurements. The commanded in-plane L/D for the

down control phase and the reference constant altitude rate for the up

control phase both depend on drag acceleration measurements. The

dependency on drag acceleration measurements causes poor performance in

the presence of short term density disturbances (see reference 10).

Therefore, the aerobraking guidance logic is modified to include a low

40



pass filter oh the drag acceleration measurements which improves the

performance of the up control phase and the down control phase.

The aerobraking guidance law of references [3,4, and 9] is chosen to

evaluate the performance of the lateral guidance algorithm, because the

most severe possible conditions for controlling the position of the

hinge l i n e are provided. The position of the hinge line is only

effected by the l i f t acceleration component normal to the current

orbital plane (ie. out-of-plane), see equation 2.16, but a common char-

acteristic of the up control phase is that the l i f t vector has a small

out-of-plane component. Therefore, the control authority available to

move the hinge line is extremely limited during the up control phase.
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2.5 The Effects Of p On The Qn-Board Targeting Algorithm

The desired orbit for the OTV can not be exactly obtained with the

aerobraking maneuver due to atmospheric density disturbances, navigation

errors, uncertainties in the OTV's aerodynamics, and other guidance

errors. The OTV must perform propulsive thrust maneuvers after leaving

the atmosphere to achieve the desired orbit. The guidance logic which

determines how to perform the propulsive thrust maneuvers is called the

on-board targeting algorithm.

Significant reductions in the burn requirements and a simplification

of the on-board targeting algorithm are obtained when (3 equals 2ero as

discussed in Section 1.2. An on-board targeting algorithm' is developed

based on the assumption that 3 equals zero. The desired orbit is

.obtained with three separate burns: a relatively large perigee-raising

burn, a circular ization trim burn, and a plane correction trim burn.

The burn sequence.algorithm attempts to correct the total plane error by

performing a dog-leg maneuver on the perigee-raising burn. However, p

can not realistically be controlled to zero because of the constraints

on the lateral guidance algorithm. Any residual plane error caused by

assuming 3 to be zero is corrected with a trim burn. The total burn

magnitude needed to achieve the desired orbit is denoted by AVapprox.
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For comparison purposes, the mi mi mum burn magnitude UVQpt) to

achieve the desired orbit is calculated. The minimum burn magnitude is

obtained by only correcting a portion of the plane error with a dog-leg

maneuver and correcting the remaining plane error with a plane cor-_

rection trim burn. An iteration process is used to find the portion of

the plane error correction to make with the dog-leg maneuver (see Sec-
r

tion 1.2).

The lateral guidance algorithm is designed to keep 3 w i t h i n a cer-

tain range. This range is selected to produce the most satisfactory

performance of the burn sequence algorithm while l i m i t i n g the number of

commanded roll reversals. The amount of the plane error which can be

corrected with a dog-leg maneuver varies with the magnitude of 3. The

burn sequence algorithm's performance for different values of 3 is given

in Table 2.1. The magnitude of 3 must be less than 2 degrees to correct

at least 95% of the plane error with a dog-leg maneuver. The portion of

the plane error which can be corrected with a dog-leg maneuver decreases

as the magnitude of 3 increases. The difference between AVgpprox and

:Wopt is insignificant for the range of plane errors encountered until 3

exceeds 60 degrees. Therefore, the performance of the on-board target-

ing algorithm is not severely degraded by assuming 3 to be zero.

A subroutine called GCH.BURNS4A has been wriiten by Tom F i l l of the

Charles Stark Draper Laboratory which calculates the required burn mag-
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ni tildes needed to achieve the desired orbit. This subroutine has been

modified to calculate also A approx '

Table 2.1
On—board Targeting Algorithm Performance For Different Values Of

p
(deg's)

.043

.694

1 .96

4.99

9.36

20.7

42.8

60.8

92.0

plane error
(deg's)

.025

.025

.061

.055

.058

.069

.049

.026

.048

percentage of
p l a n e error
corrected1

99.9%

98.8%

96.5%

91 .3%

83.6%

64.4%

31 .7%

12.7%

.06%

^Vapprox
(ft/sec)

200.476

198.163

204.435

226.796

213.426

250.580

211 .191

212.413

231 .421

*Vopt
(ft /sec)

200.507

198.173

204.425

226.772

213.334

250.072

209.490

210.522

222.082

1with a dog—leg maneuver on the perigee raising burn.
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CHAPTER 3

LATERAL GUIDANCE ALGORITHM DESIGN

The goal .of the lateral guidance algorithm developed in this thesis is

to minimize 3 by the time the OTV leaves the atmosphere without using an

excessive number of roll reversals. If p is near zero, the solution

provided by the on-board targeting algorithm is close to the optimal

solution and the majority of the plane error is corrected at l i t t l e cost

with a dog-leg maneuver. Section 3.1 gives a general overview of the

lateral guidance algorithm. The remainder of Chapter 3 discusses the

development of the different phases of the lateral guidance algorithm in

detail. A subroutine has been written to implement the lateral guidance

algorithm described in this chapter. The source code for the subrou-

tine, called GCH.GUID8C, is given in Appendix A.
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3.1 Overview Of The Lateral Guidance Algorithm

The lateral guidance algorithm nominally consists of four different

phases unless the desired plane error (&des1red) falls beneath a certain

value. The first and second phases regulate the plane error about zero.

An additional phase is inserted between the second and third phases when

the desired plane error, which is defined in Section 2.2, is less than

0.01 degrees. This additional phase is essentially a modified version

of the second phase. However, instead of trying to null the plane

error, the plane error is driven to &des1red- The third phase prevents

the hinge line and radius vector from coinciding (ie. -n equals zero).

The fourth phase restricts 3 to a range about zero.
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3.2 Plane Error Control

Controlling the size of the plane error is more advantageous than

controlling the hinge line position during the first two phases of the

lateral guidance algorithm. The hinge line position varies rapidly dur-

ing the i n i t i a l stage of the aerobraking maneuver due to the large out-

of-plane l i f t forces and small plane error (see equation 2.16). This

rapid variation of hinge l i n e position makes it impossible to provide

fine control of 3 without commanding roll reversals at short intervals,

which is undesirable. However, the plane error can be easily controlled

with long intervals between roll reversals. The size of the plane error

is important, because the rate of change of the hinge l i n e position is

inversely proportional to the plane error magnitude. Controlling the

plane error early in the trajectory insures the a b i l i t y to control 3

latter in the trajectory. Furthermore, by keeping the plane error

small, the burn magnitude needed to correct the plane error is prevented

from becoming large. Thus, in the first two phases, priority is placed

on n u l l i n g the plane error.

The first two phases are essentially the lateral guidance algorithm

developed in reference [6], The size of the plane error is•control led

by m i n i m i z i n g or zeroing the velocity out-of-plane error (0V) . A phase

plane deadband is defined in which no control action is taken as long as
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6V is within the deadband. A roll reversal is commanded when the value

of 0V exceeds the deadband limits.

The deadband l i m i t s are ±0.5 degrees during the first phase. When

the velocity of the OTV is within 1600 ft/sec of the desired exit veloc-

ity, the second phase begins and the deadbands are reduced to ±0.05

degrees. Finer control is maintained during the second phase, since the

out-of-plane l i f t forces available to correct the plane error have

decreased. If the out-of-plane l i f t forces become too small during the

first phase, the deadband l i m i t s are changed to ±0.25 degrees. This is

necessary to prevent a large plane error from forming during periods of

reduced control authority. For both phases, the deadband l i m i t s are

slig h t l y biased to compensate for the effects of the gravity component

normal to the desired plane. A flag is set to prevent unnecessary roll

reversals when ev is outside the deadband but is moving towards zero.
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3.3 Eta Control

The a b i l i t y to control the hinge line position w i l l be lost if the

size of the plane error is s t i l l being regulated instead of the hinge

line position when the out-of-plane l i f t forces (ie. the l i f t components

normal to the current orbital plane) have fallen beneath a certain

level. The third phase commences when the velocity of the OTV is within

800 ft/sec of the desired exit velocity. This gives the second phase

enough time to reduce the plane error to an acceptable value. Also at

this point, the out-of-plane l i f t forces have decreased to a level where

the plane error is no longer changing rapidly. If 11 is close to zero,

the out-of-plane l i f t forces are s t i l l large enough to move the hinge

line away from the current OTV position, but are too large to restrict

the hinge l i n e to a small region without requiring numerous roll

reversals.

The a b i l i t y to vary the position of the hinge line is severely lim-

ited if the hinge line is near the current OTV position (ie. -n is

small), as discussed in Section 2.1. The magnitude of i\ must not get

too small or the out-of-plane l i f t forces w i l l not be sufficient to

insure that 3 wi 11 be zero when the OTV leaves the atmosphere. On the

other hand, the number of required roll reversals is reduced when the

magnitude of t\ is small, since the rate of change of the hinge li n e
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position is also small. Thus, the goal of the third phase is to keep T\

greater than some predetermined value.

An exclusion zone is defined around the current OTV position. A

flag is set to prevent unnecessary roll reversals when the hinge line is

inside the exclusion zone but is moving away form the current OTV posi-

tion. If the hinge l i n e enters the exclusion zone and the flag is not

set, a roll reversal is commanded. I n i t i a l l y , the magnitude of r\ is

kept above 8 degrees. This value l i m i t s the number of roll reversals

required during the third phase while insuring that the out-of-plane

l i f t forces w i l l be sufficient to move the hinge line away form the cur-

rent OTV position and towards the apsidal line.

The exclusion zone is enlarged when the rate of change of the longi-

tude of the hinge lin e (d'I'/dt) is less than 1.5 degrees/sec. The magni-

tude of i] is now kept above 48° if 3 is greater than the true anomaly

(ie. i is positive) or above 24 degrees if 0 is less than the true anom-

aly (ie. TI is negative). The enlargement of the exclusion zone is need-

ed to keep the distance between the hinge line and the apsidal line from

getting too large when the a b i l i t y to move the hinge line is limited.

The l i m i t s of the exclusion zone are unsymmetric because the relative

distance of the hinge line from the apsidal line depends on the sign of

•q. The apsidal lin e is usually close to the current OTV position during

the third phase. As a consequence, the distance along the path between
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the hinge line and the apsidal line which avoids the exclusion zone is

generally much larger when TI is positive than when TI is negative.

The logic to decide when to perform a roll reversal must be modified

when TI is negative during the latter stages of the third phase. The

apsidal line and the current OTV position are constantly moving apart

during the third phase. This movement eventually invalidates the

assertion made about the relative distance between the hinge l i n e and

the apsidal line based on the sign of T). Another problem is caused by

the rapid movement of the apsidal line away from the current OTV posi-

tion during the latter stages of the third phase. If 3 is negative, the

magnitude of p w i l l decrease due to the movement of the apsidal line.

However, if p is positive, the magnitude of 3 w i l l increase which is

very undesirable. If TI is negative, d<l»/dt is less than 0.3 degrees/sec,

and 8 is greater than 3 degrees, a roll reversal is commanded. This

logic prevents the hinge line from getting too far away from the apsidal

line when the a b i l i t y to move the hinge line is limited and the apsidal

l i n e is rapidly moving away from the hinge line.
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3.4 Beta Control

The magnitude of 3 must be regulated before the out-of-plane l i f t

forces become too small to move the hinge line away from the current OTV

position and reduce 3 to zero. Phase three ends and phase four begins

when the measured out-of-plane l i f t acceleration is less than 0.8

ft/sec2. If phase three remains in control beyond this point, the out-

of-plane l i f t forces w i l l not be large enough to null 3 when 3 is large

(ie. the distance between the apsidal line and the hinge line is large).

When phase four starts, the out-of-plane l i f t forces are s t i l l large

enough to move the hinge li n e away from the current OTV position and

drive 3 to zero regardless of the i n i t i a l size of 3. However, the out-

of-plane l i f t forces have decreased enough by this time to confine the

hinge line within a region about the apsidal line without requiring

numerous roll reversals.

The phase four control strategy is to keep 3 within a phase plane

deadband. A roll reversal is commanded if 3 is outside the deadband. A

flag is set to prohibit unnecessary roll reversals when 3 is outside the

deadband but the hinge line is moving towards the apsidal line. The

deadband l i m i t s depend on the magnitude of the rate of change of the

longitude of the hinge line (d<P/dt) . This quantity was chosen as the

basis for the deadband l i m i t s because it reflects the effects of both

the plane error magnitude and the out-of-plane l i f t forces on the hinge
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line position. When the out-of-plane l i f t forces are small, they are no

longer the dominant influence on the hinge line position. Both the out-

of-plane l i f t forces and the plane error magnitude equally affect the

rate of change of the hinge Vine position (see equation 2.16) during the

fourth phase. Therefore, the selection of the deadband l i m i t s must take

into account the plane error magnitude and the amount of out-of-plane

1 i f t forces.

I n i t i a l l y , the deadband l i m i t s are -20 degrees and 3 degrees. The

deadband l i m i t s are cut in half to -10 degrees and 1.5 degrees when

d<J»/dt is less than 0.3 degrees/sec. Finally, the deadband limits are

further reduced to -2 degrees and 1 degree when d<l</dt is less than 0.15

degrees/sec. The shrinking size of the deadband reflects the desire to

l i m i t the number of roll reversals as much as possible while s t i l l

insuring that 0 w i l l be near zero when the OTV leaves the atmosphere.

The deadband is asymmetric to compensate for the movement of the

apsidal line. During the early stages of the fourth phase, the apsidal

line is moving rapidly away from the current OTV position. The rate of

change of the apsidal l i n e is effected by the in-plane aerodynamic forc-

es as well as the out-of-plane aerodynamic forces. For this reason, the

rate of change of the apsidal line is much greater than the rate of

change of the hinge line. The movement of the apsidal line causes the

magnitude of (3 to decrease when 3 is negative, since the apsidal li n e
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w i l l be moving towards the hinge line. However, the magnitude of 3 rap-

idly increases when (3 is positive because the apsidal line w i l l be mov-

ing away from the hinge line. The upper l i m i t s on 3 must be kept small

to prevent the hinge line from getting too far away from the apsidal

line when the apsidal line is rapidly moving away from the hinge li n e

and the ability to move the hinge line is decreasing. Conversely, the

lower l i m i t s can be larger since the distance between the hinge line and

the apsidal line decreases rapidly due to the movement of the apsidal

line.

There exists a potentially dangerous situation during the fourth

phase. If n is positive and the hinge line is moving towards the apsi-

dal line, a roll reversal w i l l not be commanded. This is extremely

undesirable, because the value of TI w i l l decrease and thus the a b i l i t y

to move the hinge line w i 1 1 dim!nish. The fourth phase must be modified

to prevent this. The value of a was origi n a l l y defined to indicate the

shortest distance between the hinge line and the apsidal line. Unfortu-

nately,the shortest distance goes through the current OTV position under

certain circumstances. The value of a is redefined to avoid this situ-

ation. If TI is positive, the value of a is redefined to be:

a = a - 180° (3.1)
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which puts a in the third quadrant. The redefined value of a represents

the distance between the apsidal line and the hinge line which does not

pass through the current OTV position. This modification causes the

lateral guidance algorithm to command a roll reversal, since the value

of a w i l l now indicate that the hinge line is moving away from the apsi-

dal 1 ine.
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3.5 Small Plane Error Control

Controlling the hinge line position and the size of 3 is no longer

an immediate concern when the desired plane error is less than 0.01

degrees. The burn magnitude needed to correct a plane error of that

magnitude or smaller is insignificant. Also, the number of required

roll reversals w i l l be excessive in order to drive 3 to zero when the

desired plane error is less than 0.01 degrees. A modified version of

the second phase is implemented if the desired plane error is less than

0.01 degrees during the third phase. If the desired plane error is

s t i l l less than 0.01 degrees and d^/dt is greater than 1.5 degrees/sec

during the fourth phase, phase three is selected; otherwise, the fourth

phase remains in control if d^/dt is less than 1.5 degreefs/sec. Howev-

er, if the desired plane error falls below 0.001 degrees, the number of

roll reversals commanded w i l l be excessive even for the eta control

phase logic. As a result, if the desired plane error is less than 0.001

degrees and d^/dt is greater than 0.2 degrees/sec during the fourth

phase, the modified version of the second phase is implemented; other-

wise, the fourth phase remains in control if d'l'/dt is less than 0.2

degrees/sec.

The modified version of the second phase controls the plane error

magnitude by keeping 0V within a certain range of 6V desired (see Section

2.2). A phase plane deadband is defined and no control action is taken
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as long as 6V stays inside the deadband. The deadband l i m i t s are s t i l l

±0.05 degrees but are now biased by the value of 6V desired' A roll

reversal is commanded if Gv exceeds the deadband limits. A flag is set

to prevent unnecessary roll reversals when 6V is outside the deadband

and the difference between 0V and 6V des1red is decreasing.

The measured value of the true anomaly used to calculate Qv desired

is biased by 20 degrees until the actual true anomaly exceeds 40

degrees. This biasing is done to take into account the varying apsidal

line position which is moving further away form the current OTV posi-

tion. The sign on 0V des1red is not determined by equation 2.26. For

convenience, the sign on 0V des1red is chosen to be the same as the cur-

rent sign of ev. When the magnitude of ev desired is less than 0.05

degrees, this sign convention effectively enlarges the deadband. The

enlargement of the deadband is desirable for small Gv desired» because

the number of roll reversals required is reduced without increasing the

difference between 6V and 0V desiped.
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CHAPTER 4

LATERAL GUIDANCE ALGORITHM EVALUATION

4.1 Aerobraking Simulator

A computer simulation was developed to test and evaluate the per-

formance of the lateral guidance algorithm described in Chapter 3. This

computer simulation consists of several subprograms. The four major

subprograms are described below. The computer codes for the subprograms

are presented in Appendix A.

4.1.1 Driver Subprogram

The driver subprogram performs all the input and initialization

operations. The i n i t i a l actual state and the i n i t i a l navigated state of

the OTV are computed based on the inputs provided by the user. The

addition of navigation errors and/or trajectory perturbations to the
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i n i t i a l state of the OTV, aerodynamic properties (ie. b a l l i s t i c coeffi-

cient and l i f t to drag ratio), and the addition of density disturbances

are all performed by this subprogram.

4.1.2 Environment And Navigation Subprogram

The environment and navigation subprograms handle the actual simu-

lation of the OTV f l i g h t trajectory and perform the navigation func-

tions. The environment section computes the actual current state of the

OTV and propagates the actual flight trajectory of the OTV. The nav.iga-

tion section computes the current navigated state of the OTV and propa-

gates the navigated flight trajectory of the OTV. The navigation

section also computes the altitude rate based on the navigated velocity

and fl i g h t path angle. This subprogram executes the guidance and con-

trol subprograms and performs the output operations.

4.1.3 Guidance Subprogram

The guidance subprogram contains the code for the aerobraking guid-

ance law of references [3 and 4] and the lateral guidance algorithm

described in Chapter 3. The inputs to the guidance subprogram are the

navigated velocity, altitude,.altitude rate, and the accelerometer meas-

urements. The l i f t and drag acceleration components used by the guid-

ance subprogram are computed from the accelerometer measurements. The
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output of the guidance subprogram is the magnitude and sign of the com-

manded rol1 angle.

4.1.4 Control Subprogram

The control subprogram executes the maneuver needed to attain the

commanded roll angle. The maximum allowable roll rate and roll acceler-

ation are taken into account by the control.subprogram. As a conse-

quence, the desired roll angle may not be attained immediately.
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4.2 Vehicle Characteristics And Testing Methodology

The aerodynamic characteristics of the OTV are essential in deter-

mining the roll angle history for a particular trajectory. The OTV used

in evaluating the lateral guidance algorithm has a l i f t to drag ratio of

0.3 and a b a l l i s t i c coefficient of 10 lbs/ft2. To simplify the inter-

pretation of the simulation test results, the maximum roll rate and roll

acceleration are assumed to be 1000 degrees/sec and 1000 degrees/sec2

respectively. The unrealistically large values for the roll rate and

the roll acceleration insure that the commanded roll angle w i l l be

achieved immediately.

The aerobraking guidance law used to test the lateral guidance algo-

rithm is designed to control the OTV for a geosynchronous return mis-

sion. In a geosynchronous return mission, the OTV is transferring from

a geosynchronous orbit to a low Earth orbit. Normally, it is desired

that the OTV w i l l rendezvous with the shuttle. Thus, the desired post-

aerobraking target orbit is a circular orbit 150 nautical miles above

the surface of the Earth at an inclination of 28.5 degrees with the

equatorial plane. Furthermore, the longitude of the ascending node for

the desired orbit is 0.0 degrees.

Numerous simulations are made under different operating conditions

to fully evaluate the performance and the advantage of the hinge line
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lateral guidance algorithm described in Chapter 3. The OTV enters the

atmosphere from a geosynchronous orbit with a certain vacuum perigee.

The vacuum perigee is the perigee that the orbit would have if the Earth

had no atmosphere. The density profile which the OTV encounters during

the atmospheric flight is changed by varying the vacuum perigee. This

new density profile generates a new commanded roll angle history.

Another way to generate different density profiles is to run the

vacuum perigee dispersion cases with thick atmospheres. A thick atmos-

phere means that the nominal density (as obtained from the standard U.S.

1962 Atmosphere Model) is increased by a constant factor. The thick

atmosphere not only generates a new commanded roll angle history, but

also increases the aerodynamic forces generated during the aerobraking

maneuver. The greater aerodynamic forces increase the rate of change of

the plane error magnitude, the apsidal line position, and the hinge l i n e

posi tion.

The presence of a thick atmosphere stresses both the hinge l i n e lat-

eral guidance algorithm and the plane error lateral guidance algorithm

of reference [6]. The increase in the rate of change of the apsidal

line position provides a difficult test for the hinge line lateral guid-

ance algorithm. This algorithm is trying to drive the hinge line to the

current apsidal line position which is now moving over a larger distance

and at a faster rate. The thick atmosphere also degrades the perform-
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ance of the plane error lateral guidance algorithm which just controls

the plane error magnitude. The plane error magnitude increases more

rapidly in a thick atmosphere because the out-of-plane l i f t forces gen-

erated are larger than those generated in the nominal atmosphere. Thus,

more roll reversals are required to keep the plane error magnitude with-

in the deadband and the final plane error is more likely to have a larg-

er magnitude in a thick atmosphere than in the nominal atmosphere.

Another density variation which might affect the performance of the

lateral guidance algorithm is the pot-hole density disturbance. A pot-

hole density disturbance is a sudden decrease in the actual density from

the nominal density over a short period of time (see Figure 4.1). The

length and time of occurrence of the pot-hole are based on the OTV

velocity. The nominal density is decreased by a constant factor (RHOBI-

AS) when the OTV velocity is within a certain value (VELBIAS2) of the

desired exit velocity. The nominal density is used again for the

remaining f l i g h t trajectory when the OTV velocity is within a smaller

value (VELBIAS1) of the derived exit velocity. The values of VELBIAS2

and VELBIAS1 are chosen to place the pot-hole towards the end of the

first phase and before the start of the second phase of the lateral gui-

dance algorithm. This placement of the pot-hole increases the i n i t i a l

size of the velocity and position components normal to the desired

orbital plane (ie. out-of-plane errors) at the start of the second

phase.
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Several simulations with pot-hole density disturbances of different

length were made to examine the performance of the lateral guidance

algorithm in the presence of large velocity and position out-of-plane

errors at the start of the second phase. The pot-holes provided the

most severe test for the hinge line lateral guidance algorithm, whereas

they had a negligible effect on the performance of the plane error lat-

eral guidance algorithm. The large velocity and position out-of-plane

errors present at the start of the second phase w i l l eventually be

reduced by the plane error lateral guidance algorithm, since the magni-

tude of the velocity out-of-plane error is being regulated during the

entire flight. However, the hinge line lateral guidance algorithm w i l l

not reduce these errors by the same degree, since the hinge line posi -

tion is being controlled instead of the velocity out-of-plane error.

The large position out-of-plane error produces a large desired plane

error (see equation 2.25). The larger plane error not only reduces the

ability to move the hinge line, but more importantly, increases the burn

magnitude needed to correct the plane error.

Several simulations with pot-hole density disturbances combined with

a thick atmosphere were made to further evaluate the performance of the

lateral guidance algorithm. The thick atmosphere degrades the perform-

ance of the plane error lateral guidance algorithm, as discussed previ-

ously, but improves the performance of the hinge line lateral guidance

algorithm. The out-of-plane l i f t forces available to correct the plane
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error and move the hinge line are increased by the thick atmosphere. As

a result, the velocity and position out-of-plane errors w i l l be smaller

at the start of the eta control phase than in the pot-hole cases for a

nominal atmosphere. This reduces the desired plane error and the final

plane error in the pot-hole cases with a thick atmosphere. The smaller

plane error reduces the burn 'magnitude needed to correct the plane

error.
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4.3 Performance Evaluation

The advantage of controlling the hinge line position instead of the

plane error magnitude is demonstrated by making numerous simulation runs

under various operating conditions. For each operating condition, two

simulation runs are made with each one using a different option for the

lateral guidance algorithm. Under option one, the plane error lateral

guidance algorithm of reference [6] is used. Under option two, the

hinge line lateral guidance algorithm described in Chapter 3 is used.

The performance of the lateral guidance algorithm can be evaluated

by several different parameters. The most useful parameters in deter-

mining whether option two is more advantageous than option one is the

total burn magnitude needed to place the OTV in the desired orbit. The

burn magnitude needed to place the OTV in the desired circular orbit

w i l l be the same for both option one and option two. However, the burn

magnitude needed to correct the plane error w i l l be different for each

option, since each option uses a different approach in mini m i z i n g the

burn magnitude needed to correct the plane error. Option two controls

the location of the hinge line during the latter stages of the flight

trajectory, while option one controls the plane error magnitude through-

out the entire fl i g h t trajectory. As a result, the final plane error

when option two is used could be larger than the final plane error when

option one is used. The increase in the burn magnitude needed to cor-
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rect the larger plane error is offset by the savings made when the hinge

line and apsidal l i n e coincide (ie. 3 equals zero). By comparing the

total burn magnitudes from option one and option two, the advantage of

using option two is shown.

An important performance variable for the hinge lin e lateral guid-

ance algorithm (option two) is the angle between the hinge line and

apsidal line (3). The magnitude of 3 determines the portion of the

plane error which can be corrected by performing a dog-leg maneuver on

the perigee-raising burn. The plane error can be corrected completely

by the dog-leg maneuver when P is zero. The on-board targeting algo-

rithm associated with option two assumes that 0 equals zero and tries to

correct the plane error entirely with a dog-leg maneuver. Any residual

plane error left after performing the dog-leg maneuver is corrected with

the trim burn. The burn magnitude needed to correct a particular plane

error decreases as the magnitude of p decreases. Thus, the total burn

magnitude is minimized when 3 is zero.

The plane error magnitude is an important performance variable for

the plane error lateral guidance algorithm (option one). Option one

tries to minimize the total burn magnitude by keeping the velocity out-

of-plane error within a deadband. The on-board targeting algorithm

associated with option one uses two different methods for determining

the total burn magnitude. The first method solves for the required
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burns without using a dog-leg maneuver. The plane error is corected

completely with the trim burn. The total burn magnitude found using the

first method represents the maximum total burn magnitude needed to

achieve the desired orbit given a .particular set of post-aerobraking

trajectory conditions. The second method uses a dog-leg maneuver to

find the minimum total burn magnitude required to achieve .the desired

orbit. However, the portion of the plane error to correct with the dog-

leg maneuver is not obvious, since option one does not control the hinge

line position. As a consequence, the magnitude of 3 could be of any

size. An iteration process is used to determine the portions of the

plane error to correct with the dog-leg maneuver and the trim burn which

w i l l m inimize the total burn magnitude. As (3 approaches 90 degrees, the

difference between the maximum and the minimum total burn magnitude

approaches zero.

The advantage of option two over option one can be seen by comparing

the total burn magnitudes obtained from each 'option under the same oper-

ating conditions. The difference between the maximum total burn magni-

tude from option one and the total burn magnitude from option two is

denoted by ^Vmax. The difference between the minimum total burn magni-

tude from option one and the total burn magnitude from option two is

denoted by AVmin. Thus, AVmax and AVmin represent the fuel savings or

fuel penalty incurred by using option two instead of option one. When

AVmax and/or AVra1n are positive, the total burn magnitude of option two

69



is smaller than the associated total burn magnitude of option one. When

AVraax and/or AVro1n are negative, the total burn magnitude of option two

is larger than the associated total burn magnitude of option one.

Another important quantity in evaluating the advantage of option two

over option one is the number of commanded roll reversals. It is desir-

able to minimize the number of required roll reversals due to roll jet

fuel consumption and structural considerations. The fuel savings made

by using the hinge line lateral guidance algorithm (option two) could be

negated if the total number of commanded roll reversals is significantly

greater than the number commanded when the plane error lateral . guidance

algorithm (option one) is used.
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4.4 Simulation Test Results

The lateral guidance algorithm is evaluated over a wide variety of

operating conditions as discussed in Section 4.2. The results, from the

simulation runs are presented- in tables in the following subsections.

Figures with plotted data from some of the test runs w i l l be presented

only when they contain some new information.

4.4.1 Perigee Dispers.ion Cases

The hinge line lateral guidance algorithm (option two) has .better

performance than the plane error lateral guidance algorithm (option one)

over a wide range of vacuum perigees. The results of the simulation

runs are presented in Table 4.1. In all the cases, the total burn mag-

nitude of option two was smaller than both total burn magnitudes of

option one.

The difference between AVraax and AVro1n was greater than 10 ft/sec in

only three cases (1, 6, and 10). This large difference was due to the

chance occurrence that the final magnitude of p obtained under option

one was small. The small magnitude of p enabled a large portion of the

plane error to be corrected with a dog/leg maneuver which greatly

reduced the minimum total burn magnitude of option one in these three

cases. Despite this reduction, the total burn magnitude of option two
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was s t i l l smaller than the minimum total burn magnitude of option one,

since the final 0 of option two was smaller than the final 0 of option

one. The smaller magnitude of p allowed a larger portion of the plane

error to be corrected under option two with a dog-leg maneuver than

under option one.

Table 4.1
Simulation Results For The Perigee Dispersion Cases

Case

1

2

3

4

5

6

7

8

9

10

Perigee

(n.m)

44.0

43.0

42.0

41 .0

40.5

40.0

39.2

39.0

38.0

37.0

Option One

P

(degs)

-8.994

57.14

51 .36

42.86

-15.25

10.68

97.37

92.02

65.21

31 .26

Plane
error
(degs)

.0416

.0425

.0370

.0491

.0178

.0638

.0332

.0479 -

.0312

.05434

Roll
RV.

5

6

6

5

4

6

6

5

6

7

Option Two

P

(degs)

-1 .436

.962

.694

-1 .434

.364

-3.686

1 .963

1 .722

-1 .760

.991

Plane
error
(degs)

.0497

.0390

.0254

.0127

.0220

.0385

.0608

.0579

.0239

.0241

Roll
RV.

5

9

11

11

6

6

7

5

10

9

*V
max •

(ft/s)

16.73

19.15

17.14

20.74

7.64

26.49

11 .18

17.16

12.60

23.68

*vm1n

(ft/s)

2.03

16.39

15.63

14.39

1 .99

5.37

11 .06

17.15

1 1 .41

13.01
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In all but four of the cases, the final plane error of option two

was slightly smaller than the final error of option one. The difference

between the final plane errors of option one and option two were not

responsible for the large reductions of the total burn magnitudes of

option two as compared with the total burn magnitudes of option one.

The large reductions in the total burn magnitude of option two were

mostly obtained by keeping (3 small which allowed a large portion of the

plane error to be corrected with a dog-leg maneuver.

The largest AV i was 17.15 ft/sec which represents the greatest
<,

reduction in the total burn magnitude obtained by using option two

instead of option one. The largest AVmax was 26.49 ft/sec which repres-

ents the greatest reduction in the total burn magnitude obtained by

using option two instead of option one, if the on-board targeting algo-

rithm used by option one does not or can not use an iteration process to

find the minimum total burn magnitude. Only in two cases did option two

require more than four roll reversals than option one.

Figure 4.2 shows the commanded roll angle history of option two for

case 10. The last five roll reversals are commanded by the last two

phases of the hinge line lateral guidance algorithm which control the

hinge line position. The first two roll reversals are commanded to keep

the hinge line outside the exclusion zone. The last three are commanded

to keep 3 inside the deadband. Figure 4.3 shows the variation of the
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navigation angles (3, a, and &>) of option two versus time, where o> is

the argument of perigee. Figures 4.4 and 4.5 show the commanded roll

angle history and the navigation angles histories of option two for case

9. The. last four roll reversals are commanded to keep 3 inside the

deadband with the smallest limits. The number of roll reversals used in

case 9 could be reduced without effecting the performance of the lateral

guidance algorithm by altering the criteria for changing the deadband

limits. The commanded roll angle histories and the navigation angles

histories in Figures 4.2 through 4.5 are typical for the majority of the

simulation runs using option two for all the operating conditions made

in this thesis and not just the perigee-dispersion cases.

The commanded roll angle histories and navigation angles histories

of option two for cases 6 and 8 are given in Figures 4.6 through 4.9.

In both these cases, the beta control phase started just in time for 3

to be driven to zero before the OTV left the atmosphere. In case 6, no

roll reversals were commanded to keep 3 in the deadband (see Figures 4.6

and 4.7). In case 8, only one roll reversal was needed to keep 3 inside

the deadband (see Figures 4.8 and 4.9). As a result, the number of roll

reversals commanded by option two equaled the number commanded by option

one in cases 6 and 8.
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4.4.2 Perigee Dispersion Cases With A Thick Atmosphere

The nominal density in these simulation runs is mu l t i p l i e d by a con-

stant factor to increase the aerodynamic forces generated during the

atmosphere flight trajectory. Several simulation runs are made with a

125% atmosphere and a 110% atmosphere. A 125% atmosphere means the

actual density is constantly 25% greater than the nominal density. Sim-

i l a r l y , a 110% atmosphere means the actual density is constantly 10%

greater than the nominal atmosphere.

The hinge line lateral guidance algorithm (option two) has better

performance than the plane error lateral guidance algorithm (option one)

in all the cases with a thick atmosphere. The results of the simulation

runs are presented in Table 4.2 and Table 4.3. In all the cases, the

total burn magnitude of option two is smaller than both the total burn

magnitudes of option one.

The largest AVmin is 21.21 ft/sec which represents the greatest

reduction in the total burn magnitude optained by using option two

instead of option one. The largest AVmax is 22.41 ft/sec which repres-

ents the greatest reduction in the total burn magnitude obtained by

using option two instead of option one, if the on-board targeting algo-

rithm used by option one does not use an iteration process to find the

minimum total burn magnitude. All seven cases with a 125% atmosphere
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Table 4.2
Simulation Results For The Perigee Dispersion Cases

With A 125% Atmosphere

Case

1

2

3

4

5

6

7

*

Per igee

(n.m)

44

43

42

41

40

39

37

Option One

3

(degs)

87.84

78.81

59.89

102.46

111 .71

96.46

102.40

Plane
error
(degs)

.0430

.0494

.0468

.0336

.0314

.0461

.0367

Roll
RV.

7

7

6

9

9

8

5

Option Two

3

(degs)

.790

-10.12

.404

18.10

-.708

-.235

13.22

Plane
error
(degs)

.0190

.0102

.00406

.0273

.0250

.0234

.0191

Roll
RV.

11

8

8

9

10

10

5

AVmax

(ft/s)

.18.54

21 .60

20.80

11 .47

14.17

19.43

14.38

AVm1n

(ft/s)

18.53

21 .21

18.20

11 .14

13.23

19.31

14.02

have a AVm1n greater than 11 ft/sec, while four of the seven cases with

a 110% atmosphere have a AVm.n greater than 11 ft/sec. The final plane

error of option two is smaller than the final plane error of option one

in all but two cases (9 and 13). The smaller plane error is totally

responsible for the reduction of the total burn magnitude obtained by

using option two instead of option one in only 3 cases (2, 3, and 10).
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Table 4.3
Simulation Results For The Perigee Dispersion Case

With A 110% Atmosphere

f — - -.
LdSc

8

9

10

11

12

13

14

Per i gee

(n.m)

42

41 .0

40.5

40.0

39.5

39

37

Option One

P

(degs)

97.98

-37.53

54.27

89.49

29.55

-44.78

102.90

Plane
error
(degs)

.0151

.00575

.0491

.0422

.0500

.02395

.0320

Rol 1
RV.

7

10

6

9

8

8

7

Option Two

P

(degs)

-20.01

7.81

-13.17

-1 .231

-.9151

-1 .090

.773

Plane
error
(degs)

.00780

.0376

.00034

.0275

.0262

.0322

.0209

Roll
RV.

10

11

9

13

11

11

9

Avmax
(ft/s)

5.60

8.00

22.41

17.63

21 .87

9.43

14.46

^vm.n

(ft/s)

5.53

4.17

18.65

17.63

11 .42

6.41

14.13

Only in two cases did option two require more than three roll reversals

than option one.

The thick atmospheres increase the rate of change of the apsidal

line position and the total distance over which it moves. Despite this

increase in the apsidal line motion, more than half the cases are able
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to keep the magnitude of 3 less than 2 degrees. Case 5 is typical of

the cases which are able to keep the magnitude of 3 less than 2 degrees.

The commanded roll angle history and the navigation angles histories of

option two for case 5 are shown in Figure 4.10 and Figure 4.11. Four

roll reversals are commanded by option two to control the hinge line

position. Two roll reversals are commanded to keep the hinge l i n e out-

side the exclusion zone, while the last two are commanded to keep 3

inside the deadband.

The final 3 of option two is positive and outside the deadband lim-

its in three cases (4, 7, and 9). The i n a b i l i t y to drive 3 to zero in

these cases is caused by 3 having a positive value just before the apsi-

dal line position starts to move rapidly. Since 3 is positive, the

apsidal line is moving rapidly away from the hinge line. The out-of-

plane l i f t forces available are not large enough for the hinge line to

catch up to the apsidal line; therefore, the final 3 is outside the

deadband l i m i t s and is positive. This problem can be corrected by pre-

venting 3 from attaining a positive value towards the end of the eta

control phase; however, this can also increase the total number of roll

reversals required by option two which is undesirable.

The commanded roll angle history and the navigation angles histories

of option two for case 7 are shown in Figure 4.12 and Figure 4.13. Two

roll reversals are commanded by option two to control the hinge line
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position. Both these roll reversals are commanded to keep the hinge

line outside the exclusion zone. No roll reversals are needed to keep 0

inside the deadband. Despite the failure to keep p inside the deadband,

the total burn magnitude of option two is smaller than both total burn

magnitudes of option one.

The beta control phase did not start in time to drive (3 to zero

before the OTV left the atmosphere in case 2. As a result, the final

value of 3 in option two is -10.12 degrees. This problem can be cor-

rected by enlarging the exclusion zone. Unfortunately, the total number

of roll reversals w i l l be increased by enlarging the exclusion zone

which is undesirable. The reduction in the total burn magnitude

obtained by using option two instead of option one is mainly due to the

smaller plane error of option two, so the large magnitude of (3 did not

significantly affect the performance of the on-board targeting algo-

rithm. There is no performance penalty in obtaining the smaller plane

error of option two, since option two only requires one more roll

reversal than option one to obtain this smaller plane error.

The commanded roll angle history and the navigation angles histories

of option two for case 2 are given in Figure 4.14 and Figure 4.15. Four

roll reversals are commanded to control the hinge line position. Three

roll reversals are commanded to keep the hinge line outside the exclu-
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si on zone, and one roll reversal is commanded to keep (3 inside the dead-

band.

The small plane error control is used in cases 3, 8, and 10. The

desired plane error needed for 3 to equal zero is less than 0.01 degrees

in these cases, because the position out-of-plane error is small at the

start of the eta control phase. Since the plane error is less than 0.01

degrees, the magnitude of 3 is not as critical in these cases. The

small plane error is totally responsible for the large reduction in the

total burn magnitude obtained by using option two instead of option one

in cases 3 and 10. Option two requires just two more roll reversals for

case 3 and three more roll reversals for case 10 than option one to

obtain the smaller plane error. In case 8, the small plane error and

the proximity of the hinge lin e to the apsidal l i n e are equally respon-

sible for the reduction of .the total burn magnitude obtained by using

option two instead of option one. The large magnitude of 3 did not

adversely affect the on-board targeting algorithm in these three cases,

since the plane error is small.

The desired plane error falls below 0.01 degrees but stays above

0.001 degrees during the beta control phase in case 8. As a result, the

original beta control phase is no longer used, but instead the eta con-

trol phase is used. When the rate of change of the longitude of the

hinge line is less than 1.5 degrees/sec, then the beta control phase is
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used again and a roll reversal is commanded if 3 is outside the deadband

and the flag is not set. This modified version of the beta control

phase effectively enlarges the deadband limits. No change is made to

the eta control phase, since the desired plane error stays above 0.01

degrees during the eta control phase.

The commanded roll angle history and the navigation angles histories

of option two for case 8 are shown in Figure 4.16 and Figure 4.17. Six

roll reversals are commanded by option two to control the hinge line

position. Four roll reversals are commanded to keep the hinge line out-

side the exclusion zone. The last two roll reversals are commanded by

the modified version of the beta control phase.

The small plane error logic is used during the eta and beta control

phases in case 3. The desired plane error falls below 0.01 degrees dur-

ing the eta control phase. As a result, the eta control phase is no

longer used, but instead the modified plane error control phase

described in Section 3.5 is used. The modified version of the beta con-

trol phase is used in case 3 as in case 8, since the desired plane error

falls beneath 0.01 degrees but stays above 0.001 degrees during the beta

control phase.

The commanded roll angle history and the navigation angles histories

of option two for case 3 are shown in Figure 4.18 and Figure 4.19. Four
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roll reversals are commanded by option two to control the hinge line
. • * " • '

pos'i'iion. Two roll reversals are commanded by the modified version of

the plane error control phase. The last two roll reversals are com-

manded by the modified version of the beta control phase.

The small plane error logic is used again during the eta and beta

control phases in case 10; however, a different modified version of the

beta control phase is used. The desired plane error falls beneath 0.001

degrees during the beta control phase. As a result, the original beta

control logic is no longer used, but instead the modified plane error

control phase is used. When the rate of change of the longitude of the

hinge line is less than 0.2 degrees/sec, the beta control phase is used

again, and a roll reversal w i l l be commanded if p is outside the dead-

band and the flag is not set. This second modified version effectively

enlarges the deadband l i m i t s and places no restrictions on the hinge

line position. The desired plane error during the eta control phase is

beneath 0.01 degrees, and the modified version of the plane error logic

is used for case 10 as in case 3.

The commanded roll angle history and the navigation angles histories

of option two for case 10 are shown in Figure 4.20 and figure 4.21.

Figure 4.21 illustrates the rapid rate of change of the hinge line posi-

tion when the plane error is less than 0.001 degrees. The rapid move-

ment of the hinge line makes confining fi to a small deadband impossible
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without using numerous roll reversals. Five roll reversals are com-

manded by option two to control the position of the hinge line. Two

roll reversals are commanded by the modified version of the plane error

control phase. The last three roll reversals are commanded by the sec-

ond modified version of the beta control phase. The last three roll

reversals can probably be eliminated without effecting the performance

of the on-board targeting algorithm, since the reduction in the total

burn magnitude of option two is only 0.1 ft/sec by driving (3 to zero for

case 10.
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4.4.3 Pot-Hole Cases

The lateral guidance algorithm was evaluated for eight different

pot-holes. The actual density is decreased by 15% from the nominal den-

sity during the pot-hole in each case. The placement of the pot-hole is

selected to produce the worst possible performance of the hinge line

lateral guidance algorithm. Each pot-hole ends just before the eta con-

trol phase starts (ie. VELBIAS2 = 1800 ft/sec), but the starting point

(ie. VELBIAS1) is varied for each pot-hole. By increasing VELBIAS1, the

position out-of-plane error at the start of the eta control phase is

increased which produces a larger desired plane error.

The performance of the htnge line lateral guidance algorithm (option

two) is only marginally better than the performance of the plane error

lateral guidance algorithm (option one) in the pot-hole cases. The

results of the simulation runs are presented in Table 4.4. Despite the

larger plane error of option two, the total burn magnitude of option two

is smaller than the maximum total burn magnitude of option one in seven

cases. Unfortunately, the total burn magnitude of option two is slight-

ly larger than the minimum total burn magnitude of option one in five

cases.

The largest AVm1n is 3.57 ft/sec which represents the greatest

reduction in the total burn magnitude by using option two instead of
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option one. The largest increase in the total burn magnitude by using

option two instead of option one is 6.40 ft/sec. The largest AVmax is

22.89 ft/sec which represents the greatest reduction in the total burn

magnitude by using option two instead of option one, if the on-board

targeting algorithm of option one does not use an iteration process to

find the minimum total burn magnitude. The largest increase in the

total burn magnitude of option two with respect to the maximum total

Table 4.4
Simulation Results For The Pot-Hole Cases

Pot-
hole

1

2

3

4

5

6

7

8

VELBS1

(ft/s)

2400

2800

3200

3400

3600

3800

4200

4600

Option One

P

(degs)

72.38

15.43

9.36

-2.74

-3.87

-31 .50

-36.49

-49 . 84

Plane
error
(degs)

.00648

.0339

.0572

.0586

.0537

.0457

.0483

.0470

Rol 1
RV.

6

6

7

7

7

7

7

7

Opt ion Two

e

(degs)

.0428

1 .089

3.92

5.05

4.45

7.45

7.07

7.03

Plane
error
(degs)

.0250

.0333

.0494

.0617

.0638

.121

.137

.158

Roll
RV.

9

7

7

7

7

7

7

7

*vmax
(ft/s)

2.07

14.07

22.89

17.96

19.25

4.79

3.14

-1 .94

*Vn,in

(ft/s)

1 .94

3.57

3.15

-2.20

-1 .47

-4.15

-4.81

-6.40
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burn magnitude of option one is 1.94 ft/sec. The plane error of option

two is greater than the plane error of option one in six cases. In only

two cases does option two require more roll reversals than option one.

The final plane error of option two is roughly equal to the final

plane error of option one in cases 2 and 3. The total burn magnitude of

option two is significantly less than the maximum total burn magnitude

of option one for both cases. Since the final plane errors of option

one and option two are roughly equal, the large value for ^Vmax is

totally attributed to the smal1 magnitude of p in option two. The final

magnitude of (3 in option one also happens to be small is cases 2 and 3.

As a result, the total burn magnitude of option two is only slightly

less than the minimum total burn magnitude of option one.

The final plane error of option two is significantly larger than the

final plane error of option in four cases (1,6,7, and 8). The total

burn magnitude of option two is less than both total burn magnitudes of

option one in case 1 only. The smaller final (3 of option two in case 1

is responsible for the reduction in the total burn magnitude of option

two. The total burn magnitude of option two is larger than the minimum

total burn magnitude of option one for the other three cases (6,7,and 8)

and the maximum total burn magnitude of option one just for case 8. The

inab i l i t y to drive & to zero in the three cases is responsible for the

poor performance of the on-board targeting algorithm. Even though the
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final p is only six degrees outside the deadband, the total burn magni-

tude of option two can s t i l l be significantly reduced if p is smaller.

If p is inside the deadband for case 8, the total burn magnitude of

option two can be reduced by at least 8.5 ft/sec which w i l l make it less

than both total burn magnitudes of option one. S i m i l a r l y for cases 6

and 7, if 3 is inside the deadband, the total burn magnitude of option

two w i l l be less than both total burn magnitudes of option one.

The final plane error of option two is s l i g h t l y larger than the

final plane error of option one for two cases (4 and 5). The total burn

magnitude of option two is significantly less than the maximum total

burn magnitude of option one for both cases. The final p of option one

is less than the final 3 of option two in these cases. As a result, the

total burn magnitude of option two is greater than the minimum total

burn magnitude of option one for both cases.

107



4.4.4 £pt-Ho1e Cases With A Thick Atmosphere

The lateral guidance algorithm is evaluated for pot-holes in various

thick atmospheres. Thick atmospheres are added to the pot-holes of

cases 2,4, and 5 from Section 4.4.3. The actual density is s t i l l

decreased by 15% from the nominal density when in the pot-hole, but the

actual density is increased by a constant factor for the flight trajec-

tory outside the pot-hole (see Figure 4.22). A 110% atmosphere means

that the actual density is 10% greater than the nominal density for the

flight trajectory outside the pot-hole. By increasing the actual densi-

ty outside the pot-holes, the a b i l i t y to change the hinge line position,

the plane error, and-the position and velocity out-of-plane errors is

increased.

The hinge line lateral guidance algorithm (option two) has better

performance than the plane error lateral guidance algorithm (option one)

in all the cases with a pot-hole in a thick atmosphere. The results of

the simulation runs are presented in Table 4.5, Table 4.6, and Table

4.7. In all the cases, the total burn magnitude of option two is small-

er than both total burn magnitudes of option one.

The largest AVm1n is 16.49 ft/sec which represents the greatest

reduction in the total burn magnitude obtained by using option two

instead of option one. The largest AVmax is 24.64 ft/sec which repres-
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ents the greatest reduction in the total burn magnitude obtained by

using option two instead of option one, if the on-board targeting algo-

rithm used by option one does not use an iteration process to find the

minimum total burn magnitude. The final plane error of option two is

larger than the final plane error of option one in half of the cases.

Despite the larger plane error of option two, the total burn magnitude

of option two is smaller than both burn magnitudes of option one. This

reduction in the total burn magnitude is a result of the smaller 3 of

option two. In case 1, the plane error of option two is almost twice

the size.of the plane error of option one, but there is s t i l l a large

Table 4.5
Simulation Results For Pot-Hole 2 With Different Thick Atmospheres

Case

1 105% atmos.

2 110% atmos.

3 120% atmos.

4 125% atmos.

5 130% atmos.

Option One

3

(degs)

-65.64

18.43

22.14

22.07

21 .156

Plane
error
(degs)

.0351

.0686

.0280

.0551

.0287

Rol 1
RV.

8

9

9

9

9

Opt i on Two

3

(degs)

2.23

8.21

.149

4.43

.560

Plane
error
(degs)

0.0619

0.0610

0.0170

0.0380

0.0203

Rol 1
RV.

9

9

13

9

9

*vraax

(ft/s)

12.64

24.64

11.93

21 .76

12.33

*Vnnn

(ft/s)

11 .35

5.72

4.49

7.55

4.49
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reduction of the total burn magnitude by using option two (<*Vnax « 12.64

ft/sec and <Wmln « 11.35 ft/sec). Option two requires more roll

reversals than option one in four cases; however, option two requires

fewer roll reversals than option one in five cases.

Table 4.6
Simulation Results For Pot-Hole 4 With Different Thick Atmospheres

Case

6 110% atmos.

7 120% atmos.

8 125% atmos.

9 130% atmos.

Option One

P

(degs)

-55 .26

97.04

102.26

105.15

Plane
error
(degs)

.0481

.0387

.0566

.0369

Rol I
RV.

7

9

8

10

Option Two

&

(degs)

9.76

1 .63

20.70

.351

Plane
error
(degs)

.0771

.0338

.0693

.0338

Roll
RV.

7

11

7

9

*V
raax

(ft/s)

13.93

16.61

13.02

16.61

*vmin

(ft/s)

10.45

16.49

12.50

16.08
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Table 4.7
Simulation Results For Pot-Hole 5 With Different Thick Atmospheres

Case

10 110% atmos.

11 115% atmos.

12 120% atmos.

13 125% atmos.

14 130% atmos.

Option One

P

(degs)

-29.29

110.08

-46.54

-28.80

97.81

Plar.e
error
(degs)

.0507

.0505

.0282

.0445

.0493

Roll
RV.

7

8

10

7

10

Option Two

P

(degs)

8.76

13.58

11 .06

4.94

15.65

P 1 ane
error
(degs)

.0794

.0787

.0468

.0529

.0481

Roll
RV.

7

7

11

11

9

.̂nax

(ft/s)

15.19

12.71

8.39

16.31

15.87

4Vro1n

(ft/s)

4.57

11 .48

5.12

6.71

15.68
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

A lateral guidance algorithm based on controlling the hinge l i n e

position has been developed and tested in this thesis. The on-board

targeting algorithm associated with the hinge l i n e lateral guidance

algorithm is concise and requires less computing time than the one asso-

ciated with the plane error lateral guidance algorithm. Equations have

been developed which describe the varying nature of the hinge line and

determine the hinge line position. Simple relationships between the

plane error, the desired hinge l i n e position, the position out-of-plane

error, and the velocity out-of-plane error were found.

The hinge line lateral guidance algorithm (option two) had better

performance than the plane error lateral guidance algorithm (option one)

over a wide range of operating conditions. Despite the larger final

plane error of option two in some cases, the total burn magnitude was

reduced by using option two instead of option one in almost every case.

113



There was no performance penalty for using option two instead of option

one, since the total number of roll reversals was not significantly

increased by using option two.

The total burn magnitude of option two is less than the minimum

total burn magnitude of option one for the majority of the operating

conditions tested. In the cases where the total burn magnitude of

option two was greater than the minimum total burn magnitude of option

one, the increases were significantly less than the reductions in the

total burn magnitude obtained by using option two in the other cases.

Furthermore, the operating conditions which produced the increases in

the total burn magnitudes were specifically selected to produce poor

performance for option two and have a low probability of occurring in

the actual environment.

The on-board targeting algorithm used an iteration process to find

the minimum total burn magnitude of option one. If the size of the on-

board flight computer is too small, the minimum total burn magnitude of

option one could not be found. Under these circumstances, the on-board

targeting algorithm which produced the maximum total burn magnitude

would be used by option one. The total burn magnitude of option two was

less than the maximum total burn magnitude of option one for all the

cases tested except one. In that one case, the increase in the total

burn magnitude by using option two instead of option one was insignif-
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icant. The reduction in the total burn magnitude by using option two

instead of option one was greater when the on-board targeting algorithm

of option one could only find the maximum total burn magnitude.

The hinge line lateral guidance algorithm was able to keep 3 in the

deadband for most of the cases tested. The i n a b i l i t y to keep 3 inside

the deadband was responsible for the few cases where the total burn mag-

nitude of option two was greater than the total burn magnitude of option

one. The reason for the i n a b i l i t y to keep 3 inside the deadband was

s i m i l a r for most of the cases. Eta was positive just before the apsidal

line position started to change rapidly. As a result, the apsidal line

was rapidly moving away from the hinge line. Unfortunately, the out-of-

plane l i f t forces present were insufficient to drive the hinge l i n e

position to the apsidal li n e position. Consequently, the final 3 was

outside the deadband for these cases.

The large final 3 presents a problem which must be corrected to

obtain greater reductions in the total burn magnitude. One way to cor-

rect this problem is to decrease the upper l i m i t s of the deadband to

take into account the apsidal line movement. Altering the criteria for

when to switch to the eta control phase from the plane error control

phase is another way to prevent the final 3 from being outside the dead-

band. The criteria should be altered to take into account the position

out-of-plane error magnitude. By decreasing the position out-of-plane
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error magnitude when the eta control phase starts, the desired plane

error w i l l also be smaller. The smaller plane error w i l l decrease the

actual plane error which increases the a b i l i t y to change the hinge li n e

position. Both these methods need to be investigated to see if they

w i l l improve the performance of the hinge l i n e lateral guidance algo-

rithm.

A totally different approach in designing a hinge line lateral guid-

ance algorithm might result in greater reductions in the total burn mag-

nitude and fewer required roll reversals. If the hinge li n e is driven

to the predicted final apsidal line position instead of the current

apsidal l i n e position, the i n a b i l i t y to keep 3 inside the deadband might

be eliminated. A variational equation must be developed to predict the

final apsidal line position given the current conditions and the

expected time of fl i g h t left in the atmosphere. Unfortunately, the

behavior of the apsidal line position is extremely non-linear which

makes predicting its final position difficult. However, if a

predictor/corrector aerobraking guidance law is being used as in refer-

ence [11], the final apsidal line position can be easily obtained.

Another alternative in designing a hinge line lateral guidance algorithm

is possible if the aerobraking guidance law of reference [11] is being

used. The hinge line position can be kept near the current OTV position

until the l i f t forces generated over the remaining trajectory w i l l be

sufficient to just drive 3 to zero. By basing the hinge l i n e lateral
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guidance algorithm on this approach, the number of required roll

reversals could be greatly reduced, though unexpected density variations

could create problems. Both these alternatives to designing a lateral

guidance algorithm seem promising for further research.

In conclusion, the work presented in this thesis provides a firm

foundation from which to implement a hinge line lateral guidance algo-

rithm on an OTV. Further testing needs to be done to demonstrate deci-

sively the advantage of the hinge line lateral guidance algorithm and to

determine the best deadband limits. In particular, the performance of

the hinge line lateral guidance algorithm in the presence of navigation

errors and finite roll rates must be evaluated to prove completely the

effectiveness of the algorithm.
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APPENDIX A

SIMULATION COMPUTER PROGRAMS

This appendix contains the source code for the major computer pro-

grams used in testing the lateral guidance algorithm. Not included is

the program GCH.BURNS4A which calculates the post-aerobraking burn mag-

nitudes discussed in Section 2.5. Included in this order are:

GCH.DRIVET7- driver

GCH.SIMT7- environment simulation

GCH.GUID8C- aerobraking guidance law and

lateral guidance algorithm

GCH.ORBITS4A- orbital elements and control

parameters calculation

The computer programs are written in MAC which is a language developed

at the Charles Stark Draper Laboratory.

Following the source codes is a l i s t of the input values for a nomi-

nal run.
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MAC*GCH.DRIVET7

SOURCE : GCH1 752. THESIS. MAC (DRIVET7)
AUTHOR : H.R. MORTH AND G.C. HERMAN
PURPOSE : PERFORMS ALL INPUT AND INITIALIZATION OPERATIONS
INPUTS : RUN CONTROL VARIABLES
OUTPUTS : INITIAL POSITION AND VELOCITY FOR TRUE AND

NAVIGATION STATES

COMMON (CONST) DUM1.IPOLE,DUM2,MU,RE,J2,DUM3,DUM4,WE.GZERO

COMMON (CABRAKE), ACCEL, WLIM, WDOTLIM, RNAV, VRELNAV, VNAV,
INCL, INC.LD, LODNAV, LOD, CB, DTSIM, PHI, ROLL,
RHO, RHOVAR, PLOTSW, HSTEMP, KRHO.ICNTL, PRTNO,

R, V, RNAV, VNAV, HPI, TMAX, GUIDRATE,

NAVSW, LODSW, RDOTNAV, VEX1 , IYD, STARTALT.SIZE,

NGRAVW, TOUT, FIRSTPASS, ISTART, ACCEL, CBNAV,
RHOSTD, LODEST.SWITCH3BS.LIFTSW1.LIFTSW2,
LIFTSW3,LIFTSW4,PLANEERR,PLANEERRSW,BETASW,

IYINITD.DRHOBIAS.VELBIAS1.VELBIAS2

COMMON (PLOTFL) T,QBAR,GLOAD1,ALT,GAMMA,GI,HA,HP,DRAG,DRAGDOT,
QDOT,TEMP,HS,INCL1,LOD1,PHI1.PHIC1,ALTERR.VRELERR.RDOTERR,
ICNT,ROLLERR,ROLLUNDER,KRHOWV,DRHO,VIEX,HS1 .GPLLM.HSD,
RDTERO,KRDT,RDTNM,KV,K1.K2.TEMPA ,KHTOT,BOTOT,GWTOT

21

COMMON (DISTURB) NBOLGI, NKHELM, NATMO, NDRAG, SUMRHO,

RVACP

COMMON (PLOT2) FILEMODE.NDATA.SUMPLTLOC.HIRESPLOC,
FILEPLT, FILECNT.FILEFREQ.MCRLONUM,
PRTLVL.TPHASE.TEND

INDEX I, J
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/* READ IN THE INPUT PARAMETERS

DRIVER SUBROUTINE
READ WLIM,WDOTLIM,OMEGAD,INCL,INCLD,THETA,RY,VY
READ CB, CBBIAS, LOD, LODBIAS, LODNAV, CBNAV

READ DTSIM, PRTNO, TMAX, MCPLSW
READ GAIN, FSW

READ RNDDENS, RHOBIAS
READ HA,HP,HANAV,HPNAV
READ HEI,HEINAV,GUIDRATE,ICNTL,PLOTSW
READ NAVSW.LODSW.RDTERO.KRDT
READ BETASW
READ SWITCH3BS.LIFTSW1 ,LIFTSW2,LIFTSW3.LIFTSW4
READ PLANEERRSW,OPTION
READ KRHOWV,VIEX,HS1,GPLLM
READ RDTNM.KV.K1,K2
READ STARTALT, SIZE
READ THETANAV.DR.DH.DVR
READ TSIZE, FILEMODE, ERRSW, PRTLVL, FILEFREQ'
READ MCRLONUM, MCRLOEND, MULTPERT, MULTERRR
READ NATMO, NGRAVW, NKHELM, NBOLGI
READ ALTCBIAS, ALTBLBIAS, ALTBMBIAS
READ DRHOBIAS,VELBIAS1.VELBIAS2

HPI = HPNAV
RHOVAR = 1 + RHOBIAS
PLANEERR = ABS (INCL - INCLD)

/* PRINT THE INPUT PARAMETERS
PRINT MSG, SP3
********** AEROBRAKING SIMULATOR **********
PRINT MSG, SP2
RUN CONTROL VARIABLES AND INITIAL INCLINATION
PRINT HDG, MCRLONUM,OPTION,DRHOBIAS,VELBIAS1,VELBIAS2,SP4
MCRLONUM OPTION DRHOBIAS VELBIAS1 VELBIAS2
PRINT FORMAT 501, MULTERRR, ERRSW,

PRTLVL, MCPLSW, FILEMODE.GAIN,FSW,
SWITCH3BS, MULTPERT, SP3

LONG FORMAT 501
PRINT MC FILE GAIN FILTER SWITCH3BS
LEVEL PLOTSW MODE FREQ (DEG)

$$ $ $ $.$$$ $$$ $$.$$
1 - PERT/ NO NAVERR

MULTERRR $.$$ ERRSW: $ 2 - NO PERT/ NAVERR
MULTPERT $.$$ 3 - PERT/ NAVERR
PRINT FORMAT 502, LIFTSW1,LIFTSW2,LIFTSW3,LIFTSW4,PLANEERRSW,

BETASW
FORMAT 502
LIFTSW1 LIFTSW2 LIFTSW3 LIFTSW4 PLANEERRSW BETASW
$.$$$ $.$$$ $.$$$ $.$$$ $.$$$$ $$.$
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PRINT HDG
WLIM WDOTLIH OMEGAD INCLD THETA THETANAV
PRINT WLIM,WDOTLIM,OMEGAD,INCLD,THETA,THETANAV,SP2
PRINT HDG, CB .CBBIAS, CBNAV, LOD, LODBIAS, LODNAV, SP2
W/CDA CBBIAS CBNAV LOD LODBIAS LODNAV
PRINT HDG, DTSIM, PRTNO, TMAX, FILEMODE, FILEFREQ, SP2
DTSIM PRTNO TMAX FILEMODE FILEFREQ
PRINT HDG, RNDDENS, RHOVAR, RHOBIAS.SP2
RNDDENS RHOVAR RHOBIAS
PRINT HDG
HA HP HANAV HPNAV HP-HPNAV
PRINT HA,HP,HANAV,HPNAV,(HP-HPNAV),SP2
PRINT HDG
HEI HEINAV HEI-HEINAVGUIDRATE ICNTL PLOTSW
PRINT HEI,HEINAV, (HEI-HEINAV).GUIDRATE,ICNTL,PLOTSW,SP2
PRINT HDG
NAVSW LODSW RDTERO KRDT
PRINT NAVSW,LODSW,RDTERO,KRDT,SP2
PRINT HDG
KRHOWV VIEX HS1 GPLLM
PRINT KRHOWV,VIEX,HS1 ,GPLLM,SP2
PRINT HDG
RDTNM KV K1 K2
PRINT RDTNM,KV,K1.K2.SP2
PRINT HDG
STARTALT SIZE DWNRNGERR HERROR RADVELERR
PRINT STARTALT,SIZE,DR,DH,DVR,SP2
PRINT HDG, TSIZE, NATMO, NGRAVW, NBOLGI, NKHELM, SP2
TSIZE NATMO NGRAVW NBOLGI NKHELM
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/* INITIALIZATION PROCESS

16
MU = 1 .40764685 10
RE - 20925784

-6
J2 = 1082.7 10

-5
WE = 7.29211585 10
GZERO = 32.146437
DTR = DEGTORAD
FPNM « 6076.115
NMPF = 1/FPNM

GAHBIAS • DTR GAMBIAS

IPOLE = (0, 0, 1)
DUM1 = 0, DUM2 = 0, DUM3 = 0, DUM4 = 0
RNAV = HEINAV + RE
R = HEI + RE
50 = SIN (DEGTORAD OMEGAD)
CO = COS (DEGTORAD OMEGAD)
SID = SIN (DEGTORAD INCLD)
51 = SIN (DEGTORAD INCL)
CID = COS (DEGTORAD INCLD)
CI = COS (DEGTORAD INCL)
ST = SIN (DEGTORAD THETA)
CT = COS (DEGTORAD THETA)
STNAV = SIN (DEGTORAD THETANAV)
CTNAV - COS (DEGTORAD THETANAV)

IYINITD- (SO SID, (-CO SID), CID)

IYD = IYINITD
INCLDB » INCLD
NODEDB = OMEGAD

IF OPTION = 2,
SET FILE READ (10000) ,

FILE READ MOMVEC,NODEDB,INCLDB,

IYD = UNIT (MOMVEC)

PRINT HDG, IYD,INCLDB,NODEDB
IYD INCLDB NODEDB

PRINT HDG, IYINITD
IYINITD

IY = (SO SI, (-CO SI), CI)

RUNIT = - (CT CO - ST CI SO, CT SO + CO CI ST, SI ST)
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RUNITNAV = (CTNAV CO - STNAV CI SO, CTNAV SO + CO CI STNAV,
SI STNAV)

RD = R RUNIT

RDNAV = RNAV RUNITNAV

R = R UNIT(RD + RY IY)

RNAV = RNAV UNIT (RDNAV + RY IY)
RPNAV = HPNAV 6076.115 + RE
RANAV = HANAV 6076.115 + RE
RA « HA 6076.115 + RE
RP = HP 6076..115 + RE
ANAV = (RANAV + RPNAV) / 2
A = (RA + RP) / 2
VNAV = SQRT(MU(2/RNAV - 1/ANA.V))
V = SQRT(HU(2/R - 1/A))
GNAV =-ARCCOS(SQRT(RANAV RPNAV/(RNAV (RANAV+RPNAV-RNAV))))
G =-ARCCOS(SQRT(RA RP/(R (RA+RP-R))))

VUNIT = ((-CO ST - SO CI CT), CO CI CT - SO ST, SI CT)

VUNITNAV = ((-CO STNAV - SO CI CTNAV), CO CI CTNAV - SO STNAV,
SI CTNAV)

V = V VUNIT

VNAV = VNAV VUNITNAV

V = V UNIT(V + VY IY)

VNAV = VNAV UNIT (VNAV + VY IY)
ft - - -

MG = (UNIT (R) , UNIT (V) , UNIT (V * R))
a - - - -

MGNAV = (UNIT (RNAV), UNIT (VNAV), UNIT (VNAV * RNAV))
* T

V = V MG (SIN(G) , COS(G) , 0)
a T

VNAV = VNAV MGNAV (SIN (GNAV), COS (GNAV), 0)
IF DR = 0, IF DH = 0, IF DVR = 0, GO TO SAME

R = (RNAV + DH 6076.115, RNAV + DR 6076.115, 0)
0 1

V = (VNAV + DVR, VNAV , 0)
0 1

SAME INC = RADTODEG ARCCOS (UNIT (R * V) . IPOLE)

INCNAV = RADTODEG ARCCOS(UNIT (RNAV * VNAV) . IPOLE)
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PRINT HOG
RY VY INC INCNAV
PRINT RY, VY, INC, INCNAV
PRINT SKIP

TEMPI = NATMO
TEMP2 = NGRAVW
TEMPS = NKHELM
TEMP4 = NBOLGI

IF MCRLONUM - 0,
NGRAW = 0,
NKHELM = 0,
NBOLGI = 0,
NATMO = 0

RNAV = R, VNAV = V

CALL SWS.CONICS, 5, 0, MU, 0,(-1), R, V

RESUME FLAG1, TIMETOP, RVACP, VVACP

PRINT FORMAT 100, (RVACP NMPF) .
FORMAT 100
RVACP = ( $.$$$$$$$E$$ $.$$$$$$$$£$$ $.$$$$$$$£$$) NM

CALL GCH.ORBITEL, MU, R, V
RESUME RVA, RVP, AV
PRINT FORMAT 101 , ((RVA - RE) NMPF), ((RVP - RE) NMPF),

(AV NMPF), SP4
FORMAT 101
ALT VAC APOGEE - $.$$$$$£$$ NM
ALT VAC PERIGEE = $.$$$$$£$$ NM
VAC SMA = $.$$$$$£$$ NM
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RANDOM ERRORS SECTION

DO TO CYCRND FOR 1=1 (1)10 ABS (MCRLONUM - 1)
CYCRND DUM = RNDMN(1)

/* PERSERVE THE INITIAL NOMINAL STATE

RNOMINIT = R, VNOMINIT = V

RNAVNOMI = R, VNAVNOMI = V
LODNOM = LOD, CBNOM = CB

IF RNDDENS = 0,
RHOVAR = RHOVAR,

OTHERWISE IF MCRLONUM NOTEQ 0,
RHOVAR = RNDMN (RHOBIAS) + 1 ,
OTHERWISE RHOVAR = 1

PRINT FORMAT 104, ((RHOVAR - 1) 100), SP3
FORMAT 104

THE LEVEL OF CONSTANT DENSITY BIAS FOR THIS RUN
IS $$$.$$$$ I

IF LODNOM < 0,
LODVAR = 1,
OTHERWISE IF MCRLONUM NOTEQ 0,

LODVAR = 1 + RNDMN (LODBIAS),
OTHERWISE LODVAR =1

LOD = LODVAR ABS (LODNOM)
PRINT FORMAT 105, LOD, ((LODVAR - 1) 100),SP3
FORMAT 105
THE CONSTANT L/D FOR THIS RUN IS: $$$.$$$$$
WHICH IS $$$.$$$$$% FROM THE NOM. VALUE

IF .CBNOM < 0,
CBVAR = 1,
OTHERWISE IF MCRLONUM NOTEQ 0,

CBVAR = 1 + RNDMN(CBBIAS),
OTHERWISE CBVAR =1

CB = CBVAR ABS (CBNOM)
PRINT FORMAT 106, CB, ((CBVAR - 1) 100),SP3
FORMAT 106
THE CONSTANT W/CDA FOR THIS RUN IS: $$$.$$$$$
WHICH IS $$$.$$$$$% FROM THE NOM. VALUE

IF FILEMODE = 2, SET FILE WRITE 80000

IF MCRLONUM NOTEQ 0,
NATMO = TEMPI,
NGRAVW = TEMP2,
NKHELM = TEMPS,
NBOLGI = TEMP4

125



SUMRHO = 0, NDATA = 0
NDRAG = 0, FILEPLT = 0, FILECNT
FIRSTPASS = 0, ISTART = 0
SUMPLTLOC = 90000 + 600 MCRLONUM
HIRESPLOC = 20000

CALL GCH.SIMT7

IHDES = RNAV*VNAV
SET FILE WRITE (10000)

FILEWRITE IHDES
IF FILEMODE = 3,
SET FILE WRITE (90000 + 600 MCRLONUM - 1),
FILEWRITE FILEPLT

PRINT HOG, IHDES
IHDES:
AVGRHOBS = SUMRHO/NDRAG
FILECNT = FILECNT - 1

PRINT FORMAT 120, NDATA, AVGRHOBS, RHOVAR, FILECNT,
FILEPLT, SP4

LONG FORMAT 120
! !! ! !! ! !! !!! ! !! ! ! ! !!! ! !! ! !!
NDATA = $$$$$$$ AVGRHOBS = $.$$$$$ RHOVAR = $.$$$$$
! !! ! !! ! !! ! !! ! !! !!! ! !! I ! f !!!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
FILECNT = $$$$ FILEPLT = $$$$

/* DO POST-AEROBRAKING BURNS

CALL GCH.BURNS2(BEGIN1) .T.RNAV, VNAV, INCLDB.NODEDB
DO PRTSTARS

/* DO PLOTTING FOR INDIVIDUAL RUNS

IF MCPLSW >=1 AND FILEMODE = 3,
CALL MCPLOT1

IF MCPLSW >= 1 AND FILEMODE = 4,
CALL MCPLOT2

IF MCPLSW >= 1 AND FILEMODE = 5,
CALL MCPLOT3

IF MCPLSW >= 1 AND FILEMODE = 7,
CALL MCPLOT4

IF MCPLSW >= 1 AND FILEMODE = 8,
CALL MCPLOT5

IF MCPLSW >= 1 AND FILEMODE >= 9,
CALL MCPLOT6

MCRLONUM = MCRLONUM + 1
IF MCRLONUM <= MCRLOEND, GO TO MCRLO
IF MCPLSW >= 1 ,
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CALL FILEPLOT(ENDPLOT)

RESUME
RETURN

PRTSTARS PRINT FORMAT 900
LONG FORMAT 900

START AT DRIVER
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MAC* GCH.SIMT7

SOURCE : GCH1 752. THESIS. MAC (SIMT7)
AUTHOR : H.R. MORTH AND G.C. HERMAN
PURPOSE : SIMULATE AEROBRAKING FOR OTV
INPUTS : INITIAL POSITION, VELOCITY, AND CONTROL VARIABLES
OUTPUTS : STATE AND CONTROL VARIABLES DURING AEROBRAKING

COMMON (CONST) DUM1 ,IPOLE,DUM2,MU,RE, J2.DUM3.DUM4.WE .GZERO

COMMON (CABRAKE) , GLOAD, WLIM, WDOTLIM, RNAV, VRELNAV, VNAV,
INCL, INCLD, LODNAV, LOD, CB, DTSIM, PHIC, ROLL, RHO,

RHOVAR, PLOTSWITCH, HSTEMP, KRHO, ICNTL, PRTNO, R, V,

RNAV, VNAV, HPI, TMAX, GUIDRATE, NAVSW, LODSW, RDOTNAV, VEX1 ,

IYD, STARTALT, SIZE, NGRAVW, TOUT, FIRSTPASS, ISTART,

ACCEL, CBNAV, RHOSTD, LODEST,SWITCH3BS,LIFTSW1 ,

LIFTSW2,LIFTSW3,LIFTSW4,PLANEERR,PLANEERRSW,BETASW,IYINITD,
DRHOBIAS.VELBIAS1 .VELBIAS2

COMMON (PLOTFL) T.QBAR.GLOAD1 .ALT, GAMMA, GI , HA, HP, DRAG, DRAGDOT,
QDOT,TEMP,HS,INCL1 , LOD1 .PHI.PHIC1 , ALTERR, VRELERR.RDOTERR,
ICNT,ROLLERR,ROLLUNDER,KRHOWV,DRHO,VIEX,HS1,GPLLM,HSD,
RDTERO,KRDT,RDTNM,KV,K1,K2,V,VREL,VIDES,GINAV,GREL,GRELNAV,
GIDES.HANAV, HAD, HPNAV,HPD,RY,THETAR,VY,THETAV, DELTA, ANGTONODE,
ANGTOAPOGE.HAPRECISE.DELTAVCIRC.DELTAVPLAN.ALTNAV,
KHTOT.BOTOT.GWTOT

COMMON (PRINT) VAR , LAT.LONG.VELENG, CONTROLMODE ,
13

BETANAV,S2ROLL,SWITCH2,INCDOT,NODEDOT,
ALPHADOT.IRATE1 .NODERATE1 ,
ALPHARATE1 ,X1 .LIFTM.WDGDES.THETARNAV,
IERROR,NODEERR,ALPHAERR,ALPHAERRMF,THETAVDES,
ALPHANAV.TRUEANNAV

COMMON (DISTURB) NBOLGI.NKHELM, NATMO, NDRAG, SUMRHO,

RVACP

COMMON (PLOT2) FILEMODE.NDATA.SUMPLTLOC.HIRESPLOC,
FILEPLT, FILECNT.FILEFREQ.MCRLONUM,
PRTLVL.TPHASE.TEND

COMMON (COMP) RDOTDO, DRGRF ,DERROR,GAMMAREF,DV1 , VRELNAV1 ,
DRGNOM , DRGM , CD , KDRAG , GAIN , CDDOT , FSW

INDEX I.J.N
DIMENSION (DT.4) , (SWDOT.4)
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/* SIMULATOR INITIALIZATION

AEROSIM SUBROUTINE
FTPNM = 6076.115
NMPFT = 1/FTPNM
IF FIRSTPASS =1, GO TO SIMLOOP
FIRSTPASS = 1, DT=DTSIM ,PSW = 0, T = 0, TOUT = T,

PHIC = 90, PHASE = 1,T = 0,
PHI = PHIC, GUIDCOUNT = GUIDRATE,
DTSAVE = DT, DO SETUP, ROLLUNDER = 0,

4
CO=-4.79519468 10 , 01=0.99700549,

-6 -12
C2=-4.17893612 10 , 03=5.39401157 10

-5
HO = 207040, RHOO = 1.3096315 10 ,

DPHI/DT=0, RHOOLD = 1, ALTOLD =1, IP = 0,
GIDES = 0.7453202780348212933674755910,
SPHI = SIN(DEGTORAD PHI),
CPHI = COS (DEGTORAD PHI),
HAD = 150.0, HPD = 40.8642522778790339586665910
IF NATMO = 0, PRINT SKIP
IF NATMO = 0, GO TO SIMLOOP
CALL REP.USOTV62(INIT) -3

PRINT SKIP
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/* START OF SIMULATION

SIMLOOP DO AERO

ACCEL = ABVAL (ACCEL)
2

QBAR = .5 RHO VREL / GZERO

IA = ACCEL / ACCEL
GLOAD = ACCEL / GZERO
GLOAD1 = GLOAD
LOD1 = LOD

NOLOD R = ABVAL(R)

RNAV = ABVAL (RNAV)
ALT = R - RE
ALTNAV = RNAV - RE

RDOTNAV = VNAV . RNAV / RNAV

ROOT « V . R / R

GAMMA = RADTODEG ARCSIN (R . VREL / (VREL R))

V = ABVAL(V) .
_ * •

VNAV = ABVAL (VNAV)

VRELNAV = VNAV - WE( IPOLE * RNAV)

VRELNAV = ABVAL (VRELNAV)

GI = ARCSIN (R . V / (V R))

GINAV = ARCSIN (RNAV . VNAV / (VNAV RNAV))

AINCL = RADTODEG ARCCOS (UNIT (RNAV * VNAV) . IPOLE)
2 2

X = SQRT (1 - (R V COS (GI)) (2/R-V /MU)/MU)
2 2

XNAV = SQRT (1-(RNAV VNAV COS (GINAV)) (2/RNAV-VNAV /MU)/MU)
2

HA =(R(1 + X) MU / (2 MU - R V ) - RE)/6076.115
2

HANAV =(RNAV(1+XNAV)MU/(2 MU - RNAV VNAV ) - RE)/6076.115
2

HP =(R(1 - X) MU / (2 MU - R V ) - RE)/6076.115
2

HPNAV =(RNAV(1-XNAV)MU/(2 MU - RNAV VNAV ) - RE)/6076.115
GI * GI RADTODEG
GINAV = GINAV RADTODEG
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GAMMANAV = RADTODEG ARCSIN (RNAV . VRELNAV/(VRELNAV RNAV))
INCL = AINCL
INCH = INCL

RDOTNAV = VNAV . UNIT (RNAV)
NOPRT2 IF PLOTSWITCH NZ, DO SAVE

ALTERR = ALTNAV - ALT
VRELERR = VRELNAV - VREL
RPOTERR = RDOTNAV - ROOT

/* CALL TO GUIDANCE
IF GUIDCOUNT = GUIDRATE, GUIDCOUNT = 0,

CALL GCH.GUID8C, RESUME
GUIDCOUNT = GUIDCOUNT + 1
IF PSW = 0, DO PRNTDTA
PSW = PSW + 1
IF PSW = PRTNO, PSW = 0
ROLLERR = PHIC - PHI
PHIC1 = PHIC
W=DPHI/DT

/* CALL TO CONTROL
CALL RAYS.AUTOP PHIC, PHI, W, ROLLUNDER

RESUME DT,SWDOT
DO TO SLOOP1 FOR N = 0(1)3
SWDOT = SWDOT

N
DT = DT

N
IF DT = 0, IF DT = 0, IF DT = 0, DPHI/DT = 0

0 1 2
IF DT <= 0, IF N = 3, GO TO LOOP2
IF DT <= 0, GO TO SLOOP1
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2 2
INTEG D PHI/DT = SWDOT WDOTLIM
INTEG1 DO TO LOOP1 FOR I = 0(1)3

ROLLERR = PHIC - PHI
IF ABS (ROLLERR) > 180, ROLLERR = ROLLERR - 360 SIGN(ROLLERR)
SERR = SIGN(ROLLERR)
IF FIRSTPASS = 0, FIRSTPASS = 1

ROLLCMD SPHI = SIN (DEGTORAD PHI)
CPHI = COS (DEGTORAD PHI)

AERO DO TO AEROEND

VREL = V - WE (IPOLE * R)

VRELNAV = VNAV - WE (IPOLE * RNAV)

VREL = ABVAL(VREL)

VRELNAV = ABVAL(VRELNAV)

IX = UNIT (VREL)

IZ = UNIT (IX * R)

IY = UNIT(IZ * IX) CPHI + IZ SPHI

CALL JPH.USATM62, 0, (.3048 R), WE, IPOLE
RESUME RHO

3
RHOCALC RHO = RHO (.3048 ) / 0.45359237

RHOSTD = RHO
IF NATMO = 0, RHOFAC2 = 1 .

DRG DRHO = RHOVAR RHOFAC2
IF VNAV < VIEX + VELBIAS2.DRHO = DRHOBIAS
IF VNAV < VIEX + VELBIAS1,DRHO = RHOVAR RHOFAC2
RHO = DRHO RHO

2
DRAG = .5 RHO VREL / CB
LIFT = LOD DRAG

AEROEND ACCEL = -DRAG IX + LIFT IY
- 3

GRAV = -MU R/ (ABVAL (R))

DR/DT = V

DV/DT = GRAV + ACCEL
3

GNAV = -MU RNAV/ (ABVAL (RNAV))

DRNAV/DT = VNAV

DVNAV/DT = GNAV + ACCEL
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2 2
DIFEQ T, DT, DR/DT, DV/DT, DRNAV/DT, DVNAV/DT, D PHI/DT
W = DPHI/DT

LOOP1 TNAV = T, TOUT = T
SLOOP1 TNAV = T
LOOP2 IF ALT > 400000, IF ROOT > 0, DO PLOTS, DO PRNTDTA, EXIT

IF T > TMAX, DO PLOTS, DO PRNTDTA, EXIT

DELTARHO = ABVAL (ACCEL) (RHO - RHOSTD)/RHOSTD
SUHRHO = SUMRHO + DELTARHO

NDRAG NDRAG + ABVAL (ACCEL)

IF ABS(PHI) > 180,
PHI = PHI - SIGN (PHI) 360

GO TO SIMLOOP

RETURN
PLOTS DO TO NDPLOTS

IF FILEMODE >= 2,
GO TO NDPLOTS

SET FILE WRITE 902
FILE WRITE ICNT

NDPLOTS RESUME
SAVE RESUME
•SETUP RESUME
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/* CALCULATE PRINT PARAMETERS

PRNTDTA DO TO NDPRNT
3.15

QDOT = 17600 SQRT(RHO / (.0027 GZERO)) (VREL / 26000)
-10 .25

TEMP = (778.158 QDOT / 3.74 10 ) - 460
ALTOLD = ALT, RHOOLD = RHO

IYA = UNIT(R * V)

RY = IYD . R

VY = IYD . V

LY - IYD . (LIFT IY)

DY = IYD . (-DRAG IX)

GY = IYO . GRAV
2 2

VHT = SQRT(V - ROOT )
THETAR » RADTODEG RY/R
THETAV = RADTODEG VY/VHT

DELTA = RADTODEG ARCCOS (IYA . IYD)

PLANECHNG = RADTODEG ARCCOS (IYA . IYINITD)
-9

IF ABVAL(IYA * IYD) < 10 , ANGTONODE = 0, GO TO CON,

OTHERWISE NODE = (IYA * IYD)/ABVAL (IYA * IYD)

IF UNIT(R) = UNIT (NODE), ANGTONODE =0, GO TO CON

IF UNIT(R) = -UNIT (NODE), ANGTONODE = 180, GO TO CON

IN = UNIT(R * NODE)

IF IN NOTEQ IYA, NODE = -NODE

IF ABS(NODE . R/R) > 1, ANGTONODE = RADTODEG

ARCCOS (SIGN (NODE . R/R)), GO TO CON

ANGTONODE'- RADTODEG ARCCOS (NODE . R/R)

CON RVACP = ABVAL (RVACP)

R = ABVAL (R)
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ALTEST = ABVAL(R) - RE

AIP = RADTOOEG ARCCOS(RVACP . R/(RVACP R))

IF RVACP . R < 0 , AIP = - AIP

CALL SWS.COMICS, 5, 0, MU, 0, 1, R, V

RESUME FLAG, TIMETOAPOGEE, RA, VA

RA = ABVAL(RA)

ANGTOAPOGE = RADTODEG ARCCOS (R . RA/(RA R))
HAPRECISE = (RA - RE)/6076.115
IF GI NEC, ANGTOAPOGE = 360 - ANGTOAPOGE

VA = ABVAL(VA)
AT = (RA + RE + 150 6076.115)/2
VTATRA = SQRT(MU(2/RA - 1/AT))
BURN1 = VTATRA - VA
VCIRC = SQRT(MU/(RE + 150 6076.115))
VTATRP = SQRT(MU(2/(RE + 150 6076.115) - 1/AT))
BURN2 = ABS (VCIRC - VTATRP) •
DELTAVCIRC = BURN1 + BURN2

INC = RADTODEG ARCCOS(UNIT(R * V) . IPOLE)
DELTAVPLAN = VCIRC TAN (DEGTORAD DELTA)

IV = UNIT(V)

IR = UNIT(R)
IF (IV IR - IR IV )= 0, OMEGA- - 0, GO TO NEXT

0 2 0 2
OMEGA = RADTODEG ARCTAN((IV IR -IR IV )/ (IV IR -IR IV ))

1 2 1 2 0 2 0 2

IF PRTLVL = 1, DO PRT1
IF PRTLVL = 8, DO PRT8
IF PRTLVL =12, DO PRT12
IF PRTLVL =13, DO PRT13

NDPRNT RESUME
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/* PRINT ROUTINES

/* PRINT LEVEL 1

PRT1 DO TO NPRT1
NEXT IF IPRT >= 2,

IPRT = 0,
PRINT SKIP

IPRT = IPRT + 1
PRINT HDG
T RHO/RHOSTD BOTOT GWTOT KHTOT
PRINT T, (RHO/RHOSTD), BOTOT, GWTOT, KHTOT,SP1
PRINT HDG
VI VINAV VREL VRELNAV VIDES-VI
PRINT V, VNAV, VREL, VRELNAV, (VEX1 - V), SP1
PRINT HDG
GI GINAV GREL GRELNAV GIDES-GI AIP
PRINT GI, GINAV, GAMMA, GAMMANAV, (GIDES - GI), AIP, SP1
PRINT HDG
HA HANAV HAD-HA HP HPNAV HPD-HP
PRINT HA, HANAV, (HAD - HA), HP, HPNAV, (HPD - HP), SP1
PRINT HDG
RY THETAR VY THETAV DELTA OMEGA
PRINT RY, THETAR, VY, THETAV, DELTA, OMEGA, SP1
PRINT HDG
ANGTONODE ANGTOAPOGEHAPRECISE DELTAVCIRCDELTAVPLANINC
PRINT ANGTONODE, ANGTOAPOGE, HAPRECISE, DELTAVCIRC,

DELTAVPLAN, INC, SP1
PRINT HDG
ALT ROOT HS QDOT TEMP
PRINT ALT, ROOT, HS, QDOT, TEMP, SP1
PRINT HDG
RHO DRAG GLOAD ROLL ROLLC ROLLRATE
PRINT RHO , DRAG, GLOAD, PHI, PHIC, W, SP1
PRINT HDG
INCLNAV INCLD INCN-INCLDLOD LODEST DRHO
PRINT AINCL, INCLD, (AINCL-INCLD), LOD, LODEST, DRHO, SP1
PRINT HDG
LY DY GY RDOTNAV RDOT-RDTNVALTNAV
PRINT LY, DY, GY,RDOTNAV, (RDOT-RDOTNAV),ALTNAV, SP1
PRINT HDG
X Y ANGLAT YG YU YL
PRINT VAR TO VAR

0 5
PRINT HDG
GYNAV TGO ANGERR ANGERRP
PRINT VAR TO VAR

6 9
PRINT HDG
RAT DVEX VEX1 RAT33 RDTDRV RDOTERR
PRINT VAR , VAR , VEX1, VAR , VAR , RDOTERR, SP3

10 11 12 13
NPRT1 RESUME
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/* PRINT LEVEL 8
PRT8 DO TO NPRT8

IP = IP + 1
IF IP =1,

PRINT FORMAT 1037
LONG FORMAT 1037
T(S)I ALT (FT)I ROLLC ROLL RATE I DRGEST DRGREF DERROR
I RDOTNAV RDOTREF RDOTERRl HA (NM) HP (NM) I DRHO

PRINT FORMAT 1036,T, ALT, PHIC, PHI, W, CD, DRGRF,DERROR,
RDOTNAV, RDOTDO.RDOTERR, HA, HP,
DRHO

LONG FORMAT 1036
$$$$! $$$$$$! $$$.$ $$$.$ $$.$$! $$$.$$$ $$$.$$$ $$$.$$$
I $$$$.$$ $$$$.$$ $$$$.$$! $$$$$.$$$ $$$$.$$! $.$$$$
IF 10 TRUNCATE (ABS (IP)/10) = ABS (IP) ,

PRINT BLANK
IF 50 TRUNCATE(ABS (IP)/50) = ABS (IP),

PRINT BLANK, SKIP,
PRINT FORMAT 1037

NPRT8 RESUME

/* PRINT LEVEL 12
PRT12 DO TO NPRT12

IP = IP+1
RTD = RADTODEG

~ " «*
CALL GCH.ORBITS3 MU.R.V
RESUME RA.RP,OMEGA,ARGLAT,DUMMY,LONGNODE,SEMIA,ECC,

ANGMOM.INCL,EN,ARGW,IE,IN,IH,DUMMY,WEDGE
HA1= (RA -RE)NMPFT
HP1= (RP -RE)NMPFT
SEMIA = SEMIA NMPFT
ROLL = PHI DEGTORAD
IF OMEGA > PI, OMEGA = OMEGA -2 PI
IF LONGNODE > PI, LONGNODE = LONGNODE -2 PI

R = ABVAL(R)
WEDGE = RTD .WEDGE
INCL = RTD INCL
OMEGA = RTD OMEGA
LONGNODE= RTD LONGNODE
THETAVDES = RTD THETAVDES
VAR = RTD VAR

1 1
VAR = RTD VAR

2 2
VAR = RTD VAR

3 3
VAR = RTD VAR

4 4
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VAR = RTD VAR .
5 5

VAR = RTD VAR
8 8

PRINT HDG,T,ALT,HA1,HP1,DELTA, (RTD WDGDES)
TIME(S) ALT (FT) HA (NM) HP (NM) DELTA (D) WDGDES (D)
PRINT HDG, PHIC,PHI,VY,THETAV,THETARNAV,RY
PHIC(D) PHI(D) VY(FT/S) THETAV(D) THETAR(D) RY

PRINT HDG, VAR ,VAR ,VAR ,VAR ,VAR .ALPHADOT
1 . 3 4 5 8

Y(D) YG(D) YU(D) YL (D) ANGERR(D) ALPHADT(D)
PRINT HDG, INCL,LONGNODE,TRUEANNAV,THETAVDES,IRATE1.ALPHARATE1
INCLD LNGNODED TRUEANNAVDTHVDESD IRATED ALPRATED
PRINT HDG, OMEGA,ALPHANAV.BETANAV.VNAV,LIFT,DRAG
OMEGAD ALPHANAVD BETANAVD VNAV LIFT DRAG
PRINT HDG, CONTROLMODE.VAR ,S2ROLL,SWITCH2,X1 ,PLANECHNG

0
CMODE RVFLAG S2ROLL SWITCH2 X1 PLANEC (D)
PRINT HDG,LIFTM.DRGM,ACCEL
LIFTM DRGM ACCEL
PRINT HDG, RDOT,RDOTDO,RDOTERR,DRHO,W,SP3
ROOT RDOTDO RDOTERR DRHO ROLLRATE

IF 3 TRUNCATE (ABS (IP)/3) « ABS (IP) ,
PRINT BLANK, SKIP

/ft PRINT LEVEL 13
NPRT12 RESUME
PRT13 DO TO NPRT13

IP = IP+1

CALL GCH.ORBITS3 MU.R.V
RESUME RA.RP,OMEGA,ARGLAT.TRUEAN,LONGNODE,SEMIA,ECC,

ANGMOM,INCL,EN,ARGW,IE,IN,IH,ALPHA,WEDGE,BETA
HA1= (RA -RE)NMPFT
HP1= (RP -RE)NMPFT
SEMIA = SEMIA NMPFT
ROLL = PHI DEGTORAD
IF OMEGA > PI, OMEGA = OMEGA -2 PI
IF LONGNODE > PI, LONGNODE = LONGNODE -2 PI
IF TRUEAN > PI, TRUEAN = TRUEAN -2 PI

R = ABVAL(R)
ALPHA = RADTODEG ALPHA
WEDGE = RADTODEG WEDGE
BETA = RADTODEG BETA
INCL = RADTODEG INCL
OMEGA = RADTODEG OMEGA
TRUEAN = RADTODEG TRUEAN
LONGNODE= RADTODEG LONGNODE
ANGLATD = RADTODEG VAR

2

138



PRINT HDG,T,ALT,HA1,HP1.WEDGE, (RADTODEG WDGDES)
TIME(S) ALT (FT) HA (NM) HP (NM) WEDGE (D) WDGDES (D)
PRINT HDG, PHIC,PHI,ALPHAERRMF,RDOT,RDOTDO,RY
PHIC (D) PHI (D) ALPERRMF ROOT RDOTREF RY
PRINT HDG,ANGLATD,ALPHAERR,THETARNAV,NODEDOT,INCDOT,ALPHADOT
ANGLAT(D) ALPHAERR THETARNAV NDDOT(D) IDOT(D) ALPDOT(D)
PRINT HDG, INCL,LONGNODE,TRUEAN,NODERATE1,IRATE1,ALPHARATE1
INCL(D) LNGNODE(D)TRUEAN(D) NDRATE (D) IRATE (D) ALRATE (D)
PRINT HDG, ONEGA,ALPHA,BETA,VNAV,LIFT,DRAG
OMEGA (D) ALPHA (D) BETA (D) VNAV LIFT ' DRAG
PRINT HDG, CONTROLMODE.VAR ,S2ROLL,SWITCH2,X1,ANGMOM.SP3

0
CMODE RVFLAG S2ROLL SWITCH2 X1 ANGMOM

IF 4 TRUNCATE (ABS (IP)/4) = ABS (IP) ,
PRINT BLANK, SKIP

NPRT13 RESUME

PRTSTARS PRINT FORMAT 900
LONG FORMAT 900

PRTDASHS PRINT FORMAT 901
LONG FORMAT 901

START AT AEROSIM
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MAC*GCH.GUID8C
ftftftft*ft*^****ftft**ftfc*ft***ft***ftft*^^

SOURCE GCH1752.THESIS.MAC(GUID8C)
AUTHOR H.R. MORTH AND G.C. HERMAN
PURPOSE GUIDANCE LAW FOR AEROBRAKING LIFT-MODULATED OTV

AND LATERAL GUIDANCE ALGORITHM
INPUTS ALTITUDE, ALTITUDE RATE, VELOCITY, AND THE

ACCELEROMETER MEASUREMENTS
OUTPUTS MAGNITUDE AND SIGN OF THE COMMANDED ROLL ANGLE
COMMENTS AEROBRAKING GUIDANCE LAW IS ESSENTIALLY THE ONE

DESCRIBED IN REFERENCE [3 AND 4]
A LATERAL GUIDANCE ALGORITHM BASED ON CONTOLLING .
THE HINGE LINE POSITION IS IMPLEMENTED (SEE
LATCTL)

COMMON (CABRAKE),
CGLOAD,TEMPI.TEMP2.RNAV,DUMV,VNAV,AINCLD,INCLTG.LODNAV,TEMPS,

TEMP4,DTSIM,ROLLCD,ROLDEG,FANS3,TEMPA .RNAV.VNAV.TEMB .GRATE,
11 1

TEMP6,LODSW,RDOTNAV,VEX1,IYD,STARTALT,SIZE,NGRAVW,

TOUT, FIRSTPASS, ISTART, ACCEL, CBNAV, RHOSTD, LODEST,
SWITCH3BS,LIFTSW1,LIFTSW2,LIFTSW3,LIFTSW4,PLANEERR,
PLANEERRSW.BETASW

COMMON(CONST),

DUM1,IPOLE,DUM2,MU,RE,J2,DUM3,DUM4,WE,GS,GS1,ALT1

COMMON (PLOTFL), -
TiQBAR.GLOAD.ALTT,GAMMA,GI,HA,HP,DRAG,DRAGDOT,
QDOT,TEMP,HS.INCL.LOD,PHI,PHIC,ALTERR,VRELERR.RDOTERR,
ICNT,ROLLERR,ROLLUNDER,KRHOWV,DRHO,VEX,HS1 .GPLLM ,HSD,
RDTERO,KRDT,RDTNM,KV,K1,K2,VIT,VREL,VIDES,GINAV,GREL,GRELNAV,
GIDES.HANAV,HAD,HPNAV.HPD.RY.THETAR.VY.THETAV,DELTA,ANGTONODE,
ANGTOAPOGE,HAPRECISE,DELTAVCIRC,DELTAVPLAN,ALT,KHTOT,
BOTOT.GWTOT

COMMON (PRINT),
X,Y,ANGLAT,YG,YU,YL,GY,TGO,ANGERR,ANGERRP,LODC,DVEX,LODRDTE,
RDOTDRV, LAT, LONG, VELENG,CONTROLMODE,BETA,S2ROLL,SWITCH2,
INCDOT.NODEDOT.ALPHADOT.IRATED.NODERATED,
ALPHARATED.X1,LIFTM,WDGDES,THETARNAV,IERROR,NODEERR,
ALPHAERR,ALPHAERRMF,THETAVDES,ALPHA,TRUEAN

COMMON (PLOT2) FILEMODE.NDATA.SUMPLTLOC.HIRESPLOC,
FILEPLT, FILECNT.FILEFREQ.MCRLONUM,
PRTLVL.TPHASE.TEND

COMMON (COMP) RDOTRF, DRGRF,DERROR.GAMMAREF,DV1.VRELNAV,
DRGNOM,DRGM,DRGEST,KDRAG,GAIN,DRGDOT,FSW
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ABRAKE SUBROUTINE

/* COMPUTE NAVIGATED THETAV

VYNAV « IYD . VNAV
2 2

VH = SQRT(VNAV - RDOTNAV )
THETAVNAV = RADTODEG VYNAV/VH
IF ISTART = 0,

.00 ICS
IF VNAV < VQUIT, EXIT
DO GPARAMS
IF (ACGELM - ACCELSTRT) > 0.0,

IGUIDE = 1
IF IGUIDE = 1, IF IEXIT = 0,

DO EGCTL
IF VNAV < (VEX + VIFNL),

IEXIT = 1
IF IEXIT = 1,

DO UPCTL
DO LATCTL

/* PLOT COUNTER
GPLCT = GPLCT + 1
IF GPLCT = GPLLM,

DO MAKEFL
ENDBRAKE RETURN ROLLC
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/* INPUT GUIDANCE PARAMETERS BELOW

ICS DO TO NDICS
RTD = RADTODEG
TSTEP = DTSIM GRATE
IGUIDE = 0, IEXIT = 0, KFLAG1 = 0, IFILE = 0, ISTART
VSAT = 25766.1973, VQUIT = 25000.
HS = 20650
DRGRFBS = 22.6, ACCELSTRT = .05 GS
DRGRFMIN = 0.10 GS, DMAX » 4.0 GS
BSQ = 2000 2000, DAMP1 = .75, OMEGA = PI/50
VIO = VNAV
YBIAS = 0.0008725, GNLAT = 1.5
ROLL = 15/RTD

. S2ROLL = SIGN (THETAVNAV), X = 0, ILAT = 0
ANGERRP = 0
VIFNL = 5500.0
LODEST = LODNAV, DRGNOMOLD = 0
VS01 = (GNLAT LODNAV)/ RTD
RATCMN = LODNAV COS (15/RTD)
LODC « 0
RDTMAX = 2000, RDTMIN =150
GS1 = 31, ALTF = 400000, S20 = SIN (20/RTD)
GPLCT = GPLLM - 1

/* NO LATERAL CONTROL IF ICNTL = 0
. •ICNTL = TEMPA ,

4
DTR = DEGTORAD
RTD = RADTODEG
DRGRFDOT=0, RDOTRF = 0
DRGRF2 = 0 , KDRAG = 1, FPASS = 0,PHASE = 1

NDICS DVEX = 0, VIMIN = 27000

142



/* GENERATE GUIDANCE PARAMETERS

GPARAMS DO TO NDGPAR

/* RADIUS MAGNITUDE
R1 = RE + ALT

/* NORMALIZED VELOCITY-SQ
VSO = (VNAV VNAV) / (VSAT VSAT)

/* LIFT FOR EQUILIBRIUM
LFTEQ = (VSO - 1.0) GS

ACCELM = ABVAL (ACCEL)

VRELNAV = VNAV - WE(IPOLE*RNAV) , VRELNAV = ABVAL (VRELNAV)

DRGM = ABS (UNIT (VRELNAV) . ACCEL)

IF CGLOAD < LODSW OR LODSW = 0, GO TO NOLOD
2 2

LIFTM = SQRT (ACCELM - DRGM )
LOOM = LIFTM/DRGM
LODEST = .9 LODEST + .1 LOOM

/* FILTER FOR DRAG
2

NOLOD DRGNOM = .5 RHOSTD VRELNAV /CBNAV
». «»

IF ALT > 320000, FREQ = 2,
OTHERWISE FREQ = FSW

IF FPASS = FREQ, FPASS = 0,
KDRAG = (1 - GAIN)KDRAG + GAIN DRGM/( DRGNOM)
FPASS = FPASS + 1
DRGEST = KDRAG DRGNOM

/* FIND THE MEASURED DRAG RATE
DRGDOT = KDRAG (DRGNOM - DRGNOMOLD) / TSTEP
DRGNOMOLD = DRGNOM
AA1 = DRGDOT / DRGEST
BB1 = 2.0 (DRGEST / VRELNAV)

. RDOTDRV = -HS (AA1 + BB1)
DRGEQ = -LFTEQ / (-LODEST - (RDOTNAV / VRELNAV))
IF DRGEQ < 0, DRGEQ = 0
DRGRF = 0, DERROR = 0, C16 = 0, C17 = 0, DAMP=0

NDGPAR LODRF = 0, LODDRGE = 0, LODRDTE = 0
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/* EQUILIBRIUM GLIDE CONTROL

EGCTL DO TO NDEGCTL
DRGRF = DRGEQ + DRGRFBS
IF KFLAG1 = 0, DRGRF2 = DRGRF, KFLAG1 = 1
DRGRFDOT = (DRGRF - DRGRF2) / TSTEP, DRGRF2 = DRGRF
RDOTRF = -HS (DRGRFDOT / DRGRF + 2 (DRGRF / VRELNAV))

2
DAMP = DAMP1 SQRT(1.0 + ((RDOTNAV - RDOTRF) / BSQ))
IF DRGRF < DRGRFMIN, DRGRF = DRGRFMIN
IF DRGRF > DMAX, DRGRF = DMAX
AK1 = (HS / (DRGRF DRGRF)) (OMEGA OMEGA

2
- 3.0 (DRGRFDOT / DRGRF)
+3.0 (DRGRFDOT / VNAV)

2
- 4.0 (DRGRF / VNAV)
+ (LFTEQ / HS))

AK2 » (HS / (DRGRF DRGRF)) (2.0 DAMP OMEGA
- 3.0 (DRGRF / VNAV)
+ 2.0 (DRGRFDOT / DRGRF))

C17 = AK2 DRGRF / HS
C16 = AK1 + AK2 ((DRGRFDOT / DRGRF) - 2.0 (DRGRF / VNAV))
LODRF = (-LFTEQ / DRGRF)

+ (HS / DRGRF) ((DRGRFDOT / DRGRF) (DRGRFDOT / DRGRF)
- 3.0 (DRGRFDOT / VNAV)
- 4.0 (DRGRF / VNAV) (DRGRF / VNAV))

DERROR = DRGEST - DRGRF
LODDRGE = C16 DERROR
RDOTERR = RDOTNAV - RDOTRF
LODRDTE - -C17 RDOTERR
TPHASE = T

/* COMMANDED VERTICAL L/D
NDEGCTL LODC = LODRF + LODDRGE + LODRDTE
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/* UPCONTROL PHASE

UPCTL DO TO NDUPCTL

DVPE = GS1 (ALTF - ALT) /VNAV
VEX1 = VEX -DVEX
DV1 = VNAV - VEX1 - DVPE
IF DV1 = 0, DV1 = 1

/* REFERENCE ROOT FOR UPCONTROL
RDOTRF = DRGEST (VEX1/VNAV) HS1/DV1
IF RDOTRF > RDTHAX, RDOTRF = RDTMAX
IF RDOTRF < RDTMIN, RDOTRF = RDTMIN
IF VNAV < VEX1 , RDOTRF = RDTMAX

/* CORRECTION TO DESIRED EXIT VEL.
IF VNAV > VIMIN,

DVEX = KV (RDOTRF - RDTNH)
IF DRGEST < DRGRFMIN,

C17 = K2/DRGRFMIN,
OTHERWISE C17 = K2/DRGEST

/ft MORE PRECISE LIFT FOR EQUILIBRIUM
LFTEQ1 = (VNAV VNAV - MU/R1)/R1
IF DRGEST < DRGRFMIN,

LODRF = - LFTEQ1/DRGRFMIN,
OTHERWISE LODRF - - LFTEQ1/DRGEST

RDOTERR = RDOTNAV - RDOTRF
IF ABS (RDOTERR) < 15, C17 = K1 C17

/* L/D FOR ROOT ERROR
LODRDTE = -C17 RDOTERR
PHASE=0

/* COMMANDED VERTICAL L/D
NDUPCTL LODC = LODRF + LODRDTE
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/* LATERAL CONTROL LOGIC

LATCTL DO TO NDLAT
TEND = T
TGOMAX = 500

IH - UNIT (RNAV*VNAV)

WEDGE = ARCCOS(IH.IYD)

CALL GCH.ORBITS4A HU,RNAV,VNAV,IYD
RESUME BETA,ALPHA,INC,W,TRUEAN, ANGMOM.NODE,ARGLAT
PHID = PHI DTR
IF NODE > PI, NODE = NODE -2 PI
IF TRUEAN > PI, TRUEAN = TRUEAN -2 PI

/* COMPUTE THE RATE OF CHANGE OF THE LONGITUDE OF THE HINGE LINE
SFB = SIN (TRUEAN - BETA)
SW = SIN (WEDGE)
AD = LIFTM SIN (PHID)
IF SW = O.ALPHARATE = 0,OTHERWISE

ALPHARATE « RNAV SFB AD/(ANGMOM SW)
ALPHARATED = RTD ALPHARATE

BETA = RTD BETA
ALPHA - RTD ALPHA
INt - RTD INC
W = RTD W
WEDGE = RTD WEDGE
TRUEAN = RTD TRUEAN
NODE = RTD NODE

IF ABS(LODC) < RATCMN, LODC1 = LODC,
OTHERWISE LODC1 = RATCMN SIGN (LODC)

IF RDOTNAV < 0, GO TO GCALC
TGO = (ALTF - ALT)/RDOTNAV
IF TGO > TGOMAX, TGO = TGOMAX

/* GRAVITATION COMPENSATION SECTION
- 3

GCALC GRAVNAV = -MU RNAV/(ABVAL (RNAV))

GY = IYD . GRAVNAV
YG » GY TGO / VH
ANGLAT = DTR THETAVNAV
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/* PHASE PLANE BOX LIMITS SECTION
Y = VS01 + YBIAS

RYNAV = IYD . RNAV
THETARNAV = RTD RYNAV/RNAV

/* CALCULATE THE DESIRED VELOCITY OUT-OF-PLANE ERROR
IF TRUEAN < 40,SIGMA = TRUEAN + 20,OTHERWISE SIGMA=TRUEAN
IF VNAV < VEX + 1600.,Y=YBIAS,

WDGDES = ARCSIN(SIN(DTR THETARNAV)/SIN (DTR SIGMA)),
WDGDESD= RTD ABS(WDGDES),
THETAVDES = PI/2 - ARCSIN (COS (WDGDES)/COS (DTR THETARNAV)),
THETAVDES = SIGN (VYNAV) ABS (THETAVDES),
THETAVDESD = RTD THETAVDES

YD = (Y - YG)
YL = -Y. - YG
YM = -YG

/ft REDEFINE ALPHA TO AVOID ENTERING EXCLUSION ZONE
IF BETA > TRUEAN,ALPHA = ALPHA - 180

/ft ANGULAR ERROR
ANGERR = ANGLAT - YM '
ANGERR1= ANGLAT - THETAVDES
IF PLANEERR < PLANEERRSW,VEXBS=800,OTHERWISE VEXBS = 0
IF VNAV < VEX + VEXBS, DO BETAC,OTHERWISE DO PLANEC

/ft ROLL ANGLE SECTION
RCALC FADLD1 = LODC1 / LODNAV

IF ABS(FADLDI) >= 1.0, FADLD1 = SIGN (LODC)
ROLLC = S2ROLL ARCCOS (FADLD1)
ROLLCD = RTD ROLLC
S2ROLLOLD = S2ROLL
ALPHAOLD= ALPHA
BETAOLD = BETA
INCOLD = INC
NODEOLD = NODE

/ft SAVE PREVIOUS ERROR
ANGERRP1= ANGERR1

NDLAT ANGERRP = ANGERR
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/ft PLANE ERROR CONTROL

PLANEC DO TO NPLANEC
CONTROLMODE =1
IF VNAV < VEX + 1600., CONTROLMODE =2

/ft REVERSAL FLAG OFF
IF ANGLAT > YU OR ANGLAT < YL, IF ABS (ANGERR) <= ABS (ANGERRP),

IF (ANGERR ANGERRP) > 0, X = 1
IF ABS(LODC) < RATCMN, GO TO RREV

/ft HIGH IN-PLANE LIFT SECTION
IF Y NOTEQ YBIAS, Y = Y / 2.0, YU = Y - YG, YL = -Y - YG,

IF ANGLAT > YU OR ANGLAT < YL,
IF ABS (ANGERR) <= ABS (ANGERRP) ,
IF (ANGERR ANGERRP) > 0, X = 1

/ft REVERSAL FLAG ON
RREV IF ANGLAT < YU AND ANGLAT > YL, ILAT = 1,

IF ABS (ANGERR) <= ABS (ANGERRP), X = 0

/ft ROLL REVERSAL CHECK
IF ANGLAT >= YU OR ANGLAT <= YL, IF X = 0, IF ICNTL NOTEQ 0,

IF ILAT NOTEQ 0, S2ROLL = -S2ROLL, X = 1
NPLANEC RESUME

/ft MODIFIED PLANE ERROR CONTROL LIMITS
PLANEC2 DO TO NPLNEC2

Y=YBIAS
YU = Y + THETAVDES
YL = -Y + THETAVDES
YM = THETAVDES
ANGERR = ANGERR1
ANGERRP = ANGERRP1

NPLNEC2 RESUME
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/* HINGE LINE CONTROL

BETAC DO TO NBETAC
DO PLANEC2
SWITCH2 = BETA BETAOLD
SWITCH3 = (BETA - TRUEAN)
X1 =1
IF SWITCH3 > O.IF ALPHA < ALPHAOLD,

X1=0
IF SWITCH3 < O.IF ALPHA > ALPHAOLD,

X1=0
IF ABS(LIFTM SIN(PHID)) < LIFTSW2 ,DO BETAC2,

OTHERWISE DO BETAC1
NBETAC RESUME

BETAC1 DO TO NBETAC1

/ft ETA CONTROL PHASE
MF = 1
IF WDGDESD < .01,00 PLANEC.GO TO NBETAC
IF SWITCH3 < O.IF BETA > BETASW.IF X1 = 0,

IF ABS(ALPHARATED) < .3,CONTROLMODE=8,
S2ROLL = -S2ROLLOLD,X1=1,X=1,GO TO NBETAC

IF SWITCH3 > O.IF ABS (ALPHARATED) < LIFTSW1,
MF = 8 6/SWITCH3BS

IF SWITCH3 < O.IF ABS (ALPHARATED) < LIFTSW1,
MF = 4 6/SWITCH3BS

BETAC1A DO TO NBETAC1A

IF CONTROLMODE NOTEQ 3, X = 1
CONTROLMODE = 3

IF ABS(SWITCHS) < MF SWITCH3BS.IF X1=0,
S2ROLL = -S2ROLLOLD,X1=1,X=1

NBETAC1A RESUME
IF WEDGE > 1.5 WDGDESD,IF X1 = 0,X=0,DO PLANEC

NBETAC1 RESUME
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/* BETA CONTROL PHASE

BETAC2 DO TO NBETAC2
IF WDGDESD < > .2,MF=1,DO PLANEC,

IF WDGDESD <

IF
IF
IF

NBETAC2

001,IF ABS(ALPHARATED)
GO TO NBETAC

01,IF ABS(ALPHARATED) > 1.5,MF=1,DO BETAC1A,
GO TO NBETAC

CONTROLMODE < 4,X=0
ALPHA < W, IF ALPHA > ALPHAOLD,X=1
ALPHA > W, IF ALPHA < ALPHAOLD,X=1

UBETA= BETASW,LBETA=-20,CONTROLMODE=4
IF ABS(ALPHARATED) < LIFTSW3 ,UBETA=BETASW/2,

LBETA = -10,CONTROLMODE=5
IF ABS(ALPHARATED) < LIFTSW4 ,UBETA<= 1,LBETA=- 2,

CONTROLMODE=6
TRUEAN > BETA,IF SWITCH = 0,X=0,SWITCH=1
SWITCH2 < O.IF BETAOLD < TRUEAN,X=0
BETA > UBETA OR BETA < LBETA,IF X=0,

S2ROLL- -S2ROLLOLD,X=1
BETA > TRUEAN,IF ABS (BETA) < ABS(BETAOLD) ,

S2ROLL= -S2ROLLOLD,X=1
RESUME

IF
IF
IF

IF
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/* FILE DATA

PHI1 - SIGN(PHH) 360
= PHIC1 - SIGN(PHId) 360

MAKEFL DO TO NDMKFL
NDATA = NDATA + 1
FILEPASS = 1 + FILEPASS
PHI1 = PHI
PHIC1 = PHIC
IF ABS(PHH) > 180, PHI1 =
IF ABS(PHId) > 180, PHIC1
IF FILEMODE - 10,

FILECNT = FILECNT + 1 ,
SET FILEWRITE HIRESPLOC,
FILEWRITE T.DRHO, ALT, PHI1, PHIC1, BETA, W,

ALPHA, WEDGE, INC.THETAV.THETAR,
lERROR.NODEERR.ALPHAERRMF.WDGDESD,
THETAVDESD, (RTD YU), (RTD YL) ,

HIRESPLOC = HIRESPLOC + 19,TPHASE=0,
GO TO NSKIP1

IF (FILEMODE = 9 AND PHASE = 1),GO TO NSKIP1
IF FILEMODE = 9,

FILECNT = FILECNT + 1,
SET FILEWRITE HIRESPLOC,
FILEWRITE T.DRHO, ALT, PHI1, PHIC1, BETA, W,

ALPHA, WEDGE, INC.THETAV,THETAR,
lERROR.NODEERR.ALPHAERRMF.WDGDESD,
THETAVDESD, (RTD YU), (RTD YL),

HIRESPLOC = HIRESPLOC + 19
NSKIP1 ICNT=ICNT+1

GPLCT = 0
NDMKFL RESUME
FILEI DO TO NDFILEI

IF FILEMODE >= 2, GO TO NDFILEI
SET FILE WRITE(900)
ICNT » 0
ILOC = 2000, NVARS = 72, NCYC = 2000
FILE WRITE ILOC,NVARS,NCYC
SET FILE WRITE ILOC

NDFILEI IFILE = 1

START AT ABRAKE
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MAC* GCH.ORBITS4A

SOURCE : GCH1752.THESIS.MAC (ORBITS4A)
AUTHOR : G.C. HERMAN
PURPOSE : COMPUTES THE ORBITAL ELEMENTS AND THE CONTROL

PARAMETERS
INPUTS : CURRENT RADIUS AND VELOCITY VECTORS AND THE

DIRECTION OF THE ANGULAR MOMENTUM VECTOR OF
THE DESIRED ORBIT

OUTPUTS : THE ORBITAL ELEMENTS COMPUTED ARE: -
SEMI-MAJOR AXIS A
ECCENTRICITY E
INCLINATION I
LONGITUDE OF THE
ASCENDING NODE LONGNODE

AGRUMENT OF PERIAPSIS W
IN ADDITION THE FOLLOWING ORBITAL PARAMETERS ARE FOUND:

TRUE ANOMALY F
AGRUMENT OF LATTITUDE THETA
ANGULAR MOMENTUM H
SEMI-LECTUS RECTUM P
RADIUS OF PERIGEE RP
RADIUS OF APOGEE RA
TOTAL ENERGY EN

THE CONTROL PARAMETERS COMPUTED ARE:
ALPHA
BETA ' . .

ORBIT SUBROUTINE MU.R.V.IHNOM

IPOLE = (0,0,1) , IX =(1 ,0,0)

R=ABVAL (R), V = ABVAL(V)

IR = UNIT(R) , IV = UNIT(V)

H = R >v v , H = ABVAL (H) , IH = UNIT (H)
P = H H/MU
AINV = (2/R) - (V V/MU)

6
IF AINV =0, A = 10 ,

OTHERWISE A = 1/AINV

I = ARCCOS (IPOLE . IH)

/* UNIT VECTOR ALONG NODES

IN = (IPOLE*IH)/SIN(I)

E = (V*H -MU IR)/MU

E = ABVAL (E) , IE = UNIT(E)

152



EN = -MU/(2 A)
T = 2 PI A SQRT(A/MU)
RA = A(1 + E)
RP = A(1 - E)

LONGNODE = ARCCOS (IX.IN)
IF IN < 0, LONGNODE = 2 PI - LONGNODE

1

W = ARCCOS (IE.IN)
IF IE < 0, W = - W

2

ARGW = IE.IN

F = ARCCOS (IR.IE)

IF IR.IV < 0, F = 2 PI - F
THETA = W + F

/* FIND PLANE ERROR PARAMETERS

INTER = .IHNOM*IH

ALPHA = ARCCOS ((INTER.IN)/ (ABVAL(INTER) ABVAL (IN)))

IF ALPHA > PI/2, INTER = IH*IHNOM,

ALPHA = ARCCOS ((INTER. IN)/(ABVAL (INTER) ABVAL (IN)))
IF INTER < 0, ALPHA = - ALPHA

2
/* DEFINE ANGLE BETWEEN APSIDAL LINE AND HINGE LINE

BETA = ALPHA - W
RETURN BETA, ALPHA,I,W,F,H,LONGNODE,THETA
START AT ORBIT
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