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1. Introduction

In this paper we prove boundary regularity estimates for finite difference schemes for

elliptic systems of partial differential equations. These estimates express the smoothness,

or regularity, of the solution of the difference scheme up to the boundary in terms of the

smoothness of the data in the interior and on the boundary of the domain on which the

equations hold. For those difference schemes which require more boundary conditions than

the corresponding differential equations, the estimates show the effect of the additional

boundary data on the smoothness of the solution.

Our results are analogous to the Sobolev norm estimates of Agmon, Douglis and

Nirenberg [1] for solutions of elliptic systems of differential equations. In previous work

(Bube and Strikwerda [3]) interior regularity estimates for systems of elliptic difference

schemes were derived and a theory of pseudo-difference operators was developed (see also

Frank [4]). It is assumed that the reader is familiar with this paper. That theory is used

here to prove the boundary regularity estimates.

The approach used in this paper is similar to that used by Gustafsson, Kreiss, and

SundstrSm [6] on the initial boundary value problem for difference schemes for hyperbolic

equations. The essential ideas are first to transform the system to a one-step scheme in

the direction normal to the boundary, and then construct a Hermitian pseudo-difference

operator, the Gustafsson-Kreiss-SundstrSm symmetrizer, for this one-step scheme which

enables one to obtain the appropriate estimates for the solution. Michelson [9] has extended

these ideas to multidimensional initial-boundary value problems. Because the principal

symbol of an elliptic system of partial differential equations can involve different orders of
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differentiation on different variables, the construction used here is more general than that

of Gustafsson, Kreiss, and Sundstrhm.

We consider only boundary-fitted grids, i.e., those in which the boundary is a co-

ordinate surface. This excludes the grid systems used by Bramble and Hubbard [2] and

others in which the boundary curve is not parallel to a coordinate line. Boundary-fitted

grids are in common use in computational fluid dynamics (e.g. Thompson et al. [12]).

A scheme for the Stokes equations, an elliptic system, which is second-order accurate on

boundary-fitted grids has been presented by Strikwerda [10].

The significance of the regularity estimates proven here is that they show the effect of

the discretizations of the boundary conditions on the smoothness of the solution near the

boundary. Regular elliptic finite difference schemes satisfy interior regularity estimates

and thus have smooth solutions away from the boundary. In this paper the conditions

under which the solutions have optimal smoothness at the boundary are given.

In a subsequent work we intend to extend the results given here to estimates of the

accuracy of the finite difference solution as an approximation to the solution of an elliptic

system of partial differential equations. In this paper we give only the estimate in Theorem

3.2 which gives the accuracy of the divided differences of the solution in terms of the

accuracy of the solution itself.

The outline of the paper is as follows. We begin by considering elliptic systems of

difference schemes defined on a half--space with a rectangular grid. Section 2 is concerned

with the basic definitions and assumptions. The main result of this paper, Theorem

3.1, is stated in Section 3 after the Complementing Conditions are defined. Section 4 is
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concerned with the reduction of general schemes to a one-step scheme, and in Section 5

the Gustafsson-Kreiss-Sundstr6m symmetrizer is constructed. The boundary regularity

estimates are obtained in Section 6 which proves the maintheorem, Theorem 3.1. Section

7 is a discussion of the more general situation of difference schemes on domains with

curvilinear grids, and Section 8 is a summary of the paper which is intended to be a user's

guide, enabling one to apply the results of the paper to particular problems.

2. Definitions and Assumptions

We begin by considering the regular elliptic system of difference equations

n

ZLijuj(xv'Ytt) = Fi(xv, yg), i= 1,...,n, /t E Z d-l, (2.1)
j=l

on the half-space R d = {(x,y) : x > O,y E Rd-l,d > 2}, where the grid points are

xv = vh, yg = _th, v > 0. The boundary conditions are given by

n

Bkiui(xo, y_) = Ck(Y_), k = 1,...,q, _UE Z d-l, (2.2)
j----1

where the Bki are difference operators which involve only forward differences and trans-

lations. The number of boundary conditions which must be specified will be determined

later, (see Assumption 2.1). Without loss of generality (see Section 7), we assume that

F(x,y) and Ck(y) are 2_-periodic in each Yi- The system (2.1) is assumed to be regular

elliptic of order (a, r), (Bube and Strikwerda [3]). We also assume that there is a p € zq

such that

bkj(h,y,_) E S pk+Tj, (2.3)
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where the bki are the symbols of the Bkj when considered as difference operators on all of

I/. d.

Following Bube and Strikwerda [3], we define the tangential grid

G := {Yt, : 0 < I_S < 2N, j-- 1,...,d- 1},

where y_, := h/z E [0,27r]d-1 and h := 27r/(2N . 1). We also define

h d-1 •

Cu(_,-),vCx,.))_::(_) _Cx,_) vC_,y),
yEG

and

yEG

where r := {_ E zd-l: I_sl<-N for j = 1,...,d- 1). By the Fourier inversion formula,

_(_,y)=_ _'__(_,,').
_EF

The norms used in the regularity estimate are as follows. Let r E Z d-1 and s E R. Define

d-1

4 sin2 ( 1h(h,w) 2 := 1 + _ h-5 _wj), w= h,'_hr,
j=l

and

I[-_-II_.- _ _ ['Jo__ -- 8--_t2 m ^

27r Z Z Z IA(h'h_) rSx+ui(xv,_)l 2,
,_EP v=O m=O

n

j= I



At the boundary we define

18]

lu_.l_:=_ _ iACh,"')_-'_'SY'+'a_'Cxo,_)1_,
_EF rn=O

n

2lul_+_"=_ 1'_18+,-,,..
j=l

Note that [uil_ is the sum of norms of u i and its forward divided differences in x of order

at most s evaluated at x0, and considered as discrete functions of y.

We will assume that the operators Lii and Bkj contain only differences of order ai + U

and Pk + _'j, respectively, with coefficients which are independent of h. That is, lii, the

symbol of Lii, is in S v_+_j and

tiAh,x,u,_)=l_iCx,u,¢)h-co,+_), C2.4)

q = h_, _ E Zd, I._1_N, h-- 2r/C2N + 1).

for some function l_j independent of h. Similarly for bki(h, y, q). The inclusion of lower

order terms does not affect the form of the final regularity estimates, as will be discussed

in Section 7. For simplicity of exposition we will assume that the symbols lii(h, x,y, q) are

independent of x.

We will also assume that r:. > 1 for each j and that max/al = O. Note that if, for

some j, U = 0 then ui may be expressed as a linear combination of differences of the other

components of u, therefore uj may be eliminated from the system without affecting the

ellipticity.
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To apply the theory of pseudo-difference operators to the boundary value problem

(2.1-2.2) we introduce the reduced system of difference equations as follows. Each of the

difference operators Lij is a difference operator in both x and y. The reduced operator

]-,ij(h,y,w) is the symbol of Lij with respect to y only, and thus remains as a difference

operator in x. Here w = h_, where _ E Z d-1 is the dual variable to y. Boundary operators

.Bki(h, y, w) are defined in a similar way. The reduced system is

n

L,j(h,v,_)a_(x_,,_)=ki(x_,_), i= 1,...,n, (2.5)
j=l

with boundary conditions

n

hkjCh,v,_)_(z0,_)=5k(_), k=1,...,q. (2.6)
j=l

The reduced system (2.5) will be transformed to a one-step difference scheme in x

using a new vector of variables W(x_,,w) so that the reduced system is equivalent to one

of the form

WCx_,+l,w) = MCy, w)W(x_,,w) + hT(xv, w), v >_O, (2.7)

with boundary conditions

B(y,w)WCxo,w) = ¢(w). (2.8)

The regularity estimates will be derived for the one-step scheme (2.7) using the func-

tion W(xv, w). The final form of the estimate will follow by transferring back to the original

function u(x_,, w).
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The estimates will be derived through the use of a matrix symbol H(y,w), the sym-

metrizer, which will be constructed to satisfy the two matrix inequalities

M*HM - H >_c0hAo (2.9)

H . clB*B _ c2 (2.10)

_/4 d--1for some positive constants c0,cl,c2 and A0 = A0(h,w) := h-2 _i=1 sin2(½wi)" The

construction of the matrix H is analogous to that used by Gustafsson, Kreiss, and Sund-

strSm [6] for hyperbolic difference schemes.

Before transforming the reduced equation to the one-step scheme we require some ad-

ditional definitions and assumptions. Related to the reduced equation (2.5) is the resolvent

equation

[ii(h,y,w,z)vi = O, i = 1,...,n (2.11)
j=l

where [ii(h,y,w,z) = lii(h,y,f), the symbol of Lii, and f = (_log(z),w),v i € C,j =

1, ..., n. Here log(z) is any logarithm of z E C.

Definition 2.1

The values of z -= z(y, w) for which the resolvent equation (2.11) has nontrivial solu-

tions are called eigenvalues of the resolvent equation.

Let

n

R(y,w,z) := det{[ii(h,y,w,z)}h 2v, 2p := _](Ti . ai).
i_l

Note that R(y,w, z) is independent of h by equation (2.4). The eigenvalues z(y,w) are the

roots of R(y,w,z) = O. We will need the following lemma.

7



Lemma 2.1

The eigenvalues z(y, w) satisfy

]z(y,w)[ _ 1 if w 7_O.

Moreover, if w = 0 and ]z I = 1 then z = 1.

Proof:

Suppose z(y,w) = exp (if1) with _1 real and I_'[ -< _-. Then

0 = R(y,w, exp(i¢l)) = det{lij(h,y,w, exp(i¢,))}

implies

det{lil(h,y,¢)} = O,

where f = (fl,w). Since the matrix of the lil is a regular elliptic symbol with only highest

order terms, the determinant can not vanish unless f = 0. This proves the lemma.

To transform the reduced equation (2.5) to the one-step scheme (2.7) we must place

restrictions on the size of the stencil of the difference equations.

Definition 2.2

If Q is a difference operator in x written in the form

b

QfCx_,) = _ Q_,(h,x)T"f(xv),
D._-a

where neither Qa nor Qb are identically zero, then the extent of Q is the ordered pair

(a,b). If Q1 is a difference operator with extent (al,bl) we say the extent of Q1 is less

than the extent of Q if a <_a l __bl <_b.

The condition we place on the extent of the reduced system is:
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Resolvent Condition

If the operators Lij in the reduced equation (2.5) have extent (aij, bii), we assume

there are c_-,a+,fl-,fl + in Z n such that

a-[ + fl-i < aij < bff < a + + fl+, i,j = 1,...,n, (2.12)

and such that the number of roots z(y,w), counting multiplicity, of the equation

R(y, w, z) = 0

is precisely

?7.

_(_ +_) - Ca;+_;)
k----1

for any value of w. If Lij is identically zero for some values of (i, j) then we place no

restriction of the form (2.12) for that value of (i,j).

We now show that without loss of generality we may take a- = fl- = 0 in the

resolvent condition. By subtracting some positive integer from all the a_- and adding it to

all the fl_ we can have fl- _ 0, with minfl_ = 0, without altering the resolvent condition.

By operating on the i-th equation with Ti a_ , where Th is the translation operator in

the x direction, we obtain an equivalent system with a- = 0. (The new value of a + is

a + - a-.) Then by defining new dependent variables

u_(x_,_)= u;(x_+_,-h,_), _ > 0

a new system is obtained with fl- = 0. (The new value of fl+ is _+ - fl-.) Note that

the (old) variables uj(xo, w), ...,ui(x/3__l,w ) do not appear in the difference equations and

9



thus are superfluous, appearing only in the boundary conditions. We will assume that these

boundary variables can be expressed as linear combinations of the other (nonsuperfluous)

variables and thus be eliminated. If these variables can not be so eliminated then the

system does not have sufficient boundary conditions to determine the solution.

We now make an assumption on the number of boundary conditions.

Assumption 2.1

The resolvent condition holds with a- = fl- = 0 and the number of boundary condi-

tions q is equal to the number of roots in z of

R(y,w,z) = 0 (2.13)

which satisfy

o< < 1 for

Recall that ]z(y,w)[ # 1 for w _ 0 by Lemma 2.1. We also know that

al + rj < a + + l_?. (2.14)

since a consistent difference operator approximating a differential operator of order s must

involve at least s + 1 points. In the case that the number of boundary conditions q is larger

than p as defined in Definition 2.1, we need an additional assumption. We assume that

the boundary conditions are ordered so that the Pk are in increasing order and we then

define two important quantities. Let

fi := max (Pk + 1,0). (2.15)]<_k<_V
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and

mink>q(pk) + 1, if q > p; (2.16)
p* :=

oo, ifq=p.

The number p* is only used to limit the order of divided differences in the regularity

estimates, when p* is infinite there is no restriction on the order of the differences,e.g.

Theorem 3.1.

Assumption 2.2

If q > p, then we assume that

pk > p, for p < k < q.

That is, the last q - p boundary conditions have weights Pk which are nonnegative

and larger than the weights of the first p boundary conditions.

This assumption is needed to obtain the regularity estimates in the appropriate norms,

and can be motivated as follows. If the difference scheme (2.1) is an approximation to a

system of differential equations then p of the boundary conditions (2.2) would correspond

to the boundary conditions of the differential equations. The remaining q - p boundary

conditions which are required by the difference equations should be intrinsically distinct

from the first p boundary conditions, and this distinction is maintained by having the

weights pk of the last q - p boundary conditions sufficiently large and indeed larger than

the weights of the first p boundary conditions. Note that _ is zero for the classical Dirichlet

and Neumann boundary value problems for elliptic equations of order 2p.
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Definition 2.8

Corresponding to the system of difference equations (2.1) is the associated system of

differential equations

LiyCy, Oz, ay)Cvj(x,y) = FiCx, Y), i : 1,...,n, (2.17)
.i=l

where Liy is the differential operator whose symbol/_iy(y, _) is the limit of lij(y, h_) as h

tends to zero. The associated boundary conditions are

n

Bky(Y, C3zlz=o,i)y)tvi(O,Y) = Ck(Y) k : 1,...,p, (2.18)
j=l

These are obtained by the same limiting procedure from the first p boundary conditions

(2.2), (see Assumption 2.2).

The above limits exist by equation (2.4) since the Liy and bky are difference operators

in Sa'+rJ and SPk+rJ respectively; see also equation (2.8) of Bube and Strikwerda [3].

As in Agrnon et al. [1, p.39], we require the associated differential equation to satisfy

the following condition.

Assumption 2.3 Supplementary condition on L.

L(y, _) is of even degree 2p with respect to _. For every pair of vectors _ and _' in R d

the polynomial L(y, _ + _-_') in the complex variable _"has exactly p roots with positive

imaginary part.
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3. Complementing Condition

In order for the regularity estimates to hold for the system (2.1) certain conditions

must be satisfied by the boundary conditions (2.2). Before stating these conditions, called

Complementing Conditions, it will be helpful to introduce some notation. We will write

the reduced equation (2.5) as

LCh,y,_)_Cxv,_)=rCxv,_), _ > 0, (3.1)

and the boundary conditions (2.6) as

_,(h,y,_)_C_o,_)=$1(_),
(3.2)

_(h,y,_)_C_0,_)=_:(_),

where/_1 is composed of the first p boundary operators and/_2 the last q - p boundary

operators (see assumption 2.2).

The reduced equation (3.1) can be replaced by an equivalent equation independent

of h by the following scaling procedure. Multiply the i-th equation by h _ and replace

I whichthe variables uj by u}h rj. This gives a system of difference equations in the uj

is equivalent to the original system. The boundary conditions can be scaled in a similar

manner.

The Complementing Conditions will be stated in terms of eigensolutions, of which

there are three types. Because of the above scaling procedure, we need only consider h

equal to I.
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Definition 3.1

An eigensolution of type I is a nontrivial solution to the difference equation

L(1,y,_)u(x_,_)= o _ > 0, for some _ _ 0,

satisfying

B1 (1,V,W)U(Xo,W) = 0

a)
h_(1,y,_,)u(xo,_)=o,

b) u(_,_) _ o a_ _,_ _.

Definition 3.2

An eigensolution of type H is a nontrivial solution to the associated differential equa-

tion

L(u,o_,o)_,(_,o)=o for o_ Ra-_, I01= _,

satisfying

a) B_(y,O_,O)_,(_,O)I_=o= O,

b) _,(_,O)-_o as _ _ o0.

In the case q > p we formulate:

Definition 3.3

An eigensolution of type III is a nontrivial solution to the difference equation
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satisfying

a) !_Cx,y,xo)_Cx0,_)l_=o= 0,

b) _(_,0)-_0 as _-__.

We now state the Complementing Condition and the main theorem of this paper.

Complementing Condition

The system (2.1) with boundary conditions (2.2) satisfies the Complementing Condi-

tion if there are no eigensolutions of type I, II, or Ill.

Theorem 3.1

If uCx_,,y_,) is a solution to the system (2.1) with the boundary conditions (2.2) and

Assumptions 2.1, 2.2, and 2.3 are satisfied, then the following regularity estimate holds

for each s with _ <_ s < p* and h sumciently small if, and only if, the Complementing

Condition holds.

II,.,,ILL,,+ luI,-+.,_-':' <-c.,(l¢,I.,-,o-_2 + h'°-':+_'"_=,_-_''+ IIFIIL,,+II'."llo_). (3.3)

1L2(_-_)Jwhere t = _ +

The boundary data €1 and ¢2 are defined by equation (3.2) according to Assumption 2.2.

The subscript on the norm of €I uses only the first p components of the multi-index p,

and hP-8+½€2 is understood as multiplication of the (k - p + 1)-st component of €5 by

hPk-8+½ for k > p.

Note that the nonexistence of eigensolutions of type II is equivalent to a regularity

estimate analogous to (3.3) (with €2 = 0 ) holding for the associated differential equation
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(2.14). Theorem 3.1 is proved in Section 6 as Theorems 6.1 and 6.2.

An immediate corollary of Theorem 3.1 is Theorem 3.2.

Theorem 3.2

Suppose v is a solution to the finite difference equations (2.1) and u is a solution to

the corresponding partial differential equation (2.17) such that

1) Lv= F, By=C,

2) Lu-- F + O(h r_),

3) Blu = €1 + O(hr_), B2u = ¢2 + O(hr3-P),

4) ]]u- vllo = O(hr').

Then, for fi <_s < p*,

11u- vllr+s + I_ - vlr+s-_ = O(hr),

1
where r := min{rl,r2, r3 + _ -- _,r4).

4. The One-Step Scheme

We now describe the transformation of the reduced equation (2.5) to the one-step

scheme (2.7). We first operate on the i-th equation of the reduced system (2.5) with

(6+ - Ao) -a'+z , (4.1)

where ho is the symbol 3-o(h,w) defined in equation (2.9). Recall that ai _<0 and/_ _>0.

Let

:=(6+-
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The resolvent equation for this new system has the additional root z = l+ hA0 with

multiplicity [aI+ nil. Since 1 + hA0 _>1, no additional boundary conditions are required.

The first p boundary conditions are modified by multiplying the k-th boundary con-

dition by ,_-l-pk and, when q is greater than p, the last q - p boundary conditions arezL0

multiplied by h pk-p+I. Note that

fi- l - pk >_O, for O < k < p,

fi-- l -- pk < O, for p < k < q.

The resulting system of difference equations is elliptic of order (O,v + fi) and the

resulting boundary conditions are all of weight greater than or equal to -1. We obtain

n

].,_jCh,y,w)u3.(xv,w) = F_Cx_,,w), v _>0, i=- 1,...,n, (4.2)
j=l

n

Z B'Ch'Y'W)u.iCx°'w) = ¢_(w), k - 1,...,n. (4.3)
3"----1

This system of difference equations will now be written in a more canonical form. The

left side of each equation of the reduced system (4.2) can be written as a sum of terms of

the form

where p(h,y,w) E S rj+p-a,a _< 73"+fi and, by Assumption 2.1, q _> 0. Ifq _> 1 and

a < r3"+ fi - 1 we can rewrite this term as

,. -r-1 w),5_+lT_ -l uCxV,w).p(h,y, )6+Ti; + @(h,y,

17



In this way the order of translation q is reduced by one and the order of differencing

is increased by one. Note that hp(h,y,w) E S rj+g-l-_ By continuing in this way, we

obtain a system where the nontrivial translation operators, i.e., q > 0 , operate only on

the highest order differences.

The resulting system may be written as

n n rj+_- 1

i, o =ija(h,y,w)5+uj(xu, w) F_(x_,, w), (4.4)
j:l .7"=1 a:O

u>0, i----1,...,n.

where gij is a polynomial in T (the translation operator in the x-direction) with coefficients

in S °, and lija E S r_'+p-a.

Before transforming the system (4.4) to a one-step scheme, it is necessary to exam-

ine more closely the matrix of translation operators G(T) := (gij(T)) . The extent of

-T-5_+_gij( ) + is at most (0, a + + _+ - ai + _), by Assumption 2.1. Decompose G(T) as a

sum of GI(T) and Go(T), where GI(T) is composed of elements g_j(T) which, if they are

nonzero, are of degree qij = a + + _? - ai - r1, and Go(T) has elements g°j(T) of degree

less than "lij.

Lemma 4.1

GI(T) is equivalent through elementary row operations to a diagonal matrix, i.e., we

can assume that

, {o, iri # j;giy(T) = Tgi, if i= j, Pi := "/ii. (4.5)
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Moreover, (4.4) is equivalent to

n p j--1

=- 9 jb(Y,) +
]----Ib----0

(4.6)
n rj +p--1

_-_ _ 7,, a + _'"'X 'lij(h,Y,W)6+ui(x,.',w) *'i t v,w).
3;=1 a=0

v>0, i ----1, ..., n.

By an elementary row operation we mean permutation of the rows, multiplicatiori of

a row by a nonvanishing function of (y, w) which is in S °, or addition of a translate of one

row to another row.

Proof:

GI(T) = ({l_j(h,y,w)T'V'_),

and since det(_j) is the coefficient of the highest power of z in R(y,w,z), det(_j) does

not vanish for any (y,w). Also, in adding to row I a translate of row m we can restrict

ourselves to the translation operator T('_ +-az)-(`_-+,-a'). It is then easy to see that the

elements of GI(T) will remain monomials in T of degree "/ij, although the rows, and thus

the "/ij, will be permuted.

It is a standard result that by means of these elementary row operations GI(T) can

be transformed to upper triangular form (see Gantmacher [5,p. 135], and since GI(T)

remains a matrix of monomials in T it can be transformed to a diagonal matrix. This
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matrix has nonvanishing diagonal elements; by dividing through by the coefficients of T'_"

we achieve the form (4.5).

The lemma will be proven if we can show that the elementary row operations keep

the degree of the (i,j)-th element of Go(T) less than _/ij and do not create new elements

for GI(T) from the second sum of equation (4.4). It is easy to see that by operating on

the i-th row of (4.4) with a translation of degree (a + - at) - (_+ - ai), and adding it to

the/-th row, the degree of the (l, j)-th polynomial in Go remains less than "Yzj.The effect

of this operation on the second sum in (4.4) results in terms of the form

"[,i,,T"td_uj(x_,, w),

in the/-th row, where q = (a + - az) - (a + - ai). If q + a < rj -t- fi, this term can be

written as

l, -o(1+ w),

which, when expanded, again has the form of the terms in the second sum of (4.4). If

. a > U . fi then by repeated substitution of 1.4-hdf+for T one obtains terms as in (4.4)

with the term of highest power in T being

T'_+a-r_-P,_ri+P,, .l_. w).

Now by inequality (2.14) a < T1 .4-fi < a + -4-fl+ -ai .4-fi, so

and hence this term is also of order less than qti- This proves the lemma.

2O



We now define the variables Wi,a(Xv, w) which are the components of the vector W in

the one-step scheme (2.7}. We set

Wi,a(X,.,,W ) := A_'+_-l-ar_o+uitxv," w) for a = 0,...,_'j + fi- 1,

If #j > O, we put

Wj,a(xv,w):=Ta-(rJ+_-1)6__+P-luj(xv,w), for a = rj+ _,...,rj+_- 1 + pj.

Thus there are a total of [g[ . IT]-1-n_ components in W.

The equations comprising the one-step scheme are: first, if H + fi - 1 > 0,

Wj,a(Xv+l,W) = Wj,a(Xv,W) + hAoWj,a+,Cx_,,w) for a = O,...,rj + _- 2, (4.7)

and, if g1 > 0,

Wj,a(Xv.{_l, 0)) = Wj,a._.l(Xv,w), for a = "/'j -_- p-- 1, ...,Tj -_- p -{- _/,j - 2. (4.8)

For a = rj + p + ,j - 1 we use equation (4.6) to obtainan expression for wj,a(zv,w).

Multiplying equation (4.6) by h we have

Tt_i rr_+_-I ,
o+ uitxv+l,w) :

n pj -- 1

Tm,5__+_-'ui(xv,w)- _ _ gO'blTb+16_-+P-'uj(x_,,W)- Tb_2+P-'uj(xv,w)l
j=x b=O
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n ry+_-2

3"=1 b=O

__'t! t--(rj+P -l-b) S0" Tb6_.+_-where r_o'b = '°qjb"0 € Replacing luj(xu, w) by WLb+r+__ 1 in

the above, we have (with a := Ti+ fi - 1 + #i)

= (4.9)

n /_j--'

]= I b=0

n rj+p-2

+
j=l b:0

The equations (4.7), (4.8), and (4.9) together give the one-step scheme (2.7). We also

will write equation (2.7) as

Wi,,_(x_,+l,W) = _ Miyab(y,w)Wy,b(x_,,w) + h_(x_,,w), (4.10)
j,b

i : 1,...,n, a:O,...,Ti+fi--l+lti.

Note that the matrix M(y, w) as constructed is independent of h, depending only on

y and w. This follows from equation (2.4) and the means used to define the Wd:(xv,w).

Note that hA0(h,w) ¢4 d-1= Y_i=I sin2(lwi) is independent of h, depending only on w.

The boundary conditions (4.3) can be written in terms of the variables Wi,_ as

Bl(y,w)W(x0,w ) : ¢1(_o)

(4.11)
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where B1 and B2 consist of the first p and last q - p boundary operators, respectively, as

follows. Each of the terms in the sum (2.6), describing the boundary conditions for the

reduced problem, can be written as

rj+pk

Bkyui = E bk,y,_(h'Y'w)A;_+Pk-a6+ui'_
a=O

where the bk,i,a are symbols of order 0 in w. The first p boundary conditions are scaled

by AP--I--Pk"'0 , as mentioned earlier in this section, and thus

rj+pk ry+pk

- ~ -- "\Ari+P--l--at:au" (h,
a=O a=O

This defines the elements of B,(y,w). The components of q_1(w) are APO--I--"kCk(W).

The elements of B2(Y, w) are obtained by scaling with h pk-p+I. Thus each term in the

sum in (2.6) for k from p + 1 to q becomes

rj+pk rj+p--1

hPk-p+l E L _rJ+pk--aca" : ""0 ,.,+-t_juj,k,alX 0 v+uj E bJ'k'a(hA°)Pk-P+IAry+p-l-a'_a"
0.=0 a=O

rj + Pk
r ' --a_r;+---1

+ E bj,k,a(T- 1) a-_+l- i(hAo)rS*pk o__ p u s.
a=r_.+p

23



The first summation can be expressed as

rj+p-1

by,k,a(hAo)Ok-P+ lWj,a (4.12)
a=0

and the second as

Pk --p+l

a=l c=O

This second summation is further expressed as the sum of several terms,

Pk --_+1 min(a,t_j)

bj, k,a+r_+_-I (hAo) pk-'+l-a _ (:)(-1)a-cWj,c+rj+p_l, (4.13)a--'--I c=O

and

pk--_+l a

bJ,k,a+rj+p-l(hAo)Ok-p+l-a _-_ (:)(-1)a-CTC-ttJWj,ri+p-l+ttj, (4.14)
a=pi + 1 c=Iti + 1

where this last expression is taken to be zero if _" is greater than Pk--/_+ 1. The expressions

TC-VJWj,rj+p_l+gj are replaced by repeated use of the equation TW = MW + hi. This

defines the elements of B2(y,w) and the components of +2(w) are h ak-_+lCk(w) plus terms

from hi.

We now state and prove two lemmas about the matrix M.

Lemma 4.2

det(-_-) -- h-I"l AIo_l+n"L(h,y, w)c(y,w),
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where L(h,y,w) = det(lii(h,y,_)) for _ = (O,w), c(y,w) # 0 for ali w, and c(y,w) is

independent of h.

Lemma 4.3

I1()-111 <_cAo',

for some constant C.

Proof of Lemma 4.2:

There are three types of rows in the matrix (M - I)/h. Thinking of W as a doubly

subscripted vector, the first type is obtained from equation (4.7) and contributes one

nonzero element, ho, in row (i, a) and column (i, a+l) for a = 0, ..., ri+_-2,1 < i < n. The

second type, obtained from equation (4.8), contributes two nonzero elements -h-1 and h-I

in row (i, a) and columns (i, a) and (i, a + 1) for a = ri + _- 1, ..., ri + _+ tti- 2, 1 < i < n.

We now evaluate the determinant. First, each row corresponding to an equation of

the type (4.7) has only one element, A0, in the position ((j,a),(j,a + 1}),1 < j < n,a =

0, ..., U + P - 2. Evaluating about these rows gives AIorl+=(g-1) times the determinant of

the remaining rows and columns. The second class of rows corresponds to equation (4.8).

These have the elements h -1 in the position ((j,a), (j,a)) and -h -1 in ((j,a), (j,a + 1)),

1 < j < n, a = ri + _ - 1, ..., ri +/_ - 1 + _tf - 1. However, in evaluating about the first class

of rows the column (j, ry + _- 1) is eliminated, so by evaluating the determinant remaining

after the first reduction there results a factor h -1 times rhif0(w) in the (i, ri + _- 1 + gl)

row and the (j,0) column which is, by definition, equal to [iyo(h,w)Ao rj-_+l. Thus, from

the definition of the l'ijo resulting from the operators (4.1), the determinant of (M - I)/h
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is

=kh-It'l A[0vl+n_det (llj (h, y, w))/det (g_](w)),

t

where gij(w) are the coefficients of el(T). Since det(_y(w)) does not vanish for any w,

this proves the lemma.

Proof of Lemma 4.3:

Using Cramer's rule to evaluate the inverse matrix of (M - I)/h one sees that each

minor is bounded by either Ao 1 or h times the determinant of (M- I)/h. Since h < c/A0

the estimate follows easily.

Lemma 4.4

For w = O, 1 is a semi-simple eigenvalue of M. That is, there are exactly It[ + n_

linearly independent vectors vi,b,j = 1, ...,n,b = 0, ...,rj + _- 1 such that MVi,b = VJ, b.

Moreover, these eigenvectors are given by

/_d/_,b, ifO < b < ry + _- 2;
V_,'ab= _idi_n+__l,b, if a > ri + _-- l, b= rj + _- l;

O, otherwise.

Proof:

We consider the equation MV = V. From the (4.7), we see that (MV)i,_ = Vi,a for

O <_a <_ri + p- 2 and from (4.8) (MV)i,_ = Vi,_+_ forrj+_-1_<a_<rj+_._j-2.

Thus if V is an eigenvector of M with eigenvalue 1 then Vi,a = Vi,n+g-1 for these _ui

components. In (4.9) note that h-lrhi,i,b € S 1 and hence vanishes at w = 0. Thus for an

eigenvector, (4.9) reduces to (MV)i,a = Vi,a for a = ri + _ -- 1 + _ti. It is now easy to check
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that the [r I + n_ independent vectors V i,b given in the lemma are indeed eigenvectors.

Moreover, by Theorem 5.3 the multiplicity of the eigenvalue 1 is Ir] + n_, hence these are

all the eigenvectors and 1 is a semi-simple eigenvaiue.

Lemma 4.5

ff MW = W for w = O, then B2W = O.

Proofi

If w = 0 then A0 = 0 and all the coefficients in (4.12) vanish since p} > _ for k > p

by Assumption 2.2. Since MW = W the sum of (4.13) and (4.14) gives the coefficient of

bj,k,a+rj+_-I aS

rnin(a,Dj) a

(:)(-1)a-ewi,c+rj+p_l + _ (:)(-1)a-cw.i,rj+p_l+_i. (4.15)
c=0 c=pj+l

Again since MW = W the equation (4.8) implies that

Wi,a =Wi,a+l , for a=ri+_-l,...,ri+_+_i-2 ,

and hence (4.15) is equal to the quantity

c=O

which vanishes identically. This shows that B2W = 0, as asserted.
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5. Construction of H(y,w)

We now construct the matrix H(y,w) to satisfy inequalities (2.9) and (2.10).

Theorem 5.1

There exists a bounded Hermitian matrix symbol H(y, w) € S Owhich is a C °o function

of (y,w) for y E 1_ d-I and w G 1_ d-1 \ {0) such that

a) M*HM- H > c0hAo

(5.1)

b) W*HW >_(,71W.l IW_12),

where W+ -- W+(w) is the projection of W into the span of the generalized eigenvectors of

M whose eigenvalues are of modulus greater than unity, and W_ = W_ (w) is the projection

into the span of the generalized eigenvectors of M whose eigenvalues are of modulus less

than unity. The constants c0, cx and rl are all positive and, moreover, rl can be chosen

arbitrarily large with co, cl, and H depending on r/.

The proof of Theorem 5.1 will be postponed until after we prove Theorems 5.2-5.4.

We begin by constructing H in a neighborhood of Wo _ 0.

Theorem 5.2

There exists a smooth, bounded matrix function P(w) defined in a neighborhood U

of wo _ 0 such that

p(w)M(w)p(w)_l = ( M+(W)o M_(w)O ) , (5.2)

28



where M+(w) is a m+ x m+ matrix and M_(w) is a m_ × m_ matrix. Moreover, rorw EU

M__(w)M+(w) > 1 + Co,
(5.3)

and M*__Cw)M_(w) < 1-_o.

m+ is the number of eigenvalues of M(w) of modulus greater than unity and m_ is the

number with modulus less than unity.

Proof:

By lemma 4.2_ M(w) has no eigenvalues of modulus one for w :fi 0. Therefore it

follows by standard linear algebra that M(w) can be transformed to the form (5.2). That

the inequalities (5.3) can be satisfied is also a standard result, see Gustafsson et al. [6].

For wo =/:O, H(w) can be constructed in the neighborhood U of wo as

where Irn+ and Ira_ are the identity matrices of order m+ and m_, respectively. It is

easily checked that H(w) satisfies (5.1) in V.

We now consider M(w) in a neighborhood of wo = O.

Theorem 5.3

For Iw[ near zero the eigenvalues of M(w) separate into three distinct classes. These

are:

1) There are ]a] + np eigenvalues with _: = 1 + hAo.

2) There are I 1- = eigenvalues which are the roots of the equation

det(lij(h,¢)) = O,
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with

_"= (_l,w) and _; = exp(i¢l),

wh ere

t_ = 1 i O(hAo).

Moreover, p of these eigenvalues satisfy

I_[ _<1 - chAo,

and p of them satisfy

In[ _>1 + ehho,

for some positive constant e.

3) There are I/z[ eigenvalues which satisfy

I1, 1-11> > o.

Proof."

The proof depends on the equivalence of the one-step scheme to the original reduced

equations (2.5). The first class of lal +nil eigenvalues with _ -- l+hAo are due to operating

on the reduced system with ((5+ - Ao)-a'+_ (see 4.1). There are a total of

n

i=1

such eigenvalues. The third class of eigenvalues is determined as follows. At Wo = 0 the

eigenvalues of M are the roots of
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detCgij(_;))(_ - 1) Irl+_ = 0,

by equation (4.4). Notice that the "[iia in equation (4.4) vanish at COo= 0 since they are

symbols in S rj+_-1-= with only highest order terms. Since the system C4.4) is elliptic of

order (0, r + _) the root _; = 1 cannot have multiplicity greater than I_I -I-np. These are

the roots of class (1) and (2). Thus the roots at w0 = 0 which are distinct from 1 are all

the roots of

detCgii(g)) = 0,

of which there are It_!. By Lemma 2.1, I_1 is not equal to 1. By continuity there exists

some neighborhood of w0 - 0 and constant for which the inequality in part (3) holds.

The remaining I l- [oleigenvaluesare easily seen to be related to the associated

system of partial differential equations (2.15). If we define _(0) by

det(lij(y,k,O)) =0,

then

~ OJ

--1+ +o(1 12).

By the supplementary condition (Assumption 2.3) we easily obtain the inequalities in

part (2) for the p eigenvalues less than and greater than one in modulus.

Theorem 5.4

For w in a neighborhood of zero there is a continuous nonsingular matrix Q(w) such
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thatIIQ(_)IIa,d IIQ-I(_)IIarebo.ndedand

Lo(_) O O O
2t:!Cw):= QCw)MCw)Q-l(w) = O No(w) O O (5.4)o o L:(w) O '

0 0 0 N:(w)

where Lo, L:, No, and NI are square matrices. Moreover,

a) L_Lo < I-_,

b) N_No > 1+ 5,

(5.5)
c) L*IL: < 1-c:hAo,

d) N_N1 __ 1+ c:hho,

with L1(O) and N:(O) being identity matrices. The dimension of LI is ½(]TI-I,_1)= v and

that of N1 is ½(Irl + Iol) + n_.

Proof of Theorem 5.4:

For w in a neighborhood of zero the eigenvalues of M(w) separate into three classes:

those which are strictly less than one in modulus, those which are strictly greater than one

in modulus, and those which are not bounded away from one in modulus. Thus Q(w) can

be constructed so that

Lo 0 0 "_

QCw)M(w)Q-l(w)= 0 No 0 ),0 0 M 1

where the three matrices on the diagonal correspond to these three classes of eigenvalues.

Moreover, Q(w) can be constructed so that L0 and No satisfy the inequalities of the

theorem.
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By Schur's theorem we can assume that Ml(w) is in upper triangular form with the

1
first _([r[- [a[) diagonal elements being those eigenvalues which are less than one in

modulus for w nonzero. There are ½([r[- [a[) -- p such eigenvalues by Theorem 5.3. Thus

M2(w) )Ml(w) = O N2(w) "

We now show that there is a matrix D(w) such that

O I N2 I O N2 '

with IID( )IIbounded for w near zero.

The matrix D(w) is the solution to

L2(w)D(w) - D(w)N2(w) = M2(w).

In order to prove the existence of D(w) we give the following

Lemma 5.1

There is a unique solution to

L2D - DN2 = 3/12,

with

]lDll< KI]M2ll/hAo,

where K is independent of h and w.

33



Proofi

By Schur's theorem there are orthogonal matrices Oi and O2 such that L := O[L201

and N :- 0_N202 are lower and upper triangular, respectively. With M :-- 0_M202 and

.D := O_D02, the equation becomes

]<i ]<K

This is a recursive formula for the elements of/9 in the order !)ll,!)12,...,!)21,...,b_b.

By Theorem 5.3 (Lii - Nkk) ----O(hAo) and the estimate follows easily. This proves the

lemma.

It remains to show that ]]M211< chAo. We will need the following lemma, whose proof

will be given after the completion of the proof of Theorem 5.4.

Lemma 5.2

Let x(€) be an upper triangular matrix depending on € for 0 < € <_co. ff

II

and

cle<lz.l<Cle for O<e<eo,

then

for some constant C.
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Now with e = hA0 and x(e) = Ml(W) - I it follows from Lemmas 4.3 and 4.4 that

[[M2[[ < chAo. Hence D(w) is bounded in norm for w near zero.

An argument similar to the above shows that the off-diagonal elements of L2(w) and

N2(w) are all of order hA0. Thus there are constant diagonal matrices O1 (w) and D2(w)

such that for

Ll(w) := D,L2(w)D_ 1,

Nl(w) := D2N2(w)D21,

we have

L'iLl < 1- chA0,

N_N1 < 1 + chho.

This completes the proof of Theorem 5.4.

Proof of Lemma 5.2:

The proof is by induction on j. Suppose (xo.) < C(l)€ for j = i + l, 0 < l < m - 1.

For j = i, Ixijl <_C_ by hypothesis. Let zij := (x-l(_))O ", then

0 = Xl,iZi,i+rn + Xi,i+lZi+l,i+rn + ... -_ Xi,i+rnZi+rn,i+rn,

i-b rn--1-1

Zi'4-rn'i'4-rn j=i
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and hence

i+rn--1

Ixl,;+mJ_ C,_ _ (C(])_)(c/_)< C(m)_,
j=i

which proves the lemma for C equal to the maximum of the C(l).

For !_!(w) in the form (5.4) satsfying (5.5), we construct H as

(oo )H:= 0 0 -
0 0 0 _/I

and then

It follows that

M*HM- H = Q*(M*HM- H)Q

>_cohl_oQ*Q

>_c lohlto.

This satisfies (5.1a) locally; similarly (5.1b) is satisfied.

We have constructed H(y,w) satisfying (5.1) in a neighborhood of each w. Since the

set of w with [wi[ <_7r is compact we can choose a finite set of these neighborhoods which

cover R d-l, and through the use of a partition of unity we can construct H(w) for all w.

This proves Theorem 5.1.
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We now show that the relation (2.10) is satisfied for some positive constants cx and

c_. By equation (5.1) we need only show that

I_w_l__ _Iw_l_,

for some positive constant _ where W_ is defined as in Theorem 5.2. For then

W*HW + cxlBWl__ _xolW.l-cll_W.l_+ (c,_- _l)lW_l_

> c_(IW+l_+ IW_l_)

> c_lWl_,

for cl and ,7 chosen large enough. Thus we need to prove

Theorem 5.5

If the Complementing Condition is satisfied then there exists a positive constant

such that

IB(w)W_l _ > _lW_l _, (5.6)

for all w E R a-l, and a11W_ defined as in Theorem 5.1.

Proof of Theorem 5.5:

Suppose for some Wo with Wo -€ 0

e(_o)W_= 0 for Iw-L= 1, (5.7)

where W_ is in the generalized eigenspace of M(w) whose eigenvalues are of modulus less

than unity. Then by setting

Wo := W_
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W_+I := M(wo)W_, u >_O,

Wu is an eigensolution of type I. W,, tends to zero as r, increases since W_ is in the

generalized eigenspace whose eigenvalues of modulus less than unity. Thus (5.7) violates

the Complementing Condition.

Next suppose that (5.7) holds with Wo= 0. It follows that

13 (0)w_=0,

and we see that Wu, generated by M(0) as above, corresponds to an eigensolution of type

III. Therefore (5.7) violates the Complementing Condition when w0 = 0. Now consider the

possibility of the existence of sequences {wk}_°=l and {Wk_}_=l such that

O-'k---'Oas IWl:l ,

and

13(wk)Wk_---,0 as k -_ oo.

We may assume that there exists a W ° such that

Wk_ "-'-_W ° and O as k

Set W_° := W°i + W_I I where W°t is in the linear space spanned by the eigenvectors of

M with eigenvalue 1 and W°lt is in the span of the eigenvectors with eigenvalues strictly

less than 1 in magnitude. By lemma 4.5, 132W°I = 0, and, since 132W° = 132W_II = 0, the

nonexistence of eigensolutions of type III implies WC]iI is zero. Therefore, without loss of

generality, we can assume
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p

b=l

where the _b(Wj) are the eigenvalues of M(wj) with tCb(Wi) + 1 as wi + 0, f_: --* f_), and

I_b@AI< i for wj # 0. Define the vector-valued function Z(x) by

P

z(x):=_ s_-,,•
b=l

where

1 - ab(wj)
rib := limk--.oo 10:jl

By the structure of the eigenvalues of M at w = 0 (Lemma 4.4), we have that Zi,a(x) =

Zj,,.i+__l(x ) for rj+p-1 <a<rj+fi-l+ttj. From (4.7), forO_< a< _-j+fi lwe

have

Wj,a,_,+l - Wi,a,_, = hAoWi,:+l,v,

or

p

:_i,:_(_- 1)=_AoW_.,o+,,..
b=O

Dividing by Iwji and taking the limit we have

P p

fb,y,a(--rlb)e -rTbx-- _ fbj,a+l e-17bz,
b=0 b=0

hence

0
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forO_<a<Tj+fi-1. Thus

Zi,a(X)=(J-_)aZi,o(x) for a = O,...,T3. + fi-- 1.

Let Zj(x) be Zj,o(x ). Finally, from (4.9), we obtain

n p.j -- 1

j----1 b=l

n rj+p-2

+E E ",, ).
3"=1 b=O

By reversingthe transformations done after equation (4.4) (seeLemma 4.1) we have that

this system is equivalent to one analogous to (4.4), namely,

n n rj +,_-- 1

3"=x 3"=1 a=0

o a,+O (4.1) weBy eliminating the factors (_ - 1) corresponding to obtain the associated

system of differential equations (2.17) and the vector function Z(x) = (Zi,oCx)) is a solution

to (2.17).

By a similar reduction one can show that Z(x) satisfies B1Z(0) = 0. The nonexistence

of eigensolutions of type II implies that Z(x), hence Z(x), is zero. Thus we have, for

Iw_l = 1, that IB(w)W_ I > c which proves Theorem 5.5.
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6. The Regularity Estimate

In this section we prove the regularity estimate (3.3) using the inequalities (2.9) and

(2.10) and G£rding's inequality (Bube and Strikwerda [3]). We state the final estimate as:

Theorem 6.1

If the elliptic difference scheme (2.1) with boundary conditions (2.2) satisfies the

Complementing Condition and Assumptions 2.1, 2.2, and 2.3, then the following regularity

estimate holds for _ <_s < p* and h sufficiently small,

2 + [hp-t+l¢2[2 22 , < c8(1€118_p__ 8-t+llFII + Ilullo ). (6.1)II' ll +s+ - s-,,

where t = _ + -_

The first step to proving Theorem 6.1 is to prove estimates on the tangential differ-

ences. We first define the norms

n rj+t
2

IlU[I_.t, r.8 -- E E ArJ.a--a_al_ 2-- "* + j O,

j=0 a=0

and

n rj+t

tt 2
I Irq-t,rWr- E E Arj.r--a'_a" 2.... +o_j O,

j:0 a:0

which limit the normal differences, i.e. those with repect to x, which are included in the

norm.
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Our first result is

Theorem 6.2

If the elliptic difference scheme (2.1) with boundary conditions (2.2) satisfies the

Complementing Condition and Assumptions 2.1, 2.2, and 2.3, then the following estimate

holds for any real s.

2 U 2 I..,_,o__+ Ih'°-'_+'C_.lLp+_+ IIFIl,__o.,.,_,,

U 2 lU2+ II II,-+,_-,,o+ ,.+,__,,__).

(6.2)

Proof:

We have that

OO

IfvI0,s,
v=0

where Ifvlo,8 is the Sobolev norm of order s on the tangential variables only at xv. Using

equation (2.9) and G£rding's inequality on the tangential variables, we obtain

co

[IW[[20,8-< C E((M*HM-- [-I)Wv, Wv)o,8_½ + (Wv, Wv)o,8_;.,
v=O

where the tilde indicates the pseudo-difference operator corresponding to the given symbol.

For solutions of (2.7) this gives

IlWllg,8 <_C(-(Wo, HWo)o,8__ + _llWllg,_ + _ll_'llg,8_, + Ilwll 2o,___).
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Equation (2.10) and G£rding's inequality again imply

c(l_Wol_,_+_llwll2 _ = 2IlWllo_,8+ IWolo,____< __, 0,8+ I1_11o,_-,+Ilwll_,8__+IWo[o,8_,).

Taking € sufficiently small we obtain

2 2

2 < c(l_wolg,__+ 11_112o,s-1+ IlWllo,s__+ IWolo,__l).IlWllo2,_+ IWolo,____

Also, for _ > 0 there is a c8,_ such that

IlWll_,____ _llWllg,8+cs,_llWllg,o,

and similarly for the boundary norm, e.g. Thom_e and Westergren [11], or Bube and

Strikwerda [3]. Thus we obtain

2 +I1_11, + IlWllo,o+IWolo___). (6.3)IlWll_,8+ IWolo,___<c(l_Wol= 2 21 O,s- 2- -- 0_8--_

The estimate (6.2) for the original dependent variables is obtained from (6.3) by replacing

the Wj,a by the equivalent expression in terms of the u i. The norms and scaling of the

boundary data €1 and ¢2 in (6.2) are the result of the modifications to obtain the one-step

scheme as described at the beginning of Section 4.

Estimates on the Normal Differences

We now consider estimates on the normal finite differences, and begin by stating

interpolation results for the normal differences.
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I, emma 6.1

For integers t, s with t <_ s and _ > O, there exists a constant C_ such that for any

discrete function v(xv, y_)

i_;vl0_,,_<_l16;+,v2

and

I1_;,,11o,____4__;.'_11o,,-,+c,ll___JJo,,+,.

Proof:

By summation by parts,

OO

CAr_;v(_0,_))2=-hAt_ _+(_;,C_v,_))"
v_O

cx)

= -h _(A ½("-1)6_+l_(z,..,,.,.,))A10"+1)(6;.o(z,....+1,,.,,)+ ,5;.€,(x,,,,.,.,)).
v=O

Hence

_s V 2 g. s-$-I 2 C _8 2+ 0,_< If_+"fl0,r-_+ ,[I+'fl0,_+½-

Then by using an interpolation inequality (e.g Thom_e and Westergren [11]) the first

inequality of the lemma is easily proven. The second estimate is proved in a similar

manner; the proof will be omitted.

For the case/z = 0 the restriction on the differences in x in Theorem 6.2 is removed in

precisely the same way as it is for the partial differential equation. From equation (4.6) we

have that 15_+"ui(x_,,w) is equal to a sum of lower order differences or ui and Fj'(xu,w).
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We easily obtain

_< + (6.4)

The use of the interpolation estimates in Lemma 6.1 can then be used on the norms of u

on the right-hand side of (6.2) to give (6.1) for s = _ in the case that # = 0, which implies

that q = p. By operating on equation (4.6) with _+-P and using an estimate similar to

(6.4) along with Lemma 6.1 we obtain (6.1).

The case # _= 0 is more difficult because one must solve for __'+Pui(x_,,w ) from

equation (4.6). We now show how this is to be done. It essentially involves solving an

elliptic system of order (0,0) for the _+Pu3(xv,w ).

Consider the system of equations (4.4) and write it as

GCw,T)6_+Pu(xv,w)+ k(w)u(x_,,w)--__'(x_,w),

rj+_
where __.Pu(xv,w) denotesthe vectorwith components _+ uj(xv,w), j : l,...,n,and

G(w,T) isthe matrix of translationoperatorsgiy(w,T).The term K(w)u(xv, w) contains

allthe differencesofthe us(xv,w) with respectto x oforderlessthan Ti+ _. The operator

G isan ellipticoperatorof type (0,0)by the ResolventCondition.

As in the proofofLemma 4.1the matrix G(w, T) isupper triangularand without loss

of generalitywe can assume that the rows are ordered so that the degree of gi,i(w,T) is

greaterthan the degree of gi,y(w,T)ifi < j, i.e.#i _>#5 ifi < j. Let n' be the integer

such that #i -- 0 fori greaterthan n',with n'-- n if#n > 0. For i > n',6__uican be

expressedinterms of lowerorder differencesofthe uj as in the case# = 0.
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As in section 4 we construct a one-step scheme for _v, the vector whose components

are Tt_5+J+Puj(x_,,w), for 0 < l </z 3.- 1 and 1 < j < n'. This scheme can be written as

]_v+, = J_v + gu (6.5)

where _ contains both the function F' and difference of uj with respect to x of order less

than U + P" The boundary conditions for this scheme can be written as

CWo= (6.6)

where _ contains both the data ¢2 from (4.11) and differences in ui(xo,w ) of order less

than r +/3, and C has been obtained from (3.2) by scaling with h p-p analogous to the

scaling at the beginning of section 4.

The matrix _ is of order [/_[and it is easily shown that for w near 0 its eigenvalues

are those of class 3 as given in Theorem 5.3. Thus we can construct a symmetrizer Y such

that

At*)/_ - _/ _>Co (6.7)

as in section 5. By the nonexistence of eigenvalues of type III, there is a neighborhood for

w near 0, such that

_[ + clC*C >_c2 (6.8)

for some positive constants cl and c2. Note that if q = p then C is taken to be zero, and

1/ is a positive definite matrix. The relation q = p results from all the eigenvalues of

being larger than 1 in magnitude. The inequalities (6.7) and (6.8) are analogous to (2.9)

and (2.10).
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We now extend the estimate (6.2) to include normal differences of r + p. Since (6.8)

only holds for small values of w we employ a cut-off function ¢(w) with ¢(w) = 0 for 60 <

[W[oo< 7r, ¢(w) = 1 for [W[oo< 60/2 and extend ¢(w) periodically for all w E R d-l. Let

_ be ¢(w)_. Analogous to the proof of Theorem 6.2, but using the G£rding inequality

proved by Lax and Nirenberg [7], we have

oo

I1_li_,r-<Ch_ (CC_*__ - _)v_,_v)0,r+chC_,_)0,_},
v=0

By (6.8) and the definition of C and _ we have for small h

2
II_II_o,_+hl_olo_,_-<C(hlC'Vol_o,_+II_IIo,_} (6.10)

<C(hlul_+__1,r+_+Ih_-_+_€21_+ IIFII_ _ 2_ _+_-_+II II_+_-i,_+_)-

Since hA is bounded, we have

h½]ulr+_-l,r+l _<_lul_+_-,,r+_.

For I_1oo_>60/2we use equation (2.7) as follows. We have

h CWCxv+l,oa) - WCxv,w)) -- h CM(w) - I)W(xv,w) 4- Y'Cxv,oa),

and estimating only the differences of the components Wi,r_+p-1 of W we obtain

c

l_+_u(_,_)l_<__IW(_,_)l_+ I_(_,_)I_<_CAo_IW(_,_)l_+ I_(_,_)I_, (6.11)
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since h -1 < C(ao)Ao for ]w]o_> 5o/2.

Combining the estimates (6.10) and (6.11) we obtain

n n n

II_%*sll__ _ I1¢*6_+_u_ll_+ _ I1(1-¢), _%*jll_
3"=1 3"----1 3"=1

__ 1 9.< C{IhP-_+_¢21_+ IIFIl_-+r-_+ Ilull_+__l,_+_+r+ hlul2+__x,,+_+r}.

Then, using estimate (6.2) and Lemma 6.1, we obtain

2

Ilull_+.,_+8+ I_l_+__,,r+8_< c{1€1]__._½. IhP-_+½¢2l__.+IIFIIL_+II_llo_},(6.12)

which proves (6.1) for fi < s < fi+ ½.

To prove (6.1) for larger values of s we we obtain a sharper estimate than (6.10) for

the boundary terms, i.e. [3)olo,r, as follows. Since the eigenvalues of .Iv{are bounded away

from 1 independent of h, there is a number fl with 0 < fl < 1 such that for any eigenvalue

AofAi

< II#_I=- 1,

analogous to the estimate for the third class of eigenvalues of M in Theorem 5.3, and

moreover, IflA[> 1 if IAI> 1. Thus the matrix )/can be constructed to satisfy

co _<3_t*_/_3 - ;/

analogous to (6.7). The variables flu3)_, satisfy
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by (6.5). Similar to (6.10) we have

li_vll_o,r+hlVoi_,,<_C{hiCVoi_o,_+ li_ll0_,_}, (6.13)

and we estimate the last term as follows. We have

OO (x)

v----0 v----0

h2 oo h2 oo

- 1- _ _(_+_:")l_l°,r_- 1- _ (I-_°12+_:_ z_+i_l°_,_)
!]=0 !]----0

h2_2 oo

-< 1- #---__ _+l_a.lg,_l<_Chll_llo,_._II_+_llo,_-_.i1=0

Thus we have from (6.13)

IIo,,+-_)

1and "'_nus,with r = s - 2_

2 + _]i_il2I_1_+_,_+___< C(lul$+__,,,.+____ , _+_,_+.. c_ll,_!l_+_-_,,-+.

I._.__ iiFllL.).

This inequality with (6.10) and (6.12) gives

(6.1_)
+IIFII=,__+ Ilull_o),
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which proves (6.1) for p <_ s < p + 1.

Estimates for higher normal differences are obtained in the following way. The equa-

tion for 8_ is

8_ _v+l = ._,55"_, + 8_, (6.15)

where for simplicity we have assumed that .M is independent of x. If .Iv[is not independent

of x then the right-hand side of (6.15) would contain lower order differences of _, which

would not effect the final estimate, but would complicate the following formulas.

For integer values of r with 0 < r < p* - fi we have boundary conditions

c(r)6_- _o = _ (r) (6.16)

analogous to (6.6) where now cCr) is scaled by h v-p-r. In the same way that equations

(6.12) and (6.14) were obtained we obtain

Ilull2 u2,+_+r,,+8+1 I,+,_+r_1,,+8_=_< c(1€11_=_o_=_+ IhP-_-_+_¢=l=
(6.17)

+ IIFIl_-,,+ Ilullo_),

and

2 u 2 < C(l¢12Ilull,+,_+,,,+,+1 I,+_+,,,.+___
(6.18)

+ [IFI!28__ + Ilull0_).

1
These estimates, with r + fi < s < r + fi + ½ and r + fi + _ < s < r + fi + 1, respectively,

prove Theorem 6.1.

We now consider estimates on differences of order p* or higher in the case that q > p.
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Theorem 6.3

If the elliptic difference scheme (2.1) with boundary conditions (2.2) satisfies the

Complementing Condition and Assumptions 2.1, 2.2, and 2.3, then the following estimate

holds for s >_p*

Ilull_+s+ lu_I,+s_<Ch-_C_-'°'+½)(l¢,l_-,o-_+Ih'°-_-½¢_lo=+ IIFIILo+ Ilullo2)(6.19)

Proof:

As in equation (6.9) we obtain, for h sufficiently small

_r_r_+o,r2_<C(-h(___o,_o) +II+_11o_,_}. (6.20)

Let p' -- p* - fi - 1, then we then use equation (6.5) to obtain

r--p I -- 1

/.'----0

where pv(A{) is a polynomial in At. We then have, using Lemma 6.1 on _,

r--pl--1

hl6_Wol_--Ch-_C_-"'-_)(16(Wol_+ f_ I+._ol2)

<-Ch-2Cr-"'-_)(l_-7-Wol2+ I1_11_-.,),

_<Ch-=C'-'°'-_)(lul_+,o.-,+ IlullL,o--1,r+,o-+,),

from which the estimate (6.19) follows easily from (6.20) with s = r + ft.
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To complete the proof of Theorem 3.1, we state

Theorem 6.4

If u(xv, y_,) is a solution to the system (2.1) with boundary conditions (2.2) and

Assumptions 2.1, 2.2, and 2.3, are satisfied, then the regularity estimate (6.1) holds for

each s, with _ <_ s < p* and h sufficiently small, only if the Complementing Condition

holds.

Proof:

Assume the Complementing Condition does not hold. If there is an eigensolution of

type I or type III, then as in the proof of Theorem 5.5 we can construct a solution of

(2.1) and (2.2) with homogeneous data for any h > 0. Since the eigenvalues, _b(W), are

bounded away from 1, the norms IIul[_+8 and [u]_+8_½ will be O(h -8) as h tends to zero

even though Ilull0 is O(1). Thus the estimates (6.1) and (3.3) can not hold.

If there is an eigensolution of type II, then the regularity estimate analogous to (3.3)

fails to hold for the solutions of the associated system of differential equations, (Agmon

et al. [1]). The eigensolution is a solution to the difference equations with inhomogeneous

data, i.e. the "truncation error", which tends to zero as h tends to zero. It is easily seen

that the estimate (3.3) can not hold for sufficiently small h. This proves Theorem 6.4.

7. General Domains and Lower Order Terms

We now discuss the modifications required to handle the cases when we have domains

which are not a half-space or the equations have lower order terms. For a bounded domain

with a smooth boundary we assume the grid is boundary-fitted. This means that for each
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boundary point there is a neighborhood which can be smoothly mapped onto a portion of a

half-space with the grid being mapped onto an orthogonal grid on the half-space. Through

the use of such mappings and a partition of unity one can obtain regularity estimates up

to the boundary on the boundary-fitted grid on ft.

Lower order terms cause no problems unless their extent is greater than the extent of

the highest order portion of the system. If their extent is greater, they may require addi-

tional boundary conditions and this could adversely affect the regularity at the boundary.

In most problems of interest lower order terms would have an extent no larger than that

of the highest order terms and the regularity estimates would hold true in the same form

as (3.3). This is proved in exactly the same fashion as for systems of differential equations.

That is, the lower order terms can be considered as part of a right-hand side of (2.1)

and then the estimate (3.3) with this modified data follows. Then using the interpolation

estimates in Lemma 6.1 the estimate with the original data follows.

8. Summary of Results and Examples

In this section we summarize the results of this paper and apply the theory to several

examples. These examples are chosen to illustrate the theory; the boundary conditions

we consider are not representative of those used in practice. Unfortunately, more realistic

boundary conditions lead to a great deal of algebraic manipulation. To apply Theorem

3.1 to determine the regularity of a boundary value problem for a regular elliptic system

of difference equations on a boundary-fitted coordinate system one must only consider

the "frozen coefficient problem" for the system at each boundary grid point. The frozen

coefficient problem at a point on the boundary is the constant coefficient problem obtained
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by fixing the coefficients of both the system and the boundary conditions at their values

at that boundary point. This frozen coefficient problem is considered on the half-space

determined by the tangent space to the boundary and the inward unit normal at the point.

If the frozen coefficient problem is regular for each point on the boundary then the original

variable coefficient problem is regular. Thus we need only consider constant coefficient

boundary value problems on a half-space.

The steps one must take to check the regularity of the boundary value problem are

as follows. The n-tuples a and T defining the order of the elliptic system of difference

equations must be determined and lower order terms can then be neglected. The regular-

ity of the scheme must also be checked (Bube and Strikwerda [3]). The reduced equation,

obtained by Fourier transforming in the tangential variables, must satisfy the resolvent

condition of Section 2 and must be adjusted so that Assumption 2.1 is satisfied. With the

reduced equation in this form the number of boundary conditions can be determined (As-

sumption 2.1) and they should be ordered so that Assumption 2.2 is satisfied. Assumption

2.3 will be satisfied for most systems arising in practical application. The final step is to

check for eigensolutions of types I, II and III. Theorem 3.1 states that regularity up to the

boundary is equivalent to the nonexistence of eigensolutions.

The regularity estimate (3.3) shows that for those schemes which require as many

boundary conditions as does the associated differential equation the solution and its finite

differences are bounded independently of the grid spacing. For those schemes which require

more boundary conditions, i.e. numerical boundary conditions, the estimate (3.3) shows

that these should be of high order to achieve smooth solutions. These observations seem
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to justify the use of compact difference schemes wherever possible. CA compact scheme is

one which has the smallest extent possible, for a given accuracy.) For those schemes that

do require numerical boundary conditions, Theorem 3.2 shows that these extra conditions

should be of sufficiently high order so as not to affect the accuracy of the solution and

its finite differences near the boundary. The interior regularity estimates of Bramble and

Hubbard [2] and others show that for second-order elliptic equations the finite differences

of the solution are approximations of the corresponding derivatives with the same order of

accuracy as the solution itself away from the boundary. Theorem 3.2 shows that this can

also be true up to the boundary under certain circumstances. In particular, it can be true

if no numerical boundary conditions are required and the boundary conditions are of the

same order of accuracy as the scheme.

To illustrate the theory consider several examples. We begin with the Cauchy-

Riemann equations

uz -- vy = fl

Uy -4-Vx = f2,

on the half-space {(x,y) : z > 0, y E R} with boundary condition

u(0,y)= 9(y).

Define aCT) := (-_)(T 2 - 4T + 3) and aCT) := -a(T-1). We approximate the elliptic

system with the second order accurate scheme given by

(a+,o+,)a(Ty) 5(Tz) (x_,,yt,) = F(x_,,yj,),, _t + Z. C8.1)
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One can easily check that this is a regular elliptic system of difference equations. Let

f(w) := a(e i') be the symbol of a. Fourier transforming with respect to the tangential

variable yields the reduced system

( aCTx)

v>2, w:=h_.

To determine how many boundary conditions are needed by the system (8.1), we must

consider the eigenvalues of the resolvent equation, (see Assumption 2.1), given by

(o,z, 0det -_(w)

If w _ 0, Lemma 2.1 implies that none of the four roots of this equation is on the unit

circle. Since a(z) = -_(z -1) we conclude that there are exactly two roots inside the unit

circle and two outside. Denote the two which are inside by zl and z2. Because there are

two roots inside the unit circle, it is necessary to specify two boundary conditions in order

to have a well-posed system of difference equations. The conditions which we impose are

a) _~_(Uo + fi,) + (1 - e)Uo = go,
C8.3)

b) h-r(T- 1)rgo = O,

for _ real and r a positive integer. The first boundary condition is the operator B1 corre-

sponding to specifying u and the second is B2; we have Pl = -1, P2 = r - 1.
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Now we consider the resolvent condition. One could take a + = _+ = fl+ = 0,fl + =

2,-7 = -_-= _7 = 0,_- = -2, or onecouldtake_,+= 2,.2+ = _+ = _+ = 0,.? =

fl_- = fl_- = 0, a_- = -2. Following the procedure for reducing to a canonical form, i.e., all

differences forward, we obtain two equivalent reduced systems which are to be analyzed

for eigensolutions. We will work with the one which comes from the second set of a and

ft. This system is

aCT) -¢(0) ) (xv,w),--_(0) T2 a(T)T2 ) ( _ ) (xv, o,)) .._ ( _1~T 12

v_>0, 0:=hw.

If we would have chosen the first possibility then the two variables Uo and u l would have

been declared superfluous. We could then eliminate these by applying the first equation

at v-0andv=l.

The general decaying solution to the resolvent equation is

(:) ( ) ( )_ _ (8.4)(x_,_)=cl aCzl) zf+c_ aCz_)_2.

First we check for eigensolutions of type III. Since one of the roots goes to 1 as _a_ 0

the general decaying solution at _a= 0 becomes

This shows that using any extrapolation with r >__1 for a numerical boundary condition

gives no eigensolutions of type III. Note that if we would have taken (3T- 1) r, (T- 1)r290 =
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0 for a numerical boundary condition instead of (8.3b) then there would be eigensolutions

of type III. For example, take rl = 1 and r2 = 2, then this condition becomes 9o =

3fia - 792 -4-591 and this boundary condition would not be regular.

Since (8.1) with the indicated boundary condition is regular, there are no eigenso-

lutions of type II, so it only remains to check for the existence of type I eigensolutions.

Applying the boundary conditions to (8.4), we obtain the condition for the existence of a

nontrivial solution as

if_(zl+l)/2+Cl-v) z(z2+1)/2+(1-_))det \ (Zl- 1)ra(zl) (z2- 1)ra(z2) =0. (8.5)

Using the two equations aCzj)a(zj) - 2= 0,forj = 1,2,weobtain the equation

aCz,)a(zl ) - a(z2)a(z2) = 0. (8.6)

We now have to determine whether there are any roots Zl, z2 of equations (8.5) and (8.6)

Which are both of modulus less than unity. Using the symbolic manipulation language

MACSYMA [8] to determine the solutions to this equation, we observe that there are no

solution with zl and z2 both less than or equal to 1 in magnitude. Thus we conclude that

there are no eigensolutions of type I for the cases _ E {0, ½, 1}, r € {1, 2, 3}. Therefore the

system is regular up to the boundary for these values of € and r.
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As the next example, consider the Stokes equations

AU "b Px = fl

Au -{- py : f2

ux + Vy = f3,

on the half-space {(x,y) : x > 0, y E l{} with boundary conditions u(O,y) = gl(Y) and

v(O,y) -- g2(Y). The scheme we consider is

v>l, /IEZ.

One can easily check that this is a regular elliptic system of difference equations. Let

b(T) := (T + T -1 - 2)/h 2 and I(€) := (e i€ - 1)/h. After Fourier transforming with respect

to the tangential variable, we obtain the reduced system

b(T_)-Itl2 -# (x,.,,,4= _(==,.','4, (8.7)
\ (T,.- 1)/h I 0

u>l.

The determinant of the resolvent equation is

b(z)-Iii 2 o (1 - z-1)/h "_
det O b(z) -1II 2 -I = O,)(z-1)/h I 0
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and the eigenvalues are the roots of this equation,

z_= (2+ _21_12+ v_(2+ _21_1')'- 4)/2, (s.8)

where each root is double. We conclude that there must be two boundary conditions since

z_ is a double root with modulus less than unity (Assumption 2.1). Consider the following

boundary conditions:

a) _(u0 -F _,1) 2r- (1 - _)Uo = gl,

(s.9)
b) 6_(_0 + Vl) + (1 -- 6)VO = g2"

Note that, as w --+ 0, z+ _ 1 so we have no type III eigensolutions. The general decaying

solution to the homogeneous difference equation (8.7) is

(xv, w) = cl (z_ )/h z v_-4-c2 ((v -4-1);_ - v)/h zV_-1. (8.10)

Applying the boundary conditions (8.9), the condition for a nontrivial solution is

_(z_ + 1)/2 + (1 - €) -_ )
det 0.

(6(z_+1)/2+(1-6))(z_-l) 6z_+,1-6)

After simplification this equation reduces to

_6z 2_+ 26(2 - _)z_ + 4(1 - 6) + _6 = 0,
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and since z 2_ -- (2 + h+lql2)z_- 1 we obtain

2(1- _)/6
Z-- ---" --

2- _+_(2+_1_1_)•

Noting that z_, as given by (8.8), is Strictly positive, we conclude that this equation is not

satisfied if 0 <_E < 1 and 0 < 5 _ 1. When 5 = 0 it is easy to see that the determinant

never vanishes. Therefore there are no eigensolutions of type I. This implies regularity up

to the boundary for this system of difference equations. If E = 0 and 5 is taken larger than

(2(V_- 1)) -1 then there exist type I eigensolutions, so the difference equations are not

regular up to the boundary in this case.

Finally, consider the same difference equations but with the boundary conditions for

the differential system given by

a) u_(o,y)=o,

b) v(o,y)=g(y).

Approximate these equations by

a) s(u(xl,y.) - U(xo, y.)) + (1 - €)(u(x2,y.) - u(xo, y_)) = O,

(8.11)

b) _(vC_o,y.)+ _(_l,y.))+(1- 5)_(_o,y_)=g(_o,y.).

After applying these boundary conditions to the solution (8.10) we obtain

e(z_-l)+(1-e)(z __-1) €+2(1-6)z_)det (SCz_ + 1)/2 + (1 - 5))(z_ - 1) 5z_ + (1 - 5) = O. (8.12)
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Taking e = 0 and _ - 0 gives no eigensolutions of type I. However, if e = 1 and 6 - 0

then the determinant vanishes for any value of w E :R. In this case the constants from

equation (8.10) can be taken to be cl = 1 and c2 = 1 - z_. Thus, since there exist type I

eigensolutions, the scheme is not regular up to the boundary.
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