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The Design and Implementation of Cost-effective algorithms for 

direct solution of banded linear systems on the Vector 

Processor System_32 supercomputer, located at NASA Langley 

AUGUSTINE S. SAMBA 

Department of Mathematics, Hampton University 

ABSTRACT 

The problem of solving banded linear systems by direct (non-iterative) 

techniques on the Vector Processor System (VPS)_32 supercomputer is considered. 

This report describes two very efficient direct methods for solving banded 

linear systems on the VPS_32. 

The Vector Cyclic Reduction (VCR) algorithm is discussed in detail. A 

Performance of the VCR on a three parameter model problem is also illustrated. 

The VCR is an adaptation of the conventional point cyclic reduction algorithm. 

The second direct method is the "Customized Reduction of Augmented 

Triangles (CRAT)". CRAT is a new method created and custom designed for the 

VPS_32 by this principal investigator. CRAT has the dominant characteristics 

of an efficient VPS_32 algorithm. CRAT is tailored to the pipeline 

architecture of the VPS 32 and as a consequence the algorithm is implicitly 

vectorizable. 

Contained in this report is a proposal for an additional one year funding 

in order to undertake further investigations of banded techniques on the Vector 

Processor System_32 supercomputer. 
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1.0 INTRODUCTION 

1.1 An overview of the Vector Processor System (VPS) 32 supercomputer 

The VPS 32 is a high speed vector computer, with the following special 

characteristics: 

(i) It is a Single Instruction stream Multiple Data stream (SIMD) type of 

computer system. An SIMD system has only one stream of instructions 

in execution at anytime, but each instruction may affect many 

different data. 

(ii) It is a pipeline computer. The basic idea behind pipeline computers 

is essentially that of an assembly line: if the same arithmetic 

operations is going to be repeated many times, throughput can be 

increased by dividing the operation into a sequence of sub-tasks and 

maintaining a flow of operand pairs in various stages of completion. 
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1.2 Using the Vector Processor System 32 supercomputer 

Data items of the VPS 32 exist mainly in scalar and vector modes. A 

matrix may be viewed as a set of column/row or diagonal vectors. The VPS 32 

works efficiently in vector mode. The time (T) required to perform an 

n-element vector operation by the VPS_32 is given by 

where 

T = S + n/N (1.2.1) 

T represents the time in minor cycles 

S the vector startup time and 

N the number of results/cycle emerging from the pipeline. 

Equation (1.2.1) demonstrates that by keeping the startup time to a 

minimum, the overall time needed to perform a given operation on the VPS_32 

will depend crutia11y on the size of n, which also gives a measure of the 

number of computations. Consequently, algoritms designed for the VPS will 

generally perform efficiently if the operations involve long vectors as opposed 

to short vectors. 'Long vectors' are de1iverables of efficient data 

organization (management). 

A salient feature about data manipulation on the VPS is that operations on 

logical items are relatively faster than equivalent operations on other types 

of compatible items. In practice, efficient algorithms for the VPS_32 

supercomputer are uniquely influenced by its pipeline architecture. 

Our major interest in the VPS 32 supercomputer is as vehicle for solving 

Banded linear systems. Two very efficient methods for solving Banded linear 

systems are described in this report. 

• Section (2.0) describes the Vector Cyclic Reduction (VCR) algorithm. The 

VCR is an adaptation of the Conventional Point Cyclic Reduction algorithm [1,2J. 
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The Customized Reduction of Augmented Triangles (CRAT) is a new algorithm 

created and custom designed for the VPS_32, by this principle investigator. 

The CRAT algorithm is tailored to the pipeline architecture of the VPS_32 and 

as a consequence this algorithm is implicitly vectorizable. CRAT is unique; it 

incorporates the dominant characteristics of a very efficient vector algorithm 

for the VPS_32 supercomputer. CRAT is discussed in section (4.0). 

Section (7.0) outlines a proposal for an additional one year funding in 

order to undertake further investigation of banded techniques on the VPS 32 

supercomputer. 
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2.0 "Vector Cyclic Reduction" (VCR) METHOD 

Recall the banded linear system of equations is defined as 

A~ = l 

where a. . = 0.0 if Ii - j I > m , ,J 

semi-bandwidth. 

2. 1 

m represents the 

The technique here is to successively decouple the banded system into a 

sequence of smaller systems. The number of steps required to complete the 

decoupling is 0(1092n). 

To illustrate this procedure let us identify the entries of the 

coefficient matrix A, in the following manner, 

A = 

where cl = a = bn 

b n-l 

2.2 

Consider now any three successive equations of the linear system (2.1). 

The (i_l)th, (i)th and (i+l)th equations are respectively. 

(i -1 ) th: c x + a x + b x = y 
;-1-;-2 ;-1-;-1 ;-1-; -;-1 

(i)th c x + a x + b x = Y 
i i -1 i -i i -i + 1 -i 
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and 

(i + 1 ) th: c x + a x + b x = y 
i+1-i i+1-i+l i+l-i+2 -i+l 

We can eliminate ~i-l and ~i+l from the (i)th equation to yield an equation 

for ~i-2' ~i' and ~i+2 as follows. 

Normalizing the (i)th equation with respect to the coefficient of x . 
. -1 

produces: 

( nth 

where 

c(l) 
i 

b (1) 
i 

y(1) 
-. 

1 

= 

= 

= 

+ x 
-i 

a -1 c 
i 

a -1 b 
i 

-1 a y 

i 

i 

i -. 
1 

= a 
i i 

The corresponding (i_l)th and (i+l)th equations are respectively 

(i-1 )th: c(l) 
; -1 

and 

(i+1)th c(l) x 
i + 1 i 

+ 

+ x + b (l) x 
-i+l i+l -i+2 

6 
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~ 

where the corresponding coefficients and the Right Hand Sides (RHS) 

respectively satisfy the corresponding relations in (2.4). 

Substituting now, in (2.3) for ~i-l and ~i+l from (2.5) and (2.6) leads to 

(i+1 )th: c(2)·x 
i -i-2 

+ x 
i 

where 

a(2) = 1 _ c (1 ) 
i i 

c(2) = _ (a(2))-1 
i i 

b(2) = _ (a(2))-1 
i i 

and 

= 

+ 2.7 

b (1) b(l) c(l) 
i -1 i i+l 

(c (l ) c (1) ) 

i i -1 

(b (1 ) b (1)) 

i i+ 1 

Substituting for ~i-2 and ~i+2 in (2.7) from the corresponding (i_2)th and 

(i+2)th equations respectively, produces a relation in x. 4' x. and x·+4 for -1 - -1 -1 
th ( . )th t· e 1 equa 10n. 

The elimination proceeds in this manner. 

In general, the kth (k>2) step is related to the (k_1)th step by 

a(k) = 1 _ c(k-1) b(k-1) b(k-1) c(k-1)) 
i i i -1 i i + 1 

c(k) = _ (a(k))-l (c(k-1) c(k-1)) 
i i i ; -'-1 

7 



.. 

b(k) = _ (a~k))-l (b(k-l) b(k-l)) 
iii i+l 

and 

(a(k) )-1 (y(k-l) _ c(k-l) y(k-l) _ b(k-l) y(k-l).) 

i -i i -i -1 i -i + 1 

where 

The matrix w(k) at each step, k, comprises of three diagonals. The 

distance of the outer diagonals from the principal diagonal doubles at each 

step. 

Following the final nth (n = lo92N) step, the two outer diagonals skip out 

of the coefficient matrix A(n), leaving only the main diagonal . 

8 
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2.1 The Vector Cyclic Reduction (VCR) Algorithm 

Let ai' bi and ci ' (i = 1, 2, ... N) represent the block matrices on the main, 

sub and super-diagonals respectively of the matrix A. Suppose the l;, 

(i = 1, 2, ••. N) represent the components of the right band vector l. 

The VCR algorithm then proceeds in the following manner. 

Step 1. INITIALIZATION: 

Set c. 
1 

+ 0 

II bi + 0 

II k + 

Step 2. COMPUTATIONS: 

For J = 1 STEP 

BEGIN 

Compute 

II 

II 

II 

II 

II 

UNTIL 

c. 
1 

bi 

y. 
-1 

a. 
1 

y. 
-1 

c. 
1 

(Log2N) do 

+ 

+ 

+ 

-1 a. c. 
1 1 

-1 a. b. 
1 1 

-1 a. y. 
1 -1 

1.0 - c.b. k - b. ci + k 1 -1- 1 

y. - c. y. k - b. y. k -1 1 -1- 1 -1+ 

- c. c. k 
1 1 -

9 
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II 

II 

II 
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• 

Compute 

II 

END 

b. 
1 

k 

+ 

Step 3. Now Obtain the Solution 

Compute 

l<;<n 

k + k II 

II 

10 



3.0 Numerical Example 

The following banded linear system is a test problem designed to validate the 

algorithms described in this report. 

We.wish to solve 

Ax = l 

where A is the three-parameter band matrix: 

1 S S O~~--__ --~--O 

S 1 

S 0 

A(m;n;s) = 

s 
The matrix A has semi-bandwidth m, dimensions nxn. 

S 

S 

1 

The parameter Sis defi ned for 1/10 SS .s: 1/3. The RHS lis gi ven by 

y. 
1 

n 
= L A(i,j) 

j=l 

Therefore (3.1) has the unique solution 

11 
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3.1 SPEED-UP for the VECTOR CYCLIC REDUCTION ALGORITHM: TIMINGS 

for the VCR ROUTINES 

Table (3.1) gives a summary of the timings for the initial 

tridiagonal VCR Subroutine: PRELUDE. The PRELUDE subroutine is 

described in figure A3 of Appendix.,..A. 

Two very efficient subroutines VCRI and VCRII are illustrat-:-

ed in ;~gures AI and All respect~vely of Appendix-A. Both VCRI 

and VCRII subroutines yield faster times than the PUELUDEsubrou",,: 

tine. This is because both VCRI and VCRII:subroutines employ 

better and more efficient datamappi?g schemes than the PRELUDE 

subroutine. 

The major difference between the VCR.I: and VCRII' subroutines 

is that VCRII incorporates Cyber".2QO. generic vector functions as 

a means of improving th.e vector proces'si?g power. TheVCRI sub~, 

routine, on the other hand" seeks' to. generate and access sets of 

items (scalar) in cont~guous core locations,' 

System Size 
(n x n) 

64 x 64 

1024 x 1024 

4096 x 4096 

Bandwidth' 
(m) 

2 

2 

2 

Computing Timings 
(second) 

.000663 

.00278 

.00313 

Table (3.1). Computi?g timi?gs for the initial VCR. 

subroutine~PRELUDE 

l2 



4.0 The Customized Reduction of Augmented Triangles (CRAT) Method 

4.1 Motivations for CRAT 

The Vector Cyclic Reduction (VCR) algorithm has four disadvantages viewed 

purely as a technique for solving banded systems on the Vector Processor 

System_32 supercomputer: 

1) The partitioning of a band matrix in tri-diagonal form yields super 

and sub-diagonal blocks which are triangular; but the technique takes 

no advantage of this. 

2) While" it may be easy to process efficiently several RHS 

simultaneously, it is not possible to re-enter the routine with 

further righthand sides without repeating the whole reduction process. 

3) The diagonal blocks are assumed non-singular throughout, and no 

pivoting between blocks is possible, although pivoting within blocks 

can be achieved. 

4) Being an adaptation of the conventional serial (point cyclic 

reduction) algorithm, vectorization is introduced explicitly by 

employing, 

(a) meticulous data organization and 

(b) selecting computational tools that exploit the data structure. 

The processing power of these tools is given very little or no 

consideration. 

I have therefore designed an altenative scheme which is custom 

made for the VPS 32. The CRATls prespective on p~ints 1) to 4) 

above is as follows: 

Point 1: CRAT takes full advantage of the form of the band 

matrix 

13 



Point 2: Not yet studied 

Point 3: CRAT works efficiently with singular diagonal blocks 

Point 4: CRAT is designed to exploit the structure of the band 

system and the pipeline architecture of the VPS 32. 

Therefore vectorization is implicit. 

A complete description of the CRAT method now follows. 

14 



· 4.2 The CRAT Methodology 

The stages in the CRAT method are as follows: 

4.2.1 Customization of the Banded Algorithm 

The primary goal of customizing the banded algorithm is to efficiently 

exploit the pipeline feature of the Vector Processor System (VPS)_32 

supercomputer. In order to achieve this goal it is necessary to tailor the 

solution methodology for the Banded System to the architecture of the Vector 

Processor System_32 Supercomputer. The initial task involves transforming the 

Banded System to a more suitable (tractable) problem whose solution could be 

easily and cheaply obtained by utilizing the optimal vector interpretive 

schemes of the VPS_32 supercomputer. 

Recall the nxn banded linear system for the Nth order vector u is given by 

W. .u. = b
1
· 

1,J J 
i,j = .1,2, ... N (4.1) 

where w. . = 0 iff Ii - j I > m; m represents the semi -bandwi dth. 
1 ,J 

We seek to transform (4.1) to an over-determined problem by means of the 

following technique. Define 

i) an (n+m)th order vector v in terms of ~ by 

{

iff 1 2. j 2. N 
- j' 

o , otherwise 

15 
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and (ii) an Nx(N+2m) matrix A in terms of W by 

where 

A. . = 
1 ,J 

o. . C't., iff 1 ~j ~ m , 1 < i < N 1,J J 

W.. , iff m+ 1 _< j _< N+m 1,J-m 1 < i < N 

~-i-m, j-N C'tj _N , iff N+m <j~N+2m ,1 <i<N 

C't. f: 0 for 1 ~j ~ 2m . 
J 

o. . is the Kronecker delta, defi ned as 
1 , J 

{: 
, iff i = j 

o. . = 1 , J 

, otherwise 

By employing (4.2) and (4.3) the Banded System transforms to the N x 

(N+2m) over-determined problem, 

A .. v. = b. 
1,J J J 

where 1 ~ i ~ Nand 1 ~ j ~ N+2m. 

(4.3) 

(4.4) 

In order to solve (4.4) efficiently on the VPS_32 supercomputer, it is 

necessary to reformulate the over-determined problem in the following way. 

4.2.2 Problem Decomposition 

The coefficient matrix A of (4.4) is partitioned into 2n conformable 

triangular matrices A; , B;, ;=1, 2, ... n (= N/2m). 

16 



A = 4.4. 1 

The .matri ces Ai' 1 .s. i .s. n are upper tri angul ar with dimensi ons 2m x 2m. 

The Bi , 1.s. i.s.n are 2mx2m lower triangular matrices. 

The RHS vector ~ is partitioned into n (2m)th order subvectors li' 

i=1,2, •.• ,n by the relation: 

y~ = [b., j = 1+2 (i-l) m, ••• , 2imJ, 
-1 J 

Note the inverse relation 

b t = [y i' l2' ... , lnJ . 

(4.5) 

(4.6) 

Then if _v is partitioned into (n+l) (2m)th order subvectors x., i=1,2, ••• , n 
-1 

by the relation 

~~ = [v j ' j = 1+2(i-1)m, ••• , 2 imJ, 1 Sj.s.n , (4.7) 

with inverse relation 

(4.8) 

17 



the over-determined problem can be expressed as a vector recurrence problem: 

A. x. + B. x'+l = y., 
1 -1 1 -1 -1 

(4.9) 

The task of designing an efficient solution methodology to (4.9), and hence 

the Banded System, for the VPS 32 supercomputer is the subject of the following 

section. 

4.2.3 Reduction of Augmented Triangles 

Observe that the Ai' Bi of (4.9) are upper and lower triangular matrices 

respectively. Without any loss of generality it will be assumed that n is 

integer, power 2. 

With a view to exploiting the structure of the recurrence problem and the 

architecture of the Vector Processor System_32 supercomputer, it is instructive- to 

pose equation (3.9) as a set of two subsystems: 

Subsystem I: 

A.x. + B. x'+ l = y., 
1-1 1 -1 -1 

l<i<9. (=n/2) (4.10) 

and Subsystem II: 

A.x. + B. x'+ l = y., 
1-1 1 -1 -1 

1+9. < i<n (4.11) 

The single Instruction stream Multiple Data stream capabilities coupled with 

the nassemb1y-1inen processing characteristics of the VPS 32 supercomputer provide 

a clinical and unique means for reducing subsystems I and II simultaneously. This 

18 



reduction process is easily accomplished via a culmination of dynamic partitioning 

technique; and augmentations of the coefficient triangular matrices in (4.10) and 

(4.11). The reduction process takes only 0(log2
t ) steps. The method in detail is 

as follows. 

Consider Subsystem I: 

Normalizing the jth, l~j~t, equation with respect to Aj and writing the 

normalized coefficients with zero superscript gives 

(0) x. + B. x. 1 = 
-J J -J+ 

y~O~ 
J 

The corresponding expression for the (j+1)th, l<j<t, equation is 

(0) 
~j+1 + Bj +1 ~j+2 = 

(0) 
lj+1 ' 

Substituting into (4.10.1) for ~j+1 from (4.10.2) gives 

(0) (0) 
~j - Bj Bj +1 ~j+2 = 

for the jth, (1~j~t-1), equation. 

y~O) 
-J 

The corresponding (J+2)th equation is given by 

_ B(O) B(O) = 
~j+2 j+2 j+3 ~j+4 

(0) (0) (0) 
lj+2 - Bj +2 lj+3 

By substituting for ~j+2 into (4.10.3) from 4. 1 0 .4 ) 

(2 ) y~2) x. + Bj ~j+4 = -J -J 

19 
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(4.10.1) 

(4.10.2) 

(4.10.3) 

(4.10.4) 

(4.10.5) 



where 

B~O) -1 = A. B. 
J J J 

B~ 1) 
J = _B~O)B~O) 

J J+ 1 

B~2) 
J = _B~O)B~O) B~O) B~O) 

J J+ 1 J+2 J+3 (4.10.6) 

(0) -1 y. = A. y. 
-J J -J 

(1) = y~O)_ B~O)y~O) y. 
-J -J J -J+l 

y~2) y~O)_ B~O)y~O) B~O)B~O) (0) (0) (0) = + [lj+2 - Bj +2 lj+3J -J -J J -J+ 1 J J+ 1 

Observe that (4.10.5) can be expanded in terms of ~j+4 to get a relation 

involving x. and x.+8. In general, the Kth stage is related to the (K_l)th stage 
-J -J 

by the following relations: 

where 

x. + 
-J 

B~K) 
J 

y~K) 
-J 

= 

= 

(K) 
B . x.+2K 

J -J 

_B~K-l) 
J 

= y~K) 
-J 

B(K-1) 
j+K 

y~K-1) _ B~K-1) 
-J J 

(4.10.7) 

(4.10.8) 

(K -1 ) 
lj+K (4.10.9) 

The reduction process for Subsystem I advances in this manner. The structure 

20 



of Subsystem I at the end of the final reduction step is given by 

X + B~P)x 
-j J -R.+ 1 (4.10.10) 

where p = 1 092 R. = 10g2n/2 = 10g2n - 1. 

Hence, p = 10g2n - 1 corresponds to the penultimate step of the CRAT algorithm. 

We now focus on Subsystem II: 

A. x. + B. x'+ l = y., 
1 -1 1 -1 .. -1 

1 + R.<i <n. 

Subsystem II is reduced by employing arithmetic operations identical to those 

for Subsystem I, but with opposite coefficient triangular matrices. 

Normalizing the jth, [l+R.~j~n] equation with respect to Bj and writing the 

normalized coefficients with zero superscripts gives 

A~O)x. + x'
l J -J -J+ 

= y~O), 
-J 

The corresponding expression for the (j_1)th equation is 

(0) 
A. 1 x. 1 J- -J- + X = y(O) 

-j -j-1 

substituting for x. in (4.11.1) from (4.11.2) gives 
-J 

_A(.O) A(.O) 
J J-1 ~j-1 + ~j+1 

= y~O) _ A~O) y~O) 
-J J -J-1 

The corresponding (j_2)th equation is 

(0) (0) 
-A. 2 A. 3 x. 3 + X. 1 J- J- -J- -J-

= y(O) 
-j-2 

21 

A(O) y(O) 
j-2 -j-3 

(4.11.1) 

(4.11.2) 

(4.11.3) 

(4.11.4) 



substituting now for ~j-l from (4.11.4) into (4.11.3) we obtain 

A~2) x. + x = y~2) 
J -J-3 -j+l -J (4.11.5) 

where 

(4.11.6) 

and 

y~O) -1 = 8. y. 
-J J -J 

(1) = y~O)_ A~O) y~O) y. 
-J -J J -J-l 

y~2) = y~O)_ A~O) y~O) + A~O) A~O) ( _ A(O) (0) 
-J -J J -J-l J J-l lj-2 j-2 lj-3 

Equation (4.11.5) is similarly expanded in terms of x. 3 to get a new relation in -J-

~j+ 1 and ~j-r 

In general, the Kth (K>l) reduction stage for subsystem II is related to the 

(K_l)th stage by the following relations 

A(.K) x + x = 
k -J'+l J -j-2 +1 

y~K) 
-J 

22 
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where 

and 

Y ~k) = (K-l)_ A(K-l) (K-l) 
-J lj j lj-K ' 

At the end of the final reduction step (p), 

subsystem II takes the form, 

A ~p)x J :-Hl + ~j+l 

4.2.4 Final Step: Elimination of Xt+l 

(4.11.8) 

(4.11.9) 

(4.11.10) 

The lo92n step is the final step of the algorithm. Here we simply eliminate 

~41 from (4.10.10) and (4.11.10) as follows. 

Combining the equations of the reduced subsystems I and II of (4.10.10) and 

(4.11.10) respectively leads to 

X. 
-~ 

(4.12) 

23 



where 

and 

{

j , iff 1 ~j~n/2 
R, -

j - j+ 1, iff n/2 + 1 ~j ~ n 

An analysis of equation (4.12) reveals the following. 

Case (1). 

When J=l, (4.12) becomes 

x + C(p) x = y(p) 
-1 1 -H 1 -1 (4.13) 

The components of the (2m) th order vector ~l are easily determi ned from 

relations (4.7) and (4.2), to be 

a Notice the 

a m leading zero 

~l = a (4.14) 

24 



Substituting ~l from (4.14) into (4.13) gives 

(4.15) 

J=l i=l 

for the leading m - equations. 

Case (II). 

When j=n (4.12) becomes 

X + C(p) x = y(p(',') 
-n+1 n -H1 ~ (4.16) 

The components of the (2m)th order vector ~+1 are similarly determined from 

relations (4.7) and (4.2) to be 

~+1 = uN 

o 

a 

o 

(4.17) 

Notice the 

m trailing zeros 

25 



Substituting for ~+l from (4.17) into (4.15) gives 

2m 2m 

LL A(P)("") (") n 1,J ~R..+l J (4.18) 

J=m+ 1 i =m+ 1 

for the trailing m equations. 

The components of the (2m)th order vector ~R..+l are very easily determined 

from (4.16) and (4.18) through a standard elimination process. 

Substituting now for ~R..+l in (4.12) yields the remaining (n-1) (2m)th order 

vector x"' (l<j<n and j#R..+l). -J --

The unknowns uj of the Banded System are recovered easily from xj , (l Si~n) 

through the inverse relations in (4.8) and (4.2): Evidently uj = xj +m+l ' 

J=1,2, ... N. 
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5.0 Implementation of the CRAT algorithm on the VPS 32 supercomputer 

The performance of the VPS_32 supercomputer, is much more sensitive to the 

coding technique. Moreover the choice of implementing an efficient algorithm may 

be different for different supercomputers. The following implementation is 

proposed for the VPS_32 supercomputer. 

5.1 Data Organization 

The VPS_32 works efficiently with long vector operands. The following 

mapping scheme provides the means for processing vector operands of minimum length 

N, the linear dimension of the Banded System. 

Let Ai' Bi , i = 1,2, ..• n, represent the triangular block matrices described 

in (4.4.1). 

These matrices are held in the arrays C and B as follows: 

A. , 
1 

1 <i < R. ( = n/2 ) 

C[i] 

B. 
1 

, R.+l<i<n 

and 

{ 
B. , l<i<R. (= n/2 ) 

1 

B[i] 

A. , .e+l~i~n 
1 

C[i] and B[i], l~i~n, may be viewed as a set of m Nth order vectors: 

C[i] +-(-~) C(1 + (i-1)m, m; N) 

Given the above, the normalization is easily accomplished via, 

C[i] f-{--
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5.2 Reduction Stage 

Each of the reduction phases for the CRAT algorithm can be efficiently 

implemented on the VPS_32 by employing dynamic mode partitioning technique. 

In a dynamic mode partitioning, the partitions of the subarrays are allowed 

to vary over the entire parent array, so that composite subarrays behave as single 

data items during processing. 

For example, suppose C is given by: 

A3 

then C may be processed as 

where A~l) is the composite subarray, 

Alternatively, C may be processed as 
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. 

subarray, 

= 

The dynamic mode partitioning scheme for the CRAT algorithm is illustrated in 

figures 5.0 to 5.4. 

Each of the Reduction phases can be carried out in a time proportional to m; 

the total time for the CRAT algorithm is then 

T = k m [10g2n -1] + Vm. 

where k ;s a constant; 

Vm is the time required to solve a 2mx2m system of linear equations on the VPS 32 

supercomputer . 
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3 
4 
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6 
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8 
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10 
11 
12 
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14 
15 
16 

w 17 0 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

" 

(l " 0 X X X 
• ; '1" X X X X . -' X X X X X 

X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X 
X X X X IX 

X X X X IX 
X ~ I~ X X 

X X X 
X X X XIX 

X X X X X 
X X I X X X 

xix X X X 
X X X X I X 

X X X I X X 
X ~ I ~ X X 

X X X 
X X X X I X 

X X X X X 
X X I X X :i: 

X ~X '0 ~l') 

Figure 5.0 Multi-level partitioning for the CRAT algorithm when N=32, m=2. Note the padding of the extreme 
blocks to "triangular forms". 



1 0 X X X X 
2 1 0 X X X x I A(O) 
3 1 0 X X X X 1 
4 1 X X X X 
5 1 0 X X X X 
6 1 0 X X X x A(O) 
7 1 0 X X X X 2 
8 1 ~ X X X 
9 1 0 X X X X 

10 1 0 X X X x I A(O) 
11 1 0 X X X X 3 
12 1 X X X X 
13 1 0 X X X X 
14 1 0 X X X x A(O) 
15 1 0 X X X X 4 
16 1 X X X X 

w 17 X X X 
x r 18 B(O) X x X X 0 1 

19 1 X X X X 0 1 
20 X X X X 0 1 
21 X X X X 1 
22 8(0) X X X X 0 1 
23 2 X X X X 0 1 
24 0 L 
25 X X X )( 1 
26 8(0) X X X X 0 1 
27 3 X X X X 0 1 
28 X X X X 0 1 
29 X X X X 1 
30 8(0) X X X X 0 1 
31 4 X X X X 0 0 1 
32 X X X X 0 0 

Figure 5.1 First reduction stage. 



1 0 Xl Xl Xl Xl 
2 1 0 Xl Xl Xl Xl 
3 1 0 Xl Xl Xl Xl 
4 1 0 Xl Xl Xl Xl A (l ) 
5 1 0 X X X X 1 
6 1 0 X X X X 
7 1 0 X X X X 
8 1 X X X X 
9 1 0 Xl Xl Xl Xl 

10 1 0 Xl Xl Xl Xl 
11 1 0 Xl Xl Xl Xl 
12 1 0 Xl Xl Xl Xl A{l) 
13 1 0 X X X X 2 
14 1 0 X X X X 
15 1 0 X X X X 
16 1 X X X X 
17 X X X X 1 

w 18 X X X X 0 1 N 

19 X X X X 0 1 
20 B(l) X X X X 0 1 
21 1 Xl Xl Xl Xl 0 1 
22 Xl Xl Xl Xl 0 1 
23 Xl Xl Xl Xl 0 1 
24 Xl Xl Xl Xl 0 1 
25 X X X X 1 
26 X X X X 0 1 
27 X X X X 0 1 
28 B{l) X X X X 0 1 
29 2 Xl Xl Xl Xl 0 1 
30 Xl Xl Xl Xl 0 1 
31 Xl Xl Xl Xl 0 1 
32 X, X, X, X, 0 

Figure 5.2 Second reduction stage. 
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11 
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13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

0 0 
0 b 

1 0 
1 0 

1 0 
1 0 

1 0 
1 0 

1 0 
1 0 

1 0 
1 0 

1 0 
1 0 

1 0 
1 

Figure 5.3 Final reduction stage. 

~(~ ~~ ~~J 
X3 X3 X3 X3 
X3 X3 X3 X3 
X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 
Xl Xl Xl Xl 
Xl Xl Xl Xl 
Xl Xl Xl Xl 
Xl Xl Xl Xl 
X X X X 
X X X X 
X X X X 
X X X X 
X X X X 1 
X X X X 0 1 
X X X X 0 1 
X X X X 0 1 
Xl Xl Xl Xl 0 1 
Xl Xl Xl Xl 0 1 
Xl Xl Xl Xl 0 1 
Xl Xl Xl Xl 0 1 
X2 X2 X2 X2 0 1 
X2 X2 X2 X2 0 1 
X2 X2 X2 X2 0 1 
X2 X2 X2 X2 0 1 
X3 X3 X3 X3 0 1 
X X X X 0 1 

IT3 X3~ Xu 0 0 
X3 X3 X3~ 0 0 333 



1 0 0 1 
2 0 0 1 
3 1 0 
4 1 0 
5 1 0 
6 1 0 
7 1 0 
8 1 0 
9 1 0 

10 1 0 
11 1 0 
12 1 0 
13 1 0 
14 1 0 
15 1 0 
16 1 0 0 0 0 

w 17 0 0 0 0 1 
~ 18 0 1 

19 0 1 
20 0 1 
21 0 1 
22 0 1 
23 0 1 
24 0 1 
25 0 1 
26 0 1 
27 0 1 
28 0 1 
29 0 1 
30 0 1 
31 0 0 
32 1 0 0 

Figure 5.4 Elimination stage. 



6.0 Future Developments 

We propose a one year program which includes the following tasks: 

TASK 1 

Development and implementation of the Computer Code for the "Customized 

Reduction of Augmented Triangles" Algorithm 

TASK 2 

A study of CRAT algorithm for stability properties and possible 

variations of the algorithm 

TASK 3 

Further investigation of the Vector Cyclic Reduction Algorithm and Block 

LU decomposition Algorithm 

TASK 4 

Adaptation of the CRAT algortihm for solving banded systems with 

multiple right hand sides. 
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· 7.0 Comments 

The CRAT algorithm, in its present form, employs no pivoting strategy within 

the triangular block matrices. However, column pivoting within the blocks is 

possible at 'little' cost. The CRAT algorithm successfully avoids the 

instabilities of the VCR algorithm for singular diagonal block matrices. CRAT is 

tailored to the VPS_32 pipeline architecture and therefore it should perform 

efficiently on the VPS 32 supercomputer. 
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APPENDIX 

Fig. A-I 

Subroutine VCR-I (A, D, NDIM, LMAX, N, LG2N) 

returns the solution of a tridiagonal linear system of equations. 

PARAMETERS ARE: 

N 

LG2N 

LMAX 

D 

D (i) 

A 

INTEGER; Must be set to the num-

ber of equations in the system; 

Value uncha~ged upon exit. 

INTEGER; Must be set to log2, N; 

Value unchanged upon exit. 

INTEGER; Must be set to 3N; Value 

unchanged upon exit • 

... --. VECTOR; Length "LMAX"; Must be 

set as follows 

d. iff 1 < i < N 
~ -

d. 
~+l iff N + 

~ - 1. .( i < 2N - l 

1 iff i = 2N 

d. 2N iff 2N + 1 < i -< 3N -, 
~ ... 

1 iff i = 3N 

1 

d~ (1 < ~ ~ N}represents the dia
l. 

gonal entries; Initial values are 

changed upon exit. 

REAL VECTOR; Length SN; Must be 

set as follows 
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1 iff 1 < i < N 

L. iff N + 1 < i < 2N 
~ - n 

a i - 2N+l 
iff 2N + 1 < i < 3N - 1 - -

A(i) 0 iff i = 3N 

b. 3N iff 3N + 1 < i < 4N - 1 
~ '""' 

0 iff i = 4N 

Li - 4N+l iff 4N + 1 < i < SN 
..- -

L., a., and b. represent the right 
-~ ~ ~ 

hand vector, sub~diagonal entries 

and the super-diagonal entries 

respectively. 

Initial Values are changed upon exit~ 

A{i) contains the solution vector xL 

(i = 1, 2 .. N) respectively. 
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SUBROUTINE VCRI(A,D,NDIM,LMAX,N,LG2N) 

DIMENSION A(NDIM), D(LMAX) 
LI=N+l 
LJ=LI+N 

LK=LJ+N 
LL=LK+N 
LM=N+N 

C NORMALIZE : RHS, SUB-, SUPER- DIAGS 
A(LI;LMAX): A(LI;LMAX)/D(l;LMAX) 

C REMAP RHS: 
A(LL;N)=A(LI+1;N) 
ISTEP=LG2N-1 
K=l 
~{K=2 

NK=N-1 
DO 40 1=1, ISTEP 

C COMPUTE PRODUCTS: 
D(l;LMAX)=A(LI;LMAX)*A(LJ;LMAX) 

C UPDATE RHS & MAIN DIAGONAL: 
A<1;N)=1.O 
A(l;LM)=A(l;LM)-D(LI;LM) 
A(KK;NK)=A(KK;NK)-D(LI;NK) 

A(LI;NK)=A(LI;NK)-D(K;NK) 

C UPDATE SUB-, SUPER- DIAGONALS: 
MK=LM-K 
A(LJ;MK)=-A(LJ;MK)*A(LJ;MK) 
K=K+K 

KK=K+1 
NK=N-K 

C NORMALIZE RHS, SUB- SUPER-DrAGS: 
A(LI;N)=A(LI;N)/A(l;N) 
A(LJ;NK)=A(LJ;NK)/A(KK;NK) 
A(LK;NK)=A(LK;NK)/A(l;NK) 

40 A(LL;NK)=A(LI+K;NK) 

C SOLVE FOR UNKNOWN VECTOR: 
A(LK+K;K)=A(LI;K) 

A(1;K)=1.0-A(LJ;K) 
A(KK;K)=A(l;K) 
A(l;N)=(A(LI;N)-A(LK;N»/A(l;N) 
RETURN 
END 
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.. 

Fig., A"II 

Subroutine VCR-II "(CV, A', D,' NDIM, LMAX" N, LG2N) 

returns the' solution 'of ' a' tridiagonal--'linear -system of equations. 

'PARAMETERS ARE: 

N 

LG2N 

LMAX 

D 

D (i) 

A 

........... INTEGER; Must be set to the num-

her of equations in the system; 

Value uncha?ged upon exit, 

INTEGER; Must be set to log~N; 

Value uncha?ged upon exit, 

-~- INTEGER; Must be set to 3N; Value 

uncha?ged upon exit, 

............. VECTOR; Le?gth "LMAX"; Must be 

set as follows 

d. 
1. 

d. 
1. 

1 

iff 

~H'l if:£ 

iff 

d i ... 2N iff 

1 iff 

1 -< i < N 

N +1 < i < 2N ~ 1 

i = 2N 

2N + 1 < i -< 3N ~ 1 

i = 3N 

d. ,(I ,.;± < Nl :t?epresents the dia
l. 

gonal entries; Initial values are 

cha?ged upon exit. 

--- REAL VECTOR; Length SN; Must be 

, set as follows 
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1 iff 1 < i < N 

L. iff N + 1 < i < 2N 
l. ... n 

a i - 2N+1 iff 2N + 1 < i < 3N - 1 - -
A(i) 0 iff i = 3N 

b. 3N iff 3N + 1 < i < 4N - 1 
l. ~ 

0 iff i = 4N 

Li - 4N+l iff 4N + 1 < i < 5N - -

L., a., and b. represent the right 
.1. l. l. 

hand vector, sub,::",diagonal entries 

and the super-diagonal entries 

respectively. 

r 
Initial Values are changed upon exit! 

A(i) contains the solution vectorJxL .. 
(i = 1, 2 •• N) respectively. 

CV BIT VECTOR; Length 'LMAX'; Must be 

set as follows: .. 
CV(i} - B'lf, (1 < i ~ LMAX) 
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r 

SUBROUTINE VCRII(CV,A,D,NDIM,LMAX,N,LG2N) 

DIMENSION A(NDIM), D(LMAX) 
BIT CV(LMAX) 
LI=N+1 
LJ=LI+N 

LK=LJ+N 
LL=LK+N 
LM=N+N 

C NORMALIZE : RHS, SUB-, SUPER- DIAGS 
C REMAP RHS: 

A(LL;N)=A(LI+1;N) 
ISTEP=LG2N-1 
K=l 
KK=2 
NK=N-1 
DO 40 1=1, ISTEP 

C COMPUTE PRODUCTS: 
D(l;LMAX)=A(LI;LMAX)*A(LJ;LMAX) 

C UPDATE RHS & MAIN DIAGONAL: 
A(1;N)=1.0 
A(l;LM)=A(l;LM)-D(LI;LM) 
CV(1;MK)=Q8VMKO(NK,N;CV(1;MK» 
D(1;MK)=Q8VMERGE(D(LI;NK),D(1;N),CV(1;MK) ;D(l;MK» 
A(KK;MK)=A(KK;MK)-D(l;MK) 

C UPDATE SUB-, SUPER- DIAGONALS: 
MK=LM-K 
A(LJ;MK)=-A(LJ;MK)*A(LJ;MK) 
K=K+K 

KK=K+l 
NK=N-K 

C NORMALIZE RHS, SUB- SUPER-DIAGS: 
CV(1;MK)=Q8VMKO(N,NK;CV(1;MK» 
D(1;MK)=Q8VMERGE(A(1;N),A(KK;NK),CV(1;MK) ;D(l;MK» 
A(LI;MK)=A(LI;MK)/D(l;MK) 

A(LK;NK)=A(LK;NK)/A(l;NK) 

40 A(LL;NK)=A(LI+K;NK) 

C SOLVE FOR UNKNOWN VECTOR: 
A(1;K)=1.0-A(LJ;K) 
A(KK;K)=A(l;K) 
D(1;N)=Q8VMERGE(A(LI;K),A(LK+K;K),CV(KK;N) ;D(l;N» 
A(l;N)=(A(LI;N)-D(l;N»/A(l;N) 
A(l;N)=A(LI;N)/A(l;N) 
RETURN 
END 
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Fig. A-3 

Subroutine PRELUDE (P,R, X, D, NMAX, LG2N, N) returns the 

solution of a tridiagonal linear system of equations. 

PARAMETERS ARE: 

N 

LG2N 

NMAX 

D 

X 

X {i} 

43 

-~- INTEGER; must be set to the 

number of equations in the 

system; Value unchanged upon 

exit. 

~~~ INTEGER; Must be set to log2N; 

Value unchanged upon exit. 

~~- INTEGER; Must be set to SN; 

Value unchanged upon exit. 

~-~ REAL VECTOR; Length N; Must be 

set to zero. Upon exit 

D(i) contains the solution 

xi(l < i < N) respectively. 

~~- REAL VECTOR; Length SN; Must 

be set as follows 

a. , 1 < i < N 
~ 

d. , N + 1 < i < 2N 
~ 

b. 
~ 

2N + 1 < i < 3N 

y. , 3N + 1 < i < 4N 
~ 

o , otherwise 

where y., a., b. d. represent 
~ ~ ~ ~ 

the right hand vector, sub-, 

super-, and main diagonals of 



p 

R 
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the band matrix; Values 

changed upon exit. 

~~~ . REAL VECTOR; Length N; 

Working array . 

.... -:-- REAL VECTOR; Length N; 

Working array. 



.' 

FIG. A3 

SUBROUTINE PRELUDE (P,R,X,D,NMAX,LG2N,N) 
DIMENSION DIAG(N),X(NMAX),P(N),R(N) 

I=N/2+1 
J=N*2+1 
L=N*3+I 

X(L+N/2;N)=O.0 
R(l;N)=X(J+N;N) 
X(3*N+1;N/2)=0.0 
DIAG(1;N)=X(N+1;N) 
X(N+1;N)=O.0 
P(l;N)=X<1;N) 

X(1;N/2)=O.O 
K=l 

DO 10 ISTEP=1,LG2N 
X(J;N)=P(J;N)/DIAG(l;N) 
X(L;N)=R(l;N)/DIAG(l;N) 
DIAG(l;N)=l.-X(I;N)*X(J-K;N)-X(J;N)*X(I+K;N) 
R(l;N) =X(L;N)-X(I;N)*X(L-K;N)-X(J;N)*X(L+K;N) 
P(l;N)=-X(I;N)*X(I-K;N) 
X(J;N)=-X(J;N)*X(J+K;N) 

10 K=K+K 
DIAG(l;N)=R(l;N)/DIAG(l;N) 
RETURN 
END 
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End of Document 


