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Abstract

Modulated grid Faraday cup.plasma analyzers are é.very useful tool for
‘making in situ measurements éf'space'plasmas. One of_théir gréat attributes
is that their simplicity permits their angular response function to be
calculated theoretically. In this paper, we derive.an expreésion for this
response funétibn by computing the trajectories of the charged particles
inside the cup. We uée the Voyager Plasma Science (PLS) experiment as a

specific example. Two approximations to the "rigorous" response function
useful for data analysis are discussed. V
The theoretical formulas were tested by multi-sensor analysis of solar
- ‘wind data. The tests indicate thaf .the fqrmulas represent the true cup
response function for all anglés of incidence with a maximum error of only a

few percent.
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1. Introduction "

- Since the earliest days of space_exbloration, space probes have included
instruments to-measure plesma particles.- fhere are two broad classes of .
plasma instrumeﬁts; the modulated grid Faradey cup and the electrostatic
analyzef. Modulafed grid Fafaday cups censist of a coliector and‘several
grids. The operation of such detectors is the toﬁic of the bulk of this
paper. .Electrosfatic analyzers typicaily coﬁeist'pf‘two eurved conducting
plates, with a potential difference between them and a perticle.couﬁfer af one
end. When particles enterjthe instrument, only those particles moviﬁg in the
prepep direction‘with the proper energy—per—charge reach the collector. A.
goed review article on techniques of deep~space plasma measurements is by
Vasyliunas'. . o ' : )

The first successful American spacecraft to carry a plasma probe was
Explerer 10, launched in 1961. This_instrument,.which was the. first to
provide direct evidence of the existence of the EOIay wind’ (it actﬁally
‘measured the fiow in :the magﬁetosheath), was a modulated grid Faraday cup.
The existence of the solar wind was confirmed and became generally aecepted
after observations made by Marine: 2, which carried‘an elecfrostatic anelyzer3.

As more missions were flown, the plasma instruments improved. In erder |
to measure the solar wind direction, Faraday cups with segmented eollector
plates were flown. If the plasma‘flow direction differs from normal +to fhe-
cup, the current to the individuel segmenté differs due to the shadow of the
aperture. Faraday cups with three segments were flown on Mariner 4 and 5,
whichAwefe B;axis stabilized spacecraft“’s, while a cup with its collector
divided into two segments was flown on the each oﬁ'theAspin—stabilized
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spacecraft Pioneer 6 and 7 ’° and Explorer 33 8.



Improved sensitivity to-the flow angle can be obtained by using an array
of Faraday cups, each of which is pointed in a different direction. An
instﬁument_ponsisting of an array of four Faraday cups which was flown oﬁ the
Voyager missions to the outer planets9 is shown in Figure 1. This instrument
has successfully measured positive ions and electrons in the solar wind!®, and_

11 12 13 .
! and Saturn . For the case of a cold beam of particles (such

at Jupiter
as the solar wind) flowing in a direction close to the look direction of the
cups, data analysis from these instruments is straightforward. For cases when
either the flow direction is nét close to the look direction of the cups, or.
fhe plasma thermal spee& is comparable to or greater than than the bulk
velocity, or bdth; detailed knoﬁledée'of fhe ins£rument response function is
réquiréd for the data aﬁalysis. The full responée function descri#ed below
hég already beeﬁ used for the study of the plasma flow around the Iobflu#
tubef"; and further wérk_utilizing it is in proéress.

In this paper we discuss the opgration of.thié type of instrument and
derive an expression for its reépqnse function. Althougﬁ the formulas which
we quote desc;ibe the Voyager.instrument, the method we use can’easily be
applied to anj Faradai:cup.. »

' The response function of the cup is defined as the ratio of tﬁe particle
flux reaching the collector to the particle flux'incident on the aperture when
the inciden£ particles are a-collimafed, monoénergetic beam. We compute the
response function by studying the trajectories of the-particles inside the
cup. In Segtion 2 we describe the model of the cup which we use and the
nature of the approximations which we have to make.

We show that the response function can be written as a product of two

terms, the "sensitive area" and the grid transparency. The sensitive area



' term'is computed from a ;traightforward study'of the trajectories, whilé

stétistical arguments are required to determine the grid'transparency term.
These terms are derived in‘detail, and explicit expressions for them are given
for thé case of the Voyager instruments, in Sections 3 and 4.

Once the response function is known, one can use it to analyée data.

The collector current from a plasma described by a known distribution function
can be pomputed by performing an integration over velocity space. The problem
of data analysis, tﬁerefore, becomes the problem of.solving an integral’
equation for the distribution fﬁncti§n. A very useful épproximatg methqd for
solving the integral equation is to use a parameterized model for the
disfribufion function, and fhen find the "best fit" values for the parameters.
In order to do this, one must be able to perform the Velocity sbace

' infegration; Certain‘furthervapproximatiohs whiéh permit the integration over
the components of velocity perpéndicular to.the cup normal to be performed
analyticélly for the case where the distribution function'is a conveétéd
maxwellian are described in Section 5.

Once‘we have computed thé response fﬁnction, we wanf to test it. In
order to do this, éne would like to have a very_ngrfbw test beam.
Uhfortunatgly, it is very difficult to make such a beam in the lab.. We have
used the calm solar wind at about 4 AU és ouf test beam. Analysis §f data
from Voyager 1 taken when the spacecraft was rotating (Voyager is a three axis.
stablized spacecraft) causing the solar wind. to enter the cups at large angles
indicates that our e&pressions are an excellent representioﬁ of the true
response functions of the cups fér all energies and anglestof incidence. This

- .analysis is discussed in Section 6.



2. The Physics of the Modulator Grid Faraday Cup

In this section, we analyze the physics of the Faraday cup and present

. the model which we use to compute.the response function, using the Voyager
Plasma Science (PLS) instrument as an example. Throughout this paper, we will
_consider the measurement of positive ions. For electrons, the'énalysis which
we present can be modified iﬁ a straightforward manner, alfhough in tﬁat case
the emmission of secondaries must.be considered.

As can'be seen from Figure 1, the PLS 1nstrument'consists of 4 Faraday
cuﬁs._ Three of them, called the A, B, and C cups are arrayed about an-axis of
symmetry én& have pentagohally shaped_épertufes and coilectors. The fourth'
cup, called the D-cup, is circular in shape (a more conventional design) and
points 88? from the main sensor symmetry axis. The geometry will be very.
important for understanding the testvdf the response function.

4 A cross-section of one of the PLS instrdment's main sensor éups is shown
in Figure.Z. The cup consists of an.aperture sto?, eight parallelvgrids and a
cdllectbr piate mounted in a metal housing. A top view of a cup is shoﬁn‘in
Figure 3. Fig. 3 also defiﬁes a coordinate system thch'we call cup
coordinates (z is the inward pointing cup normai). Notice'that the collector
is much larger than the aperture, a fact which gives this cup a much larger
field'of view than a conventional cup.

‘During operation, the collector plate and all of the grids'except the
modulator grids and thé‘suppressor grid are grounded to fhe spacecraft. The

suppressor grid is kept at -95 V to shield the collector from the.plasma

elecfrons and to return any secondary electrons to the collector. The
instrument is used by applying a square wave positive voltage to the modulator

grids and measuring the collector current. Since more particles are repelled



when the retarding potential is increased, the current waveform is an inverted
square wave as shown in Figure 4. We call the upper and lower limiting

modulator voltages Oy and Pps1? respectively, and the corresponding collector

R * *
currents Ik and Ik+1° The signal Ik is the amplitude of the current step,
given by
- * * 1
T = T = Ty -

We wish to determine collector current as a function of the modulator voltage
‘and the plasma distribution function. To a first approximatioﬁ, the signal
consists of all of the incident particles for which the z-component of

veloéity (vz) is between v, and v y Where v

k k+1 k

is related to ¢ by
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where mp is the proton mass, A is the mass of the ion in AMU, Z 1is the
charge state of the ion, and e is the proton charge. . To_obtaiﬁ a better
approximation, we need to study the motion of the charged particles inside the
Cup.
 The total electric current incident on the aperture (Iap) due to ionic

species a is

] ©
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whe;e dx dy is an area element in the aperture and fa(;) is the distribution
function of ion species a. For the totai current, one must sum over all
species. In the remainder of this paper, we will supress the subscript a.
Not all of the particles incident on the aperture reach the collector.

In principle, given the initial position and velocity of a particle, one can

calculate its trajectory and thereby determine whether or not it will reach



the collector. We can therefore formally write for the collector current

™
* .

* ® @ -
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where H(;,x,y,¢k) is equal to one if the trajectory of a ﬁarticle incident on
the aperture at the position x,y ﬁith velocity v reaches-the coilector,.and is
equaltto zeré otﬁerwise. In practice, Equation 4 is useless in this form
because the.preCisicn with which.we can caiculate thé particle trajectories is
insufficient to permit us to accurately predict whether or'nét a given
iq@ident particle will collide with one of the grids; We can, however,
compute the Erobabilitz.that a §artic1e will collide with a grid. If we

denote by Aap the area of the éperture, aﬁd by R(V,¢k) thé prgbability that an
incident particle with veloqity.G has of reaching the collector (which is the -
same as thé fraction of particlés;of é uniform beam of particles with Qelocity

v which reaches the collector), we can rewrite the Equation 4 as

AT Lav. s £(¥) R(¥ |
T =Ze ap i dvx i vy é v, flv v,¢k)dvz 5

We call R(;’¢k) the'résponse fgncfioh of the detectof.

Tb detenminé R, we use thé following model of the cup. We assume that
the electrostatic potential inside the cup depends only on z, and that it is a-
linear function of distance between any two adjacent grids. (The modgl
potential for 'the Voyager PLS main sensor cups .is shown in Figure 5.) This
approxiﬁation neglects the fine étructure of the fieldé near the grid wifes
and the fringing fields near the edges of the grids. Since the distance
betweep the grids is much greater than the spacing between the wires and the
grid spgcing is much smaller than_the'lineaf dimensions of the grid, this .

approximation should be adequate.



.In our model field;,ﬁe cao‘calculate the particle_trajectories exactly.
The particle frajectory between any. two grids is either a straight line or a
parabola. If we now aesume that the probability of a particle strikiog a grid
(a possibility not included inAour trajectory calculatioﬁ) does not depend on
the position where the particle enters the cup, we can write R as a product of
two terms and a normalization constant. |
R(V,0,) = T(Vio,) A(Vi0,)/A, - - 6

where T is the transparency of the grids (the probability that a.particle does
not collide with a grid), A is the "sensitive area" (the area of the aperture

for which incident partlcles will strlke the collector)
3. The Sensitive Area

We discuss firsf the sensitive area. Consider an incident beam of
barticles'of velocity v. If v, is.lessithan vk; defined by_Equation 2, then
the particle'will-be repelled by the modulator voltaée, so R will be 0. We
take this into account by changing, in Equation 5, the lower limit of
integration over v, from zero to v, . ' A

If v is greater than vk’ then in the collector plane the beam w111 have
the shape of the aperture, but its position will be displaced because of the
components of the particle velocity transverse to the cup normal direction, as
shown in Figcre 6. We define a two-dimensional vecfor'g, also shown in Figure
6, to be the displacement of the aperture image from a perpendicular

_ projection of the aperture into the plane of the collector. One can calculate



from the equations of motion that the "shift vector" § is given by

Ta

7b

¥*
where h is the distance between the aperture and the‘collector, and S , called
the shift function, depends oﬁly upon v_, the cup geometry, and the grid
voltages. For the Voyager main sensor cups, the shift function is given

explicitly by

2 :
v v ;
[-0- ="/ (e =5'/2.1)
v - v ‘
573 () +.093(——5—5) 24 392(——E——)+.340 &
(vi/v,) ' 1-(vy /v) ' vs/vz)

The subscript s refers to the suppressof grid; Vs is definedlin g manner
. anglogous to ﬁhe aefinition'of Vi in Equation 2
* %*
v_=122 eo /A mpl”_?‘ - _ ' 9
ﬁhere ¢s is the voltage on the suppressor grid.

Once fhe shift vector is kndwn,.the sengitive area can be'computed,in a
straiéhtforward manner.using a geometrical construction. For cups with
cylindrical symmetry, the sénsitive area depends only on the magnitude of §,
-and the functional dependence can be expreséed simply in closed form. For thé
Voyagef main sensor, on tﬁe other hand, this functional dependence is
‘complicated. As there are_16 separate regions where fhe dependeﬁce is
'different (see Figure 7), an exact analytical representafion is cumbersome. A
plot of the sensitive area (normalized to wnity for normal incidence) as.a

.function of Sy/h, with Sx/h as a parameter, is shown in Figure 8.
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4. The Grid Transparency

We now_considér the grid transparency. The transparency'of‘a singlé grid -
is defined as £he probability of an incident particle traversing the plane of
the grid without colliding with ihe:wires (all particles whicﬁ‘strike the
wires are assumed to be absorbed).. We ﬁodel é grid as a planar sttuctuﬁe’
>consisting‘of two perpéndicular sets of parallel cylindrical wires. The
transparency of the grid w111 be<the product of the transparencies of each set
of wires considerédvseﬁarately. | ' |

Consider a set of wires which run in the y-direction (as befdré, E.is
taken to be normal to the plane of the grid). Since the transpérency of these
wires does not dépénd upon vy, we.only need to considér'the projectién of the
pﬁrticle motion into the x-z plaﬁe. The probability of a particle cb}liding
with one of the wires is simply the ratio of the area of the wires to fhe area
6f the gaps between the wires prbjected'into a plane perpendicular to fhe
particle veiocity vector. As.can.be seen fr§m Figure 9, fhe'prébability of
collision is proportional to sec a, where a is the angle between the
projéction of the particle velocity into the x-z plane and thé z- axis. The
same line of reasoning can be applied to the set of‘wireS'which runs in thg
f-direction. Using‘the‘éomputed trajectéries in our simplified cup'modellto
compute the value of a for each grid, and noting that the probabilityv§f a
particle reaching the collector'plane without colliding with a grid is simply
fhe product of the-proﬁabilities of it successfully traversing each individual.

grid, we can write the grid transparency term as the folloﬁing product

N v2 v2 y
o x 1/2 ' ‘ 1/2
= [1-e(1+ 22*e¢.) J[1-c(1+ 22*e¢,) ] 10
i=1 . v2_ C i Vo i
z  A¥*m_ . zZ A¥*m

P ' : p
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where ¢i»is the voltage on the i-th grid, ¢ is the ratio of the wire diameter
to the wire spacing, and N is the total number of grids.

For the voyager main sensor, c=1/42 and fhe sets of wires in the
different grids are parallel. Sinée eaéh cup las three modulator grids, one
suppressor grid, énd five grounded grids (see Fig. 1), the transparency is

'given explicitly by

2 2 2
v . v : v
1=(1-c(1+ "2 [1-c (14 —E—) 2P 11-c (e —E5)"/2)
’ v, v,m Vi vt Vg
' 1
V2 . V2 V2 2
[1-c(1+ D)2 P [120(1s — L) 2P (1014 —E5—) ")
v, . V" Ve _ vz+_vs"

' : A 18- .
For the Voyager main sensor cups at normal incidence, T=To=(1—c) =0.65.
5. Further Approximations

In order to use our results to analyze Qata, oné must‘evaluaté_the
iniegrals of'Eduation 5 for a parameterized distribution funétion, and use the'_
data to abtain "best fit" values for the parameters. It is possibie to‘do all
of the inteératiohs numerically, but a much fastef rﬁnning‘computer code can
be written if some of the integrations can be doﬁe analytically. In this
section ﬁe outline two approximation’ schemes which permit analytical, closed
form evaluation of the intégrations over v and Vye The details of the

schemes are given in reference 15.
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For the complicated geometry of the Voyager PLS main éensor, a suitable
analytic expression for the sensitive area (FigﬁréIB) must first be found. We
used a family of trapezoids, plotted in Figure 10. The formulas for these

trapezoids are

A=Ax(sx/h)Ay(sx/h,sy/h) _ 4 . | 12
(S./h)+X!
= X r ' X -
A= T Y o xr<sx/h< X. 12a
r r :
A= 1 | -gr<sx/h<xr | 12b
"(sx/h)-x;
= e ee—— [}
gx_ T o xr<sx/h<xr : 12¢
. .
Ax= 0 4 -Otherwise 124
_ (s,/n)-Y} : :
A= X3 : : Y'<S_/h<Y 12e
y YT : da "y d
d o
Ay= 1 . . . Yd<Sy/h<Yu(Sx) 12f

~(Sy/h)-Y&(S#)

A= .Yu(Sx)-Y&(S;T Yu(Sx)<Sy/h<Y&(Sx) 12g

Ay= 0 } | - ‘ Oﬁherwisé ~ 12h
with a

x0T : - 138

X1=4.94 _ ' : . . ‘ | 13D

Y =~2.02 | - 13c

Y4=~3.62 g * 134

0. 762 cos{1.o18|sx/hj+p.247;

fo™ — 1+0.25[5 _Jn] . | | 13e

© Y!=2.50-0.125[|S /n|-1]° 13¢

All of the quantities defined by Equations 12a-h and 13a-f are dimensionless.

Yu and Yu"are plotted in Figure 11. Figure 12 shows a 3-D plot of A(§/h).
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The values ofAXr,'X;, Yd’ Yé, ?u’ and Yb were chosen o as to match the volume
of'tﬁe solid of Fig. 12 as closely as possible with the volume of the solid
representing the true area overiap. Figure 13 shows a 3-D plot of
R(Sx/h,Sy/h),~computed using the "trapezoidal approximatioﬁ" for.A and Eq. 11
for T.

We shall now proceed to descriﬁe tﬁo different apbroximation schemes. 1In
both cases, the plgsma distribution function wili be assumed to be a convected
ma#Wellian |

» _ o > 302, 2 3 '
f(v) = ;3;375 exp{-(v-V) /W) 14
where V is the plasma bulk velocity, w is the thermal speed, and‘no is thé
'_ particle number density. For the(case where V- >> w, we‘have a welIAcollimatedv
beam. In this caée, we can approximate the depeﬁdénée of £ on Vy and Vy bY a
product of delta functions -

PO n
f(v) = —
wT

'G(VX-VX) G(Vy-Vy) exp{-(vZ—Vz)z/wz} - o | f5
The delta functions permit the integrations over v and-vy'to be computed
trivially, leéving only the nuﬁericai integration over v This approximation
was used to experimentaiiy test the responée function, as described in the
following section. - | .

For the more general case where the bulk velocity is not much greater
than the thermal speed, we must change the form of the expression for the grid

transparency. It is possible td approximate Equation 10 by an expression of

the form
2 Voo g
‘T =[f ¢, expl-a (—-) }][ c, exp{—a{(—;) 1] . 16
i=t v, o=t Ty

where the a's and c¢'s are functions of the grid voltages and v, only.. The

values of the a's and c's must be determined by a numerical fitting procedure.
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This approx1mation permits the desired 1ntegrals to be evaluated numerically
with the aid of the saddle point method.

For a4cylindr1cally symmetrical cup, a similar approximation scheme can
be used. This case is much simpler,'simce the response function dces not
' depend upon-the azimuthal angle of incidence of -the particles. (Except for a
small effect due to the‘rectangular structure of grids themselves. - If the
‘grids are mounted smch that the wirea of a given grid are not parallelito the
wires ofvthe other grida, this effect will be mimimized.) The=sehs1tive area
can be approximated by a single trapezoid, and the grid transparency term
contains one sum of gaussians, rather than the product of two sums of
gaussians. The integration over azimuth angle then yields a modified Bessel
‘functiom, which can be approximated by a smm of exponentials tovpermit
analytic evaluation of the 1ntegral over the magnltude of the tangential
velocity. The response function of the D-cup of the Voyager PLS 1nstrument 1s

diacussed in detail in Reference 15.
6. Experimental Test of the Response Function

In order to test our theoretical response function; we have analyzed data
taken by’Voyager 1 during a cruise maneuvef. Voyager is a three-axis |
_atabilized spacecraft, and most of the time it is oriented_soch-that the main
4sensor symmetry axis, which is.parallel to the spacecraft's main amtenna, is
pointed toward thelEarth."Simce the ahgular separation betweenlthe Earth and
“the sun, as viewed from the outer solar system, is small; the solar.wind |
‘direction was ueually almost'parallel to the main sensor symmetry-axis. In
“this configuration the-“umity.response“ aporoximation to the Cup_respohse-(all

ihcident:particlesiwhich are not stopped by the modulator voltage reach the -
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collector, but the éperture area is corrected for the tfansparenéy of the
érids at normal incidence) is good. During the cruise maneuver, however, the
spaqecraftlperformed a series of rotations, some Qf which involved rotating
the main antenna away from .the Earth,

The data were taken over a period'of-90 minutes on 14 September, 1978,
when Voyaggr 1 was 4.1 AU from the éun. Thé solar wind bulk gpeed during the
maneuver varied between 368 and 378 km/sec, while the therﬁal speed varied.
between 14 and 20 km/sec. Data were taken simultaneously in all‘four cups.
ATwo such spectra are shown in Figures 14 and 15. The figures‘ponsists of

1 /(o

k+1-¢k) plotted versus v, for each cup. The staircases are the data,

while the smooth curves are the "best fit" simulations. The fits.are
'exceilent, corréctly_reproducing the location,; height, éndvshape of each peaks
in all of the cups in which there is a signal. For the spectra of Figure 14,
the angles between the bﬁlk velocity and the cup normals for the A, B, C, and‘
‘D éups were 380, 720, 56° and 1240, respectively; while for the spectrum .of
Fig. 15 thé'angles were 670, 340; 520, and 560, respebtively.

As an illustfatipn of the e#tent to which we ére actually tésting our
response function using this process,'considerlFigures 16 and 17. Figure 16
‘is the same épectrum as Figure 14, except that the smépth curve is a »
'simulatidn using the parameters derived frém the fit of Fig. 14 with the
aésumption of unity respohse. Notice that'although the peaks are all in the
right place due to th¢ effect of the sharply peaked'distribution function, the
'heights and shapes are all wrong. It éhould be pointed out thét the current
in the B cup of this spectrum is only about 4% of what the current.would be if
the same beam were gf normal incidence.

An even more striking example is shown in Fig. 17. While the

measurements were being taken,Athe spacecraft was rotating at a rate of one
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rotation every 33 minutes. -Since the instrumeht takes 0.24 seconds to measure
a single_channel, and the same channel is measured simultaneoussly in ali four
cups, the peak in the B-cup (channel 46) was measured about 5 seconds later
than the peak in fhe A-cup (channel 24) was measured. During that time, the
spacecraft rotated about 0.9°. TFor the fit shown in Fig} 15, this rotation -
was compensated for, while for the fit shown in Fig 17 the‘effect of this
‘small rotation was neglected. Oﬁr theoreticél fesponse funqtion is
sufficiently good that failure to account for this rotatiqﬁ‘of'léss than‘1°
made the fit noticably worse! The quélify of the fits to the data taken
during the cruise maneuver has convinced us that our theoretical résponge
function representé the-frue response function Qf the Voyager PLS expériment

within a few percént for all angles of incidence. -
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Figure Captions
Figure 1 The Voyager plasma science (PLS) experiment, showing the relative

~orientations of the three cﬁps.‘

Figure 2 Cross section of a PLS main sensor cup. The‘grids are numbered 1

through 9, and the directions of y and 2 axes (cup coordinates) are shown.

Figure 3° PLS main sensor aperture and collector areas. Note direction of

axes for cup coordinates: z points into the cup.

Figure 4 Modulator voltage and collector current versus time. ¢, 1is the
‘modulator grid threshold voitage of the k-th channel, A¢k is the voltage
. * - .
width of the k-th channel, Ik‘is the collector current when the modulator

grid voltage is ¢, and I, is the current in the k-th channel.

"Figure 5 Model potential versus z for a PLS main sensor cup. The numbered
tick marks on the z-axis correspond to the locations of the grids (see

Figure 2). The tick mark labelled ¢ corresponds to the collector.

Figure 6 Definition §f the shift vector. The figure shows thé outline of
the collector of one of the main sensor cuﬁs,'with'the image éf the .
aperﬁure in the cpllector superposed on it. An incident monoenergetic
beam of pa;ticles will have the shape of the aperture as it travels
through'the.cup. The shift vector S is the vector which lies in the
collector plane and points from the point directly underneath the éenter
of the long side of the aperture to the corresponding point ph the image

of the aperture in the incident beam.
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Figure 7° The sensitive area of a main‘sensor cup. The figure shows the‘16
distinct regions in which there is a different functional dependence of

the sehsitive area on the shift vecto;.
Figure 8 -Main sensor sensitive area versus Sy/h.

Figure 9 Geometry for grid transparency calculation. A beam of particles
incident on a grid of parallel; cylindrical_wires is shown. @ is the
ahgle between the beam direction and the nérmal to fhe plane qf the grid,
L is the distance between. the centers of two adjacent wires, and d is:the
wire diameter. The wires run in the y-direction, and the z-direction is
normal to the grid'plane, with +2 making an acute angle with the

direction of-the'ihcident beam.

Figure 10 Main sensor sensitive area versus Sy/h (trapezoidal approximation).

Compare with Figure 8.
3 . ]
Figure 11 Yu and Yu versus Sx/h..

Figure 12 3-D plot of the sensitive area versus S, and Sy in the trapezoidal

'apprbximation.

Figure 13 3-D plot of the full response function, computed using the
. trapezoidal approximation for the sensitive area and the "exact"

expression for the grid transparency.
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Figure 14 Reduced distribution function versus velocity for cruise maneuver
specfrum 1. The staircases are the data, while the smooth curve is the

fit.

Figure 15 Reduced distribution function versus veiocity for cruise maneuver

spectrum 2, The sfaircases aré the data, while the smoo_th curve is the

fit,

Figure 16 Reduced distribution func;tion ‘versus velocity for cruise maneuver

| spectrum 1. The staircases are thé data, while the smooth curve is a )
simulation done assuming "unity" response using the plasma parameters
deteﬁnined' from the fit which is plottedAir; Figure 14. No;be “that the

locations of the peaks in the simulation are correct, but their heights

~and shapes are wrong.

Figure 17 Reduced distribution function versus velocity for cruise maneuver
spectrum 2, The staircases ére the data, while the smooth curve is the
fit. The change in the orientation of the spacecraft between the time of
the »peéks in the different cups was _rﬂ‘ compensated for. . Compare ‘to

Figure 15.
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BEAM DIRECTION

- GEOMETRY FOR GRID TRANSPARENCY

Figure 9
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Figure 11
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