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The Response Function of Modulated Grid Faraday Cup Plasma Instruments

. by Alan Barnett and Stanislaw Olbert Vl'

Massachusetts Institute of Technology, Cambridge, Massachusetts

- . Abstract

Modulated grid Faraday cup.plasma analyzers are a very useful tool for

making in situ measurements of space plasmas. One of their great attributes

is that their simplicity permits their angular response function to be

calculated theoretically. In this paper, we derive an expression for this

response function by computing the trajectories of the charged particles

inside the cup. We use the Voyager Plasma Science (PLS) experiment as a

specific example. Two approximations to the "rigorous" response function

useful for data analysis are discussed.

The theoretical formulas were tested by multi-sensor analysis of solar

wind data. . The tests indicate that the formulas represent the true cup

response function for all angles of incidence with a maximum error of only a

few percent.
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1. Introduction "
n

- Since _the earliest days of space exploration, space probes have included

instruments to measure plasma particles. There are two broad classes of

plasma instruments; the modulated grid Faraday cup and the electrostatic

analyzer. Modulated grid Faraday cups consist of a collector and several

grids. The operation of such detectors is the topic of the bulk of this

paper. . Electrostatic analyzers typically consist of two curved conducting

plates, with a potential difference between them and a particle counter at one

end. When particles enter the instrument, only those particles moving in the

proper direction with the proper energy-per-charge reach the collector. A

good review article on techniques of deep-space plasma measurements is by

Vasyliunas1. I

The first successful American spacecraft to carry a plasma probe was

Explorer 10, launched in 1961. This instrument, which was the first to

provide direct evidence of the existence of the solar wind2 (it actually

measured the flow in the magnetosheath), was a modulated grid Faraday cup.

The existence of the solar wind was confirmed and became generally accepted

after observations made by Mariner 2, which carried an electrostatic analyzer3.

As more missions were flown, the plasma instruments improved. In order

to measure the solar wind direction, Faraday cups with segmented collector

plates were flown. If the plasma flow direction differs from normal to the

cup, the current to the individual segments differs due to the shadow of the

aperture. Faraday cups with three segments were flown on Mariner 4 and 5,
* s

which were 3-axis stabilized spacecraft ' , while a cup with its collector

divided into two segments was flown on the each of the spin-stabilized
6 7

spacecraft Pioneer 6 and 7 ' and Explorer 33 8.



Improved sensitivity to-the flow angle can be obtained by using an array

of Faraday cups, each of which is pointed in a different direction. An

instrument .consisting of an array of four Faraday cups which was flown on the

Voyager missions to the outer planets9 is shown in Figure 1. This instrument

has successfully measured positive ions and electrons in the solar wind10, and
1 1 1 2 1 3

at Jupiter ' and Saturn . For the case of a cold beam of particles (such

as the solar wind) flowing in a direction close to the look direction of the

cups, data analysis from these instruments is straightforward. For cases when

either the flow direction is not close to the look direction of the cups, or

the plasma thermal speed is comparable to or greater than than the bulk

velocity, or bcith, detailed knowledge of the instrument response function is

required for the data analysis. The full response function described below

has already been used for the study of the plasma flow around the lo flux

tube11*, and further work utilizing it is in progress.

In this paper we discuss the operation of this type of instrument and

derive an expression for its response function. Although the formulas which

we quote describe the Voyager instrument, the method we use can easily be

applied to any Faraday cup.

The response function of the cup is defined as the ratio of the particle

flux reaching the collector to the particle flux incident on the aperture when

the incident particles are a collimated, monoenergetic beam. We compute the

response function by studying the trajectories of the particles inside the

cup. In Section 2 we describe the model of the cup which we use and the

nature of the approximations which we have to make.

We show that the response function can be written as a product of two

terms, the "sensitive area" and the grid transparency. The sensitive area



term is computed from a straightforward study of the trajectories, while

statistical arguments are required to determine the grid transparency term.

These terms_are derived in detail, and explicit expressions for them are given

for the case of the Voyager instruments, in Sections 3 and 4.

Once the response function is known, one can use it to analyze data*

The collector current from a plasma described by a known distribution function

can be computed by performing an integration over velocity space. The problem

of data analysis, therefore, becomes the problem of solving an integral

equation for the distribution function. A very useful approximate method for

solving the integral equation is to use a parameterized model for the

distribution function, and then find the "best fit" values for the parameters.

In order to do this, one must be able to perform the velocity space

integration. Certain further approximations which permit the integration over

the components of velocity perpendicular to the cup normal to be performed

analytically for the case where the distribution function is a convected

maxwellian are described in Section 5.

Once we have computed the response function, we want to test it. In

order to do this, one would like to have a very narrow test beam.

Unfortunately, it is very difficult to make such a beam in the lab. We have

used the calm solar wind at about 4 AU as our test beam. Analysis of data

from Voyager 1 taken when the spacecraft was rotating (Voyager is a three axis

stablized spacecraft) causing the solar wind, to enter the cups at large angles

indicates that our expressions are an excellent represention of the true

response functions of the cups for all energies and angles of incidence. This

.analysis is discussed in Section 6.



2. The Physics of the Modulator Grid Faraday Cup

In this section, we analyze the physics of the Faraday cup and present

the model which we use to compute the response function, using the Voyager

Plasma Science (PLS) instrument as an example. Throughout this paper, we will

consider the measurement of positive ions. For electrons, the analysis which

we present can be modified in a straightforward manner, although in that case

the emmission of secondaries must be considered.

As can be seen from Figure 1, the PLS instrument consists of 4 Faraday

cups. Three of them, called the A, B, and C cups are arrayed about an axis of

symmetry and have pentagonally shaped apertures and collectors. The fourth

cup, called the D-cup, is circular in shape (a more conventional design) and

points 88 from the main sensor symmetry axis. The geometry will be very

important for understanding the test of the response function.

A cross-section of one of the PLS instrument's main sensor cups is shown

in Figure 2. The cup consists of an aperture stop, eight parallel grids and a

collector plate mounted in a metal housing. A top view of a cup is shown in

Figure 3. Fig. 3 also defines a coordinate system which we call cup

coordinates (z is the inward pointing cup normal). Notice that the collector

is much larger than the aperture, a fact which gives this cup a much larger

field of view than a conventional cup.

During operation, the collector plate and all of the grids except the

modulator grids and the suppressor grid are grounded to the spacecraft. The

suppressor grid is kept at -95 V to shield the collector from the.plasma

electrons and to return any secondary electrons to the collector. The

instrument is used by applying a square wave positive voltage to the modulator

grids and measuring the collector current. Since more particles are repelled



when the retarding potential is increased, the current waveform is an inverted

square wave as shown in Figure 4. We call the upper and lower limiting

modulator voltages $. and $. 1, respectively, and the corresponding collector

k and Tk+1* The sig"31 I
k

given by

* *
currents I and I . The signal I, is the amplitude of the current step,

We wish to determine collector current as a function of the modulator voltage

and the plasma distribution function. To a first approximation, the signal

consists of all of the incident particles for which the z-component of

velocity (v ) is between v and v , where v, is related to <t>, by
Z iC , K~l~n iC K.

* , * v 1 /2
vk= (2Z e*k/A mp)1/2 2

- * *
where m is the proton mass, A is the mass of the ion in AMU, Z is the

charge state of the ion, and e is the proton charge. To obtain a better

approximation, we need to study the motion of the charged particles inside the

cup.

The total electric current incident on the aperture (IQ ) due to ionicap

species a is

„ <X> 00 00 .

IaD = Zae ;/ to dy ' dvx 'f dvv ; Vz f
a
(^} dVz 3

Aperture -<*> -» y o

where dx dy is an area element in the aperture and f (v) is the distribution
3.

function of ion species a. For the total current, one must sum over all

species. In the remainder of this paper, we will supress the subscript a.

Not all of the particles incident on the aperture reach the collector.

In principle, given the initial position and velocity of a particle, one can

calculate its trajectory and thereby determine whether or not it will reach



the collector. We can therefore formally write for the collector current

* * 0> 00 00

I = Z e // dx dy / dv / dv / v f (v ) H ( v , x , y f * . )dv 4
K A y — £* K. Z

Aperture -°° -°° 0

where H(v ,x ,y ,<J> k ) is equal to one if the trajectory of a particle incident on

the aperture at the position x,y with velocity v reaches the collector, and is
»

equal to zero otherwise. In practice, Equation 4 is useless in this form

because the precision with which we can calculate the particle trajectories is

insufficient to permit us to accurately predict whether or not a given

incident particle will collide with one of the grids. We can., however,

compute the probability that a particle will collide with a grid. If we

denote by A the area of the aperture, and by R(V, ( J ) ) the probability that anap . K

incident particle with velocity, v has of reaching the collector (which is the •

same as the fraction of particles of a uniform beam of particles with velocity

v which reaches the collector), we can rewrite the Equation 4 as

Tk = ZXp / dvx / dvy ; vz f (v ) R(^,*k)dv z 5
— 00 _CO 0

We call R ( v , < f , ) the response function of the detector.

To determine R, we use the following model of the cup. We assume that

the electrostatic potential inside the cup depends only on z, and that it is a

linear function of distance between any two adjacent grids. (The model

potential for the Voyager PLS main sensor cups is shown in Figure 5.). This

approximation neglects the fine structure of the fields near the grid wires

and the fringing fields near the edges of the 'grids. Since the distance

between the grids is much greater than the spacing between the wires and the

grid spacing is much smaller than the linear dimensions of the grid, this

approximation should be adequate.



In our model field,, we can calculate the particle trajectories exactly.

The particle trajectory between any. two grids is either a straight line or a

parabola. If we now assume that the probability of a particle striking a grid

(a possibility not included in our trajectory calculation) does not depend on

the position where the particle enters the cup, we can write R as a product of

two terms and a normalization constant

R(v,*k) = T(v,*k) A(v,4>k)/Aap 6

where T is the transparency of the grids (the probability that a particle does

not collide with a grid), A is the "sensitive area" (the area of the aperture

for which incident particles will strike the collector).

3. The Sensitive Area

We discuss first the sensitive area. Consider an incident beam of

' - » • - . •
particles of velocity v. If v is less than v, , defined by Equation 2, then

Z K

the particle will be repelled by the modulator voltage, so R will be 0. We

take this into account by changing, in Equation 5, the lower limit of

integration over v from zero to v, .
Z K

If v is greater than v, , then in the collector plane the beam will have
Z K *

the shape of the aperture, but its position will be displaced because of the

components of the particle velocity transverse to the cup normal direction, as

shown in Figure 6. We define a two-dimensional vector S, also shown in Figure

6, to be the displacement of the aperture image from a perpendicular

projection of the aperture into the plane of the collector. One can calculate



from the equations of motion that the "shift vector" S is given by

S = S* h — 7a
X

* vy '
Vs h vz . 7b

*
where h is the distance between the aperture and the v col lee tor, and S , called

the shift function, depends only upon v , the cup geometry, and the gridz

voltages. For the Voyager main sensor cups, the shift function is given

explicitly by

v • v
S*=.743( - 5—1- - )+.093( - \— 5-)1/2*.392( - 5 -̂5 - )+.340 8

<v2/v2
z) . 1-(,jj/T*> (v*/v2

z)

The subscript s refers to the suppressor grid; v is defined in a manner
S '

analogous to the definition of v, in Equation 2
• •

where <t> is the voltage on the suppressor grid.
S •

Once the shift vector is known, the sensitive area can be computed, in a

straightforward manner using a geometrical construction. For cups with

cylindrical symmetry, the sensitive area depends only oh the magnitude of S,

and the functional dependence can be expressed simply in closed form. For the

Voyager main sensor, on the other hand, this functional dependence is

complicated. As there are 16 separate regions where the dependence is

different (see Figure 7), an exact analytical representation is cumbersome. A

plot of the sensitive area (normalized to unity for normal incidence) as a

: function of S /h, with Ŝ /h as a parameter, is shown in Figure 8.



10

4. The Grid Transparency •

We now consider the grid transparency. The transparency of a single grid

is defined as the probability of an. incident particle traversing the plane of

the grid without colliding with the wires (all particles which strike the

wires are assumed to be absorbed) . We model a grid as a planar structure

consisting of two perpendicular sets of parallel cylindrical wires. The

transparency of the grid will be the product of the transparencies of each set

of wires considered separately.

Consider a set of wires which run in the y-direction (as before, z is

taken to be normal to the plane of the grid). Since the transparency of these

wires does not depend upon v , we only need to consider the projection of the

particle motion into the x-z plane. The probability of a particle colliding

with one of the wires is simply the ratio of the area of the wires to the area

of the gaps between the wires projected into a plane perpendicular to the

particle velocity vector. As can be seen from Figure 9, the probability of

collision is proportional to sec a, where a is the angle between the

projection of the particle velocity into the x-z plane and the z- axis. The

same line of reasoning can be applied to the set of wires which runs in the

x-direction. Using the computed trajectories in our simplified cup model to

compute .the value of a for each grid, and noting that the probability of a

particle reaching the collector plane without colliding with a grid is simply

the product of the probabilities of it successfully traversing each individual

grid, we can write the grid transparency term as the following product

2 2•»»

v

z A*m z A*m
P P
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where < J > . is the voltage on the i-th grid, c is the ratio of the wire diameter

to the wire spacing, and N is the total number of grids.

For the voyager main sensor, c=1/42 and the sets of wires in the

different grids are parallel. Since each cup has three modulator grids, one

suppressor grid, and five grounded grids (see Fig. 1), the transparency is

given explicitly by

V V - V. V + Vz z k z s
2- v

s
11

2 2
V . V - V, V + Vz z k z s

18
For the Voyager main sensor cups at normal incidence, T=T =(l-c) =0.65.

5. Further Approximations .

In order to use our results to analyze data, one must evaluate the

integrals of Equation 5 for a parameterized distribution function, and use the

data to obtain "best fit" values for the parameters. It is possible to do all

of the integrations numerically, but a much faster running computer code can

be written if some of the integrations can be done analytically. In this

section we outline two approximation schemes which permit analytical, closed

form evaluation of the integrations over v and v . The details of they

schemes are given in reference 15.
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For the complicated geometry of the Voyager PLS main sensor, a suitable

analytic expression for the sensitive area (Figure 8) must first be found. We

used a family of trapezoids, plotted in Figure 10. The formulas for these

trapezoids are

12A=A (S /h)A (S /h,S /h)x x' ' y x' ' y

Ax= X'-X
r r

A = - '
x X'-X

r r
A =x

A =y

V 1

0

VYd

A =y

A =
y

with

(Sy/h)-Y;(Sx)

0

Xr=1.10

Yd=~2.02

Y--3.62

-X'<S /h<-Xr x' r

-xr<sx/h<xr

VSx/h<Xr

Otherwise

Yd<Sy/h<Yd

YdV1KYu(Sx)

Othervd.se

12a

12b

12c

12d

12e

12f

12h

13a

13b

13c

13d

Y =u

0.762 cos{1.018|S /h|+0.247}
A . •

13e1+0.25|Sx,

Yu=2.50-0.125[|Sx/h|-l]2 13f

All of the quantities defined by Equations 12a-h and 13a-f are dimensionless.

YU and YU' are plotted in Figure 11. Figure 12 shows a 3-D plot of A(S/h)..
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The values of X , X" , Y , Y' , Y , and Y' were chosen so as to match the volume

of the solid of Fig. 12 as closely as possible with the volume of the solid

representing the true area overlap. Figure 13 shows a 3-D plot of

R(S /h,S /h) , computed using the "trapezoidal approximation" for A and Eq. 11x y

for T.

We shall now proceed to describe two different approximation schemes. In

both cases, the plasma distribution function will be assumed to be .a convected

maxwellian

f(v) = exp{-(v̂ )2/w2} 14

where V is the .plasma bulk velocity, w is the thermal speed, and nQ is "the

particle number density. For the case where V » w, we have a well collimated

beam. In this case, we can approximate the dependence of f on v and v by ax y

product of delta functions

f (v) =-2_ 6( Vx) 5( V ) exp{-( Vz)2 /w2} 15
y y

The delta functions permit the integrations over v and v to be computedx y .

trivially, leaving only the numerical integration over v . This approximationz

was used to experimentally test the response function, as described in the

following section.

For the more general case where the bulk velocity is not much greater

than the thermal speed, we must change the form of the expression for the grid

transparency. It is possible to approximate Equation 10 by an expression of

the form

2 v „ 2 v „
-* )] . 16T =[l c. exp{-a.(— ) }] [Z c. exp{-a :

i=1 1 v j=1 J J

z z
where the a's and c1 s are functions of the grid voltages and vz only. . The

values of the a'.s and c's must be determined by a numerical fitting procedure
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This approximation permits the desired integrals to be evaluated numerically

with the aid of the saddle point method.

For a -cylindrically symmetrical cup, a similar approximation scheme can

be used. This case is much simpler, since the response function does not

depend upon the azimuthal angle of incidence of the particles. (Except for a

small effect due to the rectangular structure of grids themselves. If the

grids are mounted such that the wires of a given grid are not parallel to the

wires of the other grids, this effect will be minimized.) The sensitive area

can be approximated by a single trapezoid, and the grid transparency term

contains one sum of gaussians, rather than the product of two sums of . . •

gaussians. The integration over azimuth angle then yields a modified Bessel

function, which can be approximated by a sum of exponentials to permit

analytic evaluation of the integral over the magnitude of the tangential

velocity. The response function of the D-cup of the Voyager PLS instrument is

discussed in detail in Reference 15.

6. Experimental Test of the Response Function

In order .to test our theoretical response function, we have analyzed data

taken by Voyager 1 during a cruise maneuver. Voyager is a three-axis

stabilized spacecraft, and most.of the time it is oriented such that the main

sensor symmetry axis, which is parallel to the spacecraft's main antenna, is

pointed toward the Earth. Since the angular separation between the Earth and

the sun, as viewed from the outer solar system, is small, the solar wind

direction was usually almost parallel to the main sensor symmetry axis. In

this configuration the "unity response" approximation to the cup response (all

incident particles which are not stopped by the modulator voltage reach the
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collector, but the aperture area is corrected for the transparency of the

grids at normal incidence) is good. During the cruise maneuver, however, the

spacecraft performed a series of rotations, some of which involved rotating

the main antenna away from the Earth.

The data were taken over a period of 90 minutes on 14 September, 1978,

when Voyager 1 was 4-1 AU from the sun. The solar wind bulk speed during the

maneuver varied between 368 and 378 km/sec, while the thermal speed varied

between 14 and 20 km/sec. Data were taken simultaneously in all four cups.

Two such spectra are shown in Figures 14 and 15. The figures consists of

Ik/(<t>.+1-<t>k) plotted versus vk for each cup. The staircases are the data,

while the smooth curves are the "best fit" simulations. The fits are

excellent, correctly reproducing the location, height, and shape of each peaks

in all of the cups in which there is a signal. For the spectra of Figure 14,

the angles between the bulk velocity and the cup normals for the A, B, C, and

D cups were 38 , 72 , 56 and 124 > respectively, while for the spectrum of

Fig. 15 the angles were 67°, 34°, 52°, and 56°, respectively. '

As an illustration of the extent to which we are actually testing our

response function using this process, consider Figures 16 and 17. Figure 16

is the same spectrum as Figure 14, except that the' smooth curve is a

simulation using the parameters derived from the fit of Fig. 14 with the

assumption of unity response. Notice that although the peaks are all in the

right place due to the effect of the sharply peaked distribution function, the

heights and shapes are all wrong. It should be pointed out that the current

in the B cup of this spectrum is only about \% of what the current would be if

the same beam were at normal incidence.

An even more striking example is shown in Fig. 17. While the

measurements were being taken, the spacecraft was rotating at a rate of one



16

rotation every 33 minutes. Since the instrument takes 0.24 seconds to measure

a single channel, and the same channel is measured simultaneoussly in all four

cups, the peak in the B-cup (channel 46) was measured about 5 seconds later

than the peak in the A-cup (channel 24) was measured. During that time, the

spacecraft rotated about 0.9 . For the fit shown in Fig. 15, this rotation

was compensated for, while for the fit shown in Fig 17 the effect of this

small rotation was neglected. Our theoretical response function is

sufficiently good that failure to account for this rotation of less than 1

made the fit noticably worse! The quality of the fits to the data taken

during the cruise maneuver has convinced us that our theoretical response

function represents the true response function of the Voyager PLS experiment

within a few percent for all angles of incidence.

7. Acknowledgements

We would like to thank Herb Bridge, John Belcher, and Alan Lazarus for

helpful discussions. This work was supported under JPL Contract 953733 and

NASA contract NSG 22-009-015.



(17)

References

'Vasyliunas, V.M., in Methods of Experimental Physics 9B.49, R. A.

Lovberg, ed. Academic Press NY 1971

2Bridge, H.S., C. Oilworth, A.J. Lazarus, E.F. Lyon. B.B. Rossi, and F.

Sherb, I.G. Bull. 55,12, 1962
*

'Neugebauer, M. and C.W. Snyder, Science 138,1095, 1962

"Lazarus, A.J., H.S. Bridge, J.M. Davis, and C.W. Snyder, in Space Research

VII p 1296 North Holland, Amsterdam 1965 .

'Bridge, H.S., A.J. Lazarus, C.W. Snyder, E.J. Smith, L. Davis jr.,

P.J. Coleman jr., and D. E. Jones, Science 158,3809,1665, 1962

6Lazarus, A.J., H.S. Bridge, and J. Davis, J. Geophys. Res. 71,15,3787,

1966 . .

7Lazarus, A.J., G.L. Siscoe, and N.F. Ness J. Geophys. Res. 73,7,2399,

1968

"Lyon, E., A. Egidi, G. Pizzella, H.S. Bridge, J. Binsack, R. Baker, and

R. Butler, in Space Research VIII, North Holland, Amsterdam 1968

9Bridge, H.S., J.W. Belcher, R.J. Butler, A.J. Lazarus, A.M. Mavretic, J.D.

Sullivan, G.L. Siscoe, and V.M. Vasyliunas, Sp. Sci. Rev. 21,259, 1977

10Gazis, P. R. and A. J. Lazarus, Geophys. Res. Lett. 9,4,431 1982

''Bagenal, F., and J. D. Sullivan, J. Geophys. Res.-86,A10,8447,1981

12McNutt, R. L., J. W. Belcher, and H. S. Bridge, J. Geophys. Res.

86,A10,8314, 1981

"Lazarus, A. J., and R. L. McNutt, J. Geophys. Res. 88,11,8831, 1983

1<fBarnett, A. S., submitted to J. Geophys. Res.

l5Barnett, A.S; NASA technical report"CSR-TR-84-1 1984



Figure Captions

Figure 1 The Voyager plasma science (PLS) experiment, showing the relative

orientations of the three cups.

Figure 2 Cross section of a PLS main sensor cup. The grids are numbered 1

through 9, and the directions of y and z axes (cup coordinates) are shown.

Figure 3' PLS main sensor aperture and collector areas. Note direction of

axes for cup coordinates: z points into the cup.

Figure 4 Modulator voltage and collector current versus time. <J>, is the

modulator grid threshold voltage of the k-th channel, A<J>, is the voltage
*

width of the k-th channel, I, is the collector current when the modulator

grid voltage is $, , and Ik is the current in the k-th channel.

Figure 5 Model potential versus z for a PLS main sensor cup. The numbered

tick marks on the z-axis correspond to the locations of the grids (see

Figure 2). The tick mark labelled c corresponds to the collector.

Figure 6 Definition of the shift vector. The figure shows the outline of

the collector of one of the main sensor cups, with the image of the

aperture in the collector superposed on it. An incident monoenergetic

beam of particles will have the shape of the aperture as it travels

through the cup. The shift vector S is the vector which lies in the

collector plane and points from the point directly underneath the center

of the long side of the aperture to the.corresponding point on the image

of the aperture in the incident beam.
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Figure ?• The sensitive area of a main sensor cup. The figure shows the 16

distinct regions in which there is a different functional dependence of

the sensitive area on the shift vector.

Figure 8 Main sensor sensitive area versus S 7h.

Figure 9 Geometry for grid transparency calculation. A beam of particles

incident on a grid of parallel, cylindrical wires is shown, <* is the

angle between the beam direction and the' normal to the plane of the grid,

L is the distance between the centers of two adjacent wires, and d is the

wire diameter. The wires run in the y-direction, and the z-direction is

normal to the grid plane, with +z making an acute angle with the

direction of the incident beam.

Figure 10 Main sensor sensitive area versus S /h (trapezoidal approximation),

. Compare with Figure 8.

Figure 11 YU and Y^ versus Sx/h.

Figure 12 3-D plot of the sensitive area versus Sv and S in the trapezoidalx y

approximation.

Figure 13 3-D plot of the full response function, computed using the

trapezoidal approximation for the sensitive area and the "exact"

expression for the grid transparency.
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Figure 14 Reduced distribution function versus velocity for cruise maneuver

spectrum 1. The staircases are the data, while the smooth curve is the

fit.

Figure 15 Reduced distribution function versus velocity for cruise maneuver

spectrum 2. The staircases are the data, while the smooth curve is the

fit. ' :

Figure 16 Reduced distribution function versus velocity for cruise maneuver

spectrum 1. The staircases are the data, while the smooth curve is a

simulation done assuming "unity" response using the plasma parameters

determined from the fit which is plotted in Figure 14. Note that the

locations of the peaks in the simulation are correct, but their heights

and shapes are wrong.

Figure 17 Reduced distribution function versus velocity for cruise maneuver

spectrum 2. The staircases are the data, while the smooth curve is the

fit. The change in the orientation of the spacecraft between the time' of

the peaks in the different cups was not compensated for. • Compare to

Figure 15.
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