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INTRODUCTION

Recent impetus.for research in unsteady separated flows stems from a wide range £°

of applications from low- to high- Reynolds, number, Re. The physics of high-Re i>
CN

f l ows , in general, is qui te complex and often involves multiple rionuniqueness and '

chaos, beyond simple unsteady separat ion. For the low-Re case , e . g . in the 5=5

manuevering of f igh te r a i rc raf t at high angle-of-attack in near- and post-stall

regime, the vortex interaction dominates the flow f ie ld . The passage of vort ices

over the suction surface and their subsequent shedding leads to self-excited

persistently unsteady flows. This flow field is extremely complicated due to the «
u

global effect of unsteady separated flow, coupled with the presence of hydrodynamic g

instabilities which may trigger transition and eventually lead to chaos. Besides ^ 0
l <a u

supermaneuverability, interest also lies in this low-Re case because of the need for ^ °
C g h - 3 f r | t

design of efficient airfoil sections for Re in the range of 1 0 - 1 0 , for improv ing ^° I
w (-

the p e r f o r m a n c e of m i n i - R P V ' s ( remotely piloted vehicles) operat ing at low PM ^ P

altitudes, jet engine compressor and turbine blades, helicopter rotor blades, etc. ^ 3 ^
o 05 :

For low-speed viscous f low without body forces, Re is the key s imilar i ty H •* t

parameter. For flow over lifting bodies, the flow pattern is unique and steady for J^ a ."
., •- • • owe

Re < Re , where Re ,- Is the value of Re at which transition first occurs. Near and S-K c
or cf - ' . H H i/

beyond Re , the flow is highly unsteady and it becomes imperative that this OT y,
cf> M i-

unsteady flow be better understood. Recent developments in the dynamical theory of —. >-
rn ss c

low-dimensional nonlinear systems have provided a new and stimulating viewpoint £j'O £

concerning the onset of turbulence, as computer simulations of three or more coupled t- o <

— snonlinear first-order ordinary differential equations have led to chaotic solutions. ' .. I"
P̂  ̂ i P

Such an observation led Ruelle and Takens (1971) to hypothesize that transition to V 2 ̂
<c w c

turbulence can be quantitatively explained by deterministic equations. Their work co H ̂
<fl l/j £

has produced exciting and profound results and the resulting theory has become 5, § r-

widely known as the Ruelle-Takens theory of turbulence. They showed mathematically

that, for a nonlinear initial-boundary value problem, with a large critical

parameter such as Re, chaos resulted from repeated bifurcations of the solution.

t This research was supported, in part, by NASA Grant No. NAG-1-^65 and, in part, by
AFOSR Grant No. 85-0231.



The chaotic solutions were referred to as "Strange Attractors", to distinguish them

from other ordinary attractors such as fixed points and limit cycles, i.e. steady-

state and periodic solutions, respectively. The strange attractors are geometric

entities in the phase or state space of the governing differential equations. In

this context, fixed points are zero-dimensional entities, limit cycles are one-

dimensional entities in the sense that they can be parameterized by a single degree

of freedom, and strange attractors are more-than-one dimensional, perhaps even of

fractional dimension. The important point is that the dimension of a strange

attractor is often quite low. Indeed, in this new approach, it is possible that the

underlying mechanism responsible for chaotic behavior can be characterized by only a

few degrees of freedom. This new theory contradicts the earlier statistical theory

which treats turbulence as a broad (i.e., many degrees of freedom) spectrum of

periodic disturbances. But it is conjectured that it should include the secondary

instability theory of transition. Perhaps, time-dependent instabilities are the

likely mechanism by which an attractor remains strange. The arguments leading

towards the concept of strange attractors and the Ruelle-Takens theory of turbulence

will become evident in the section on results and their discussion.

K. Ghia, Osswald and U. Ghia (1985a) analyzed massively separated flow past a

12 percent thick Joukowski airfoil using a symmetric C-grid. The Reynolds number
3 H

ranged from 10 to 10 and the angle of attack a was varied up to 10°. For the
3

configuration of Re = 10 , ar=15°, the unsteady massively separated flow asymptoted

to a limit cycle. Subsequently, Osswald, K. Ghia and U. Ghia (1985b) significantly

improved the above analysis by introducing circulation in the computation of

conformal clustered C-grid. This resulted in the branch cut approaching the wake

centerline a few chords downstream of the trailing edge (TE). A numerical method

was developed to treat the branch cut of the C-grid implicitly while also

appropriately treating the vorticity singularity at the TE. The versatility and

efficiency of the numerical method were demonstrated by providing the massively

separated flow structure for Re=10 and ctf=30° and also the transient results, at
3 *

early times, for Re=10 and af=53°. The present study'is a sequel to these earlier

studies and has the following objectives:

i. To provide the detailed flow structure of massively separated flow for

Re=10 , a=53°, in the post-stall regime of the flow past a Joukowski

airfoil,

ii. to obtain time-dependent aerodynamic lift, drag and moment coefficients

for Re=10 and af between 15° to 53° and, finally,

iii. to understand the observed quasiperiodicity and bring forth any similarity

possible with strange attractors.



ON THE ANALYSIS AND NUMERICAL METHODS

The conservative form of the unsteady Navier-Stokes equations in terms of
1 2

vorticity and stream function in generalized curvilinear coordinates (£ , 5 ) is

used. The far-field boundary conditions of uniform flow are, strictly, valid only

at infinity. To circumvent the large values of i|> occurring in the far-field and

also facilitate the numerical implementation of the far-field boundary conditions,

the stream function ty is decomposed into two parts such that tj> = ij>. +^ , neither of

which need to be small in comparison to the other. Here, \l>. is a solution of the

stream function equation with zero vorticity and satisfies the free-stream condition

at infinity and zero normal velocity at the surface of the airfoil. This

decomposition is used so as to enable the far-field boundary condition to be placed

at infinity for the viscous-flow calculations.

The Reynolds number used in this study is defined as Re = U c/v where c is the

airfoil chord. The characteristic time is given as t = t*/(c/U ), with U being the
00 00

undisturbed free-stream velocity. The boundary condi t ions correspond to u n i f o r m

flow at inf in i ty , together with the no-slip conditions along the body surface. The

initial conditions for the viscous flow are taken as the corresponding steady-state

inviscid solution.

A clustered conformal grid is genera ted; the c luster ing is controlled by

appropriate one-dimensional (1-D) stretching transformations. An attempt is made to

resolve many of the multiple scales of the unsteady f low w i t h massive separa t ion ,

while m a i n t a i n i n g the t r ans fo rmat ion met r ics to be smooth and continuous in the

entire flow field. Typical clustered conformal grids consisting of (230, ^6) points

for a 12 percent th ick symmetr ic Joukowski airfoil with a = 15°, 30° and 53° are
o

shown in Fig. 1. Here, a is the grid angle of attack, i.e. the asymptotic slope of
O

the coordinate line emanating from the TE; this may, or may not, be the same as the

flow angle of attack a_.

A fully implicit time-marching method is developed such that all spatial

derivatives are approximated using central differences and no use is made of any

artificial dissipation. The numerical method solves the discretized equations using

the alternating^direction implicit-block Gaussian elimination (ADI-BGE) method and
1 2 2 2

has overall 0[At, (A£ ) , (&5 ) ] accuracy. The boundary conditions on the

vorticity are so implemented as to maintain second-order spatial accuracy. The

results obtained for this study are discussed next.

RESULTS AND DISCUSSION

A 12 percent thick symmetric Joukowski airfoil is used in this study and has

two especially attractive features, (i) The Joukowski airfoil can be accurately

represented using conformal transformations; the details of these and the clustering

transformations used were given by Osswald, K. Ghia and U. Ghia (1985a). (ii) The

presence of a sharp TE leads to a much stronger interacting region and, hence, truly



tests the analysis developed. This unsteady Navier-Stokes analysis and the

corresponding numerical method are used to study three flow configurations in

detail. All of these configurations have the same Re = 1,000 but the value of the

free-stream incidence varies such that af = 15°, 30° and 53°, respectively. As

stated earlier, a C-grid with (230x̂ 6) mesh points has been used; this number was

arrived at based on the available full-core capacity of the supermini Perkin Elmer

3250 MPS computer system; this then also precluded a mesh refinement study. Hence,

an attempt* was made to convert the program to run on the CYBER 205 VPS/32 computer

at NASA Langley Research Center; this effort is still in progress. The CPU time T

require to advance the solution by one time step per spatial grid point is referred

to as a "computational effort" index; the value achieve

for a Perkin Elmer 3250 MPS supermini computer system.

to as a "computational effort" index; the value achieved for T was 2.14x10 seconds

Flow in Post-Stall Regime; Re = 1000, q = 53"

There are two critical parameters in the flow past an airfoil, namely, Re and

af. In the present study, Re is held constant and only af is increased from 15° to

53°, so that af becomes the critical parameter'in this discussion. For the high

angle-of-attack case with af= 53°. the Joukowski airfoil appears, to the oncoming

stream, as an apparent bluff body. The massively separated vortex-dominated flow in

the post-stall regime for this configuration of the Joukowski airfoil, is

exceedingly complex and, from the results available so far, it is feasible to

conjecture two hypotheses; see Fig. 5. One possibility is that the solution has

still not asymptoted to an exact limit cycle but may do so subsequently. The second

possibility, based on the results for af = 30 to be discussed later, is that the

solution may asymptote to a quasiperiodic state, with anywhere from 3 to 8

incommensurate frequencies. The second hypothesis is more likely to prevail and

some arguments in its favor will be presented later. However, the discussion for

this configuration is presently considered speculative in nature, since the results

in Fig. 5 do not permit identifying a limit-cycle and describing its evolution.

Hence, the time instants at which the results are presented, are selected

arbitrarily to show the spatial structure between the LE-TE-LE sheddings.

The instantaneous stream function contours presented in Figs. 2a, c, e, g show

massively separated flow with large eddies present over the suction surface as well

as in the wake. The stagnation streamline on the pressure surface fluctuates and is

closer to LE when the LE eddy is stronger in strength (see Fig. 2a) as compared to

Figs. 2c, e where the clockwise rotating eddy has already been shed and is in the

process of strong interaction with the counterclockwise eddy from the TE. The

corresponding vorticity contours are shown in Figs 2b, d, f, h and are of greater

* This effort was made in August 1985, while the present investigators were in
residence at ICASE. Subsequently, the computer program has been made fully
operational and, it is anticipated thr.t the much-needed grid refinement in the
normal direction will be carried out shortly.



significance, since they are independent of the observer's reference frame and,

hence, permit more meaningful assessment of the convection and diffusion of the

vortices. Figure 2b shows the intense TE vortex and also the weaker LE vortex. As

compared to the cases with af = 15° and 30°, the interaction between these two

vortices is initially of a weaker nature.

Figure 2d corresponds to intense interaction between the LE vortex and a part of the

TE vortex, while the remaining part of the TE vortex is elongated and its shedding

is imminent. Still there is a substantial strength elongated vortex that has

remained as seen in Fig. 2f and it is about to shed at t = 52.7; also, the shear

layer from the LE has thickened. Finally, in Fig. 2h, both the LE and TE vortices

are beginning to intensify and the earlier interacting vortices are on the verge of

separating from the LE shear layer. The subsequent flow structure at t = 5*4.5, not

shown here, is very similar to that at t = 50.*) and corresponds to shedding of the

vortex at the LE. This evolution process could have been visualized more clearly,

had color contour plots been available to distinguish the LE and TE vortices.

Limit Cycle Analysis

i. Coefficients of Lift, Drag and Moment for Re ° 1000, af= 15°, 30° and 53°

Originally, the aerodynamic coefficients were computed only at intervals of 0.1

characteristic time. This was quite satisfactory for qualitative assessment of the

flow evolution but too coarse for its detailed analysis. Subsequently, the computer

program has been modified to provide the coefficients of lift C. , drag Cn and momentL u
C (nose-up positive about the quarter chord point) at every At increment. The

configuration with af = 15°, which requires minimum time to reach the time-

asymptotic limit cycle solution has been completely recomputed, using a slightly

improved grid near.the TE. The flow configuration with cxf = 30° has been recomputed

between t = 45 and t = 58, whereas, due to limitation of availability of CPU time on

host computer system, the configuration with ctf = 53° is currently available with

C , C and C., computations at the interval of 0.1t only. Figures 3a. b, c show C ,
Li u M lj

CD and CM corresponding to ce=15°. As seen in this figure, C. rises initially but

drops very sharply during the transient phase and asymptotes to a near-limit-cycle

solution corresponding to the dominant frequency for the shedding of vortice.s from

the TE. The L» norm of the entire vorticity and stream function fields were

carefully examined to ensure that the near-limit-cycle has been achieved. This

limit-cycle solution is an "ordinary attractor", the attractor being the 1-D object

to which the phase-space trajectories are attracted at all times. The complete

motion is known once the geometry of the attractor is determined. Hence, it is also

possible to compute the mean flow by averaging the flow over one complete cycle;

similarly, it is possible to determine the Reynolds stresses from first principles,

although these computations have not been performed in the present study.

For the flow configuration with a=30°, the physics changes dramatically, as

seen in Figs. Ha, b, c. The curves for the force coefficients show that one limit



cycle consists of two TE vortices sheddings. There are now two shedding

frequencies, or modes, associated with this more complex attractor. As shown in

Fig. Ma, the first frequency is associated with the shedding which takes place at

point 1, whereas the second frequency is associated with the shedding which takes

place at point 3. The LE shear layer associated with the first frequency is thinner

and more intense, as compared to that associated with the second frequency. The

energy now oscillates between the two unstable modes through a nonlinear coupling.

The appearance of subharmonics signifies small modulations in the shedding

frequency. This flow field, with its two natural incommensurate frequencies, is

referred to as a quasiperiodic flow, also known as "Hopf bifurcation" into an

invariant torus. From Fig. 4a, it is clear that the initial state at point 10 of a

new cycle is slightly different from that at point 8. If the phase-space

trajectories were drawn, this solution may very well show the tendency to fill a

rather significant surface area of the torus. Finally, it should be noted that the

C peaks in Fig. 4d correspond to points 2 and 9 in Fig. Ma.

For the case with af=53°, the results obtained up to t=7M may be far from

approaching an asymptotic state. Figure 5a shows some resemblance of quasiperiodic

flow with three incommensurate frequencies, this fact being further supported by the

curves in Figs. 5b, c. From their numerical experiments, Grebogi, Ott and

Yorke (1983) have also shown the existence of quasiperiodicity with three

incommensurate frequencies. The state of the system at a given time instant in one

cycle is not quite repeated at the corresponding time instant in the subsequent

cycle. The phase-space portrait, not shown here, is very complex, where the surface

has folded repeatedly onto itself, so that it appears to be a strange attractor.

This is an indication, although preliminary, that the flow may be exhibiting a route

to chaos. There are a few rigorous approaches to characterize a strange attractor.

These are the determination of (i) the Lyapunov exponent, (ii) the fractal dimension

of the attractor, which is related to the number of degrees of freedom; and finally,

(iii) the Kolmogorov entropy. These indices still need to be studied thoroughly in

order to rigorously analyze the route to chaos in a meaningful way.

i i. Entire State of the System

Analysis of lift, drag and moment histories by themselves is not sufficient to

examine limit-cycle behavior since it is quite possible that two different dynamic

states of the system may produce the same values of C , C and CM. To avoid such a

possibility, the L norms of the difference between the evolving stream function and

vorticity fields and their corresponding values at some designated initial time were

computed at each time step. Only when this measure of the internal dynamic state of

the system reached a value below a specified tolerance, was it considered that an

initial state of the system had actually re-occurred. To date, this analysis has

been carried out only for the configuration with Re=1,000 and ctf=15°. Here, a near-

limit-cycle (within the specified tolerance) does occur, with a period of 1.H16
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characteristic-time units and a nondimensional shedding frequency of 0.706. The

corresponding Strouhal number, S = fc sinct/U^ = 0.18, (see K. Ghia, Osswald and

U. Ghia (1985b)), agrees well with the universal wake-based number of Roshko (195*0.

From Figs. 6a and c, as well as 6b and d, it is clear that the large as well as

small-scale motion repeats itself and that a limit cycle has been nearly

established. For the case of Re=1000 and af=30°, the L_-norm of the solution has

yet to be examined. Instead, the limit cycle was arrived at from visual observation

of the variation of aerodynamic coefficients presented in Fig. *J. As seen in Fig.

4a, the two Strouhal numbers are S=0.15 and S=0.20, corresponding to two shedding

frequencies. Considering the two sheddings per cycle, the overall Strouhal number S

is obtained as 0.17 which, again, is in the correct range. The stream-function and

vorticity contours in Figs. 7a-d for t=i)5.1 closely resemble those at 50.98, but the

two states are not identical, implying a slightly different initial state each time.

Finally, for Re = 1000 and ctf=53°, the results obtained so far are not sufficient to

warrant a limit-cycle analysis. It is likely that the flow field may asymptote to

quasiperiodicity with three incommensurate frequencies, as can be inferred from Fig.

5b. However, this is a very weak justification and, hence, no attempt is made to

compute the Strouhal number yet. In order to understand the degree to which this

motion repeats itself, points 1 and 11, corresponding to LE shedding after three

sheddings, have been plotted in Figs. 8a-d at t=1*6.2 and 58.6. The stream-function

and vorticity contours are similar, but there are sufficient differences. This

leads to the conjecture that the motion may be quasiperiodic with three frequencies,

and may be on the route to chaos.

CONCLUSION

The unsteady Navier-Stokes analysis is shown to be capable of analyzing the

massively separated, persistently unsteady flow in the post-stall regime of a

Joukowski airfoil for angle of attack as high as 53°. The analysis has provided the

detailed flow structure, showing the complex vortex interaction for this

configuration. The aerodynamic coefficients, C., CD and CM for lift, drag and

moment, respectively, have been calculated; these aid further in characterizing this

unsteady flow. The use of ctf as the critical parameter appears to be appropriate,

but further computations are needed to convincingly demonstrate the state of the

flow for a =53°. The phase-space portrait not shown for this case does, at least

qualitatively show that the asymptotic solution is a strange attractor. This study

has so far only computed the spatial structure of the vortex interaction. It is now

important to potentially use' the large-scale vortex interactions, an additional

energy source, to improve the aerodynamic performance. To achieve this, a

quantitative analysis must be carried out from the results obtained so far to

analyze the dependence of vortex evolutions, their growth and strength, and the

various interactions amongst vortices and with the airfoil. This latter study would



aid in carefully characterizing the flow field as a function of the airfoil

geometry. It is only after this phase that the undesirable aerodynamic features can

be appropriately controlled and the energy of the unsteady vortex-dominated flow

harnessed to improve the aerodynamic performance as desired under critical operating

conditions.
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Fig. 7. Limit-Cycle Analysis for Joukowski Airfoil at Re = 1,000, af = 30°, S = 0.17.
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Fig. 8. LE-TE-LE Vortex Shedding for Joukowski Airfoil at Re = 1,000, af = 53°.
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