DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS
SCHOOL OF ENGINEERING
OLD DOMINION UNIVERSITY

- NORFOLK, VIRGINIA 23508

ADAPTIVE CONTROL OF LARGE SPACE STRUCTURES
USING RECURSIVE LATTICE FILTERS

By

N. Sundararajan, Co-Principal Investigator

Gene L. Goglia, Principal Investigator

Final Report
For the period ending December 31, 1985

Prepared for the

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NAG-1- 429
Dr. Raymond C. Montgomery, Techn1ca] Monitor
FDCD-Spacecraft Controls Branch

{NASA-CR-177270) ADAPTIVE CONIRCL OF LARGE . N86-27401

SFACE STKUCTUEKES: USING RECURSIVE LATTICE

FILTERS "Final Refport:- {C1ld Dcminion Uniw.), ’

80 p HC AQOS/MF AQ1 B CSCL 22B , Unclas
' : : ' " G3/18 43134

%z;% - OLD DOI\/IINION UNIVERSITY RESEARCH FOUNDATION

December 1985




DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS
SCHOOL OF ENGINEERING

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23508

ADAPTIVE CONTROL OF LARGE.SPACE STRUCTURES
USING RECURSIVE LATTICE FILTERS

By

N. Sundararajan, Co-Principal Investigator

Gene L. Goglia, Principal Investigator

Final Report
For the period ending December 31, 1985

Prepared for the

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NAG-1-429

Dr. Raymond C. Montgomery, Technical Monitor
FDCD-Spacecraft Controls Branch

Submitted by the

01d Dominion University Research Foundation
P.0. Box 6369

Norfolk, Virginia 23508

December 1985



TABLE OF CONTENTS

 PAGE
SUMMARY .+« 2 et veeeeaeennnnnnenns e e 1
REFERENCES + + e sttt teeeeannnanaeeneeeenennneeneeeseeseerannnneeeens 3
APPENDIX A: IDENTIFICATION OF THE DYNAMICS OF A TWO-DIMENSIONAL .

GRID STRUCTURE USING LEAST SQUARES LATTICE FILTERS.... 4
APPENDIX B: EXPERIMENTAL EVALUATION OF FLEXIBLE STRUCTURE

IDENTIFICATION USING LATTICE FILTERS.....ceevvenrnnnn. 18
APPENDIX C: - PROGRESS IN ADAPTIVE CONTROL OF FLEXIBLE

SPACECRAFT USING LATTICE FILTERS...evueeerouennneennn. 26

APPENDIX D: ROBUST CONTROLLER SYNTHESIS FOR A LARGE FLEXIBLE
SPACE ANTENNA. ¢ttt iet ittt iiinneneassannns 34

i1



TeeoRNcE Confi

ADAPTIVE CONTROL OF LARGE SPACE STRUCTURES

USING RECURSIVE LATTICE FILTERS '
ADAPTIVE coniOL con TO L TReEo Ry

o o cauiles MATY . AODELS ‘
Lhel wRAce = DyuAmic STRLCT, ANALYSIS

RelulSWe 'FQV‘QC—T_\ oS By T‘; CECOSACE conTlol
T @ SLTee> . ] . RS Tirae LTy
LA Ces Cﬁ’\ﬁ—\“ 3 ene L. Goglia ) Lerar eQum@e wexioe

it ELemenT  paetiven

SUMMARY TLeridle SODhES

This report summarizes the research activities performed under grant
NAG-1-429. The objective of the research has been to study[EEe use of re-
cursive lattice filters for identification and adaptive control of large
space structures./(Eattice filters are used widely in the areas of speech
and signal processing. Herein?' they-are used to identify the structural
dynamics model of the flexible structures. This identified model is then
used for adaptive control. Before the identified model and control laws are
integrated, the identified model is passed through a series of validation
procedures and only when the model passes these validation procedures con-
trol is engaged. This type of validation scheme prevents instability when
the overall loop is closed.

One of the main aims of the research has been to compare the results
obtained from simulation to those obtained from expériments. In this re-
gard, the flexible beam and grid apparatus at the Aerospace Control Research
Lab (ACRL) of NASA Langley Research Center were used as the principal candi-
dates for carrying out the above tasks{-—;hother important area of research,

.w namely that of robust controller synthesis)was investigated using freqﬁency
domain multivariable controller synthesis methods. The method uées the |

Linear Quadratic Gaussian/Loop Transfer Recovery {LQG/LTR) approach to en-

sure stability against unmodeled higher frequency modes and achieves the

*Eminent Professor, Department of Mechanical Engineering and Mechanics, 01d
Dominion University, Norfolk, Virginia 23508.



desired performance. Such a controller was designed for the 122 mr. Hoop-
Column antenna using a single 3-axis torque actuator and attitude sensors.

References 1 and 2 present the detailed analysis of identification
results for the flexible grid apparatus using lattice filters. The scheme
provides on-line identification of number of modes, mode shapes, modal damp-
ing and natural frequencies. The results indicate that the lattice identi-
fication scheme is a viable scheme for identifying the structural dynamics
6f flexible structures. The experimental results also indicate differences
between those predicted by finite element analysis and obtained by experi-
ments. The difficulties are not as such in finite element analysis but in
modeling the apparatus for finite element analysis. This fact emphasises
the need for on-orbit identification of large space structures before con-
trol is attempted. A summary of the experimental results obtained using
lattice filters is described in reference 3.

An adaptive control scheme Qsing lattice filter identification and
modal description has been developed in reference 4. Alternate schemes of
using input-output models instead of modal form from lattice filters is
described therein. The problem invthis approach is to obtain efficient
control schemes as the identified model of the system becomes coupled and to
calculate the pole placement control law on-line is computationally complex.’
Presently, the identification scheme uéing lattice filters for obtaining the
input-output model is under development in the Charles River Data Systéms in
the ACRL. |

A new approach of designing robust controller for a large flexible
space antenna using the LQG/LTR approach was deve]oped in reference 5. The
method was used in designing robust controller for the 122 mr. Hoop-Column

antenna using only a 3 axis torque actuator and attitude sensor. The objec-



tive is to desjgn the controller based on a lower order model to achieve the
desfred bandwidth and at the same time ensuring stability aQainst unmodeled
higher frequency modes. The resu]tsAin reference 5 indicated that if one

- uses only a rigid body model for design stability against unmodeled modes
can be obtafneq but. not the performance. Based on detailed studies in ref-
erences. 6 and 7 it was concluded that with the first three flexible modes

(corresponding to the 3 axes) included in the design model both stability

and performance can be ensured.
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STRUCTURE USING LEAST SQUARES LATTICE FILTERS



The Journal of the Astronautical Sciences, Vol. 33, No. 1, January-March 1985, pp. 3547

Identification of the Dynamics of a
Two-Dimensional Grid Structure using
Least Squares Lattice Filters'

R. C. Montgomery’ and N. Sundararajan’

Abstract

The basic theory of least squares lattice filters and their use in identification of structural
dynamics systems is summarized. Thereafter, this theory is applied to a two-dimensional grid
structure made of overlapping bars. Previously, this theory has been applied to an integral beam.
System identification results are presented for both simulated and experimental tests and they are
compared with those predicted by means of finite element modeling. The lattice filtering ap-
proach works well for simulated data based on finite element modeling. However, considerable
discrepancy exists between estimates obtained from experimental data and the finite element
analysis. It is believed that this discrepancy is the result of inadequacies in the finite element
modeling to represent the damped motion of the laboratory: apparatus.

Introduction

The ability to predict the dynamic behavior of large space structures (LSS) ade-
quately for control system design is doubtful because of their expected size, appreciable
flexibility, and on-orbit assembly anomalies. Hence, dynamical modeling from on-
orbit measurements, followed by modifying the control system as dictated by the
identified control system design model (adaptive control), is of interest. The goal of this
paper is to determine, using a generic grid structure, whether a priori modeling of the
structure is adequate for a high authority control system design or whether on-orbit
identification is needed.

An approach for identifying the dynamic behavior of LSS that estimates model order
in addition to model parameters is presented in {1]. It uses lattice filters which provide
an order as well as a time recursive algorithm for linear least squares signal estimation.
[2] provides a tutorial on lattice filter theory and applications. The outputs of the theory
of [1] are the least square estimate of the measurement sequence, the model order
required to fit the measurements, the associated lattice model (this includes mode shape
"This paper was originally presented at the American Control Conference. San Diego, California. June 6-8.

1984.

*NASA Langley Research Center, Hampton, VA 23665.
’0ld Dominion University Research Foundation, Hampton. VA 23666.
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estimates that are orthonormal in the measurement space), and the associated auto-
regressive moving average (ARMAX) model of the measurement sequence.

Some distributed adaptive control strategies require identification of the natural
modes of a structure (3. 4]. Unfortunately. the lattice filter provides mode shapes that
are orthonormal in the measurement space and. hence, are not the natural modes.
Natural modes can be obtained. however. either through an eigenvector analysis of the
identified ARMAX model or through a transformation that provides spectral decom-
position of the lattice filter modal amplitudes [5]. The latter method is used herein to
obtain the natural modes. Using spectral decoupling to determine mode shapes. one can
obtain mode frequency and damping using an equation error parameter identification
method [3] that employs a second-order ARMAX model to represent the natural mode
amplitudes. The procedure of [3] tracks frequency and damping coefficients required
for the modal amplitude input sequence to fit the second order ARMAX model.
Because the input sequence may have an unfavorable signal to noise ratio. the parame-
ters so derived must be tested for validity before use in control system design. This
parameter testing is treated in detail in [6] but is not employed herein.

The foregoing procedure has been used to identify the dynamic characteristics of an
integral free-free beam in [1.7]. (8] describes the test apparatus used in those studies.
In this paper, the theory is applied to a more complex, two-dimensional grid structure
made of overlapping bars. First, a brief overview of the theory used is presented. Next,
system identification results are presented using both simulated and experimental
data. Finally, the experimental results are compared with those predicted using finite
element modeling.

Summary of the Method Used to Identify Structural Dynamics Systems

For the application considered here we assume that the kth measurement sample is
of the form

M= (k) valk), e vas(k)] . ()

where NS represents the number of sensors. It is assumed that v is generated from a
model system such that

yi = OV + ne (2)

Here, ® is a mode shape matrix. W, is the modal amplitude vector. and n; is a Gaussian
random variable with a zero mean and a covariance matrix R. Typically, for structural
dynamics applications, each component of W, is the output of an uncoupled second-
order process. The task here is to estimate the order and obtain the least square estimate
of ¥, from N + | measurement samples v, through ¥y. [1] presents a derivation of the
equations that relate order n, and time i, recursions for the normalized forward and
backward residuals (e and r, respectively) as well as the least squares estimate of the
measurement vector y. These equations are listed below:

ei.rn'l = (l - kiz.n'-l)‘llz(ei.n - ki.n'lri—l.n) (3)

Ciaer = (1 — kiz.rwl)-ll(ri-l.n = ki pe1€i.0) 4)
N-1

v = Z E(ev.|ry-1.,) &)

n=0
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with
kinet = (€ n Ficya) ’ (6)

and E (x| y) is the orthogonal projection operator of the vector x onto the vector v. The
symmetry of the recursion formulae is apparent. The equations are coupled by the term
k; .., which is customarily called the “reflection coefficient.”

Clearly, in this approach one may “fit the noise™ by continually increasing the order
of the system; however. once the order of the estimator has increased sufficiently, the
residual errors should lie within a noise band which can be predicted based on assumed

" noise characteristics. A threshold value can be selected based on this predicted noise
band and order determined by a test of whether or not the residuals have been reduced
to lie within the noise band. Also, the test can be made considering several samples of
data; that is, using a data window. [1] documents experience in order determination
based on this threshold test.

Having defined the order required to fit the data using a linear model, we seek a fixed
set of basis functions that are spectrally decoupled for modal control. Therefore, a fixed
orthonormal basis is used during intervals when the order estimate is constant. (How-
ever, the order estimate is checked at each measurement sample based on the threshold
test.) The lattice filter uses the current measurement as the first mode shape and, using
a modified Gram-Schmidt orthonormalization procedure, generates additional basis
functions from estimation residuals. Consequently, the output of the lattice filter pro-
duces coupled mode shapes and corresponding modal amplitudes wherein the first
coupled modal amplitude will contain all significant natural modes. Since the order
estimate n has been determined. the first coupled mode digital Fourier transform (DFT)
amplitude spectrum is searched for the n most significant peaks and corresponding
frequencies. Because the spectrum contains n peaks for the n separate modes, a
transformation matrix can be obtained that decouples the spectrum. This transformation
matrix is the inverse of the matrix whose elements are the real part of the transform of
the n coupled modal amplitude channels (rows) evaluated at the n peak frequencies
(columns). It effectively transforms the lattice filter modes into spectrally decoupled
natural modes. These decoupled modes are not orthogonal. This procedure is described
in [5].

Thus, the decoupled modal amplitude time series, w(k), is obtained by applying the
transformation to the direct output of the lattice filter. This time series is then analyzed,
for each mode. to identify the parameters of its autoregressive moving average
ARMAX model. The inputs to each ARMAX modal model are the generalized forces
and hence, each model takes on the form

w(k) = Awlk — 1) + Apw(k — 2) + B f(k — 1) + B, flk — 2) )]

where f represents generalized forces. The parameters p” = (A,. A, By, B») are the ones
which are identified and which are required for the control law design process. Thus,
the ARMAX model output error is

etk = 1) = wk = 1) = [Ailk = Dw(k — 2) + Atk = Dw(k = 2)
+ Bi(k = Dftk = 2) + Bylk = 1)f(k — 3)] ®)

The method of {3] is used to identify the parameters (p) using the iteration sequence
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pk) =plk = 1) + ek = 1)

As indicated in [3], the weights W; (i = 1,...,4) must be selected so that they are
consistent with the relation

Wiwik — 2) + Wawi(k = 3) + Wy f2(k — 2) + W fik —3) <2 (10) -

and the inputs to the algorithm (w and f) must be sufficiently varying and large if the
parameters are to converge to their correct value.

Damping ratios and natural frequencies of the modes can be obtained from A, and
A, of equation (7). However, the solution is not unique, due to the foldover phenome-
non of sampling. By finding the roots, z,, of the characteristic equation (7) and using
the relation 2; = e*” in the primary strip, where 7 is the sampling period, the following
equations for damping ratio and natural frequency are obtained for a typical root,
say z:

w = ¢/Qm7) ) (1n
{=clc? + ¢)" . (12)
wherein _ .
é = tan"'(b/a) a3)
c = —-;— In(a® + b3) (14)

and a = Re(z) and b = Im(z). The behavior of this overall system identifica-
tion methodology with both simulated and experimental data is discussed in the sub-
sequent sections.

Description of the Flexible Grid Facility

Figure | shows the flexible grid experimental appartus currently being built at the
NASA Langley Research Center. The grid is a 7 ft by 10 ft planar structure made by
overlaying aluminum bars of rectangular cross section. The bars are centered every foot
so that there are 8 vertical and 11 horizontal bars. As shown in Fig. I, the grid is
suspended by a cable at two locations on the top horizontal bar. The motions of the grid
perpendicular to the plane of Fig. 2 are the ones of interest in this study. There are nine
noncontacting deflection sensors mounted on a back frame which give a 9 X |
measurement vector. The sensor data are linked to the main CYBER 175 Real-Time
Computer System at NASA Langley Research Center so that the identification can be
carried out in real time. For the experimental tests, the locations of the sensors are
indicated in Fig. 2.

Simulation Studies

A finite element analysis of the grid was performed which included the suspension
cables. Nodes were placed at each overlapping joint on the grid. the ceiling attachment
points of the cable, and every one-half foot along the cable. The grid elements con-
necting the nodes were modeled as bending elements, whereas the cable elements were
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FIG. 1. A Photograph of the Grid Apparatus.
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FIG. 2. A Schematic of the Grid Apparatus Indicating Locations Referred to in the Text and
Subsequent Figures.

modeled as two-force members. Thus, a total of 165 elements were included in the
model. Four degrees of freedom appropriate for motion normal to the plane of the grid
were considered. No damping was included in the model. Thirty modes were obtained
from this analysis. The frequencies of the first ten modes are listed in Table 1. The first:
three modes are the pendulum modes, the fourth is the first bending mode and the fifth
is the first torsional mode. The finite element analysis uses an iterative method to
" calculate mode frequencies. The frequencies used in simulation are believed to be
numerically accurate since the change in eigenvalue iterate of the highest frequency
mode used in the simulation is 10~"' on the final iteration. The corresponding eigen-
value iterate was 1565, which corresponds to the mode 8 frequency in Table 1.

A simulation was developed that accommodates the first 15 modes of the analysis,
but only four modes were used herein. Modes 4, 6, 7, and 8 were used. A sampling
rate of 32 Hz was simulated with a standard deviation for the measurement noise o
0.005 in. which was based on actual sensor characteristics. Modes were simulated with
modal amplitude initial conditions of 0.1. The data window for order determination
included eight samples. In this work, the sensor locations were chosen based on several
simulations. These locations differ from those of the experimental apparatus in that they
were selected to maximize the effect of simulated modes on the sensors. This was
accomplished by visual examination of the simulated sensor outputs. The selected
locations are indicated in Fig. 2. An asterisk is used to distinguish simulation sensor:
locations from experimental ones. One may expect that location 5 would be preferable

10
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TABLE 1. Modal Frequencies Obtained
from the Finite Element Analysns of
the Grid

Mode Number Frequency (Hz)

0.364
0.625
1.398
2.29
3.07
4.791
5.933
6.297
7.337
10.352

O O 0 N>V WN =

—

to location 5*; but, since some simulated modes had little input to a sensor at loca-
tion 5, location 5* proved to be a better location.

Based on the entire measurement vector, the lattice filter order estimate is shown in
Fig. 3. Also, sensor 5* data, typical of those of the other sensors, is shown in Fig. 3.
After estimating the order, we carried out a transformation based on the discrete Fourier

l ] | I N

0 2 4 6 8 10
TIME., SEC.

FIG. 3. Simulation Time Histories of Sensor 5*, Lattice Filter Order Estimate. and the Norm of the
Estimation Error for the Entire Measurement Vector.

11
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FIG. 4. Sensors | and 4 from Experimental Tape 5 and the Estimate of Signal Order Obtained by the
Lattice Filter.

transform (DFT) using 128 samples in order to obtain the natural modes, and used the
equation error method to identify associated modal frequencies and damping. The
resulting modal frequencies, damping and mode shapes are compared with those
predicted by finite element analysis in Table 2. The identification of frequencies and
damping are close for-all four simulated modes. However, the mode shape estimates
agree with simulation for only three modes. One possible explanation for this is the
limitation imposed by sampling rate and the number of samples used to decouple the
lattice filter modes. Sampling at 32 Hz and including 128 data points in the DFT, a

TABLE 2. Comparison Between Simulated and Identified Results

Mode 4 Mode 6 Mode 7 Mode 8
Simu- Identi- Simu- Identi- Simu- Identi- Simu- Identi-
lated fied lated fied lated fied lated fied
Frequency i
(Hz) 2.29 2.4 4.79 48 5.93 6.0 6.3 6.4
Sensor i ) ’
1* 0.29 0.30 -0.16 -0.17 0.31 0.32 0.59 0.45
2* ~0.40 -0.41 -0.12 -0.08 -0.43 -0.43 0 -0.43
3* 0.29 0.30 -0.16 -0.18 0.31 0.32 -0.16 0.21
4* 0.30 0.31 0.38 0.37 -0.06 -0.06 0.01 -0.09
5* -0.39 -0.36 -0.72 -0.74 0.49 0.49 0.01 0.49
' 6* 0.30 0.30 '0.37 0.36 -0.06 -0.06 -0.01 -0.06 ~
T* 0.31 0.31 -0.20 -0.15 -0.32 -0.31 0.39 -0.19
8* -0.39 -0.38 -0.26 -0.29 0.41 0.41 0 0.37
9* 0.31 0.31 -0.20 -0.14 -0.32 -0.31 -0.39 ~-0.38

12
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frequency resolution of only 0.25 Hz is obtained. Since the expected frequency sepa-
ration between modes 7 and 8 is only 0.4 Hz, good decoupling cannot be achieved.

To summarize the lessons learned from the simulation studies:

1. The least squares lattice filter gives good identification of simulated modal
frequencies, damping ratios, and mode shapes in the presence of sensor noise
expected in the experimental apparatus.

2. The DFT method of obtaining natural modes from the lattice modes is inaccurate
if the modes are closely spaced in frequency. This may be improved by adding
more samples to the DFT.

3. Sensor locations should be properly selected to insure good identification of
simulated mode shapes. :

The next section will discuss results obtained from the experimental apparatus.
Experimental Results

. Experiments were conducted using the grid apparatus previously described. The grid
was excited using an air shaker which periodically exhausted a jet of air that impinged
on the grid at sensor location 1. The frequency of the jet was adjustable from 0 to
50 Hz. Although the resulting grid excitation was periodic, it was not purely sinusoidal
but was rich in harmonics. Because of the range limits of the deflection sensors - 0'to
approximately 2 in. - the maximum peak-to-peak deflections of the grid were limited
to'about 1 in. When the peak-to-peak deflection neared this limit, the air shaker was
turned off and the grid was allowed to vibrate freely with only air and material damping.
A CYBER 175 Real-Time Computer System sampled the deflection sensor data at
32 Hz for 5 seconds. The data were stored on a system data file for further analysis.
Since only free-decay response data were recorded, the B, and B, parameters of
equation (7) were not identifiable. Figure 4 presents data from file 5. Here, the order
estimate is seen to converge to an oscillation between 2 and 3 at about 0.5 s. At about
0.8 s, the order estimate was fixed at 3 and data collection (at 32 Hz) for the 64 time

samples required for the DFT was started. The DFT was accomplished at about 2.8's.

and the decoupling transformation matrix was calculated. The modal amplitudes after
this time should contain a single frequency and the transformed mode shapes should
correspond to the excited natural modes of the structure. Thus, three modes were
extracted from the experimental data tape. These have frequencies near 0.5 Hz,
2.5 Hz, and 5 Hz. Table 3 presents the mode shape estimates obtained from the
experiment. Also presented are selected mode shape predictions taken from finite
element analyses. The modes selected were those whose frequencies bracket the experi-
mentally derived ones. The following discussion deals with the Table 3 data in order
of increasing frequency. - '

A good comparison does not exist between the first or third experimental modes and
either of their bracketing finite element analysis modes. Additionally, there is some
bending in the first experimental mode as evidenced by sensors 4, 5, and 6. The
amplitude of this mode is shown in figure 5 along with its ARMAX parameters A, and
A; and their primary strip equivalents of damping and frequency. Figures 6 and 7 show
the same information for the second and third modes. respectively. For the second
mode, a good comparison does exist between it and the 3.07 Hz finite element analysis
mode. Note that, however, the output of sensor 4 is opposite in sign and reduced in

13
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TABLE 3. Comparison Between the Finite Element Predictions (P) and Experimental
Identification (E)

Mode 1 Mode 2 Mode 3
Comparisons Comparisons -Comparisons
Origin P E P 1 4 E P P E P
Frequency -
(H2) 0.364 0.5 0.625 229 25 3.07 4.79 5 5.93
Sensor _
1 ~0.54 0.26 0.45 0.35 -0.45 -047 -036 -0.04 0.43
2 -0.51 046 0 ~0.25 0.1t 0 -034 -0.38 -0.35
3 -0.51 0.66 -0.45 0.35 0.44 0.48 -~036 -0.14 0.43
4 -0.26 - 024 0.41 . 0.38 -0.08 0.13 0.22 0.18  -0.07
5 -0.26 -0.1 0 -0.25 0.05 0 0.24 0.10 0.07
6 -0.26 041 -041 0.38 ~-0.03 -0.13 022 -0.01 -0.07
7 -0.08 0.10 0.36 0.38 0.54 0.51 -0.38 -0.65 -0.45
8 -0.08 0.20 0 -0.24  -0.07 0 -0.43 0.29 0.32
9 -0.08 0.10 -0.36 038 -054 -051 -038 054 0.4
¥ 1
B
l_ VVVVY
-1
3.P .
A n "L/—'—‘*—
0
0
A2 —\ ,__u_;—’ﬂ_
-2 Np—
l.—
w, Hz, N [_*,H—\
) [
i J—
Z o
-l U r ﬂ
l | | | 1 _1
0 1 2 3 4 5
Time, sec.

FIG. 5. Characteristics of the First Mode Identified from Experimental Tape 5.
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FIG. 6. Characteristics of the Second Mode Identified from Experimental Tape 5.

amplitude from the finite element prediction. This means that a feedback on that sensor
based on the finite element analysis will be destabilizing near the 2.5 Hz frequency.
The validity of this deduction can be established by examining the outputs of sensors 1
and 4 [4]. According to the finite element analysis, the 2.5 Hz content of the sensors
should be opposite in sign. However, they are in phase in agreement with the identi-
fication results. :

Conclusion

The application of the least squares lattice filter in system identification has been
extended to a non-integral, two-dimensional grid structure made of overlapping bars.
Previous experience has been limited to an integral free-free beam. Both simulation and
experimental data were used to evaluate the system identification capabilities of the
method. In the simulations, the least squares lattice filter gave good identification of
simulated modal frequencies, damping, and mode shapes in the presence of sensor
noise expected in the experimental apparatus. However. the spectral decoupling method
of obtaining natural modes from lattice filter modes required a large number of data
points in the discrete Fourier transform to get adequate frequency resolution when the
modal frequencies were closely spaced. This problem can be overcome by an eigen-
vector analysis of the lattice filter's associated ARMAX model. When the lattice fiiter
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FIG. 7. Characteristics of the Third Mode [dentified from Experimental Tape 5.

was used for system identification with experimental data, the mode shapes identified
differed significantly from those of the finite element analysis. This has been corrobo--
rated by examination of the sensor data and indicates that on-line identification of large
structural dynamic systems may be absolutely necessary to get acceptable performance
in a high gain system that requires knowledge of mode shapes.
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EXPERIMENTAL EVALUATION OF FLEXIBLE STRUCTURE IDENTIFICATION USING LATTICE FILTERS

N. Sundararajan
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Abstract. This paper presents the

of least square lattice filters in

{identification of the dynamics of highly flexible structures. Lattice filters have
been used extensively in the areas of adaptive signal procesing and speech synthesis.
Herein, they are used for on-line 1identification of the number of modes, mode shapes
and modal amplitude time series from the measurement data. The theory 1is illustrated
using experimental dats for a simple free-free beam and a more coumplex, flexible,
two~dimensional grid apparatus. Results presented indicate that the lattice filter
approach produces effective identification of structural dynamics for the class of

gtructures ‘studied to this time.

Keywords: Identification, Lattice
Approximation, Vibration Measurements.

INTRODUCTION

with the s8ize of the structures currently
contemplated for building 1in space becoming
larger, identification of the dynamic characteris-
tics of these structures is an ilmportant area of
research. Accurate on-orbit identification
becomes a8 necessity as these structures cannot be
assembled fully on the ground because of its size,
and also it is difficult to predict an accurate
model on the ground. As the performance require-
ments for these structures in space become
stringent, however, it becomes imperative to
identify their charecteristics on-orbit and modify
the control system as dictated by the identified
control system design model (adaptive control).
This paper highlights the wmodel determination
phase of the adaptive control problem. This phase
involves not only determination of parameter
estimates for an assumed linear form, but also the
order of the linear model form.

An approach for identifying the dynamics of Large
Space Structures (LSS) that estimates model order
in addition to model psarameters 1s presented in
Sundararajan and Montgomery (1983). It uses
lattice filters which provide an order as well as
time recursive algoritim for linear least square
signal estimation. A comprehensive tutorial on
the theory and applications of lattice filters has
been given by Freidlander (1980). The wain
results from the paper of Sundararajan and
Montgomery (1983) are: the least square estimate
of the measurement sequence; the wmodel order
required to fit the measurements; the associated
lattice model (this includes mode shape estimates
that are orthonormal in the measurement space) and
the associated auto-~regressive wmoving average
(ARMA) model of the measurement sequence. The
mode shapes obtained by the lattice filter are not
the “natural™ modes but a linear combination of
them. In order to compare the identified node
shapes to thogse predicted by finite element analy-
818, a decoupling method to obtain natural mode
shapes from the lattice mode shapes have been
developed 1in Sundararajan and Montgomery (1982).
Using the above spectral decoupling method to
obtain natural mode shapes, mode frequency and
damping can be obtained using an equation error
parameter identification method (Johnson and

Filters, Space Vehicles, Least Squares

Montgowery (1979)) that employs a second order
ARMA model to represent the natural mode ampli-
tudes. This procedure is followed herein.

The objective of this paper 18 to present the
experience in using lattice filter theory for
identification of structural dynamics of two flex-
ible structures. They consist of a one-dimen-
sional free-free beam and a two-dimensional
flexible grid apparatus. The structures are part
of an experimental facility at the Aerospace
Control Laboratory at NASA Langley Research Center
for studying advanced control concepts for large
space structures. The beam apparatus provides a
simple structure to test the basic concepts first,
and the grid apparatus provides a more complex
structure close to the real spacecraft. Before
presenting the results of lattice filter identifi-
cation for these structures, a brief outline of
the basic theory is given. Results are presented
for the identification of the dynamics of the beanm
using experimental data. Next, the same 1is
repeated for the grid apparatus. Conclusions
based on the above study results are then
summarized.

Summary of Lattice Filter
Identification Theory

For the application considered here, we assume
that the kth measurement saample 18 of the form

W " [yl(k). yz(k). ey yNs(k)]

where NS represencs the number of gensors. It 1is
assuméd that y 1is generated from a model system
wherein

Yy T 9yt oy (n

Here, ¢ 1s an NSxNM mode shape matrix, q, is the

NMxl modal amplitude vector, and ng 1s a N5x|
gaussian random variable with zero mean and a

covariance wmatrix R. Typically, for structural
dynamics applications, each component of Q. is

the output of an uncoupled second order process.
The task here is to estimate the order (NM) and
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obtain the least square estimate of q, from the
N+l measurement samples yg through yy.

Sundararajan and Montgomery (1983) present a deri-~
vation of the equations that relate order, n, and
time, 1, recursions for the normalized forward and
backward residuals as well as the least square
estimate of the measurement vector. These equa-
tions are listed below:

e T RLLLT U

4,041~ (1= kg nel Zi.n )

1,n+l£1-l ,n

2 0V -

i,0¢] ~i-1,n )

4

Iinet ™ (1 -k

1,0+1%4,n

N-1
el E(-e-u.n LM 2
n=0
wherein

r >
k1.,n~0'l - <£1..n' —i-1,n
and E-("'y) i{s the othogonal projection operator of
the vector x onto the vector y. The symmetry of
the recursion formulae are apparent. The equa-
tions are coupled by the term ki,nﬂ wvhich 1s

customarily called the “reflection coefficient.”
The structure of this equation 1is depicted in

i

Fig. | where we have used the symbol 2z ' to

represent the time shift operator, i.e.

-1
z '1,:1 - t'1-l.n

It should be noted at this point that the lattice
filter 18 a modified Gram-Schmidt procedure
involving both forward and backward residuals
wherein the backward residuals form an orthogonal
basis for the entire observation sequence. Hence,
any least square estimate 1s the orthogonal
projection onto this basis. Assuming at this
point the order NM has been obtained (which is
explained below), the lattice filter has
decomposed the estimation of y into the form of
equation (1),

wherein

o= ey v o

and

S "

i.e., the backward residuals T{,n form the

orthonormal basis, or the mode shape matrix ¢ and
the forward residual e, ., represents the modal

amplitude time series.
The lattice filter has the following advantages:

1. Given a basis for order N, a basis for
order N+l can be obtained using the
recursion formulae.

2. Because of the modified Gram=Schaidt
procedure, the basis for all orders n
between 0 and N are the first n elements
of the basis of order N.

J. The estimate assuming any ocder n
between 0 and N+l can be computed using
aguation (2).

Thas. # lattice filter provides the information
neezed .- fetermine the residual sequence for any

model order between 0 and N+l Inclusive. This
information provides the basis for the model order
determination method described next.

Clearly, in this approach one may “fit the noise”
by continually increasing the order of the system;
however, once the order of the estimator has
increased beyond the correct order, then the
residual errors should lie within a noise band
which can be predicted based on assumed noise
characterisgtics. A threshold value can be
selected based on this predicted noise band, and
order can be determined by a test of whether or
not the residuals ‘have been reduced to lie within
the noise band. Alsa, the test can be made
considering several data samples when using a data
vindow. Sundararajan and Montgomery (1983) docu-
ment the experience in choosing the data window
size NW and the threshold level based on simula-
tions. Having defined the order required to fit
the data using a linear model, for comparison with
finite element analysis predictions, we seek a
fixed set of basis functions that are spectrally
decoupled. A method to obtain the decoupled modes
from the lattice filter modes wusing digital
Fourier transform (DFT) has been presented {n
Sundararajan and Montgomery (1982). Essentially,
at this point we have estimates for order NM, mode
shapes ¢ and modal amplitude time series q(k) from
the lattice filter.

Since the ultimate objective of identification is
for control system design, an ARMA model |is
identified using the modal amplitude time series
q(k). The method is based on an equation error
method described in Johnson and Montgomery
(1979). For each mode, the model is described by
the equation:

q(k=1) = Alq(k-z) + Azq(kj-3) + Blu(k-Z) + Bz'u(kzi;;
The equation error is given by:
e(k=1) = q(k-1) - q(k-1)

= q(k~1) - {A q(k=2) + F\zq(k-s)

1
+ ilu(u-n) + §2u<k-3)}

where q is the model amplitude estimated by the
lactice filter, u is the modal control force, k is
the sample number and Ay, Ay, By, B, are

the ARMA coefficients. The term 1in brackets 1is
the model equation. The ARMA coefficients are
then updated by:

—Rl(kﬂ Zl(k-lﬂ a(k-2)
xzm Az(k-x) q(k=3)
. - . + e(k~1)u
B, (k) B (k-1) a(k-2)
LBz(k)— Lsz(k-n)_ Lq(k-3)_

The weight u assures stability if

0 <u < 2/{(k-2) + q2(k-3) + uP(k~2) + uP(k-3)}

This identifier performs well 1in a low noise
environment, but when the information content of
the signal is small, {t attempts to fit the noise
(Thau, et. al. (1982). Also, the ideal ARMA model
for the beam has finput parameters (B’'s) which are
three orders of magnitude smaller than the (A's).
This causes a very high sensfitivity to nofse 1in
the identification of the B's, and when the {input
force 18 applied, it tends to cause the identifier
gain on the A's to decrease significantly.

21



Although these effects are evident in the results
presented here, they did not prevent successful
identification.

1f one 1is interested in determining the damping
ratios and natural frequencies of the wodes, they
can be obtained in a straightforward manner from
the equation (3). However, it should be noted
that this 1is not wunique due to the foldover
phenorenon due to sampling. By finding the roots
of the equation (3) and wusing the relation

z = e37T in the primary strip, where T is the
sampling period, the damping ratio and natural
frequency can be obtained.

The behavior of this overall system identification
methodology with experimental data is discussed in
the subsequent sections.

Experimental Studies for the
Identification of 8 Free-free Beam

In this section, the lattice filter theory
developed earlier is illustrated for the identifi-
cation of a one~dimensional free-free beam. The
identification scheme yields the structural
dynamic characteristics of the beam. The experi-
mental apparatus for the free-free beam is shown
in Fig. 2. It consists of a 12-foot beam of
rectangular cross-section which is suspended from
the ceiling by two cables and is attached to four
electromagnetic force actuators. There are nine
noncontacting deflection sensors that measure the
translational deflection of the beam. The actua-
tors are compensated to eliminate the effects of
friction as much as possible. This compensation
is nonlinear, producing a force in the direction
of the beam wmotion at the actuator attachment
points which is designed to equalize the effect of
friction. Testing was done by manually exciting
the beam approximately in its first flexible mode
and sampling the nine sensors at 64 samples per
second. A total of 5 seconds of data was stored
on a tape which was post processed with the

algorithm. Figure 3 shows a time history of some’

of the measurement data processed by the algo-
rithm, The innovations sequence for sensor 4,
INOV,, is shown just below its time history.

Also shown 18 the norm of the forward estimation
residual, ENORM, which includes all components of
the measurement vector. Below the norm i{s the
estimate of model order. This was obtained using
a data window of eight samples. Initially, the
order estimator fills the data window, and hence,
the indicated order estimate increases to 8.
After this the order estimator settles to 2
indicating that, even though we attempted to
excite only one mode, there were, in fact, two
significant modes excited. Note also that the
norm of the forward estimation error 1is small
compared with the value at the start of the
process when the order estimate was settling.

The modal amplitudes obtained from the lattice
filter are spectrally decoupled, using the proce-
dure discussed earlier, after enough data are
taken to accurately take the DFT (64 time samples,
about 1 second). This occurs at about 1.75
geconds, the first .75 seconds being used for the
identification of mode shapes and model order (see
Pig. 4). Figure 4 shows the modal amplitudes for
both of the identified modes. These are the
signals that are inputs to the parameter identifi-
cation scheme used to identify the parameters of
the ARMA model of the modes. The identified ARMA
parameters are shown on Fig. 4 for each of the two
modes i{dentified. The a priori parameter esti-
mates are {initially offset. from the values
predicted by a finite element analysis which are
also indicated in Fig. 4. These parameters track

the instantaneous value required to minimize the
output error. One possible explanation of the
oscillatory behavior of the mode 2 parameter
estimates is the nonlinearity of the actuator
compensation. Nonlinearity is apparent in the
sengor 6 data on Fig. 3. Note that lattice filter
produces a linear least square fit of the data to
the measurements, and 1in so doing, produces a
predominantly linear first mode estimate and lumps
the nonlinear dynamics into the higher modes.
Thus, the parameter tracking is more stable in
mode | and produces estimates of an undamped
(A2+~1) oscillation at nearly 2.7 Hz. If the
slgorithm is constrained to an order estimate of
one, the predominant response is lingar, however,
the fit error {8 {increased by an order of
magnitude.

The wmode shapes estimates obtained from the
lattice filter are shown in Fig. 5. In this
figure we compare the estimates obtained by three
methods, one analytic, and two experimental. The
analytic result is the primary mode shape of the
beam wusing Euler-Bernoulli theory. The two
experimental results which are in substantial
agreement  are the nonlinear least squares
algorithm of Thau. et al. (1982) and the lattice
filter algorithm of this paper. Again note that
there is apparently an effect of the four attached
actuators on the dynamics of the test article.
The lattice filter produces two modes, one near
the mode of Thau et al. (1982) and another that. is
shown on Fig. 5. This other estimated mode does
not resemble any mode analytically predicted using
linear Fuler-Bernoulli theory, rather, is required
to model the effect of nonlinearities in the
apparatus.

Experimental Studies for the
Identification of a Flexible Grid

Next, the lattice filter identification scheme is
tested In a wmore complex structure compared to
that of the beam. The candidate structure
considered 1s that of a two-dimensional flexible
grid. 1dentification results are given using the
experimental data obtained from the laboratory
apparatus.

Figure 6 shows the flexible grid experimental
apparatus in the Aerospace Control Laboratory, at
NASA Langley Research Center. The grid is a
7 ft x 10 ft planar structure made by overlaying
aluminum bars of rectangular cross section. The
bars are centered every foot so that there are
7 vertical and 11 horizontal bars. As shown in
Fig. 6, the grid 1is suspended by a cable at two
locations on the top horizontal bar. The motions
of the grid perpendicular to the plane of Fig. 6
are the ones of interest in this study. There are
nine noncontacting deflection sensors mounted on a
back frame which give a 9x] measurement vector.
The sensor data 1is linked to the main Cyber 175
Real Time Computer System at NASA Langley Research
Center so that the i{dentification can be carried
out in real time.

In order to compare the experimental results of
lattice filter identification of the flexible grid
facility with predicted values, a finite element
anlaysis of the grid was made which included the
suspension cables. Four degrees of treedom appro-
priate for motion normal to the plane of the grid
were considered. No damping was included in the
model.

Experiments were conducted using the grid
apparatus described above. The procedure for
conducting the experiments was to excite the grid
using an air shaker. The shaker was capable of
periodically exhausting a jet of air that impinged
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on the grid at sensor location | which was at the
bottom left hand corner of the grid. The
frequency of the jet was adjustable from 0 to
50 Hez. The resulting grid excitation was not
purely sinusoidal bhut was rich {n harmonics.
Because of the range limits of the deflection
sensors - 0O to approximately 2 in. - the maximum
peak to peak deflections of the grid were limited
to about 1 in. When the peak to peak deflection
neared this limit, the air shaker .was turned off
and the grid was allowed to vibrate freely with
only air and material damping. A Cyber 175 real
time computer system sampled the deflection sensor
data at 32 -Hz. for 5 sec. The data was stored on
a system data file for Cfurther analysis. This
test procedure wvas rtepeated for several shaker
frequencies in the range of 1 to 10 RHz. This
range has an. upper limit because of the sampling
frequency (32 Hz.) The lower limit is selected to
include the predicted lowest vibration mode
(2.2 Hz.) Eight data sets corresponding to
different shaker excitation frequencies were
created and stored on tapes. The following
discussion pertains to results extracted from data
set five.

Figure 7 presents data from sensors | and 4 as
well as the lattice filter order estimate. For
this case the order estimate was based on a data
window of 8 samples and spectral decoupling was
done with 64 time samples. From the figure, the
order estimate 18 seen to converge to an oscilla-
tion between 2 and 3 at about .5 sec. At about .8
sec, the order egtimate was fixed at 3 and data
collection of the 64 time samples required for the
UFT was started at 32 Hz. The DFT was accom-
plished at about 2.8 sec and then the decoupling
transformstion matrix was calculated. The modal
amplitudes after this time should coantain a single
frequency and the transformed mode shapes should
correspond to the natural modes of the structure
which were excited. In that wmanner, three modes
were extracted from experimental data tape 5.
These have frequencies near .5Hz, 2.5 Hz., and 5
Hz. Table 1 presents the mode shape estimates
obtained from the experiment. Also presented are
selected mode shape predictions taken from finite
element analyses. The modes selected were those
whose frequencies bracket the experimentally
derived ones. The following discussion deals with
the Table 1 data 1in order of 1increasing
frequency. A good comparison does not exist with
either bracketing finite element analysis mode and
the first experimental mode. Additionally, there
{s some bending in the experimental mode as is
evidenced by sensors 4, 5, and 6. The uodal
amplitude for this mode is shown in Fig. 8 along
with the ARMA parameters Al and A2 for the

mode and their primary strip counerparts of
damping { and frequency «. For the second mode, a
good coaparison does exist betwen it and the 3.07
Hz finite element analysis wmode. Note that,
however, the output of the sensor 4 is opposite in
sign and reduced in amplitude from the finite
element prediction. This means that a feedback on
that sensor based on the finite element analysis
will be destabilizing near the 2.5 Hz frequency.

The validity of this deduction can be established .
by examining the outputs of sensors .l and &,

(Fig. 7). According to the finite elewent analy-
sis, the 2.5 Hz content of the sensors should be
opposite in sign. However, they are in phase 1in
agreement with the identification results.

CONCLUSION

The application of least square lattice filters in
identifying the dynamic characteristics of highly
flexible structures has been presented. The
theory has been uged to identify the structural
characteristics of two experimental hardware,

namely that of a free-free beam and a flexible
grid structure. The results indicate that the
lattice filter can be effectively used for on-line
identification of the number of modes, mode
shapes, modal damping and modal frequencies from
the measurement data. The experimental results
also indicate that there is8 considerable disagree~
ment between them and analytical predictions.
Based on these experimental studies, the main
conclusion that can be drawn 1s that for large
epace structures, on-orbit testing and identifica-
tion 18 essential before control is attempted.
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Table 1.~ Comparison Between the Finite Element
Predictions and Experimental

Identification
Mode 1 Mode 2 Mode 3

Comparisons Comparisons Comparisons

origin P E P P E P P E P
"u:“’ 2364 .5].625{2.29] 2.5{3.07]4.79] 5 |5.93

Sensor .

t f-.511.26% .45 .35{-.45{-.47}-.361-.04] .43
2 [-.51§.46 0]-.25¢ .1l|-.004-.34|~.38(-.35
3 |-.51].66]|-.45] .35} .44| .48]-.36]-.14{ .43
4 |-.26].24f .41] .38|-.08{ .13} .22} .181-.07
5 f-.26]-.1 0}-.25§ .05 o .24} .10{ .07
6 [-.26].41}-.41{ .38}-.03|-.13]| .22}|-.01|-.07
7 }-.08].10] .364 .38] .54] .51]-.38}-.65}~-.45
.8 |-.08).20f - O]-.24¢~.07 0f-.43}F .29| .32
9 }-.081.10|-.36} .38f-.54}~-.51]-.38}1-.54]-.44

P - Prediction based on finite element analysis
E - Calculation based on identification from
experimental data
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ABSTRACT

This paper reviews the use of the least square
lacttice filter in adaptive control systems.
Lattice filters have been used primarily in speech
and signal processing, but they have utility in
adaptive control because of their order-recursive
nature. They are especially useful in dealing with
structural dynamics systems wherein the order of a
controller required to damp a vibration is variable
depending on the number of modes significantly
excited. Applications are presented for adaptive
control of a flexible beam. Also, difficulties in
the practical implementation of the lattice filter
in adaptive control are discussed.

INTRODUCTION

For large flexible spacecraft, design models will
probably not be adequate. Hence, an adaptive
control system is highly desirable. Early research
into adaptive vibration control of large flexible
structures 1is reported in reference 1. Therein,
adaptive control of a spinning annular momentum
control device (AMCD) was studied. That scheme
consisted of simultaneocus identification and
control with the objective of regulating the out-
of-plane deflections of the spinning AMCD. Some of
the disadvantages of the method were the require—
ment of selecting the number of wmodes to be used
for controller design, the use of analytically
predicted mode shapes, and the coupling between
modes due to inhomogenities in the system, Lattice
filter adaptive control is a new method which
attempts to overcome these problems. It 1is, hence,
well suited for the adaptive control of flexible
spacecraft,

The least square lattice filter has been used
extensively in the field of speech and signal
processing (reference 2),. In these applications
the filter is designed based on a predetermined
estimate of system order. Reference 3 1s a compre-
hensive tutorial on this subject. Concerning
adaptive control, reference 4 proposes a self-
tuning controller counfiguration wusing 1lattice
tilters. This scheme requires computing the poly-
nomial coefficlents for the plant and controller at
each 4iteration and enforcing a known feedback
structure for the controller. Reference 5 proposes
inverting the transfer function of the plant for
general adaptive control. This 1idea, with the
least mean squares (LMS) algorithm, was utilized in

‘the validated model,

reference 6 to obtain adaptive control.
Reference 7 proposes a similar approach using
lattice forms instead of the IMS algorithm.

Reference 8 takes this approach but uses a lattice
model instead of an autogressive, moving average
with exogenous variables (ARMAX) wmodel where
familiar controller techniques could be used. All
of these schemes attempt simultaneous identifica-

tion and control or direct adaptive control. For
each case stability questions are not resolved
analytically; neither are results

simulation
available in the open literature. :

As opposed to simultaneous identification and
control, the scheme discussed herein consists of
conducting tests to obtain a design model, vali-
dating the model, designing a controller based on
and finally, engaging the
control system. This approach is ideally suited to
the control of large flexible spacecraft because of
the passive environment of outer space and the
potential of relaxation to a controller that is
known to be stable ~ that of collocated rate feed-
back. It was originally presented in reference 9
and represented the first use of a recursive vari-
able order structure for adaptive control.
Therein, the lattice filter was used to provide an
on-line estimate of the system order, mode shapes,
and modal amplitudes to provide a validated modal
control design model. After the identified model
parameters are validated through a series of test
procedures, they are used in a wodal pole-placement
control law design. Figure | shows the adaptive
control scheme using lattice filters.

Figure 1.~ Adaptive Control with Lattice Filters.

28



The purpose of this paper is to assess progress in
using lattice filters in adaptive coatrol of
flexible spacecraft and to highlight problem areas
for further research. First, lattice filter theory
and order determination i3 summarized following the
original development of reference 10. Then, their
use in adaptive control 1s discussed along with
applications to the vibration control of a beanm.
Finally, difficulties arising in the practical
implementation are discussed. :

SUMMARY OF LATTICE FILTER THEORY
AND ORDER DETERMINATION

For application considered herein, we assume that
the ith measurement sample is of the form

yI - [yl(i), y,(4), 1]

cees Yyg
where NS represents the number of sensors. It is
~ assumed that y 1is generated from a model system
wherein

yi-é. Yi+v1 (1)

Here, ¢ is an NS x NM mode shape matrix, y; is
the NM x 1 modal amplitude vector, vy 1is a
Gaussian-random variable with zero mean and
covariance matrix R. NM represents the number of
modes in the system or order of the system.

Reference 10 .presents a derivation of the equations
that relate any order, n, and time, i, recursions
for the normalized. forward and backward residuals
ags well as ‘the 1least square estimate of the
measurement vector. These equations are 1listed

below:
2 -1/2
2o e " (7% ney) (& 0%, ne151-1,0)
2 -1/2
Iiner = 0o 7 () a7y ne18,0)
wherein

Kintl T Sy Eiop 0

and < > represents an inner i)r:oduc.t. The symmetry
of the recursion formulae is apparent. The equa-
tions are coupled by the term ki,ni-l which 1s

customarily called the “"reflection coefficient.”
The estimate of the measurement (reference 10) at
sample 1 for a model of order n is

- n-1
Yin "~ é(e 1,1] Fim1,9

where f represents an orthogonal K projection
operator. Hence,

Ygm (= 1,0 n=1,1° °°°? rn—l.n—l]

so that

vy = oL "1 + e1 a (2)

where °L is an orthonormal NS x n matrix

[r -1,00 e En—l,n-ll generated from the

lattice filter, and ¢4 1is the n dimensional

vector of reflection coefficients and 2ia is the
’

NS dimensional estimation error vector.

Clearly, in this approach one may “"fit the noise"
by continually increasing the order of the system;
however, once the order of the .estimator has
increased . beyond the correct order, then the
residual errors should 1lie within a noise band
which can be predicted a priori based on assumed
noise characteristics. A threshold value can be
selected based on this predicted noise band and
order determined by a test of whether or not the
residuals have been reduced to lie within the noise
band. The residuals will generally consist of
signal and noise parts - the signal part being
reduced as the correct order is reached until the
residuals essentially consist only of noise. This
test 18 carried out based on a data window of NW
samples. Thus, assuming that the data can fit a

linear mwmodel and that "the noise process 1{s
Gaussian, for i large ‘enough, )
IW T
E( { e1 n 2, W) = N E(v V)
T NS,
= NW tr E(v,v,) = NW | o (3)
- i1 ]
i=1
where B is the expectation operator. This can be

used as the one sigma threshold €for the order
determination test. In the last equation cj is
the standard deviation of the noise process
for the jth sensor. Reference 10 documents experi-
ence in choosing the data window size NW and the
threshold level based on simulations.

ADAPTIVE CONTROL USING LATTICE FILTERS

Independent Modal Space Control ( IMSC)
(reference 11) 1s a control scheme specifically
designed to deal with flexible spacecraft in a
modal form amenable to control law design.
Unfortunately, it requires natural modes and not
the orthonormal basis provided by the lattice
filter. Consequently, in order to interface the
lattice filter outputs with the target adaptive
control scheme (figure 1) and to make comparisons
with finite element analysis predictions of natural
modes, a method f{s needed to obtain natural mode
shape estimates from the lattice filter basis. The
filter updates the NM basis vectors at every sample
instant, While the order estimate NM remains
constant, the updated basis vectors are related by
a mere totational transformation. The assumption
of the target adaptive control scheme 1s that the
system motions can be modelled by a constant and
finite set of natural modes and their associated
modal amplitudes over a reasonably long time
interval. Hence, when the estimated system order
is constant, the basis elements used to derive the
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model amplitude time series required by the target
adaptive control scheme are not changed.

The transformation from the lattice filter to a
natural mode basis should satisfy

A TR

wherein the subscript L refers to the lattice
filter and N refers to the natural modes. A non-
singular aatrix T, will satisfy this condition
provided

o1~ oN!N = TYL (4)

Since the order estimate is assumed constant, this
matrix can be approximately determined on-line
using the digital Pourier transform (DFT). Herein,
this is accomplished as follows. Since the lattice
filter uses the current measurement sample as 1its
first basis element, the corresponding modal ampli-
tude time series contains NM frequencies. Hence,
the DFT spectrum of this series will contain NM
peaks corresponding to these frequencies. The
frequencies (w), wy, e, wyy) can thus be
identified by searching this spectrum for these
peaks. Assuming that the motion 1is comprised of
undamped sgtructural vibrations, the matrix T, which
produces the desired transformation can be calcu-
lated as

1 : 1

Re[YL(wl)] e e e e e e e Re[YL(u)-N-H)]
T= : "
NM NM

Re[‘PL (wl)] e ¢ o e o o a Re[‘l’L (wm)]

wherein, [\b%‘(m). cees 4}{“ (w)] 1s an NM dimen-
sional vector of the modal amplitude transform.
Using this matrix, the digital Fourier transform of
each component of Py will be zero at the discrete
frequencies, wy, J#1. One item which degrades
this approximation is the error 1in using DFT
instead of the true Fourier transform. Still

another is the assumption that the motion 1s made -

up of undamped structural oscillations., 1In spite
of these 1items, reference 12 shows that this
approach produces good estimates of the natural
modes for the beam used herein.

The decoupled modal amplitude time series, dJN(i).
as obtained above in equation (4), is then ana-
lyzed, for each mode, to identify the parameters of
its autoregressive, moving average (ARMA) model.
The 1inputs to each ARMA modal model are the
generalized forces and hence, each model takes on
the form:

Y, () = AlvN(i-l) + A (1-2)
4 B £(1-1) + B, £(1-2) (5)

where the f represents the generalized forces.
Given the. ¥y and f's, the parameters A and B
above are 1identified and used 1in the control law
design process. Thus, the ARMA model output error
is

e(1-1) = ¥ (1-D) - [31(1-1)7N(1-2) + 32(1—1)1N(;-3)
+ §1<1-1)f(1-2) + 52(1-1)f(1-3)] (6)

The gradient technique of reference | 1is used to
identify the parameters p = (Ag, B;) using the
iteration sequence

p(1) = p(1-1) + e(i-1) ("n’u‘*'z" W, ¥ (1-3),

Wy £(1-2), W, £(1-3)] » N

As indicated in reference 1, the weights W must be
selected consistent with the relation

2 2 2
WlYN(i 2) + WZYN(1-3) + Wof (1-2)

+ H‘f2(1-3) <2

and the inputs to the algorithm, ¥y and f, must
be sufficiently varying and large 1f the parameters
are to converge to their correct value.

For the identification and control scheme explained
above to work satisfactorily in a closed loop
environment, it 1is necessary to validate the .design
model. Three tests are suggested herein which
check the following: 1) model fit error; 2)
parameter convergence; and, 3) signal informa-
tion. These tests have been used successfully in
simulation and experimental work. The fit error
test uses a fixed parameter set to calculate an
estimated modal displacement for the past NT
samples. .

NT
%t >n§o¢N<1—n) - {Alwn(i-n-l) + A¥ (1-n-2)

+ B f (1-n-1) + nzf(;-n-z)}, k > NT

If the absolute sum of the error between the
modelled displacement and the displacement calcu-
lated by the lattice filter exceeds a given thresh-
old, the fixed parameter set is updated with the
present identified parameter set. This process is

- repeated until the parameter set fits the data.
‘The convergence test runs concurrently with the fit

test. It simply checks the wmagnitude of the
changes in successive estimated parameters.

- NT -~ ~ -
% conv >n§0|pn - pn_ll for pT = [Al. A,, 8, B, ]

If the absolute sum of ten successive parameter
estimates changes 1is above a specified level, a
logical switch 1s set to {ndicate failure. The
third and final test is on information content of
the estimated modal amplitude signals from the
lattice filters. The purpose of this test- i to
check whether enough information is present in the
signal for proper identification of the
parameters. 1f this test fails, the controller
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updated based on the 1dentified
parameters, but are frozen at the last values
before the test failed. Here, the estimated modal
amplitudes and velocities from the. lattice filter
are checked for sufficient excitation by sumaing
over ten samples.

NT
ing <n§0|wul * oy =t

gains are not

The second term in the above equation represents a
measure of velocity egtimates. If the sum is below
a threshold, Oy,¢s the updating of the control
gains based on the {dentified parameters 1s
stopped. The information and fit error tests
constitute one test for each mode and the conver-
gence and reasonability tests constitute four tests
for each mode. Thus, $ix tests must be passed
before control is applied to a given mode. The
actual stability and performance of the controller
is directly affected by the criteria chosen for
passing a test. If the test criteria are too
stringent, system nofse and nonlinearities may
preclude inftiation of control. However, 1if the
tests are not adequate, it 1s possible that an
error in the estimated parameters could result in

gain calculations which produce an unstable
system.
Now, consider the philosophy to be used when the

tests described above pass or fail. When all the
tests for parameters of a given mode have passed,
control gains are calculated according to a
previously developed pole placement scheme
(reference 1). The control force commands are then
calculated using these control gains. Considering
the philosophy used when the tests fail, two cases
were studied. In the first case, when the tests
failed, control was turned off and the control
forces were made zero. In the second case, when
the tests failed, updating of the control gains was
stopped and they were frozen at their values prior
to the ‘test failure. In’ this case, the control
forces were not made zero and were computed using
the frozen control gains. From a detailed study of
both cases, . it was found that the performance of
the adaptive control system in the first case was
superior to that of the second case.

APPLICATION TO A FLEXIBLE BEAM

The closed-loop adaptive control scheme of figure 1
has been tested in the digital simulation for the
12-foot, flexible free-free beam located at NASA
Langley Research Center. The simulation contatns
the mathematical model of the beam apparatus in
modal form. For this study, the simulation
contains one rigid-body mode, the first three
flexible modes, nine deflection sensors, and four
actuators for control purposes. The {inicial
conditions on the modal displacements were set to
.05 in. and the modal velocities were set to zero.
The modal damping was also set to zero. A digital
sampling rate of 32 Hz was selected for the simula-
tion, and the standard deviation for all measure-
ment noise was assumed to be .005 based on observed
noise 1in the available hardware. The lattice
filter estimates were based on a data window size &

(reference 10). The ctesting procedures were all
carried out based on data window (NT) of ten
samples. Initial parameters estimates were offget
from the mathematically correct values to test and
verify the rapid convergence of the identification
algorithn, An arbitrary delay of 2 seconds was
added between the time identification starts and
when the control would be applied to show the
behavior of the identification scheme.

At the start of the simulation, the lattice filter
determines the number of modes in the simulation
along with the mode shapes. Modal amplitude time
higstories are then generated. From the lattice
filter mode shapes and modal amplitudes, natural
modes and modal amplitudes are obtained through a
linear transformation explained in the earlier
section. The application of the transformation is
delayed for 2 seconds because the online
transformation technique of reference 12 requires
2 seconds of data for a digital Fourier transform
data base to obtain the required transformation.
The natural modal amplitudes are 1input to the
equation-error parameter identifier which
identifies the ARMA parameters. The identification
results are then tested using the test procedures
described above, When the tests are passed, the
control is turned on. Results of the simulations
are presented in figures 2-4.

Figure 2 shows the estimated modal displacement for
the first lattice filter mode. The order estimate
plot shows that the correct order of 4 is obtained
in .3 seconds. After the parameter identificationm,
when all the tests are passed, the control is
turned on at 5.5 seconds and the modes are damped.
The result of the adaptive control on the natural
modes 1is shown {in figure 3, It 1is evident that
when the identification is validated by passing the
tests and control turned on, the vibration
suppression 1s achieved. When the modes are damped
out the lattice filter order estimate drops from 4
to 1 {ndicating the flexible modes are damped out.
Although the lattice filter order decreased, the
control design order was maintained at 4 throughout
the time interval when control was on. Allowing
the order to vary in real time and updating the
control otrder is a topic for further studies.

Urder detorminacion
Lacttce filcer decoupllng
: :Paru-nr idencificacion and testing

trol redesign and applicacion
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FPigure 2.- Typical time history of an adaptive
control run using identification,

testing, and control design.
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Figure 3.- Time histories of three natural modes
with the lattice filter order indicated.

The main results of the identification and the test
procedures are summarized in figure 4. For the
first flexible mode, the figure shows the time
histories of identified frequency parameter Ay
the fit error, a parameter that indicates algorithm
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Figure 4.~ Time histories of the test varfables for

one mode with the test thresholds and
logic sum of the tests indicated.
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convergence, and a parameter that
information content of the measurements. When all
the tests are passed, the corresponding pass
parameter (plotted as a binary logical varaible) is
set to one. The various thresholds for the tests
are also marked to indicate when the tests pass.
These thresholds were determined based on detailed
sensitivity studies of the modal control scheme for
the beam (reference 13). An error was intentionlly
put on the initial estimate of A; so that the
convergence of the estimates to the correct value
could be observed. When the identifier is turned
on, the estimate converges to the true value of 1.8
from 3. The thresholds indicate that the fir error
test 18 passed first and then the coavergence
test. With enough signal {in the measurements the
information test 1s always passed. When all the
tests are passed at 5.5 sec, the control is turned
on, When control is fully effective, that 1is when
the modes are damped out, the measurement data will
contain only the noise and the information test
will fail, This {s immediately seen from the
history of A; as it starts oscillating with large
amplitude 1indicating that 'the modal amplitude
signal contains wmainly noise. Also, if the
parameter excursions are large, the convergence
tests will also fail indicating a failure for the
binary variable pass. Once this happens, the
control gain updating 1is stopped, and control
forces were made zero.

indicates

PROBLEMS IN PRACTICAL INPLEMENTATION

The adaptive control scheme of figure 1 1s good
from the engineering point of view since only vali-
dated models are used for control system design. A
natural question arises as to the course of action
when validation tests fail. The operating environ-
ment for large flexible spacecraft 1s, fortunately,
benign and a system designed to suppress vibrations
can be shut down at the expense of having to
conduct relatively long term maneuvers, Another
saving feature of large flexible spacecraft is that
collocated rate feedback 1s stable and. relaxation
of the system to this mode of operation is also
possible, again, with corresponding degradation in
performance. Therefore, two options that can be
evoked are; one, to shut down the control system
and the other, to revert to a robust control system
design which insures stability.

At first glance one may wish to use the ARMA model
generated by the lattice filter directly in the
design process rather than using IMSC with {ts
requirement of generating natural modes. Unfortu-
nately , the current online design capability for
controllers of vector ARMA processes is not ade-
quate. Having selected IMSC, one must obtain
natural modes. from the vector ARMA model or from
the measurement time series. Here the same problem
arigses, that 1is, the current capability of
elgenvalue/vector analysis for vector ARMA
processes 1s inadequate for online implementation.
Hence, a time series analysis using a DFT has been
selected. The accuracy of the process of
extracting natural modes {s directly affected by
the number of data points processed. Hence, there
is a tradeoff to be made between the higher
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complexity in control computations versus the error
in the natural modes using the DFT approach. Also,
significant computational saving results 1f the
apptoximation of zero damping can be evoked. If
this approximation cannot be made, then one must
work with complex modes.

Since several approximations are required by the
system, a method of validating the models used in
the online coatroller design s essential.
Analytic methods of validating models based on
statistical error analysis (e.g. Cramer-Rao bounds)
are not adequate. Curreantly, tests on fit error,
algorithm convergence, information content of the
measurements, and reasonability have been used.
The thresholds and design constants for these tests
can be determined only by exhaustive simulation

and/or hardware tests and 1s not an online
procedure.

CONCLUSION
This paper reviews the use of the least square

lattice filter in adaptive coantrol systems.
Emphasis 1{s placed on the integration of the
lattice filter into a practical parameter adaptive
control system. One novel feature of the
recommended system is the inclusion of a design
model validation scheme based on model fit error,
algorithm convergence, and signal {information
content. An application is presented for adaptive
control of a flexible beam, These results indicate
that the lattice filter adaptive scheme 1is
practical for vibration control of large flexible
spacecraft, Difficulties in the practical
implementation of the lattice filter in adaptive
control ave also discussed. These centered around
the computational burden of transforming lattice
filter modes into natural modes and the selection
of the thresholds for online validation tests.
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ROBUST CONTROLLER SYNTHESIS FOR A LARGE
FLEXIBLE SPACE ANTENNA

N. Sundéraréjéqu S. M. Joshi, and. E. S. Armstrong
"~ NASA-Langley Research Center
Hampton, Virginia 23665

SUMMARY

_ This paper investigates the application of the 1linear-quadratic-
Gaussian (LQG)/ 1loop transfer recovery (LTR) method to the problem of -
synthesizing a fine-pointiﬁg control system for a >1arge flexible space
antenna. The LQG/LTR approach of synthesizing a multivariable controller
in the ffequency domain is selected because large flexibié strucfures.can
be modelled with elastic mode traﬁsfer functions as -additive perturbations
on the rigid body model and the LQG/LTR apbroach uses this-férmulation
naturally for robust control desién. The study is based on a finite
element model of the 122 m HOOp/Column antenna, yhich consists of three
rigid-body rotational modes and the first ten elastic modes. A robust
compensator design for achieving the required pointing performance in the
bresence of modeling uncertainties is obtained using the LQG/LTR method.
For the Hoop/Column antenna, a satisfactory controller design meeting the
desired bandwith of .1 rad/sec and ensuring stability with unmodelled high
frequency modes was obtained using only a coiocated pair of 3-axis
attitude sensors and torque actuators. This study also indicates that to
achieve the deéired performance bandwidth of 0.1 rad/sec..and to ensure
stability against higher freqﬁency elastic modes, the design model should

include the first three flexible modes together with the rigid body modes.

* 0ld Dominion Univefsity Research Foundation, Norfolk, VA
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5 - INTRODUCTION

lOne- of-. the planned _activ'ities' of the NASA's Space Transportatilén
System is the placement in égrth orbit of a variety of -_large space
antennas. Potential space mission_s will require antennas and strqctures
raﬁging from 30m to 20km in size. Applications include communications
(mobile), remote sensing (soil moisture, salinity, etc.), deep space
network (orbifal relays), astronomy (x-ray, observétory, optical array,
radio telescope, very long baseline interferometry, etc.), energy and
space platforms. Specific ;niés’ions "have been pinpointed and future
requirements have been 1identified for 1large space antennas for
communications, earth sensing and radio astronomy [1]. Particular emphasis
is placed on.mesl'l-deployable antennas in the 50-120 meter diameter
category. One such antenna is the Maypole (Hoo;;/Column) antenna, shown
séhematically' in Figure 1, basically consisting of a deployable central
mast attached to a deployable hoop by cables held in tension [2]}. The
deployable mast consists of a number of telescoping sections, and the hooﬁ
consists of. 48 rigid segments. The reflective mesh, which is made of knit
gold~plated molybdenum wire, is attached to the hoop by graphite fibers.
_.The mesh is shaped using a network of stringers and tiles to.form the radio
frequency (RF) reflective éurfacg. 'In order to achieve required RF
performance, the antenna must be controlled to specified precision in
attitude and shape. For example, for m.:lssions sqch as land mobile
satellite system (LMSS), which is a communication concept for providing
mobile.telephone service to users in the continental United States, it is
necessary to achieve a pointing accuracy of 0.03 degree RMS (root mean

square) and a surface accuracy of 6 mm RMS. It is also necesséry to
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[ 3 .
have stringent control on the motion of the feed (located near one end of

the mast) relative. to the mesh. Becauée of its large size and relatively
light weight, the antenna is highly flexible, with a large number of
significant elastic modes. Its dynamics can be represented by partial
differential equations, or by very largg systems'of ordinary differential
equations. The resulting equations have many resénant frequencies, some
of which may be very low, and possibly closely spaced. The natural
damping is‘usually very small. For thése reasons, control of large space
structures is a challenging task [3]. Since the system is inherently of
high order, a préctical controller has to be based on a reduced-order
"design” model. Furthermore, the parameters (i.e., frequencies, mode
sﬁapeé, and damping ratios)'of the” system are known imprecisely. This
-introduces additional modeling errors. Typically, the modeling errors for
finite element models 1increase substantially with increasing modal
frequency.

Reduced-order céntrol synthesis for the Hoop/Column antenna using the
standard LQG theory was iﬁvestigated in [4,5). The standard LQG procedure
yielded satisfactory control, i.e., rigid-body bandwidth of up to 0.25
rad/sec, satisfactory time constants for the elastic modes, and acceptable
root mean square (RMS) pointing errors in the presence ofvsensor noise.
It should be noted that thelLQG approach in reference 4 used a large
number of actuators and sensors (four 3-a¥is torque actuators and four
3-axis attitude and rate sensors). If‘was_fOund in [4] that the first

three flexible modes had to be included in the "design" model (in addition
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to the three rigid modes) to obtain satischtofy performance. The main
problem with the LQG method was that a large nuﬁber._of wéighting
parameters had to be simultanepusiy adjusted to dbtain a goéd design. 1In
addition, the stability robustness property with respect to 1inaccuracies
in the modal. parameters could not be properly evalua;ed because it was
difficult to effectively characterize the bounds on modeling errors in a
time~domain setting. 1In order to feduce these difficulties, no?maliy one
checks the control design for robustness after the control design is
completed using LQG or anyT.other meﬁhod. Such an approaéh in the
frequency domain using singular value measures was presented in [6] for a
large space structure using ‘different control design methods like 1QG,
integral feedback, frequency shaped” LQG, etc. Unlike the above methods,
the LQG/LTR approéch provides_ a means of 1including the robustness-to-
uhcertainities, in the control design process itself. Since it is in the
frequency domain, it extends the basic frequency domain design guidelines
like bandwith; cross—over frequency,‘ etc. from a scalar system to a
multivariable system.

The newly emerging robusﬁ control synthesis'meihodology which uses
frequency domain matrix norm bounds (i.e., singular values) has reéeived
considerable attention in the receht literature [7-9]. | The basic
ffamework for frequency domain synthesis using the LQG/LTR methodology was
developed in [7-9]; It has been applied to dive;se.systems such as power
systems [10]‘ and - aircraft engine control [11]. The LQG/LTR design

philosophy uses a low-frequency "design model” of the plant and a
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high-frequency charaéterization of the modeling errofs. This method,
which characterizes unstructured unceffainty with singular value bounds,
appears to be particularly well suited for the control of large flexible
spacecraft due to the considerable uncertainty that inherently existsAin
.the mathematical models.

The purpose of this paper is to investigate the wuse of LQG/LTR
multivariable frequency domain methodology in the design of an attitude
- control system for the Hoop/Column antenna. A low order compensator is
obtained by tréating a sequence of finite element design models ordered
with increasing modal frequency and choosing the final dgsign model‘as.the
first one which allows the performaﬁce/robustness objectives to be met.
In this gequence 6f design;models,-the first one consists of the rigid
body modes only. Subsequent désign models are obtained by the successive
addition of flexible modes. The designs use 3-axis torqﬁe actuators,
colocated attitude sensors, and attitude feedback.

The organiz#tion of ﬁhis paper is as follows: The mathematical model
of the system is described in section 2. The control objective 1s briefly
discussed in section 3, followed by a brief description of the LQG/LTR
technique in section 4. Thé_geduced order (low frequency) design model
and the high frequency model uncertainty barrier are also discuésed in
this section. Section 5 hresentsv the results of synthesizing the
controller based on the above procedure using only attitude feedback.
Some of the problems and limitations observed are also highlighted. Based

on the study results, the conclusions are summarized in section 6.
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2. MATHEMATICAL -MODEL

As .a consequence o.f its large size and light weight, the Hoop/Column
antenna is a highly flexible system having a large number of significant
strul:tural modes. A finite' element model :cof the antenna [Ref. 2] is used
in this paper. The matﬁematical model considered consists of rotational
rigid-body dynamics (about the three axes) and the elastic motion. We
assume that the control will be accomplished by using ng three-axis

torcjue actuators. The linearized equations of motion are:

Oy - |
1. =j£ T , | - ()

q+Dg + Aq = QTu : _ ! (2)

where Ig 1is the 3 x 3 inertia matrix, Tj is the 3-axis torque applied

by the jth actuator, ag =(¢g» 6, 1bs)T_ denotes the rigid-body

attitude, q is the n;, x 1 modal amplitude vector (for n, structural

q q

modes), D = -2 diag(pjwy> Powy» ceey ‘pnmn). is the inherent

damping matrix, (where pj 1s the damping ratio for the ith mode). ¢ is

the m x ng "mode~slope” matrix (where m = 3np), u = (Tir, TZT, ey
TnT)T is the m x 1 vector of  actuator torques, and A = diag( m?i ’

'w22, coey mﬁq) where w; 1s the frequency of the i1ith elastic wmode.

The r‘igid-body parameters and the first ten elastic frequencies are given

in Table 1. Each value of pj is assumed to be 0.01 for i=1,2, ...,n .
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Normally, ‘the sensors used include attitude and rate sensors. A

3-axis attitude ya 8t a sensor (e.g. a star tracker) output is given

by:
Y= e, tVvat+w - (3)

where ¢ is the 3 x ng mode~slope matrix at the sensor location, and w
is the sensor noise. If an attitude raﬁe sensor (e.g. a rate gyro) is
uéed, the sensor output y, 1is given by an equationb similar to (3),
except that ag and q are replacgd by &s and é,A respectively. Torque
acfuators and attitude sensofs are assumed to be located near tﬁe top of
the mast,€t the antenna feed (Fig. 1l.)

T LT

Defining x = (ag, Qg qT, AT)T an n x 1 vector, the state

space model can be written in the form:

x = AF x + BF u (4)

y=CFx+w - (5)

The sensor noise w is not used in the design process in this paper;
however, it will have to be included when computing the RMS pointing
errors. Ignoring the noise, the transfer matrix between the input (3-axis

torque) and the output (3;axis attitude) is given by:A

G(s) = Gi(S) + GZ(S) ; (6)
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" where
6 (s) = 1_}/s? o 7
nq
G, (s) =i£1(¢i¢f>/(sz + 20,05 + wl) (8)

(¢4 and. ¢; represent the mode-slope matrices at the sensor and

actuator locations corresponding to the ith mode).
3. DESIGN OBJECTIVES

The basic design objectives for the control systems are: (1) To
'obtain..sufficiently 'high bandwidth ' (i.e. closed 1loop frequencies
corresponding to the rigid body modeé) and satisfactory closed loop
damping ratios for the rigid body énd structural modes; and (2) To obtain
satisfactory RMS pointing errors, feed motion errors and surface errors.
The first design objective arises from the need to obtain sufficiently
fast error delay when a steé disturbance(such as sudden thermal distortion
caused by entering or leaving Earth's shadow) occurs. The second design
objective arises from the RF perforﬁance requirements. Theée two
objectives may .not necessarily be 'compatiblé, and 'm;y even Dbe
confliéting. For example, the wuse of incfeased feedback gains for
obtaining higher bandwith and damping ratiés will, in general, result in
higher r.m.s errors (because of the amplified ‘effect of sensor noise)
beyond a certain point. Thgrefore, it is necessary to carefully consider
the trade-offs between the speed of response aﬁd lower RMS error. In this

study, the main control system specification is that a minimum bandwith of
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0.1 rad/sec for the closed loop system is to be ensured. The upper limit
on the low frequency gain is not-spgcified, but it is desired that 1t
should be as high as'possible. Also, for this study no specification on
RMS errors was made and this aspect along with méaSurement noise will be

considered in the future.
4. THE DESIGN PROCEDURE

The.LQG/LTR method has been described in detail in [7-9]. Here, tﬁe
main steps are summarized first and then each step is discussed in_detaii.
(1) Define a "design™ podel of the nominal plant which is an acceptable

low frequency'represent;tidn. Define the high frequency.upcgrtainty

(;obustneés) barrier, and the Tow frequency performance barrier.

(2) Design a fulllstatevfeedback compensator based on the steady state
Kalman-Bucy filtef (KBF). This assumes that the ioop is broken at
thg output. .Adjust the weighting matrices in the KBF design until
its frequency responsé meets the fobustness,specifications at high
frequencies and bandwidth specification at low frequencies.

(3) Design a 1Q regulator to asymptotically "recover™ the frequency
response obtained in s;ep'Z. |

(4) Verify stability, robustness, and performance for the entire
closed-loop system. |
The first step, which consists of the definitipn of the plant and the

uncertainty (robustness) barrier, is often the most important one. The

basic problem in controlling a flexible structure is the presence of a
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iarge number of lightly dampea structural modes. Practical limitations
neéessitate the use of reduced-order controllers. Therefore, the
uncontrolled modes, as well as the error in the knowledge of the
controlled modes, represent uncertainty. Since the number of structural
modes is usually 1large and finite elément modeling accuracy -typically
decreases with increasing model'frequency, the designAmodel should consist
of _the rigid-body plus the first few elastic modes. The remaining
structural modes then (partly) constitute the plant uncertainty. In order
to ‘obtain an acceptable low-frequency repreéentation, the design model
must include at least the three rigid body modes. The. uncertainty
barrier’is a ﬁeasure of the plant uncertainty at high frequencies. The
plant unceftainty éan be representéﬁ as either multiplicative or additive

uncertainty (Fig. 2). Additive uncertainties are of the form
G' =G + AG

while multiplicative uncertainties are of the form
G' = (I+A)G

Multiplicative uncertainty form is the preferred form in the literature on
robustnes§ studies as the compensated transfér function has the same
uncertainty' répfesehtation as thg raw moéel; Ho&ever, since flexible-
-structurevmodelsvexhibit naturally the additive uncertainty form of the
transfer functioﬁ matrix, this will bé used in the following studies. The

LQG/LTR approach requires the characterization of the uncertainty in terms
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of a frequency-dependent wupper bound, Frequency domain sufficient
conditions are wused to test the robustness in the presence of
uncertainties within that bound.
For the case of.mui?iplicative uncertainfy Lp(S) of figure 2a, the

closed-loop system is stable if
oL w-1] < o [1+ (6 (ue Gu)™] (9)

where cp(s) and Gc(s) are the design model (plant) and compensator
transfer matrices, and 0 and 0 denote the largest and the smallest
singular values of the argument matrix, respectively. At high
frequencies, assuming 1{Lp(Je)]n ?? 1 and 1[G (Ju)6.(jw)]r << 1, (9)

approximately yields

- . ’ 1
o (6,6 < —_— - (10)

o (Lp)
The “uncertainty (or robustness) barrier” 15. an upper bound 1 (w) on
o(Lp). The system 1s stable in the presence of such unstructured
uncertainties if o[Gch] < 1;1 (w) at high frequencies.
When the additive uncertainty formulation (Fig. 2b) 1is wused, a
sufficient condition'for s;ability robustness is given by [12]

g (I+ Gpcc)

— > G (AG) ' | (11)
o(Gc)
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At high frequencies, assuming leGcl << 1, (11) (approximately) yields

5y < 1/§we S (12)

That is, the compensator mus£ roll off sufficiently rapidly at high
frequencies. The main objective of the LQG/LTR apﬁroach is to fir;:
design a full state compensator (based on KBF) which has the behavior of
the desired 1loop transfer matrix (i.g., the 1loop gain Gch)'
ATherefote, (from step 2) any loop shaping sﬂould involve the product
Gch rather than G, alone as in (11) and (12). = Assuming that Gp

is a square matrix,

-1 _ : oo- ' '
G, = cp (Gp Gc) (13)
- - _l -
| o (Gc) {0 (Gp ) o (Gp Gc)
or '
s() < 3 (c;l) s (c6) _ o (14)

Using (12) and (11), the following sufficient condition for stability

robustness is obtained:

o (1 + Gch) (4 (GP)

- > 5 (AG) (15)
c (6. G ) :
P C

The second step in the design procedure is to design a full state

feedback compensator having desirable singular value properties. The
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performance of the'closed-loop syst;m depends on the low frequency gain
and the crossovér freque.ncy of the loop transfer matrix Gp ch that; is,
on the pehavior of g_[Gch]. Larger low frequency gain and crossover
frequency indicates better tracking ‘perform§nce. Thus,  g[dpGé] should
lie above the éerfofmance specification as shown in Fig. 3a. The other
requirement 1s the stability robustness in the presence of model
uncertainties.' If the multiplicative uncertainty‘ formulation 1is used,
according to (10), the:E [Gch]vplot should pass under the robustness
barrier o -l(Lp) at high ffgquencigs (Fig. 3a). On the other hand, if
the additive formulétion is used, the robustness condition (15) should be
satisfied_(Fig. 3b). The advantage of:an LQG-based full state design is
that it has excellent classical properties, and its frequency response ﬁan
be shaped in the desired manner by varying the Qeighting matrices [8].
As discussed in (7], this design can be accomﬁlished using the LQR
Ri&cati equé;ionvif the loop 1is broken at the plant input, or the KBF
Riccati equation 1if it 1is broken at the point where the residual signal
enters the KBF. Hereiﬂ wé select the latter because the objective is to
control the attitude output. This selection 1is also éonsistent with

[9-11]. The KBF equations are:

A:+:AT+'LLT—%>:C ¢t =0 ’ . (16)

=25 | - (17)
u
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where L and y are the design parameters, L being an y x m matrix, and u a
scalar., The matrix H is-the KBF gain and I 1is the corresponding Riccati

matrix. The KBF loop transfer matrix is given by:

Gep(s) = € (s1 - 'R | (18)
Generally, the frequency response 0(Ggp(jw)) would shift higher as y
Aecreases, and the crossover frequency can be adjusted by changing L [6].

Having obtained satisfactory singular value behavior of KBF, the next
stép is to design a LQR to "recover™ the desired frequency response. This
is accomplished by solving the algebraic Riccati equation

ATp + pAT- pBBTP + q cTc =0 - o | (19)

where P is the Riccati matrix and q is a positive scalar. The control

gain matrix G is given by

c=r18Tp

It has been proven in references 7 and 8 that the loop transfer matrix

Gch for the overall system (consisting of the plant, the KBF and the
LQR) tends to GKF(S) as g+, provided that the open—-loop plant has no
transmission zeros in the right half plane. The compensator G.(s) after

recovery 1is given by:

cc(s) =G (sI - A+ BG + Hc)-IH
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Since_ fhe éompensatioh obtained.-hasA no guaranteed robustness
propertiés, thé last step will consisg of testing the eigenvalues of the
entire closed-loop system to ensure stability and robustness. 1f
instability 1s discovered, it will beAnecessary.to return to step 2 and
redesign the KBF for lower bandwidth and the LQR for robustness recovery.
If this does not produce satisfactory results, it would then be necessary
to return to step l] and include more elastic modes in the design model.
Application of the foregoing LQG/LTR procedure for the Hoop/Column antenna

is described in the following section.
5. CONTROLLER DESIGN BY LQG/LIR METHOD USING ATTITUDE FEEDBACK

The foregoing procedure has been applied to the Hoop/Column antenna
model. The .computations‘ of singular values of various matrices (e.g.
loop transfer, return difference, inverse return difference matrices) were
carried out using a recently developed multivarable ’frequency doﬁain
analysis software package (FREQ), énd.fhe LQG éésigng ﬁef; céiriéd out
using ORACLS [13]}. The nominal plant includes three rotational rigid-body
modes and the first ten elastic modes. We aésume three torque actuators;
hence, the order of B matrix is 26x3. Assuming three attitude sensors
(one for each axis) at the‘éame locatién as the actuators, C is a 3 x 26
matrix. The plant,linput, and oﬁtput matrices were obtained from a fiﬁite

element analysis of the antenna.
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Before starting the controller design, the maximum Qnd minimum
singular values (0 and o) of the full, nominél,-bpen-loop plant transfer
matrix were obtained andAate shown in figure 4. The g plot clearly shows
the peaks» at the élastic mode frequencies (i.e. the poles), the most
prominent being the first mode near .75 rad/sec. The dips in ¢ indicate
the presence of transmission zeros fo? the multivariable plant at those
freﬁuencies; ‘The controllér synthesis studies are performed using the

design model consisting of:

a) rigid-body model (n = 6, n, = 0)

q

b) rigid-body and the first flexible mode (n = 8, ng = 1)

q

c) rigid~body and the first three flexible modes (n = 12, ng =3)
The measurements available are the three attitude angles at the feed
location. One 3-axis torque actuator is used at the same location. The

compensator is designed based on these sensors and actuators.

5.1 Rigid Body Model:

In this section the controller design is carried out based only on
the rigid body design model. The largest and the smallest singular values
of the rigi&-body tfansfer matrix (n = 6)} are of the form 1/s2, The
co;respbnding additive uncertainty AG, which consists of the (20th order)
flexible dynamics, 1is plotted in figure 5. Figure 5 indicates the
presence of poles at thé- undamped flexible mode frequencies of 0.75
rad/éec, 1.35 rad/sec, etc.. Also, the pole of the first mode frequency of

0.75 rad/sec produces the highest peak since it 1is most lightly damped.
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(Thé importance of this .fact will be seen 1later when the stability
condition is violgted at this point). | B |

For this sixth order design model, a compensgtor design was carried
out uéing the Kalman filter désign methodology fé achieve satisfactory
performance (i.e.; large gain and bandwidth) at 1low frequen?ies, and
robustness at high frequencies. This design was carried out using the
Kalman filter Riccati equation (16). The Kalman-Bucy filter (KBF)
transfer matrix Ggp(s) 1is given 1in equation .(18). Appropriate
loop—-shaping can be accomplighed by propér choice of the weights uy and L
in equation (16). Since the con;roller design model_ is of the form
l/sz, one canl _analytically évaluate the singular values of. I+Ggp
using equations '(16) and (17).. Assuming p ; 1 and i = (LI,LZ)T the

left hand side of (15) can be solved. For L; = 0 and L, = k, I, it

can be shown that equation (15) is satisfied by:

k, < 10~

This implies that the Kalman filter gain computed using (17) will be very
low. Figure 5 shows plots for condition (iS) with two L matrices, with
L, = 0 and k, = 1076 and 1077. The right hand side of (15) 1is
also plotted in figure 5. It is evident that condition (15) is satisfied
for k2=10‘7. As ky is decreased further, the curve shifts upward

thus increasing the margin.
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The next step consists of LQ regulator design. Having obtained an
acceptable compens#Eor .through Kalman-Bucy filter equations, the 1Q
regulator is realized via the loop transfer recovery method [8]. Figure 6
presents tﬁe singular value plots of the compiéﬁe loop transfer matrix
Gch(s)"(which consists of the -plant, ‘the KBF and. the LQR) for
different weighting parameter q (Eq. 19). The q selected ﬁas q=106 and
107, It 1is easy to check cohdition (11) in this case. As q is
1ncfeased,'the ploté approach those of ﬁhe compensator obtained from the
Kaiman filter design approéch. The 1Q design for q=106 was considered
to be satisfactory;

The standard LQG/LTR procedure réduires the definition of the
"desired” loop transfer characteristics (see step two in séction three.)
That is, g(GKF) must satiéfy the low-frequency performance
sPecificaﬁions, and © (GKF) must satisfy the high—frequency .robustness
gpecifications. Thus, in the presenée of additive uncertainty AG, the

procedure -states that the robustness condition

o (T Gp) 8 (6)

o (GKF)

> o (46)

should be satisfied. However, in the case'described above, it was found

that the above condition makes the “"desired” design (Ggp) extremely
conservative. From figure 6, it is seen that the closed loop bandwith is

quite low and nowhere near the desired value of .1 rad/sec. Therefore,
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recov;fing this conservative loop gain ylelds a compensator with poor
performance. This fact led to a modification of the LQG/LTR proced.ure.
In particular, the above robustness test on Gygp is omitted in tixe
modified procedure. Instead, the recovery is carried out first, and then
the (less conservative) stability test (11) is applied directly for the
compensator Gg. The Kalman filter transfer matrix Gkp 1s based only
on the desired performance and. not -on satisfying the stabiility test of
equation (15). |

With the revised test on Ges the following choices on L and y

matrices were made.

10721

Using the recovery proc':edure,. the compensator 1s obtained for this
case wth q = 104,  The resulting stability test (Eq. 11) is shown in
figure 7. It is seen thaf: the stability margin is lowesi: a-t»“ the first
mode ffequency (0.75 rad/sec)" Any increase in the gain (obt;ainéd by
q > 104) resulted in violation of stability conditiom at that point.
The overall loop bandwidth is obtained from the singular values of the
loop transfer function Gch shown in figure 8. It is seen that the
bandwidthv(i.e., f.he frec;;uency at which g(Gch)l = 1) 1is far short of

the required 0.1 rad/sec. In order to increase the bandwidth, the gain
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s . .
has to be increased by increasing q. However, this results in the
violation of the stability cpndition (11). Thus it is evident that, with

a rigid-body design model, it is not possible to meet the performance

specifications.

5.2 1 Flexible Mode Design Model:

To overcome the above problems,.. thg next alternative that was
considered was whether the inclusion of the first flexible mode (0.75
rad/éec) in the design model would improve the performance. The inclusion
of the first flexible mode, which is predominantly a torsion mode, results
inla design model of order 8. The singular values of AG shown in figure 9
are an order of magnitude lower ™ than those in figure 5 (wherein AG
consisted of all the flexible modes). The first peak of 0(AG) occurs at
1.35 rad/sec, which 1is the frequency'of'the second mode. This 1s the
critical point in thé st;bility test (Eq. 11). After a number of trials,

the following choice of L and y was made to obtain the desired performance

-
o 0 .
A
-

The recovery is obtained for q = 10° and the stability test is shown in

figure 9. Fig. 9 indicates the critical point to be at about 0.28
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s
rad/sec. There is a good margin at the peaks of AG due to upward sloping

of the upper curve. - The resulting loop transfer function (GPGC) plots

are shown in figure 10. The plots indicate that the required 0.1 rad/sec
bandwidth is not obtained (although it 1is much higher than the rigid-model
case). Any increase in the gain (for q > 105) was found to result in
the violation of the stability condition (11). Figure 10 indicates the
presence of an open-loop invariant zero near 0.082 rad/sec, wh;ch was also
confirmed by independentv' computations. This zero is almost on the
imaginary axis (i{.e., the transfer matrix is close to being nonminimum
phase). Theréfore, (as would be expected) the recovery procedure is not

very effective for making Gch approximate Ggp.

5.3 3 Flexible Mode Model:

In order to improve the performance furthef, the next step was to
include the first ghree flexible modes in the design model. It 1is logical
to db th;ls becéuse they represent the first modes about each axis,ki.e.,
the first torsion mode, and the first bending modes in the XZ and YZ
plat_les. Thus, the order of the design model was 12. The singular value
plots for Gp ahd AG are shdwn in figures 11 and 12, respectively. It is
seen from figure-.ll chgt Gp has zeros near 0.082 and 0.22 rad/sec, and
poles near 0.75, 1.35, and 1.7 rad/sec. It 1is seen from the AG plot
(Fig. 12) that 7 is co‘nsiderably lowér than that in ‘figures 7 and 9.

After numerous 'tr'ials, the following choice of the L matrix and the scalar

p was made for a suitable GKF
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The recovery was accomplished with q = 1010, The étability test is
shown in.figure 12. It can be seen that condition (11) is satisfied with
a wide margin. Also, at the péak for AG (at 8 rad/sec) the ﬁpper curve
slopes upwé;d, indicating good tolénance of high-frequency uncertainty.
The 1limit for increasing the gain (indiéated by the lowest point in the
upper curve in figure (12) occurs at about 0.3 rad/sec. The resulting
compensator G. is shown 1in figure 13. The gain of Gc is much higher
than that bbtained in ;he previous cases. - Generally, the LQG/LTR
technique attempts to choose G, in such a way that the'.ﬁroduct G.G

P’c

is replaced by Ggy (i.e. G. 1s attempting to invert Gp in the

frequency range of interest). The 3-mode design plant shown in figure 11
h;s elastic mode eigenvalues at -.0075'i.j.75,‘-;0135 + j1.35, and -.0170
+ j1.70.  Figure 13 shows that G, has zeros with frequencies near these
iocatibns.v The design plant also has transmibsidn zeros at -.9 x 1074 ¢

3.082, =-.37 x 1073 *+ 3.22, and -.29 x 1073 % j.22, Ideally, G

should have poles with frequencies near .082 and .22. However, the design
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plant zeros are too near the jw-axis and tend to numerically behave as

nonminimum phase. Some »Qttenuation is obtained by the compensator pole.
near .4 rad/sec.' The plots for the .loob Fransfer matrix Gchv'are
given in figure 14. It 1is seen that a bandwidth of 0.1 rad/sec. 1s
obtained except for the presence of the invariant zero near 0.082
rad/sec. which causes some deterioration of performance. At frequencies
past .4 rad/sec., Gch behaves like Gkr and eventually rolls off at
60db/decade. Also, ¢ and o are closely spaced, indicating good system
behavior. Thus it is seen that the inclusion of the first three modes in
the design model ylelds a robust compensator which also meets the
ban&width specifications.

The final ’s:ép is to gheck -the stability of the coﬁpiete nomin;l

system when the compensator G.(s) designed above is used. The overall

closed-loop system is:

Me

- AF' -BFG ' X

HCF A-BG-HC X

H

M re

where the sﬁbscript F is used to denote the full-order nominal plant, and
x . denotes the state estimate for the design model. The eigenvalues of the
overall closed-loop system using the 3-mode controller are given in Table
I1I. It can be seen from Table II that the overall closed-loop system is

stable.
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6. CONCLUDING REMARKS

The'LQG/LTR multivariable frequency domain'technique was employed in.
the -design of an attitude control system for a large flexible space
antenna. The LQG/LTR'meﬁhodiwas noted to be es;ecially attractive for
overcoming spillover effects common to large space structures control
problem modelled from finite element data. The design objective‘ of
avoiding excitation of higher order modes whilé satisfying performance
¢riteria was met by including these modes in the robustness uncertainity
barrier.

Design was based on a reduced oraer model chosen as the rigid body
dynamics plus the fewest number of low frequency vibrational modes
necessary to meet a desired closed'ioop bandwith. Inclusion of the first
three vibrational modes (corresponding to the three axes) was found to be
necssary to meet a 0.1 rad/sec bandwith. For wider bandwidths, design
models width greater than three modes may be needed. A satisfactory
control design was obtained using only a colocated'single'bair bf 3-axis
attitude sensor and torque actuator for the Hoop/Column antenna problem.

Performance degradation was observed due to the presence of invariant
zerbs within the design bandwith. These zeros were unavoidable given the
prescribed sensor/actuator loéations ~and emphasized the fact thaf
consideration should be given to.control aspects when building large space
structures. |

A modification of the standard LQG/LIR procedure was introduced in

which the robustness test was performed with the full LQG .compensator
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instead of the intermediate Kalman filter design. This approach was found

to produce higher gain compensators and helped overcome the basic

conservativeness shortcoming of the LQG/LTR approach.
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Table I. Antenna Parameters

~ Rigid-bddy parameters

Mass=4544,3 Kg..

Inertia about axes through center of mass (Kg-mz)

6

I = 5.726 x 10 I = 5.767 x 10°
xx vy

I = 4.383 x 10°
22

Iyz Xz Xy
Structural Mode Frequencies (rad/sec)

0.75, 1.35, 1.7, 3.18, 4.53, 5.59, 5.78, 6.84, 7.4, 8.78
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 Tab1e 11. ‘Eigenvalues of the Full Closed-Loop system

Real part Imaginary Part
-8.535 (1073)  8.054 (1072
-8.535.(1070)  -8.054 (107
<7.557 (1073  1.250 (107!
=7.557 (107%)  -1.250 (107}
-7.604 (107%)  1.248 (107}
-7.604 (1072) -1.248 (107}
-2.237 (107} 2.236 (107}
-2.237 (1071)  -2.236 (107!
-2.330 (1071 2.154 (107}
=2.330 (1071 -2.154 (107))
~2.379 (1071 2.113 (107))
—2.379 (1071 -2.113 (107h)
-7.466 (1073)  7.466 (10°1)
-7.466 (1073)  -7.466 (1071)
-1.346 (1072)  1.346
-1.346 (1072)  -1.346
-3.076 (10°})  1.373
-3.076 (107Y)  -1.373
-1.016 1.267
-1.016 C -1.267
-1.702 (1072 1.702
-1.702 (107%)  -1.702
-4.028 (107%)  1.737
-4.028 (107%) -1.737
-3.181 (1072)  3.181
-3.181 (107%) -3.181
-4.422 (107%)  4.529
—4.422 (107%)  -4.529
-5.579 (1072)  5.590
-5.579 (1072)  -5.590
-5.731 (107%)  5.776
-5.731 (1072) -5.776
-6.685 (1072)  6.841
-6.685 (107%)  -6.841
-6.390 (1072)  7.401
-6.390 (10°2)  -7.401
-8.326 (10°2)  8.782
(107%)  -8.782

63

$ 28



*3daouo0d euuajue uwn10)/dooy -°T InsE4

s{aued aejos aamoq

satqeo 3aoddns dooy 1amo1q isew 1amo7

satqes 11o0ddns dooy aaddp

jseu padyy ~———8 i1sea 1addp

AN

gtaued paaj pue Spad4

4

1430N0D YNNILNY NWN100/dOOH

64



65

*A37UuTRIadOUN IATITPPY (Q) : A v

A3ture3190Un IATIELITTAFITINY (B) -°7 2andyg

ALINIVLYIONN JALLIGQY

SIILINIVLYIONN 40 NOILINISIG



,

ORIGIMAL PAGE-IS

OF POOR QUALITY

*813]a11eq SS3UISNQO1 pue IdUBWIOFIdd

N .

99s/pua * Kouanbaay

(9) pue (e) -°¢ 2an3Y4g

~uom3\©\asow\° aoeacossu \_
. '

(Aauywqa20un 3AT11PPE)
I311J8q $SUYSNQOY \

N

v// /oam\oau ¢ Kouanbaay \\

0’0 D

{£quter330un Ia1yBITTd T
J31100q S53U3SNQOY

s

suoyjedygyoads

’ 3ouvmI0) I3

66



101

juetd Teulwou TIny aYl JO SINTEA IenJUTg —'h XN

oes/pra ¢ fouandaiy

001 , | 1-01 2-01

ﬂq1q

I

L)

ol

LB I L T T T T T T 601

¢-01
v\ _ | | _m..o.a
s-01
»-01

g-01

z-01

67

‘sante,
aenluy



*durdeys dooy paseq-ggy 103 (GT*unba) 3833 ssauisnqox £ITTIqeIS -°G aansy,

o9s/pea ‘Aouanbaay

101 | 001 1-07 2-01

LB . [rrrr 1 1 LU L_.-oﬁ
lnm?oﬁ
_
MJmuoﬁ

w01

e-01

2-01

1-01

3174 NVWIVY ONISD 1S3L ALITISVIS

uo:wn>
aern3uyg

68 -



oI\ ;
59 xya3euw 13jsue13 dooy ,paizaacdai, pue 4y jo ssnyea 1efnsurs -°9 sandyy

298/pea ‘Kouenbaig

01 01 . R 201
[TTTT T 77 T AR T [Ty 11 T =  o0:-01

g-01

g-01
Auoauvb

Q."Oﬁ

sanTeA

. s-Of
Amxuvbn
w-01

— n|O~
z-01

1-01

A¥IA023Y aNV 9 404 SINIVA ¥YINONIS

Ien8uys

69



. +30388uadwod
p213A0231 3yl uo paseq (Il sunba) 3823 ssaulsnqol K11119®R38 ~-°¢ @an814

299 /pea ¢ fouanbaay

-oﬂ 01 | - 41-01 2-01

rrrr T 1 1 LR B LA 179
501

.

=
- -01

_
,_..-9
-0l
m-o_ﬁ

i-01

70

ganyteA
aeynduys



101

99 dy xya3ew 1aysueis dooy

001

P313A0D31, JO SNTeA IBRTNLUIS -°g 3INTEy

J98 /pel ¢ Louanbaaj

1-01

m-oﬁ

~ RIRBL

T T

po—y

reer i1 T _q_ LR

g-01

¢-01
9-01
g-01
n-01
¢-01

2-01

san{eA
aendusg

71



‘Tapow 3pom [ 103 3§23 ssauIsnqol AIFTIQRIS ~*¢ dInBy1

299 /pex ‘Aousanbaayg

101 o o0l 1-0T1

72

2-01

j_~4aa L ﬂﬂq__aﬂ_ 1 _____

I

Jq .

T

11 llll[lll ]

L hmul ]

llllll ]

'lllll“ 1l [llll

t-01
9-01 : |
-01
sanrey

As..O.— JeinSuyg

¢-01

3-01



101

*1apow 3powm | 10} uomo uo.wu=~a> 1eTn3uys -1 @andiz

J9s/pea ‘Aouanbaiyg

001 ot

201

NTTT1

1

T _d Trr 11 | , _A\A LI

( uoaS o

Aoonov w

g-01

e-01
»-01
-~ ¢-01
2-01

1-01

. oﬂuﬁ

_ .. 101

73

‘santeA
1efnBurs



*13pow apow ¢ ao
3 Jo santeA aie
_ dg n8urs °*11 2

N o J98/pe1 .mu:unkum ) 1. M
MTT T 11 . o‘ -
_ I 1 _4~__~4 I ! uﬂuWA__—aJ ag
T 1 _ _olﬂ:
.0
- 5-01
wcodv - .
T senTep
_I%tnBurs
w01
¢-01
=

_N-oﬂ. :



*Topom 2pom ¢ 103 (I1 °*ubd) 3833 ssaulsnqoy LIFTIqeIs °Z1 2andil

998/pe1 ‘Aouanbaiy
101 | 001 | 1-01 2-01
_dq_¢444 Ll IR 1 Tvrr it B -01
=
~ +-01
]
=
— s-01
= sanyey
= 1eIn3ugg
_
S ¢-01
=

' 2-01



*Iopow apow ¢ ayi 103 103B8UadmOd 9yl jJo sonytea aernSuls °ct aandyz

76

98/pua *Aousnbaiy o .
101 001 o | Tow:J S ..?OH..Od |
.—Jd._q_qA.l_ J ——Aﬁ_.J L | _ - | ] |
=
- 01
-
—= w01
...U sanyep
pus awInsurs
== 301
— 501
-
—= (01



*y9poum 3 o2.d .
. narg

~O.~ oo,w d9s/pea .%u:u:v.mu.m —. O.w v ~
__aadA T 1 1 T - T 2-01
TT T 71 .
. " v ¢-01
| z-01
’o%) 7
1-01
.Aouas ] 001
c N seTedur

101

g 201

e01





