
O

O

O

CO
LJJ

CO

Q
z
O
Q
Q
O

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS
SCHOOL OF ENGINEERING
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23508

ADAPTIVE CONTROL OF LARGE SPACE STRUCTURES
USING RECURSIVE LATTICE FILTERS

By

N. Sundararajan, Co-Principal Investigator

Gene L. Goglia, Principal Investigator

Final Report
For the period ending December 31, 1985

Prepared for the
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

Under
Research Grant NAG-1-429
Dr. Raymond C. Montgomery, Technical Monitor
FDCD-Spacecraft Controls Branch

iNASA-CE-177270) ADAPTIVE CON1BCI OF LABGE N86-27401
SPACE STBUCTUBES. USING BECUBSIVE LATTICE
FILTEBS Final Beport (Old Dcffiij3ion Univ.),
80 p HC A05/MF A.01 CSCL 22B Ucclas

• G3/18 43134 y

December 1985



DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS
SCHOOL OF ENGINEERING
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23508

ADAPTIVE CONTROL OF LARGE SPACE STRUCTURES
USING RECURSIVE LATTICE FILTERS

By

N. Su'ndararajan, Co-Principal Investigator

Gene L. Goglia , Principal Investigator

Final Report
For the period ending December 31, 1985

Prepared for the
National Aeronautics and Space Adminis t ra t ion
Langley Research Center
Hampton, V i r g i n i a 23665

Under
Research Grant NAG-1-429
Dr. Raymond C. Montgomery, Technical Monitor
FDCD-Spacecraft Controls Branch

Submitted by the
Old Dominion Univers i ty Research Foundat ion
P.O. Box 6369
Nor fo lk , V i r g i n i a 23508

December 1985



TABLE OF CONTENTS

SUMMARY

REFERENCES.

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

IDENTIFICATION OF THE DYNAMICS OF A TWO-DIMENSIONAL
GRID STRUCTURE USING LEAST SQUARES LATTICE FILTERS..

EXPERIMENTAL EVALUATION OF FLEXIBLE STRUCTURE
IDENTIFICATION USING LATTICE FILTERS

PROGRESS IN ADAPTIVE CONTROL OF FLEXIBLE
SPACECRAFT USING LATTICE FILTERS

ROBUST CONTROLLER SYNTHESIS FOR A LARGE FLEXIBLE
SPACE ANTENNA

PAGE

1

3

4

18

26

34

n



ADAPTIVE CONTROL OF LARGE SPACE STRUCTURES
USING RECURSIVE LATTICE FILTERS

VT* ; Gene L. Goglia* u<v

SUMMARY

This report summarizes the research activities performed under grant

NAG-1-429. The objective of the research has been to studylthe use of re-

cursive lattice filters for identification and adaptive control of large

space structures/ Lattice filters are used widely in the areas of speech

and signal processing. Herein, they-are used to identify the structural

dynamics model of the flexible structures. This identified model is then

used for adaptive control. Before the identified model and control laws are

integrated, the identified model is passed through a series of validation

procedures and only when the model passes these validation procedures con-

trol is engaged. This type of validation scheme prevents instability when

the overall loop is closed.

One of the main aims of the research has been to compare the results

obtained from simulation to those obtained from experiments. In this re-

gard, the flexible beam and grid apparatus at the Aerospace Control Research

Lab (ACRL) of NASA Langley Research Center were used as the principal candi-

dates for carrying out the above tasks.[ Another important area of research^

namely that of robust controller synthesis was investigated using frequency

domain multivariable controller synthesis methods. The method uses the

Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) approach to en-

sure stability against unmodeled higher frequency modes and achieves the

*Eminent Professor, Department of Mechanical Engineering and Mechanics, Old
Dominion University, Norfolk, Virginia 23508.



desired performance. Such a controller was designed for the 122 mr. Hoop-

Column antenna using a single 3-axis torque actuator and attitude sensors.

References 1 and 2 present the detailed analysis of identification

results for the flexible grid apparatus using lattice filters. The scheme

provides on-line identification of number of modes, mode shapes, modal damp-

ing and natural frequencies. The results indicate that the lattice identi-

fication scheme is a viable scheme for identifying the structural dynamics

of flexible structures. The experimental results also indicate differences

between.those predicted by finite element analysis and obtained by experi-

ments. The difficulties are not as such in finite element analysis but in

modeling the apparatus for finite element analysis. This fact emphasises

the need for on-orbit identification of large space structures before con-

trol is attempted. A summary of the experimental results obtained using

lattice filters is described in reference 3.

An adaptive control scheme using lattice filter identification and

modal description has been developed in reference 4. Alternate schemes of

using input-output models instead of modal form from lattice filters is

described therein. The problem in this approach is to obtain efficient

control schemes as the identified model of the system becomes coupled and to

calculate the pole placement control law on-line is computationally complex.

Presently, the identification scheme using lattice filters for obtaining the

input-output model is under development in the Charles River Data Systems in

the ACRL.

A new approach of designing robust controller for a large flexible

space antenna using the LQG/LTR approach was developed in reference 5. The

method was used in designing robust controller for the 122 mr. Hoop-Column

antenna using only a 3 axis torque actuator and attitude sensor. The objec-



tive is to design the controller based on a lower order model to achieve the

desired bandwidth and at the same time ensuring stability against unmodeled

higher frequency modes. The results in reference 5 indicated that if one

uses only a rigid body model for design stability against unmodeled modes

can be obtained but not the performance. Based on detailed studies in ref-

erences 6 and 7 it was concluded that with the first three flexible modes

(corresponding to the 3 axes) included in the design model both stability

and performance can be ensured.
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Identification of the Dynamics of a
Two-Dimensional Grid Structure using

Least Squares Lattice Filters1

R. C. Montgomery2 and N. Sundararajan3

Abstract

The basic theory of least squares lattice filters and their use in identification of structural
dynamics systems is summarized. Thereafter, this theory is applied to a two-dimensional grid
structure made of overlapping bars. Previously, this theory has been applied to an integral beam.
System identification results are presented for both simulated and experimental tesfs and they are
compared with those predicted by means of finite element modeling. The lattice filtering ap-
proach works well for simulated data based on finite element modeling. However, considerable
discrepancy exists between estimates obtained from experimental data and the finite element
analysis. It is believed that this discrepancy is the result of inadequacies in the finite element
modeling to represent the damped motion of the laboratory apparatus.

Introduction

The ability to predict the dynamic behavior of large space structures (LSS) ade-
quately for control system design is doubtful because of their expected size, appreciable
flexibility, and on-orbit assembly anomalies. Hence, dynamical modeling from on-
orbit measurements, followed by modifying the control system as dictated by the
identified control system design model (adaptive control), is of interest. The goal of this
paper is to determine, using a generic grid structure, whether a priori modeling of the
structure is adequate for a high authority control system design or whether on-orbit
identification is needed.

An approach for identifying the dynamic behavior of LSS that estimates model order
in addition to model parameters is presented in [1]. It uses lattice filters which provide
an order as well as a time recursive algorithm for linear least squares signal estimation.
[2] provides a tutorial on lattice filter theory and applications. The outputs of the theory
of [1] are the least square estimate of the measurement sequence, the model order
required to fit the measurements, the associated lattice model (this includes mode shape

'This paper was originally presented at the American Control Conference. San Diego, California. June 6-8,
1984.

'NASA Langley Research Center, Hampton, VA 23665.
'Old Dominion University Research Foundation, Hampton. VA 23666.
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36 Montgomery and Sundararajan

estimates that are orthonormal in the measurement space), and the associated auto-
regressive moving average (ARMAX) model of the measurement sequence.

Some distributed adaptive control strategies require identification of the natural
modes of a structure [3.4]. Unfortunately, the lattice filter provides mode shapes that
are orthonormal in the measurement space and. hence, are not the natural modes.
Natural modes can be obtained, however, either through an eigenvector analysis of the
identified ARMAX model or through a transformation that provides spectral decom-
position of the lattice filter modal amplitudes [5]. The latter method is used herein to
obtain the natural modes. Using spectral decoupling to determine mode shapes, one can
obtain mode frequency and damping using an equation error parameter identification
method [3] that employs a second-order ARMAX model to represent the natural mode
amplitudes. The procedure of [3] tracks frequency and damping coefficients required
for the modal amplitude input sequence to fit the second order ARMAX model.
Because the input sequence may have an unfavorable signal to noise ratio, the parame-
ters so derived must be tested for validity before use in control system design.. This
parameter testing is treated in detail in [6] but is not employed herein.

The foregoing procedure has been used to identify the dynamic characteristics of an
integral free-free beam in [1.71. [8] describes the test apparatus used in those studies.
In this paper, the theory is applied to a more complex, two-dimensional grid structure
made of overlapping bars. First, a brief overview of the theory used is presented. Next,
system identification results are presented using both simulated and experimental
data. Finally, the experimental results are compared with those predicted using finite
element modeling.

Summary of the Method Used to Identify Structural Dynamics Systems

For the application considered here we assume that the /tth measurement sample is
of the form

v[ = [.Vi(*).V:(* ) , • • - , . VvS(*)] (1)

where MS represents the number of sensors. It is assumed that y is generated from a
model system such that

yt = <D^t + nk (2)

Here, <I> is a mode shape matrix. ^ is the modal amplitude vector, and nt is a Gaussian
random variable with a zero mean and a covariance matrix /?. Typically, for structural
dynamics applications, each component of ^t is the output of an uncoupled second-
order process. The task here is to estimate the order and obtain the least square estimate
of yk from N + \ measurement samples y0 through yv . [ 1 ] presents a derivation of the
equations that relate order n, and time i, recursions for the normalized forward and
backward residuals (e and r, respectively) as well as the least squares estimate of the
measurement vector y. These equations are listed below:

«,-..» i = (1 -*?...,)"'2(e,.. -*,-..»ir,--,..) (3).

r,..*, = (1 - fc?...,)"'2^-,., - *,..**.,) (4)

,v- 1
v\ = 2 £(e,v.JrjV_i.«) (5)

»=o
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with

*/.„-) = (e,.n, r,-,.,,) (6)

and E(x \ v) is the orthogonal projection operator of the vector .t onto the vector y. The
symmetry of the recursion formulae is apparent. The equations are coupled by the term
k,L n + i which is customarily called the "reflection coefficient."

Clearly, in this approach one may "fit the noise" by continually increasing the order
of the system; however, once the order of the estimator has increased sufficiently, the
residual errors should lie within a noise band which can be predicted based on assumed
noise characteristics. A threshold value can be selected based on this predicted noise
band and order determined by a test of whether or not the residuals have been reduced
to lie within the noise band. Also, the test can be made considering several samples of
data; that is, using a data window. [1] documents experience in order determination
based on this threshold test.

Having defined the order required to fit the data using a linear model, we seek a fixed
set of basis functions that are spectrally decoupled for modal control. Therefore, a fixed
orthpnormal basis is used during intervals when the order estimate is constant. (How-
ever, the order estimate is checked at each measurement sample based on the threshold
test.) The lattice filter uses the current measurement as the first mode shape and, using
a modified Gram-Schmidt orthonormalization procedure, generates additional basis
functions from estimation residuals. Consequently, the output of the lattice filter pro-
duces coupled mode shapes and corresponding modal amplitudes wherein the first
coupled modal amplitude will contain all significant natural modes. Since the order
estimate n has been determined, the first coupled mode digital Fourier transform (DFT)
amplitude spectrum is searched for the n most significant peaks and corresponding
frequencies. Because the spectrum contains n peaks for the n separate modes, a
transformation matrix can be obtained that decouples the spectrum. This transformation
matrix is the inverse of the matrix whose elements are the real part of the transform of
the n coupled modal amplitude channels (rows) evaluated at the n peak frequencies
(columns). It effectively transforms the lattice filter modes into spectrally decoupled
natural modes. These decoupled modes are not orthogonal. This procedure is described
in [5].

Thus, the decoupled modal amplitude time series, w(k), is obtained by applying the
transformation to the direct output of the lattice filter. This time series is then analyzed,
for each mode, to identify the parameters of its autoregressive moving average
ARMAX model. The inputs to each ARM AX modal model are the generalized forces
and hence, each model takes on the form

w(k) = AlW(k - 1) + A^w(k - 2) + BJ(k - 1) 4- #,/(* - 2) (7)

where/represents generalized forces. The parameterspT = (A ] .A^,B [ ,B^) are the ones
which are identified and which are required for the control law design process. Thus,
the ARMAX model output error is

e(k - 1) = w(k - 1) - [AM - l)w(k - 2) + A:(k - l )w(k - 2)

+ B,(* - l)/(ifc - 2) + B2(k - \)f(k - 3)] (8)

The method of [3] is used to identify the parameters (p) using the iteration sequence
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p ( k ) = p ( k - 1) + e(k - 1)

- 2),W2w(k - 3), W>f(k - 2),W4f(k - 3)3 (9)

As indicated in [3], the weights W, (i = 1 , . . . , 4) must be selected so that they are
consistent with the relation

Wtw
2(k - 2) + W2w

2(k - 3) + W,f2(k - 2) + Wtf
2(k - 3) < 2 (10)

and the inputs to the algorithm (w and/) must be sufficiently varying and large if the
parameters are to converge to their correct value.

Damping ratios and natural frequencies of the modes can be obtained from At and
AI of equation (7). However, the solution is not unique, due to the foldover phenome-
non of sampling. By finding the roots, z,, of the characteristic equation (7) and using
the relation 2, = e*"1 in the primary strip, where T is the sampling period, the following
equations for damping ratio and natural frequency are obtained for a typical root,
say z:

) (ID

f = c(c2 + <fr2)"2 (12)

wherein

4> = tan-'(Va) (13)

c = --j'n(a2 + b2) (14)

and a = Re(z) and b = Im(z). The behavior of this overall system identifica-
tion methodology with both simulated and experimental data is discussed in the sub-
sequent sections.

Description of the Flexible Grid Facility

Figure 1 shows the flexible grid experimental appartus currently being built at the
NASA Langley Research Center. The grid is a 7 ft by 10 ft planar structure made by
overlaying aluminum bars of rectangular cross section. The bars are centered every foot
so that there are 8 vertical and 11 horizontal bars. As shown in Fig. 1, the grid is
suspended by a cable at two locations on the top horizontal bar. The motions of the grid
perpendicular to the plane of Fig. 2 are the ones of interest in this study. There are nine
noncontacting deflection sensors mounted on a back -frame which give a 9 x l
measurement vector. The sensor data are linked to the main CYBER 175 Real-Time
Computer System at NASA Langley Research Center so that the identification can be
carried out in real time. For the experimental tests, the locations of the sensors are
indicated in Fig. 2.

Simulation Studies

A finite element analysis of the grid was performed which included the suspension
cables. Nodes were placed at each overlapping joint on the grid, the ceiling attachment
points of the cable, and every one-half foot along the cable. The grid elements con-
necting the nodes were modeled as bending elements, whereas the cable elements were



PAGE IS
OF POOR QUAUTY

Identification of the Dynamic, of a Two-Dimensional Grid Structure
39



40 Montgomery and Sundararajan

FIG. 2. A Schematic of the Grid Apparatus Indicating Locations Referred to in the Text and
Subsequent Figures.

modeled as two-force members. Thus, a total of 165 elements were included in the
model. Four degrees of freedom appropriate for motion normal to the plane of the grid
were considered. No damping was included in the model. Thirty modes were obtained
from this analysis. The frequencies of the first ten modes are listed in Table 1. The first
three modes are the pendulum modes, the fourth is the first bending mode and the fifth
is the first torsional mode. The finite element analysis uses an iterative method to
calculate mode frequencies. The frequencies used in simulation are believed to be
numerically accurate since the change in eigenvalue iterate of the highest frequency
mode used in the simulation is 10"" on the final iteration. The corresponding eigen-
value iterate was 1565, which corresponds to the mode 8 frequency in Table 1.

A simulation was developed that accommodates the first 15 modes of the analysis,
but only four modes were used herein. Modes 4, 6, 7, and 8 were used. A sampling
rate of 32 Hz was simulated with a standard deviation for the measurement noise of
0.005 in. which was based on actual sensor characteristics. Modes were simulated with
modal amplitude initial conditions of 0. L The data window for order determination
included eight samples. In this work, the sensor locations were chosen based on several
simulations. These locations differ from those of the experimental apparatus in that they
were selected to maximize the effect of simulated modes on the sensors. This was
accomplished by visual examination of the simulated sensor outputs. The selected
locations are indicated in Fig. 2. An asterisk is used to distinguish simulation sensor
locations from experimental ones. One may expect that location 5 would be preferable

10
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TABLE 1. Modal Frequencies Obtained
from the Finite Element Analysis of
the Grid

Mode Number Frequency (Hz)

1
2
3
4
5
6
7
8
9

10

0.364
0.625
1.398
2.29
3.07
4.791
5.933
6.297
7.337

10.352

to location 5*; but, since some simulated modes had little input to a sensor at loca-
tion 5, location 5* proved to be a better location.

Based on the entire measurement vector, the lattice filter order estimate is shown in
Fig. 3. Also, sensor 5* data, typical of those of the other sensors, is shown in Fig. 3.
After estimating the order, we carried out a transformation based on the discrete Fourier

0 4 6

TIME, SEC.

10

FIG. 3. Simulation Time Histories of Sensor 5*, Lattice Filter Order Estimate, and the Norm of the
Estimation Error for the Entire Measurement Vector.
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FIG. 4. Sensors 1 and 4 from Experimental Tape 5 and the Estimate of Signal Order Obtained by the
Lattice Filter.

transform (DFT) using 128 samples in order to obtain the natural modes, and used the
equation error method to identify associated modal frequencies and damping. The
resulting modal frequencies, damping and mode shapes are compared with those
predicted by finite element analysis in Table 2. The identification of frequencies and
damping are close for all four simulated modes. However, the mode shape estimates
agree with simulation for only three modes. One possible explanation for this is the
limitation imposed by sampling rate and the number of samples used to decouple the
lattice filter modes. Sampling at 32 Hz and including 128 data points in the DFT, a

TABLE 2. Comparison Between Simulated and Identified Results

Frequency-

(Hz)

Sensor
1*
2*
3*
4»
5»

•6*
7»
8*
9*

Mode

Simu-
lated

2.29

0.29
-0.40

0.29
0.30

-0.39
0.30
0.31

-0.39
0.31

4

Identi-
fied

2.4

0.30
-0.41

0.30
0.31

-0.36
0.30
0.31

-0.38
0.31

Mode

Simu-
lated

4.79

-0.16
-0.12
-rO.16

0.38
-0.72

0.37
-0.20
-0.26
-0.20

6

Identi-
fied

4.8

-0.17
-0.08
-0.18

0.37
-0.74

0.36
-0.15
-0.29
-0.14

Mode

Simu-
lated

5.93

0.31
-0.43

0.31
-0.06

0.49
-0.06
-0.32

0.41
-0.32

7

Identi-
fied

6.0

0.32
-0.43

0.32
-0.06

0.49
-0.06
-0.31

0.41
-0.31

Mode

Simu-
lated

6.3

0.59
0

-0.16
0.01
0.01

-0.01
0.39
0

-0.39

8

Identi-
fied

6.4

0.45
-0.43

0.21
-0.09

0.49
-0.06
-0.19

0.37
-0.38

12
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frequency resolution of only 0.25 Hz is obtained. Since the expected frequency sepa-
ration between modes 7 and 8 is only 0.4 Hz, good decoupling cannot be achieved.

To summarize the lessons learned from the simulation studies:
1. The least squares lattice filter gives good identification of simulated modal

frequencies, damping ratios, and mode shapes in the presence of sensor noise
expected in the experimental apparatus.

2. The DFT method of obtaining natural modes from the lattice modes is inaccurate
if the modes are closely spaced in frequency. This may be improved by adding
more samples to the DFT.

3. Sensor locations should be properly selected to insure good identification of
simulated mode shapes.

The next section will discuss results obtained from the experimental apparatus.

Experimental Results

Experiments were conducted using the grid apparatus previously described. The grid
was excited using an air shaker which periodically exhausted a jet of air that impinged
on the grid at sensor location 1. The frequency of the jet was adjustable from 0 to
50 Hz. Although the resulting grid excitation was periodic, it was not purely sinusoidal
hut was rich in harmonics. Because of the range limits of the deflection sensors - 0 to
approximately 2 in. - the maximum peak-to-peak deflections of the grid were limited
to about 1 in. When the peak-to-peak deflection neared this limit, the air shaker was
turned off and the grid was allowed to vibrate freely with only air and material damping.
A CYBER 175 Real-Time Computer System sampled the deflection sensor data at
32 Hz for 5 seconds. The data were stored on a system data file for further analysis.
Since only free-decay response data were recorded, the fi, and £2 parameters of
equation (7) were not identifiable. Figure 4 presents data from file 5. Here, the order
estimate is seen to converge to an oscillation between 2 and 3 at about 0.5 s. At about
0.8 s, the order estimate was fixed at 3 and data collection (at 32 Hz) for the 64 time
samples required for the DFT was started. The DFT was accomplished at about 2.8 s
and the decoupling transformation matrix was calculated. The modal amplitudes after
this time should contain a single frequency and the transformed mode shapes should
correspond to the excited natural modes of the structure. Thus, three modes were
extracted from the experimental data tape. These have frequencies near 0.5 Hz,
2.5 Hz, and 5 Hz. Table 3 presents the mode shape estimates obtained from the
experiment. Also presented are selected mode shape predictions taken from finite
element analyses. The modes selected were those whose frequencies bracket the experi-
mentally derived ones. The following discussion deals with the Table 3 data in order
of increasing frequency.

A good comparison does not exist between the first or third experimental modes and
either of their bracketing finite element analysis modes. Additionally, there is some
bending in the first experimental mode as evidenced by sensors 4, 5, and 6. The
amplitude of this mode is shown in figure 5 along with its ARM AX parameters /4, and
A-i and their primary strip equivalents of damping and frequency. Figures 6 and 7 show
the same information for the second and third modes, respectively. For the second
mode, a good comparison does exist between it and the 3.07 Hz finite element analysis
mode. Note that, however, the output of sensor 4 is opposite in sign and reduced in

' 13



44 Montgomery and Sundararajan

TABLE 3. Comparison Between the Finite Element Predictions (P) and Experimental
Identification (E)

Mode 1 Mode 2 Mode 3
Comparisons Comparisons Comparisons

Origin P E P P

Frequency
(Hz) 0.364 0.5 0.625 2.29

Sensor
1 -0.51 0.26 0.45 0.35
2 -0.51 0.46 0 -0.25
3 -0.51 0.66 -0.45 0.35
4 -0.26 0.24 0.41 . 0.38
5 -0.26 -0.1 0 -0.25
6 -0.26 0.41 -0.41 0.38
7 -0.08 0.10 0.36 0.38
8 -0.08 0.20 0 -0.24
9 -0.08 0.10 -0.36 0.38

*i -opyvNA A A A

E P P E P

2.5 3.07 4.79 5 5.93

-0.45 -0.47 -0.36 -0.04 0.43
0.11 0 -0.34 -0.38 -0.35
0.44 0.48 -0.36 -0.14 0.43

-0.08 0.13 0.22 0.18 -0.07
0.05 0 0.24 0.10 0.07

-0.03 -0.13 0.22 -0.01 -0.07
0.54 0.51 -0.38 -0.65 -0.45

-0.07 0 -0.43 0.29 0.32
-0.54 -0.51 -0.38 -0.54 -0.44

A A__0 ' VV V v \j
-ll —
3.1 —

0

-2|

1. P""~

U, Hz.

0
_ ___

• fc ^"^ *

c 0

-.2' —

1 1

-^- ^~

-T\_ rf i /

•Lriy-^Lr
i i i

u i i 3 4 5

Time, sec.
FIG. 5. Characteristics of the First Mode Identified from Experimental Tape 5.
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FIG. 6. Characteristics of the Second Mode Identified from Experimental Tape 5.

amplitude from the finite element prediction. This means that a feedback on that sensor
based on the finite element analysis will be destabilizing near the 2.5 Hz frequency.
The validity of this deduction can be established by examining the outputs of sensors 1
and 4 [4]. According to the finite element analysis, the 2.5 Hz content of the sensors
should be opposite in sign. However, they are in phase in agreement with the identi-
fication results.

Conclusion

The application of the least squares lattice filter in system identification has been
extended to a non-integral, two-dimensional grid structure made of overlapping bars.
Previous experience has been limited to an integral free-free beam. Both simulation and
experimental data were used to evaluate the system identification capabilities of the
method. In the simulations, the least squares lattice filter gave good identification of
simulated modal frequencies, damping, and mode shapes in the presence of sensor
noise expected in the experimental apparatus. However, the spectral decoupling method
of obtaining natural modes from lattice filter modes required a large number of data
points in the discrete Fourier transform to get adequate frequency resolution when the
modal frequencies were closely spaced. This problem can be overcome by an eigen-
vector analysis of the lattice filter's associated ARM AX model. When the lattice filter

- 15



46 Montgomery and Sundararajan

*.
.5

3 0

-.5

3

t-2 I

u), Hz.

0

.2

0

-.2
(f

I
0 1 2 3 A 5

Time, sec.

FIG. 7. Characteristics of the Third Mode Identified from Experimental Tape 5.

was used for system identification with experimental data, the mode shapes identified
differed significantly from those of the finite element analysis. This has been corrobo-
rated by examination of the sensor data and indicates that on-line identification of large
structural dynamic systems may be absolutely necessary to get acceptable performance
in a high gain system that requires knowledge of mode shapes.
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EXPERIMENTAL EVALUATION OF FLEXIBLE STRUCTURE IDENTIFICATION USING LATTICE FILTERS

N. Sundararajan

Old Dominion University Research Foundation, NASA Langley Research Center, Hampton, VA

Abstract. This paper presents the use of least square lattice filters In
Identification of the dynamics of highly flexible structures. Lattice filters have
been used extensively In the areas of adaptive signal procesing and speech synthesis.
Herein, they are used for on-line Identification of the number of modes, node shapes
and nodal amplitude tlae series from the measurement data. The theory Is Illustrated
using experimental data for a simple free-free beam and a more complex, flexible,
two-dimensional grid apparatus. Results presented Indicate that the lattice filter
approach produces effective identification of structural dynamics for the class of
structures studied to this time.

Keyworda: Identification, Lattice
Approximation, Vibration Measurements.

Filters, Space Vehicles, Least Squares

INTRODUCTION

With the size of the structures currently
contemplated for building In space becoming
larger, identification of the dynamic characteris-
tics of these structures is on important area of
research. Accurate on-orbit identification
becomes a necessity as these structures cannot be
assembled fully on the ground because of its size,
and also It is difficult to predict an accurate
model on the ground. As Che performance require-
ments for these structures in space become
stringent, however, it becomes imperative to
identify their charecterlstics on-orblt and modify
the control system as dictated by the identified
control system design model (adaptive control).
This paper highlights the model determination
phase of the adaptive control problem. This phase
involves not only determination of parameter
estimates for an assumed linear form, but also the
order of the linear model form.

An approach for identifying the dynamics of Large
Space Structures (LSS) that estimates model order
in addition to model parameters Is presented In
Sundararajan and Montgomery (1983). It uses
lattice filters which provide an order as well as
time recursive algorithm for linear least square
signal estimation. A comprehensive tutorial on
the theory and applications of lattice filters has
been given by Freldlander (1980). The main
results from the paper of Sundararajan and
Montgomery (1983) are: the least square estimate
of the measurement sequence; the model order
required to fit the measurements; the associated
lattice model (this Includes mode shape estimates
that are orthonormal in the measurement space) and
the associated auto-regressive moving average
(ARMA) model of the measurement sequence. The
mode shapes obtained by the lattice filter are not
the "natural" modes but a linear combination of
them. In order to compare the identified mode
shapes to those predicted by finite element analy-
sis, a decoupling method to obtain natural mode
shapes from the lattice mode shapes have been
developed in Sundararajan and Montgomery (1982).
Using the above spectral decoupling method to
obtain natural mode shapes, mode frequency and
damping can be obtained using an equation error
parameter identification method (Johnson and

Montgomery (1979)) that employs a second order
ARMA model to represent the natural mode ampli-
tudes. This procedure is followed herein.

The objective of this paper is to present the
experience in using lattice filter theory for
identification of structural dynamics of two flex-
ible structures. They consist of a one-dimen-
sional free—free beam and a two-dimensional
flexible grid apparatus. The structures are part
of an experimental facility at the Aerospace
Control Laboratory at NASA Langley Research Center
for studying advanced control concepts for large
space structures. The beam apparatus provides a
simple structure to test the basic concepts first,
and the grid apparatus provides a more complex
structure close to the real spacecraft. Before
presenting the results of lattice filter identifi-
cation for these structures, a brief outline of
the basic theory is given. Results are presented
for the identification of the dynamics of the beam
using experimental data. Next, the same is
repeated for the grid apparatus. Conclusions
based on the above study results are then
summarized.

Summary of Lattice Filter
Identification Theory

For the application considered here, we assume
that the kth measurement sample Is of the form

,u>. yNSoo

where NS represents the number of sensors. It is
assumed that y is generated from a model system
wherein

(i)

Here, * Is an NSxNM mode shape matrix, qk is the

NMxl modal amplitude vector, and n^ Is a NSxl
gausslan random variable with zero mean and a
covariance matrix R. Typically, for structural
dynamics applications, each component of q^ is

the output of an uncoupled second order process.
The task here is to estimate the order (NM) and
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obtain the least square estimate of qk from the

N+l measurement samples yg through yN.

Sundararajan and Montgomery (1983) present a deri-
vation of the equations that relate order, n, and
time, 1, recursions for the normalized forward and
backward residuals as well as the lease square
estimate of the measurement vector. These equa-
tions are listed below:

=l,n+l
,-1/2,

x-1/2,

N-l

n-O
(2)

wherein

and£(x|y) is the othogonal projection operator of
the vector x onto the vector y. The symmetry of
the recursion formulae are apparent. The equa-
tions are coupled by the term kj n+J which is

customarily called the "reflection coefficient."
The structure of this equation is depicted In

Fig. 1 where we have used the symbol z~' to
represent the time shift operator, i.e.

It should be noted ac this point that the lattice
filter is a modified Gran-Schmidt procedure
Involving both forward and backward residuals
wherein the backward residuals form an orthogonal
basis for the entire observation sequence. Hence,
any least square estimate is the orthogonal
projection onto this basis. Assuming at this
point the order NH has been obtained (which is
explained below), the lattice filter has
decomposed the estimation of y into the form of
equation (1),

model order between 0 and N+l inclusive. This
information provides the basis for the model order
determination method described next.

Clearly, in this approach one nay "fit the noise"
by continually Increasing the order of the system;
however, once the order of the estimator has
Increased beyond the correct order, then the
residual errors should lie within a noise band
which can be predicted based on assumed noise
characteristics. A threshold value can be
selected based on this predicted noise band, and
order can be determined by a test of whether or
noc the residuals -have been reduced to lie within
the noise band. Also, the test can be made
considering several data samples when using a data
window. Sundararajan and Montgomery (1983) docu-
ment the experience in choosing the data window
size NH and the threshold level based on simula-
tions. Having defined the order required to fit
the data using a linear model, for comparison with
finite element analysis predictions, we seek a
fixed set of basis functions that are spectrally
decoupled. A method to obtain the decoupled modes
from the lattice filter nodes using digital
Fourier transform (OFT) has been presented in
Sundararajan and Montgomery (1982). Essentially,
at this point we have estimates for order NM, mode
shapes * and modal amplitude time series q(k) from
the lattice filter.

Since the ultimate objective of Identification is
for control system design, an ARMA model is
identified using the modal amplitude time series
q(k). The method is based on an equation error
method described in Johnson and Montgomery
(1979). For each mode, the model is described by
the equation:

q(k-l) -

The equation error is given by:
e(k-l) - q(k-l) - q(k-l)

(3)

q(k-l) - {A q(k-2) + A2q(k-3)

Xr

wherein

and

i.e., the backward residuals t n form the

orthonormal basis, or the mode shape matrix * and
the forward residual e^ n represents the modal

amplitude time series.

The lattice filter has the following advantages:

I . Given a basis for order N, a basis for
order N+l can be obtained using the
recursion formulae.

2. Because of the modified Gran-Schmidt
procedure, the basis for all orders n
between 0 and N are the first n elements
of the basis of order N.

3. The estimate assuming any order n
between 0 and N+l can be computed using
equation (2).

Thus.
needed

lattice filter provides the information
Determine the residual sequence for any

where q is the model amplitude estimated by the
lattice filter, u is the modal control force, k Is
the sample number and Aj , ^, Bj , 82 are

the ARMA coefficients. The term in brackets Is
the model equation. The ARMA coefficients are
then updated by:

A,(k)

A2(k)

B,(k)

B2(k)

A2(k-l)

ij(k-l)

B2(k-0

+ e(k-l)u

The weight u assures stability if

2/{q2(k-2) q2(k-3) u2(k-2)

q(k-2)

q(k-3)

q(k-2)

q(k-3)

u2(k-3)}

This identifier performs well in a low noise
environment, but when the information content of
the signal is small. It attempts to fit the noise
(Thau, et. al. (1982). Also, the ideal ARMA model
for the beam has input parameters (B's) which are
three orders of magnitude smaller than the (A's).
This causes a very high sensitivity to noise In
the identification of the B's, and when the Input
force is applied, It tends to cause the identifier
gain on the A's to decrease significantly.
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Although these effects are evident in the results
presented here, they did not prevent successful
Identification.

If one is Interested in determining the damping
ratios and natural frequencies of the modes, they
can be obtained in a straightforward manner from
the equation (3). However, It should be noted
that this is not unique due to the foldover
phenomenon due to sampling. By finding the roots
of the equation (3) and using the relation

z - est In the primary strip, where T is the
sampling period, the damping ratio and natural
frequency can be obtained.

The behavior of this overall system identification
methodology with experimental data Is discussed in
the subsequent sections.

Experimental Studies for the
Identification of a Free-free Beam

In this section, the lattice filter theory
developed earlier Is Illustrated for the identifi-
cation of a one-dimensional free-free beam. The
Identification scheme yields the structural
dynamic characteristics of the bean. The experi-
mental apparatus for the free-free beam is shown
In Fig. 2. It consists of a 12-foot bean of
rectangular cross-section which is suspended from
the ceiling by two cables and Is attached to four
electromagnetic force actuators. There are nine
noncontacting deflection sensors that measure the
translational deflection of the beam. The actua-
tors are compensated to eliminate the effects of
friction as much as possible. This compensation
is nonlinear, producing a force in the direction
of the beam motion at the actuator attachment
points which is designed to equalize the effect of
friction. Testing was done by manually exciting
the beam approximately in its first flexible mode
and sampling the nine sensors at 64 samples per
second. A total of 5 seconds of data was stored
on a tape which was post processed with the
algorithm. Figure 3 shows a time history of some
of the measurement data processed by the algo-
rithm. The innovations sequence for sensor 4,
INOV4, is shown just below its time history.

Also shown is the norm of the forward estimation
residual, ENORM, which Includes all components of
the measurement vector. Below the norm is the
estimate of model order. This was obtained using
a data window of eight samples. Initially, the
order estimator fills the data window, and hence,
the indicated order estimate increases to 8.
After this the order estimator settles to 2
indicating that, even though we attempted to
excite only one mode, there were, In fact, two
significant nodes excited. Note also that the
norm of the forward estimation error is small
compared with the value at the start of the
process when the order estimate was settling.

The modal amplitudes obtained from the lattice
filter are spectrally decoupled, using the proce-
dure discussed earlier, after enough data are
taken to accurately take the DFT (64 time samples,
about I second). This occurs at about 1.7S
seconds, the first .75 seconds being used for the
identification of mode shapes and model order (see
Fig. 4). Figure 4 shows the modal amplitudes for
both of the identified modes. These are the
signals that are Inputs to the parameter identifi-
cation scheme used to identify the parameters of
the ARMA model of the modes. The identified ARHA
parameters are shown on Fig. 4 for each of the two
modes identified. The a priori parameter esti-
mates are initially offset - from the values
predicted by a finite element analysis which are
also indicated in Fig. 4. These parameters track

the instantaneous value required to minimize the
output error. One possible explanation of the
oscillatory behavior of the mode 2 parameter
estimates is the nonllnearlty of the actuator
compensation. Nonlinearity is apparent in the
sensor 6 data on Fig. 3. Note that lattice filter
produces a linear least square fit of the data to
the measurements, and in so doing, produces a
predominantly linear first node estimate and lumps
the nonlinear dynamics into the higher modes.
Thus, the parameter tracking is more stable in
mode 1 and produces estimates of an undamped
(A2—1) oscillation at nearly 2.7 Hz. If the
algorithm is constrained to an order estimate of
one, the predominant response is linear, however,
the fit error is Increased by an order of
magnitude.

The mode shapes estimates obtained from the
lattice filter are shown in Fig. 5. In this
figure we compare the estimates obtained by three
methods, one analytic, and two experimental. The
analytic result Is the primary mode shape of the
beam using Euler-Bernoulli theory. The two
experimental results which are in substantial
agreement are the nonlinear least squares
algorithm of Thau, et al. (1982) and the lattice
filter algorithm of this paper. Again note that
there is apparently an effect of the four attached
actuators on the dynamics of the test article.
The lattice filter produces two modes, one near
the mode of Thau et al. (1982) and another that, is
shown on Fig. S. This other estimated mode does
not resemble any mode analytically predicted using
linear Euler-Bernoulli theory, rather, is required
to model the effect of nonlinearities In the
apparatus.

Experimental Studies for the
Identification of a Flexible Grid

Next, the lattice filter identification scheme is
tested in a more complex structure compared to
that of the beam. The candidate structure
considered is that of a two-dimensional flexible
grid. Identification results are given using the
experimental data obtained from the laboratory
apparatus.

Figure 6 shows the flexible grid experimental
apparatus in the Aerospace Control Laboratory, at
NASA Langley Research Center. The grid is a
7 ft x 10 ft planar structure made by overlaying
aluminum bars of rectangular cross section. The
bars are centered every foot so that there are
7 vertical and 11 horizontal bars. As shown in
Fig. 6, the grid is suspended by a cable at two
locations on the top horizontal bar. The motions
of the grid perpendicular to the plane of Fig. 6
are the ones of interest in this study. There are
nine noncontacting deflection sensors mounted on a
back frame which give a 9x1 measurement vector.
The sensor data is linked to the main Cyber 173
Real Tine Computer System at NASA Langley Research
Center so that the Identification can be carried
out In real time.

In order to compare the experimental results of
lattice filter Identification of the flexible grid
facility with predicted values, a finite element
anlaysis of the grid was made which Included the
suspension cables. Four degrees of freedom appro-
priate for motion normal to the plane of the grid
were considered. No damping was included in the
model.

Experiments were conducted using the grid
apparatus described above. The procedure for
conducting the experiments was to excite the grid
using an air shaker. The shaker was capable of
periodically exhausting a jet of air that impinged
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on the grid at sensor location 1 which was ac Che
boccon lefc hand corner of che grid. The
frequency of che jec was adjustable from 0 Co
50 Hz. The resulting grid exclcacion was not
purely sinusoidal hue was rich in harmonics.
Because of che range limits of che deflection
sensors - 0 to approximately 2 in. - the maximum
peak to peak deflections of Che grid were Halted
Co abouc 1 in. When che peak Co peak deflection
neared this limit, the air shaker was turned off
and che grid was allowed Co vibrate freely with
only air and material damping. A Cyber 175 real
time computer system sampled the deflection sensor
data at 32 -Hz. for 5 sec. The data was scored on
a system data file for further analysis. This
test procedure was repeated for several shaker
frequencies in Che range of 1 Co 10 Hz. This
range has an- upper limit because of the sampling
frequency (32 Hz.) The lower limit Is selected to
include che predicted lowest vibration mode
(2.2 Hz.) Eight data sets corresponding to
different shaker excitation frequencies were
created and stored on Capes. The following
discussion pertains Co results extracted from data
sec five.

Figure 7 presents data froa sensors 1 and 4 as
well as che lacclce filter order estimate. For
this case che order estimate was baaed on a data
window of 8 samples and speccral decoupling was
done with 64 time samples. From che figure, the
order estimate Is seen to converge Co an oscilla-
tion between 2 and 3 ac about .5 sec. At about .8
sec, Che order estimate was fixed ac 3 and daca
collection of che 64 time samples required for the
UFT was started at 32 Hz. The DFT was accom-
plished at about 2.8 sec and then the decoupling
transformation matrix was calculated. The modal
amplitudes after this time should contain a single
frequency and Che transformed mode shapes should
correspond to the natural modes of the structure
which were excited. In chat manner, three modes
were extracted from experimental daCa tape S.
These have frequencies near .5Hz, 2.5 Hz., and S
Hz. Table 1 presents the node shape estimates
obtained from the experiment. Also presented are
selected node shape predictions taken from finite
element analyses. The modes selected were Chose
whose frequencies brackec che experimentally
derived ones. The following discussion deals with
che Table 1 data in order of Increasing
frequency. A good comparison does not exist with
either bracketing finite element analysis mode and
the first experimental mode. Additionally, there
is some bending in the experimental mode as is
evidenced by sensors 4, S, and 6. The nodal
amplicude for this mode is shown in Fig. 8 along
with the ARHA parameters A( and Aj for the

mode and their primary strip counerparts of
damping C and frequency "•• For the second mode, a
good comparison does exist betwen it and the 3.07
Hz finite element analysis mode. Note that,
however, che ouCput of che sensor 4 is opposite in
sign and reduced in amplicude from the finite
element prediction. This means that a feedback on
that sensor based on the finite element analysis
will be destabilizing near the 2.S Hz frequency.
The validity of this deduction can be established
by examining Che outputs of sensors . 1 and 4\
(Fig. 7). According Co Che finite element analy-
sis, the 2.5 Hz content of the sensors should be
opposite in sign. However, they are In phase In
agreement with the Identification results.

namely that of a free-free beam and a flexible
grid structure. The results indicate that che
laccice filcer can be effeccively used for on-line
Identification of Che number of modes, mode
shapes, modal damping and modal frequencies from
Che measurement daca. The experimental results
also indicate that there is considerable disagree-
ment between then and analytical predicdons.
Based on these experimental studies, Che main
conclusion chat can be drawn is that for large
space structures, on-orbic Cescing and identifica-
tion Is essential before control is accempted.
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Table 1.- Comparison Between the Finite Element
Predictions and Experimental
Identification

Origin

Freq.
Hz

Sensor
1
2
3
4
5
6
7
8
9

Mode 1
Comparisons

P

.364

-.51
-.51
-.51
-.26
-.26
-.26
-.08
-.08
-.08

E

.5

.26

.46

.66

.24
-.1
.41
.10
.20
.10

P

.625

.45
0

-.45
.41
0

-.41
.36
0

-.36

Mode 2
Comparisons

P

2.29

.35
-.25
.35
.38

-.25
.38
.38

-.24
.38

E

2.5

-.45
.11
.44

-.08
.05

-.03
.54

-.07
-.54

P

3.07

-.47
-.00
.48
.13
0

-.13
.51
0

-.51

Mode 3
Comparisons

P

4.79

-.36
-.34
-.36
.22
.24
.22

-.3«
-.43
-.38

E

5

-.04
-.38
-.14
.18
.10

-.01
-.65
.29

-.54

P

5.93

.43
-.35
.43

-.07
.07

-.07
-.45
.32

-.44

P - Prediction based on finite element analysis
E - Calculation based on identification from

experimental daCa

CONCLUSION

The application of least square lattice filters in
Identifying Che dynamic characteristics of highly
flexible scruccures has been presented. The
theory has been used to Identify Che structural
characteristics of two experimental hardware. 23
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Fig. 6 A photograph of the flexible grid
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ABSTRACT

This paper reviews the use of the least square
lattice filter In adaptive control systems.
Lattice filters have been used primarily in speech
and signal processing, but they have utility in
adaptive control because of their order-recursive
nature. They are especially useful in dealing with
structural dynamics systems wherein the order of a
controller required to damp a vibration is variable
depending on the number of modes significantly
excited. Applications are presented for adaptive
control of a flexible beam. Also, difficulties In
the practical implementation of the lattice filter
In adaptive control are discussed.

IHTRODUCTION

For large flexible spacecraft, design models will
probably not be adequate. Hence, an adaptive
control system Is highly desirable. Early research
into adaptive vibration control of large flexible
structures is reported in reference 1. Therein,
adaptive control of a spinning annular momentum
control device (AMCD) was studied. That scheme
consisted of simultaneous Identification and
control with the objective of regulating the out-
of-plane deflections of the spinning AMCD. Some of
the disadvantages of the method were the require-
ment of selecting the number of modes to be used
for controller design, the use of analytically
predicted mode shapes, and the coupling between
modes due to inhoraogenltles In the system. Lattice
filter adaptive control is a new method which
attempts to overcome these problems. It is, hence,
well suited for the adaptive control of flexible
spacecraft.

The least square lattice filter has been used
extensively in the field of speech and signal
processing (reference 2). In these applications
the filter is designed based on a predetermined
estimate of system order. Reference 3 is a compre-
hensive tutorial on this subject. Concerning
adaptive control, reference 4 proposes a self-
tuning controller configuration using lattice
filters. This scheme requires computing the poly-
nomial coefficients for the plant and controller at
each Iteration and enforcing a known feedback
structure for the controller. Reference 5 proposes
inverting the transfer function of the plant for
general adaptive control. This idea, with the
least mean squares (LMS) algorithm, was utilized in

reference 6 to obtain adaptive control.
Reference 7 proposes a similar approach using
lattice forms instead of the LMS algorithm.
Reference 8 takes this approach but uses a lattice
model Instead of an autogresslve, moving average
with exogenous variables (ARMAX) model where
familiar controller techniques could be used. All
of these schemes attempt simultaneous identifica-
tion and control or direct adaptive control. For
each case stability questions are not resolved
analytically; neither are simulation results
available in the open literature.

As opposed to simultaneous identification and
control, the scheme discussed herein consists of
conducting tests to obtain a design model, vali-
dating the model, designing a controller based on
the validated model, and finally, engaging the
control system. This approach is ideally suited to
the control of large flexible spacecraft because of
the passive environment of outer space and the
potential of relaxation to a controller that is
known to be stable - that of collocated rate feed-
back. It was originally presented in reference 9
and represented the first use of a recursive vari-
able order structure for adaptive control.
Therein, the lattice filter was used to provide an
on-line estimate of the system order, mode shapes,
and modal amplitudes to provide a validated modal
control design model. After the identified model
parameters are validated through a series of test
procedures, they are used in a modal pole-placement
control law design. Figure 1 shows the adaptive
control scheme using lattice filters.

Figure 1.- Adaptive Control with Lattice Filters.

28



The purpose of this paper is Co assess progress In
using laccice filters in adaptive control of
flexible spacecraft and Co highlight problem areas
for further research. First, lattice filter theory
and order determination is summarized following the
original development of reference 10. Then, their
use in adaptive control is discussed along with
applications to the vibration control of a beam.
Finally, difficulties arising in the practical
implementation are discussed.

SDMtARY OF LATTICE FILTER THEORY
AHD ORDER DETERMIIiATIOH

For application considered herein, we assume that
the 1th measurement sample is of the form

(2)

where NS represents the number of sensors. It is
assumed that y is generated from a model system
wherein

Xi " ** *l * Vi (1)

Here, * is an NS x NM mode shape matrix, 4^ is
the NM x 1 modal amplitude vector, v^ is a
Gaussian-random variable with zero mean and
covariance matrix R. NM represents the number of
modes in the system or order of the system.

Reference 10 -presents a derivation of the equations
that relate any order, n, and time, 1, recursions
for the normalized forward and backward residuals
as well as the least square estimate of the
measurement vector. These equations are listed
below:

L,n+l

-i.n-H

wherein

and < > represents an inner product. The symmetry
of the recursion formulae is apparent. The equa-
tions are coupled by the term kj n>̂  which Is
customarily called the "reflection coefficient."
The estimate of the measurement (reference 10) at
sample 1 for a model of order n is

n-1
- ̂I to (e I r .)
» *J| >J

where to represents an orthogonal . projection
operator. Hence,

k.
i,n

so chat

l.n- 1.1

where *j_ is
(ln-1,0' •"•
lattice filter,
vector of reflection coefficients
NS dimensional estimation error vector.

n matrix
from the

orthonorraal NS x
i-l,n-J generated
and >(n is the n dimensional

and _£i n is the

Clearly, in this approach one may "fit the noise"
by continually Increasing the order of the system;
however, once the order of the . estimator has
Increased beyond the correct order, then the
residual errors should lie within a noise band
which can be predicted a priori based on assumed
noise characteristics. A threshold value can be
selected based on this predicted noise band and
order determined by a test of whether or not the
residuals have been reduced to lie within Che noise
band. The residuals will generally consist of
signal and noise parts - the signal part being
reduced as the correct order is reached until the
residuals essentially consist only of noise. This
test is carried out based on a data window of NW
samples. Thus, assuming that the data can fit a
linear model and that ' the noise process is
Gaussian, for 1 large enough,

NW _ _

NS
• NW tr NW

J-l 'J
(3)

where E is the expectation operator. This can be
used as the one sigma threshold for the order
determination test. In the last equation Oj is
the standard deviation of the noise process
for the jth sensor. Reference 10 documents experi-
ence in choosing the data window size NW and the
threshold level based on simulations.

ADAPTIVE CONTROL USING LATTICE FILTERS

Independent Modal Space Control (IMSC)
(reference 11) is a control scheme specifically
designed to deal with flexible spacecraft In a
modal form amenable to control law design.
Unfortunately, it requires natural modes and not
the orthonormal basis provided by Che laccice
filter. Consequently, in order to Interface the
lattice filter outputs with the target adaptive
control scheme (figure 1) and to make comparisons
with finite element analysis predictions of natural
modes, a method is needed to obtain natural mode
shape estimates from the lattice filter basis, the
filter updates the NM basis vectors at every sample
Instant. While the order estimate NM remains
constant, the updated basis vectors are related by
a mere rotational transformation. The assumption
of the target adaptive control scheme Is that the
system motions can be modelled by a constant and
finite set of natural modes and their associated
modal amplitudes over a reasonably long time
interval. Hence, when the estimated system order
is constant, the basis elements used to derive the
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model amplitude time series required by the target
adaptive control scheme are not changed. e(i-l) -

The transformation from the lattice filter to a
natural mode basis should satisfy

' ' VL • VN

wherein the subscript L refers to the lattice
filter and N refers to the natural modes. A non-
singular matrix T, will satisfy this condition
provided

*LT
TV. (4)

Since the order estimate Is assumed constant, this
matrix can be approximately determined on-line
using the digital Fourier transform (DFT). Herein,
this Is accomplished as follows. Since the lattice
filter uses the current measurement sample as its
first basis element, the corresponding modal ampli-
tude time series contains KM frequencies. Hence,
the DFT spectrum of this series will contain NM
peaks corresponding to these frequencies. The
frequencies (u>j, 11)2, •••> UN>() can thus be
identified by searching this spectrum for these
peaks. Assuming that the motion is comprised of
undamped structural vibrations, the matrix T, which
produces the desired transformation can be calcu-
lated as

T -

Re[?[(,y]
L NM

K-fOVJ

Ref?r(v]

wherein, [̂ (ID), .... ^ (01)] is an NM dimen-
sional vector of the modal amplitude transform.
Using this matrix, the digital Fourier transform of
each component of <!>M will be zero at the discrete
frequencies, o> j , j*i. One item which degrades
this approximation is the error in using DFT
instead of the true Fourier transform. Still
another is the assumption that the motion is made
up of undamped structural oscillations. In spite
of these items, reference 12 shows that this
approach produces good estimates of the natural
modes for the beam used herein.

The decoupled modal amplitude time series,
as obtained above in equation (4), is then ana-
lyzed, for each mode, to identify the parameters of
its autoregresslve, moving average (ARMA) model.
The Inputs to each ARMA modal model are the
generalized forces and hence, each model takes on
the form:

(6)

The gradient technique of reference 1 is used to
identify the parameters p - (Aj, Bj) using the
iteration sequence

- p(i-l) + e(i-l)

W3f(i-2), W4f(i-3)] (7)

As indicated in reference 1, the weights W oust be
selected consistent with the relation

W3f(i-2)

+ W4f (i-3) < 2

and the inputs to the algorithm, $N and f, must
be sufficiently varying and large if the parameters
are to converge to their correct value.

For the identification and control scheme explained
above to work satisfactorily In a closed loop
environment, it is necessary to validate the -design
model. Three tests are suggested herein which
check the following: 1} model fit error; 2)
parameter convergence; and, 3) signal informa-
tion. These tests have been used successfully in
simulation and experimental work. The fit error
test uses a fixed parameter set to calculate an
estimated modal displacement for the past NT
samples.

NT

fit

+ Bjf^i-n-1) + B2f(i-n-2)}, k > NT

If the absolute sum of the error between the
modelled displacement and the displacement calcu-
lated by the lattice filter exceeds a given thresh-
old, the fixed parameter set Is updated with the
present identified parameter set. This process is
repeated until the parameter set fits the data.
•The convergence test runs concurrently with the fit
test. It simply checks the magnitude of the
changes In successive estimated parameters.

conv

NT
> T |p
' r

- p
n-ll

for pT

TN(i) =

B f(i-l) •»• B2f(i-2) (5)

where the f represents the generalized forces.
Given the. *N and f's, the parameters A and B
above are Identified and used in the control law
design process. Thus, the ARMA model output error
is

If the absolute sura of ten successive parameter
estimates changes is above a specified level, a
logical switch Is set to indicate failure. The
third and final test is on information content of
the estimated modal amplitude signals from the
lattice filters. The purpose of this test- is to
check whether enough information is present in the
signal for proper identification of the
parameters. If this test falls, the controller
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gains are not updated based on the identified
parameters, but are frozen at the last values
before the test failed. Here, the estimated modal
amplitudes and velocities from the lattice filter
are checked for sufficient excitation by summing
over ten samples.

NT

inf n=0
I) _ A
H Vl

The second term in the above equation represents a
measure of velocity estimates. If the sun Is below
a threshold, alnf, the updating of the control
gains based on the identified parameters is
stopped. The Information and fit error tests
constitute one test for each mode and the conver-
gence and reasonabllity tests constitute four tests
for each mode. Thus, six tests must be passed
before control is applied to a given mode. The
actual stability and performance of the controller
is directly affected by the criteria chosen for
passing a test. If the test criteria are too
stringent, system noise and nonlinearitles may
preclude initiation of control. However, if the
tests are not adequate, it is possible that an
error In the estimated parameters could result In
gain calculations which produce an unstable
system.

Now, consider the philosophy to be used when the
tests described above pass or fail. When all the
tests for parameters of a given mode have passed,
control gains are calculated according to a
previously developed pole placement scheme
(reference 1). The control force commands are then
calculated using these control gains. Considering
the philosophy used when the tests fail, two cases
were studied. In the first case, when the tests
failed, control was turned off and the control
forces were made zero. In the second case, when
the tests failed, updating of the control gains was
stopped and they were frozen at their values prior
to the -test failure. In' this case, the control
forces were not made zero and were computed using
the frozen control gains. From a detailed study of
both cases, it was found that the performance of
the adaptive control system in the first case was
superior to that of the second case.

APPLICATION TD A FLEXIBLE BEAM

The closed-loop adaptive control scheme of figure 1
has been tested in the digital simulation for the
12-foot, flexible free-free beam located at NASA
Langley Research Center. The simulation contains
the mathematical model of the beam apparatus in
modal form. For this study, the simulation
contains one rigid-body mode, the first three
flexible modes, nine deflection sensors, and four
actuators for control purposes. The initial
conditions on the modal displacements were set to
.05 in. and the modal velocities were set to zero.
The modal damping was also set to zero. A digital
sampling rate of 32 Hz was selected for the siaula-
tion, and the standard deviation for all measure-
ment noise was assumed to be .005 based on observed
noise In the available hardware. The lattice
filter estimates were based on a data window size 4

(reference 10). The testing procedures were all
carried out based on data window ( NT) of ten
samples. Initial parameters estimates were offset
from the mathematically correct values to test and
verify the rapid convergence of the identification
algorithm. An arbitrary delay of 2 seconds was
added between the time identification starts and
when the control would be applied to show the
behavior of the identification scheme.

At the start of the simulation, the lattice filter
determines the number of modes in the simulation
along with the mode shapes. Modal amplitude time
histories are then generated. Frora the lattice
filter mode shapes and modal amplitudes, natural
modes and modal amplitudes are obtained through a
linear transformation explained in the earlier
section. The application of the transformation is
delayed for 2 seconds because the online
transformation technique of reference 12 requires
2 seconds of data for a digital Fourier transform
data base to obtain the required transformation.
The natural modal amplitudes are input to the
equation-error parameter identifier which
identifies the ARMA parameters. The identification
results are then tested using the test procedures
described above. When the tests are passed, the
control Is turned on. Results of the simulations
are presented in figures 2-4.

Figure 2 shows the estimated modal displacement for
the first lattice filter mode. The order estimate
plot shows that the correct order of 4 is obtained
in .3 seconds. After the parameter identification,
when all the tests are passed, the control is
turned on at 5.5 seconds and the modes are damped.
The result of the adaptive control on the natural
modes is shown in figure 3. It is evident that
when the identification is validated by passing the
tests and control turned on, the vibration
suppression is achieved. When the modes are damped
out the lattice filter order estimate drops from 4
to 1 indicating the flexible modes are damped out.
Although the lattice filter order decreased, the
control design order was maintained at 4 throughout
the time interval when control was on. Allowing
the order to vary in real time and updating the
control order is a topic for further studies.

>rd«r dacoralnaclort
icctc* filter

y-^Parawcer Identification *nd ttatlng
/ Control r«te«t|n and application
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Figure 2.- Typical time history of an adaptive
control run using identification,
testing, and control design.
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Figure 3.- Time histories of three natural modes
with the lattice filter order indicated.

The main results of the identification and the test
procedures are summarized In figure 4. For the
first flexible node, the figure shows the time
histories of identified frequency parameter Aj
the fit error, a parameter that indicates algorithm

PARAMETER Al

MODE 3

b«low thU tttrohuld

** b«low th in threshold

INFORMATION

4 6
TIME. SEC.

10

Figure 4.- Time histories of the test variables for
one mode with the test thresholds and
logic sum of the tests Indicated.

convergence, and a parameter that indicates
Information content of the measurements. When all
the tests are passed, the corresponding pass
parameter (plotted as a binary logical varalble) is
set to one. The various thresholds for the tests
are also marked to Indicate when the tests pass.
These thresholds were determined based on detailed
sensitivity studies of the modal control scheme for
the beam (reference 13). An error was intentlonlly
put on the initial estimate of Aj so that the
convergence of the estimates to the correct value
could be observed. When the identifier is turned
on, the estimate converges to the true value of 1.8
from 3. The thresholds Indicate that the fit error
test is passed first and then the convergence
test. With enough signal in the measurements the
information test is always passed. When all the
tests are passed at 5.5 sec, the control is turned
on. When control is fully effective, that is when
the modes are damped out, the measurement data will
contain only the noise and the information test
will fall. This is immediately seen from the
history of Aj as it starts oscillating with large
amplitude indicating that the modal amplitude
signal contains mainly noise. Also, if the
parameter excursions are large, the convergence
tests will also fail Indicating a failure for the
binary variable pass. Once this happens, the
control gain updating is stopped, and control
forces were made zero.

PROBLEMS Df PRACTICAL IMPLEMENTATION

The adaptive control scheme of figure 1 is good
from the engineering point of view since only vali-
dated models are used for control system design. A
natural question arises as to the course of action
when validation tests fall. The operating environ-
ment for large flexible spacecraft is, fortunately,
benign and a system designed to suppress vibrations
can be shut down at the expense of having to
conduct relatively long term maneuvers. Another
saving feature of large flexible spacecraft is that
collocated rate feedback is stable and. relaxation
of the system to this mode of operation is also
possible, again, with corresponding degradation in
performance. Therefore, two options that can be
evoked are; one, to shut down the control system
and the other, to revert to a robust control system
design which insures stability.

At first glance one may wish to use the'ARMA model
generated by the lattice filter directly In the
design process rather than using IMSC with its
requirement of generating natural modes. Unfortu-
nately , the current online design capability for
controllers of vector ARMA processes is not ade-
quate. Having selected IMSC, one must obtain
natural modes from the vector ARMA model or from
the measurement time series. Here the same problem
arises, that is, the current capability of
eigenvalue/vector analysis for vector ARMA
processes is inadequate for online implementation.
Hence, a time series analysis using a DPT has been
selected. The accuracy of the process of
extracting natural modes is directly affected by
the number of data points processed. Hence, there
is a tradeoff to be made between the higher
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complexity In control computations versus the error
in the natural modes using the OFT approach. Also,
significant computational saving results if the
approximation of zero damping can be evoked. If
this approximation cannot be made, then one must
work with complex modes.

Since several approximations are required by the
system, a method of validating the models used in
the online controller design is essential.
Analytic methods of validating models based on
statistical error analysis (e.g. Cramer-Rao bounds)
are not adequate. Currently, tests on fit error,
algorithm convergence. Information content of the
measurements, and reasonability have been used.
The thresholds and design constants for these tests
can be determined only by exhaustive simulation
and/or hardware tests and is not an online
procedure.

CONCLOSIOM

This paper reviews the use of the least square
lattice filter in adaptive control systems.
Emphasis is placed on the integration of the
lattice filter Into a practical parameter adaptive
control system. One novel feature of the
recommended system is the Inclusion of a design
model validation scheme based on model fit error,
algorithm convergence, and signal information
content. An application is presented for adaptive
control of a flexible beam. These results indicate
that the lattice filter adaptive scheme is
practical for vibration control of large flexible
spacecraft. Difficulties in the practical
implementation of the lattice filter in adaptive
control are also discussed. These centered around
the computational burden of transforming lattice
filter modes into natural modes and the selection
of the thresholds for online validacion tests.
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SUMMARY

This paper investigates the application of the linear-quadratic-

Gaussian (LQG)/ loop transfer recovery (LTR) method to the problem of

synthesizing a fine-pointing control system for a large flexible space

antenna. The LQG/LTR approach of synthesizing a multivariable controller

in the frequency domain is selected because large flexible structures can

be modelled with elastic mode transfer functions as additive perturbations

on the rigid body model and the LQG/LTR approach uses this formulation

naturally for robust control design. The study is based on a finite

element model of the 122 m Hoop/Column antenna, which consists of three

rigid-body rotational modes and the first ten elastic modes. A robust

compensator design for achieving the required pointing performance in the

presence of modeling uncertainties is obtained using the LQG/LTR method.

For the Hoop/Column antenna, a satisfactory controller design meeting the

desired bandwith of .1 rad/sec and ensuring stability with unmodelled high

frequency modes was obtained using only a colocated pair of 3-axis

attitude sensors and torque actuators. This study also indicates that to

achieve the desired performance bandwidth of 0.1 rad/sec. and to ensure

stability against higher frequency elastic modes, the design model should

include the first three flexible modes together with the rigid body modes.

* Old Dominion University Research Foundation, Norfolk, VA

35



» INTRODUCTION

One of the planned activities of the NASA's Space Transportation

System is the placement in earth orbit of a variety of large space

antennas. Potential space missions will require antennas and structures

ranging from 30m to 20km in size. Applications include communications

(mobile), remote sensing (soil moisture, salinity, etc.), deep space

network (orbital relays), astronomy (x-ray, observatory, optical array,

radio telescope, very long baseline interferometry, etc.), energy and

space platforms. Specific missions have been pinpointed and future

requirements have been identified for large space antennas for

communications, earth sensing and radio astronomy [1]. Particular emphasis

is placed on mesh-deployable antennas in the 50-120 meter diameter

category. One such antenna is the Maypole (Hoop/Column) antenna, shown

schematically in Figure 1, basically consisting of a deployable central

mast attached to a deployable hoop by cables held in tension [2]. The

deployable mast consists of a number of telescoping sections, and the hoop

consists of 48 rigid segments. The reflective mesh, which is made of knit

gold-plated molybdenum wire, is attached to the hoop by graphite fibers.

The mesh is shaped using a network of stringers and ties to form the radio

frequency (RF) reflective surface. In order to achieve required RF

performance, the antenna must be controlled to specified precision in

attitude and shape. For example, for missions such as land mobile

satellite system (LMSS), which is a communication concept for providing

mobile telephone service to users in the continental United States, it is

necessary to achieve a pointing accuracy of 0.03 degree RMS (root mean

square) and a surface accuracy of 6 mm RMS. It is also necessary to
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have stringent control on the motion of the feed (located near one end of

the mast) relative to the mesh. Because of its large size and relatively

light weight, the antenna is highly flexible, with a large number of

significant elastic modes. Its dynamics can be represented by partial

differential equations, or by very large systems of ordinary differential

equations. The resulting equations have many resonant frequencies, some

of which may be very low, and possibly closely spaced. The natural

damping is usually very small. For these reasons, control of large space

structures is a challenging task [3]. Since the system is inherently of

high order, a practical controller has to be based on a reduced-order

"design" model. Furthermore, the parameters (i.e., frequencies, mode

shapes, and damping ratios) of the* system are known imprecisely. This

introduces additional modeling errors. Typically, the modeling errors for

finite element models increase substantially with increasing modal

frequency.

Reduced-order control synthesis for the Hoop/Column antenna using the

standard LQG theory was investigated in [4,5]. The standard LQG procedure

yielded satisfactory control, i.e., rigid-body bandwidth of up to 0.25

rad/sec, satisfactory time constants for the elastic modes, and acceptable

root mean square (RMS) pointing errors in the presence of sensor noise.

It should be noted that the LQG approach in reference 4 used a large

number of actuators and sensors (four 3-axis torque actuators and four

3-axis attitude and rate sensors). It was found in [4] that the first

three flexible modes had to be included in the "design" model (in addition
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to the three rigid modes) to obtain satisfactory performance. The main

problem with the LQG method was that a large number of weighting

parameters had to be simultaneously adjusted to obtain a good design. In

addition, the stability robustness property with respect to inaccuracies

in the modal parameters could not be properly evaluated because it was

difficult to effectively characterize the bounds on modeling errors in a

time-domain setting. In order to reduce these difficulties, normally one

checks the control design for robustness after the control design is

completed using LQG or any other method. Such an approach in the

frequency domain using singular value measures was presented in [6] for a

large space structure using different control design methods like LQG,

integral feedback, frequency shaped' LQG, etc. Unlike the above methods,

the LQG/LTR approach provides a means of including the robustness-to-

uncertainities, in the control design process itself. Since it is in the

frequency domain, it extends the basic frequency domain design guidelines

like bandwith, cross-over frequency, etc. from a scalar system to a

multivariable system.

The newly emerging robust control synthesis methodology which uses

frequency domain matrix norm bounds (i.e., singular values) has received

considerable attention in the recent literature [7-9]. The basic

framework for frequency domain synthesis using the LQG/LTR methodology was

developed in [7-9]. It has been applied to diverse systems such as power

systems [10] and aircraft engine control [11]. The LQG/LTR design

philosophy uses a low-frequency "design model" of the plant and a
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high-frequency characterization of the modeling errors. This method,

which characterizes unstructured uncertainty with singular value bounds,

appears to be particularly well suited for the control of large flexible

spacecraft due to the considerable uncertainty that Inherently exists in

the mathematical models.

The purpose of this paper is to investigate the use of LQG/LTR

multivariable frequency domain methodology in the design of an attitude

control system for the Hoop/Column antenna. A low order compensator is

obtained by treating a sequence of finite element design models ordered

with increasing modal frequency and choosing the final design model as the

first one which allows the performance/robustness objectives to be met.

In this sequence of design models, the first one consists of the rigid

body modes only. Subsequent design models are obtained by the successive

addition of flexible modes. The designs use 3-axis torque actuators,

colocated attitude sensors, and attitude feedback.

The organization of this paper is as follows: The mathematical model

of the system is described in section 2. The control objective is briefly

discussed in section 3, followed by a brief description of the LQG/LTR

technique in section A. The reduced order (low frequency) design model

and the high frequency model uncertainty barrier are also discussed in

this section. Section 5 presents the results of synthesizing the

controller based on the above procedure using only attitude feedback.

Some of the problems and limitations observed are also highlighted. Based

on the study results, the conclusions are summarized in section 6.
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2. MATHEMATICAL MODEL

As a consequence of its large size and light weight , the Hoop/Column

antenna is a highly flexible system having a large number of significant

structural modes. A finite element model of the antenna [Ref. 2] is used

in this paper. The mathematical model considered consists of rotationa-1

rigid-body dynamics (about the three axes) and the elastic motion. We

assume that the control will be accomplished by using n«p three-axis

torque actuators. The linearized equations of motion are:

lo - I T . (1)
S J-l j

• T *
q + Dq + A q = * u (2)

where Is is the 3x3 inertia matrix, T^ is the 3-axls torque applied

by the jth actuator, cts
 =(<frs» 9S» ^s) denotes the rigid-body

attitude, q is the nq x 1 modal amplitude vector (for n structural

modes), D = 2 diag(p}(i>}, P2^2» •••» Pna)n̂  *s t*ie inherent

damping matrix, (where p^ is the damping ratio for the ith mode). * is
m m .

the m x na "mode-slope" matrix (where m - 3n̂ ) , u = (Tj, T£, ...,

T NT 2Tn_) is the m x 1 vector of actuator torques , and A - diag( o>i >

2 2
u>2» •••» (^ ) where eo^ is the frequency of the ith elastic mode.

The rigid-body parameters and the first ten elastic frequencies are given

in Table 1. Each value of p is assumed to be 0.01 for 1=1,2, ...,n .
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Normally, the sensors used include attitude and rate sensors. A

3-axis attitude ya at a sensor (e.g. a star tracker) output is given

by:

y = a + i | > q + w ( 3 )a s

where 1(1 is the 3 x ru mode-slope matrix at the sensor location, and w

is the sensor noise. If an attitude rate sensor (e.g. a rate gyro) is

used, the sensor output yr is given by an equation similar to (3),

except that as and q are replaced by as and q, respectively. Torque

actuators and attitude sensors are assumed to be located near the top of

the mast at the antenna feed (Fig. 1.)

T T *
Defining x = (<xs, as, qT, qT)T an n x 1 vector, the state

space model can be written in the form:

x = Ay x + Bp u (4)

y = Cp x + w (5)

The sensor noise w is not used in the design process in this paper;

however, it will have to be included when computing the RMS pointing

errors. Ignoring the noise, the transfer matrix between the input (3-axis

torque) and the output (3-axis attitude) is given by:

G(s) - G^s) + G2(s) • (6)
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where

Gl(s) = 7*

n -

G2(s) = I (̂ /̂(s2 + 2pio»is > o>*) (8)

and $j represent the mode-slope matrices at the sensor and

actuator locations corresponding to the ith mode).

3. DESIGN OBJECTIVES

The basic design objectives for the control systems are: (1) To

obtain sufficiently high bandwidth ' (i.e. closed loop frequencies

corresponding to the rigid body modes) and satisfactory closed loop

damping ratios for the rigid body and structural modes; and (2) To obtain

satisfactory RMS pointing errors, feed motion errors and surface errors.

The first design objective arises from the need to obtain sufficiently

fast error delay when a step disturbance(such as sudden thermal distortion

caused by entering or leaving Earth's shadow) occurs. The second design

objective arises from the RF performance requirements. These two

objectives may not necessarily be compatible, and may even be

conflicting. For example, the use of increased feedback gains for

obtaining higher bandwith and damping ratios will, in general, result in

higher r.m.s errors (because of the amplified effect of sensor noise)

beyond a certain point. Therefore, it is necessary to carefully consider

the trade-offs between the speed of response and lower RMS error. In this

study, the main control system specification is that a minimum bandwith of
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0.1 rad/sec for the closed loop system is to be ensured. The upper limit

on the low frequency gain is not specified, but it is desired that it

should be as high as possible. Also, for this study no specification on

RMS errors was made and this aspect along with measurement noise will be

considered in the future.

4. THE DESIGN PROCEDURE

The LQG/LTR method has been described in detail in (7-9]. Here, the

main steps are summarized first and then each step is discussed in detail.

(1) Define a "design" model of the nominal plant which is an acceptable

low frequency representation. Define the high frequency uncertainty

(robustness) barrier, and the low frequency performance barrier.

(2) Design a full state feedback compensator based on the steady state

Kalman-Bucy filter (KBF). This assumes that the loop is broken at

the output. Adjust the weighting matrices in the KBF design until

its frequency response meets the robustness specifications at high

frequencies and bandwidth specification at low frequencies.

(3) Design a LQ regulator to asymptotically "recover" the frequency

response obtained in step 2.

(4) Verify stability, robustness, and performance for the entire

closed-loop system.

The first step, which consists of the definition of the plant and the

uncertainty (robustness) barrier, is often .the most important one. The

basic problem in controlling a flexible structure is the presence of a
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large number of lightly damped structural modes. Practical limitations

necessitate the use of reduced-order controllers. Therefore, the

uncontrolled modes, as well as the error in the knowledge of the

controlled modes, represent uncertainty. Since the number of structural

modes is usually large and finite element modeling accuracy typically

decreases with increasing model frequency, the design model should consist

of the rigid-body plus the first few elastic modes. The remaining

structural modes then (partly) constitute the plant uncertainty. In order

to obtain an acceptable low-frequency representation, the design model

must include at least the three rigid body modes. The uncertainty

barrier is a measure of the plant uncertainty at high frequencies. The

plant uncertainty can be represented as either multiplicative or additive

uncertainty (Fig. 2). Additive uncertainties are of the form

G' = G + AG

while multiplicative uncertainties are of the form

G' -

Multiplicative uncertainty form is the preferred form in the literature on

robustness studies as the compensated transfer function has the same

uncertainty representation as the raw model. However, since flexible

structure models exhibit naturally the additive uncertainty form of the

transfer function matrix, this will be used in the following studies. The

LQG/LTR approach requires the characterization of the uncertainty in terms
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of a frequency-dependent upper bound. Frequency domain sufficient

conditions are used to test the robustness in the presence of

uncertainties within that bound.

For the case of multiplicative uncertainty Lp(s) of figure 2a, the

closed-loop system is stable if

0[Lp(Jeo)-l] < £ [I + (Gp(ju)Gc(ju))"
1] (9)

where Gp(s) and GC(S) are the design model (plant) and compensator

transfer matrices, and a and o_ denote the largest and the smallest

singular values of the argument matrix, respectively. At high

frequencies, assuming n[Lp(jo))]ll » 1 and I [Gp(jo))Gc(joj) ] | « 1, (9)

approximately yields

a (G G ) < - - - (10)p

The "uncertainty (or robustness) barrier" is an upper bound lu) on

The system is stable in the presence of such unstructured

uncertainties if a(GpGc] < 1^ (u>) at high frequencies.

When the additive uncertainty formulation (Fig. 2b) is used, a

sufficient condition for stability robustness is given by [12]

0 (I + G G )
(AG) (11)
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At high frequencies, assuming IGpGci « 1, (11) (approximately) yields

a (Gc) < l/o UG) •" (12)

That is, the compensator must roll off sufficiently rapidly at high

frequencies. The main objective of the LQG/LTR approach is to first

design a full state compensator (based on KBF) which has the behavior of

the desired loop transfer matrix (i.e., the loop gain GpGc).

Therefore, (from step 2) any loop shaping should Involve the product

GOGC rather than GC alone as in (11) and (12). Assuming that G

is a square matrix,

G - G"1 (G G ) " (13)c p p c

a (G ) < a (G-1) a (G G )c p p c •

or

(Gc) < a (G'1) a (GpGc) (14)

Using (12) and (11), the following sufficient condition for stability

robustness is obtained:

£ (I + G G ) £ (G )
E-5 2- > a (AG) (15)

c (GpGc)

The second step in the design procedure is to design a full state

feedback compensator having desirable singular value properties. The
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performance of the closed-loop system depends on the low frequency gain

and the crossover frequency of the loop transfer matrix GpGc; that is,

on the behavior of £ [GpGc]. Larger low frequency gain and crossover

frequency indicates better tracking performance. Thus, £|GpGc] should

lie above the performance specification as shown in Fig. 3a. The other

requirement is the stability robustness in the presence of model

uncertainties. If the multiplicative uncertainty formulation is used,

according to (10), the a [GpGc] plot should pass under the robustness

barrier a (Lp) at high frequencies (Fig. 3a). On the other hand, if

the additive formulation is used, the robustness condition (15) should be

satisfied (Fig. 3b). The advantage of an LQG-based full state design is

that it has excellent classical properties, and its frequency response can

be shaped in the desired manner by varying the weighting matrices [8].

As discussed in [7], this design can be accomplished using the LQR

Riccati equation if the loop is broken at the plant input, or the KBF

Riccati equation if it is broken at the point where the residual signal

enters the KBF. Herein we select the latter because the objective is to

control the attitude output. This selection is also consistent with

[9-11]. The KBF equations are:

AE + EAT + LLT - - EC CTE = 0 (16)

H = - ZCT (17)
V
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where L and p are the design parameters, L being an y x m matrix, and y a

scalar. The matrix H is the KBF gain and £ is the corresponding Rlccati

matrix. The KBF loop transfer matrix is given by:

Gv_(s) = C (si - A)̂ H (18)fj! '

Generally, the frequency response oCG^jrCjuO) would shift higher as y

decreases, and the crossover frequency can be adjusted by changing L [6].

Having obtained satisfactory singular value behavior of KBF, the next

step is to design a LQR to "recover" the desired frequency response. This

is accomplished by solving the algebraic Rlccati equation

ATP + PAT- PBBTP + q CTC - 0 - (19)

where P is the Riccati matrix and q is a positive scalar. The control

gain matrix G is given by

-1 TG - R B P

It has been proven in references 7 and 8 that the loop transfer matrix

GpGj. for the overall system (consisting of the plant, the KBF and the

LQR) tends to Gĵ p(s) as q-n», provided that the open-loop plant has no

transmission zeros in the right half plane. The compensator Gc(s) after

recovery is given by: -

G (s) = G (si - A + BG + "
c
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Since the compensation obtained has no guaranteed robustness

properties, the last step will consist of testing the eigenvalues of the

entire closed-loop system to ensure stability and robustness. If

instability is discovered, it will be necessary to return to step 2 and

redesign the KBF for lower bandwidth and the LQR for robustness recovery.

If this does not produce satisfactory results, it would then be necessary

to return to step 1 and include more elastic modes in the design model.

Application of the foregoing LQG/L.TR procedure for the Hoop/Column antenna

is described in the following section.

5. CONTROLLER DESIGN BY LQG/LTR METHOD USING ATTITUDE FEEDBACK

The foregoing procedure has been applied to the Hoop/Column antenna

model. The computations of singular values of various matrices (e.g.

loop transfer, return difference, inverse return difference matrices) were

carried out using a recently developed multivarable frequency domain

analysis software package (FREQ), and the LQG designs were carried out

using ORACLS [13]. The nominal plant includes three rotational rigid-body

modes and the first ten elastic modes. We assume three torque actuators;

hence, the order of B matrix is 26x3. Assuming three attitude sensors

(one for each axis) at the same location as the actuators, C is a 3 x 26

matrix. The plant, input, and output matrices were obtained from a finite

element analysis of the antenna.
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Before starting the controller design, the maximum and minimum

singular values (o and o) of the full, nominal, open-loop plant transfer

matrix were obtained and are shown in figure 4. The g plot clearly shows

the peaks at the elastic mode frequencies (i.e. the poles), the most

prominent being the first mode near .75 rad/sec. The dips in a_ indicate

the presence of transmission zeros for the multivariable plant at those

frequencies. The controller synthesis studies are performed using the

design model consisting of:

a) rigid-body model (n = 6, nq = 0)

b) rigid-body and the first flexible mode (n = 8, nq = 1)

c) rigid-body and the first three flexible modes (n = 12, n_ =3)

The measurements available are the three attitude angles at the feed

location. One 3-axis torque actuator is used at the same location. The

compensator is designed based on these sensors and actuators.

5.1 Rigid Body Model;

In this section the controller design is carried out based only on

the rigid body design model. The largest and the smallest singular values

of the rigid-body transfer matrix (n = 6) are of the form 1/s. The

corresponding additive uncertainty AG, which consists of the (20th order)

flexible dynamics, is plotted in figure 5." Figure 5 indicates the

presence of poles at the undamped flexible mode frequencies of 0.75

rad/sec, 1.35 rad/sec, etc. Also, the pole of the first mode frequency of

0.75 rad/sec produces the highest peak since it is most lightly damped.
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(The importance of this .fact will be seen later when the stability

condition is violated at this point).

For this sixth order design model, a compensator design was carried

out using the Kalman filter design methodology to achieve satisfactory

performance (i.e., large gain and bandwidth) at low frequencies, and

robustness at high frequencies. This design was carried out using the

Kalman filter Riccati equation (16). The Kalman-Bucy filter (KBF)

transfer matrix GKF(s) is given in equation (18). Appropriate

loop-shaping can be accomplished by proper choice of the weights u and L

in equation (16). Since the controller design model is of the form

o
1/s , one can analytically evaluate the singular values of I+G%f

using equations (16) and (17). Assuming y = 1 and L = (Lj,!̂ )̂  the

left hand side of (15) can be solved. For Lj = 0 and L2 = k2 I, it

can be shown that equation (15) is satisfied by:

10"7

This implies that the Kalman filter gain computed using (17) will be very

low. Figure 5 shows plots for condition (15) with two L matrices, with

Lj = 0 and k2 = 10~6 and 10~7. The right hand side of (15) is

also plotted in figure 5. It is evident that condition (15) is satisfied

for k7=10~7. As ko *s decreased further, the curve shifts upward

thus increasing the margin.
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The next step consists of LQ regulator design. Having obtained an

acceptable compensator through Kalman-Bucy filter equations, the LQ

regulator is realized via the loop transfer recovery method [8]. Figure 6

presents the singular value plots of the complete loop transfer matrix

G_Gc(s) (which consists of the plant, the KBF and the LQR) for

different weighting parameter q (Eq. 19). The q selected was q=10^ and

10. It is easy to check condition (11) in this case. As q is

increased, the plots approach those of the compensator obtained from the

Kalman filter design approach. The LQ design for q=10" was considered

to be satisfactory.

The standard LQG/LTR procedure requires the definition of the

"desired" loop transfer characteristics (see step two in section three.)

That is, £.(GVF) must satisfy the low-frequency performance

specifications, and a (Gĵ p) must satisfy the high-frequency robustness

specifications. Thus, in the presence of additive uncertainty AG, the

procedure states that the robustness condition

cr (I + G..J a (G )
~ ^F " P > 5 (AG)

a(GKF)

should be satisfied. However, in the case described above, it was found

that the above condition makes the "desired" design (GKF) extremely

conservative. From figure 6, it is seen that the closed loop bandwith is

quite low and nowhere near the desired value of .1 rad/sec. Therefore,
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recovering this conservative loop gain yields a compensator with poor

performance. This fact led to a modification of the LQG/LTR procedure.

In particular, the above robustness test on Ggp is omitted in the

modified procedure. Instead, the recovery is carried out first, and then

the (less conservative) stability test (11) is applied directly for the

compensator Gc» The Kalman filter transfer matrix Ĝ j. is based only

on the desired performance and not on satisfying the stability test of

equation (15).

With the revised test on Gc> the following choices on L and y

matrices were made.

io-2i
; w=i

Using the recovery procedure, the compensator is obtained for this

case wth q = 10 • The resulting stability test (Eq. 11) is shown in

figure 7. It is seen that the stability margin is lowest at the first

mode frequency (0.75 rad/sec). Any increase in the gain (obtained by

q > 10 ) resulted in violation of stability condition at that point.

The overall loop bandwidth is obtained from the singular values of the

loop transfer function GpGc shown in figure 8. It is seen that the

bandwidth (i.e., the frequency at which £(GpGc) = 1) is far short of

the required 0.1 rad/sec. In order to increase the bandwidth, the gain
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has to be increased by increasing q. However, this results in the

violation of the stability condition (11). Thus it is evident that, with

a rigid-body design model, it is not possible to meet the performance

specifications.

5.2 1 Flexible Mode Design Model;

To overcome the above problems, the next alternative that was

considered was whether the inclusion of the first flexible mode (0.75

rad/sec) in the design model would improve the performance. The inclusion

of the first flexible mode, which is predominantly a torsion mode, results

in a design model of order 8. The singular values of A6 shown in figure 9

are an order of magnitude lower" than those in figure 5 (wherein AG

consisted of all the flexible modes). The first peak of cr(AG) occurs at

1.35 rad/sec, which is the frequency of the second mode. This is the

critical point in the stability test (Eq. 11). After a number of trials,

the following choice of L and y was made to obtain the desired performance

GKF*

10"1!. ; u - 1

The recovery is obtained for q = 103 and the stability test is shown in

figure 9. Fig. 9 indicates the critical point to be at about 0.28
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•
rad/sec. There Is a good margin at the peaks of AG due to upward sloping

of the upper curve. The resulting loop transfer function (GpGc) plots

are shown in figure 10. The plots indicate that the required 0.1 rad/sec

bandwidth is not obtained (although it is much higher than the rigid-model

case). Any increase in the gain (for q > 10̂ ) was found to result in

the violation of the stability condition (11). Figure 10 indicates the

presence of an open-loop invariant zero near 0.082 rad/sec, which was also

confirmed by independent computations. This zero is almost on the

imaginary axis (i.e., the transfer matrix is close to being nonminimum

phase). Therefore, (as would be expected) the recovery procedure is not

very effective for making GpGc approximate Gĵ .

.5.3 3 Flexible Mode Model;

In order to improve the performance further, the next step was to

include the first three flexible modes in the design model. It is logical

to do this because they represent the first modes about each axis, i.e.,

the first torsion mode, and the first bending modes in the XZ and YZ

planes. Thus, the order of the design model was 12. The singular value

plots for G_ and AG are shown in figures 11 and 12, respectively. It is

seen from figure 11 that Gp has zeros near 0.082 and 0.22 rad/sec, and

poles near 0.75, 1.35, and 1.7 rad/sec. It is seen from the AG plot

(Fig. 12) that a is considerably lower than that in figures 7 and 9.

After numerous trials, the following choice of the L matrix and the scalar

y was made for a suitable
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ID."1!.

-4 I
10 *I2 [ 0

'>°-s~;°

; y - 1

The recovery was accomplished with q = 10 . The stability test is

shown in figure 12. It can be seen that condition (11) is satisfied with

a wide margin. Also, at the peak for AG (at 8 rad/sec) the upper curve

slopes upward, indicating good tolerance of high-frequency uncertainty.

The limit for increasing the gain (indicated by the lowest point in the

upper curve in figure (12) occurs at about 0.3 rad/sec. The resulting

compensator Gc is shown in figure 13. The gain of GC is much higher

than that obtained in the previous cases. Generally, the LQG/LTR

technique attempts to choose GC in such a way that the product G GC

is replaced by Gĵ j- (i.e. GC is attempting to invert Gp in the

frequency range of interest). The 3-mode design plant shown in figure 11

has elastic mode eigenvalues at -.0075 ± j.75, -.0135 ± jl.35, and -.0170

± jl.70. Figure 13 shows that Gc has zeros with frequencies near these

locations. The design plant also has transmission zeros at -.9 x 10 ±

j.082, -.37 x 10~3 ± j.22, and -.29 x 10~3 ± j.22. Ideally, Gc

should have poles with frequencies near .082 and .22. However, the design
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plant zeros are too near the jbi-axis and tend to numerically behave as

nonminimum phase. Some attenuation is obtained by the compensator pole

near .4 rad/sec. The plots for the loop transfer matrix GpGc are

given in figure 14. It is seen that a bandwidth of 0.1 rad/sec. is

obtained except for the presence of the invariant zero near 0.082

rad/sec. which causes some deterioration of performance. At frequencies

past .4 rad/sec., GpGc behaves like Ĝ -p and eventually rolls off at

60db/decade. Also, a_ and a are closely spaced, indicating good system

behavior. Thus it is seen that the inclusion of the first three modes in

the design model yields a robust compensator which also meets the

bandwidth specifications.

The final step is to check -the stability of the complete nominal

system when the compensator Gc(s) designed above is used. The overall

closed-loop system is:

X

•
A

X

_
\ -BFG

HC,,, A-BG-HC
F

X

A

X

where the subscript F is used to denote the full-order nominal plant, and

x denotes the state estimate for the design model. The eigenvalues of the

overall closed-loop system using the 3-mode controller are given in Table

II. It can be seen from Table II that the overall closed-loop system is

stable.
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6. CONCLUDING REMARKS

The LQG/LTR multivariable frequency domain technique was employed in.

the design of an attitude control system for a large flexible space

antenna. The LQG/LTR method was noted to be especially attractive for

overcoming spillover effects common to large space structures control

problem modelled from finite element data. The design objective of

avoiding excitation of higher order modes while satisfying performance

criteria was met by including these modes in the robustness uncertainity

barrier.

Design was based on a reduced order model chosen as the rigid body

dynamics plus the fewest number of low frequency vibrational modes

necessary to meet a desired closed loop bandwith. Inclusion of the first

three vibrational modes (corresponding to the three axes) was found to be

necssary to meet a 0.1 rad/sec bandwith. For wider bandwidths, design

models width greater than three modes may be needed. A satisfactory

control design was obtained using only a colocated single pair of 3-axis

attitude sensor and torque actuator for the Hoop/Column antenna problem.

Performance degradation was observed due to the presence of invariant

zeros within the design bandwith. These zeros were unavoidable given the

prescribed sensor/actuator locations and emphasized the fact that

consideration should be given to control aspects when building large space

structures.

A modification of the standard LQG/LTR procedure was introduced in

which the robustness test was performed with the full LQG compensator
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instead of the intermediate Kalman filter design. This approach was found

to produce higher gain compensators and helped overcome the basic

conservativeness shortcoming of the LQG/LTR approach.
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Table I. Antenna Parameters

Rigid-body parameters

Mass=4544.3 Kg.

2Inertia about axes through center of mass (Kg-m )

I = 5.724 x 106 I 5.747 x 106xx yy

I - 4.383 x 106zz

Structural Mode Frequencies (rad/sec)

0.75, 1.35, 1.7, 3.18, 4.53, 5.59, 5.78, 6.84, 7.4, 8.78
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28Table II. Eigenvalues of the Full Closed-Loop system

Real part Imaginary Part

-6.

-8.

-7.

-7,

-7.

-7.

-2.

-2.

-2.

-2.

-2.

-2.

-7.

-7.

-1.

-1.

-3.

-3.

-1.

-1.

-1.

-1.

-4.

-4.

-3.

-3.

-4.

-4.

-5.

-5.

-5.

-5.

-6.

-6.
•

-6.

-6.

-8.

-8.
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535
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557
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237
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330
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379

466

466
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346

076

076
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016
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028

181

181
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422

579

579

731

731
.
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685
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390
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326
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