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MSFC/ED24 served as Contracting Officer's Technical Representative for the study.
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ABSTRACT

This report reviews an investigation to develop, implement, and evaluate signal

analysis techniques for the detection and classification of incipient mechanical

failures in turbomachinery. A brief description of the Space Shuttle Main Engine

(SSME) test/measurement program is presented. Signal analysis techniques available

to describe dynamic measurement characteristics are reviewed. Time domain and

spectral methods are described, and statistical classification in terms of moments

is discussed. Several of these waveform analysis techniques have been implemented

on a computer and applied to dynamic signals. A laboratory evaluation of the

methods with respect to signal detection capability is described. An unique

coherence function (the hyper-coherence) was developed through the course of this

investigation, which appears promising as a diagnostic tool. This technique and

several other non-linear methods of signal analysis are presented and illustrated

by application. Software for application of these techniques has been installed on

the signal processing system at the NASA/MSFC Systems Dynamics Laboratory.
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SECTION I

INTRODUCTION AND SUMMARY

Material and equipment failures of all types — structural, mechanical, hydraulic,

pneumatic, electrical, and electronic ~ are the result of two basic causes:

structural degradation and chemical contamination. The life cycle of a typical

component has been noted to exhibit a highly variable burn-in period, followed by a

stable period of growth, and a rapid change in behavior as failure is approached.

This behavior pattern is especially well demonstrated by the high cycle fatigue of

metals. If failures can be detected incipiently (that is, at an early stage of

development) appropriate corrective action can be taken to eliminate the cause or

minimize undesired effects before total or catastrophic failure occurs.

Under NASA contract NAS8-34961, Wyle has investigated incipient failure detection

techniques applicable to high performance turbomachinery, and the Space Shuttle

main engines (SSME) in particular. This report documents the results of the study.

The measurable "output" from a dynamic system includes much subtle information

concerning the physical state of the system in terms of unique or characteristic

signatures. Methods derived primarily from the statistical communication theory

have been successfully applied to problems of crack growth, fatigue, etc. Acoustic

emission techniques are now routinely applied to the nondestructive testing of

pipelines and pressure vessels. The analysis of machinery life prediction based

on dynamic detection indicators has received significant interest in recent years,

mainly due to the potential cost savings afforded by scheduled maintenance, to

avoid equipment failure and associated plant downtime.

Although little can be done to anticipate mechanical failures which exhibit very

short periods of growth, most failures are preceded by growing tolerances, imbal-

ance, bearing element wear, and the like, which may manifest themselves through

subtle modifications in the waveform observed by dynamic measurements. Incipient

failure detection is based on observing and recognizing measurable phenomena that

occur as a result of nominal system operation and those associated with component

degradation. The techniques are analytical, but their application is necessarily

empirical, based on correlation between derived signature characteristics and

observed mechanical condition.

1-1



Turbomachinery malfunction may result from a number of distinct failure modes such

as turbine blade wear or bearing element fatigue. Each of these mechanisms may be

expected to influence the waveform or spectral content measured by a transducer in

a somewhat different fashion. Thus, it is clear that a single best signal analysis

technique or indicator is not to be expected for system condition monitoring. A

series of tests, each designed to detect a given failure mode, is therefore desira-

ble.

The Space Shuttle main engines have undergone and are presently undergoing extensive

hot firing tests at which time vibration, dynamic pressure and strain measurements

at critical component locations are acquired. Thus, a wealth of dynamic data is

available from these components under widely varying operational conditions.

Section II of this report provides a brief overview of SSME operational character-

istics, a description of the SSME test program and measurements acquired. A

considerable number of methods were evaluated for application to the SSME, and

several have been reduced to software and applied to laboratory signals and "real"

measurements obtained from the SSME turbopumps during hot firing tests. An interim

report, describing these laboratory evaluations is provided in the Appendix. A

survey of techniques applied and some representative results are presented in

Section III.

The harmonic content in measurements from rotating machinery may indicate equipment

operational condition and component degradation (imbalance, rubbing, etc.).

Measurements on high-performance rocket engine turbomachinery suffer from severe

noise contamination from numerous extraneous sources, which impedes rotating element

diagnostic evaluation. It is thus difficult to determine whether an apparent high-

level harmonic contribution is indeed related to the fundamental rotational fre-

quency, or possibly due to an independent source. In an effort to relate synchron-

ous speed characteristics with an arbitrary harmonic component, an unique coherence

spectrum was devised in the course of this study. The hyper-coherence function

defines the nonlinear correlation between waves at a reference frequency and its

harmonics. This novel technique, and its application to SSME diagnostic evaluation,

is discussed in Section IV. (A new technology report on this topic, recently filed

with NASA, is included in the Appendix for reference.)
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In addition, several advanced techniques have been recently identified and reduced

to software, which appear highly promising as incipient failure detection indi-

cators. These approaches are also described in Section IV, which includes analyti-

cal examples and application to SSME measurements. The computer routines for

application of these techniques have been adapted to MSFC computers and are present-

ly operational on the MASSCOMP processor in the Systems Dynamics Laboratory.
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SECTION II

SSME TESTING AND DYNAMIC MEASUREMENTS

2.1 Background

The Space Shuttle Main Engines (SSME) are required to operate under extreme tempera-

tures with high fluid pressures and rotational pump speeds. Developmental work is

presently in progress to uprate SSME performance, including engine certification at

FPL (109%). The SSME and components have been subjected to extensive hot firing

tests. Acceleration, dynamic pressure and strain data have been acquired during

these tests and additionally from Space Shuttle Vehicle (SSV) flights. Data

reduction and analysis techniques, to aid in the identification and resolution of

sources of malfunction, were developed and applied by Wyle Laboratories under

NASA Contract NAS8-34961.

This section presents an overview of the Space Shuttle Vehicle (SSV) system and

SSME in particular. The SSME test program is briefly described, and dynamic

measurement locations illustrated. Some methods applied by Wyle to the assessment

of these dynamic measurements are discussed in subsequent sections.

2.2 The Space Shuttle Vehicle System

The SSV is composed of the Orbiter, an External Tank (ET), which contains the ascent

propellant to be used by the Orbiter's three main engines, and two Solid Rocket

Boosters (SRB). The Orbiter and SRBs are reusable; the ET is expended on each

launch.

A Space Shuttle mission begins with installation of the mission payload into the

Orbiter cargo bay. The SRBs and the SSMEs fire together at liftoff. The two SRBs

are jettisoned after burnout — about 45 kilometers (28 miles) high — and recovered

for reuse by means of a parachute recovery system. The SSMEs continue to burn until

the Orbiter approaches orbital velocity, at which time the engines are shut down and

the ET jettisoned. During its return through the atmosphere, the tank is destroyed.

The orbital maneuvering system is used to attain the desired orbit and to make any

subsequent maneuvers that may be needed during a mission. After orbital operations

are completed, normally about seven days, deorbiting maneuvers are initiated.

The Orbiter reenters the Earth's atmosphere at a high angle of attack. It then
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levels into horizontal flight at low altitude for an unpowered aircraft-type
approach, landing at a speed of about 335 kilometers per hour (208 miles per hour).

2.3 The Space Shuttle Main Engines

The Orbiter vehicle main propulsion system consists of three SSMEs. The SSMEs are

reusable, high-performance, liquid-propellant rocket engines with variable thrust.

They are ignited on the ground at launch and operate in parallel, with approximately

500 seconds total firing duration. Each of the rocket engines operates at a mixture

ratio (liquid oxygen/liquid hydrogen) of 6:1 and a chamber pressure of approximately

3000 psia to produce a sea-level thrust of 375,000 pounds and a vacuum thrust of

470,000 pounds. The engines are presently throttleable over a thrust range of 60 to

109 percent of the design thrust level. This provides a higher thrust level during

liftoff and the initial ascent phase, and allows Orbiter acceleration to be limited

to 3 g's during the final ascent phase. The engines are gimbaled (±10.5 degrees for

pitch and ±8.5 degrees yaw) to provide pitch, yaw, and roll control during the

Orbiter boost phase.

Significant to meeting performance requirements is the use of a staged combustion

power cycle coupled with high combustion chamber pressures. In the SSME-staged

combustion cycle, the propellants are partially burned at high pressure and rela-

tively low temperature in the preburners, then completely combusted at high tempera-

ture and pressure in the main chamber before expanding through the high-area-ratio

nozzle. Hydrogen fuel is used to cool all combustion devices in contact with high-

temperature combustion products. An electronic engine controller automatically

performs checkout, start, mainstage, and engine shutdown functions. Major compo-

nents of the SSME are illustrated in Figure 2-1. A more detailed view of the SSME
power head is shown .in Figure 2-2. This figure provides an indication of the

complexity of the SSME turbomachinery.
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Figure 2-1. Space Shuttle Main Engine

2.4 SSME Development and Acceptance Testing

To validate system performance and ensure equipment reliability, the SSME and

components have been and are presently undergoing extensive development and qualifi-

cation tests. Testing of the engine and components is conducted at several NASA and

contractor locations. Full scale engine test firings for development and flight

acceptance are performed on two single-engine test stands at the National Space

Technology Laboratories (NSTL), Bay St. Louis, Mississippi, and at one stand

operated by Rockwell International near Santa Susana, California, with plans to

include a development test stand at MSFC. In addition, main propulsion testing

(MPT) is performed at NSTL on a stand designed to accommodate the Shuttle main

propulsion system elements—the three-engine cluster, the ET, and the Orbiter

systems.
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Testing is being performed on a continuing basis. The length of a given test is

dependent on specific test objectives and may run from several seconds to over 800

seconds. Tests are generally designed to satisfy multiple specific objectives,
which fall into two broad categories; acceptance/certification firing of flight
hardware and development testing directed towards design verification, performance
and reliability improvement. Test operations are controlled by a computer called

the Command and Data Simulator (CADS) which communicates with the engine, displays

vital measurements for on-line observation/control and initiates pre- and post-test

procedures.

Approximately 250 measurements are recorded on a given test including wide band

vibration, dynamic pressure and strain at critical engine locations. Some of these

measurements are utilized on-line as emergency cut-off indicators and all are

recorded on magnetic tape for subsequent analysis and evaluation. Limited SSME

vibration measurements are recorded on magnetic tape during SSV flights for evalua-

tion with orbiter return. Typical dynamic measurements obtained during SSME

operation are illustrated in Figure 2-3.

Acceleration measurements are obtained at fuel and oxidizer turbopump locations

during all test firings, providing an extensive vibration data base representing

various turbopump builds under widely differing operating conditions. - Additional

measurements are obtained on a test-specific basis, depending on performance,

structural integrity, or rotor dynamic characteristics under evaluation. For

example, test series have been performed with some 80 strain measurements to support

engine nozzle and injector dynamic stress evaluations. Recent firings have also

been conducted with internally instrumented turbopumps to define bearing load and

signature characteristics. The above measurements formed a basis for the evaluation
of incipient failure detection techniques, discussed in the next section.
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SECTION III

REVIEW AND EVALUATION OF INCIPIENT FAILURE
TECHNIQUES FOR ROTATING MACHINERY

3.1 Introduction

Although little can be done to anticipate mechanical failures which exhibit very

short periods of growth, most failures are preceded by growing tolerances, imbal-

ance, bearing element wear, and the like, which may manifest themselves through

subtle modifications in the waveform observed by dynamic measurements. Incipient

failure detection is based on observing and recognizing measurable phenomena that

occur as a result of nominal system operation and those associated with component

degradation. The techniques are analytical, but their application is necessarily

empirical, based on correlation between derived signature characteristics and

observed mechanical condition.

Turbomachinery malfunction may result from a number of distinct failure modes such

as turbine blade wear or bearing element fatigue. Each of these mechanisms may be

expected to influence the waveform or spectral content measured by a transducer in

a somewhat different fashion. Thus, it is clear that a single best signal analysis

technique or indicator is not to be expected for system condition monitoring. A

series of tests, each designed to detect a given failure mode, is therefore desir-

able.

The Space Shuttle main engines have undergone and are presently undergoing extensive

hot firing tests at which time vibration measurements on the high pressure fuel and

oxidizer turbopumps and other critical locations are acquired. Thus, a wealth of

vibration data is available from these components under widely varying operational

conditions. Under contract with NASA/MSFC, Wyle is investigating techniques of

analyzing these data to indicate SSME component condition.

3.2 Techniques and Applications

Review of the literature on machinery condition diagnostic methodologies indicates

approaches employing thermal, chemical, metallographic, and vibration analysis

techniques (1, 2). This discussion is limited to the assessment of response

detected by a transducer fixed to the machine during operation. (Appropriate

sensor selection and location is not a trivial consideration with respect to

component fault detection.) Historically, the most common diagnostic approach has
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been to detect and track the root-mean-square vibration level (displacement,

velocity, or acceleration) as an indication of machinery condition. Performing the

same analysis in separate frequency bands provides some improvement in fault

identification since gross failure modes, such as imbalance, may show up at well-

defined frequencies with respect to the synchronous speed. Signature analysis

techniques thus fall naturally into two categories, time domain methods and charac-

terization in the frequency domain. Several of the techniques evaluated are next

described.

3.2.1 Time Domain Methods

Time Domain Averaging. This method is a well-known technique for extracting

periodic signals from noisy or complex waveforms. (3,4) The procedure can be

explained by assuming a given signal x(t) is the sum of a periodic component p(t),

and additive noise, n(t):

x(t) - p(t) + n(t)..

By summing one time slice of x(t) with another but delayed one period later than

the previous, the periodic component will add coherently, and the noise component,

if uncorrelated, will not. After N additions of the signal with itself, the time

domain average signature, D(t), may be expressed as

ixt) = fc £ x(t+nt) •
N n=0

This process is equivalent to a comb filter in the frequency domain as illustrated

in Figure 3-1 (4). As the number of replications increases, so does the sharpness

of the main lobes and attenuation of nonharmonic frequencies. The TDA method has

been effectively applied to large rotating machinery evaluations, and implementation

on a small computer is quite direct. It is noted that the process is coherent,

requiring that the period of the signal to be extracted be known or assumed. The

performance of this method may be improved through order sampling (OSTDA) to

synchronize the sample rate with the periodic component to be extracted.

Random Decrement Analysis. The response of a structural dynamic system is a

function of both the applied loading and system properties. Changes in system

characteristics such as modal frequencies or damping may be indicative of component

degradation. The so-called random decrement signature has been applied extensively

to the extraction of structural system characteristics in the presence of complex
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loading. (5,6) The procedure is similar to the TDA method described above in that

the measured signal is repetitively shifted and added to itself:

N
« \ 1 V x(tn+T).6 (T) = r, Z-/ n

n=l

However, in the present case, the time delay between successive segments, t , is no

longer a fixed period but is determined by the amplitude and/or slope of the signal

attaining specified values. The most popular choice in defining a trigger level

for acquiring successive samples is to simply specify an amplitude threshold and

slope, x (such as the rms value of the signal), at which time each segment iss
initiated, giving, for example

t = t when x(t) = x , x(t) > 0 .ri s

Figure 3-2 illustrates the evolution of a random decrement signature from a complex

response measurement (.5). An advantage of the randomdec method is that system

characteristics need not be known a priori. As structural flaws or cracks develop

in a component, the altered structural characteristics will modify the randomdec

signature, providing an indication of possible incipient failure.

Characterization by Moments. If our measurement, x(t), be assumed a represen-

tative sample function drawn from a stationary process, statistical moments can be

estimated in terms of time averages:

• • T ' • •
mn = 0/T) J I x(t) - mj ]n dt

O

T

mi = (1/T) J x(t)dt .

O

The first two moments are the familiar mean and variance, respectively. Note that

if the signal is symmetric about the mean, all odd order moments are zero. Of

special interest is the normalized fourth moment, or kurtosis coefficient:
\f m / m 2

Similar to the peak/rms ratio, the kurtosis provides an indication of the spread of
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the distribution, i.e. the proportion of extreme values with respect to the rms

level. For example,

K = 1, square wave

K = 1.5, sine wave

K = 3, random signal with Gaussian amplitude distribution

Bearing faults or seal rubs often cause intermittent contact over a fraction of a

revolution of the machine. The onset of such behavior therefore imparts an impul-

sive nature to a measurable signal, which may be detected as an increase in the

kurtosis coefficient. Since the kurtosis coefficient is normalized by the signal

variance, this parameter should be relatively insensitive to machinery loading

conditions.

Adaptive Noise Cancellation. Measurements obtained on the SSME turbopump

housing during engine operation are corrupted with a high level of undesired noise

from a multitude of sources. The concept of adaptive noise cancellation is a means
by which signals corrupted by additive noise or interference can be estimated. An
adaptive filter is a recursive numerical algorithm which, for stationary stochastic

inputs, closely approximates the performance of a fixed Wiener estimation filter.
The method uses a "primary" input containing both the desired signal and noise
along with a "reference" signal correlated in some unknown way with the primary

input noise. The reference input is weighted based on its past values and subtract-

ed from the primary input to yield an estimate of the desired signal. The general

concept of adaptive noise cancellation is discussed in detail in Reference (7), and

use of the process as applied to machine monitoring is presented in Reference (8).

Reference (8) also describes the application of statistical moment and cepstrum

analysis techniques to turbine bearing fault detection subsequent to adaptive

filtering. Application of the adaptive filtering technique to SSME turbopump

measurements is illustrated in the next section.

Envelope Detection. Bearing element and transmission gear mesh frequencies

have been observed as an amplitude modulation superimposed on a measured complex

vibration time history. Envelope detection has therefore been applied to the

identification of related defects. The general approach is to detect the envelope

of the measured signal followed by spectrum analysis to extract predominant fre-

quency contributions in the envelope time history. These frequencies have been
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associated with flaws, which may not be detectable in the spectrum of the original

wideband signal. In 1958, Dugundji introduced the concept of a pre-envelope

function defined as

z(t) = x(t) + i x(t)

A

where x(t) is the original time signal, and x(t) is the Hilbert transform of x(t).

The pre-envelope is a (mathematically) complex time signal, the modulus of which is

the signal envelope.

|z(t)| = { x2(t) + x2(t) } !/2 .

The availability of microprocessors and the fast Fourier transform (FFT) algorithm

has made it possible to implement envelope detection software on Fourier-based

analyzers due to the duality between Fourier/Hilbert transforms. Thus, the pre-

envelope function may be extracted by Fourier transforming the original vibration

signal, discarding all negative frequencies, doubling the positive frequency

values, and taking the inverse transform of this one-sided spectrum. The modulus

of the resulting complex valued time history yields the desired signal envelope.

An obvious computational advantage of the above approach is that the envelope

function can be directly extracted using a standard FFT analyzer and calculator.

Subsequent spectrum analysis of the envelope time history is then a simple addition-

al step in the computation. It might be noted that the resulting envelope signal

may also be analyzed by the above time averaging techniques to investigate signal

characteristic/fault correlations.

3.3.2 Frequency Decomposition

Turbomachinery components exhibit distinct characteristic frequencies associated

with machine operation such as shaft speed, impeller blade passage, bearing element

rotation, etc. Spectral representation of measurements, either by band-pass

filtering or frequency transformation, is therefore the most popular approach in

practice for machine condition trending and fault identification.

Power Spectral Density (PSD). If a measurement time history is viewed as a

representative sample function from a stationary random process, the mean-square

density spectrum (or PSD) describes the frequency distribution of the process mean-
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square. The PSD may be estimated in several ways but is now most commonly extracted

by applying the discrete Fourier transform on a digital spectrum analyzer and

estimated by

Sx(f) = (1/T) <x* ( f )x ( f )>

where Sx(f) is the PSD at frequency f, x(f) is the discrete Fourier transform of a

segment of the time history of length T, and the asterisk denotes the conjugate

complex; the brackets indicate an ensemble average. Due in part to the availability

and efficiency of digital analyzers, the PSD and cross PSD have become the standard

format for complex signal description and system parameter identification. Another

reason for its popularity is the straightforward interpretation of linear excita-

tion/response relations and system characteristics in the frequency domain.

gisoectrum Analysis. As the PSD is the spectrum of the process second moment,

the bispectrum represents the (two-dimensional) spectrum of the third joint moment

and can be estimated by

B(f1,f2) = 1/T < x(fx) x(f2) x*(f3) > , fx + f2 = fs.

The PSD and bispectrum may be seen to be the first two of a hierarchy if higher

order statistical descriptions as the mean and variance are to higher order moments.

Higher order spectra have been applied for some time to define joint correlations

in statistical data (9) and more recently to dynamic system parameter identifica-

tion. (10, 11) As a diagnostic tool, the normalized bispectrum may be applied to

detect the onset of nonlinear system behavior and possible associated component

degradation. The bispectrum analysis technique can be implemented on contemporary

FFT analyzers since only one-dimensional transforms are required. Symmetry of the

function permits evaluation over only a portion of the two-dimensional frequency

plane. This non-linear spectral technique is discussed further in the next section

of this report.

Ceostrum Analysis. The power cepstrum (12) was first defined as the power

spectrum of the logarithm of the ordinary PSD and may be written as (13)

CX(T) = Ic^l log Sx(f) } |2
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where <^~ denotes the Fourier transform and the variable T in the cepstrum is

called the quefrency. Alternative expressions for the power cepstrum include the

absolute value of the above, without squaring, and the indicated transform, which

is real, as opposed to its squared modulus. In any event, the power cepstrum

serves to indicate periodicities in the PSD. Thus, an increase in the harmonic

content or uniform sidebands in the signal will be indicated by peaks in the power

cepstrum. The quefrency at which a given peak occurs defines the period (or

frequency difference) between a series of harmonic components. It may be noted

that the power cepstrum is, in truth, a time domain characterization of the measured

signal since the quefrency has units of time. The cepstrum technique has been

applied successfully to remove echoes (periodic reflections) in acoustic and sonar

applications as well as to enhance the harmonic content in bearing element vibration

spectra.

3.3 Technique Implementation and Evaluation

Five of the above techniques were implemented early in this study and applied to

the extraction of known signals from noise and to SSME turbopump vibration measure-

ments. Software development and results are documented in References (1) and (2).

We here illustrate several results indicative of technique performance.

The TDA method was implemented on a Hewlett Packard 5451-C computer system and

applied to the extraction of a sinusoid with additive noise. The results of this

exercise are illustrated in Figure 3-3. The spectrum of the sinusoid is shown in

Figure 3-3(a). The spectrum of the same sine plus noise is shown in Figure 3-3(b).

Improvement in the discrimination of the spectral component is illustrated in

Figure 3-3(c), representing 50 TDAs and Figure 3-3(d), after 150 TDAs. As noted

previously, the TDA method requires a priori knowledge of periodicities sought.

However, based on ordered sampling corresponding to tachometer or synchronous speed

measurements, improved resolution of significant spectral components by this method

has been obtained.

Performance of the randomdec method on a sine wave plus noise process is illustrated

in Figure 3-4. The input signal is shown in the top illustration. The associated

randomdec signature is shown in the center. Increased periodicity in this signature

is evident though the signature is still quite complex. As a matter of interest, a

second randomdec was extracted using the first as input and is shown in the lower
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time history. The imbedded sine wave is here seen to be well identified. As noted

in the above discussion, the randomdec algorithm has the advantage of not requiring

prior knowledge of periodicities in the signal. The establishment of optimum

threshold conditions for signature extraction requires further investigation.

The adaptive filter concept was implemented using a hard-wired digital filter (DAC

10251), provided by MSFC. A schematic of the data analysis setup is shown in

Figure 3-5. Typical pre- and post-filtered PSDs from a high pressure oxidizer

turbopump measurement are shown in Figure 3-6. The first spectrum represents the

ordinary PSD of the signal obtained with a 12.5-Hz resolution. The second illus-

trates the same spectral decomposition obtained after processing of the signal with

the adaptive filter. A marked improvement in resolution of turbopump periodic

components is clear. Identification of synchronous and blade passage harmonics has

been enhanced significantly. The engineering interpretation of spectral amplitudes

obtained from adaptive filtered measurements is not simple.

As a final illustration, Figure 3-7 shows some results from a bearing life investi-

gation where the statistical moment technique was applied. (14) This figure illus-

trates the time history of rms acceleration and kurtosis coefficient measured on

the bearing housing of a roller bearing during endurance test on a Timken test

machine. Note the distinct increase in kurtosis coefficient at approximately 457

hours, which is not reflected in the acceleration time history. Inspection at this

time revealed a small fatigue crack on the inner race though the test continued for

657 hours, at which time extensive bearing damage was observed.

The above results are quite promising. A data base of adaptive filtered spectra

for SSME hot firing measurements is documented in Reference (2). A novel method of

diagnostic analysis, recently developed under this contract, is described in the

following section.
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Figure 3-1. Time domain average comb filter

Figure 3-2. Evolution of a random decrement signature (5)
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SECTION IV

SOME ADVANCED METHODS RECENTLY APPLIED
TO SSME DIAGNOSTIC EVALUATION

4.1 The Maximum Entropy Method

The power spectral density is one of the basic descriptors for signature analysis

in the study of dynamic signals, and has been very useful in determining the

mechanical characteristics of moving machinery. The importance of spectral analysis

is due to the simplicity of the frequency domain description of a stochastic

process, and input/output relations for linear systems.

There is a fundamental trade-off between the frequency resolution and statistical

uncertainty in the estimation of the power spectrum. The conventional Blackman-

Tukey and Direct FFT method for PSD estimation suffer from "leakage" introduced by

truncation of the time series (15). The leakage problem becomes particularly acute

if the available data is so limited in length, relative to statistical stability

requirements, that no fixed window function can be found to resolve the frequency

components of interest.

This leakage problem may be overcome by using the Maximum Entropy Method (MEM).

The MEM spectral analysis is a nonlinear, data adaptive method which is capable of

generating higher resolution spectral estimates from relatively shorter data records

than conventional techniques. This ability to use shorter data records can be an

important consideration where stationarity or logistics of data collection are a

problem. Because MEM is data adaptive it does not suffer from the severe "bias

versus variance" trade-off due to finite record length requirements of conventional

methods. A trade-off does occur, however, in terms of increased spectral resolution

versus computation time, since the procedure is data adaptive.

Entropy is a measure of the average information content contained in a signal.

(A Gaussian wave has the maximum entropy of any signal with the same variance.)

Maximizing entropy therefore is tantamount to maximizing the information transmitted

in a signal. The basic idea of MEM is to estimate the spectrum which corresponds

to the most random (i.e. "whitened") time series whose extended autocorrelation

function satisfies the constraint that it agree with the limited available known

values. This condition is equivalent to an extrapolation of the autocorrelation

function of the available time series by maximizing the entropy. Thus, MEM differs
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from the conventional linear methods of spectral analysis in that it avoids such

severe assumptions as periodic extension of the data or that the data outside the

available record length is zero.

It is recalled that the Blackman-Tukey method computes PSD as the Fourier Transform

of the autocorrelation function estimated from finite duration time series. The

extension of the autocorrelation function which MEM achieves can be viewed as the

result of fitting a special model to a finite observation of the autocorrelation

function. This model provides the analytic means for extrapolating from "p+1"

samples of a known autocorrelation function R(k), k=0, 1, ... p, to estimate the

remaining values, R(k), k=p+l . . . . It is this extension of the autocorrelation

function that provides improved resolution in the final spectral estimate. In a

superb development, (16) it has been demonstrated that the maximum entropy extension

of the autocorrelation function is given by the following pth order recursion

equation:

R(k) = -Al R(k-l) - A2 R(k-2) - . . . - Ap R(k-p); k>0

The parameters {A} are obtained as the solution of the Yule-Walker equation:

R(0)
R(0)

R(2)

R(p-l) R(p-2)

R(2)

R(0)

R(p-3)

R(P-D
R(p-2)
R(p-3)

R(0)

Al
A2
A3

Ap

R(l)
R(2)
R(3)

R(P)

Thus, if given p+1 lags of an autocorrelation function, one can uniquely define the

pth order MEM coefficients Al, ... , Ap and subsequently generate the extended

autocorrelation.

The infinite duration autocorrelation function determined as above provides an

appealing conceptual framework for MEM. In practice, however, one need never

actually compute the extended function in the course of determining the PSD.

Instead, it can be shown that the pth order MEM spectrum is uniquely defined as:

P -,
S(f)

1
Ak exp [-j 2 n k f A ]} I
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where:

Ak are the MEM coefficients, and

<rp
2 = R(0)- 2>kR(k)

k=l

A is the sampling increment in seconds.

A computer simulated time series was generated to demonstrate the high resolution

capability of MEM. A 1024 point time series was generated which consists of two

closely spaced sinusoidal components plus Gaussian white noise. The frequency of

the two sinusoids was 1499 and 1501 Hz, sampling frequency was 5000 Hz. Figure 4-1

shows the comparison between the zoom transform PSDs calculated by direct FFT and

MEM with 500 poles. The superior capability of the MEM to resolve these two close

peaks is clearly illustrated.

To further illustrate practical application of the method, some SSME vibration test

data were analyzed. Figure 4-2 shows the comparison between MEM and FFT spectrum

estimation of a high pressure oxidizer turbopump measurement from SSME test 901-471

at t=76 seconds. The numbers of data points used were 8, 32 and 128 samples

respectively, with a sample rate of 5120 Hz. This figure clearly shows the improved

resolution of MEM when the sample length is restricted.

4.2 Higher Order Spectrum Analysis

Spectral peaks at the fundamental rotating frequency and its harmonics in rotational

systems may indicate machinery malfunction such as misalignment, imbalance, bent

shaft, rubbing and whirl (17). Frequency sum and difference of these spectral

components is another important indication of degradation. When one frequency

amplitude modulates another frequency, sum and difference frequencies are generated.

Examples of this signal include a gear mesh frequency modulated by the speed of one

or both gears and a ball pass frequency modulated by the ball spin frequency. A

pulse yields a series of spectral lines whose difference frequency is equal to the

repetition rate of the pulse. Impacts due to bearing component wear can generate

such pulse response. All these signals represent nonlinear phenomena since the

spectral components at. different frequencies are not independent. The nonlinear-

ities in such signals can thus be identified as symptoms of possible failure modes.

However, due to the lack of phase information, conventional linear spectral analyses
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are not able to detect such nonlinear correlation. Therefore, a higher order

nonlinear spectral analysis method is required in order to provide insight concern-

ing these nonlinear time series and associated equipment condition.

For a stationary, random time series x(t), the nth order cumulant function is: (18)

Cn (Ul, U2, . . . , Un-1) = C [x(t) x (t+Ul) . . . x(t+Un-l) ]

where

C [.] represents a cumulant average.

The Fourier representation of Cn (Ul, U2, . . . , Un-1) is:

T/2 T/2

F (f . . . f ) = Lim

nk 1 n-l; T-*»
_L_ C f c (t:r 1 • • • I L< ^T . . . T - ,
rn-l J J n I n-1'

-T/2 -T/2

exp

n-1

V: dT, . . . dr
1 n-1

Fn is the nth order cumulant spectrum.

It can be shown that (19):

C [X(f 1), X(f2), . . . , X(fn) ] = Fn(fl, f2, . . . , fn-1) d (
J

The above states that cumulant average of the Fourier amplitudes of x(t) will be
zero except when their sum frequency vanishes. However, if the waves at frequencies

fl, f2, . . . , fn can be divided into statistically independent groups, the

cumulant spectrum will be zero even though their sum frequency is zero. Therefore,

the cumulant spectrum can be used to identify whether the spectral components at

different frequencies are correlated or not.

Let x(t) be a zero mean stationary time series, the auto-bispectrum B(fj, fk) is:
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Bxxx(fj, fk) = C[X(fj) X(fk) X*(fj+fk)]

= E[X(fj) X(fk) X*(f j+fk)] - E[X(fj) X(fk)] E[X*(fj+fk)]

-E[X(fj) X*(fj+fk)] E[X(fk)] - E[X(fk) X*(fj+fk)] E[X(fj)]

+2 E[X(fj)] E[X(fk)] E[X*(fj+fk)]

= E[X(f j) X(f k) X*(f j+f k)]

The auto-bicoherence, a normalized auto-bispectrum, b(fj,fk) is defined as:

| Bxxx(f j,f k) |
bxxx(fj,fk)

E [ | X(fj) X(fk) | 2 ] E [ | X(fj+fk) |2

By using Schwarz' inequality, it can be shown that the auto-bicoherence b(fj,fk) is

bounded by zero and unity. If the wave at fj+fk is correlated to the waves at fj

and fk, the auto-bicoherence will equal unity. On the other hand, if these three

waves are independent quadratically, the auto-bicoherence will be zero.

Let x(t) and y(t) be two zero mean jointly stationary time series, the cross-

bispectrum Bxxy(fj,fk) between x(t) and y(t) is:

Bxxy(f j,fk) = C [ X(f j) X(f k) Y*(f j+f k) ]

The cross-bicoherence bxxy(fj,fk) between x(t) and y(t) is:

| Bxxy(f j,f k) |
bxxy(fj,fk)

E [ | X(fj) X(fk) I 2 ] E [ | Y(fj+fk) |2

In addition to the above discussed capabilities of bi-spectral analysis in identify-

ing nonlinear correlation between different spectral components, another advantage

exists in its noise cancellation capability. Notice that an independent noise

signal is linear since its waves at different frequencies are all independent.

Therefore, in the estimation of the bispectrum, only those spectral components

which are quadratically correlated will be detected, while noise components will be

rejected. In a real situation, the vibration signals are masked by the high level

background noise. Linear spectral analysis is affected directly by additive noise

since the noise itself is also linear.
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Computer simulation was performed to illustrate the utility of bi-spectral analysis

which represents the response of a rotating shaft as a result of whirl and the

effect of waveform clipping due to rubbing. Figure 4-3a shows the displacement of

a clipped sine wave at frequency 625 Hz. The wave was clipped at 50% amplitude in

one direction. This signal was then amplitude modulated by another sine wave at a

lower (whirl) frequency W=110 Hz as shown in Figure 4-3b. Figure 4-4 depicts the

PSD of the acceleration (second derivative of the displacement) of this modulated,

clipped sine wave. The PSD shows strong peaks at N=625 Hz and its harmonics 2N,

3N, 4N . . . due to the waveform truncation. In the vicinity of each harmonic, a

pair of sideband components of smaller amplitude due to the modulated wave are also

observed. This signal was distorted by addition of independent Gaussian white

noise as shown in Figure 4-5, where the sideband peaks have become difficult to

identify. It should be emphasized that even though the original sideband ampli-

tudes are low, they have significant implication with respect to rotational stabil-

ity. Therefore it is desirable to identify whether a small peak near the synchron-

ous speed or its harmonics, is indeed a true sideband or it is from an independent

source, such as a case resonance. The waves from independent sources are indepen-

dent of the waves associated with rotational components, while sideband components

are quadratically correlated with them. Therefore the bispectral analysis was

applied to identify whether an apparent sideband is statistically correlated with

the rotational components.

Figure 4-6 shows the auto-bicoherence function of the modulated clipped sine wave

with the first frequency fixed at N+W, i.e. b(N+W, f). The peaks at b(N+W, N-W)

and b(N+W, N) indicate that there exists a quadratic correlation among (N+W, N-W,

2N) and (N+W, N, 2N+W) respectively. Other peaks in this bi-coherence function

also indicate the quadratic correlation among higher harmonics and their sidebands.

(Statistically, these correlations do not establish cause, but contribute evidence.)

Notice that the bicoherence also provides desirable signal-to-noise enhancement, as

previously discussed. From the above example, we can see that bispectral analysis

can be used to identify the existence of quadratic correlation among waves. Next,

this method is applied to several SSME vibration test measurements.

Figure 4-7 shows the PSD of acceleration from the high pressure fuel pump on test

901-436 at t=211.8 seconds. Spectral components are observed at frequencies N-W,
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2N-W and 3N+W. The question to be answered is: Are these components the related

sidebands of the synchronous component and its harmonics or possibly due to indepen-

dent sources. The auto-bicoherence function shown in Figure 4-8 provides the

answer. The peak at b(N-W, N) indicates that the waves at N-W, N and 2N-W are

correlated with each other quadratically. The other peak b(N-W, 3N+W) indicates

the quadratic correlation among the waves at N-W, 3N+W and 4N. These quadratic

correlations suggest that the periodic waveform at the shaft rotational frequency

is amplutide modulated (quadratic nonlinearity) by a wave at W=110 Hz. This

modulation could indicate whirl or some other abnormality. In fact, engine failure

did occur near the end of test 901-436.

4.3 The Hvner-Coherence Spectrum

The harmonic content in measurements from rotating machinery contains much subtle

information concerning equipment operational condition and component degradation.

For this reason, the power density spectrum (PSD) has long been employed to assess

the relative magnitude of contributions. Measurements on high-performance rocket

engine turbomachinery suffer from severe noise contamination from numerous extran-

eous sources, which impedes rotating element diagnostic evaluation. It is thus

difficult to determine whether an apparent high-level harmonic contribution is

indeed related to the fundamental rotational frequency or possibly due to an

independent source. The ordinary PSD is of no assistance to this problem.

As an example, a high level third harmonic in the PSD may represent symptoms such

as rubbing, looseness or imbalance. Therefore, such symptoms can be detected by

observing the exceeding of a certain level of the PSD 3N amplitude. However, a

problem exists with SSME engine test measurements in which some "anomalous" fre-

quency components with high amplitude were observed near or within the observable

band of the 3N frequency. This (possibly) anomalous frequency component makes it

difficult to determine whether an apparent high-level harmonic contribution is

indeed related to the fundamental rotational frequency, or possibly due to an

independnet source.

An example of this is shown in Figure 4-9. This figure shows the PSD of a vibration

measurement on the high pressure fuel pump from engine test 901-471 calculated from

40 seconds stationary data. A high peak at 3N frequency is observed but was

suspected to be from another source from its long term slowly frequency wandering,
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Figure 4-9. Power Spectra From SSME Turbopump During Two Test Firings
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even during constant power operation. Figure 4-9 also shows the PSD of engine test

901-436 calculated from 60 seconds of stationary data which also shows a high

amplitude 3N component. The PSD at 3N of these two tests looks almost identical to

each other. However, the 3N component observed in test 901-436 is believed to be a

true third harmonic instead of an independent frequency component. This problem

suggests that a reliable method is required in order to discriminate between

independent sources and any true harmonics, since the harmonic components are such

an important "defect signature".

The basic approach to this problem is to define the correlation between related

sources and those statistically independent of the fundamental rotational frequency

(IN) component. The nonlinear correlation between an apparent harmonic and the

fundamental frequency component will indicate whether such component is a true

harmonic or not (e.g., is correlated with). To achieve this, a unique spectral

coherence representation has been recently developed by Wyle, (20) which we call

the Hyper-Coherence function, for lack of a better term.

As stated above, the relation between nth order cumulant spectrum Fn(fl, f2, . . . ,

fn-1) and the Fourier amplitude of x(t) is:

Fn (f 1, f2, . . . , fn-1) = C[X(fl) X(f2) . . . X(fn-l) X(-fl-f2-. . .-fn-1)]

The hyper-coherence function is defined as:

| Fn(fr,fr, . . . fr) | 2

72(fn;fr)

{ E | X ° ( f r ) | 2 E | X ( f n ) | 2 }

| C [Xn(fr) X(-fn)] | 2

{ E | Xn(f r) | 2 E | X(f n) | 2 }

The cumulant average Qab] = E[ab] - E[a] E[b]. Therefore:

| E[Xn(fr) X(-fn)] | 2

J2(fn;fr) =

E [ | X"(f r) |2 ] E [ | X(fn) | 2
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Let x(t) be a zero-mean stationary time series, and assume the wave at frequency fr

be defined as signal (no noise). If the wave at frequency fn is composed of two

parts, A and B, if p% of the power at fn is totally correlated with the wave at fr

and the rest, l-p%, is independent of it, then let

X(fn) = A(fn) + B(fn)

Saa(fn)/Sxx(fr) = p% and Sbb(fn)/Sxx(fr) = l-p%

The hyper-coherence square becomes

| E [ Xn(fr) A(-fn) ] + E [ Xn(fr) B(-fn) ] | 2

72(fn;fr) =

E [ | X " ( f r ) | 2 ] E [ | X ( f n ) | 2 ]

In this equation,

E[Xn (f r) B(-f n) ] = 0

since B(fn) is independent of X(fr). Since A(fn) is totally correlated with X(fr),

the relative phase lag between Xn (fr) and A(-fn), is a constant instead of a random

variable.

In this case:

. | E [ Xn(fr) A(-fn) ] | 2 = E [ | Xn(fr) | 2 ] E [ | A(fn) | 2 ]

Then, the above becomes

Saa(fn)
J2(fn;fr) = = p%

Sxx(fn)

This equation indicates that hyper-coherence square 72(fn,fr) represents the

percentage of power at fn which is correlated with the wave at fr. Therefore, it

provides a valuable tool to discriminate between harmonic interactions, and indepen-

dent sources.

IV-18



It should be emphasized that the hyper-coherence concept can be applied to define

the degree of correlation between arbitrary harmonics.

To further demonstrate the utility of the hyper-coherence spectrum, two digital

time series were generated and analyzed. A first time series, x(t), was generated

consisting of a unity amplitude square wave of frequency fr=300 Hz plus independent

Gaussian white noise. A second time series, y(t), was formed which was equal to

x(t) plus a sine wave at 3fr=1500 Hz with unit amplitude and uniformly distributed

random phase. Thus, the 3fr in x(t) is totally correlated with fr, while the 3fr

in y(t) is only partially correlated to fr. Figure 4-10a and 4-10b illustrate the

PSDs of x(t) and y(t), respectively. Figure 4-1 la and 4-1 Ib depict the hyper-

coherence spectrum 72(fn; 300 Hz) for x(t) and y(t) with reference frequency 300

Hz. In Figure 4-1 la, J2(900,300) = 0.99 indicating that all the power at 900 Hz is

correlated with the wave at 300 Hz in x(t) except for the small independent noise

component. On the other hand, from Figure 4-1 Ib, 72(900; 300)=0.2 since only about

20% of power at 3*fr is correlated with fr, the remainder, of course, being associ-

ated with the independent sine wave and Gaussian noise. The hyper-coherence

function is thus shown to be of significant practical value in the diagnostic

evaluation of harmonically related frequency component pairs.

This technique was next applied to the above mentioned two engine tests, 901-471

and 901-436, as shown in Figure 4-9. The PSD amplitudes at 3N frequency are very

high for both tests and are considered to be a failure symptom. Figures 4-12A and

4-12B depict the hyper-coherence functions of test 901-436 and 901-471 with refer-

ence frequencies at the rotational frequencies 625 Hz and 620 Hz, respectively. In

Figure 4-13a, 72(3N; N) = 0.97 indicating that almost all the power at 3N is

correlated with the rotational frequency component and is (quite possibly) a true

third harmonic. On the other hand, /2(3N; N) = 0.17 in Figure 4-12b indicates that

most of the power at 3N is due to some other uncorrelated event. Therefore, the

apparent high level 3N in test 901-471 may be a false symptom of engine failure.

Anomalous frequency components have been observed to appear intermittently.

Therefore, it is difficult to identify whether a spectral component observed at

some particular time interval is still the same component the next moment, since the

anomalous frequency component could possibly appear and coincide with the
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Figure 4-10. Power Spectra for Two Simulated Time Series
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Figure 4-11. Hyper-Coherence Spectra of Two Simulated Time Series
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Figure 4-12.
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Hyper-Coherence Spectra of Turbopump Measurement from Test 901-436
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original observed component. An example of this is shown in Figure 4-13 which is

the PSD isoplot for test 901-471 from time t=40.8 seconds to t=120.8 seconds with

power level at 100% and 109%. At power 100%, the 3N level is low and is separated

from the anomalous frequency component. As the power level was brought up to 109%,

at t^75.5 seconds, only one high component is resolved, at 3N frequency. Now the

question is whether this high peak is a true third harmonic or is an anomalous

frequency component shifted to the 3N frequency and coincident with the third

harmonic. If it is a true third harmonic, it would be considered to be a failure

symptom because of its high level PSD. Figure 4-14 shows the hyper-coherence

function before and after the power level was brought up to 109%, respectively. At

power level 100%, even though the 3N level is low, it still exhibits a degree of

correlation. But at power level 109% only a small degree of correlation is shown

even though the third harmonic level becomes much higher. This indicates that the

original "apparent" harmonic frequency component at power level 100% merges into

the third harmonic. Therefore, the high level 3N could be a false failure symptom.

Figure 4-15 is the PSD isoplot of the same high pressure turbopump measurement from

SSME test 901-436 from time t=150 seconds to 4=273.6 seconds, at constant power

level. Originally the 3N level was quite significant. At t=212 seconds, it

diminished into a much lower level. This behavior prompted the question whether or

not there was an independent frequency component in the neighborhood of the third

harmonic, or not. If it is the case, then the high level 3N might just be a false

symptom.

Figure 4-16 illustrates the hyper-coherence function before and after the 3N level

diminished. Both hyper-coherence functions at 3N frequency remain high before, and

after 3N diminishes. This indicates both the high level and low level 3N component

are true third harmonic, (or, at least, correlated with engine speed). Therefore,

the high level 3N is a true symptom instead of an anomalous frequency component.

As mentioned before, if the wave at IN is totally correlated with the wave at 3N,

then the relative phase difference between them, 3PS(N)-PS(3N), should be a constant

instead of an uniformly distributed random variable between -TT and n. Figure 4-17

is this relative phase lag from t=150 to t=267.6 seconds, which illustrates that

this phase lag is by no means an uniformly distributed random phase both before and

after the 3N component diminished. An apparent constant mean phase can be
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0 FREQUENCY: HZ 2560
A) 3N and Anomalous Frequency Separated (100% RPL)

FREQUENCY: HZ
B) 3N and Anomalous Frequency Coincident (109% RPL)

Figure 4-14. Hyper-Coherence Spectra of Turbopump Measurement
from Test 901-^71 at 100% and 109% Power Level
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FREQUENCY: HZ
A) High Level 3rd Harmonic

2560

0 FREQUENCY: HZ 2560
B) Low Level 3rd Harmonic

Figure 4-16. Hyper-Coherence Spectra of Turbopump Measurement from Test 901- 436
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identified. The more fluctuating phase lag after 3N diminished is due to the

decreased signal to noise ratio with reduced 3N component. Also notice that the

mean phase lag has an abrupt change right at the moment 3N diminished. This implies

that the waveform has changed at that moment. The phase of the hyper-coherence

function should contain additional information about this waveform shifting.

Further research work in this direction is presently in progress at Wyle Laborator-

ies.
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SECTION V

CONCLUDING REMARKS

This report describes some analytical techniques for the diagnostic evaluation of

SSME dynamic measurements. These techniques were applied to analytical signals and

SSME hot firing measurements. It might be noted that several common and useful

detection methods were not applied. This was primarily due to the instrumentation/

measurements readily available from SSME hot firing tests. For example, acoustic

emission measurement is a common non-destructive approach for monitoring structural

integrity. However, the method requires specialized instrumentation which was

simply not available from the SSME test program. Also, the demodulated resonance

technique has proven useful for detecting bearing element degradation, but requires

a useable data bandwidth out to approximately 40 KHz, which again was not available.

The techniques evaluated under this study have been implemented on MSFC computers

available in the MSFC Systems Dynamics Laboratory. The TDA, OSTDA, Randomdec and

Cepstrum methods were developed on a Hewlett Packard 5451C analyzer. The nonlinear

techniques recently applied are more computationally intensive. These routines

were therefore adapted to the MASSCOMP processor at SDL. A program listing of

these routines is included in the appendices. These techniques are presently being

applied to the diagnostic evaluation of SSME dynamic measurements.
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NATIONAL ABRONAUTICS AND SPACE ADMINISTRATION

MEW TECHMOLOGY REPORf

NT CONTROL NO. (Official 1U« only)

INSTRUCTIONS

This report form may be used whan reporting Inventions, dis-
coveries, improvements or innovations to NASA. Use of this
report fora la optional; provided, however, that whatever re-
port format is used contain the essential Information re-
quested herein.

Please provide information requested in each section as
followst

Section I - A description of the problem that motivated the
technology development.

Section II - A technically complete and easily understand-
able description of the new technology that was developed to
solve the problem or neet the objective.

Section IH - The unique or novel features of the tech-
nology and the results (or benefits) of its. application.

Section IV - The inclusion or listing of any pertinent ad-
ditional documentation or references which aid in the under-
standing or application of the new technology.

In completing each section, use whatever detail deemed ap-
propriate for a "full and complete disclosure," as required
by the New Technology or Property Sights In Inventions
Clause. For further guidance as to what constitutes a satis-
factory report, please refer to NHB 2170.3, Documentation
Guidelines for New Technology Reporting.

Available additional documentation which provides a full,
detailed description should be attached, as well as any ad-
ditional explanatory sheets where necessary.

I. TITLS

.A Non-Linear Coherence Function (Hyper-Coherence) and its application to
Machinery Diagnostics

J. INNOVATOR (S) (Norn* and Social S«ear*y No.)

Thomas Coffin Jen Y. Jong 

J. EMPLOYER (Ortoaitotion and division)

Wyle Laboratories

J. NASA PRIME CONTRACT NO.

NAS8-34961

4. ADDRESS (Float of ptrfomuuust)

Huntsville, Alabama

6. CONTRACTOR DISCLOSURE NO.

SECTION 1 . DESCRIPTION OP THE PROBLEM THAT MOTIVATED THE TECHNOLOGY DEVELOPMENT (£««• A-Ccn«roi
Description of PnUtm Objective! B.-K*r or Unique Problem Chamcteriities: C.-PattHiftorr/PriorTfchniquet; D.-LimitattoruofPriorTeeruUguei)

The harmonic content in dynamic measurements from rotating machinery contains much
subtle information concerning equipment operational condition and component
degradation. For this reason, the power density spectrum (PSD) has long been
employed to assess the relative magnitude of fault-related spectral contributions.
Measurements on high-performance rocket engine turbomachinery suffer from severe
noise contamination from numerous extraneous sources, which impedes rotating
element diagnostic evaluation. It is thus difficult to determine whether an
apparent high-level harmonic contribution is indeed related to the fundamental
rotational frequency, f., or possibly due to an independent source. The ordinary
PSD, being an absolute value, is of no assistance to this problem. In an effort to
relate synchronous speed characteristics with an arbitrary harmonic component,
an unique coherence spectrum was devised which we call the hyper-coherence function.
The hyper-coherence function, H (f.), defines the nonlinear correlation between
waves at the fundamental frequency and harmonics at nf1, n = 1,2,.... The
computation is straightforward by FFT methods, and results in a 1ine spectrum of
correlation coefficients as a function of harmonic number.
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The bicoherence function a 1 lows definition of the phase correlation between two
spectral components, and a third component which must have a frequency equal to
the sum of the first two. More specifically, the bicoherence function may be
representated by

b2 (f,, f2) = \E{x(f1) x(f2) x'

E f lxff ) xff Hi EJ\x( fbi I BA \ * « / " \ * ** / » I •» \ 1 « \ I *V l 2 » V ;

It should be noted that the above relations represent autobispectrum and
autob{coherence functions, since the operations are performed on a single signal.
"The crOs'sblspeili uni diid creasbicohorence-ace-def ined identically between pairs
of time series.

As a diagnostic tool, the normalized bispectrum may be applied to detect the
onset of nonlinear system behavior and possible associated component degradation.

The bicoherence function just described allows definition of the phase correlation
between two spectral components, and a third component with a frequency equal to
the sum of the first two.

Note that, with the bicoherence function, direct (nonlinear) correlation between
the fundamental, say f., and second harmonic, 2f., is explicitly defined, from
the above, by

2(fJ x* (2f,

E[|x(2f1)l2J

which is a function of f., 2f., only. To relate the fundamental frequency
component with higher order harmonics, product correlations are required by the
fundamental requirement that f. + f- = f, . Thus the bicoherence does not admit
an explicit statement concerning the correlation between the fundamental
(synchronous) frequency and an arbitrary harmonic only, other than the above
demonstrated case. For example, with the bicoherence, the correlation between
first and third harmonics is defined implicitly, in combination with the
second or fourth harmonic component.
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In an effort to relate synchronous speed characteristics with any arbitrary
harmonic only, a unique spectral coherence representation has been recently
developed by Wyle, which we call the hyper-coherence function, for lack of a
better term.

We define

or

where n is a positive integer, and C is the n order coherence function.

Observe that an n order coherence function is.represented by an equal order
hypersurface in the frequency domain, whereas H represents only one value from
each successive ordered coherence function satisfying the requirement f. = f« —
= f . Thus H can be represented as a line spectrum in two dimensions,

n n 2
To clarify the interpretation of H , observe that

2
H = 1, (this trivial case represents the linear coherence

between the signal and itself, at the same frequency)
2 2
H = C (f., f.), (this represents the ordinary bicoherence

between the fundamental and second harmonic, described
previously)

H = C (f , f., f ), (third order coherence between f and 3f»)

Thus H is seen to represent the n order coherence between the fundamental
component (f.) and the n harmonic component (nf ). The computation is
stra ightforward.



SECTION II (Con.)

SECTION III • UNIQUE OR NOVEL FEATURES OF THE TECHNOLOGY AND THE RESULTS (OR BENEFITS) OF ITS APPLI-
CATION (Enttt a* appropriate A.-Novtl or aniqu* ftotans; .̂-Development or conceptual frobUmt; C-Op«ratui« cAaracttruttc*. utt data;

of capabiliti**; E.-Scant o/error; and F.-A<iuontaf*i/*honeomint*)

The hyper-coherence function defines the non-linear cp.rreletton between a reference
frequency rnmpnnr»nt ip a vihratory signal and its harmonics.

The formulation provides a concise summary of a succession of higher order
coherence functions in only two dimensions.

Major benefit is determination -of whether an apparent harmonic in a complex
vibration signal is indeed correlated with the fundamental or possibly due
to an independent source or extraneous noise.

The technique is computationallyeasy to implement.

The^method is limited to assessment of integer multiple frequency components in
a signal, and is therefore not applicable to signals involving modulation or
more general non-linear dependence.
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SECTION IV . ADDITIONAL. DOCUMENTATION (ticlui* or litt btlow myptniaiHt dociMMiuatiai wXitk aid* ia cfe andtrttaulini or a*,
plication of tA« new tftluuUofy. IF NOT TOO 3ULKT OR DIFFICULT TO REPRODOCZ; INCLVBE VOPISS WITS THIS REPORT. For <*«•«
rtfertnet* or additional decunintatio* oactlaU* but HOT iaeludtd in Ait report (du» to lh»ir ktiuf nonttitntial to a batie andfrttauiint oftki
ntw ttehnolotr and whick mar *• eoftly to r*tr*d»et or handU) compUt* Ittm A. bflowj

*; AVAILABLE DOCU-
MENTS (Cheek
and compleUJ

XX . AUTICLM

(PCC«.

8. PAHT» OH INaftKD. WIST

MANUAL*

». T*JT DATA

t. A'«iCM«LY/MPa. PHOCIO.

10. or»*m(SpteifrJ Wyle Monthly Progress Reports NAS8-349oi IMay, August,
'September; 1985) - ; • '• ••

. INDICATE THE DATES OR THE APPROXIMATE TIME PERIOO-OU HIH8 WHICM THIS TECHNOLOGY WAS DEVELOP SO ft.*.,
conceived, conimcud, tttttd, *te.) •

5-'85 through 11-'85

C. LIST THE FIRST PUBLICATION OR PUBLIC DISCLOSURE Of THE NEW TECHNOLOGY. AND DATES
Journal of Acoustical Society, of America. Suoplement 1,
Vol. 73, Fall '85, o. 325-326.

D-. LIST THE DATES AND ANY PARTICULARLY PERTINENT PA8E NUMBERS Of OTHER PUBLICATIONS WHICH ARE AVAILABLE BUT
NOT ATTACHED . " ~ ~ —

See C. above . j; i

OEOREE Of TECHNOLOGICAL SIGNIFICANCE fCA«ek in your b*it IttdfMnt tin ttoMoMM whiek btn txpntitt At dtgnt of t*etaoio«iea{
tignifieaae* of thi* itehiteletr)

a I. MODIFICATION TO BXISTINO T1CMNOLO9Y
t. «UMT»NT1AL ADVANCE

IN TMt AP.T
S. MAJOR CRtAKTMROUVH

COMMKNTS

The technique represents a minor modification to the non-linear spectral theory.
However, application to machinery diagnostics represents a substantial advance in
applied technology.

Software has been implemented on MSFC computers and is being applied to SSME
data evaluation.
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Page 1

ORIGINAL PAGE IS oil3^
D Line* 1 7 "OF POOR QUALITY Microsoft FORTRflN77 V3. £0 O£/84

1 PROGRAM MEM
£ C LINK MEM-f-MEMSB
3 REAL*4 R(£O5O)
4 REAL*8 K(£O5O), f t (£050)
5 CHARACTER*IS Fi,F£
6 CHARACTER IASK
7 C DftTA PE,R/41OO*O.O/K,ft/41OO*0.ODO/
8 W R I T E ( * , ' ( A ) ' ) ' ENTER MftXIMUN LAG IN R ( T ) ( L£. £O48)'
3 R£ftD(*,*) MAXLAG

10 W R I T E ( * , ' ( A ) ' > ' ENTER # OF POLES <LE. MAXLAG-1)'
1 1 READ(*, *)NPOLE • ' . ' . . .
12 WRITE(*,'(A)')':ENTER INPUT FILNAM OF AUTOCORRELATION FUNCTION' . I
13 READ(*,'(A)') Fl . ' I
14 WRITE(*,'(A)')' ENTER OUTPUT FILNflM OF AR COEFFICIENT' - [
15 READ(*, ' < A)' )F£ . 1
16 WRITE<*,'(A)')' ENTER 1 FOR ASCII INPUT' '
17 READ(*,*>IFIP ;
18 WRITE<*,'(ft)')' ENTER 1 FOR ASCII OUTPUT'
19 . READ <*,.'*> IFOP ' • !
£O WRITE (*, ' (A) ' ).' ENTER fc OF BLOCK (ONE BLOCK=ONE R(T) FUNCTION)'
£i READ(*,*)NB .
££ . ' NPOLE1=!\)POLE+1 '• . ' ' " ••'

£4 MI
£5 '• MO=4*NPOLE£ ', . ' ,' " ' ' ' - .;• .
£6 IF (IFIP. EQ..DTHEN •' ' . •
£7 OPEN d,FILE=Fl,STATUS='OLD')
£8 NB1=1 •
£3 . NB£=NB ' • •
3 D ' ELSE • • • ' . .

. 31 OPENd, FILE=Fi", STftTUS='OLD' , ACCESS^' DIRECT' , RECL=*!I)
3£ WRITE(*,'(ft)')' ENTER STARTING AND ENDING BLOCK #'
33 READ(*,*>NB1,NB£
34 ENDIF
35 IF(IFOP.EQ.1)THEN
36 OPEN (£, FILE=F£, STftTUS = 5 NEW )
37 £LSE ' .
33 OPEN(£,FILE=F£,STftTUS='NEW , ftCCESS='DIRECT' , RECL=MO)
33 . ENDIF , .
40 NOUT=O
41 DO 3993 I I = N B i , N B £ . . . .

1 4£ NCUT=NOUTi-l •
1 43 WRITE(*,*) I I .
1 44 ' IF(IFIP.EQ.1)THEN
1 45 REPD(i,*) CR (I ), 1 = 1,NPOLE1)
1 4& £LBE
i ^7 READd, REC=II) ( R ( I ) , I = l,i\IPOLEl)
1 45 ENDIF
1 49 CfiLL DURBIN(R,NPOLE1,PE,K,ft)
i 50 R(NPCLE£)=PE
1 51 DO 66 I=1,NPOLE1
£ 5£ 66 R ( I ) = A ( I )
\ 53 IF<IFOP.EQ.1)THEN
1 54 UiRITE(£, *) (R( I ) , 1 = 1, S\iPOLE£)
1 55 ELSE
1 56 WRIT£(£,REC=NOUT)(R(I),1=1,NPOLE£)
1 57 ENDIF
1 58 9999 CONTINUE

53 4£O STOP



D Line* 1
SO

7
END

Page 2
02-19-86
O8:33:O£

Microsoft FORTRRN77 V3. 20 O2/84

Name ype Offset P Class

fl
Fi
i"~ J™

1
; iflsx
r . IFIP
1 IFOP
; II

K
MftXLftG
MI
rco
NB
NB1
NB£
NOUT
NPOLS
NPOLE1
iMPOL£2

• PE • .
' R .

REAi_*S
CHPR*i&
CHAR* 16
!NTEGER*4
C!-iftR*l
INTESER*4.
INTEGER*A
INTEGER*^
SEfiL*8 '
INTEGER*^
INTEGER*^
INTEGER*^
INTEGER*^
INTEGER*^
INTEGER*V
INTEGER*4
INTEGER*4
INTEGER*^ .
1NTEGER*4 .
REflL
REPL.

246O2
4 1 0 1 0
41O2&
4 1 09O
*****
41O42
41046

, 41O8S
• 82O2
•4100£
4 1 062
4 1 066
41O5O
41O7O
41O74
41O78
41OO6
4 1 054
4 1 058
41O98

£

ORIGINAL PAGE K
OF POOR QUALFTY

61 SUBROUTINE DZERO <l\i£i_, RRRflY)
62 REflL*8 f lRRf iY ( l ) • • '
63 IF<NEL.LE.0)RETURN
64 DO 10 1=1,MEL
65 iO PRRAY(I)=O.ODD
66, RETURN
67 END

Name

fiRRAY
I
NEL '

i y oe

INTEGER*4
INTEGER*4

Offset P Class

4 ' *
41 106

O *

69
7O
71
7£
73
74

LO

SUBROUTINE ZERO (.NEL,
REfl!_*4 flRRAY(l)
IF(i\iEL . LE. O) RETURN
DO 1C 1=1,NEL
fiRRfiY(I) = O. 0
RETURN

Name Type

NTEGER*4
i\iTEBER*4

Offset P

4 *
41114

O *

75 C
76 SUBROUTINE DLiREIN (R, NPOLEi, PE, K,



77 C
78 C
79
80 C
31
S£ C
33 C
64
65
86
87
as
89 C
90
91
92
93
94
95
96
97
93 1O
99
10O C
1O1
102
1O3
1O4 20
1 OS 3O
1 OS
1O7 4O
108
109 C

50

Page 3
O2-19-86

ORIGINAL PAGE !S oe: 38:02
7 OF POOR QUALITY Microsoft FORTRAN77 V3. 20 02/84
OUTPUT fl (I), 1 = 1, NPOLE+1 = -C 1 -A < 1) -A (2) ... -ACL) >t

OF BRIBG'S PAPER P.49 EQUATION (3.13) L=NPOLE
REAL*4 R(1)
REAL*4 PE(i),R(l)
REAL*8 K < 1) , A C i > ,KDUM,ASTGRE <2O50)
COMMON /WRKSPC/ASTORE
Cfii_L Z£RO (NPOLE1, PE)
CALL DZ£RO(NPOLEi, K)
CALL DZ£RO(NPOLE1, A)
CALL DZERO(NPOLE1, ASTORE)

PE=R(1) ' - .
PE<1)=R(1) .
K(i)=O.ODO . . .
ft(1)=1.ODO .
ftSTQRE(l)=1.0DO
DO 50 I = l,.IPMflX
I 1 = I - H . . . . ' '
KDUi*1=O. O D O ' ' . ' • . : . . . . • -
DO 1O J=l,I '
KDUM=ft<J)*DBLE(R(I1-J+l))+KDUM
CONTINUE
K<11)=-1. 0*KDUM/DBLE(PE)
.K< II ).=-!•. 0*KDUM/DBLE(PE(.I) )
IF (I. ED. 1)GO TO 3O '
D O 2 O J=2, I " . ' . •
flSTORE(J)=A(J)+K(11)*ft(11-J+l)
CONTINUE
flSTDRE(Il)=K(Il) ' . .
D O 4 0 J=i,NPOLEl . ' • ' .
fl<J).=fiSTQRE(J) -
PE=<1.0-SNGL(K(I1>**2))*PE
PE(11) = (1.O-SNGL< K(11)**a) )*PE(I)
CONTINUE •
RETURN
END

Name yoe Offset P Class

ft REfiL*8
flSTORE R£flL*8
DBLE
I i;\iTEGER*4
II INTEGER*4
IP.v!flX INTE3ER*4
J INTEGER*4
K R'Efli_*8
KDUM REAL*8
NPGLE1 I,MTEBER*4
PE REfiL
R ' REAL

-. 16 *
41122

57526
57534
57522
57546

12 *
57538

4 *

INTRINSIC

8
O

INTRINSIC

i ype Size Class

DLfRBIN
DZERO

SUBROUTINE
SUBROUTINE



D Line* 1
1 C
£ c
3
4
5
6
7
a
9
10
.11
12
13
14
15
16
17
IS
19
£O
£1
££
£3
£4
£5
£6
£7

. £8
£9
3O
31

. 3£
t̂ bj?
34
35
36
37
36
39
40
41
4£

• . 43
44 l£C
45
46
47
43
49
50
51

54
55
56
57
58
59

Page 1
0£-19-S6
O8:40:l£

7 Microsoft FORTRftN77 V3. £0 O£/S4
PROGRftM MEMPSD
LINK mEMPSD+FFTSU8+FFTB4£+N£MPSDSB
COMMONWTR(£O48),WTI(£O48),XR(£O48),XI<£O48),PSD(£O50)
CHflRftCTER*l6 F1,F£
WRITE(*,'(ft)')' INPUT RR FILE HftS MPGLE+S DflTft POINTS/BLOCK:'
WRITE(*, ' (ft)'•>' NPGLE+1 flR COEFF. C ft <Q) , ft (1) , . . , ft (NPOLE) 3 '
WRITE<*,'(ft)')' , CPE (PREDICTION ERROR)3'
WRITE(*,' (ft)' ) ' '
WRITE<*,'(ft)')' ENTER # OF BLOCKS ( # OF PSD TO BE ESTIMATED)'
REflD <*•,*)NB
WRITE(*,'(ft)'>' ENTER INPUT FILNftM OF ftR COEFFICIENTS'
REftD(*,'(ft)')F1
WRITE(*,'(ft)')' ENTER OUTPUT PSD FILNftM'
REftD(*,'(ft)')F£
WRITE(*,'(ft)')' ENTER 1 IF INPUT ftR IS ftSCII'
REflD(*,*)IFIP
WRITE(*,'(ft)')' ENTER 1 IF OUTPUT PSD IS ftSCII'
REflD<*,*)IFOP .
WRITE(*,'(ft)')' ENTER MftXIMUM # OF POLES (MftX ORDER OF MEM)'
REflD(*,*)NPOLE
MPOLE1=NPOLE+1
NPOLE£=NPOLE+£'
WRITE(*,'(ft)')' ENTER 1 IF EXPftND FROM O TO PI(WHOLE RANGE)'
REflD (*,.*) IFftLL
WRITE(*,'(ft)')' NPSD= # OF DftTft POINT OF OUTPUT PSD'
IF (IFftLL. EQ. DTHEN
UJRITE(*, ' (ft) ' ) ' ENTER NPSD eg. 513'
WRITE(*, ' (ft) ' )' note: NPSD=NNP£/£ (NPOL£+£ . LE. NI\iP£)'
ELSE
WRIT£(*,.' (ft) ' ) ' ENTER NPSD (NPSD+NPOLE1 MUST . LE. 10£4)'
END IF
R£ftD(*, *)NPSD
W R I T E ( * , ' ( f t ) ' ) ' ENTER SAMPLING FREQ IN HZ'
REftD(*. *)FS
IF<IFf tLL.EQ.1)GOTO i£3
W R I T E < » , ' ( f t ) ' ) ' ENTER STflRTING FREQ IN HZ'
REflD(*,*)FSTftRT
W R I T E ( * , ' ( f t ) ' ) ' ENTER ENDING FREQ IN HZ'
REftD(*,*)FEND
SIBO=FS*flLOG(l.)
DLTSIG=SIBO
OMGO=FSTftRT .
DLTO«G=<FEND-F5Tfl<RT) / (NPSD-1. )
CONTINUE

LI=<i\iPOLE+£)*4
LO=NPSD*4
IF (IFIP. EQ. DTHEN
OPEN(1,FILE=F1,STflTUS='OLD'>
ELSE
OPENd, FILE=F1, STflTUS=' OLD' , ftCCESS=' DIRECT' , RECL=LI)
END IF
IF(IFOP.EQ.1)THEN
OPEN (£, FILE=F£, STftTUS = ' NEW )
— f £2 ~

OPEN(£,FILE=F£,STftTUS='NEW,ftCCESS='DIRECT',R£CL=LO)
END IF

DO 9999 KK=i, NB
WRITE(* , * )KK
IFdFIP. £Q. DTHEN
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D Line* 1 7 Microsoft FORTRON77 V3. £0 O£/84
1 SO SE«D<1,*> <XR<I>,1=1,NPOLE£)
1 61 ELSE
1 62 REftDd, REC=KK) < X R < I > , 1 = 1, NPOLE£)
1 63 ENDIF
1 64 PE=fl8S<X3(NPOLE£))
i 65 CDNS=£*PE/FS ORFGfiMAL PAG* t«5
1 86 DC 346 I=NPOLE£,£04a QF Pnnn «f!
£ 67 346 X S < I) =0. °F P°OR QUALITY
i 68 IPdFflLL. EQ. 1) GOTO 1£5

1 7O DO 345 I = 1,£O48 , .. .
£ 71 XI < I ) = 0 . . ' ' . . ' -
£ 7£ W T R ( I ) = 0 . '
£ 73 WTI ( I ) = O .
£ 74 345 CONTINUE • .
1 75 IF (KK.EQ.1 )THEN '
1 76 NPFT=NPOLE1+NPSD
1 77 DD 30 1=1,11
£ 78 • .NTEST=£**I - ' . :.
£ 79 IF(NTEST.GE.NFFT)BOTO 4O
£ SO 30 CONTINUE •
1 81 WRITE(*,'(ft)')' N TOO BIG FOR FFT' .
1 8£ STOP ' .
1 83 4O NFFT=NTEST . . 1; • . . . . . , . . •
1 84 ' ENDIF : • . ' ' . ' " • .
I 85 ' " . CALL CZT(XR,XI,NPOLE1,NPSD,DLTSIQ, DLTOMG, WTR,WTI,SISO, OMBO,
i 86 1 O,NFFT,FS)
1 87 C WRITE(*, ' (ft)')'****************QUT FROM CZT'
1 - 8 8 •. DO SO 1 = 1', NPSD . . ' •
£ S9 90 PSD<I)=CONS/<XR(I)*XR(I)+XI<I)*XI<I))
1 9O GOTO 999
1 91 C **##*#*****#************************#*****************
i 9£ 1£5 CONTINUE
1 93 NNP£=NPSD*£
1 94 DO ££l I=i,NPDLEl
£ . 95 ££1 , PSD(I)=XR(I)
i 96 DO ££3 I=NPOLEl-(-i, NNPS '
£ 97 ££3 PSD(I)=O.
I 98 COLL FFT(PSD,NNP£, 1) . :

1 99 . DO 1£8 I=1,NNP£ :
£ 100 1£8 PSD(I)=PSD(I)*(NNP£-£.)
1 101 DO 1£9 I=£,NNP£,£
£ iO£ 11=1-1
£ 103 J=I/£
£ 1O4 • PSD(J) =CO;MS/ ( PSD (11) *PSD (11)+PSD (I) *PSD (I) )
£ 105 1£9 CONTINUE
1 1O6 999 CONTINUE
i 107 IFdFOP.EQ. DTHEN
1 108 WRITE(£,*)(PSD(I),1=1,NPSD)
1 109 • ELSE
1 110 WRITE<£,REC=KK> <PSD<I>,1=1,NPSD)
1 111 ENDIF
1 11£ 9999 CONTINUE

113 CLOSE<£)
114 CLOSE<1)
115 STOP
116 END
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D)Line* 1 7 Microsoft FORTRfiN77 V3. £0 02/84
1 C PROGRftM ftBC CALCULATE ftUTO-B I COHERENCE (MOT SQUftRE)
£ C LINK ABC
3 DIMENSION Ul (1028) , U£(1O£8),Dl(1O£8>,D£<10£8>
4 DIMENSION ABC(lO£S),ABD(10£8)
5 CHARACTER*16 FILNAfl
6 WRITE (•*,» (ft) ')' INPUT BINARY FILE HAS £*N3 BLOCKS'
7 . WRITE(*,'(fi)')' ODD BLCCK=AWPLITUDE OF X (W) : w = i. .. .NNP22'
8 WRITEC*,'(A)')' EVEN BLQCH=PHASE OF X(W> ; W=1...NNP££'
,9 WRITE(*, ' (A)' )' ENTER INPUT FILNAM (OUTPUT FROM FFT)'
10 READ(*, ' (A)' )FILNAM
1.1 WRITE <*, ' (ft) '•)' ENTER # OF DATA/BLOCK IN TIME SERIES'
12 READ(*, *)NN
13 WRITE(*,' (fi)')' ENTER STfiRTING OND ENDING BLOCK #'
14 . REflD(*,*)NB1,NB£
15 NNP2=NN+£
IS • . NNP££=NNP£/£ .
17 NNP£21=NNP££-1.
18 OPEN(2,FILE=FILNftM,STftTUS='OLD',flCCESS='DIRECT',RECL=4*NNP££)
19 '1 CONTINUE : . .. . ;.. • ' • '
£0 WRITE (*,' (ft)')' ENTER STflRT 8, ENDING BPSE FREQ. *t (0—NNP22-1)'
£1 • • . REfiD(*,*)NBF1, NBF2
££ ' WRITE(*,'(fl)')' ENTER -1 FOR MEGflTIVE REFERNECE FREQ; 1 ELSE'
£3 - REPD<*,*)NEG
£4 WRITE (*, ' (A) ' )' ENTER OUTPUT flflP OF PBC (COHERENCE) . FlLNPM'
£5 : REf iD(* , ' ( f t ) ' • ' V F I L N f t M
£6 O P E N ( 3 , F I L E = F I L N f l M , STftTUS=' NEW' ) .
£7 W R I T E ( * , ' ( f t ) ' ) ' ENTER 1 IF YOU WPiNT CfiLCULftTE PHOSE OF ftBC'
£8 R E A D ( * , * ) I F A B C '
£S IFdFfiBC. EQ. 1) THEN •' -
30 WRITS(», ' (ft)')'' ENTER.OUTPUT PHftSE OF PBC FILN
31 REflD(*,'(fi)')FILNAM

. ,3£ ' OP£N(4, FILE=FILNftM, STflTDS=' NEW )
3 3 E N D I F • . - . - .
34 . . DO 9999 NBF=NBF1, NBF£ '

i 35 W R I T E ( * , £ 1 ) N B F
1 36 £1' FORt f f lTC BfiSE FREQ *f = ' , I 5 )
1 37 DO ££ I=O,NNP££ i . .
£ 3 8 U 1 ( I ) = O . • • . ' . ' • :
£ . . 3 9 . U £ ( I ) = 0 . . ' . . . .
£! 40 Dl ( I ) = O .
& 41 ££ D £ ( I ) = 0 . . . '
1., 4£ DO 999 I JK=NB1,NB£ . -
£• 43 . W R I T E (*, 1£7) UK .
£.. 44 i£7 FDRMttTC DfiTfi SEGMENT # = ' , I 5 )

• £'. 45 READ(£ , REC=IJK*£-i) ( f l B C ( I ) , 1=0, NSNP£21>
•2 46 REQD (£, R£C=IJK*£) (f tBD (I) , I=O, NNP221)
£. 47 C
£' 43 LIMIT=iMNP22-NEG*t\<BF-l
£. 49 I F ( L I M I T . G T . ! M N P £ £ l ) L I M I T = N N P £ £ l
£.. 5O DO 99 IJ=O, L I M I T
3 5i MFS=NEG*NBF+IJ
3" 5£ NEG1 = 1
3, 53- IF(!\FS. LT. O ) N E G l = -l
3. 54 ;NJFS=IABS (NFS)
3 55 D l ( I J ) = D l ( I J ) + ( f t B C ( N B F ) * R B C ( I J ) ) # * £
3 56 D £ ( I J ) = D £ ( I J ) + f l B C ( N F S > * * £
3 57 j2fl=flBC (NBF) *ABC ( I J ) *flBC (NFS)
3; 58 fiG=NEG*P3D (NBF)- f - f lBD ( I J ) - N E G l * f i B D (NFS)
3; 59 Ui ( IJ) =U1
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7 Microsoft FORTRAN77
SRC.FOR — SIGNATURE RATIO COHERENCE
LINK SRC
REAL*8 TTPP,AAAAAA
DIMENSION NM(513)
REAL*4 ̂ BC(5£3),ABD(5£3>,HCS<1O£6)
REAL*8 Ul(523),U£(5£3>,Dl(5£3),D£(5£3),AA,PSRS
CHARACTER*16 FILNAM
WRITE(*,'(A)')' INPUT FILE HAS £*NB BLOCKS'
WRITE(*,'(A)')' ODD BLOCK=AMPLITUDE OF X(W); W=l. . . . NNP££"
WRITE(»,'(A)')' EVEN BLOCK=PHASE OF X(W) ; W=1...NNP££'
WRITE<*,'(A)')' ENTER INPUT FFT FILNAM (OUTPUT FROM FFT)'
READ<*,'(A)')FILNAM '
WRITE<*, ' (A)' ) ' ENTER .SAMPLING FREQ
READ(*, *)FS • .- -
WRITE<*, ' (A) ' ) ' ENTER # OF
READ(*,*)NN
WRITE(*,'(A)')' ENTER # OF BLOCK'
READ(*, *)NB
WRITEX*,'(A)')> ENTER STARTING &

Page 1
O£-19-86
OS:44:33

V3. £O O£/S4

IN HZ'

DATfi/BLOCK IN TIME SERIES'

ENDING BLOCK #'

HOW MANY % WITHIN HARMONIC TO BE KEPT'

1 FOR ACCELERATION TO DISPLACEMENT'
INPUT A(t) IN G (3£.174 FT/SEC**£)'
OUTPUT D(t) IN INCH'

READ(*,*)NB1,-NB£
WRITE(*,'.(A) ' )' ENTER
READ(*,*)PCT
PCT1=1-PCT .- -. . .. ' . . . •
NB=NB£-NB1-H . . ; . . '.. . . . •
NNP£=NN-t-£ - ' . • ' . - ' : • _ • ' , • • ' ' - ' ' . . ' . '
NNP££=NNP2/£
OPEN(£,FILE=FILNAM,STATUS='OLD',ACCESS='DIRECT',RECL=4*NNP££)
CONTINUE
WRITEC*, ' (A) ' )' ENTER STARTING & ENDING BASE FREQ *? <0-NNP££-1) '
READ(*,*)NBFl,NBF£
WRITE(*, ' (A)')' ENTER OUTPUT AMP & PHASE OF h'C FILNAM'
READ(*,' <A)')FILNAM
GPEN.(3, FlLE=FILNAm, STATUS=' NEW' )
WRITE(*. ' (A) ' > ' ENTER OUTPUT HYPERCOHERENCE SIGNATURE FILNAf.'
SEAD(*, ' (A)' )FILNAM • . .
WRITE(*,'(A)')' ENTER
WRITE(*,'(A)')'
WRITE(*,'(A)')'
READ(*,*)NDISP
OPEN(4, FILE=FILNAM,STATUS='NEW' )
DO 9999 NBF=NBF1,NBF£
WRITE(*,£1)NBF
FORMAT(' BASE FREQ # =',I5)
DO 986 I=O,NBF
NM(I)=O.
DO 987 I=NBF-5,NNP££-1
NM <I)=1
PSRS=(1*1.O)/(NBF*1.O)
NG=PSRS
RM=PSRS-NG
IF(RM.GT.PCT.AND.RM.LT.PCTi)THEN
NM(I)=0
END IF
CONTINUE
DO ££ I=O,NNP££-i
Ul(I)=O.
U£(I)=0.
Di(I)=O.
D£(I)=0.
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D Line* 1 7 Microsoft FORTRAN77 V 3 . £ 0 02/84
1 6O 1£7 FORMATO DATA SEGMENT # = ' ,15)
i 61 DO 999 IJK=NB1,NB2
£. 6£ W R I T E < * , 127) UK
£ 63 READ<£,REC=IJK*£-1 ) < A B C < I ) , 1 = 0 , N N P £ £ - 1 )
£ 64 3£AD<£, R£C=IJK*£) ( A B D ( I ) , I=O, NiNP££-l>
£ 65 DO 99 IJ=O,NNP£2-I
3 , 66 ?SRS=(IJ*1. ) / <NBF*1. )
3 67 I F ( N M < I J ) . EQ.OSOTO 99
3 68 D l ( I J ) = D 1 ( I J ) + < A B C ( N B F ) * * P S R S ) * * £
3 69 . D £ < I J ) = D £ < I J ) + A B C ( I J ) * * £
3. 7O AA=ABC<NBF)**PSRS*ABC<IJ> ' ; . . ; .
3 71 AG=PSRS*ABD(NBF)-ABD<IJ ) . •
3 7£ Ul(IJ)=U1<IJ)+ftft*COS<AG>
3 .73 U£<IJ>=U£<IJ)+AA*SIN<AG>
3 74 99 CONTINUE
£ 75 999 .CONTINUE
1 76 WRITE (*, ' (ft)' )' *#*#*#******#**•*#*•**•*****•*•****'
1 77 DO 61 I=0,NNP££-1 • • '. ' . • . ' .
£ 78' IF (NM (D.ED. O) THEN . •-
£ 79 ABC(I)=O
£ SO ftBD(I)=O
£ 81 .ELSE
£ 8£ ftBC(I)=SNGL<DSQRT((Ul(I)**£+U£(!)**£)/(Dl<I)*D£(I))))
£ 83 . flBD(I)=SNGL(DftTPlN£(U£(I>,Ul (I) ) ) . : . .
£ 84 . END IF • ' • : :: . ' ' . . . - • . ' • ' ' . . ' . .' ' . ' . ' • ' . - . '.
£ 85 61 -CONTINUE "'• -• . " '- '
1 86 C .****#** OUTPUT HYPER-COHERENCE ftftP & PHfiSE *******•**#*
1 87 WRITE (3, *) <flBC(I) , I=O, NNP££-1)'
1 86 WRITE (3, *> (flSD(I) , 1=0, NiMP££-l).
1 89 flBC<0)=l. .
1 .SO . FN=FS*£*3.14159£653/NN
1 91. FN£=FN*FN . -
:l 9£ •' . . CCC=SaRT(NB*l. )*NN .
l 93 CCCFN=CCC*FN£ • •
i 94 11=1
I 95 :£=£ .
1 96 HCS(1)=0. .
I 97 HCS(£)=0.
1 9.8 . ' DO 6£ 1 = 1, NNP££-1 . • ' '
£ 99 . IF<NDISP.EQ.1)THEN ' .
£ 1OO flBC(I)=DSQRT(D2<I) )*flBC<I) / (CCCFN*.I*I)
£ 1O1 : ELSE •
2 1O2 SBC(I)=DSQRT(D£(I))*flBC(I)/CCC
2 103 ENDIF
.2 104 11=11+2
2 105 I £=!£•+•£
2 106 IFCNDISP.EQ.1)OBC<I)=flBC<I)*386.O68
£ 107 HCS(Ii)=flBC(I)*CGS(flBD(I))
2 1O8 HCS(I£)=«BC(I)*SIN(flBD(I))
£ IOS 6£ CONTINUE
1 11O CALL FFT (HCS, N1MP2,-1)
i ill C WRITE(4,*)(ABC(I),I=O,NNP22-1)
1 112 WRITE(4, *) (HCS(I) , 1 = 1, iMN)
i 113 9999 CONTINUE

114 77 FORMAT(5E16.8)
115 CLOSE(2) -
116 CLOSE(3)
117 STOP
118 £ND
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Lie.1 ( I J ) =U£ ( I J ) +flfl*S IN < flG)
CONTINUE
CONTINUE
CONTINUE
DO SI 1=0,LIMIT
«BSS=Ui (1) *D1( I) -HJ£ (I) *U£ < I)
fiBCd)=SQRT<flBSS/(Dld)*D£(I>))
I F < N E G . E Q . DTHEN
DO 6£ I = L I f l I T , i\JNP££l
f t B C < I ) = O .
END IF
WRITE<3,77)(flBCd),1=1,NNP££)
IFdFflBC. EQ. DTHEN
DO 71 1 = 0 , L I M I T
«BDd)=f lTf lN£(U£d> , U 1 d ) >

I F C N B F . GT. DTHEN
DO 7£ I = L I M I T + 1 , N!MP££1
flBD(I)=0.
ENDIF

WRITE<4,77> (flBDd),I=O,NNP££1)
ENDIF
CONTINUE
R3RMflT<5E16.8)
CLOSE (£)'. .
CLOSE<3)
IFdFflBC.EQ.l') CLOSE (4)
STOP
END

Microsoft FORTRRN77

O£-19-66
08:43:07

V3.£0 O£/84
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flfl-
ABC
flBD
ft BBS
ft 6
flTflN£
COS
Dl
D£
FILNftM
I
IflBS
IFflBC
IJ
UK
LIMIT
NB1
NB£
NBF
NBF1
NBF£
ivEG
NE31
NFS
NN
NNP£

REflL
REflL
REflL
REflL
REflL

REflL
REflL
CHflR*16
INTE6£R*4

I.\jTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
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INTEGER*4
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INTEGER*^
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ABSTRACT

The status of an investigation to develop and evaluate data enhance-

ment techniques and to determine their effectiveness with respect to

incipient detection of mechanical failures in turbomachinery is pre-

sented. Six waveform analysis techniques have been applied to dynamic

data, and their results are reviewed. Software developed for the

implementation of the methods is described. A laboratory evaluation of

the techniques with respect to failure indicator detection capability as

applied to both simulated response signals and measurements from a

rocket engine turbopump is summarized. Conclusions are drawn con-

cerning the relative detection capability of the techniques, and recom-

mendations for further investigations are provided.
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Section 1

INTRODUCTION

In general, the subject of incipient failure detection is related to the detection of the

basic causes of failure. Failures in all types of systems and/or subsystems— structural,

mechanical, hydraulic, pneumatic, electrical, and electronic—are the result of two

basic causes: component degradation and/or chemical contamination. Similar to the

well-known pattern demonstrated during the fatigue of metals, the failure process is

known to exhibit a beginning, growth period, and ending. In most cases, the time frame

over which this behavioral pattern is exhibited is long; however, in some cases the

failure process may be so short, while not instantaneous, that the symptoms of the

onset of failure and the total failure cannot be distinguished. Although little can be

done to prevent failures that have extremely short periods of growth, application of

incipient failure detection techniques during the early stage of development can

provide, in most cases, the time required to initiate appropriate actions to eliminate

the cause before the total failure occurs (replacement of worn parts, etc.). Prevention

.of total failure can often avert damage to nearby components as well as potentially

catastrophic events. Incipient detection and monitoring of failures can also allow

efficient scheduling of repairs and periodic maintenance, resulting in increased reli-

ability of any system and/or subsystem.

Incipient failure detection is based on observing and recognizing phenomena that occur

as a result of system operation, component degradation, and/or chemical contamina-

tion. By properly instrumenting an operational system with specific transducers at key

locations, the resulting measured waveforms will contain subtle information concerning

the physical state of the system and/or subsystem. The extraction of this information

and its interpretation are the keys to the successful application of incipient failure

detection. The procedures and/or techniques utilized to extract this information

include both time and frequency domain signal analysis. Among these signal analysis

techniques are acoustic emission, time domain averaging, random decrement averaging,

correlation, adaptive filtering, power spectral density, and cepstrum analysis. These

techniques may be applied independently and/or in combination. Results from the



application of these techniques are used to establish trends associated with known

operational behavior and maintenance conditions for a given system.

Wyle Laboratories is currently involved in research activities to investigate, develop,

evaluate, and refine signal analysis techniques for the detection of incipient mechanical

failures in space vehicle components and systems. This effort is being conducted under

NASA contract NAS8-33379, and this interim report is intended to augment and update

the results previously presented [l, 2].



Section 2

BACKGROUND

The space shuttle main engines (SSMEs) are probably the most, if not the most,

complicated and sophisticated propulsion systems in operation today. Unfortunately, as

with all complicated turbomachinery systems, numerous problems can be encountered

during their operation. Some of these problems may be obvious and their solution

straightforward; however, when dealing with an extremely complex system operating at

extremes in temperature, fluidic pressures, and rotational pump speeds, the seemingly

simplest of problems tend to be very difficult to diagnose, isolate, and resolve. For the

Space Shuttle, the orbiter main propulsion system consists of three SSMEs. Each is a

reusable, high performance, liquid-propellent rocket engine capable of being operated

at variable thrust levels. Each engine consists of basically three independent but

interrelated systems—one supplying fuel (liquid hydrogen), a second supplying oxidizer

(liquid oxygen), and the third providing for their efficient combustion. The turbopump

subsystems have experienced the continual problem of bearing failures during the

operation of the SSME. In particular, the bearings located in the high pressure oxidizer

turbopump (HPOTP) have demonstrated, in several cases, a short lifetime with defects

ranging from slight spalling of the balls within the bearing to the disintegration of the

entire bearing assembly. In view of this possibility, it is obvious that the need for the

capability of incipiently detecting HPOTP bearing failure is acute.

The SSME is a well-instrumented system which is continually undergoing static firing

tests to evaluate system modifications and to certify flight hardware. An abundance of

data from these tests provides information concerning the operational effectiveness and

performance of each system or subsystem within the engine. With this amount and type

of data available from numerous tests, it would appear that the basis required to allow

incipient detection of bearing failures would be readily available. However, because of

the engine's complexity and the large number of parameters to be monitored during a

test, the number of transducers that can be installed on the engine is limited. As a

result, the ideal transducer in the key location is not necessarily available. In addition,

the available transducers are externally mounted to the outer pump casing and/or

flange and are exposed to high levels of system noise which tend to mask the bearing



signals necessary to determine bearing condition. Therefore, the incipient detection of

bearing failure is compounded into a twofold problem: the extraction of bearing

signatures using data enhancement techniques and the identification of indicators

within the bearing signature which, when monitored, will correspond to some known

bearing maintenance condition.



Section 3

TECHNICAL APPROACH

To solve the problem of incipiently detecting bearing failures, the phenomenon
associated with the progressive degradation of bearings must be understood. Once the

indicators of bearing degradation have been identified, the process of monitoring and

analyzing bearing signatures can be employed, and a qualitative/quantitative assess-

ment of bearing condition can be made. Before the incipient failure detection process

can be applied to SSME bearing failure problems, however, a method of extracting

uncontaminated bearing signatures from signals heavily masked by noise must be found.

For this reason, a limited amount of effort has been expended to identify specific

spectral indicators corresponding to specific bearing failure modes. The majority of the
work performed under the present contract has been spent identifying, implementing,

and evaluating data enhancement techniques to define an optimum method or combina-

tion of methods for incipient failure detection.

As pointed out earlier, the problem of incipiently detecting bearing failures is twofold,

and the two segments of the problem are not independent. It is not sufficient to reduce

extraneous noise from a spectrum/signature at the expense of losing the relatively low-

level variations that correspond to bearing degradation; however, these low-level

components of the signature cannot be identified and/or monitored when contaminated

or masked by high-level noise. Therefore, it is obvious that some compromise between

these two extremes must be reached, but no clear cut approach is apparent. The most

fundamental question to be answered is where does the signal of interest originate, and
how is it being contaminated with noise. Obviously, the signal of interest originates at

the bearing, and the noise contamination is provided by all sources other than the

bearing.

Insofar as incipient failure detection is concerned, the most useful transducers available

on the HPOTP are the radial accelerometers located at the 135°, 90°, and 45° position

around the turbine end of the pump housing. These transducers are located relatively

close to one of the main bearings in the HPOTP; however, since the transducers are

mounted to the exterior of the pump housing (flange), they are subjected to acoustical



as well as vibratory noise. The resulting signals include the bearing response along with

noise from both external and internal pump sources. In reality, the bearing response

signals are very low level compared to the noise. To minimize this noise contamination,

one might consider the relocation of existing transducers or the installation of new

transducers inside the pump housing on the bearing supports. With the transducers

located closer to the source, it is feasible that the signal-to-noise ratio (SNR) would be

improved since the signals from the bearing itself would be stronger. The relocation of

the transducers on the exterior of the pump housing to other external locations could

possibly provide a better transmission path from the bearing source to the exterior and

thereby improve the SNR. Since the noise levels are great, however, it is unlikely that
any new exterior locations would be less susceptable to high-level random noise

contamination since strong evidence of multipropagation paths is present. In addition,

the relocation of transducers, external or internal, would be costly and time consuming;

however, it should not be totally ruled out.

A second and somewhat more modest approach to extracting bearing signatures would

be to use a data enhancement technique which would reduce the random noise

contamination in the signature while having a minimal effect on the remainder of the

signature. This approach would allow the use of existing transducers and SSM-E hot

firing test data. In practice, a number of test cases were identified. Each test case

centered around a particular high pressure oxidizer pump. The SSME hot firing test

data tapes were acquired and the data channels corresponding to the 135°, 90°, and 45°

radial accelerometers were reduced using a variety of data analysis/enhancement

techniques. The application of a number of techniques to the same test case was

performed in an effort to indicate the relative effectiveness of each technique, while

the application of the same technique to a group of test cases was used to give an

indication of how the signatures varied as a function of run time on a specific pump.

Utilization of a semiautomatic data reduction scheme centered around a minicomputer

allowed the formation of data bases from which specific indicators and/or trends

associated with bearing degradation could be identified.



Section 4-

DATA ENHANCEMENT TECHNIQUES

Since actual test data containing both the bearing signature and heavy noise contamina-

tion was readily available, the majority of the work performed under the present

contract has been spent identifying, implementing, and evaluating a variety of data

enhancement/analysis techniques. The data enhancement/analysis techniques that have

been applied to SSME hot firing tests data or laboratory-prepared test signals are

• Power Spectral Density (PSD)

• Time Domain Averaging (TDA)

• Order-Sampled Time Domain Averaging (OSTDA)

• Random Decrement Averaging (Randomdec)

• Cepstrum Analysis

• Adaptive Noise Cancellation (ANC-Adaptive Filtered PSD)

Each of these techniques will be discussed from a theoretical standpoint in the
following sections.

4.1 Power Spectral Density Analysis

Through the use of the Fourier transform, a time domain signal can be transformed into

the frequency domain. The transformation is a decomposition of the time domain

waveform into frequency components that comprise the waveform. The power spectral

density (PSD) and the autocorrelation function are Fourier transform pairs. The

autocorrelation is a time domain quantity given by

j
0

The PSD is the frequency domain equivalent of the autocorrelation and can be

expressed as

00

S(f) = dr{R(r)} = f R(r)e"j27rtrdr.
-00



This integral definition of the power spectral density provides a continuous spectral

function and is best suited for well-defined continuous waveforms. In general today,

power spectral densities are computed from discrete sampled data by using the discrete

Fourier transform (DFT). The DFT is calculated on some type of digital computer using

the fast Fourier transform (FFT) algorithm. The DFT decomposes the time domain

signal into frequency components with a specific bandwidth or resolution ( f), and the

corresponding amplitudes are normalized by this bandwidth to preserve a true density

relationship so that PSDs of varying bandwidths can be compared.

The PSD is a valuable basic tool for quick-look frequency analysis. Spectral or

frequency content can be readily determined from the PSD. If low level signals are

contaminated by broadband random noise, however, the specific spectral content

associated with the low-level signal may not be discernable due to the random

components. Nevertheless, the PSD is the best understood and most popular frequency

analysis technique for random data analysis.

4.2 Time Domain.

Time domain averaging is a well-known and powerful technique for extracting periodic

signals from noisy or complex waveforms. This process is coherent, requiring that the

period of the signal to be extracted be known or assumed. It is based on averaging of

points one period apart, where the period is the period of the signal to be extracted.

The process can be explained by assuming that a signal, x(t), is the sum of a periodic

signal, f(t), and additive noise, n(t) [3, 4]:

x(t) = f(t) + n(t).

By summing one time slice of x(t) with another starting one period later than the

previous, the periodic signal, f(t), will add coherently, and the noise signal, n(t), if

uncorrelated, will add incoherently. After M summations, we arrive at, in a mean-

square sense,

p ot Mfttj) + v/lMnUj),
M "

and the signal-to-noise ratio is therefore enhanced by a factor of



To describe the transfer function for the averaging technique, we first consider the

function to be averaged, x(t), which is sampled at an interval nT, resulting in samples

x(nT). If we denote the averaged period by mT, we can write

N-l
-̂%y(nT) = 1/N > x(nT-rmT).

Applying the z-transform, we have

N-l
- X(z) V^ v-mr _ X(z)
" ~~N~~ / * L ~ ~W~

T^

The transfer function of the averaging process is then

_ Y(z) = _
~ X(z) N , -m '

J. ~ Z

Substituting z = ejli>t, and mT = T. = 2 rr/W = 1/f. (where T. is the triggering period), the

frequency response of H(z) can be written as

1 sin

N sin

For values of o>, where aVa>t = K (an integer),

mi = _L sin 77-NK
1 1 N s i n T T K

Applying L'Hopital's rule, we get

|H|W = Kojt = 1; K = 0, 1, 2, ... .

This averaging process is then equivalent to a comb filter with center frequencies of

Rf, (f = cjJ2n). Figure 1 shows a typical shape of | H |. The filter is composed of the

side lobes in addition to the main lobes centered around Kf.. As the number of

averaged ensembles, N, increases, so do the number of side lobes, resulting in increased

sharpness of the main lobes and attenuation of frequency components not corresponding

to Kf .
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Figure 1. TDA Comb Filter

4.3 Order-Sampled Time Domain Averaging

Order-sampled time domain averaging is a simple but powerful extension of the theory

presented for time domain averaging. Order-sampling implies that the analog-to-digital

sampling of the raw data is keyed to some specific time parameter of interest, such as

the rotational speed (synchronous frequency) of a particular rotating machine. The

order-sampling of the raw data allows the effectiveness of the time domain averaging

technique to be focused in a particular time frame. Since the data acquisition is totally

in phase (coherent) with the events of interest, extraneous noise from other nonsyn-

chronous sources can be reduced.

4.4 Random Decrement Analysis

The response of a system to a random input may be decomposed into a deterministic

part (the homogeneous solution) and a random part, which we may assume to have zero

means with no loss in generality. To isolate the deterministic part of the signal, we

can average in such a way as to generate a so-called random decrement signature, or

randomdec signature [s]. A randomdec signature may be generated in one of three

ways. First, the samples to be averaged may be acquired by always starting with a

constant amplitude. This method will yield a free decay step response. The second

method involves acquiring samples when the amplitude [y(t)] equals zero and the slope

is positive (or dy/dt > 0). This method gives a free decay positive impulse response. The

third method involves acquiring samples when y(t)=0 and dy/dt < 0 and yields a free

10



decay negative impulse response. The free decay response can be described by the
ensemble average

N
6(r) = 1/N

n=l

where y(t) is the random response.

The following conditions are also applied:

t - t when y = y for method 1,n s

t = t when y = 0 and dy/dt > 0 for method 2,

and t = t when y = 0 and dy/dt < 0 for method 3,

where y is the threshold amplitude for method 1. Figure 2 describes the process where
S

a random signature is generated by method 1 [6],

Analysis of randomdec signatures is often used to detect changes in a random response

curve when the input signal is not known. The response curve itself may be so

complicated and variable that it cannot be used to detect changes in the system

although the important information is contained within the time history. The

randomdec signature computed by method 1 has several properties that make it useful
as a failure detection mechanism. The first important property is that the signature

has a constant amplitude, which respresents a calibrated level in the response curve.

This property makes the signature level independent of changes in the intensity of the

input. The fixed amplitude also serves to stabilize the form of the signature if damping

nonlinearities with amplitude are present. A second important property lies in the

randomdec signature units, which are the same as the original time history since only

signal additions are performed (in contrast to correlation techniques, which involve

multiplication).

As structural flaws or cracks begin to develop in, say, the bearing races of a pump,

additional degrees of freedom, which will be excited by ball bearing impacts and other

forces, will be introduced. The additional degrees of freedom will be manifest in
altered structural modes that will modify the randomdec signature, providing an

indication of possible incipient failure. Random decrement analysis allows the

11



detection of changes in the system characteristics by extracting the impulse response

function from the system response function without specific knowledge of the system

inputs. Another advantage of the technique is the ability to detect low level periodic

data in the presence of high level random components.

y y.

•y.

-p*

\ / \ A\J X

1 /*«S(T)

Figure 2. Evolution of a Random Decrement Signature

4.5 Cepstrum Analysis

The power cepstrum (originally called cepstrum) was first defined by Bogert, Healy and

Tukey [?J as the power spectrum of the logarithm of the ordinary power spectrum.

This may be written as \_8~\

(-* /_\ _ *r~ I i I n /.T\ I V i

A

12



where

Sxx(f) = |Fx(f)|2

and Fx(f) = "

The variable T in the cepstrum is called the quefrency. Quefrency may be interpreted

as the rate of fluctuation of related peaks in the power spectrum. For example, a high

quefrency represents a rapid fluctuation in the spectrum and a low quefrency represents

a slow fluctuation.

Cepstrum analysis may be applied to signal recognition by the response power spectrum

for the single input case as follows:

Syy(f) = |H(f)|2Sxx(f),

where

S (f) = power spectrum of the measured response,

S (f) = power spectrum of the internal source,
*m

and H(f) = transfer function from the internal source to the external measured

response.

The logarithmic representation can be written as

log [syy(nj = log [|H(f)|2J +log

The cepstrum of the measured response is then

The product of the source spectrum and the transfer function has now become a sum.

As a result, if the quefrency of the source spectrum is well separated from the

quefrency of the transfer function, the two will be easily discernible in the response

cepstrum.

13



4.6 Adaptive Noise Cancellation (Adaptive Filtering)

In general, the filtering process is used to reject the undesirable content and/or to

extract desirable information from a contaminated source containing both. His-

torically, filters were designed with some a priori knowledge of the signal or noise

characteristics to be extracted or rejected. Adaptive filters, however, have the ability

to adjust their own parameters as an automonous system, therefore requiring little or

no a priori knowledge of the signal or noise. As a result, the process of adaptive noise

cancellation using adaptive filtering can be used with problems whose inputs are

deterministic or stochastic, stationary or time variable. The concept of adaptive noise

cancellation is a means by which signals corrupted by additive noise or interference can

be estimated. The method uses a "primary" input containing both the desirable signal

and noise along with a "reference" signal correlated in some unknown way with primary

noise. The reference input is adaptively filtered and then subtracted from the primary

input to yield an estimate of the desired signal [9].

The general concept of adaptive noise cancellation is discussed in detail in reference 9,

and the use of the process as applied to machine monitoring is discussed in reference

10. An adaptive noise canceller as applied to a simplified model of a typical machine is

shown in figure 3. The following theoretical discussion (taken from reference 10)
presents a description of the methodology associated with the contamination of low

level bearing signals as a result of signal path. The discussion utilizes z-transform

theory and defines the relationship between the signal-to-noise ratios at the primary/

reference inputs and the output of the adaptive noise cancellers.

The primary input consists of signal and noise components that are assumed to have

propagated through channels with transfer functions L(z) and P(z) and with impulse

responses l(j) and p(j) respectively. The primary input is then the sum of s. * l(j) and

n- * p(j), where the * denotes the convolution integral. Likewise, the reference input

consists of signal and noise components that are assumed to have propagated through

channels with transfer functions G(z) and H(z) and with impulse responses g(j) and h(j)

respectively. The reference input is the sum of s. * g(j) and n- * h(j). For the purpose

of analysis, all propagation paths are assumed to be equivalent to linear time invariant

filters. The error signal €. is the output of the noise canceller. The unconstrained

Wiener filter theory can now be applied to the analyses of the adaptive noise cancelling

problem of figure 3.

14
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Figure 3. Adaptive Noise Cancelling Applied to a Simplified Model
of a Machine (from ref. 10)

For stochastic stationary inputs, the steady state performance of adaptive filters

closely approximates that of fixed Wiener filters, and Wiener filter theory thus provides

a convenient tool for mathematically analyzing statistical noise cancelling problems. A

classic Wiener filter with a single input and a single output is shown in figure 4. The

assumptions here are that the input signal x., the output signal y., and the desired

response d. are discrete in time and also that the input signal and the desired response

are statistically stationary. The error signal is then 6. = d. - y.. The filter is linear,

discrete, and designed to be optimal in the least mean square (LMS) sense. It is

composed of an infinitely long, two-sided tapped delay line. The optimal unconstrained

Wiener transfer function is given by

«°<z) = Sxd(z)/Sx(z),

where S ,(z) is defined as the cross power spectrum between the input signal and the
desired response and S (z) is the power spectrum of the input signal.

X
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Figure 4. Single Channel Wiener Filter
(from ref. 10)

If the adaptive process in figure 3 has converged and the minimum mean square solution
has been found then the adaptive filter is equivalent to a Wiener filter. The power

spectrum of the signal, s. (see figure 3) is S (z) and that of the noise, n., is S (z). TheJ s j n
power spectrum of the reference input is then given by

I 2 . CT /_\ I r-,/_\ I 2= S (z ) |G(z ) | 2 +-S(z ) |H(z ) | 2 ,
O II

and the cross spectrum between the reference and the primary input is

Sx(J = G*(z)L(z)Ss(z) + H*(z)P(z)Sn(z).

Assuming that the adaptive process has converged,

n S(z)G*(z)L(z) + Sn(z)H*(z)P(z)/ . u / _ \ _ s n
Ss(z)|G(z)|2 + Sn(z)|H(z)|

The output signal-to-noise density ratio is defined as

Wz) = Ss out(z)/Sn out(z)'

where S -.llt(z) is the power spectrum of the signal at the noise canceller outputout

outand S (z) is the power spectrum of the noise at the canceller output.

The transfer function of the propagation path from the signal input to the noise
canceller output is L(z) - G(z)w (z), thus the power spectrum of the signal at the

canceller's output is

) = S(z)|L(z)-G(z)<Az)|2,

16



Substituting in-this the value of &> (z),

Sn(z)L(z) |H(z) | 2 - G(z)H*(z)P(z)Sn(z)
Ssout(z) =Ss(z)

Similarly, the transfer function of the propagation path from the noise input to the

canceller output is P(z) - H(z)o> (z), therefore the power spectrum of the noise at the

canceller output is

P(z) | G(z) 12Sg(z) - H(z)G*(z)L(z)Sn(z) 2

and

>ut

Ss(z)

Sn(z)

S(z) |G(z) |2 + Si
d J

Sn(z)L(z)|H(z)|2

Ss(z)P(z)|G(z)|2

- G(z)H*<

2

;z)p(z)sn(z)
- H(z)G*(z)L(z)S(z)

' O

2

2

=
 sn(z) |L(Z)H(Z)H*(Z) - G(Z)H*(Z)P(Z) 12

Ss(z) | P(z)G(z)G * (z) - G * (z)L(z)H(z) |2

Sn(z)|H((z)

S(z)|G*(z)

L(z)H(z) - G(z)P(z)
P(z)G(z) - L(z)H(z)

S

Sn(z>

S(z)

H*(z)

G*(z)
l-iI1-

Since |H*(z)/G*(z)|2 = |H(z)/G(z) |2,

The signal-to-noi

>out = S (z) I G(z) '
S

•to-noise density ratio at the reference input £_ef(z) can be

" -(z) = S ,(zl/S f(z),ref s ref 7 n ref '

expressed as

where Sg pef(z) = Sg(z) |G(z) | 2,

Sn ref(z) = Sn(z)

17



Substituting, one obtains

Wz) = Ss(z)|G(z)|2/Sn(z)|H(z)|2

and

* out""1/<«!«•

Therefore, the signal-to-noise density ratio at the noise canceller output and at the
reference input have a reciprocal relationship at all frequencies if the adaptive solution
is unconstrained and the noises in the primary and the reference inputs are mutually
uncorrelated.

The output of the adaptive noise canceller depends on the input signals in the following
ways:

• If the signal-to-noise density ratio at the reference input is low, the output
noise will be low; that is, the smaller the signal component in the reference
input, the greater the noise cancellation.

• If the signal-to-noise density ratio in the primary input is low, the filter will
more effectively cancel the noise rather than the signal.

In essence, this theoretically implies that the noise contaminating the signal at the
primary input of the adaptive filter can be totally rejected or cancelled at the output if
the reference signal contains none of the desired signal (zero signal-to-noise ratio) and
the noise at the primary and reference inputs are correlated in some way. In practice,
total cancellation is not realistic; however, the achievable noise cancellation at the
output of the filter is on the order of the reciprocal of the signal-to-noise ratio at the
reference input.
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Section 5

DATA ANALYSIS AND RESULTS

Each of the six identified data enchancement or analysis techniques were applied to

selected sets of SSME test data or laboratory prepared test signals. A summary of the

types of data utilized for each technique is given in table 1. Table 2 provides a

breakdown of the SSME tests utilized and general information associated with each

test group.

It should be noted that the PSD was utilized more often as a comparative starting

point from which the effectiveness of the other techniques could be evaluated rather

than a data enhancement technique itself. The PSD was the logical choice for this

role because it is a well-known, basic spectral analysis format for random data and has

been routinely applied to SSME data. In all cases, the data reduction of the transducer
output signals was performed using a digital signal analyzer operating under micro-

computer control. As a result, software development to implement each technique in

addition to providing control of instrument interaction was required, and for complete-

ness that software has been included along with the resulting spectra.
<?

5.1 Data Selection Criteria

The data to be used as test cases for the evaluation of any given technique were
selected with the complexity of the technique and the availability of the various types
of data in mind. For the most part, each technique was first applied to some type of

laboratory signal to obtain a familiarity with the technique under controlled circum-

stances. Based upon the performance of the technique on the laboratory signals, a
second type of data was selected. Normally, the data chosen was SSME test data.

Early in the program, however, data from a laboratory test performed on a small

turbopump similar to the HPOTP was available and was used as a test case for some of

the techniques.

SSME test cases were selected such that the same HPOTP was used for a number of

tests (typically 4 or 5 consecutive tests). It was believed that these test groups would
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TABLE 1. Analysis Technique/Data Type Summary

Analysis Technique
Data Type

Laboratory Test Signals

Saunders' Laboratory
Bearing Test Signals

SSME Static Test
Firing Signals

PSD

X

X

X

TDA OSTDA Randomdec Cepstrum ANC

X X X X

X

X

X

X X

TABLE 2. SSME Test Data Utilization Summary

HPOTP
Serial

Number

9008

Engine
Serial

Number

2004

0009 0009

2206 0009

0209
0209R1

0107
0107

2113

2310

Test Stand/
Test Number

902/187-193

901/290-294

901/301

901/339-343
901/351-352

2014 901/367-372

2010 902/271-276

Total
Run Time
Seconds

2400

2500

820

2500

2000

2100

Comments

Only test 193 analyzed. Bad #3
bearing discovered after test.
Applied techniques: PSD, TDA,
OSTDA, ANC.

Only test 294 analyzed. Desig-
nated as test with good bearings.
Applied techniques: PSD, TDA,
OSTDA.

Single test run with known
bearing flaw (spalled balls).
Applied techniques: PSD, TDA,
OSTDA, ANC.

Test 339 was green run for
pump. Adaptive filter test set 1.
Inspection of pump performed
after test 343; Boroscope
indicated no apparent bearing
damage. Slight spalling of
bearing balls discovered after
test 352. Applied techniques:
PSD, ANC.

Adaptive filter test set 2. Test
372 not reduced. Applied
techniques: PSD, ANC.

Adaptive filter test set 3. Test
276 not reduced. Applied
techniques: PSD, ANC.
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provide an abundance of data that would be representative of a specific pump's

operation over a relatively long period of time. Generally, a group of SSME tests

would be chosen when a completely refurbished pump was first installed on an engine,

and all subsequent tests performed with the same pump were added to the group. If a
particular bearing condition was known to exist, specific SSME tests were chosen to

provide test cases that could be associated with the particular defects and/or

operational configuration. In general, SSME tests are routinely performed with
varying run times and power levels. As a result, some tests for a given pump did not

provide a sufficient run time or maintain a particular power level for a period long

enough to be properly analyzed. Therefore, data from some tests in a series were not

reduced. For the most part, SSME test cases were chosen with operational power

levels of 100-109 percent. Segments of the test run where a constant power level

(either 100 percent or 109 percent) was maintained were isolated and analyzed using a

particular data enhancement technique. Therefore, the entire test run was seldom

reduced, and the total run time reflected in table 2 has no relationship to any given

power level, only total pump operation.

5.2 HPOTP Spectral Characteristics

A typical PSD reduced from the signals provided through one of the accelerometers

mounted on the flange at the turbine end of the HPOTP is shown in figure 5. This PSD
was computed over the frequency range of 0-5 kHz with a resolution bandwidth (Af) of

12.5 Hz. The spectrum is normalized to a 1-Hz basis and contains spectral information

that is directly related to the dynamic operation and environment of the HPOTP. The

most notable characteristics of this PSD are three prominent peaks in the spectrum.

The lowest frequency peak is defined as the fundamental, or synchronous, frequency

(IN) and is associated with the rotational speed of the main shaft. The second and

third prominent peaks in the spectrum correspond to the fourth (4N) and eighth (8N)

harmonics of the shaft rotational speed. These 4N and 8N peaks are quite pronounced

and have been reinforced by the presence of a four-blade impeller attached to the

shaft. Since these peaks are related to the rotational speed of the main shaft and this

speed is relatively constant for a given power level, these peaks are quite narrow in

width, corresponding to very narrow band energy concentrations. The lower level and

more broadband random peaks constitute the background noise level of the spectrum.

Contained within this background noise are the remaining harmonics (2N, 3N, 5N, 6N,

etc.) of the rotational shaft speed. Since these harmonics are not readily identifiable,
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Figure 5. Typical HPOTP Acceleration PSD
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they are said to be masked by the random noise content of the spectrum. In addition

to the rotational speed/blade pass harmonics, other spectral components associated

with dynamic operation of the HPOTP are also being masked by this background noise.

Included among the masked spectral components are the inner/outer race ball-pass

frequencies and ball-spin frequencies associated with the main bearings. It is

interesting to note that an increase in the amplitude of the broadband random spectral

data occurs in regions corresponding with these computed frequencies. These

frequencies have been approximated through analytical computations and are con-
tained in table 3.

TABLE 3. HPOTP Bearing Frequencies

Location Frequency

Cage 0.427 x sync

Ball Pass:
(a) Inner raceway 7.45 x sync
(b) Outer raceway 5.55 x sync

Ball Spin 3.13 x sync

5.3 Time Domain Averaging

Two separate but related approaches to the implementation of time domain averaging

as a data enhancement/incipient failure detection technique were investigated. The

first of these involved the development of computer software to perform the

appropriate time shifting (nT) and averaging while the second approach used the more

conventional technique of digitally acquiring blocks of analog data by using a

predetermined trigger condition and averaging the entire data blocks in the time

domain. The details associated with the implementation of each technique and the

results achieved with each are discussed in the following 'sections. A flowchart

depicting the basic operation of the software developed for implementation on an HP

5451C Fourier analyzer is shown in figure 6 and a listing is provided in table 4.

5.3.1 Shift-and-Add Time Average

Several generations of TDA software were developed with each following the same

basic flow and each successive generation incorporating new refinements. In the first

generation, the software initiated the acquisition of a single block of time data as
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TABLE 4. TDA Software Listing

1 L
5 Y
18 Y
J3 Y
28 Y
24 BS
28 Y
34 Y R
39 V
45 Y R
58 Y :
57 Y :
64 Y 5
71 Y A-
78 L
82 Y
86 CL
98 Y *
97 Y :
184 L
188 CL
111 CL
115 X<
119 X>
123 L
127 _
132 ft*
136 «
142 :
147 E)S
151 F
154 «-
157 L
161 TL

1508
5338
5821
5965
5814
1824
5819
2888

5819
2881
2888

8
3888

8
1518
5814

2
2882
2882

1528

1
5
1

1521
1
1

1521
9

512

1530

15
6
6

1

2

1
2088D

1
80

80
1

1

1

2888D
2881D
28880

2

2881D

164
168
174
179
185
198
196
281
287
211
216
222
226
238
235
241
246
258
256

Y
Y
Y
Y
Y
Y
Y
Y _
L
Y A+
i
Y
L
Y A+
t
Y A*
BS

0

5888
5888
5819
5888
1889
5888
1889

1
1531

1
1531
5828
1532

1
1532

8
1824
1518

980
11
988
2888
858
2882

8

8

28

5

988

758

758

8

8

8

2882D
HS33

M523

16

8D

18
18

Analog-to-Digital
Data Acquisition

Determine the Proper
Number of Channels
for the Time Shift

Shift the Time Record
and Average

i
Convert Averaged Time Record

to Frequency Domain

I
I Plot TDA Spectrum |

Figure 6. TDA Software Flowchart
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specified by the HP 5451C front panel switches controlling the digital sample rate

(At). The software then allowed the user to specify the desired TDA filter frequency

(fj. To perform the time averages, the original data block was shifted an integer

number of /It's and then averaged. This "shift-and-add" process was repeated until the

user-specified number of averages was complete. In most cases, the desired TDA

period (T, = 1/fJ did not coincide with an integer number of dt's. Therefore, a TDA

filter sweep was incorporated into the software to calculate the number of 4t's (nAt)

closest to T,, and five separate time averages beginning with T = (n-2)At and ending
Q cl

with T = (n+2)4t were then calculated for the original block of data.
8.

To evaluate the TDA software, a complex periodic signal containing a variety of

frequency components with two known levels was synthesized in the laboratory for use

as a test case. A TDA filter sweep around 2441.4 Hz, 3418.0 Hz, and 12,500 Hz was

performed, and some interesting results emerged. It was noted that the level of the

test signal was reduced in some cases but not in others. As a result, an unanticipated

problem associated with the block shift TDA technique became apparent. The

difficulty arose from the fact that only under special circumstances did the center

frequency of the TDA filter correspond with the center of a frequency resolution filter

of the FFT. As an example, consider the case where data is acquired in a 2048-point
data block with a sample rate (At) of 20, microseconds and a resulting frequency

resolution (At) of 97.656 Hz. For this case, the center frequency of the TDA filter
generated from a 2Q-At shift is l/204t or 2500 Hz. This frequency does not correspond

to an integral number of 4f's (2500 Hz = 25.6 At); however, if a TDA filter generated

by a 16-4t shift (l/l6At = 3125 Hz) is considered, an exact correspondence to the

thirty-second narrow band filter (or 3125 = 32 Af) is obtained. From this argument, it

can be seen that the selection of the At shift can be quite critical and therefore

restricts the usefulness of the shift-and-add time domain averaging technique.

5.3.2 Triggered Time Average

The second TDA technique studied involved acquiring analog data by using a trigger

and averaging entire data blocks in the time domain. When a trigger condition (based

on the periodic signal to be extracted) was met, the data acquisition for each data
block began. Laboratory data was generated by combining a random signal with a

3125-Hz sinusoidal signal in an electronic summing network. The data acquisition

trigger was generated by converting the sine wave to a pulse through a ratio frequency
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synthesizer (VIC960B). The pulse as used as a trigger to initiate each analog-to-digital

data acquisition process. A block diagram of this setup is shown in figure 7. It should

be noted that this procedure produces the same in-phase relationship between the

sinusoidal component of each successive time domain data block, as did the previously

described shift-and-add TDA technique.

RANDOM NOISE
GENERATOR

BANDPASS
FILTER

HP 5451C
A to D

SINE WAVE
GENERATOR

/ VIC960B
HP 5451C
TRIGGER

Figure 7. TDA Laboratory Data Block Diagram

The triggered time domain average technique was applied to three sets of laboratory

synthesized test data. The test signals were composed of a sinusoidal component (3125

Hz) combined with white random noise. The first set of test data contained a

sinusoidal component whose rms level was approximately 3 dB above the random

signal. Figure 8 contains the PSDs for the sinusoid, sinusoid + random components, and

various combinations of time/frequency domain averages or ensembles (TDA/FDA).

One should note that the sinusoidal component can be readily identified in all the

PSDs. It is also apparent from figure 8c and d, however, that the level of the random

components has been reduced by approximately two decades. In addition, one should

note the smoothing effect on the random components in the spectra. This should be

expected since the process (FDA) is the same as the normal PSD ensemble

computation.

Since the sinusoidal component of the test signal was pronounced in all the PSDs from

the outset, a second set of data was synthesized by using the same random signal, but

the rms value of the sinusoid was reduced to approximately 10 dB below that of the

random signal. As can be seen in figure 9, the sinusoidal component cannot be

identified in the PSD of the combined signal. After 50 TDA computations and 5

frequency domain averages (ensembles), however, the sinusoid can just be recognized.
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By the time 150 TDAs along with the 5 PDAs have been completed, the sinusoidal
component is definitely identifiable. Again, a reduction of approximately two decades

has been achieved through the application of the TDA/FDA technique.

Finally, a third test signal was used in which the rms level of the sinusoid was reduced

by an additional 7 dB (-17 dB total) below that of the same random signal. Once again

the sinusoid could be identified, but a substantial number of TDA were required (see
figure 10). Figure 11 is a graphical depiction of the effectiveness of the TDA

technique as a function of the number of time and frequency domain averages for both

linear and autospectral density analyses.

From an examination of the three sets of data and the evaluation of the magnitude of

the random noise with respect to the number of TDAs, a trend that closely follows the

prediction of the TDA mathematics was noted. Namely, the magnitude of the noise

was reduced by approximately the square root of the number of TDAs. At the same

time, the magnitude of the sinusoid remained unaffected.' The effect of ensemble

autospectral averaging (FDA) serves only to "smooth" the random signal.

5.3.3 TDA Technique Evaluation

In evaluating the two time domain averaging techniques described, it was seen that

TDA can be a useful tool for extracting low level periodic information from a high

level random signal. To perform the number of time domain averages necessary to
lower the random signal level to below that of the target information, however, the

amount of continuous raw data (time) required becomes greater as the magnitude of

the periodic information with respect to the random signal decreases. Also, as

previously discussed, it is necessary to have some a priori knowledge of the signal to

be extracted. This information may take the form of a user-defined TDA filter center

frequency, as with the shift-and-add software, or a trigger related to the signal that is

being extracted. For application to incipient failure detection of bearing degradation,

the required a priori knowledge is not always available. For example, the accuracy of

ball-pass frequency calculations is affected by how closely the ball slippage can be

approximated. For this reason, even when using the triggered time average technique,

the data must be reduced using several different trigger, or TDA filter, frequencies

covering a range surrounding the calculated ball-pass frequencies.
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Figure 11. TDA Performance Summary as a Function of the Number of
Frequency and Time Domain Averages
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Of the two techniques discussed, the software shift-and-add technique shows promise

but requires more development. This technique would be of most value when a trigger

related to the periodic signal being extracted is not available. The triggered time

averaged method, however, appears to be useful as long as a trigger signal is available.

When a trigger signal is unavailable, further work needs to be conducted in an effort to

isolate a suitable trigger from, possibly, a shaft or turbine blade passage harmonic.

5.4 Order-Sampled Time Domain Averaging

Based on the work and conclusions described in the previous section, the triggered

time average technique was combined with order ratio sampling for futher evaluation

and development. Order sampling simply means that the analog-to-digital (A-to-D)

sample rate is keyed to the rotational speed of the machine whose signature is being

analyzed. When this sampling is implemented by the HP 5451C, the number of orders

of the revolution that can be resolved in the spectrum is one-half of the sampling rate.

This is called the Nyquist frequency, as treated in Shannon's sampling theorem. In

other words, if an analysis of ten orders of the revolution rate is desired, the A-to-D

sampling must be triggered at 20 times the rotation frequency (20N). Obviously, like

TDA, order sampling requires a speed probe, or tachometer. As with the TDA trigger,

the sample rate trigger is generated by a ratio frequency synthesizer from a speed

probe or a detectable machine harmonic (such as blade passage) in the data.

5.4.1 Laboratory Data Evaluation

The order-sampled time domain averaging (OSTDA) technique was used to reduce

bearing test data generated by the MSFC Dynamics Lab. Briefly, this test involved a

small turbopump with two main ball bearings. The pump was turned at approximately

850 rpm (14.2 Hz) by an electric drill motor. Several tests were run, each under
different conditions. At least one test was run with a known flaw (a hole drilled in the

outer race) in one of the bearings. The actual condition of each bearing during the

tests was not revealed so that the data might be viewed objectively. During each test,

acceleration data on the pump housing above each bearing as well as a tachometer

signal were recorded on magnetic tape. Before the data were reduced, some

calculations were made to approximate some of the bearing characteristics, such as

inner and outer race ballpass frequencies, ball spin frequency, etc. These characteris-

tic frequencies are listed in table 5. (These tests have been referred to as the
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Saunders' bearing tests' because they were conducted by Jerry Saunders of the MSFC
Dynamics Lab.) The data reduction instrumentation used for these tests is shown in
figure 12. The output of the VIC 960 is a square wave whose frequency is a ratio of
the input periodic signal. The square wave output was bandpass filtered around the
fundamental to produce a sine wave. These sine wave signals were used for the data
acquisition and sample rate triggers.

TABLE 5. Characteristic Frequencies for Saunders' Bearing Test

Synchronous
Ball Spin
Ball Pass:
(a) Outer Raceway
(b) Inner Raceway

Frequency at
850 rpm (Hz)

14.17

38.96

59.50
82.88

fi/fsync

1.00

2.75

4.20
5.85

Tape
Player

o
o

Ch 7

Ch 6 1

Tach 1

Ch 3, Ac

Time Code
Translator

vrc
960

VIC
960

eel 1

Ch 5. Accel 2

Bandpass
Filter

Bandpass
Filter

Bandpass
Filter

External Sample Rate

External Trigger .

Channel A Input

HP
5451C

„ 1
Figure 12. Block Diagram of the Data Reduction Instrumentation

for Saunders' Bearing Tests

Figures 13 and 14 contain the reduced data from two of Saunders' bearing tests (test
2). The data set includes a baseline order-sampled autospectrum and OSTDA

calculated spectra for each frequency in table 5. OSTDA calculations were included

for the IN case so that all harmonics of the shaft frequency could be viewed. (N
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refers to the synchronous frequency, or running speed, of the machine.) No OSTDA

calculations were performed at the 4.2N frequency because the 60-Hz line noise was

dominant in all data from accelerometer 1. For all data sets reduced from Saunders'

tests, 250 time averages were calculated. The time domain averaged data was

converted to an autospectrum and averaged with 15 other similar ensembles. Table 6

lists the keyboard program used to calculate the baseline autospectra, and table 7 lists

the keyboard program used to calculate the OSTDA spectra.

Figure 13 contains the baseline autospectrum for test 2, accelerometer 1. The first

feature of this spectrum that should be noted is the presence of peaks associated with

the first, second, third, and fifth orders of the synchronous frequency. In addition,

extraordinarily wide peaks are present at 3.25N, 3.75N, 4.2N, and 5.25N. It is

hypothesized that this phenomenon is caused by the presence of frequencies that are

not constant with respect to the pump speed. The 4.2N peak is known to be a 60-Hz

line noise whose frequency is constant; however, the pump speed is not constant.

Therefore, the normally narrow frequency component appears widened due to the IN

order sampling. Also, a very sharp peak stands out at approximately 6.85N. This peak

was also present in the OSTDA spectra calculated for the 2.75N, 3.75N, and 5.85N

triggers, but it could not be seen in the OSTDA spectrum calculated with a 6.85N

trigger. The OSTDA spectrum for a IN trigger clearly shows all the harmonics of the

synchronous through the seventh, and the noise floor has been reduced by approxi-

mately 20 dB. Although the remaining OSTDA spectra show a reduction of the noise

floor, none of the corresponding peaks are pronounced.

The data reduced from Saunders1 test 2, accelerometer 2 is presented in figure 14. In

the baseline autospectrum for accelerometer 2 none of the synchronous harmonics are

prominent; however, sharp peaks at 2.75N and 5.5N are noticed. The peak at 4.2N is

again caused, at least in part, by 60-Hz line noise, though the magnitude is not as

dominant as in the accelerometer 1 data. The IN OSTDA spectrum shows the IN, 3N,

4N, and 6N harmonics of the shaft speed clearly. As was the case with the data from

accelerometer 1, no peaks at the other OSTDA trigger frequencies can be seen in the

remaining OSTDA spectra.

Figures 15 and 16 contain the reduced data from Saunders1 test 3 for accelerometers 1

and 2 respectively. The same trends are noted in this data; however, the noise floor is
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TABLE 6. Order-Sampled Autospectrum Software Listing

27 HAY 81
1 L 8
5 BS 312 BASELINE AOTOSPECTRUM
* Y 3865 3 ORDER SflHPCf6~T
14 Y 3818 1 FREE RUN TRIGGER
19 CL 1
23 L 1
2? CL
38 RB
33 * 9 733
38 : 0 19888
43 F
46 t-
49 A* 1
53 X> 1
5? • i iea B
63 : 1 186
63 * 1 2
73 X< 1
77 TL
88 Y K
84 .

TABLE 7. Order-Sampled Time Domain Averaging
Software Listing

28 HAY 81

TDA CALCULATIONS
ORDER SAMPLED

1 L
5 Y
18 Y
13 BS
19 CL
23 Y .
29 L
33 CL
37 L
41 CL
44 RB
47 A+
31 X>
55 f
61 :
66 F
69 t-
72 A*
76 X>
88 Y A+
83 Y IF
93 0
96 Y . '
182 t
188 :
113 t
118 *
123 :
128 1
133 *
138 X>
142 TL
143 Y K
149 .

8
3863
5018
236
2

1
1
2

1
1
2
8

2
2

1
8
8
8
8
8
8
2

3
1

1 8

238
258

1
1 4

i e
16
16
735
735

18088
18888

2

9

2 -2

9
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higher on both accelerometer 1 and accelerometer 2 during test 3. As with the test 2

data, the 60-Hz line noise is present in accelerometer 1; however, the 60-Hz noise is

absent in the accelerometer 2 data.

The most important observations to be made from these test data sets are the

remarkable performance of the IN triggered OSTDA spectra and the absence of any of

the expected peaks in the remaining OSTDA spectra. As indicated by the IN OSTDA

data, the technique appears to function well. The order sampling makes the spectra

much easier to read and, more importantly, centers the synchronous harmonics in the

same frequency band of the analyzer regardless of any speed variations of the

machine. The absence of expected peaks in the other OSTDA spectra might possibly

indicate that the calculations of the bearing characteristics are in error. Ball

slippage, for example, is a key parameter in the calculations and is very difficult to

approximate. These characteristic frequencies might be "found" by calculating several

separate OSTDA spectra and sweeping the trigger frequency (changing the trigger

frequency for each OSTDA spectrum) over a small range around the calculated

characteristic frequency. This possibility was not pursued due to time restrictions.

The poor performance of the OSTDA technique to extract those peaks which can

already be clearly seen in the baseline autospectrum cannot be explained at this time,

although it may be an indication of the narrowness of the main lobe of the TDA comb

filter. Further work will be necessary to evaluate the OSTDA sweep concept and to

determine why OSTDAs triggered at the 3.25N, 3.75N, 5.25N, and 6.85N could not

produce the peaks seen in the baseline autospectra.

5.4.2 SSME Dynamic Data Evaluation

The performance of the OSTDA technique when applied to Saunders' bearing test data

had not been extremely successful. The IN-triggered OSTDA had reduced the random

background noise by approximately 20 dB, however, and the harmonics related to the

synchronous (IN) had been enhanced. With these points in mind, the determination of

how effective the IN-triggered OSTDA techniques would be on actual HPOTP

vibration data remained to be made. Therefore, the OSTDA technique was applied to

vibration data from SSME hot firing tests 193, 294, and 301. Each test had three

accelerometers oriented radially on the pump end of the high pressure oxidizer

turbopump (HPOTP). Due to the absence of a speed probe on any of the tests, a

substitute tachometer signal had to be found. To synthesize this tach signal, the
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vibration signal was enhanced in the time domain by using Digital Audio Corporation's
adaptive filter (DAC 10241). The output of the DAC 10241 was bandpass filtered

around either the 4N or 8N peak in the signature. This signal was the input to the VIC

960 frequency ratio synthesizers which outputted, after filtering, the signals required

for the order sampling and data acquisition triggers. (See figure 17 for a block

diagram of the data reduction instrumentation.) This technique for synthesizing a
tachometer signal worked well as long as a pump shaft harmonic of adequate strength

was available. The same software used for the Saunders1 data, shown in tables 6 and 7,

was used to reduce the SSME vibration data.

Tape
Player

Pum

DAC 1024
J Adaptive
~ Filter

L

—

Bandpass
Filter S2

Bandpass
Filter SI

/"

\̂

VIC 960
#2

VIC 960
#1

CHAM

Bandpass
Filter 14

Bandpass
Filter #3

JEL A INPUT

External
Sample Rate

External
Trigger

HP 5451C

. !
Figure 17. Block Diagram of Data Reduction Instrumentation

for SSME Pump Vibration Data

SSME test 193 was conducted with a 368-second burn at 109 percent of the engine's

rated power. Channel 6 of the data tape contains vibration data from an accelerom-

eter mounted radially, 45 degrees from the reference axis. Channel 8 is data from a
radial accelerometer mounted at 90 degrees, and channel 9 is radial acceleration data

at 135 degrees. For all three data channels, the sampling and data acquisition triggers

were synthesized from the 8N component of the vibration signature. OSTDA data was

reduced with a IN time average trigger. The OSTDA calculations were made for five

overlapping 75-second segments of the 109% power run. Data from each accelerom-

eter was reduced using the OSTDA; however, since the resulting data was quite

consistent from accelerometer to accelerometer, only selected data from the 135°

accelerometer (channel 9) for each test has been included in this report. Figures 18

through 20 contain a baseline order-sampled autospectrum along with selected 1N-

triggered OSTDA spectra for tests 193, 294, and 310 respectively. The sampling and
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data acquisition triggers were synthesized from channel 6 since the 8N component was

well pronounced in the signature. The sampling rate for all sets of data was 20N, and

the data was filtered from 1 to 5000 Hz.

As with the Saunders data, the IN OSTDA performed well, and several shaft harmonics

were exposed by reducing the amplitude of the noise floor. Reducing this data over a
period of time allowed for a course trend analysis. For example, the magnitude of the

2N peak for test 193 showed a sharp increase in amplitude as time passed. This change

might be an indicator of bearing degradation or an elliptical shaft orbit. The same
trend in the magnitude of the 2N peak was noticed in all the data channels from test

193. Following test 193, the HPOTP was disassembled, and the pump's No. 3 bearing

was found to be damaged.

SSME test 294 consisted of a 576-second run with the engine running at 102 percent of

its rated power. The pump was known to contain good bearings at the beginning of this

test. The 4N component was filtered and used for the sampling triggers. In studying

the trends from this data, the magnitudes of the synchronous harmonics held relatively
steady over the entire period of the 102% power run. The only significant change was

a slight decrease in the magnitude of the 8N peak.

The HPOTP used for test 301 contained a bearing with a known flaw (spalled balls).

Ten seconds after engine startup, a 510-second run was conducted with the engine
operating at 100% power. During the early part of this run, none of the synchronous

harmonics appeared with a magnitude significant enough to be used as a tachometer

signal. For this reason, the OSTDA data reduction was not begun until four minutes

into the 100% power run. At that time, the 8N component became strong enough and

was used as the pump speed indicator or tachometer signal. The channel 6 data

showed no synchronous harmonics other than IN and 8N, and these peaks remained at

approximately the same magnitude throughout the remainder of the 100% power run.

Channel 8 also showed only IN and 8N components, each increasing slightly in

magnitude throughout the run. Channel 9 (see figure 20c) showed a IN component

which dropped out but reappeared as the test progressed. Channel 9 also showed a 4N

component that was not present in the data for the other two channels. The

magnitudes of 4N and 8N components remained fairly steady.
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These three tests (193, 294, and 301) represent three different conditions of the

HPOTP bearings. Following test 193, the bearings were known to be bad and were

believed to have gone bad during the test. The 2N harmonic, as noted, could be an

indicator of this bearing's degradation. Test 294 had good bearings installed before the

test. The synchronous harmonics are present and high in magnitude but relatively

constant. Test 301 was known to have had bad bearings installed before the test.

Most of the synchronous harmonics are absent, and those that do appear remain

constant. However, the noise floor in test 301 is much higher relative to the

synchronous and blade passage peaks than in the other tests. No positive indicators of

bearing degradation could be deduced from these data sets.

5.5 Random Decrement Averaging

To develop and evaluate the randomdec technique, software was developed for use

with the HP 5451C Fourier analyzer. Basically the software controlled the acquisition

of a time domain data block and searched through the data until the threshold

condition was met. This point was then shifted to the beginning of the data block, and

this "new" time function was added to the original data block. The shifted data block

was then searched until the next point to meet the threshold requirement was located.

Once again the block was shifted and averaged with the previous two data blocks. The

process was repeated until all the usable data in the original time signal had been

utilized. Figure 21 is a general flowchart of the basic randomdec software, and a

program listing is provided in table 8.

Five sets of laboratory-generated data were used to evaluate the random decrement

averaging technique. Each data set consisted of a time domain waveform that was

formed by the superposition of a 3125-Hz sinusoid and varying levels of random noise.

Set 1 contained a relatively low level of random noise and was randomdec averaged

using a threshold of 0.1 volt.Cy = 0.1). Figure 22 shows the test signal and thes
resulting randomdec-averaged signal. Clearly, the randomdec technique was effective

in reducing the random noise contamination and produced a relatively "clean" sinusoid.

For set 2, a random signal of the same magnitude as set 1 was combined with a 3125-

Hz sinusoid whose magnitude was 10 dB lower than in set 1. As can be seen from

figure 22, the superposition of these two waveforms still maintains some indications of

periodicity. The randomdec software operated on this signal with a threshold of 0.05
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volts. The resulting randomdec average is also shown in figure 22. Once again, a

relatively uncontaminated sinusoid is produced with only small variations in amplitude

apparent.

TABLE 8. Randomdec Software Listing

1 L
5 BS
9 CL
12 CL
16 CL
28 CL
24 CL
28 CL
32 CL
36 Y
41 Y
46 Y
58 Y
56 Y R
62 Y
68 Y R
74 Y A-
81 Y IF
89 Y _
95 Y :
182 Y *
189 L
113 Y
117 Y
123 Y R
128 HS
133 Y _
139 L
143 BS
147 CL
158 CL
154 CL
158 Y .
164 Y _
178 RA
173 X>

3608
4896

1
2
3
4
5
6

5821
5838
5814
5819

8
5819

2
4
2
2
5
5

3681
5814
5819
2888
31

6
3618

80

1
2
7
8

1

6
36

1

3
80
8
40
80
50

8
1

10

10
3

17? L 3611
131 Y _ 9
187 L 3612
191 Y A* 9
196 Y X< 2881
283 Y IF 2881
211 J 3612
215 _ 1
228 X< 1
224 A- 2
228 : 8
233 A* 2
237 X> 2
241 Y A* 8
246 Y A+ 7
253 Y IF 8
261 Y IF 7
269 J 3611
273 L 3628
277 X< 2
281 BS ID
285 F
288 *-
291 ft- 50
295 : 8
388 fit 50
384 X> 50
388 Y A+ 6
313 • 3618
319 L 3698
323 X< 50
327 TL
338 Y 5888
338 Y 5888
344 V s\. Q

9

1
28880

90

80

70
20
40

60

3D

6
408

18

90
1

90
2
T

2
2

8

8
8

188

5820

Data set 3 showed an interesting development in the operation of the randomdec

technique. In this case the magnitude of the sinusoid has been reduced an additional

10 dB, removing any semblance of periodicity in the test signal. After randomdec

averaging the input signal using a threshold of y = 0.03 volts, the resulting waveform
^

resembled, to some degree, the input signal used for data set 2. Based on this

observation, a second randomdec average was performed using a threshold of y =s
0.006. The resulting second randomdec averaged waveform appears to be very

periodic, as can be seen in figure 23.
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The evaluation of data set 4 was similar to set 3 in that multiple randomdec averages

were performed on the original time waveform. For each successive randomdec, the

input was the previous randomdec output. The magnitude of the sinusoid was reduced

by an additional 10 dB from that in set 3, and the threshold for the first randomdec

was y = 0.05 volts, with this threshold level being decreased for each successives
randomdec operation. The second threshold was y = 0.01; the third, y = 0.001; the

S S

fourth, y = 0.0003; and the first randomdec threshold was y = 0.0002. From figure
S ' S

24, one can see that the output of each successive randomdec operation is more

periodic, or "cleaner," than the previous.

The results for the final set of data (set 5) is shown in figure 25. For this test set the

input was basically the same as for set 4; however, the randomdec operation was

performed only once using a threshold of y = 0.0002 volts. This was the same
S

threshold level used for the last randomdec operation of set 4. Note that the resulting

waveform is quite different from the output of the fifth randomdec in set 4 (figure 25)

and exhibits very little periodicity. In addition, a negative dc shift has appeared and

cannot be explained at this time.

From the five test cases, it is apparent that the randomdec averaging technique shows

promise in reducing the random contamination present in a given waveform. As noted
from the comparison of sets 4 and 5, however, the threshold appears to hold the key to

the randomdec operation. The questions of what threshold should be used, how many

randomdec operations need to be performed, and in what steps should they be

performed have yet to be investigated and could be difficult to determine and/or

estimate with respect to actual HPOTP data.

5.6 Cepstrum Analysis

To understand and evaluate the cepstrum analysis technique, it was used as a tool in

reducing laboratory-generated data. This data consisted of an electronically summed

complex periodic signal, such as a square wave and/or a square wave combined with a

sine wave.

A short keyboard program was written for the HP 5451C to generate the cepstrum.

The software calculated an averaged log power spectrum, following which several

individual keystroke commands were performed in order to calculate the cepstrum.

51



8 188 288 388 488 588 688 788 888 988

First Randomdec, y = 0.05 volt

188 288 388 488 588 688 788 888 9888 188 288 308 488 388 688 788
18"s SEC

Second Randomdec, y =0.01 volt
S

Third Randomdec, yc = 0.001 volts

188 288 388 488 388 S88 788 888 9888 188 288 388 488 988 688 788 888 988 1888
18'* SEC

Fourth Randomdec, y = 0.0003 volt
S

Fifth Randomdec, y_ = 0.0002 volt

Figure 24. Randomdec Results for Test Case 4

52



ORIGINAL PAGE fS
OF POOR QUALITY

ie-1 u

.6-

.4-

' .2

-e

-.2

-.4

-.6-

-.8-

-i.e
0 188 280 368 488 308 £88 788 888 »M 1806
IB"5 SEC

Input

J8-1
s.a.

a 188 280 388 488 368 <68 788 886 1868

Randomdec, y = 0.0002 volt
S

Figure 25. Randomdec Results tor Test Case 5

53



These additional keystrokes included an inverse Fourier transform and self-multiplica-

tion (or squaring). In some cases, the first and last channels of the Fourier-

transformed log power spectrum were cleared (set to zero) before the cepstrum

calculation was completed. This clearing of the first and last channels was solely for

the purpose of enhancing the scale of the displayed cepstrum. A listing of the
cepstrum software is presented in table 9.

TABLE 9. Cepstrum Software Listing

(a) Program 1

1 L 8 28 FEB 81
5 CL CEPSTRUM PROGRAM
3 CL 1
12 CL 2 ADDITIONAL PROCESSES
16 L 1 F
28 R* *
23 F TL
26 >-
29 A* 1 FOR DC CLEARED CEPSTRUNS
33 X> J F
37 • 1 25 0 CL0 0 1
43 : 8 25 CL0 <N1) <N2>
48 * 8 2 C HI « BS'2J N2 « BS 3
S3 X> 1 X
57 X> 2 TL
61 TL
64 Y K
68 .

(b) Program 2

1 L
5 Y _

11 Y _
17 L
21 Y X>
28 Y A*
35 ft
41 L
45 X>
49 TL
52 F
55 CL
£0 *
62 Y K
67 Y
71 0
74 L
78 X<
82 Y K
86 Y
98 .

8
0
1

1
1
0

1
2
1

0

5820

3
1

5820

18
1

0 80
0D 18

50 0

0

26 FEB 81
CEPSTRUW ANALYSIS
SAMPLE CASE SETI2
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Figure 26 show typical results of the cepstrum technique performed on a complex

periodic signal composed of a 200-Hz square wave and a 700-Hz sinusoid. Since the

square wave generator output is a distorted signal, low amplitude even harmonics are

seen in figure 26 in addition to the expected odd harmonic components. The spacing of

the various peaks are also noted on the figure. The cepstrum was generated by

performing the following individual operations:

F (Inverse Fourier Transform).

CL 0 0 (Clear channel 0 (dc)).
CLO 4095 (Clear the last channel of the data block).

* (Square the function's magnitude).

D 0 255 (Display the first 256 channels of the function).

Only the first 256 channels have been displayed for the purpose of clarity. Noted on

figure 26b are the locations of the quefrency associated with various frequency

spacings in the original power spectrum. It is obvious from figure 26 that interpreta-

tion of the cepstrum requires experience. Because of the complexity of this cepstrum,
a simplified set of test data was generated to evaluate the cepstrum technique.

Figure 27 presents a set hand-generated power spectrum. The keyboard program listed

in table 9b was written to perform the following functions on the hand-generated
power spectra.

TL (Convert the power spectrum to log amplitude).

F (Inverse Fourier Transform).

CL 0 0 (Clear the dc channel).

* (Square the time function).
Y K (Plot the cepstrum).

Figure 27a shows the power spectrum and the linear cepstrum of a complex periodic

signal composed of a 200-Hz and a 400-Hz sine wave of equal amplitudes. Note the

repetitive character of the main lobes and the two smaller side lobes in the cepstrum.

The quefrency of the first main lobe corresponds to a spacing of 200 Hz in the original

power spectrum. The overall character of the cepstrum is the same as that expected

for the square of a complex periodic signal. A number of test cases were analyzed,

and the quefrequency of the first main lobe continued to correspond to a spacing of

200 Hz in the power spectrum.
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A second case, shown in figure 27b, indicates the generation of more side lobes as the

number of harmonics increased from two to four. Typically, rotating machinery

spectrum signatures contain many harmonic peaks whose varied amplitudes indicate a

variety of conditions. The cepstrum of this type of signature would certainly be more

complex than that in our first example, and its interpretation would require a great

deal of insight into the operation of the system and experience in cepstrum analysis.

As a final experiment, a third set of data was reduced by using the cepstrum technique

to investigate its noise reduction capabilities. For this evaluation test, a 200-Hz

square wave was combined with white random noise. Figure 28 displays the power

spectra for the random signal, square wave, and their sum along with the resulting

cepstrum. Some peaks are present in the cepstrum, but the effect of the random noise

contamination is more prominent. The cepstrum has a distinctly random appearance,

and as a result, the quefrency associated with the harmonic separation in the summed

spectrum cannot be identified.

In application to rotating machinery analysis, little new information is gained over the

power spectrum by performing cepstrum analysis; however, certain types of informa-

tion may become more predominant, depending on the application. Furthermore, the

mathematics defining the cepstrum suggests no increase in the signal-to-noise ratio by
performing the cepstrum calculations. For the case at hand, an increase in signal-to-

noise ratio is required if a reliable incipient failure technique is to be developed for

the prevention of SSME bearing failure.

5.7 Adaptive Noise Cancellation (ANC)

The ANC data enhancement technique centers around the utilization of a real-time

high-speed special-purpose digital signal processing computer commonly referred to as

an "adaptive filter." Basically, the instrument consist of a processor and digital filter

specifically designed for the cancellation of degrading noise from desired signals. The

unit provides the unique ability to quantitize the signature of a given signal (defined as

a reference) and remove (subtract) that signature from another signal containing both

the desired signal and noise (defined as the primary signal). The processer's parallel-
pipeline computer architecture permits the filtering process to occcur simultaneously

with the filter's adaption coefficient generation. This continuous processing capability

and a 1024th order filter size allows for the continuous estimation and removal of the
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reference signal from the primary, even when the character of the reference signal
varies with time.

Figure 29 is a block diagram of the overall two-channel noise estimation/cancellation

process. The particular adaptive filter used during this investigation was the Digital

Audio Corporation's DAC 10241, and a block diagram of the DAC 1024 hardware
architecture is presented in figure 30.

Sipitl

Hoot

primary
input

\
A.N,

reference

input TRANSVERSAL
DIGITAL FILTER

output
audio

E • A

Figure 29. Adaptive Noise Cancellation Process

Primary

Figure 30. DAC 1024 Hardware Architecture
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To evaluate the effectiveness of the adaptive filter/ANC data enhancement technique

for application as an incipient failure detection technique, the adaptive filter (DAC

10241) was incorporated into a microcomputer-controlled data reduction/analysis

system shown in figure 31. Adaptive filtering was applied to test data from several

SSME hot firings. The SSME tests used as test cases were performed with the same

HPOTP and are identified in table 2. As before, the data reduction efforts

concentrated on the accelerometer signals from the externally mounted accelerome-

ters located radially around the turbine end flange of the pump housing. The work

performed during this investigation was divided into three basic areas: software

development, data reduction/analysis, and ANC technique evaluation.
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Figure 31. Data Reduction/Analysis System Block Diagram
for Adaptive Noise Cancellation
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5.7.1 Software Development

With the establishment of a data base containing representative HPOTP acceleration

signatures as a principal objective, software was developed and implemented on an HP

9825A desktop computer/controller to provide the necessary instrument interaction

for acquiring and storing pre/post-adaptive filtered power spectral densities. A

flowchart depicting the overall operation of the software is presented in figure 32.

The interactive software consisted of a driver program and five interrelated programs

written to perform specific tasks. The five principal functions or tasks performed

through the software were (1) data acquisition and storage, (2) data display, (3) data

editing, (4) data search and sorting, and (5) data plotting. A flowchart depicting the

operational sequence corresponding to each of the programs is presented in figure 33.

The driver program was written such that any of the program options could be utilized

and/or accessed by simply pressing a predefined special function key on the computer.

Data
Acquisition
and Storage

Program

Data Display
Program

(Recorded Data)

Data Search
and Sort
Program

(Recorded Data)

Plot Program

Figure 32. Overall Data Reduction/Analysis Software Flowchart
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In practice, all the programs could not be maintained in the computer's memory

simultaneously with a large data base. For this reason, programs 1 and 4 were

sectionalized to provide the functions of either data acquisition or data base

manipulation, respectively. A listing of the software developed to perform data

acquisition and storage is presented in table 10. Since computer memory was limited,

the establishment of a very large data base containing all the PSDs from all the test

cases was not considered practical. With the individual PSDs and appropriate

identifiers (test number, analysis type, time slice, data channel, analysis bandwidth,

and composite level) stored on magnetic tape, the development of a small data base

associated with specific parameters of interest was adopted as a more practical
solution. As a result, data bases associated with each pump were developed. To

construct these data bases, the search-and-sort program was developed. With the data

base file numbers corresponding to the PSDs of interest and the fundamental

(synchronous) frequency as inputs, each data file was loaded and a computer search

and sort on the first 10 harmonically related components was performed. Each data

base contained the amplitude and frequency of the sync-related harmonics along with

the composite levels associated with all data slices from all tests using the same

HPOTP at a given power level. From these data bases, the variation of the sync-

related harmonics and composite levels could be ascertained as a function of data

slice/time. A listing of the software developed to search and sort these parameters is

presented in table 11.

5.7.2 Data Reduction and Analysis

Three test cases and two single test runs were reduced using the adaptive noise

cancellation data enhancement technique. Each test case was comprised of a number

of individual test runs that were performed with the same HPOTP or single test runs
where specific bearing conditions were known. Adaptive filtered and nonadaptive

filtered PSDs were computed from the data on a periodic basis. The data reduction

time period was based on a 30-second data time slice interval. The 30-second time

duration was chosen because it allowed approximately 10 seconds for adaptation time,

10 seconds for data acquisition/PSD computation (32 averages), and 10 seconds for

data storage. As a result of this timing, the computed PSDs were representative of
data intervals occurring approximately 20 seconds apart. A pictorial representation of

this data reduction time slice scheme is presented in figure 34.
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TABLE 10. Data Acquisition Program Listing

0: "NASA/MSFC SSME DATA ANALYSIS PROGRAM':
1: ent 'ANALYZER HPIB DEVICE CODE",D
2: dev "SA",D
3: oni 7,"INT SRQ";eir 750>G
4: gto 'SELECTIONS'
5: "INT SRQ":dtordsC'SA'»Q;dsp "SRQ RECIEVED Q=",Q
6: if Q=150;cmd 7,°?DX"5gto 'RTN"
7: if Q=170;cmd 7 , "?E$°-,gto "RTN"
8: if Q=i42;0}G5dsp "5420 PLOT ACTION";gto "RTN"
9: if Q=137;0>G5dsp 'Device clear ack';gto "RTN'
10: if Q=14050}G5gto 'ASCII SAVE TO CONTROLLER'
11: if Q=160}0>G5gto 'ASCII RECALL FROM CONTROLLER"
12: if Q=1445gto 'ASCII DATA ONLY PRINT TO CONTROLLER-
IS: if Q=145;0>G5gto 'ASCII DATA/HEADER PRINT TO CONTROLLER'
14: if Q=101jgto "ADC OVERFLOW
15: if Q=10250>G5gto 'PAUSE ON IMPACT"
16: if Q=104;0>G5gto 'END OF MEASUREMENT'
17: if Q=105;0>G;gto 'END OF CARTRIDGE ACTION'
18: if Q=106-,0>G;gto 'COMMAND ERROR"
19: if Q=107;0>G5gto "GENERAL ERROR'
20: if Q=110;0}G;gto 'FATAL ERROR'
21: 'ASCII SAVE TO CONTROLLER':
22: fmt 2,z,el4.6,/
23: for 1=1 to 16;dsp 'Transfering data header"5red "SA.2",HIIJjnext I
24: for 1=1 to H[31/25dsp "Transfer ing data'jred 'SA.2',D[1Jjnext I
25: dsp 'DATA TRANSFER COMPLETE'
26: gto "RTN"
27: 'ASCII RECALL FROM CONTROLLER":
28: fmt 2,z,el4.6,/
29: for 1 = 1 to 165wrt "SA.2",H[11jnext I
30: for 1=1 to Ht3]/25wrt "SA.2" ,D[I]jnext I
31i gto 'RTN'
32: 'ASCII DATA ONLY PRINT TO CONTROLLER':
33: red °SA',Z5red "SA",P;0>G
34: gto 'RTN'
35: 'ASCII DATA/HEADER PRINT TO CONTROLLER':
36: gto 'RTN'
37: 'ADC OVERFLOW":
38: prt "ADC OVERFLOW
39: gto "RTN"
40: "PAUSE ON IMPACT":
41i dsp 'Not programed as yet"
42: gto 'RTN'
43: 'END OF MEASUREMENT':
44: dsp 'Measurement Complete'
45: gto 'RTN'
46: 'END OF CARTRIDGE ACTION":
47: dsp "Recall/Save In-progress"
48: gto 'RTN'
49: 'COMMAND ERROR':
50: dsp 'COMMAND ERROR ENCOUNTERED';stp
51: gto 'RTN"
52: "GENERAL ERROR":
53: dsp "GENERAL ERROR ENCOUNTERED";stp
54: gto "RTN"
55: "FATAL ERROR":
56: dsp "FATAL ERROR ENCOUNTERED"jbeep;beep;stp
57: gto "RTN"
58: "RTN':eir 75iret
59: 'SELECTIONS':
60: fmt 0
61: "DIMENSIONS":
62: dim HL16],DC512],I $C643,A*C64],S$C48],C$[32],B$t24],C[11,SC20,10],P[20
63: dim Ft20,103
64: "DATA PLOT LABLES" :
65: "SSME TEST HPOT RAD ACCEL. X PWL'H*
66: "TYPE OF ANALYSIS: DATA TAPE: CH. NO.: '>A*
67: "DATA SLICE TIME INTERVAL' '>S$
68: 'BANDWIDTH= H'">B$
69: "COMPOSITE= G's rms">C$
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TABLE 10. Data Acquisition Program Listing - Continued

70: dap 'SELECT PROG OPTIONS S/F KEYS'5stp .
71: -START":
72: oni 7,"INT SRQ'3eir 750}G
73: ell 'TEST ID'
74: 'MEASURE':
75: oni 7,'INT SRQ'jeir 7;0>G
76: if cap<A*[19,213) = 'TFE-5ent "DAC CAL FACTOR=' ,CC13
77: if capCA$[19,21])*'TFE';l}C[l]
78: ent '9825 TAPE TRK:",T,'9825 TAPE STORAGE FILE NUMBER?',F
79: if F>32}beep-,dsp 'FILE NO TOO LARGE'-,wait 20005jmp -1
30: if T<0jdsp 'Tape track can only be 0 or 1'jwait lOOOjjmp -2
81i if T>l$dsp 'Tape track can only be 0 or 1'jwait 1000;jmp -2
82: trk Tjl>J-,prt 'TAPE TRK=',T
83: ent 'NUMBER OF SLICES TO BE TAKEN?',0
84: 'RE-MEASURE':
85: ell 'MEASURE DATA'
86: ell 'DATA TRANSFER TO CALCULATOR'
87: ell 'RECORD DATA ON 9825 TAPE'
88: prt S$t27]
89: ell 'INTERVAL UP-DATE'
90: if J<05J + l}J-,9to -RE-MEASURE"
91: dsp 'MEASUREMENT OF DATA COMPLETE'5stp
92: 'MANIPULATE':
93: oni 7,'INT SRQ'jeir 7;0}G
94: ent 'TAPE TRACK?',T
95: if TMjjmp -1
96: if T<Ojj<i»P -2
97: trk T
98: ent "FIRST FILE NUMBER?',F
99: ent "LAST FILE NUMBER?',L
100: 'LOOP":
101: ell '9825 TAPE RECALL'
102: ell 'DATA MANIPULATION'
103: if rKOjdsp 'DISPLAY RECALL COMPLETE';0>rl;stp
104: wrt 'SA','0,5000XCEXXC.00000099,10.09YCEXYC'
105: wrt 705,"PG-
106: fmt 5,5/
107: wrt 706.5
108: wrt 706,I$;wrt 706,"5wrt 706,capCA$>5wrt 706,";wrt 706,S$5wrt 706,"
109: wrt 706,B*;wrt 706,"5wrt 706,C$5wrt 706,"
110: fmt 4,33/,'G's Sq/Hz"
111: wrt 706.4
112: ell 'PLOT'
113: ell 'PLOT TICS'
114: if F<L;F+l}F5gto 'LOOP'
115: dsp 'SPECIFIED DATA PLOTTED'jstp
116: 'INTERVAL UP-DATE':
117: fxd 0
118: S$r35,42]>S$[26,33];valCS$[32,33])>S$S+U>S
119: if S<105strCS)>S$[41,42]5"0'>S$[41,41]5jmp 12
120: if S<60sstrCS)}S$t40,42];jmp 11
121: if S=60;-00-}S$[41,42];valCS$C38,39])+l>V;gto "LOADV
122: if S>605S-60>S
123: if S<1055trCS3>S*l41,42];'0'>S$[41,411;valCS$[38,39])+l>Vjgto 'LOADV
124: if S>=10;5trCS3>S$[40,42]}valCS$[38,39])+l>V
125: -LOADV:
126: if V<1055trCV»S*[38,39] 5'0" >S$ 138,383 5 jmp 5
127: if V<60-,str(V)}S$l37,39] ; jmp 4
128: if V=60;'00'>S*[38,39]5valCS*t35,36])+l>V
129: if V<1055trCV)>S$l35,3615'0'>S*[35,353jjmp 2
130: if V<605strCV)}S$[34,361
131i -:'>S$[28,28]>S$[31,31]>S$[37,37]>S*l40,40];'-'}S$t34,34]
132-. fxd 2
133: ret
134: 'TEST ID':
135: dsp 'Ready to enter data ID.--CONT'}stp
136: ent 'Test Number?--XXX-XXX--CONT",I$[11,17];ent 'PWL-XXX--CONT',1$C42,44]
137: ent 'Accel Location?--XXX--CONT',I $[28,30]
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TABLE 10. Data Acquisition Program Listing - Continued

138: ent 'Type of analysis performed?",A$119,30]
139: ent 'TAPE NO.?-XX°,At[43,44]
140: ent 'DATA CHANNEL NO.7--XX",A*£54,55J
141: ent 'Data Slice Time = XX:XX:XX-XX:XX:XX-CONT",S*t26],°SLICE DURATION",U
42: ':"}S$[28,28]>S$[31,31]}S$[37,37]}S$[40,40];"-'>S*[34,34]
.43: if flgljcfg Ijdsp 'TEST ID UP-DATED'; stp
i44: ret
145: 'MEASURE DATA":
146: oni 7,'INT SRQ"5eir 750>G
147: wrt "SA',"1TC1FM1LM'
148: "MEASUREMENT START":
149: dsp 'CHECK SET-UP!--CONT TO START'jstp
150: 1>G
151: wrt "SA',"MRST'
152: if G/Ojdsp "MEASUREMENT IN PROGRESS"$jmp 0
153: beepjwrt 'SA',"MR'
154: if flgljcfg Ijdsp 'MEASUREMENT COMPLETE";stp
155: ret
156: '5420 DATA TAPE RECALL':
157: oni 7,'INT SRQ'jeir 7jO>G
158: if flgljent "DATA RECORD TO BE RECALLED?',R
159: 1>G
160: fxd 0
161: wrt "SA",R,"RA'
162: if G'Ojdsp "5420 TAPE RECALL',R5jmp 0
.163: fxd 2
164: if f.lqlicfq l;dsp "RECALL COMPLETE" 5stp
165: ret
166: "5420 DATA TAPE SAVE":
167: oni 7,'INT SRQ'jeir 7}0}G
168: if flgljent "RECORD NO FOR DATA SAVE?",R
169: l>G-,fxd 0
170: wrt "SA",R,"SA"
171: if G'Ojdsp "5420 TAPE SAVE' ,R•, jrop 0
172: fxd 2
173: if flgl-,cfg l;dsp "DATA SAVE COMPLETE' j stp
174: ret
175: 'DATA TRANSFER TO CALCULATOR':
176: oni 7,'INT SRQ'jeir 7;0>G
177: 1>G
178: wrt "SA","0,5000XCPW
179: wrt "SA',",0,1PR'
180: l}G;wrt "SA",'PR"
181: if G^Ojjmp 0
182: wrt 'SA","XC«
183: 1>G
184: wrt "SA","501SA'
185: if G#05jmp 0
186-. if A*[19,21]#"TFE";l>Cm
187: P/C[llA2>Pj\P}P
188: fit 3jstrCP)>C$tll,21]}fxd 2
189: strCHC133)>B$[ll,15]
190: if flgljcfg l-,dsp "TRANSFER COMPLETE"; stp
191: ret
192: "DATA MANIPULATION':
193: 1>G
194: if capCA$[19,21])=°PSD"5jmp 4
195: dsp "TFE-PSD"
196: for 1=1 to HI3 ] /2 jCDU] /Cm*2>*2>D[ I ] 5 next I
197: jmp 3
198: dsp "ORIG PSD"
199: for 1=1 to H[3]/2jD[I3*2}D[I]5next I
200: l}G5wrt "SA",'501RA'
201: if G#0jjmp 0
202: ret
203: "RECORD DATA ON 9825 TAPE':
204: if flgljent "9825 TAPE TRK?",T,"9825 TAPE FILE NO.?",F
205: trk T;dsp "SAVING F*',F,"TRK*',T
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TABLE 10. Data Acquisition Program Listing - Concluded

>06: rcf F,Hl*J ,Dl*] , I $ , A$ ,S* , C$ ,8* ,C
207: fxd 0
208: prt 'Tape file used?°,F
209: fxd 2
210: F+1>F
211: if flgljcfg Ijdsp '9825 TAPE SAVE COMPLETE' ; stp
212: ret
213* "9825 TAPE RECALL"-
214J if flgljent '9825 TAPE TRK?" ,T, '9825 TAPE FILE NO?",F
215-. trk T-,dsp "RECALLING F#" ,F , "TRK*" ,T
216: Idf F,Hl*],DC*J,I$,A$,S$,C$,B$,Cl»J
217s if flgljcfg Ijdsp "9825 TAPE RECALL COMPLETE" jstp
218: ret
219: "PLOT":
220: oni 7, "INT SRQ'jeir 750}G
221: 1}G
222: wrt 'SA'j'^lPLaPLO^OO.ieOOPLl^OOO^OOOPLPL"
223s if G*05jmp 0
224s if flgl5cfg Ijdsp "5420 PLOT COMPLETE" ; stp
225-. ret
226: "PLOT TICS'ssfg 2
227: scl 0,5000,-7. 00043, .017
228: xax -7, 100,0, 5000, 05xax .017,100,0,5000,0
229: "SET":
230: le-7}Y
231s "RETURN":
232s pit 0,logCY),l
233s pit -50,logCYD,2
234: pit 0,logCYD,l
235: if Y<le-7-,Y+le-8>Y-,gto "RETURN'
236: if Y<le-6-,Y+le-7>Y;9to "RETURN"
237s if Y<le-5;Y+le-6>Y5gto "RETURN"
238: if Y<le-4;Y+le-5>Y;gto "RETURN"
239s if Y<le-35Y+le-4>Y5gto "RETURN"
240s if Y<le-2;Y+le-3>Y}gto "RETURN"
241: if Y<le-l$Y+le-2>Ytgto "RETURN"
242: if Y<leO-,Y+le-l>Y;gto "RETURN"
243: if flg2;scl -5000 , 0 , -7 . 00043, . 017 }cfg 2;gto "SET"
244: ret
245: end
*7691
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TABLE 11. Search and Sort Program Listing

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:

"NASA/MSFC SSME HARMONIC SEARCH/PLOT DATA ANALYSIS PROGRAMCAMP)":
ent 'ANALYZER HPIB DEVICE CODE',D
dev 'SA',D
oni 7,"INT SRQ'5eir 7-,0>G
gto 'DIMENSIONS'
•INT SRQ':dtordsC'SA")>Q;dsp °SRQ RECIEVED Q=",Q
if Q=1505cmd 7,'?DX'-,gto 'RTN"
if Q=1705cmd 7,"?E$"5gto "RTN'
if Q=142;0}G5dsp '5420 PLOT ACTION'5gto 'RTN"
•RTN":eir 75iret
•DIMENSIONS":
fmt 0
ent "Total No. of data si icesC120max>",S
dim H[16],DC5121,I$[64],A$C64],S$C48],C*[32],B$[243,C[1}
dim S[S,111
"SELECTIONS":
dsp -SELECT PROG OPTIONS S/F KEYS'5stp
•SEARCH AND SORT"i
oni 7,'INT SRQ"-,eir 7$0>G
fxd 2;ina S;l>MjO>X
ent "NUMBER OF TESTS TO BE USED?",E
•LOOP SEARCH':X+l>X5dsp "",S-M+1,"DATA SLICES MAY BE STORED'jwait
ent 'TAPE TRACK?",T
if T<0}jmp -1
if T>l;jmp -2
trk T
ent 'STARTING 9825 TAPE FILE NUMBER?',F
ent 'LAST 9825 TAPE FILE NUMBER?',L
ent "FUNDAMENTAL FREQUENCY FOR SEARCH?',C
for I=M to M+CL-F)
ell '9825 TAPE RECALL'

1000

,K+1]5W>SC

I+X/10>S[I,lJ5valCC$[ll,203)>S[I ,11]
for J=l to 9
JC/H[13J}A;prndCA,0)}A;A+l>A
DtA-5]}W5W/C[13*2>W}W>S[I,K+l]
D[A-4]}W}W/C[l]*2>W5if W>S[
D[A-3]}W5W/C[l]*2>W5if W>St
D[A-2]}W5W/C[l]*2>W5if W>S[
DEA-l]}W-,W/CCl]*2>W5if W>S[
DCA]>W5W/C[l]"2}W;if W>S[I,

D[A + 2]}W-!w/C[l]*2}W-if
D[A+3]}W5W/C[l]*2>W5if
DtA+4]}W;W/C[l]*2}Wjif
D[A+5]}W}W/CCl]*2}W}if

W>S£
W>S[
W>S[
W>S[

,K+l]5W>St

,K+135W>S[

5W>Sl
,K*13
,K*11

next J

next I
if E>X5dsp "INSERT NEXT TEST TAPE-CONT' 5 stp ;I>M?gto "LOOP SEARCH"
fxd 2
prt 'Data si ices= " , I -1 -,pr t 'Tests'', X
dsp 'TAPE SEARCH COMPLETE' ; stp
•PLOT SEARCH":0>H>N>rl>r25l>B
oni 7, "INT SRQ'jeir 7;0>G
ent 'PLOT DESIRED?-- (l)Yes , COJNo' ,P
if P'ljgto 'SELECTIONS'
ent "HAR vs DATA SL ICE?- CDYes , COJNo' ,H
if H=05jmp 8
if H'ljjmp -3
l>H;ent 'HARMONIC TO BE PLOTTED?' ,N 5N+1}N
ent 'FIRST DATA SLICE?" , rl , "LAST DATA SLICE?", r2
ent "PLT ABS VAL OF HAR?-Cl)Yes CO)No-,r3;if r3=l5imp 3
ent "PLT NOR VAL OF HAR?-(13Yes C05No-,r3}if r3=l ; 0>r3;cl 1 'REF'
if r3*0jjmp -2
gto "TITLE"
ent "HAR PSD vs HAR?-(l)Yes , CO)No° ,H
if H=0jjmp 8
if H'ljjmp -2
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TABLE 11. Search and Sort Program Listing - Continued

70: 2}H;ent 'DATA SLICE TO BE PLOTTED?",N
711 ent "FIRST HAR TO BE USED?',rl,'LAST HAR TO BE USED?",r2
72: ent "PLT ABS VAL OF HAR?-Cl>Yes CODNo",r3;if r3=l5imp 3
73: ent "PLT NOR VAL OF HAR?-C15Yes CO)No",r3;if r3*1$imp -1
74: 0>r3-,cll 'REF'
75: gto "TITLE0
76: ent "Composite vs Data SIice?-C13Yes,CO)Ho",H
77: if H=0;gto "END PLOT"
78: if HJljjmp -2
79: 3>H511>N
80: ent "FIRST DATA SLICE?",rl,"LAST DATA SLICE?",r2
811 ent "PLT ABS VAL OF COMP?-(13Yes CO)No",r3-,if r3=l5j"»p 3
82: ent "PLT NOR VAL OF COMP?-Cl)Yes CO)No",r35if r3=l50>r3;c11 'REF'
83: "TITLE":
84: fmt 5,5/
85: wrt 706.5
86: ent "Plot ID?C48 char max)",S$;wrt 706,S$;wrt 706,I $C19,6435wrt 706,A$
87: fxd 0
88: if p3=05jmp 7
89: if H=ljwrt 706,"ABS VAL OF HAR NO. ",N-1
90s if H=l5wrt 706,"DATA SLICE NUMBER",rl," THROUGH ",r2
91: if H = 2-,wrt 706,"ABS VAL OF HAR",rl," THROUGH ",r2
92: if H=25wrt 706,"FOR DATA SLICE NUMBER",N
93: if H=35wrt 706,"ABS VAL OF COMPOSITE VALUES"
94: if H=35wrt 706,"DATA SLICE NUMBER",rl," THROUGH ",r2
95s if r3=l5imp 7
96: if H=l}wrt 706,"VAL OF HAR NO. ",N-1," WRT'.K," OF SLICE",J
97: if H=l5wrt 706,"FOR DATA SLICE ",rl," THROUGH ",r2
98: if H=2}wrt 706,"VAL OF HARMONIC",rl," THROUGH ",r2," WRT",K
99: if H=25wrt 706,"FOR DATA SLICE",N
100: if H=35wrt 706,"VAL OF COMPOSITE VALUES WRT COMPOSITE OF SLICE",J
101: if H=35wrt 706,"FOR DATA SLICE ",rl," THROUGH ",r2
102: fxd 2
103: ell '9825 SEARCH PLOT'
104: "END PLOT":
105: dsp "SEARCH PLOT COMPLETE";stp
106: "REF":
107: ent "HAR* FOR REF?",K,"SLICE * FOR REF?",J5S[J,K+11>B
108: ret
109: "RECORD DATA ON 9825 TAPE":
110: if flgl;ent "9825 TAPE TRK?",T,"9825 TAPE FILE NO.?",F
111: trk T;dsp "SAVING Ft" ,F,"TRK#",T
112: rcf F,H[*3,D[*],I$,A*,S»,C$,B*,C[*3
113: fxd 0
114: prt "Tape file used?",F
115: fxd 2
116: F+1>F
117: if flgljcfg Ijdsp "9825 TAPE SAVE COMPLETE" ;stp
118: ret
119: "9825 TAPE RECALL":
120: if flgljent "9825 TAPE TRK?",T,"9825 TAPE FILE NO?",F
121: trk T5dsp "RECALLING F#",F,"TRK*",T
122: Idf F,H[X],D[X],]*,A$,S$,C*,B*,C[*]
123: if flgl-.cfg l;dsp "9825 TAPE RECALL COMPLETE"-,stp
124: ret
125: "PLOT":
126: oni 7,"INT SRQ"5eir 7;0>G
127: 1>G
128: wrt "SA",",,1PL,1PLO,200,1600PL1,7000,9000PLPL"
129: if G*0;jmp 0
130: if flg!5cfg Ijdsp "5420 PLOT COMPLETE";stp
131: ret
132: "9825 SEARCH PLOT":
133: fxd 9
134: wrt 705,"IP1500,2500,6000,8500"
135: ent "PLOT TYPE--CDLIN, C2)LOG",r6
136: if r6=ljgto "LIN PLOT"
137: if r6=2;gto "LOG PLOT"
138: if r6*2;jmp -3
139: "LOG PLOT":-6>r3}l>r4

71



TABLE 11. Search and Sort Program Listing - Continued

140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
1511
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:

scl rl, r2,r3,r4
if H=l or H=35cll 'LOG PLOT 1'
if H=2;cll 'LOG PLOT 2'
gto 'AXIS'
•LIN PLOT":
if H = l;0}r3-,2}r4;scl r 1, r2 ,r3,r4 5cl 1 'LIN PLOT 1'
if H=2;0}r3;2}r4;scl rl,r2,r3,r4;cl1 'LIN PLOT 2'
if H = 3;0}r359>r4-,scl rl,r2,r3,r4jcl1 'LIN PLOT 1'
"AXIS":
line jfxd 0;xax r3,1,rl7r2,4jxax r4,1,rl,r2;fxd 1
if r6=2-,yax rl, 1, r3,r4 ,15yax r2 ,1, r3, r4 5gto 'LOG TICS'
if r6=l-,yax rl,.1,r3,r4,55yax r2,.1,r3,r45gto 'LABLE AXIS"
"LOG TICS':sfg 2
scl 0,10,r3,r4
•SET':
10*r3>Y
•RETURN":
pit 0,logCYD,l
pit -.l,logCY),2
pit 0,logCY5,l
if Y<le-6-,Y+le-7>Y;gto "RETURN'
if Y<le-55Y+le-6>Yjgto "RETURN"
if Y<le-4-,Y+le-5>Y}gto "RETURN'
if Y<le-35Y+le-4>Y}gto "RETURN"
if Y<le-25Y*le-3>Y$gto "RETURN"
if Y<le-i-,Y+le-2>Y5gto 'RETURN"
if Y<leO;Y+le-l>Y;gto -RETURN"
if Y<lel5Y+leO>Y;gto -RETURN"
if fl92jscl -10,0,r3,r4;cfg 2;gto "SET'
•LABLE AXIS":
scl 0,10,0,10
if H=2jplt 4,-.9,l5lbl "HARMONIC"
if H = l or H=3-,plt 4,-.9,l;lbl "DATA SLICE"
if H=3;csiz 1.5,2,l,905plt -1.5,4,l5lbl 'AMPLITUDE (g's rms)"}jmp 2
csiz 1.5,2,l,905plt -1.5,4,l;lbl 'AMPLITUDE Cg sq/hz)"
csiz 1.5,2,1,0
if r6=25plt -I,9.75,l5lbl "10"
0>H;pen* 0
ret
•LOG PLOT 1":
pen* l;plt rl,r3,l
frcCStrl,l])>X
for I=rl to r2
pit I,log(S[I,N]/B)5if frcCStI,l])=X;lbl "X';X+.1>X;plt I,logCStI,N1/B)
next I
ret
"LOG PLOT 2':
pen* l;plt rl,r3,l
for I=rl to r2
pit I,logCSCN,I+l]/B)
next I
ret
"LIN PLOT 1':
pen* l;plt rl,r3,l
frcCSCrl,l])>X
for I=rl to r2
pit I ,S[I ,N3/B;if frcCS[I,13)=X;lbl 'X'jX+. l>X 5plt I,SU,N3/B
next I
ret
•LIN PLOT 2':
pen* l;plt rl,r3,l
for I=rl to r2
pit I,S[N,I+1]/B
next I
ret
•PRINTS':
fmt 4,5/,2x,'ID',30x,'HARMONICS--g's sq/hz',/
fint 5,z,2x,'no.' ,3x , '1st',5x,"2nd",5x,"3rd',5x,'4th',5x,"5th",5x,'6th"
fmt 6,z,5x,"7th",5x,"8th",5x,"9th",3x,"Pw. g-rms"
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TABLE 11. Search and Sort Program Listing - Concluded

209: fmt 7 , z , e l 0 . 2
210: fmt 8,z,f5.2
211: fmt 9,z,9f8.5
212: wrt 706 .4 jwr t 706.5;wrt 706.6 ;wrt 706
213: for 1=1 to S
214: wrt 706.8,311,13
215: for J = l to 9
216: wrt 706.9,SH ,J»11
217: next J
218: wrt 706.7,SU ,11]
219: wrt 706
220: next I
221: end
*1974

TIME SLICE 1

Adaptation . Acquisition . Storage .

S+IO S+20 S+30

TIME SLICE 2

. Adaptation i Acquisition . Storage .

S+20 S+30 ' S*40 S+50

TIME SLICE 3

, Adaptation , Acquisition i Storage ' ,

S+40 S+50 S+60 S+70

Figure 34. Data Reduction Time Slice Basis

In the case where nonadaptive filtered PSDs were computed, the first 10 seconds

allocated for adaptation were skipped and the data acquisition cycle began as scheuled

to ensure consistent data intervals for comparison. Using this scheme, hundreds of

PSDs were computed from the test data. Since practicality does not allow all this

data to be included in this report, the data has been screened to provide the most
representative data for each test case.

To illustrate the noise reduction capabilities of the adaptive filtering, a typical pre-

and post-filtered PSD is presented in figure 35. The post-filtered PSD is designated as

the "TFE-PSD." In both spectra, the presence of the synchronous (IN), 2N, 4N, and 8N

harmonics can be easily seen. In addition, a 2 to 3 decade (20 to 30 dB) reduction in

73



— 
- 

inatb
. 

N

r 
z

8 2
I 

« *
H. 

- 
n

-j 
a 

—
* 

= s
W

 
U

l 
<

 
O

IS 
S

 
5
 i

no
acoo0)

i,<uCL33

r 
z

-J 
n

- 
<

 
o
 
x

(/) 
—

 
h.

U
 

U
. 

-I 
O

 
—

*- 
3
 

ifl 
—

 
(A

Oo.T3S3Is]U'S.

ineo01C
O

9
1
 

U
 

O

74
O

R
IG

IN
A

L
 

P
A

G
E

JS
O

R
 P

O
O

R



the overall background noise level can be noted. It should be pointed out that the

noise reduction process also tended to attenuate the amplitude of the various

harmonics as well as the random noise components. Additionally, the higher order

harmonics and/or frequency components appeared to have been attenuated more than

the lower frequency information. Experiments were conducted and their results

indicate that the attenuation did not appear to be due to a simple high frequency roll-

off effect common to low-pass filtering. However, the attenuation effects did appear

to remain constant for a given filter condition (setup). For this reason, a constant

filter setup was maintained for all data reduced, and the assumption was made that

this attenuation effect is constant for a given filter configuration. The adaptive filter

setup configuration used for all data reduction is presented in table 12.

TABLE 12. DAC 10241 Adaptive Filter Configuration

Primary: 0.31 volts, CC coupling, -6dB Level
Reference: 0.31 volts, CC coupling, -6dB Level
Output: 1.2 volts, CC coupling,
Sample Frequency: 5 kHz
Delay: 960 (maximum)
Bandwidth: Wide
Order: 448
Filter Mode: TFE
Algorithm: LMS
Adaptation Time: 8 seconds
Adaptation Mode: 8 sec adaptation; switch "off" and acquire data
Threshold: <f>

Test case 1 was comprised of seven tests that were performed with HPOTP S/N 0209.

The total run time accumulated on the pump was in excess of 2000 seconds. A total of

13 data slices were taken from tests 339, 341, and 351 at the 100% power level, and 61

data slices were reduced from tests 340, 341, 342, 343, 351, and 352 at the 109% power

level. Test 339 had been designated at a "green" run for pump 0209, and a routine

inspection and boroscope of bearing 3 was performed after test 343 with no indications

of bearing degradation. After test 352, slightly spalled ball bearings were found during

the pump overhaul. Since a rather limited number of 100% data slices were available

for this first test case, the 109% power level data was chosen for analysis.

With the lengthy run time associated with pump 0209 and the progression from a newly

refurbished pump to one containing a specific bearing defect, test case 1 possessed the

best overall characteristics of the three test cases. Each of the three accelerometer
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signals were reduced and used to develop a data base for pump 0209. Using the search

and sort data base manipulation software, the amplitudes of the fundamental through

the tenth harmonic were plotted as a function of data slice.

The behavior of the IN, 2N, 4N, and 8N component of the spectra are shown in figures

36, 37, and 38 for the 135°, 90°, and 45° radial accelerometers, respectively. The

remaining harmonics failed to show any consistent trend and have not been included.
2

Each graph shows the amplitude variation (g's /Hz) of a given harmonic for each data

slice for all tests contained in the data base. The beginning of each test is designated

by an "X" on each plot. A gradual decline with some abrupt variations in the

amplitude of the fundamental was noted in the 135° and 90° data, whereas the

amplitude of the fundamental in the 45° data was extremely low at the beginning of

test 340 and continued to decrease until the beginning of test 351 where the amplitude
began and continued to increase until the end of test 352. At the end of test 352, the

amplitude of the fundamental had reached within a decade of that for the 135° and

90 data in comparison to a 2- to 4-decade difference during tests 340 through 343.

This behavior appears to be unusual but is supported by the similar behavior of the

fundamental for the other test cases. Although the other test cases do not show such

a marked difference, a gradual increase in the amplitude of the fundamental is

apparent. The 2N and 4N components displayed a more consistent behavior for all

accelerometer data although some distinctively abrupt changes in the amplitudes were

noted. The 8N component displayed a much more erratic behavior with many abrupt

increases and decreases in amplitude.

Test case 2 consisted of five tests (901-367 through 901-371) performed at 109% power

level using HPOTP S/N 2113. A total of 50 data slices were reduced and used for

analysis. Figures 39, 40, and 41 depict the amplitude behavior of the IN, 2N, 4N, and

8N spectral components for the 135°, 90°, and 45° accelerometer data, respectively.

As with test case 1, the fundamental component showed a gradual decline in amplitude

for the 135° and 90° data; however, the 45° data was again inconsistent with the 135°

and 90° data. In this case, the amplitude of the fundamental was somewhat low at the

beginning of test 367, but its amplitude continued to decrease. This behavior is totally

opposite that in test case 1 and does not agree with the general behavior for the

remainder of the test cases. The 2N component shows an abrupt decrease at the

beginning of test 367 but quickly increases to a relatively constant level for the 135
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Figure 36. Test Case 1, 135° Accelerometer Harmonic Amplitude Variations
as a Function of Data Slice
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Figure 37. Test Case 1, 90 Accelerometer Harmonic Amplitude Variations
as a Function of Data Slice
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ORIGINAL PAGE IS
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TEST MI-J4*..m..l4t.J«J..m..m-><»0» !*••
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Figure 38. Test Case 1, 45° Accelerometer Harmonic Amplitude Variations
as a Function of Data Slice
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SSMC TtST 901-367.3t*,M».37*.37t-m>0f> 4113
HFOT 1*0 135 ACCEL. !•« M«.
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.
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1
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Figure 39. Test Case 2, 135 Accelerometer Harmonic Amplitude Variations
as a Function ot Data Slice
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Figure 40. Test Case 2, 90 Accelerometer Harmonic Amplitude Variations
as a Function of Data Slice
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Figure 41. Test Case 2, 45 Accelerometer Harmonic Amplitude Variations
as a Function of Data Slice
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and 90 acceleration data. For the 45° data, the 2N component shows the same initial

decrease in amplitude at the beginning of test 367 and continues to decrease to a

relatively constant level. The amplitude of the 4N component shows an even more

consistent behavior in test case 2 than in test case 1 with approximately the same

amplitude. The 8N component was again erratic but was much more consistent than in

test case 1 with amplitudes approximately a decade greater.

Test case 3 provided the most interesting behavior of the three test cases. This test

case was comprised of four SSME tests (902-272 through -275) performed at a 109%

power level with HPOTP S/N 2310. Forty data slices were reduced from these tests,

and the behavior of the IN, 2N, 4N, 6N, and 8N components of the spectra are shown

in figures 42, 43, and 44 for the 135°, 90°, and 45° radial accelerometers, respec-

tively. Once again the behavior of other harmonics have not been included. The most

interesting characteristic associated with this group of data is related to the sudden

decrease in the amplitude of the IN, 4N, and 8N component while a correspondingly

large increase in the 2N and 6N components. This behavior is consistently present at
the beginning of test 273 in all accelerometer data and is prominent for approximately

six data slices. Approximately halfway through test 273, the level of the 2N and 6N

abruptly decreased while the amplitude of the IN, 4N, and 8N increased to approxi-

mately the same levels as they were before this phenomenon occurred. With the
exception of those characteristics just noted, the behavior of the IN, 2N, 4N, and 8N

components were essentially the same as in test case 1.

Two single-run tests were reduced using the adaptive filter; these tests were 902-193
and 901-301. Test 193 was a test that was conducted with know bad bearings in pump

S/N 9008. Test 301 was included as an example of a test in which spalled ball bearings

were found during a post-test inspection. Pump S/N 2206 was used during test 301.

Test 193 provided 11 data slices and test 301 provided 16 data slices at the 109%
power level. In comparison to test cases 1 through 3, these tests provided a relatively

low number of data slices due to the short run duration. Any variations that might be

noted in this data would most probably appear as random variations in test cases 1
through 3. For this reason, no attempt will be made to correlate any corresponding

data although the same type of analysis was performed on both sets of data. Figures

45 through 49 are plots depicting the amplitude behavior of the IN, 2N, 4N, and 8N

components for the 135°, 90°, and 45° accelerometers, respectively. (No data was
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ORIGINAL PAGE-IS
OF POOR

K»*aT (AD 135 *CC£l.
Tvrc or MMtrsts* <
«K VOl 0* MM HO.
MT« U.ICI. MUIVCB

CM. MO.i«
SSM TEST MZ-193-M

HTOT «*o m *CCEL.
TYPE OF *«l»l*Slii i
M« V*L Of MAff MO.
DATA SLICE NUM6CB

(MTU TAPCtl CM. NO. ift
t

1 TH»OUO«t

Figure 45. Test 902-193, 135 Accelerometer Harmonic Amplitude Variations
as a Function of Data Slice
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tsne TCST MX-ia3-H»o^ »«e«i
M*»OT «*D 90 *CCEL. 1091
TVFC Or MMLVBlSi Tff-?SO
ABS VM. Or HMI NO.
DAT* SLICE WUMSCB

.
wkTA t*»Ctl CM. M). .•
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TYPE OT »K»i.*a!S. t»t-f»0
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Figure 46. Test 902-193, 90 Accelerometer Harmonic Amplitude Variations
as a Function of Data Slice
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HFCT t*o 45 ACCEL. i*«
TVH Of *n*LY*IS> TTC-^SU
AH VAL OF MA» NO.
ft*T* Slice MME»

SCW TCSI Mt'in-tWOP 9«»*<l
I*OT «M> 43 ACCCL. 10*1 I
TWC Of MMH.VII&. TFC-*W>
MS VM. Of WW «0.
IMTIt W-lCt NU»«CR

I -J-

SSMC TEST MZ-193-nrO* MBCltoMI MMII
HPOT ««D 45 ACCtL. 1*3* ft«.
TVPE Of MtMLVSIS. 1*C-fSO (M»» l
MS V*L OF MMl NO. ' 4
0*1 * SLICE NUMBCR 1

SM TEST Wi-t»-H*Of »B«Bt
M*OT B*O 45 ACCEL. IB9I
TYPE Of AM*Lr&IS> Ttt-^»l)
ACS VAL Or MAS BO.
DATA SLICE HUME*

UATA IM*fc.a CM. HO.
e

1 tMOUOM

j ....

Figure 47. Test 902-193, 45° Accelerometer Harmonic Amplitude Variations
as a Function of Data Slice
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Figure 48. Test 901-301, 135 Accelerometer Harmonic Amplitude Variations
as a Function of Data Slice
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Figure 49. Test 901-301, 90 Accelerometer Harmonic Amplitude Variations
as a Function of Data Slice
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available from test 301 at the 45° accelerometer position.) The most notable

characteristics from test 193 (bad bearings) is an increase in the amplitude of the 2N

component and a slight decrease in the amplitudes of the 4N component. The IN and

8N components show relatively slight variations. The behavior of all components for

test 301 (spalled ball bearings) appeared to be relatively consistent without any large-

scale variations being noted.

5.7.3 Technique Evaluation

From the data presented, it was apparent that the adaptive filter/adaptive noise

cancellation technique was effective in reducing the random background noise

contamination in a given spectra. However, the inconsistent attenuation charac-

teristics of the adaptive filter could pose a severe problem if the assumption that the

characteristics remains constant for a given setup is proven false. An in-depth

investigation to determine attenuation characteristics of the adaptive filter as a

function of frequency, signal-to-noise ratio, and other pertinent parameters is

absolutely necessary. Once the attenuation question has been answered, the technique

alone would be extremely powerful and could be used as a first-stage processor for any

of the remaining techniques. The characteristics of the synchronous related compo-

nents have not been extremely useful to this point. However, the capability to

construct and manipulate these data base could prove to be the key to tracking bearing

characteristics and determining incipient failure criteria.
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Section 6

SUMMARY AND CONCLUSIONS

Six data analysis/data enhancement techniques have been addressed in this report.

These were power spectral densities (PSDs), time domain averaging (TDA), order-

sampled time domain averaging (OSTDA), random decrement averaging (randomdec),

cepstrum analysis, and adaptive noise cancellation (ANC).

The transformation of time domain data into the frequency domain and the presentation

of the frequency domain information in a PSD format provides an undeniably powerful

data analysis technique. However, the computation of the PSD does not allow for any

discrimination between signal and noise. Therefore, its usefulness as an incipient

failure detection technique is very limited as a stand-alone tool for application to

HPOTP data. On the other hand, use of the PSD in conjunction with some other data

enhancement technique should prove to be extremely useful for incipient failure

detection.

The TDA technique was proven to closely follow theory that predicts a signal-to-noise

enhancement by a factor equal to the square root of the number of time averages.
However, "leakage" associated with the digital sampling techniques and varying engine

rpm proved to have significant negative impacts on the technique's performance. For

these reason's, the technique was combined with order ratio sampling and was developed
as OSTDA. As a data enhancement technique, the OSTDA combined the best features

of the TDA with order sampling to reduced leakage and enhanced data plot readability.

As a result, the OSTDA yielded a very suitable technique for detecting low-level

periodic information in the presence of high-level random noise. Several restrictions

associated with the time averaging techniques were uncovered, however, and tend to

limit the usefulness of OSTDA as an incipient failure detection technique. The most

important of these restrictions is the need for a speed probe or an rpm-related trigger

signal. A trigger signal is required as both a time-averaging trigger and an order-

sampling trigger. If the speed-related trigger is not available, the technique cannot be

utilized unless some component of the signature can be filtered and used as a trigger

signal. For the application at hand, the availability of such a well-defined component
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cannot be anticipated, limiting the generality of the OSTDA technique. A second

restriction associated with the time domain averaging technique is the necessity of

a priori knowledge of the periodic signal to be extracted from the noise. To provide

this knowledge, a better understanding of the phenomenon of bearing degradation would

be necessary.

The random decrement averaging technique can be utilized without a speed-related

trigger or any a priori knowledge of the periodic content of an input signal. In some

cases, the randomdec technique provided a signal-to-noise enhancement of approxi-

mately 30 dB. Unfortunately, the 30-dB signal-to-noise increase was only observed

during evaluation tests where the original signal-to-noise radio approached 0 dB. In

addition, the magnitude of the periodic components of interest could not be accurately

determined.

Cepstrum is a data analysis technique that has been used primarily in gear-box fault

diagnostic applications. The interpretation of the reduced data using this technique is

difficult for an inexperienced user. In addition, the mathematical basis defining the

cepstrum does not provide an increase in signal-to-noise ratio. Therefore, the

cepstrum, in much the same manner as the PSD, cannot provide data enhancement in

cases where a signal is heavily masked by noise in the same spectral region. However,
the cepstrum may show promise when used in conjunction with a technique that does

improve the signal-to-noise ratio.

The adaptive noise cancellation technique is probabily the most straightforward data

enhancement technique investigated to date. A remarkable increase in signal-to-noise

has been seen in all cases. Problems associated with the nonuniform attenuation of

low- and high-frequency components are of serious concern, and this behavior must be

better understood before the adaptive filtering technique can be considered totally

effective.

Each technique has been effective to some extent; however, none of the presently

identified techniques by themselves have been developed to a point where consistent

and comprehend able results relative to incipient failure detection have been obtained.

In essence, the problems associated with incipiently detecting bearing failures ulti-

mately depend upon an understanding of the phenomenon associated with bearing

degradation and the spectral characteristics indicative of bearing failure.
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Section 7

RECOMMENDATIONS

Based on collected information, investigative results, and the experience gained

thus far concerning data enhancement techniques and incipient failure detection,
the following recommendations are offered.

• With the major effort thus far being directed toward software development,

implementation, and experimentation with a variety of data enhancement

techniques, more research is required to determine and understand the

phenomenon associated with bearing degradation through the classification

of failure mechanisms and the identification of waveform and/or spectral

characteristics indicative of bearing failure.

• The OSTDA, randomdec, and cepstrum software should be implemented on the

HP 9825A computer-controlled analysis system to provide efficient compari-
son with ANC results.

• Independent laboratory investigations into the frequency-dependent
attenuation effects of the adaptive filter must be performed.

• Further data reduction/analysis of common test cases consisting of SSME
hot firing test data and/or independent bearing test data using the

OSTDA, randomdec, cepstrum, and adaptive noise cancellation techniques
(individually or in conjunction) is necessary to develop data bases more

representative of component behavior under known operational conditions.

• Continuing review of the literature to identify new methods or variations
in previously identified techniques should be maintained.
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