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ABSTRACT

Ostwald-ripening theory is deduced and discussed starting from the

fundamental principles such as Ising model concept, Mayer cluster expansion,

Langer condensation point theory, Ginzburg-Landau free energy, Stillinger

cutoff-pair potential, LSW-theory and MLSW-theory. Mathematical intricacies

are reduced to an understandable version. Comparison of selected works, from

1949 to 198-. or; solution of diffusion equation with and without sink,' source

term(s) is presented. Kahiveit's 1980 work and Marqusee-Ross' i9'r>- wort', are

more emphasized. Odijk and Lekkerkerker's 1985 work on rodlike macromolecules

is introduced in order to stimulate interested investigators.
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I. INTRODUCTION

I.I. Theory of Ostwald-ripening, pioneers' work and development

Theories for liquid or solid binary mixture-nucleation, coagulation and

droplet growth have been discussed extensively by Binder and Stauffer [1].

The'works of pioneers such as Ising model concept [2], Mayer cluster

expansion 13], and the Langer-condensation point theory [4], lead to the

analytical continuation of the free energy, beyond the experimentally

unobservable singularity [3], by conventional droplet model.

Ising-spin system in a magnetic field and a lattice gas are proved to

be mathematically equivalent [2], Mayer cluster expansion considers that

the negative sum of the magnetic field and free energy, -(H + F), which is

equivalent to pressure of the gas, can be expanded into cluster integrals
<v

b. as p=kT £_ b.z . In which k is Boltzman constant, z is the
1 i*/ L

active number density, T is the absolute temperature, and b. the cluster

integrals defined over the coordinates of i molecules in volume V. The

cluster integral depends on the potential energy and coordinates of the i

molecules [3]. However, the statistical theory of condensation phenomena

Developed by Mayer and his coworkers and subsequently by Kar.r. an: I'r.LeribecK.

and fcorr: and Fuchs [5j, with its mathematical intricacy, was hardly appiiec

to experimental works,

Accorciag to Langer's condensation theory ;A;, the stage of degree of

—i
evolution is expressed most naturally in terms of the wave number k. At

k the structure function S(k,t) is a maximum. The structure function
IE

S(k,t) is defined as the Fourier transform of the spatial correlation function
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G(r,t). In principle the structure function can be obtained experimentally

by light scattering.

Immediately following the pioneers' works, Frenkel [6] proposed in

1939 a simplified format of mathematical derivation, which emphasizes that

the importance of a droplet radius, therefore the velocity of condensation

of a oversaturated vapor and the growth of the droplet can be deduced by the

number of molecules (or atoms for monoatomic species) in cluster, since the

number of molecules in cluster is related to the average radius of the

clusters each containing the same number of molecules or atoms.

Hill [7a,b] applied the cluster-theory in 1955 to imperfect gases and

protein solutions. Greenwood [7c] analyzed theoretically the diffusion flow,

the smaller to the larger particles for the growth of dispersed precipitates

in solutions. Perhaps all these works were related to Bigelow and Trimble's

extensive experimental work. [7d] on vapor pressure and particle size. They

repeated Ostwald's experiments [7el on sulfur, since Ostwald found that, the

vapor pressure difference between two droplets of unequal size. Sulfur was

the species Ostwalc suggested other ones to use for verifying his finding

[7c,e]. Finally Greenwood i 7 c < tried to verify the particle size and vapor

pressure relationship, snc trie growth rate, bv use of the well known

Thomson-Freundiic'r. equation [~f'}. All these -lead to the name Ostwalc-ageir.£

[9bj and or Ostwaic-ripeninr [lS,2:£,bj.

Greenwood i7cj derivec the formulas for the rate of change of particle

size and performed calculations;, cr growth rate for highly dispersed particles,

He applied the theory to experimental results of growth in uraniua—lead and

uranium-sodium slurries.



Stillinger [81 proposed in 1963 a concept of "physical cluster integral"

by overlap of spheres drawn each molecule, which are not regarded as statisti-

cally independent, but their mutual exclusion property gives rise to free

energy of formation, work for cavities necessary to contain those clusters.

Stillinger's work gives a connection between these free energies and a

suitable generalization of the Mayer's irreducible cluster sum. Above all,

the most important points are:

1. Hill included the external forces (such as gravitational field)

upon the system considered.

2. Stillinger [8] based on Frenkel-Bank theory of association

equilibrium intensively and introduced the idea cutoff-potential,

V(r), which vanishes identically beyund r = b, where b/2 is the

molecular radius (see Fig. 1).

The kinetics of precipitation from supersaturated solutions, known as

Ostwald ripening [7d,e], were examined in detail by Lifshitz and Slyozov

[9a], and by Wagner [9b] independently and conventionally termed LSW-theory.

Formulas for the asymptotic grain size distribution, for the number of grains

per unit volume, and for the supsrsaturation as a function of time, were all

established by the LSW-theory.

1.2. Phase separatio:.. it;• hydrodynas.i.e./chemical-kinetic analogy

A thermocynamicaliy unstable system separates into its components is

termed spinodal decomposition [10a,b]. Phase separation is clearly ;.

nonequilibriun and nonlinear p'nynomenon. For this reason, Siggifi liCa. usec

models of fluid systems that typically would manifest themselves in tne so-

called later stage of spinodal decomposition. Prior to Siggia's work, Langer
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and his coworkers [lOb] performed series of calculations with the theory of

spinodal decomposition through reagion in which it is difficult to distinguish

from nucleation and growth. The experimental part concerning this topic was

carried out by Cahn and Milliard in metallurgical systems [10c,d], Light

scattering experiments were carried out by Huang, Goldburg, Bjerkaas, Wong,

Knobler and Chou IlOe-h], in order to verfy Siggia's theoretical argument

[lOa] and Langer, Bar-on, and Miller (LBM) theory [10b], More detail can

be found in Section IV.

The interaction between molecules or between ions, which leads to

cluster formation and eventually to the evolution of crystals, has been

likened to a chemical reaction so that the chemical kinetic theories can

apply (lla). Similar to chemical reaction, the activation energy the

barrier to nucleation must be overcome before crystallization can occur,

so that the intermeadiate stage and the last stage of precipitation can

follow. One result of the energy barrier is the necessary creation of some

degree of supersaturation before spontaneous crystallization will occur

[llaii]. The cluster formation can be dealt with chemical equilibrium

expressions [22c], for instance, f=A /AC for nA=A and £ , = A . /A A,
r. n • n^K n+k n tc

for A +A. =A ... However, in adding or subtracting monoine(s) to or rron- aD *̂  n̂ K. *"~

growing aggregate, thousanc? of steps forvarc anc backward may be aeedec

to consider.

Siggia [lOaj discussed in derail tne influence of hydrodynan-i: interac-

tion on the coarsening rate of a msr of droplets combining through diffusive

coalescence. He emphasized that tne "volume fraction" of precipitate actualiy

produced in most off-critical quencn experiments probably favors direct

coalescence (the zero volume fraction was taken as in LSW - theory).



According to Landau's theory the free energy can be expanded in a power

series of the order parameter P and its derivative. By minimizing the

free energy one obtains the most probable value of P . Landau made

assumption that the most probable value of P coincides with the mean value

P . Ginzburg modified Landau's theory to a more realistical form which

bears the name Ginzburg-Landau free energy [10a].

1.3. . Theories of crystal growth, LSW-theory and MLSW-theory

The theories of crystal growth have been divided into two categories:

1. Those describing the rate-limiting process in terms of transport to

the crystal surface are called diffusion controlled (or limited)

growth (dl-cases).

2. Those relating the rate control to processes occuring in the

interface region (i.e., precipitation of crystals from a stirred

liquid solution) are called interface controlled (or kinetic)

growth (ik-cases).

Diffusion controlled growth has been a subject of continued interest for

decades I l i j , starting probably with the old Noyes-Whitney [lib], Nernst

[lie. equations and developing to th = sophisticated approaches by Frisc'r.

[12], Han. ji3], finally by Lifshits and Slyozov and Vagner [9].

The theory of diffusion-controlled particle coarsening developed by

LSV was modified by Ardeli i i i - } . to take into account the volume frartior.,

<p , of the precipitate [15j. The characteristic distance chosen for

computational purpose was related tc the mear. free path between a particle

anc its nearest neighbor. Also spherical symmetry was assumed. It was named

the modified LSV theory (MLSV-theory) by Ardell [14]. The MLSw-theory
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predicts that while the basic t kinetic of the LSW theory is maintained,

the coarsening rate increases with increasing volume fraction even at very

small volumes of cl> [14-16,21b).

At zero volume fraction (<f =0) the MLSW-theory is equivalent to the

LSW-theory. The MLSW theory was justified for several alloys such as with

the available data in the coarsening rates of A-precitates in A-B alloys

such as Co in Cu-Co alloy. Ardell discussed [141 the works by Sariarv and

Weart and Asimow [16] as they proposed that the mean particle diameter d
3 V

and number of particles per unit volume N are functioin of temperature T,

volume fraction <i> , and time t,

d = f(T,4>) t1/3, N = f(T,4>) t"1av * ' ' v ' T

Ardell also emphasized that the Dirichlet region for a 2-dimensional

distribution of circular particles (see Fig. 2), the concentration of solute

in the matrix must approach

r-r
C(r)

at a distance iron the ith particle, where

r' = r_. -*• L/2, L = mean free path

Feider'no: ane Deutch [17] dealt with the concentration dependence of t.-: =

rate of diffusion-controlled reactions, particularly ic steady state situatior

for a random distribution of the sinks (precipitate particles;. The sir.K

concentcrstior. is a function of rate constant k, the size cistriDutiDr.

function F. The rate constan: is predicted to increase with concent ration of

sinks and the dependence on concentration's show-n to be nonanaiytic.



1.4. Tine rate of changing particle radius-growth law

Brailsford and Wynblatt [18] derived the spatially homogeneous rate

theory model, to describe the time rate of change of radius of a spherical

particle embedded in a confgurational random array of particles of like

nature but differing in size only. The growth rate so derived by B & W is

incorporated with LSW-hydrodynamic model of particle coarsening and the

asymptotic size distribution determined as a function of the particle volume

fraction ^ , is in agreement with earlier workers. It is shown that the

diffusion controlled coarsening the basic kinetic form r is proportional

to kt, where r is the mean particle radius r , t is time as usual, and k
3V 2V

is the rate constant a function of the volume fraction $ .

Bixon and Zwanzig [19a] reexamined the diffusion problem in a median

with static traps (sinks), and obtained the first order in density. They

obtained a long time tail solution for its steady state situation included

more complicated dynamical processes that appear to lead to contributions

of higher order in the trap density. The work of B & Z was extended by

Kirkpatrick [20] in which the time dependent transport situation is well

discussed by adding a class of density corrections which are divergent for

long times and that when these divergent terms are resunmed they modified

the loves: order result of E & Z.

1.5. Works by Marqusee-Ross and by Kahlweit

Marcuses and Ross [2is; presented a nev derivation for the las: stage o:

phase separation in the kinetics of a firs: order phase transition, precipi-

tation, where Ostwald ripening is the dominant mechanise.. They used a time

scaling [2ia,c,d] technique and derived the power lav time dependence and



distributions for the size of the particles of the new phase. The

derivation classifies and corrects prior size of- the particles of the new

phase. Equations are derived for the corection terms to the distribution in

power laws. The derivation classifies and corrects prior work. In a

succeeding paper [21b], M & R extend the theory of Ostwald ripening to

Include the dependence of the volume fraction [14-16,18,21bJ of the minority

the precipitate (see Appendix A), the multiscattering (18-20,21b,d] approaches

(see Appendix C), and the power laws of the time dependences for the late

stages of phase separation, Ostwald ripening.

The work of LS and Wagner (the so called LSW-theory) has been criticized

by Kahlweit in a series of papers [22a,b]. He claims that their asymptotic

solutions are not those of the last stage of phase separation but rather those

of earlier intermediate stage. A 3-dimensional schematic representation

[22aii] and a 2-dimensional one [22b,c], in distribution of particule number

density on particule size, demonstrate his idea very clearly.

Marqusee and Ross [21a] claim thai LSV's solution are correct and that

they are the leading terms in the expansion of long time solution. As for

the contradiction in fixed total mass of precipitate yet allowing the

monomer concentration to change, M o t: show that the assumption does not

affect the lowest order tern in the expsr.sic-n.

1.6. The mair. goal of this vork

The present paper is intended tc reduce the mathematical intricacy or

all the pioneers' theories (LSW-theory, MLSW-theory) in order to simpiiry

them to an understandable version. Several appendices are added for this

purpose. Sotte discussions are also included for stimulating new ideas for
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Following this introduction, we emphasize the fundamental concepts

(Section II) and asymptotic distribution for particle sizes (Section III),

which obeys an equation of continuity in R space (Section III, Eq. 3.1). Key

points for approximate solution of complicated process, experimental efforts

following theories, and the theory applicability to alloys are discussed

(Section IV). A comparison of related works on solution of diffusion equation

withand or without sink/source term(s) in time period of four decades is

presented (Section IV, Table 2). We evaluate the growth law (appendix A),

deduce continuity equation and its Laplace transform (Appendix B), demonstrate

multiscattering representation and its Fourier transform (Appendix C) , and

show example for solution of Pick's 2nd law (Appendix D). Two figures contain

in Section I, one table and seven figures are in section III, and one table in

Section IV. All these effortcs are for simplifying the theory and drawing the

distance between ideality and reality more closer.

Most of the related works containing in literature are for systems with

spherical sinks (precipitate particles). For more complicated system Odijk

and Lekkerker«.er [47] have recently reported a theoretical approach on the

phase separei^on for £ solution of bidisperss rodlike macronolecuies. It is

worthwhile LZ pay atien'ior. ic such a systen (see Section IV, Suosec'ior. IV.6}



(Figures 1 and 2 are in this Section I, see Figure

Captions, p. 69, and the Figures followed.)
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II. 1. Di f fus ion equations

Consider a general equation for diffusion,

<3C/<H = DQ v
2C -»- A (2.1)

in.. which C is the concentration of a supersaturated solution, D is the

diffusion coefficient and A is the sink/source term. If replace C by T (the

temperature), D by £/ f>s (the thermal-conductivity divided by density-times-

specific-heat), A by A'/^s, then the expression becomes equation of heat

conduction [-23a]. ~~

For steady state case,^C/^t = 0, Eq. (2.1) reduces to

v2C = - A/D (2.2)o

Eq. (2.2) is called the Poisson's equation. In case A =0, no sink/source

and is also in steady state, then, Eq. (2.2) reduces to

v2C = 0 (2.3.'

which is called the Laplace's equation. Another case is, no sink/ source

but is not under steady state, from EG. (2.1} one obtain?

v . 2
J C /& i = D v "" C ( 2 . t )

o

EC. (2.^) is called the ecuatior. of continuity. In fluid dynamics, if

consider v aj the velocity of the fluid of density P, then V= Pv is caliec

the flux density and represents the total flow of fluid per unit cross section

in unit time. If no fluid is created or distroyed within the small volume

11



element d"£, this loss of mass (if any) must equal -(°/^t)dT, so that

v.V •= - &/e>t , (2.5)

Eq. (2.5) is called the equation of continuity [23a] in fluid dynamics.

If replace p by C and V by j , j=-D v2C, then Eq. (2.5) becomes Eq. (2.4)

the equation of continuity. If consider steady state and without sink/source,

Eq. (2.5) reduces to (2.3), the Laplace's equation. Laplace's equation and

the equation of continuity are very important in solving diffusion equation

problems.

For the last stage of phase separation, when the nucleation is

neglible, the distribution of particle size obeys a continuity equation in R

space, where R is the radius of the partice,

)}A)R = 0 (2.6)

Where n(R,t) is the number density of the precipitate particles, and

V[R,C(t)j = dR./dt

is the growth rate of a precipitate particle, here C(t) is the avera

monomer con cent ration [21aj,

CC-.< = •*.._ - cnange ci concentration cue to precipitatior.

s1*'
= C. - } j ( 4 / 3 } 7 T E - / v l n ( R , t ) d R ( 2 . 7 )

IT. J < IE

V[R,C(t)j = dR/dt

= (DV /K;'CU - - c (R)} (1.8)E. eq

where C is the initial monomer concentration and v is the molecuJ
in m

volume of the solute.

12



If the solution is not stirred (the diffusion limited case), the first

step is to transport C to the interface (by diffusion), and the second step

is to incorporate monomers into the precipitate particle. Therefore the

quasistationary solution [9b] for diffusion limited growth (dl-case) of a

spherical particle is

Vdl[R,C(t)] = [C(t)-C (R)]Dv /R (2.9)
eq m

For the precipitation of crystals from a stirred liquid solution (the ik-

case), the growth rate follows a first order law I9b] as

Vlk[R,C(t)] = kvmlC(t)-Ce (R)] (2.10)

Where k is a constant and in dimension cm molecule sec ,

k = D/^ =£) (.9 is Lifshitz-Slyozov's notation [9a]), J is density,

dR/dt = V[R,C(t)] > 0, if C(t) > C (R)eq
< 0, if C(t) < C (R)eci

Therefore, we may call [C(t)-C (R)3 the driving force for crystal growth
eq

or dissolution.

II.2. LSW 2. theory and Kahlwelt's deduction

According to LSW-cheory, the size distribution asymptotically approaches

a time independent shape,

n(R,t) -*• f(t)g(P) for t -*• oo

where f=R/R , a dimemsionless length, and R is the critical radius.

This result follows from the assumption that the ageing rate , dSL/'dt,

defined in the particular case (22aii) according to LSW-theory [9].

13
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d$ /d t - d(Rj2/dt -> b >0, for t -*• *o (see Fig. 1)

where b=2kv 2C"C(o°)/(kT)T) , in which k,, is the Boltsmann constant,m D B

the other constants have the usual meaning. Kahlweit's derivation (22aii)

follows from the conclusion that the ageing rate defined in this particular

case by d5/dt = d(R )/dt. Since according to LS-theory [9a, Eq.2],

dR/dt = G/R)(^- R), =/R , </R = C(R)-C(*>°), so that

dj:/dt = 2R dR/dt

) - C(R) + C(o>)]

Since as t —><x> , c(R) -^C(e->), therefore

d^/dc -> 2k^/R = 2k[2CTv C(o°)/kT,T]/R = b > 0
c n B c

in which cC/=D/J has been replaced by k, the rate constant for this particular

case, precipitation of crystals from a stirred liquid solution [22aii].

However, Kahlweit (22ai) showed that the latter conclusion is incorrect.

Instead, e'S/dt may be seen as a measure of -dC/dt as shown in Figure 3,

increases rather rapidly after the nucleation period and then passes through

a maximum during the early stages of precipitation to slowly approach zero

or C

II. i. Sin?'. den?i:y and competition of sinks is precipitation

Consider the total nuiber of molecules (or moles) in one sink changes

with time as

d(47Tt./3v )/t = k(R) P
(



- AVR2dR/dt (see Appendix A)

The above expression is for one sink only. In competition with other sinks

the expression [21b] will be

AT R dR/dt = 4tf) R[l+Rj4ir><R>][C -C (R)]
o \ av eq

dR/dt = (D /R)ll+Rj4nP<R>]lC -C (R)] (2.11)
o \ av eq

II.4v Particle size plays an important role in precipitation competition

The driving force for ageing of the precipitate is originated from the

surface free energy difference between different sizes of molecules. The

surface free energy is related to the size of the droplet for a liquid-vapor

system in the following way: The vapor pressure of smaller droplet will be

higher than that of the bigger droplet as follows,

In (p2/Pl) = (2/M/fdRT)(l/a2 - 1/a^

= (2i v /kT)(l/a, - I/a.) (2.12)
m 2 1

where ^ is the density of the condensed phase precipitate, j is the

surface tension, p , p are the vapor pressures of the droplets with

radii a , a respectively. M/RT is the molecular weight divided by
i 2.

RT, gas constant times the absolute temperature. This fact, or principle

favors the growth of larger particles and derives the precipitate re- decrease

its surface/volume ratio, that is growing bigger in expense of dissolving the

smaller particles.

Similar deduction can be applied to solid-liquid phase transitions. A

number of observations of the growth of solid particles in a liquid medium at

the expense of smaller particles have previously been reported [7c,d].

15
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Greenwood [7c] proposed a general analysis of particle growth using

Thomson-Freundlich equation [7f]:

ln(S/Sfl) - 2M<T7(RT£ja) (2.13)

Where S is the true solubility, S the solubility in contact with a particle

of radius a, 0" the interfacial tension between solid phase and liquid phase,

and M/RT has the usual meaning. Bigelow and Trimble [7d] repeated Ostwald's

experiment [7e] on sulfur and perhaps led the name Ostwald ageing [9b] and or

Ostwald ripening [18,21a,b] for the last stage of precipitation in binary or

multicomponent systems.

For a special particle and an ideal solution, the R depencence of

Ceq(R) is

C (R) = C (°°) exp(°C/R)eq eq

= C (oo)(i + of. /R) (2.14)
eq

where ft, = li\ /k T [21a,bJ.
IE B

Conventionally, a set of reduced variables are used as follows:

r=R/oC, T= t/T, T '"= cd'/Dv C («*> ) and
E eq

Tlk=oc/tkC («*>;.. (Ti.-T >=:c(t)-C («*)]/C (^) (2.15)
ec eq eq

in which T=(R )J/o<:£- in LS-notatior. [9a].

Briefly, there exists a critical radius P. which is the particle

radius in equilibrium with the surrounding solution, and R is the effective

particle radius [9b] defined as

R = 2 dV/dO = 2 d[C4/3)7rR3]/d(47TR2) (2.16)

16



The statistical theory of number density as a function of particle size

first established by Smoluchovski [2Ac] as a linear function of time t is

1/n = l/nQ + const.t (2.17)

where const = 4TOA, in which A is the radius of action, D is the

diffusion coefficient, and n and n are the number densities at time

t and t respectively. Smoluchovski also reached a mathematical

deduction formula for the number of monomers in cluster in such a way

i^ = no(t/T)
k~1/(l-t-t/T)k+1 (2.18)

where n, is the number density of clusters, in which each cluster contains

k monomers, and T is a constant which equals (ATOAn )

11.5. Mass transfer in crystal growth

The interface of a crystal grain represents not only a sink for

matter but also a source of both heat and matter. The rate with which

crystal building blocks are incorporated into the solid is governed by the

difference of their chemical potential in the two phases in contact.

Though for the time dependent positior. and shape of an interface one Bust

simultaneously consider the conservation of mass, momentum and energy for

the system ir. question, however, one mav simslifv the problen by reasonable

assumptions (such as steady state approximation, isothermal condition, etc.).

A critical discussion on diffusive mass transfer in crystal growth was

given by Westphai and Rosenberger [27]. The discrepancies between predicted

and measured growth rates were attributed to the formal description which

ignored the limited analogy between heat transfer and mass transfer and the
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Nernst-Brunner unstirred film model. However, the intricacy of mass transfer

in crystal growth can be simplified by proper approximations. Drastic

simplications can be made for the crystal growth continuity equations - rate

of gain in mass, in momentum, in internal and kinetic energy [27b, Eqs. 5.1 -

5.3]. As for convection may be neglected when the crystal grains are smaller

than about lO/i, because the crystals move with the fluid [28]. Under such

circumstances one would expect the growth rate to be insensitive to stirring.

Furthermore, the diffusion fields of the particles have been found to be

independent of one another if the average distance between them is larger

than about 10 times their diameter. Under such circumstances diffusion

controlled growth has been observed [29,30]. ,

Phase equilibria and chemical equilibria depend on temperature, thus

a temperature difference can cause a solid to dissolve in a fluid at one

temperature and deposit elsewhere at a different temperature. Gradients of

many types cause relative motion of the components of a mixture with

respect to one another. Hurle et. al. pointed out [31] that transport takes

place whenever a difference in chemical potential exists, such as between

stable and metastable phases of the same material.

By experimental measurements one may reduce the intricacy of the

diffusion mass transport problem by imposing an isothermal condition. AIsc

one may focus attentions LO rhe reference frames chosen for the flows of the

entire system.

For studies or. tnuiticompDnent isothermal diffusion it is customary tc

describe the transport: matter by means of flow equations which are extensions

of Pick's first law. These equations express the flow of current J. of

component i as a sun- of concentration gradients each multiplied by a diffusion

18



coefficient D (named as practical diffusion coefficients) of one type. In

theoretical work the corresponding phenomenological equations are usually

written as sums of forces, i.e., the negative gradients of chemical potentials

each multiplied by a diffusion coefficient D' . of another type [32]. The two

sets of diffusion coefficients dependent on the frame of reference selected.

Onsager's reciprocal relations [33] hold between certain of the D' and the

testing of these relations by using data for the D.. together with certain

thermodynamic data. Correct tests of the Onsager reciprocal relations

require proper specification of the reference frame. Usually, the solvent

fixed frame and the volume fixed frame are used. The former is used when

the chemical potential gradient of the solvent is eliminated from the flow

equations, and which is used for computing D' . from D.., and then for

evaluating these D. . from those for the volume fixed frame. The volume

fixed frame is important to the experimental measurements of diffusion.

For the solvent fixed or mass fixed frames some auxiliary data such as

partial specific volumes are required for determination of partial diffusion

coefficients. Kirkwood [32] considered, for certain frames of reference,

as is the problem of measuring practical diffusion coefficients correctly

where the partial specific volumes are dependent on concentration and the

solutions therefore exhibit a change of volume on mixing [32].

In addition to isothermal condition, the phenomenoiogicai descriptior.

of diffusion in isotropic mixtures has beer, developed from the expression

for the entropy production and the relation between the diffusion

coefficients in accordance with Onsager reciprocal relations [34j.

II.6. Entropy production and Onsager reciprocal relations

The phenomenological description of diffusion in isotropic mixtures is
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derived from the expression for the entropy production and the relation

between diffusion coefficients, resulting from the Onsager relations [34a].

The entropy production tf" of the vectorial irreversible phenomena can be

written in the form

n
Jk • X (2.19)

k-1

where J are the components of fluxes and X, are the forces. In

isotropic media

Jk = 2_ L̂ X.., k=l,2 n (2.20)

In the absence of magnetic field, the Onsager relations [4b,d] state that

L, . = L,, , j,k=l,2 n (2.21)
KJ JK.

The system described by Eq. (2.15) can be solved for the X., the new scheme

of phenomenological coefficients again being symmetrical, i.e.,

The entropy flow J aoc entropy production <T car. bt deduced fron, ch

thermodvnamics equation Td5 = d^ T pdV - ^\ .xj.dC. . It demonstrates that

the entropy prodection contains four different contributions {33, Eq. 21

1) heat conduction (due to temperature gradients),
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2) diffusion (due to concentration gradients),

3) viscous flow (due to velocity gradients), and

4) chemical reaction.

For systems without heat conduction and without chemical reaction the

contributions reduce to two.

II.7i Thermodynamical argument on crystal growth

Since by controlling the heat removal from the fused metal the

metallugist can give the casting the requisite structures, Ivantsov studied

the growth kinetics of different crystal structures [36a], When the crystal

is small and the growth rate very small, the system will be almost

isothermal, i.e., the effect of uneven temperature distribution will be

vanishingly small.

In addition to the diffusion process, the molecular kinetic process in

crystallization under supersaturation is equally important [36b], especially

for controlling the crystal-grain sizes [36c]. The fundamental aspects of

crystal growth concern: a) the atomic processes of phase change, b) surface

energy, and c) neat and matter transfer, a) and b) influence the geometry of

the interface, c) detentines the temperature and compositions of crystal

growth [36d]. The interface roughness is a measure of entropy of fusior

since the interface being rough for metais and smooth for most nonmetais, anc

the entropy or phase change is. smali for rough surfaces and large for smooth

surfaces. According to this fact one may find, for some reason, compounds

which may have low entropy of fusion freeze like metals [36e].

The spontaneous precipitation is a process toward a state of low

entropy. However, from the point of view of statistical mechanics, all
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molecular processes Bust be reversible. Besides, there is a theorem in

dynaaics due to Poincare, which states that in a system of material particles

under the influence of forces which depend only on the spatial coordinates,

must, in general, be able to return to the initial state to any desired degree

of accuracy [24bii).

In accordance with Boltsmann's point of view bssed on probability,

Smoluchowski's theory of fluctuation in molecular concentrations [24] allows

us to bridge the gap between the region of the macroscopically irreversible

diffusion and the microscopically reversible fluctuation.

thermodynamically a spontaneous process can occur when the free energy

change is less than zero even if the entropy of the system is decreased. The

Gibb's thermodynamic potential, i.e., the Gibb's free energy, can be deduced

for the precipitation in supersaturated solution as follows:

1) dG = -Sdt + VdP + QA + ..

dGp = -SdT + YdA -•- J£ G". d n , (2.24)
i

during the latent period, dT > 0, so -SdKO, where S is the entropy

of the entire systen.. The 3rd tern; of Eq. (2.24) is < 0, since

dn. < 0 for the solute while precipitation occurs and n of

the solvent is- unchar.j'ec. nance dG<0. Note tr.at though the 2r.z tern

|dA should be >0 ( the interracial tension "/>G , dA >C) for one crystal

growing, however for the crystal growth in expenditure of scalier

particles & summation of ")''.. d A.. should be used. As long as {dA..} are

negative except the one of the crystal which is growing, therefore the

3rd term has no significant contribution to the free energy change.
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2) Consider the phase change being isothermal,

dG - d(H - TS) + YdA + £(f; dn;
i

dH - TdS + YdA + ZG; dn; (2.25)
i

in which dH < 0, -TdS > 0 (sine dS<0 in precipitation), the 4th term

is less than zero, and the 3rd term has small significance as discussed

above, therefore we expect dG<0.



III. ASYMPTOTIC DISTRIBUTION FOR PARTICLE SIZES

HII.I. Fundamental equations and reduced variables

Define n(R,t) as the number density of particles with radius R per unit

volume of solution. N(R,t) can only change by growth from nuclei or

-dissolution of precipitate particles. It must obey a continuity equation in

R space in the specific dynamic system,

,C (t)]n(R,t)} = 0 (3.1)
3V

Where {V[R,C (t)]n(R,t)} is called the flux density and represents the

rotal flow of fluid per unit cross section in unit time [23a], It is also

assumed that the particles are stationary and nucleation is neglected, i.e.

the sink/source term in Eq. (A.I) of Appendix A is nearly zero and is omitted.

The precipitate-particle density at time t is N(t) (see Fig. 3), which is

conventionally termed (t), and expressed as

N(t) =J n(R,t)dF. (3.2)

une can see from Fig. 3

•o , ̂

J n(R,t,)dR = NH:.) and in(?;,t^)dR = N(t )
O 'i. *~

Tne (n,t) plane, in Fig. 2, illustrates the course of development of
K— \)

cne mean concentration of monom-rs with time [22aii], which is related to

cavity theory [36,45] and theory of fluctuations [24bii]. The (R,t) _,

iiane shows the trajectoory of the projections of critical radius of the

clusters changes with time. Tne planes parallel to the (n,R) _ plane

represent the size distribution as it changes with increasing time.



The distribution function can change by: 1) growth of particles,

2) dissolution of particles, and 3) the creation of new particles due to

nucleation. For last stage of phase separation, in case the nucleation rate

is negligible, the distribution obeys an equation of continuity in R space

as shown in Eq. (3.1) above.

As mentioned in Section II, by introducing reduced variables "r" or "a",

T, and if (T) [21a,b], the continuity equation in reduced variables [21e]

becomes:

•= 0 (3.3)

with the growth law [21f] as:

V[a,<n;T)] - a~X[<T(T) - I/a], X=l for dl-cases

=0 for ik-cases (3.4)

The dimensionless reduced variables are defined [21g] as:

a=R/o6 , T=t/T, <T(T) = [C(t)-C («*>)]/C (<») (3.5)
eq eq

III. 2. Decay function in supers a tur at lor.

CT ( ~C ) is the supersaturation at t >/ 0 , at t = 0 (T(0) is called (T̂ .

As time goes on, as Ostwald ripening begins. 0"(T) decreases, so that it is

a iceasure of the decay of the supersaturation, i.e.,

aJF(a,T)da (3.6)

The constants in Ecs. (3.5) and (3.6) [2ihl are:

OL = 2>'v /k_T,
m £

T
ik «=OC/kC (•»), Tdl =o£ 2 /D v C (»), andeq o IE eq
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X-- 4Tc*3/[3vmC <»)] (3.7)

where j Is the surface tension and C (P°) is the concentration in

equilibrium with a macroscopic particle.

The ageing rate and the time development of the size distribution of a

precipitate have been analyzed both experimentally and theoretically [22] on

micelle association and dissociation in surfactant solutions. Kinetic

equations have been given a form which suggests an analogy with heat

conduction. Experimental methods, mostly in relaxation times, have been

deduced for the net distribution of the rearrangement among the micelles

[37].

Equations (3.3) to (3.7) are the starting point of the analysis of the

last stage of phase separation [21a], In order to find the asymptotic solution of

the partial differential equation, the continuity equation, (3.3), one has

to analyze N(t) and CT'(T) . After the rapid growth of the newly formed

nuclei, the number of the precipitate particles N(t) and the supersaturation

0~(T) are known to decay slowly. The number of colloidal particles decreases

slowly. The supersaturation £f(z) decreases slowly from 0"<1 to approaching

zero. The total mass of precipitate increases slowly. The average radius

<R> increases slovly. All these imply that no exponential law of decay bur

power lavs [ 2 i a . b ••'_ .

III. 3. Power expansion and scaled distribution function

Since <?f l t~ . ^ 0 (ir. the sense of fluid dynamics, it is not

incompressible) , therefore

v.V=fcO, V = V[a,<T(T)]F(a,T), i.e.,
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{[V(a,<T(T)]F(a,t)} , for a spherical-function-solution.

A power expansion which is sufficient for the determination of the properties

* *
of spherical function defined in the interval 0 < a < a , where a

is a characteristic constant, which can be used as the asymptotic solution

of the differential equation. In such cases the differential equation can be

integrated "asymptotically" for very great values of the variable [23b],

so that the solution can be interpreted asymptotically.

In extracting the lowest decay from the distribution function and write

it in the long-time limit [21b], Marqusee-Ross's scaled form for the

distribution takes the following form:

F(a,T) = T~yFo(z); z=aT~X

or, takes the form as in their preceding paper [21a], but setting r = a,

one obtains:

-A "
F(a,T) = 7 Zl ""F (z) (3.8)

n=0

z = aT~X and 3 #>a = T~
X<?'/̂ z (3.9)

Substituting Eqs. (3.8) and (3.9) into (3.3) and (3. A), one may solve the

continuity equation and deduce the growth lav in reduced variable fcncs, as

showing in (3.10.) and (3.11) respectively (see below).

^ F(a,Z )/̂ c +^#a {F(a.T) V[a,(TCC)]} = 0 (3.10)

Vle .OTDj = ( z r Z I 0 ~ ~^yn - ( i / z ) T ~ j (3 .11)r.n = i
*

In which 6~(~£ ) = ̂  \ 0* T • r. has been introduced. The distribution of
n=i

long time limit in its scaled form is: ORIGINAL PAGE IS

Of POOR QUALITY
27



F(a,T) — J" ' v ~~X

As in the method of series expansaion, (3.10) can be solved by

substituting (3.8) and (3.11) into (3.10) with the aid of (3i9). By

collecting the coefficients on both sides of the ultimate equation, for

a certain n, the following rules hold:

a of F (z) on LHS = a' of F (z) on RHS
n n n n

b of dF (z)/dz on LHS = b' of dF (z)/dz on RHS
n n n n

where a , a' are coefficients of F (z) on LHS and RHS
n n n

respectively; b , b' are coefficients of dF (z)/dz on LHS
n n n

and RHS respectively.

Using these rules one finds that (2 + X)x - 1 = 0 , therefore

x =

= 1/2 for X= o ik-case

= 1/3 for -\ = 1 dl-case

Consider two values of n, n=0 and n=i, one obtains:

4x F (z) + xz c/dz ? (z) = d/'cz -r~ «T-i/z)F (z)] (3.12)
O O i D

5x F.(z) + xz d/cz F.(z) = d/dz {z'^CT-l/z) F.(z)
* i j. i

- j: F (z)} (3.13)
^ o

The operator d/cz. on the RP.S in both EC. (3.12) and Eq . (3.13}, may

generate dF (z)/dz and F (z) terms which can be combined with the LHS propei

terms. In this way one obtains the scaled continuity equations, and scaled

growth rates 6)(z, vT' ) as follows,
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FQ(z) + d/dz {U)(z, OTj) Fo(z)} - 0 (3.14)

+ d/dz

+ d/dz {̂ (z, op FQ(Z)} = 0 (3.15)

- z~ [ G" - l/z]/3x - z/3 (3.16)

(3.17)

Here <x)(z, (T ) are the "scaled growth rate" expressions.

III. 4. Scaled growth rate as function of scaled radius

Plottings for &J (z, JT) versus z with different -^and <T. are shown

in Fig. 4 and Fig. 5. The calculated data for the plottings are listed

in Table 1.

Figs. 4 and 5 show that as u)(z, <T" ) = 0 and d<J(z, GT)/dz = 0, one

obtains the optimum values of z, as z , and ^ the decacy function of the

supersaturation, for different values of X and x, i.e. ,

X= 0, x = 1/2, ZQ = 2
1/2 = CT

X = 1, x = i/3, z = (3/2)1/3, CT = (9./4)173 = z 2 (3.18)
o 1 o

The general forn of cne distribution function. F (z), in the lasr
n

of phase separation, can '•&= solved by integration using separation of

variable and other techniques. For instance, consider EC. (3.14), by

separation of variables, one obtains:

dF (z)/F (z) + d U ( z , ! ,
O O 1 1

z, 3p] dz (3.19)
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which is d ln{Fo(z)u>(z, ffj)} - [">(z, 3",)]" dz (3.19)'

III.5. Scaled Distribution in Zero Volume Fraction of Sinks

After integration Eq. (3.19)' the scaled distribution function, F (z),

is obtained as:

.-FO(Z) = const[A>(z, Op]'
1

fz _i
x exp ] [cJ(z't £̂ j)) dz', z <= z ;

=0, z > ZQ (3.20)

Substituting (3.16) into (3.20) for -X=0 and A=l respectively, and using

the proper values of z and (jT (i.e. using Eq. (3.18)), then by tedious

manipulations, one obtains:

1. For\= 0, x = 1/2, ZQ = 2
1/2, Cj' = ZQ = 2

~] = -3z/(21/2 - z)

Fo(2) - (Co

' —' i /•***' ^* \ 1 S r* i f £x expi-jz-(2 -z)j, z <= 2 ;

0, z > 2';- (3.21)

2. ForX= 1, x = 1/3, z = (3/2)1/3, CT = (9M)1/3 = z "
o 1 o

!tJ(z, •7',)]~i = -3zVizJ - 3z -z + 3]i o

F (z) = (C CT //C)z2(2z +z)~//3(z -z)~il/3
o o in o o

x exp[-z/(zo-z)j, z <= (3/2)1/3;
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- 0, z > (3/2)1/3 (3.22)

The above results are obtained by using various integrating techniques,

including change of variable and rational fractions [23c]. Eq. (3.22) is for

the dl-case and with the assumption of negligible nucleation, i.e., <J> =0.

By use of the imposed normalization condition for F (z) [21a],

z3F(z)dz (3'23)

one may substitute F (z) for z <= z , in expression (3.22), into (3.23), to

obtain the constant c . Numerical calculation method may be used for

evaluating c . Since (T c /A is just the normalization constant for
o in o

3
z F (z). The justification may be made by rearranging Eq. (3.23)

to the following expression:

oo

= const / z f (z)dz

= const /c (3.23)'
o

in which c = : z f (z)dz has been imposed , so that
o -', o

( r/ )c_ = const

That is to sav, if the integral car be evaluated, c is obtained, .
o

so is the consian: in Eq. (3.23)'.

For expression (2.2i) of z <= z , evaluation of c may be evaluated

by change of variable several times, then the integral may be reduced to a

standard form naii-ed "exponential integral", so that proper mathematical
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III.6. Scaled distribution in nonzero volume^ fraction of sinks

With <f=^=0, correction term should be added, it can be written [21b],

after another tedious manipulation, for instance, for X= 1, dl-case,

Fo(z)

x exp[-Jz/(zo-z)], z <= (3/2)1/3

0, z > (3/2)1/3 (3.24)

Here OC = 2 + (3z ? + 18z 4)/(z 3 + 3)2
o o o

P = 1 + 27/(3 + z 3)'\ o

i 4/(3 + z 3) (3.25)o o

and 6 = [ __

f
Rn(R,'c;dR (3.26)

Here ^ is the equilibrium volume fracLion of precipiiste in solution (or

in meii) after given quench, or equivalent!}' IK =[C. - C (**)]v J21b],

The effect of equilibrium volume fraction $K or, the scaled distribution

function can be seen from a sei of ploitings. F (z) vs z in di-case for

different f^(f»e=0. 0.005, 0.015, O.G35, and 0.075) as shown in Fig. 6.

It is interesting to note that,
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1 /2
'

1/2
a l4TTP<a>] , when replace R by oL a, and ^ by

1/2
P 1 » when the following conditions are imposed

n(R,t)dR = [3<WU'n<*)]F(a,r )da,

f 32) ) z F (z)dz = 1, and
•* °

3) a = z^, <a> = a, and (a)

By nximerical calculation method, plottings for z vs d^ , lf( reduced

coarsening rate) vs <fyf0, and 3Q, (Tj t ̂  , vs d> are shown in Figs. 7, 8,

9 respectively. From Fig. 9 one can see that, as ̂  slowly increases with

time, the average radius a ($&) increases slowly, the supersaturation

0~, (^BO) decreases slowly, but the density of particles or droplets of the

minority phase P Cfo*) decreases faster than the change of degree of

supersaturation. It can be deduced in this way, even if the supersaturation

reaches a minimun; P still changes fast because the expenditure of

smaller particles in growing the bigger ones should drastically reduce the

number density P . Therefore the following power laws may be considered

as the time rate a? if <+ K instantaneously being kept constant.

> and

. t
o
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Table 1. tJ(z, - z~ ( - z/3, x-(2+X)-1

z

1/2

1

(3/2)1/3

2 l /2

3/2

2

3

4

graphs,

a) vs z

A*=0, x=l/2,ik-case,cJ(z, f")

Gj-1 -21/2 -2

-0.83 -0.56 -0.17

-0.33 -0.06 0.33

0

-0.28 -0.002 0.39

-0.33 -0.06 0.33

-0.56 -0.28 0.11

-0.56 -0.17

(See Fig. 4, U)= ^/^z-Qt

as z = C^ = 2 •)

A.-1, x=l/3, dl-case, (J(z, <T)

^ 1/1 1/2(^=1 .(9/4)1/:> -2

-2.17 -2.05 -1.34

-0.33 -0.02 0.08

0

-0.28 -0.07 -0.002

-0.42 -0.26 -0.21

-0.78 -0.68 -0.64

-1.15 -1.07 -1.04

(See Fig. 5, ^ = ̂ /^z=0, as

z =(3/2)1 / 3 , < = (9 /4) 1 / 3 . )o 1

-2

-0.17

-0.67

-0.40

0.08

-0.44

-0.90
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IV. DISCUSSION AND CONCLUDING-REMARKS

IV.1. Concentration gradient as driving force in diffusion

Consider one of the precipitate particles (sinks), around it there is a

concentration gradient for the other species, and that the rate of flow

of solute molecules in this concentration gradient is governed by Pick's

law of diffusion. The Smoluchowski's theory on the kinetics of colloid

coagulation as a diffusion-controlled process using Pick's law of diffusion

[24a,38] led series of investigations and applications in this field both

theoretically and experimentally [39].

The mathematical solution for the fundamental differential equation

governed by Pick's 2nd law drew attentions of a great number of physicists,

chemists, and scientists of related fields [39,40]. Here we deal with the

situation around one sink particle in very law sink concentration. In this

case, the concentration gradient for the unprecipitated solute in solution

is set up and the rate of flow of monomers of the solute into (or out from)

the sink (or source) car. be solved by imposing proper boundary conditions.

For instance, in case the system is increasing supersaturation, i.e., the sink

shrinks and is becoming a source (giving up monomers, insteac of absorbing

monomers), tr.r ccncecrratior. gradient of the monomer is negative, vC(r,t) \ 0.

As the Ostwalc ripening begins, the concentration gradient will be reversed,

i.e., *C > 0. sc. that the monomers diffuse into the precipitate (the sink/-.

IV.2. Solution of Pick's law, comparison between selected works

vJ

For vC > 0, C(R,O = 0 is a proper boundary condition for Ostwald
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ripening process both in physical meaning and nathematlcal logic. Since In

Ostwald ripening the monomer whenever strikes the surface of the sink, shall

be incorporated with the sink encountered. However, if not every aonomer

reaching the reaction radius incoporates with the sink, an obvious

modification is to be assumed [38].

In Table 2, we outline several representative works in this field, in

different time period (1949 to 1984), from which techniques in solving the

2
fundamental partial differential equation, ̂ C/^t « Dv C + A, with A = 0 and

or A=^0, in accordance with imposed boundary condition (B. C.) and initial

condition (I. C.), are worth learning. For instance, the boundary and

initial conditions for the last stage of precipitation (Ostwald ripening)

are C(R,t)=0 and C(r,0)=C R<r<=<*=> respectively in most of the methods

cited in Table 2. However, there is a singularity at t=0 for the solution

chosen by Collins & Kimball [38], since they used the technique in solving

second order partial differential equation on linear flow of heat [41].

Also, since C(R)=0 can not be correct if not every monomer which reaches the

reaction radius reacts. Their modification for the boundary condition is

C(R) = y(<?C/cr) . We can see that the modified B. C. still holds if
K

C(r) = constant so that C^'C/^r) = 0.
R K

IV.2. Approximate solution for complicated process. example

Reiss and La Her [42] proposed a very interesting idea: moving

boundaries, connected with the growth of coilidal particles. For tr.i?

complicated process, the differential equation is difficult to trea:

mathematically. In considering the boundarv being not stationary, the

boundary value problem is not soluble by means of the familiar

methods. So that approximate solution techniques were used [42a].
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Interference of growing spherical precipitate particles were treated

by Wert and Zener [43a] using approximate method in a relatively simple

manner. A transformation law to fit the experimental data was developed

by Wert [43b], and results of derivations of Zener [43c] were used to

calculate the mean distance between nucclei [43b], Following are the

concepts and equations they developed and applied for experimental fitting:

1. The amount of precipitate formed at any time is proportional to

C - C(t).o

2. The rate of transformation of the particles of a second phase

growing in a matrix without mutual interference may be written as,

dW(t)/dt «= f(t) (4.1)

where W ( t ) is the fraction of transformed material and f ( t ) is some

function of time. However, if interference between precipitate

particles are considered, the rate will be lessened and the decrease

will be proportional to the fraction already t rans formed , so that

the modified eqviaztion becomes,

d W ( t ) / c t = [! - W ( t ) ) f ( t )

3. EG. (^.2) can be integrated directly and the integrate torn, is

t
W(t) = i - ex-/- i f(t')dt'j (i.3)

JG

An explicit fore used by Wert [43b] for Eq. (^-.3) is

C(t)/Co = 1 - exp[(- (t/1T)
nj (A.4)
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where ^C(t) is the amount of transformed material, 4C(t)-C -C(t),

C is the initial concentration of solute, T is a time constant
o

depending on C , T (the temperature of the system), and other

undertermined factors.

4. ~T can be determined by fitting experimental data to log-ln-fonn

of Eq. ( 4 . A ) , i.e.,

log ln[C Q MC(t) ] = n logt - n log (4.4)'

by plotting ln[C /4C( t ) ] versus t in log-scale, for a certain

temperature T, the slope is n and the intercept is T » so that

-I/slope
"T = intercept

Data for the precipitation of Fe_C in OC-iron at various

temperatures were used for fi t t ing [43b]. By taking average

of the slopes for d i f ferent temperatures they obtained

n=1.45

Which can be approximated as n=3/2 as being used conventionally

[43dj. The slope, n, varies between 1.2 to 1.7 from 43 C to 3i2 C,

while If varies from about 12000 minutes to 0.5 minute [43bi.

The radius of the spherical precipitate particle, S, varies with

time i43cj according to,

/ 1 /'•
S = sCx (DO " (&.5)

where D is the atomic d i f f u s i o n c o e f f i c i e n t , ^A i-s tne

dimensionless growth c o e f f i c i e n t , in which X is tne number of

dimensions. For shperical particles \ =3 of course. oC takes
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the form:

(A. 6)

Where n » concentration of solute in precipitate,

n = concentration of solute in the matrix which is in

equilibrium with the precipitate, and

n^= concentration of solute in the matrix far away

from the precipitate.

IV . 4 . Experimental efforts following Theories

Light scattering studies of phase separation in fluid mixtures [lOe-lOh]

have provided a wealth of information about the complex, highly nonlinear

processes by which a new phase forms in a system that was originally

homogeneous. By light scattering and by direct microscopic observation

Chou and Goldburg [lOgj confirmed the early conjecture of Cahn and Holdover

(Ret. 1 of [lOgj) that hydrodynamic effects are important in the late stage

of the process, since droplet growth is speeded up by fluid flow which in

turn is driven by the curvature of irregular surfaces which interpenetrate

the nucleating fluid. Woag and Knobier [lOfj, using an ingenious pressure-

jump technique to quencr. the system, made extensive light scattering

measurements of pnase separation in isobutyric acid and water. Thev founc

that when the critical mixture is quenched, the two-phase region scatters

light ir; the form of a ring which brightens, snarpens. and decreases in

diameter as the system evolves toward its final equilibrium state.

In accordance with Siggic's theoretical hydrodynamic arguments [10a],

Wong and Knobier [lOh] experimentally found that the crossover wave number
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corresponding to the maximum in the scattering, k , decreases initially as

t and at long times as t . Their earlier work [lOf] shows an

2
initial t growth in I(k ), the intensity of scattering, followed by

1/2a slower growth t , correspondingly Siggia [lOa] proposed a crossover

from r . t1/3.

THe existence of crossover can be related to the volume fraction of the

new phase, <£ . Wong and Knobler [lOh] found that in dilute mixtures

k =At~1/3 with A=A(<f) for 0.02 <= <f> <= 0.10 (A. 7)

and they found their case for <p < 0.02 is equivalent to Lif shitz-Slyozovc

growth in which A is supposed to be independent of <£> . Wong and Knobler

[lOh] aalso compared their results with the quantitative nonlinear theory by

Langer, Bar-on, and Miller [lOb] usually called LBM-theory, and with

computer simulation on model systems, they found close agreement between

experiment, theory, and computer simulation [lOh].

IV. 5. Application of theory to alloys

It is well known, in fluid djrnan;ic:s , the diffusion constant of a

spherical drop of one fluid in another of similar viscosity [10a,26b] is

D = k_T/5Trp^a (A. 8)
" \

Where a is the radius, (° is density, and ^ is viscosity. Consider drops
t

of radius R., diffusion constant D., and nuzber density ^ . , for
i i •, i

i=i,2, one finds that, according to collision theorv, the number of collosio:

between the two populations per unit time per unit volume [lOa] is:

P (4-9)
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If each collision causes one new droplet formation, then one may expect a

population of drops agglutination at a rate given by (4.9) approcbes a

stationary distribution when scaled by average values R, D, and P, i.e.,
fj

R +R -2R, 0^0=20, and with the assumption fj C2 - ̂  » then

(4.10)

with (4tr/3)R3P = ̂  (4.11)

Where D(R) is the diffusion coefficient for a particle of radius R and <Pis

the volume fraction of particles.

By using the definition of kinematic viscosity [26c], ^=-\IP and

substituting \lP for ̂  into (4.8), also replace "a" in (4.8) by R just for

convenience, one obtains

D(R) = kDT/5 TT R (4.12)
D

Substituting (4.12) into (4.10) with the aid of (4.11), after integration^one

obtains the power laws

P. t"1 and R . <41/3 t1/3 (4.13)

However, for the case of a binary alloy where we have a solid parricie in a

solid matrix or in verv high viscous fluid, the diffusion coefficie^i at low

temperatures is estimate; ii6b,21b] to depend or. the radius as

D(R) - 1/R (4.14)

and at high temperatures as

D(R) . 1/R3 (4.15)
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By use of the same deduction one can obtain the power laws as

P A/2 -1/2 . _ J/6
[ _ d> t and R „ t

for low temperature case, and

p 2/5 -3/5 , 0 ,1/5 1/5r - >, t and R _ 4> t

for high temperature case. Similar but simplier analyses can be found

elsewhere [21b].

One may use Gibbs-Kelvin (Gibbs-Thomson) equation [46a], and write into

the following form

C(R) = C

If higher order term(s) being added [46b], such as

C(R) = C( ~

with a =f ( o'.v ), a = f ( q , 6 , v ) [46b]. In which 0" is surface tension, q is
—1 IE — 4 m

charge of the particle, approximated as Q - ^ - =C5 > ^ is dielectric constant

of the medium, and v is molecular volume of the monomer as usual. However,

the surface tension is also a function of droplet size and is expected to

decrease with decreasing in droplet size over wide range of circumstances

[46cj, therefore the absolute value of a , and a , are eoveraec bv v ,
- 1 — n ~ ' I E

(T(R), q, and 6. Note that a > 0, since 2<Tv > 0 [ 4 6 d ] ; and a_. < 0— i a —

[46b] as long as q_.q; < 0. For colloidal particles, always with residing

charges, the above inverse power law in droplet radius is worthwhile to apply.

IV.6. Systen containing nonspherical sinks

So far we only discussed systems with assumed spherical particles.
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Odijk and Lekkerkerker recently reported [47] their work on theory of the

isotropic-liquid crystal phase separation for a solution of bidisperse

rodlike macromolecules. They used Gaussian trial functions that depend on

adjustible parameters which were found by minizing the free energy of the

system. Since the rods are never ideally hard particles, they are always

flexible, therefore Odijk and Lekkerkerker took only the leading terms from

the asymptotic expansion of the Onsager theory in studying the complicated

influence of bidispersity. They found that the longer rods more highly

ordered than the shorter ones [47].



ORIGINAL PAGE !S
OF POOR QUALITY

Table 2. Comparison of Selected Works on Solution of

- DvC + A, with A-0 and or

Ref .

Collins &

Kimball

1949 [38]

Reiss &

La Her

1950

[42a]

Lifshitz

& Slyozov

1961 [9a]

B. C. and I. C.

C(R,t)-0

c(~t)=co
C(r,0)=CQ, r>R

R=sink radius

C(r,0)=CQ

C(x,t)=Coe~
YBt

(<̂ C/̂ r) _ =0

•/B=constant
x=sink radius
h=higher limit

of boundary

C(h,t)=<C(t)>
(See Fig. 2 b)

C=C(t), C(0)=C
0

C =C at the
i R ec ,• ' bouna a ry

C po=sat. cone .

R =criticai
CO • , .

radius at
t=0

Solution, C(r,t), while A=0 or A/0

C(r,t)-=Co(l-(R/r)erfc[(r-R)(4Dt)~
1/2

Proposed B.C.: C(R)=( C/ r)_,Y=D/k
K

D=dif fusion coeff., karate constant

(See Appendix D.)

(1) A=0

Vfif *°
C(r,t)=C e ' +C x/r.̂ : sinoC(r-x)o o 5̂7, n

yB[exp(-PC2Dt)-exp(-yBt)]
O O

(2) A=-k(t)/D and C(x,t)=0 assumed
ff> ~

C(r,t)=C x/r ̂exp(-X Dt)[sinc£(r-
° •»!, n n

+ higher order terms

Cp=Cpo + °^/R, ot-(2<T/kT)vBC

^ * r=R R

= (£?/P.)( •£- '•"'/R) , » =D/J , J' =dens

ii =C-Cee =degree of supersaturatior. a

A =C -Cp==degree of supersaturation
w O

dR/dt =£/R ( ̂ - ̂/R)

n

***

n fn

(x<r<h)

icy

t t>0

at t=0
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Wagner

1961

[9b]

Oaverage cone.

C '«=surface cone,
of particles
with radius=r

C ^saturated cone
for particles
with radius=r

C =sat. sol'n of
particles of r= o

C -C [l+2<Tvr o n , V-l for undissociated

dr/dt=[kDv /(kr+D)](C -C)
m r

•= -(Dv /r)(C '-C), for kr»D, dl-case
m r

= -kv (C '-C), for kr«D, ik-case
ID r

R=gas constant

T=absolute temperature

Felderhof

& Deutch

1976

117]

n(r)=0, r=R

=C, r=f»

Here n(r) is
equivalent

to C(r).

(1) A=0, n(r) = n - n R/ro o

Rn =k n , j=-D vn
o o o o' J o

J= f jds
JsJ

(2) A=-k P<n>,
o \

P= sink density

v<n>-k P<n>
o o\

n(r)=n +e .r-n (R/r)-e .r(R/r)
o o o o

(See Appendix B.)

Marqusee

& Ross **

1984

[21b]

C(r,t)R=Ceq(R) (1) A=0, C(r,t)=Co(l-R/rj-i-Ce (R)R/r

(2)
r

n/c

V[R,C]=dR/dt=(D v
o IB

C(r,t) see Appendix B.

-C (R)]

C(r,X) and C(q,X) see Appendix

* A=5ink/source term(s), E.C.=boundary condition, I. C. = ir.itial condirion,

** Similar works in period of 1979-83 have previously reported -;ic-2lbj.

*** oC and £ see definitions defined in [42a]-Eqs. II and II.
, L:



(Figures 3 to 9 are in this Section IV, see Figure

Captions, p. 89, and the Figures followed.)
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APPENDIX A

EVALUATION OF THE GROWTH LAV

Consider a spherical sink (the precipitate particle) of radius R,

3
(4TJ/3)R /v = volume of the sink/molecular volume

m

= total number of molecules in one sink = n (per sink)

Let I = dn/dt = rate of molecular adsorption or

desorption on the sink surface

= d/dt[(4 T/3)R3/v ]
m

= (ATT/v )R2dR/dt (A. 1)
m

3
or equivalently, d[(4'n'/3)R ]/dt = v dn/dt.

Note that, since, I = J and J is the total flux of mass getting

into a single isolated particle, i.e. ,

f 7
J_ = - ) ds.j = - U "iTruJ (A.2)

s

where n^ is the out normal unit vector on the sink surface. The negative

sign in EG. (A.2} tanes care of the case for negative vC, in order to make

j positive isee Appendix 5). By definition,

j = - D vC(r.f> = -D tfC(r,t)/^rc ' o

and since [21b..

C(r,t) = Coil-R.-ri +
 c
ecj(8-) BL/r

is the solution of Lapiace-equatior. in the concentration field arround a



single sink, which satisfies boundary conditions

C(r,t) « C (R) andr-R eq

C(r,t) ml>0 - C , therefore

j - -D [C - C (R)]/R (A.3)
O O 6Q

Substituting (A.3) into (A.2), one obtains,

.T = 4 7TRD [C -C (R)] (A.4)
T o o eq

After equating (A.I) and (A.4), one obtains for one single sink and consider

t=0,

dR/dt = (D v /R)[C -C (R)] (A.5)
o m o eq

For t > 0 and for a distribution of particles with number densioty, P, and

probability size distribution function, P(R), we define an average

concentration C (r,t) under the asumption of particle independence,
av

such that,

C (r ,t)/ t = D v^C (r,t)flv n avav

,
- (LT 'f ' , 'v ) j R 2 d R / d t P ( R ) d R (A. 6)

The microscopic concentratic/r. fielc [ 2C . 21 bj obeys the steady state

diffusion equation (see Appendix B).

Now, consider the rare of molecular absorption or desorption , I(=J .),
u O w o J-

number-density of sinks n(R.t; or (R,t) as used by some authors, the super

saturation [ C-C j, and the volume fraction «f • 14-16 ,18 ,21b] of the sinks,

I - k(R) - ̂ DRP
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- 4TD R[C -C (R)), as t-0, f=0 (A.7)

I - k(R)

- 4TTDoR[C a v-C ( R ) ] , as t>0, f=0 (A.8)

I «= k(R)

= A ^R [l+Rj4^<R>][Cav-Ce ( R ) ] , as O O . X ) (A.9)

Here 47fD R is responsible for the e f fec t of the size of the single particle,

is responsible for the effect of particle concentration, and

[C -C (R)] is responsible for the effect of concentration field difference,
3V 6Q

the extent of supersaturation.

The growth law now becomes:

V(R,C )=dR/dt

= (D v /R)[1+RJ4 ir(><R>J[C -C (R)] (
o m v \ av eq

This is the growth law and competition of sinks (precipitate particles)

and under the influence of the concentration field gradient as well, now,

the rate constant in (A.9) becomes

k(R) =4TTD R[i+R:4TT?<R>] (A. 1~



APPENDIX B

CONTINUITY EQUATION AND ITS LAPLACE TRANSFORM

As consider the sinks to be completely at rest, the monomer

concentration, C(r,t), satisfies the diffusion equation

^C(r,t)/^t = DoV
2C(r,t) (B.I)

in the part of the space occupied by the solution. The microscopic

concentration field obeys the steady state diffusion equation

v2C(r,t) = 0 (B.2)

The so called Smoluchowski-boundary condition [24] requires C(r,t) to vanish

at the surface of the sink, the problem has the obvious electrostatic

analogue of finding the potential for a collection of ideally grounded metal

spheres.

According to Smoluchowski-theory [24] for the steady state reaction rate

in a dilute system of spherical sinks, at sufficiently low sink density the

competitiuon for solute molecules between sinks can be neglected and one

needs consider or.iy the effect of a single sink. One assumes that a monomer

diffusing toward the sink is absorbed instantaneously upon contact and

expresses this by requiring Cvr.t) to vanish at the surface of the sink. In

a steady-state situation one therefore must solve EC. (B.2). The boundary

condition imposed on EC. (£.2, is

C(r,t) = C, at jr-r <= ?, (B.3)
i -"

where R is the sink radius (see Fig. 2). The initial condition is
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C(r,t) - CQ(r) at t - 0 (B.4)

For uniform concentration C at infinity, the solution is

C(r) - CQ - (CQR/r) (B.5)

For convenience, one may choose the coordinate origin located at the center

of the sink, so that from r=0 to r^infinity, there are numerous vectors with

r=R located on the surface of the sink. In this manner the meaning of k

is self-evident, since

k * 4TTD R implying k proportional to R (see below)

The molecular flux encountering the sink surface is

j = -D vC, by operating v on Eq. (B.5) one obtains

vC = C R/r2
o

J = \ j .ds = the total flux absorbed per second per sink
s

a f t e r integrating over the surface of the sink

D C R / r ~ r" sin6 d6 d<t>' o o J '

= 4TTD RC = k Cc o c o

On a macroscopic scale the equation for the average monomer concent rat ion

is C = <C>, therefore the continuity equation becomesa%' '

£? <CJ>/^t = D v~<."C^ — k F <C" ' c ^ •
o o \ '

with the rate constant k = 4T/D R ancj sink number dens i t y P.
o o I

Since C(r,t) in a concentrated solution varies rapidly, therefore it is
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no longer true that the concentration tends to a constant at a large distance

from a single sink. The magnitude of the effect of gradients may be

estimated by solving Eq. (B.2) with the condition

C(r) = C + e .r as r approaches infinity [17]

The solution is:

-. C(r) = C + e .r - C (R/r) -e .r(R3/r3) (B.7)
o o o o

The particle flux into the sink is still J = ArtD R, so that it appears that

concentration gradients have no effect. However, the dipolar disturbance

(the last term in Eq. (B.7)) makes itself felt at large distances and,

when summed over a large number of sinks, contributions significantly to the

average local particle density.

If replace E<j. (B.I) by a microscopic equation valid for all space with

added sink terras representing the monopole and dipole contributions [17],

D [v'C(r.t) - 4Z£ q $(r-r

K
+ &£ Pj.vj(r-r..)] (B.S

where C(r,t>=0 a: r-r . <=?. (inside the sink or at tne sink surrace/
j

use of (B.S) one may cake average as follows:

LKS: <<?'c(r,L)/Vt> =^C_./^t =<

RKS: <D ~C(r,t)>=D v~<C>-4TD <Z_• Q . S(r-r . )>r4 D <2_ p .. vr ( r-r . )>
o o o . _ -3° J ° - = . i J -J
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After equating the two sides, one obtains:

D v2<C> - 4ITD Q(r, t)+4iID P( r , t )

= T.[D(P)v<C>] - k(P) f<C> (B.9)

with k(P)f<C>=4TTDoQ and D(f)v<C>=Dov<C>+4TDoP [17]. Eq. (B.9) accounts

for the competition for monomers between sinks, as implied by k(̂ ). It

also shows, by D(P), the diffusion motion will be affected by sink

concentration P.

If choose only the monopole sink term which only approximates the

boundary condition but not affects the first order correction. The steady

2
state solution of D v C(r,t)= (r)+ q. (r-r.) has the formal solution (21b],

H
C(r,t)=G * 4(r) +ZG (r-r )q

j-i J J

Here the symbol G * denotes the convolution, as an integral operator,

Go*f(r)=Jdr'GQ(r-r')^(r')

and G (r) =-1 /4TTD r is the free diffusion propagator. The Green's function
o o

2
for the operator D v is, according to Green's Theorem [23a,p.242],

G(r-r') = - i/(4TD !r-r'| )o

Actually, "Smoluchowski" boundary condition, C(K.t;- = 0, at the surface

of the particle is not self-evider.tly valid [25a~, so that, thfe "radiation"

boundary condition i25bj may be employed. Wiien.sk: ar,c Fixman [25c] compared

these two boundary conditions and made then equa^ as set 6 =0 in C(R+-..

The continuity equation (B.I) with boundary condition and initial

condition (B.3) and (B.4) respectively is more convenient to work with the
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Laplace representation obtained by Laplace transformation of Eq. (B . I ) as

follows:

00

L f(t)=Laplace transform of f (t)= J f ( t)e dt»f_ (><-)

r\

= DQV C(r,t)}=Laplace transform of Eq. (C.I)

LHS: L<JC(r,t)A*t = I^C(r,t)A>t e ^dt = C(r,t)e"Xt

.00

+ XC(r,t)~Xt

'
dt

-C (r)
O

tx>

: L D v 2 C(r , t ) = D v2 [ C ( r , t ) e'^dt = D v 2C(r,X)
O O J O —

The Laplace representation for (B.I), with boundary condition (B.3) and

initial condition (B.4), nov becomes:

,^) - C (r) = D v £(r,X), X is the Laplace transform variable,

C( r-r. <=R, M = 0, i=l ,2, N.

This difussion problem can be viewed as a case of multiple scattering,

and the above equations are equivalent to a set of simultaneous equations by

statistical averaging and mean field approximation [17,18] or bv Fourier-

Laplace uransfom; tc obtain a cor.figurationai average- Green's function [IS].

The latter method has been used by many aurthc-rs ;20,2i]. A brief discus-

sion is shown in Appendix C.

52



ORIGINAL PAGE IS
fig POOR QUALITY

APPENDIX C

MULTI SCATTERING REPRESENTATION AND ITS FOURIER TRANSFORM

As shown in Appendix B, the Laplace transformed representation for the

2
partial differential equation, ̂  C(r,t)/̂ t = D v C(r,t), is an ordinary

differential equation in the form

£(r,X) - CQ(r) = DovC(rA) (C.I)

where X is the Laplace transformation variable amd C=C (r) at t=0 and

C( I r-r I <=R. , •*-)=(} are initial and boundary conditions respectively.

Where i=l,2 ...... N for the radii of the N traps (sinks) located at {r.}

respectively. Many authors use "R" or "a" for all |r~rJ > just for

convenience. Rearranging (C.I) we obtain:

(X- Dov
2)C(r,X) = C{)(r)

C(rA) = (^- Dov
2)~1Co(r)

= G (r)C (r) in absence of sinks.
o o

If more than one sinks are considered, one should add the sink terms. I

this case the solution becomes:

N
^ G (r)t.C.(r,^)

—

where ". is in= t-operator for one sink located at r. and C(i,̂  is ih~

Lapiaci trar.sronr of the concentration in the systen which the sink at r.

is eliminated. G (r) is the Green's function in the absence of traps,o

According to Green's theorem in handling boundary conditions in
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electrostatic or analogy [26], a simple application of the divergence theoren

leads to the solution of DQV
2C(r) = f(r) being C(r)= Jc(r,r')f(r')dr',

2 ~1provided G(r,r')=[D v ] £(r-r') is imposed, where £(r-r') is the

Dirac delta function. The solution of

7 N
? C ( r , X ) = 4(r)+£ q i (r-r . ) is

i=l X

N(
C(r,M= dr'G(r,r:)[4(r')+ £ <!< $(r'-r

' i=l

The physical meaning is that _C(r,*0 can be obtained by integration with

2 —1
an inverse operator of [-X. -D v ] . The inverse operator is equivalent

to Green's function in such a way

C(r ,K) = G ( r , r ' ) [ ( r ' ) + Z q . ̂ (r'-r^ ]dr

N

i=l X 1

2 ~!

In ( C . 2 ) , only monopole terms are considered. Replacing (A-D^v j
o

G (r) and in t roducing another t-operacor, one has

Ci. r . > v = G ( r ) C (r) -r J^G (r )t. C. ( r ,^)
— c o : — . o 1 — 1

C . ( r . V - = G ( r ) C (r! T ^ G ( r ) t . C . ( r , )
-i. c. o . = . ,_. o j-j

DV

wh/nere C__. ( r ,V ' is the Laplace t ransform of the concentration in the sysren;

froiL which the sink at r. is e l iminated, and t. is the t opera tor for one
i i

sink located at r. .



By substituting (C.3b) into (C.3a) one obtains the multiscattering

[18-20,21b,d] representations, where t is an integral operator [23e],

N
C(r ,X) = G ( r )C (r) + 2L> G ( r ) t . { G ( r )C (r)

^— O O O 1 O O
i=l

N
+ 2L G ( r ) t 4 C , ( r , X ) } (C.3c)

JTk(r,r',X;rk)C(r',X)dr'

. . . , j , j j

To solve (C.3a) it is convenient to use Fourier transform technique. The

Fourier transform of a function, say f(r), is defined as

' (°° • •*•
F f(r) =J f(r)e"iq-rdr = f(q)

-00

therefore the Fourier t ransform of Eq. (C.3a) is

c»

LHS: F C(r,M = \ C(r, )e~1C>rdr =
— —

RHS: F [G (r)C (r) +J_ G t. C .(r,>-)] = (I) + (II), where
O O fT'f O 1 — 1

f — "i n
(I) = \G (r)C (r)e iq

,' O O

= i ;,C^( r j d r . ' [ \-I^( iq) ie ' * ] ; , (iq)"=-c

so, (!'• = ;C. ( r } [ A - r L ' .

O

13

G (q)C Cq), where G (q) = jA-t-D c'j , similarly
O G O C *
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N
=2j G (q)T ,.,,„ ,
i=l

After equating both sides, one obtains:

C(q,x) = G Cq)C (q) + £ G (q)T (q)C (q,M (C.4)
1=1

and Ti(q) = (3 )"
3j dq'T^q.q', X;ri)P(q,q')

T (q) is an integral operator, in which P(q,q') is a permutation operator

that changes the index q of the operand to q', and T.(q,q", 5r-;) *s a

convolution integral operator, in Fourier transform,

T.(q,q-,X;ri) = j drjdr-e-
i(qr-q'r')Ti(rir' , X;r.)

Substituting C(q ,^)=Go(q)Co(q) +JT GQ(q)T.. (q)C.. (q

into (C.A), one obtains

N
C(q,>)=G (q)C (q) + %_. G ( q ) T, ( q) {G ( q)C (q)

CJ v» Ct ± \J \J
i= i

G (c)T.(c)C.(o,^)}
o " i

ir. sucr. s v&y one m^y subscitutt

C . (. q . :v;=G^ (c JC ( c}- 2EL G (c'.'T. (q)C. (c ,̂ ~) into (C.5; , anc sc on.
"i C- O . O ' k K

K= i .=•;
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APPENDIX D

SOLUTION OF PICK'S 2nd LAW, EXAMPLE

The solution of 2nd order partial differential equation, Pick's

second law of diffusion,

^C/^t - D v2C (D.I)

chosen by Collins and Kimball [38a] with the boundary condition C(R,t)=0 on

the surface of a sink of radius R (see Table 2), is similar to the solution

1 /2of linear flow of heat [41], For the normalization constant (47TD) ,

the particular solution should be like this:

C(x,t) = t~1/2exp(-x2/4Dt) (D.2a)

2 2 1/2
since by change of variable, x /(4Dt)=u , du=dx/(4Dt) ,

C(x,t)dx = 2 j C(x,t)dx (since C(x,t) in (D.2a) is an even function)

= 2(TD)1/2J exp(-u2) du

= 2(TTB;1/2 = (4T7D)1/2 (D.2b)

1/2
(4~HD) is the normalization constant of the chosen function, the error

function solution. Now, consider one spherical sink of radius R and locatec

at the origin, then the error-function-solution takes the following fore:

C(r,t) = C {] - (R'r; erfc [ ( r-F.) -'{4D: 'i!~ } i (D.3)

The solution satisfies the boundary condition

CU,t) = 0, for 0 <= r <= R

:>tJ
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so that the concentration field of the monomer is only defined in the range

of r-R to P° . In other words, the concentration of monomer is not defined

in the region from r=0 to R, i.e., inside the precipitate-particle of

volume 4"WR /3, since inside this volume monomers not exist.

The total flux J, which is j j.ds over the entire surface of the

assumed spherical precipitate particle, was defined by collins and Kimball

as f" , i.e.,

x = J = j j.ds (j=-D?C, ds is negative to j in this case)

f\

= 4 fi R D(̂ C/<? r)
r=R

= 4 ~ R 2 Q C / J r C U- (R/ r ) erfc[ ( r - R ) / ( 4 D t ) i / 2 ] } _Do r—K

9 l I")
= 4-rrR^ DC {(1 /R) e r f c [ ( r - R ) / ( 4 D t ) 1 / Z ] } _Do r—K

+ { ( R / r ) e r f [ ( r - R ) / ( 4 D t ) 1 / 2 j } __ ( D . 4 )
r ~ i\

To obtain Eq. (D.i.), the following Leibnitz-rule [44] should have been used,

(Mt)
d/dt f(x,t)dx = f[bit),tjb'(t)-f|a(t),t]a'(t)

,-' ait;

Besides, by definition,

i ' "
". • exr -:-:'"")ex'

erfc (x) = 1 - eric

one can see tnai
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erf (o°) » 1, erfc (̂ °) - 1 - erf (P° ) - 0

1/2
Since r-R=0 if r=R, so that erf (r-R)/(4Dt) = 0 as r=R, therefore

we obtain a very neat fora for the total flux as follows:

$ = 4~DRCo(l + R/(-7TDt)
1/2] (D.5)

Moreover, Collins and Kimball defined SB (=J) as the time derivative of the

total amount of the d i f fus ion species, from the amount presented at t=0. i.e.,

^ (=J) = dM/dt

We can see from Eq. (D.3), the total amount of the precipitate is just equal

to the integration of the second term on the right hand side of Eq. (D.3)

over the entire region of the precipitate-particle sizes, for spherical-size

2
assumption, the volume element is dv^AWr dr, i.e.,

«*>
•> 1/2

M = C ) 4*r~{(R/ r ) e r f c [ { r - R ) / ( A D t ) x / ]}dr

erfc[(r-R)/(ADt)1/2]dr (D.6)

which is the total amount of precipitate in ali sizes of particles a- tine

t>0. By taking tine derivative of Eq. (D.6), and by use c: Leibniz Rule

again, one ostains

,-CK

dK at = d/ct-C^ ; iTrK erf c! ( r-R)/( 4Dt )
 L ~ ]dr

C i^R; r(d/dt)-!2/( T;1''- 1 ,, ex?; ->:J )dx
° ;R -Xr-R)/(4Dt)1/-
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-1 I •) -•*/? ( 9

- Co4-nR(4DTO ' t } r(r-R)exp[-(r-Rr/(4Dt)]dr

2 —1/2then, by change of variable: (r-R) «=u, dr=(4u) du, and change of

integrating limits f rom r = ( R , *») to u=(0 , e x > ) , then

,ex>
-1/2 -1/2 1/7

= dM/dt = 2"HRC (4DT) t { I u exp[-u/(4Dt) ]du
° -'O

r+ R exp[-u/(4Dt)]du} (D.7)

Eq. (D.7) can be evaluated by use of the following integrating formula,

i
i

Of- _
exp(-ax)dx = (»

provided we set the constant "a" equal to (4Dt) . The integrated form

of Eq. (D.7) is,

±= dM/dt = 2-RRC (4DTT)~i/2t~3/2[2Dt(4DtTr)1/2+4RDt]
o

= "7TRC D(D-t)"1/2i(D7rt)
1/2 + R]

G

= 47-RDC [i + R/(DJt)1/':] (D.8)
O

Eq. (D.S; is just tne total flux. .£. , represented by EC. (D.5). Froc. the

above argument one car. see tnat the significance of the solution of the

second order differential equation of Picks law of diffusion choser, by

Collins and Kiabail |3t-sj.
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FIGURE CAPTIONS

Fig. 1. Cutoff - pair potential, which vanishes as r >= b.

Fig. 2. (a) Two dimentional schematic representation of circular particles

in Dirichlet region.

(b) Reiss & LaMer's model [42a] , h-x = thickness of the diffusion

region (see Table 2).

Fig. 3. Schematic representation of N(t) = n(R,t)dR. See Section III.l,

and Kahlweit and Teubner's 1976 and 1980 works [22aii, 22b].

Fig. 4. A)(Z, CT) vs z, ik-case (see Table 1).

Fig. 5. A/'(z, ij- ) vs z, dl-case (see Table 1).

Fig. 6. Scaled distribution function F (z) vs z, dl-case, for different

equilibrium volume fraction ti^ .

Fig. 7. Cutoff size distribution, z vs <£&, .

Fig. 8. Reduced coarsening rate vs equilibrium volume fraction^, T vs

Fig. 9. Amplitude for the densiiy of particles f(fpc') vs ^K. , average

radius a (Qp? } VE ^ , and the supersaturation decay function

. in v:.icn ao(0) = (i/9)
1/:>, C^ ( 0) = (9.' «.'• : ' " ,

and P = 1.99 are usec [2ibj. The t 1 '' J , t"1''", and

— 1 ] / "7 '• ' ?
t J factors are taken a; [1 •*- 0.8l5(f/» ) " ' " ] , [; - 0. 81 5(^ } ' 'L j ,

1 / 9
and { 1-2. 445( ^pc } '"] respectively.
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