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ABSTRACT

Ostwald-ripening theory is deduced and discussed starting from the
fundamental principles such as Ising model concept, Maver cluster expansion,
Langer condensation point theory, Ginzburg~Landau free energy, Stillinger
cutoff-pair potential, LSW-theory and MLSW~theorv. Mathematical intricacies
are reduce¢ to an understandable version, Comparison of selectec works, from
1949 to 1982, or solution of diffusion equation with and withou: sink/source
term(s) is presentec. Kahlweiti’s 1980 work and Marqusee-rRoss ™ (9% wory are
more emphasized. Odijk and Lekkerkerker”s 1985 work on rodlike macromolecules

is introduced irn order to stimulate interested investigarores.,




I. 1IN
I.1.
1.2.
I.3.
1.4.
1.5.

II6.

ORIGINAL PAGE:IS
OF POOR QUALITY

CONTENTS

TRODUCTION

Theory of Ostwald-ripening, pioneers” work and development
Phase separation, its hydrodynamic/chemical-kinet1c‘analogy
Theories of crystal growth, LSW-theory and MSLW-theory

Time rate of changing particle radius -~ growth law

Works by Marqusee-Ross and by Kahlweit

The main goal of this work

(Figures 1 & 2), see Figure Captions.

I1. FUNDAMENTAL CONCEPTS

11.1.
11.2.
11.3.
11.4.
11.5.
11.6.

11.7.

I11.

I111.1.
I111.2.
Ii1.3.

111.4.

111.5.

Diffusion equations
LSW-theory and Kahlweit”s deduction
Sink density and competition of sinks in precipitation

Particle size plays an important role in precipitate competition

Mass transier in crystal growth

Entropy production and Onsager reciprocal relations

Thermodynamic argument orn crvstal growth

ASTMPTOTIC DISTRIBUTION FOR PARTI

(@]

M

SiZE

w

L
Fundamental equation and reduced variables

Decav function in supsTrsaturation

Pcower expansion and scealed distributicn function

Scaled growth rate as function of scaied radius

Scaled distribution in zero voiume fraction of sinks

10
11
11
13

14

15

)
~

o
o

rJ

wu

29

30




I1I.6.

Table

ORIGINAL PAGE IS
OF POOR QUALITY

Scaled distribution in nonzero volume fraction of sinks

1. Xz, 0’1)=z.)~( c’l-—z-l)/3x-z/3,

x=(2+)\)-l, vs 2z 1in different A and G'l'

IV. DISCUSSION AND CONCLUDING REMARKS

IV.lI

Iv.2.

Iv. 3.

Iv.4.

Iv.5.

IV.6.

Table

Concentration gradient as driving force in diffusion

Solution of Ficks first law, comparison between selected works

Approximate solution for complicated process, example
Experimental efforts following the theories
Application of theory to alloys

System containing nonspherical sinks
2. Comparison of selected works on solution of

2¢C/d t=Dv2C+A, with A=0 and or A#0

(Figures 3 to 9), see Figure Captions,

APPENDIX A. Evaluation of the growth law

APPENDIY B. Continuityv equation ancé its Laplace tramsiorm

APPENDIX C.

APPENDLIY D. Scauzion of Fick’s

. FIGURE CAPTION:

(9

figures foliowec.)

Mul:ziscattering representatiorn and its Fourier transIiorx

32

34

35

35

35

36

39

40

42

44

44"

wn
(V3]

(W2l
R

0y



ORIGINAL PAGE IS
OF POOR QUALITY

1. INTRODUCTION

I1.1. Theory of Ostwald-ripening, pioneers” work and development

Theories for liquid or solid binary mixture-nucleation, coagulation and
droplet growth have been discussed extensively by Binder and Stauffer [1].
The-works of pioneers such as Ising model concept [2], Mayer cluster
expansion (3], and the Langer-condensation point theory (4}, lead to the
analytical continuation of the free enmergy, beyond the experimentally

unobservable singularity [3], by conventional droplet model.

Ising-spin system in a magnetic field and a lattice gas are proved to
be mathematically equivalent [2]. Mayer cluster expansion considers that
the negative sum of the magnetic field and free energy, -(H + F), which is
equivalent to pressure of the gas, can be expanded into cluster integrals

a4 i
bi as pskT‘Z: biz « In which k is Boltzman constant, z is the
£/
active numbsr density, T is the absolute temperature, and bi the cluster

integrals deiined over the coordinates of i molecules in volume V. The

[

cluster integral depends on the potential energv andé coordinates oI tne
molecules {2}, However, the statistical theory of condensztiot Dhenomene

geve.cped Dy Maver ané his coworkers ané subseguentiv by Kanm and Unlenbesox,
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km tne structure function S(k,t) is a maximum. The s:tructure funciion

S{k,t) is defipned as the Fourier transform of the spatial correiatioz funciior
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G(r,t). In principle the structure function can be obtained experimentally

by light scattering.

Immediately following the pioneers” works, Frenkel [6]) proposed in
1939 a simplifﬁed format of mathematical derivation, which emphasizes that
the importance of a droplet radius, therefore the velocity of condensation
of a oversaturated vapor and the growth of the droplet can be deduced by the
nuﬁber of molecules (or atoms for monoatomic species) in cluster, since the
number of molecules in cluster is related to the average radius of the

clusters each containing the same number of molecules or atoms.

Hill [7a,b] applied the ciuster-theory in 1955 to imperfect gases and
protein solutions. Greenwood [7c] .analyzed theoretically the diffusion flow,
the smaller to the larger particles for the growth of dispersed precipitates
in solutions. Perhaps all these works were related to Bigelow and Trimble’s
extensive experimental work [7d] or vapor pressure and particle size, They
repeated Ostwald’s experiments [7e] on sulfur, since Ostwald founc that, the
vapof pressure difference bestween two dropiets of unequal size. Sulfur was
the species Ostwall suggesied other omes to use for veriiving his finding
[7¢,e]. Finally Greenwool ;7ci tried to verify the particie size and vapsr

pressure rei&iignship, ani ins growin rats. bY us

= use oi rthe well know:
Thomson-Freunciich eguaziion (7I;. 21! thesz leac tc the name Ostwall-ageing
[9b] anc¢ or Ostwaid-ripening [i%,2:z.bj.
Greepwood |7c} derivec the fcrmulas for the rzte of change of parricie

size ané periormed calculal:ioas
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nighiv disperszc particles,
He appliec the theory to experimenIzl resvits of growth in uranium-leac and

uranium-sodium slurries.



Stillinger [8] proposed in 1963 a concept of "physical cluster integral”
by overlap of spheres drawn each molecule, which are not regarded as statisti-
cally independent, but their mutual exclusion property gives rise to free
energy of formation, work for cavities necessary t6 contain those clusters.
Stillinger”s work gives a connection between these free energies and a
suitable generalization of the Mayer”s irreducible cluster sum. Above all,

the most important points are:

1. HBill included the external forces (such as gravitational field)
upon the system considered.

2. Stillinger [8] based on Frenkel-Bank theory of association
equilibrium intensively and introduced the idea cutoff-potential,
V(r), which vanishes identically beyund r = b, where b/2 is the

molecular radius (see Fig. 1).

'

The kinetics of precipitation from supersaturated solutions, known as
Ostwald ripening [7d,e], were examined in detail by Lifshitz and Slyozov
[9a], and by Wagner {9©t] independently and coaventionally termed LSk-theory.
Formulas for the asveprotic grain size distfibution, for the number of grains
per unit volumes, anc Ior the supersaturation as a function of time, were all

established by the LSw-theoryv.

1.2. Phase separatict, iit: hvdrodvnaniss/chericali-kineti¢ &na-Ogy

A thermocvmoamicaily unsiablie systern separates imto its componen:is is
termed spinodz. decompositioz {l0a,bj. Phase separation is clieariv &
ponequilibriuz and norniinear phynomenon. For this reason, Siggie {l1{a. usec

models of flui¢ systems that typicaily would manifest themselves in tne sc

called later stage of spinodal decomposition. Prior to Siggia’s work, Lan

o]
Use]
(11l
(3]
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and his coworkers [10b) performed series of calculations with the theory of
spinodal decomposition through reagion in which it is difficult to distinguish
from nucleation and growth. The experimental part concerning this topic was
carried out by Cahn and Hilliard in metallurgical systems [10c,d}. Light
scattering experiments were carried out by Huang, Goldburg, Bjerkaas, Wong,
Knobler and Chou [10e-h], in order to verfy Siggia“s theoretical argument

[10a] and Langer, Bar-on, and Miller (LBM) theory [10b}. More detail can

be found in Section 1IV.

The interaction between molecules or between ions, which leads to
cluster formation and eventually to the evolution of crystals, has been
likened to a chemical reaction so that the chemical kinetic theories can
apply [1la}. Similar to chemical reaction, the activation energy the
barrier to nucleation must be overcome before crystallization can occur,
so that the intermeadiate stage and the last stage of precipitatior can
follow. One result of the energy barrier is the necessary creatior of some
degree of supersaturation before spontanecus crystallization will occur
[11aii]. The cluster formation can be dezli: with cherical equilibrium
expressions [22c], for instance, £=a /4% ior na=A_ and B = n /A A

! n o - B+K o+k n K
for A +A =£_ .. However, in addéing or sub:racting monome(s) to or from &

p K n+k £

growing aggregate, thousancs ¢ sieps Zorwsrs anc backward mav De

zeeces

siggiz {10a; discussec it dezail tne influence of hvdrodvnami: interac-

tior orn the coarsening rats of & mis:

re
rh

Z-oplete combining thnrougrn diffusive

cozlescence. He emphasizec that the "volums fractiorn' of precipizzte actuallvw
procucec¢ in most off-critica. quencn experiments probably favors direct

coalescence (the zero volume fraction was :taken as in LSW - theorv).



According to Landau”s theory the free enmergy can be expanded in a power
series of the order parameter f and its derivative., By minimizing the
free energy one obtains the most probable value of e . Landau made
assumption that the most probable value of f coincides with the mean value

?? . Ginzburg modified Landau”s theory to a more realistical form which

bears the name Ginzburg-Landau free energy [10a].

I1.3. Theories of crystal growth, LSW-theory and MLSW-theory

The theories of crystal growth have been divided into two categories:

1. Those descrising the rate-limiting process in terms of tramsport to
the crystal surface are called diffusion controlled (or limited)
growth (dl-cases).

2. Those relating the rate control to processes occuring in the
interface region (i.e., precipitation of crystals from a stirred
liquid solution) a?e callel interface controlled {(or kinetic)

growth (ik-cases).

Diffusion controlled growth has been s subject of continued ic:erest for
decades {11, starting probabiy witr the oid Noyes-wWhitmey (l11b], Nernst
l1lc. equations anc developing to th:z sophisticated approaches by Frisch

112, Baw {13}, finally by Lifshitz zad Sivozov and wagner [Gj.

ic}, tc zake intc account the voiume fractioro,
¢', of the precivitate [15}. The chzracteristic distance chosen for
computationa: purpose was relatec tc the mean free path between & particle
an¢ its nearest neighbor. Also spherical symmetry was assumed. It was named

the modified LSW theory (MLS¥W-theorv}) by Ardell [14]. The MLSW-theory
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predicts that while the basic t1/3

kinetic of the LSW theory is maintained,
the coarsening rate increases with increasing volume fraction even at very

small volumes of 4, [14-16,21b]}.

At zero volume fraction (¢==0) the MLSW-theory is equivalent to the
LSW-theory. The MLSW theory was justified for several alloys such as with
the available data in the coarsening rates of A-precitates in A-B alloys
such as Co in Cu-Co alloy. Ardell discussed [14] the works by Sarian and
Weart and Asimow [16] as they proposed that the mean particle diameter dav
and number_of'particles per unit volume Nv are functioin of temperature T,

volume fraction ? , and time t,

a = £1,¢) 3 K - E1é) o]

av

Ardell also emphasized that the Dirichlet region for a 2-dimensional
distribution of circular particles (see Fig. 2), the concentration of solute

in the matrix must approach
C(r . =C(r7) =C"
(r) | .- =)
at a distance from the ith particle, where

r” =, + L/2, 1 = mean free path

Feldéerno? and Devzch [17] deal: with the comcern:rztion ds=pendence oI Ins

rate of aifiusion-conitclilecd reactions, particularly ic steacy state situazion

for a random Gistribuiion of rthe sinks (precipitare particlies;. The siorn
concentcration is & Ifunction ol rate censtant k, the size éistridulion
functiorn F. The rate coanstan: is predicted to increass with concentration oI

sinks and the dependence or concentrationis shown tc be nomanelytic.



'1.4. Time rate of changing particle radius-growth law

Brailsford and Wynblatt [18] derived the spatially homogeneous rate
theory model, to describe the time rate of change of radius of a spherical
particle embedded in a confgurational random array of particles of like
nature but differing in size only. The growth rate so derived by B & W is
incorporated with LSW-hydrodynamic model of particle coarsening and the
asymptotic size distribution determined as a function of the particle volume
fractibﬁ ¢ , 1s in agreement with earlier workers., It is shown that the
diffusion controlled coarsening the basic.kinetic form rav3 is proportional
to kt, where rav is the mean particle radius rav’ t is time as usuval, and k

is the rate constant a function of the volume fraction @.

Bixon and Zwanzig (19a] reexamined the diffusion problem in a median
with static traps (sinks), and obtained the first order in density. They
obtained a long time tail solution for its steady state situation included
more complicated dynamical processes that appear to lead to contributions
of higher order in the trap density. The work of B & Z was extended by
Kirkpatrick [20] ip which the time dependent transport situation is well
discussel by adding a class of density corrections which are divergent for
long times anc¢ that when these divergen: terms are resummed thev modified

ths lowes: order rtesult of E & Z.

I.3. Workes by Margqusee-Ros:s and bv Kahiweit

Mzrgusee ani Ross {2ia’ presented &z new decivarion for the lasT stage of

phas

m

separation in the kinetics of a8 first crde:r phase
tation, where Ostwald ripening is the dozinan: mecnanisz. Thev usec & time

scaling {2ia,c,d] technique and derived the power law time dependence and

-1



s

distributions for the size of the particles of the new phase. The

derivation classifies and corrects prior size of- the particles of the new
phase. Equations are derived for the corection terms to the distribution in
power laws. The derivation classifies and corrects prior work. 1In a
succeeding paper [21b], M & R extend the theory of Ostwald ripening to

include the dependence of the volume fraction [14-16,18,21b] of the minority
the précipitate (see Appendix A), the multiscattering [18-20,21b,d] approaches
(see Appendix C), and the power laws of the time dependences for the late

stages of phase separation, Ostwald ripening.

The work of LS and Wagner (the‘so called LSW-theory) has been criticized
by Kahlweit in a series of papers [22a,b]. He claims that their asymptotic
solutions are not those of the last stage of phase separation but rather those
of earlier intermediate stage. A 3-dimensional schematic representation
[22aii) and & 2-dimensional one [22b,c}, in distribution of particule number

density on particule size, demonstrate his idea very clearly.

Marqusee and Ross [21lal claim that LSW's solution are correct and that
they are the leading terms in the expansion of long time solution. As for
the contradiction in fixec total mass of precipitate yer allowing the

monomer concextration to

0

nenge, M & F show tha:t the assumptior does no:

affec: the lowes:t orcer term in the eXpansich,

The presznt paper is intendsd t¢ reducs the mathematical intricacy of

-

all the piomezrs” theories (LSw-theory, MLSW-theory; im order to simpli

2l

v
them to an uncerstandatle version. Several appendiceg are added for this

purpose. Some discussions are also included for stimulating new ideas for
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Following this introduction, we emphasize the fundamental concepts
(Section I1) and asymptotic distribution for particle sizes (Section III),
which obeys an equation of continuity in R space (Section III, Eq. 3.1). Key
points for approximate solution of complicated process, experimental efforts
following theories, ané the theory applicability to alloys are discussed
(Section IV). A comparison of related works on solution of diffusion equation
withand or without sink/source term(s) in time period of four decades is
presented (Section IV, Table 2). We evaluate the growth law (appendix A),
deduce continuity equation and its Laplace transform (Appendix B), demonstrate
multiscattering representation and its Fourier transform (Appendix C), and
show example for solution of Fick”s 2nd law (Appendix D). Two figures contain
in Section I, one table and seven figures are in section 111, and ome table in

Section IV. All these effortcs are for simplifying the theory and drawing the

distance betwzen ideziity and reality more closer.

Most of tne relared works containing in literature are for systems with
sphericel siziks (precipitate particles). For more complicated systex Odijk
and Lekkerkerxar [47; have recently reported s theoretical approach on the
phase separaz.on Ior z stiuticon of bidisperse rodlike macromolecules., 1t is

worthwrile o 53y atieciion to such & svsten (see Sectior IV, Subsection IV.6].



(Figures 1 and 2 are in this Section I, see Figure

Captions, p. 69, and the Figures followed.)
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11.1., Diffusion equations

Consider a general equation for diffusion,

dc/ot = D, vic + A (2.1)

in which C is the concentration of a supersaturated solution, Do is the
diffusion coefficient and A is the sink/source term. If replace C by T (the
temperature), Do by Kst (the thermal-conductivity divided by density-times-

specific-heat), A by A’//’s, then the expression becomes equation of heat

conduction [23a]l. -

For steady state case, 2C/2t = 0, Eq. (2.1) reduces to

vzc = - A/Do (2.2)

Ec. (2.2) is called the Poisson’s equation. In case A =0, no sink/source

and is also in steady state, then, Eq. (2.2) reduces to

Dt iS noT under stsadvy stats, from Ee. (2.1) ons obiains
N 2
sCize =D v( P4
o]
£, (2.4 is callec ths ecuatiorn of continuitv. In fluié dvnamice, if
cinsider v oas the velocitv of the f1

uié of density £, then V= ev is caiiszc
)
the flux densitv anc¢ represents the total flow of fluid per unit cross seztion

iz unit time. If no fluicd is created or distroved within the small velums



element d T, this loss of mass (if any) must equal —(a"/d t)d T, so that

v.V = - af/at . (2.5)

Eq. (2.5) is called the equation of continuity [23a)] in fluid dynamics.

If replace P by C and V by j, j=—Dov2C, then Eq. (2.5) becomes Eq. (2.4)

the equation of continuity. If consider steady state and without sink/source,
Eq. (2.5) reduces to (2.3), the Laplace”s equation. Laplace”s equation and

the equation of continuity are very important in solving diffusion equation

problems.

For the last stage of phase separation, when the nucleation is
neglible, the distribution of particle size obeys a continuity equation in R

space, where R is the radius of the partice,
J n(R,t)/2t +Z2{V[R,C(t)]In(R,t)}/IR = O (2.6)
Where n(R,t) is the number density of the precipitate particles, and
V[R,C(t)] = dR/dt

is the growth rate of & precipitate particie, here C(t) is the avera:zs

mONOmsI COoncCenirarion |

[ D]

“
18§,

C{z) = {_ _ - chzngs ¢i concentration cdue to precipitation
,N
20 = 2
= ¢, - [{&/3 ™R /v in(K,t)dR (2.7)
in - T
(
ViR,C(t): = dr/dz
= ([r\'mj'?l}:C(:: - C {R); {..8)

where Cir ic the initia: monomsr concentration and vm is the moleculsr
1

volume of the solute.



If the solution is not stirred (the diffusion limited case), the first
step is to transport C to the interface (by diffusion), and the second step
is to incorporate monomers into the precipitate particle. Therefore the
quasistationary solution [9b] for diffusion limited growth (dl-case) of a

spherical particle is
vdllR,C(t)] = [C(t)-C_(R)]Dv_/R (2.9)
eq m

For the precipitation of crystals from a stirred liquid solution (the ik-
case), the growth rate follows a first order law {9b] as
viE[R,c(0)] = kv [C(t)-C_ (R)] (2.10)
i o eq :

-1

3 . . . 5 -1
Where k is a constant and in dimension cm " molecule “sec

k = D4§ =QD (i; is Lifshitz-Slyozov's notation [9a]), J is density,

dr/dt = V[R,C(t)] > 0, if C(t) > Ceq(R)

<0, if c(t) < Ceq(R)

Therefore, we mav call [C(t)-Ceﬂ(R)] the driving force for crvstal growth
g

or dissolution.

-

1I.2. LSW - theorv anZ Kahlweit s deducztion

According to LSw-theory, the size distribution asyvmptoticelly aprroaches

a time independen:z shape,
n(R,t) —» i(:)g(f} for ¢t == o<

where €=R/RC, a dimemsionless length, anéd R is trhe criticai radius.
c

This result follows from the assumption that the ageing rate , d @/dr,

defined in the particular case (22aii) according to LSw-theorv [9].

-~

., 13
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dd/dt = d(Rc)zldt —> b >0, for t —=e0  (see Fig. 1)

where b=2kvm20’C(P°)/(kBT), in which kB is the Boltsmann constant,
the other constants have the usual meaning. Kahlweit”s derivation (22aii)
follows from the conclusion that the ageing rate defined in this particular

case by«ié/dt = d(RZ)/dt. Since according to LS-theory [9a, Eq.2],

dr/dt = (B /R)(A - X/R), 2 =0‘/Rc, ol/R = C(R)-C(¥°), so that

d $/de

2R dR/dt

2 £(A-%/R)

2K[(</R ) = C(R) + C(o0)]
Since as t =2 , C(R) -—= C(?°), therefore
a$/de -» 2kOC/R_ = 2k[25°v_C(2°)/k T)/R, = b > 0

in which é;=D(3,has been replaced by k, the rate constant for this particular
case, precipitation of crystals from a stirred liquid solution [22aii].
However, Kahlweit (22ai) showed that the latter conclusion is incorrect,
Instead, ¢ 2/dt may be seen as a measure of -dC/dt as shown in Figure 3,
increases rather rapidly after the nucleation period anc¢ then passes through

a2 maximuz duTring the early stages of precipitation to slowiy approcach zero

for t= o=,
IZ.5. ize censity anc competiticn of sinks iz precipitatio

Consifer the total nuzxber of molecuies (or moles) it one sink changzs
wizrn time as

[t}

A& T /3v ) /dt = k(R P
© (

*

k(R)| cav—ceq(k) ]

14



= 41’R2dR/dt (see Appendix A)
The above expression is for one sink only. 1In competition with other sinks

the expression [21b] will be
WrR°dR/dt = 4D _R[1+R TP 1Uc, ~C, (R

drR/dt = (DO/R)[HR ft. "(’<R>”Cav'ceq(R)] (2.11)

11.4v Particle size plays an important role in precipitation competition

The driving force for ageing of the precipitate is originated from the
surface free energy difference between different sizes of molecules. The
surface free energy is related to the size of the droplet for a liquid-vapor
syster in the following way: The vapor pressure of smaller droplet will be

higher than that of the bigger droplet as follows,

in (pz/pl) = (21’141/t0dm)(1/a2 - 1/a1)

(21’\7!11/M)(1/a12 - l/a) (2.12)

where Ed is the density of the condensed phase precipitate, '/ is the
surface tension, P> P, are the vapor pressures of the droplets with
radii a,, a, respectively. M/RT is the molecuiar weight divided by

i

T, gas constant times the absolute temperature. This fac: or pripciple

[ 1)

avors the growth of larger particies anc derives tne precipitaie ¢ decrease
its surface/velume ratio, that is growing bigger in expense of dissclving the

smaiter particles.

Similar deduction carc be applied tc solid-liquicd phase transitions. A
numpber of observations of the growth of solid particies in & liquic mediurm at

the expense of smaller particles have previously been reporteé [7c¢,d].

15
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Greenwood [7c] proposed a general analysis of particle growth using

Thomson-Freundlich equation [7f]):
In(S/s_) = 2M07(RTP,a) (2.13)

Where S is the true solubility, Sa the solubility in contact with a particle
of radius a, O the interfacial tension between solid phase and liquid phase,
and M/RT has the usual meaning. Bigelow and Trimble [7d] repeated Ostwald”s
experiment [7e] on sulfur and ﬁerhaps led the name Ostwald ageing [9b] and or

Ostwald ripening [18,21la,b] for the last stage of precipitation in binmary or

multicomponent systems,

For a special particle and an ideal solution, the R depencence of

Ceq(R) is

Ceq(R) Ceq("" ) exp(X /R)

]

Ceq(oo)(l + & /R) (2.14)
where ©0%= Z‘va/kBT [21a,b].
Conventionaliv, a se:r oI recuced variables are used as fc.lows:
=R/, (= t/T, T =L°/Dv.C (®) and

ik P - —— s . ) ‘-
T =C‘/‘Kbep(°°’:- FiT=0(t)=-C_ (e=))/c (o9} 2.
< ec

i
, . 3 . .. .
in which T=(RCC) /oC¥ ir LS-notation [9Ya]l.

Briefly, there ex.sts & criticsel radius R which is the particie
c
radius in equilibriuz with the surrounding solution, and R is the effective

particle radius [9b] defined as
]
R = 2 dv/d0 = 2 d[(4/3)mR>]/d(4TE") (2.16)
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The statistical theory of number density as a function of particle size

first established by Smoluchovski [24c]) as a linear function of time t ¢S

1/n = I/n0 + const,t (2.17)
where counst = 4%DA, io which A is the radius of action, D is the
diffusion coefficient, and n and no are the number densities at time
t gpd t respectively. Smoluchovski also reached a mathematical

deduction formula for the number of monomers in cluster in such a way
- +
n = o (/DX /Qee/n*H (2.18)

where o is the number density of clusters, in which each cluster contains

k monomers, and T is a constant which equals (4HDAn°)—1.

I1.5. Mass transfer in crystal growth

The interface of a crystal grain represeats not only a sink for
matter but also a source of both heat and matter. The rate with whick
crystal builcing blocks are incorporated into the solid is governed by the
difference of their chemical potential in the two phases in contact.
Though for the time dependent position and shape of an interiace one must
simultaneousiy consider the conssrvatiorn of mass, momentux anc eunergy for
the syster ir gquestion, however. one mav simpiifv the prodien by reasozabdle

assumptions (sucnh as steadv stale approximazion, isothermal concdition, etc.).

A critica. discussion on diffusive mass

[5e 2

trans

er in crystal growiw was

given by Westpnal and Rosenberger {Z7; Tk

L

Y

m
[V

liscrepancies berwesrn precicred

13

an¢ measured growth rates were attributed to

re

ne formal description which

ignored¢ the limited analogy bertween heat trarpsfer and mass transfer ané the



Nernst-Brunner unstirred film model. However, the intricacy of mass transfer
in crystal growth can be simplified by proper approximations. Drastic
simplications can be made for the crystal growth continuity equations - rate
of gain in mass, in momentum, in internal and kinetic energy [(27b, Eqs. 5.1 -
5.3). As for convection may be neglected when the crystal grains are smaller
than about 10 m, because the crystals move with the fluid [28]. Under such
circumstances one would expect the growth rate to be insensitive to stirring.
Furihermore, the diffusion fields of the particles have been found to be
independent of one another if the average distance between them is larger
than about 10 times their diameter. Under such circumstances diffusion

controlled growth has been observed [29,30].

Phase equilibria and chemical equilibria depend on temperature, thus
a temperature difference can cause a solid to dissolve in a fluid at one
temperature aﬁd deposit elsewhere at a different temperature. Gradients of
many types cause relative motion of the components of a mixture with
respect to one another. Hurle et. al. pointed out [31] that transport takes
place whenever a diiference in chemical potential exists, such as between

stable and metastatiz phases of the same material,

By experimentz. measurements one mav reduce the intricacy of the

one mav Iocus atTensione g thne relferenc

Hh
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entire svstez,

For stud:ies orn multicompoment isorhermei diffusion it is customary te
describe the transpor: matitler by means of fiow equarions which are extensiosas

of Fick”s first law. These equations express the flow of current Ji of

component i as a sum of concentration gradients each multiplied by a diffusiorn



coefficient Dij (named as practical diffusion coefficients) of one type. 1In
theoretical work the corresponding phenomenological equations are usuaily
written as sums of forces, i.e., the negative gradients of chemical potentials
each multiplied by a diffusion coefficient D’1j of another'type [32}. The two
sets of diffusion coefficients dependent on the frame of reference selected.
Onsager”s reciprocal relations [33] hold between certain of the D’ij and the
testing of these relations by using data for the Dij together with certain
thermodynamic data. Correct tests of the Onsager reciprocal relations

require proper specification of the reference frame. Usually, the solvent
fixed frame and the volume fixed frame are used. The former is used when

the chemical potential gradient of the solvent is eliminated from the flow

equations, and which is used for computing D~ from Dij’ and then for

i)
evaluating these Dij from those for the volume fixed frame. The volume
fixed frame is important to the experimental measurements of diffusion,

For the solvent fixed or mass fixed frames some auxiliary data such as
partial specific volumes are required for determination of partial diffusion
coefficients., Kirkwood [32] considered, for certain frames of reference,
as is the problem of measuring practical diffusion coeifficients correctly

where the partial specific volumes are dependent on concentiratiorn anc the

solutions therefore exhibit a change of volume on mixing [32].

In addizion te isothermal condizion, the phenomenosiogical description

Lon 2

of diffusion in isotropic mixtures has beern deveioped from the expression

ey

for the entropyv productiorn and the relatior betweer the diifusion

coefficients in accordance with Onsager reciprocal relatioms [34j].

Ii.6. Entropy production and Onsager reciprocal relations

The pnenomenological description of diffusion in isotropic mixtures is
p P p
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derived from the expression for the entropy production and the relation
between diffusion coefficients, resulting from the Onsager relations [34a].

The entropy production 0 of the vectorial irreversible phenomena can be

written in the form

o = 3 I - X (2.19)

where Jk are the components of fluxes and Xk are the forces. In

isotropic media

n
3 = > Ly k12,0000 (2.20)

In the absence of magnetic field, the Onsager relations {4b,d] state that
= j k= . .21
ij ij, j,k=1,2,....0 (2 )
The system described by Egq. (2.15) can be solved for the Xj, the new scheme

of phenomenological coefficients again being symmetrical, i.e.,

z. -1 - -1
X.= >, L. “J, L. ~ =1L (2.22;
Ik ek '

Toz encropy flow J_ ol entropy production G carn be deduced fTom the

thermodynamics equation Tds = dI + P4V - Z ,uidC; . 1: demons:rates that

the entropy prodection coatzins four different coc:iributions {33, Eg. 21}

1)

1) heat conductiot (due to temperature gradients),



2) diffusion (due to concentration gradients),
3) viscous flow (due to velocity gradients), and

4) chemical reaction.

For systems without heat conduction and without chemical reaction the

contributions reduce to two.

I1.7. Thermodynamical argument on crystal growth

Since by controlling the heat removal from the fused metal the
metallugist can give the casting the requisite structures, Ivantsov studied
the growth kinetics of different crystal structures {[36a]. When the crystal
is small and the growth rate very small, the system will be almost

isothermal, i.e., the effect of uneven temperature distribution will be

vanishingly small.

In addition to the diffusion process, the molecular kinetic process in
crystallization under supersaturation is equally important [36b], especially
for controlling the crystal-grain sizes [36c]}. The fundamental aspects of
crystal growth concern: a) the atomic processes of phase change, b) surface
energy, anc¢ c¢) heat and matter transfer. a) and b) influence the geometry o?

the interface. «c¢) determines ths temperature and compositions

(o}

i crvstal

fusior

(&)
rh

growthk {35d}. The interiszce roughness is a measure of entropy-
since the interface being rough for metals and smooth for most nonmetals, and
the entropy of phase changs i: smzl} fcr rough surfaces and large for smooth

surfaces. According

Ind

(o]
I
o
e
1]
()
W
0
(
o
o]
n
B
o

find, for some reasor, compounds

which may have low entropy of fusior freeze like metals [36e].

The spontaneous precipitation is & process toward a state of low

entropy. However, from the poin:t of view of statistical mechanics, all

’ 21
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molecular processes must be reversible. Besides, there is a theorem in
dynamics due to Poincare, which states that in a system of material particles
under the influence of forces which depend only on the spatial coordinates,

must, in general, be able to return to the initial state to any desired degree

of accuracy [24bii].

In accordance with Boltsmann”s point of view bssed on probability,
Smoluchowski”s theory of fluctuation im molecular concentrations [24] allows
us to bridge the gap between the region of the macroscopically irreversible

diffusion and the microscopically reversible fluctuation.

thermodynamically a spontaneous process can occur when the free energy
change is less than zero even if the entropy of the system is decreased. The
Gibb“s thermodynamic potential, i.e., the Gibb“s free energy, can be deduced
for the precipitation in supersaturated solution as follows:
1) d6 = -Ssdt + VP + Y'da + 32G/dndn;
i

dG, = -SdT + Yda + 3 G dn, (2.2&)
T

during the latent perioc, 4T > O, so -SdT<C, where S is the entropyv
of the entire svstex. The 3rd term of Eg. (2.24) is < 0, since
dni < 0 for the sclute while precipitatior occurs anc =n of

- -
<z

the sclvent is unch

m

2z, nance dG<G. Note itnat though the 2nf tert
1dA should be >0 {th: interfacial tension Y>(, dA >() for one crystal
growing, however for the crystal growih irn expenditure of smailer

particles a summation oI 7.cd4, shoulé be usec. As long as {ds.} are
- -

4
negative except the one of the crystal which is growing, thereiore the

3rd term has nc sigrificant contribution to the free enmergy change.



2) Consider the phase change being isothermal,

dG = d(i - 15) + Yda + 3 G; dn;
i

= di - Tds + Tda + G, dn; (2.25)
i
in which dH < 0, -TdS > 0 (sinc dS<0 in precipitation), the 4th term
is less than zero, and the 3rd term has small significance as discussed

above, therefore we expect dG<0.

rJ
(V)]
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I11. ASYMPTOTIC DISTRIBUTION FOR PARTICLE SIZES

/T 311.1. Fundamental equations and reduced variables

Define n(R,t) as the number density of particles with radius R per unit

volume of solution. N(R,t) can only change by growth from nuclei or

dissolution of precipitate particles., It must obey a continuity equation in

K space in the specific dynamic system,
I n(R,0)/dt + J/R{V[R,C_ (£)]n(R,0)} = 0 (3.1)

where {V(R,Cav(t)]n(R,t)) is called the flux density and represents the

total flow of fluid per unit cross section in unit time [23a]. It 1is also
assumed that the particles are stationary and nucleation is neglected, i.e.
the sink/source term in Eq. (A.1) of Appendix A is nearly zero and is omitted.
The precipitate-particle density at time t is N(t) (see Fig. 3), which is

conventionally termed (t), and expressed as

oo

N(t) =)’ n(R, t)dE (3.2)
0

une can see from Fig. 3

»0 o
jd

J acRoe ek = N5 ane

D : 8 Z

Tne (n,t)R_O plane, it Fig. >, illustrates the course of development oI
zhe mean conceniration ol moncmers with time [22aii}, which is related to

=

cavity theory {36,453 an

0.

theory of fluctuations [24bii]. The (R,t)n_,
=

~iane shows the trajecioory of the prcjections of critical radius of the

zlusters changes with time. Tnz planes parallel to the (n,R)t=0 plane

represent the size dis:tributior as it changes with increasing time.
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The distribution function can change by: 1) growth of particles,
2) dissolution of particles, and 3) the creation of new particles due to
nucleation. For last stage of phase separation, in case the nucleation rate
is negligible, the distribution obeys an equation of continuit.y in R space

as shown in Eq. (3.1) above.

As mentioned in Section II, by introducing reduced variables "r" or "a"

<, and o (7) [21a,b], the continuity equation in reduced variables [2le]

becomes:

d/3TF(a,x) +J/da{F(a,T)VIa,s(T)]} = 0 (3.3)

with the growth law [21f] as:

V(ia,s1D)] = a_)\[G'(’l’) - 1/a}, A=1 for dl-cases
=0 for ik-cases (3.4)

The dimensionless reduced variables are defined [2lg] as:
a=Rfo¢ , C=t/T, O(T) = [C(t)—Ceq(“’)]/Ceq(ao) (3.5)

II1.2. Decay function in supersaturation

O (T) is the supersaturation at t 2 0, at t = G G {(0) is called O';,-
184
As time goes ok, as Ostwald ripening begins, U (T ) decreases, sc that it ig

a measure oi the decav of the supsrsaturation, i.e

e T ey

pc
(T =07_ -Kj aF(a,O)ds (3.6)
&Ll 0

The comnstants in Egs. (3.5) and (3.6 [2in! are:

o = 2V v /k.T,
m B

d

'rik =&/KC (m), T 1 =d2/D v C (DO)’ and
eg O I eg

-
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3
K= try /139,C, ()] (3.7)

where‘f is the surface tension and Ceq(0°) is the concentration in

equilibrium with a macroscopic particle.

The ageing rate and the time development of the size diséribution of a
precipitate have been analyzed both experimentally and theoretically [22] on
micelle association and dissociation in surfactant solutions. Kinetic
equggions have been given a form which suggests an analogy with heat
conduction. Experimental mgthods, mostiy in relaxation times, have been

deduced for the net distribution of the rearrangement among the micelles

[{37).

Equations (3.3) to (3.7) are the starting point of the analysis of the
last stage of phase separation [2la]. 1In order to find the asymptotic solution of
the partial differential equation, the continuity equation, (3.3), one has
to analyze N(t) and (7). After the rapid growth of the newly formed
nuclei, the number of the precipitate particles N(t) and the supersaturation
o (7) are knoﬁn to decay slowlv. The number of colloidal particles decreases
slowly. The supersaturation §{Z) decreases slowly from 6<l to approaching
zero. The totai mass of precipitare increases slowly. The average radius
<B> increases sicw.v. All thess imply that no exponential law of decay bu:

power laws {Zia,: .

III.3. Power exsatsion anc scaliesd distribution func:iion

Since JF/f: = (ir. the semse of fluid dynamics, it is not

incompressiblej, therefcre

v.V=0, V = Via,0(T)]F(a,T), i.e.,

26



v.!v-aﬁaa {[v(a,"(T)}F(a,T)}, for a spherical-function-solution.

A power expansion which is sufficient for the determination of the properties
of spherical function defined in the interval 0 < a < a*, where a*

is a characteristic constant, which can be used as the asymptotic solution

of the differential equation. In such cases the differential equation can be

integrated "asymptotically" for very great values of the variable [23b],

so that the solution can be interpreted asymptotically.

In extracting the lowest decay from the distribution function and write

it in the long-time limit [2]1b}, Marqusee-Ross”s scaled form for the

distribution takes the following form:
F(a,©) = T F (2); z=aT "

or, takes the form as in their preceding paper [21a], but setting r = a,

one obtains:

N
Fa,7) = T Z U™ () (3.8)
n=0

X

z=aqT © and &/0a =7 Yoz © {(3.9)

Substituting Egs. (3.8; and (3.9) into (3.3) and (3.4), one mav solve the
continuity ecguatiorn anc deducs the growth law in reduced varizbie forms, as

showing in (3.10) anc {3.1}) respectivelv (see below).

OF(a,T)ieT +e/da {Fle,T) V[a,0(T))1 =0

(WS ]

L1003
It v~y S s x.-’\' s v RN -X. P i
Vie, 9Tl = {27 T i 2 7 T n - (1/2)T 7 (3.11)

In which 0(T) = U; T & has beer introduced. The distribution of

N
n=1

lopg time limit io its scaled form is:

ORIGINAL PAGE 1S
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F(a,T) = '(-yl-‘o(z), z=ayqg "

As in the method of series expansaion, (3.10) can be solved by
substituting (3.8) and (3.11) into (3.10) with the aid of (3.9). By
collecting the coefficients on both sides of the ultimate equation, for

a certain n, the following rules hold:
a of F (z) on LHS = a° of F (z) on RHS
n o n o
b of dF (z)/dz on LHS = b” of dF (z)/dz on RHS
n n n n

where 3, a’n are coefficients of Fn(z) on LHS and RHS
respectively; bn’ b'n are coefficients of an(z)/dz on LHS

and RHS respectively.
Using these rules one finds that (2 +X)x -~ 1 = 0, therefore

1/(2 +X)

]
n

1/2 for A= 0 ik-case

1/3 for A= 1 dl-case

Consider two values of m, n=( and n=}, one obtains:

Lo , -X .-
4x F (2} + xz dé/dz ¥ (z) = d/dz [z (G -17z)F (z); {3.12)
o] O bl [}
, e -~ , .
5% Fl(z) + xz d/dz Fixz; = djdz {z "(0,-1l/z} ?1(2)
-0, Fo(z)} (3.13)

The operator &/dz, ot the RHS in both Ec. (3.12) ani Eg. (3.13], may
generate dFo(z)/dz and Fo(z) terms which can be combined with the LES proper
terms. In this way one obtains the scaled continuity equations, anc¢ scaleé

growth rates &J(z, O;) as follows,

(33
o
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-Fo(z) + d/dz {w(z, 0’1) Fo(z)} =0 (3.14)

—Fl(z) + d/dz {(3/4)W(z, 0’1) F1(‘”

+ d/dz {«(z, 0'2) Fo(z)} =0 (3.15)

-X
W(z, a) =z [ fl - 1/2)1/3x - z/3 (3.16)
w(z, 0) = s G;/Ax (3.17)

Here o (z, 6;) are the "scaled growth rate" expressions.

I111.4. Scaled growth rate as function of scaled radius

Plottings for &J(z, 7;) versus z with different X and 0; are shown
in Fig. 4 and Fig. 5. The calculated data for the plottings are listed

in Table 1.

Figs. 4 and 5 show that as w(z, 0;) = 0 and d &(z, G])/dz = 0, one
obtains the optimum values of z, as zs and U; the decacy function of the

supersaturation, for different values of X and x, i.e.,

XN=0, x=1/2, 2 - ol
o 1
Xedox=ws, oz =3 0 st Gas

of phase separation. can d&¢ solved by integration using separation of
variable and other techunicues. For instance, comsider Eg. (3.14), bv

separation of variabiez, onz obtains:

dF (2)/F (z)} + ¢ W(z,5 )/« (z,T))
o o 1 1

= (w(z, 5;)]'1 dz (3.19)
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which 15 d In{F_(2)W(z, 6))} = [e(z, a’l)]‘l dz (3.19)"

I1I1.5. Scaled Distribution in Zero Volume Fraction of Sinks

After integration Eq. (3.19)” the scaled distribution function, Fo(z),

is obtained as:

..Fo(z) = const{ w(z, '3'1)]-l

(o]

z .
X expjf [eX 27, G])]—ldz’, z <=z ;
0

=0, z > z (3.20)

Substituting (3.16) into (3.20) for X=0 and A=1 respectively, and using
the proper values of z and U} (i.e. using Eq. (3.18)), then by tedious

manipulations, one obtainms:

1. ForA=0, x=1/2, z = 21/2, G =2 = 21/2
o} 1 o
[z, 717" = S32/(2Y2 - gy
- o iy 1/2_ -5
Fo(z) (C0 in/x.)z(Z z)
x expi-3z/(21/%-2)], z <= 2172,
=0, 2> 2" (3.21)
- ; 5
2. ForA= 1, x = 1/3, 2 = (3/7\1/3, o = (9/0)t3 - z .~
N 2
ez, 5] 7 = =327/iz7 - 3z "z + 3]
. 2,0 L \=T/3, =113
FO(Z) = (COG]..’D/,C)Z (6LO+Z) (Zo Z)

X expl—zf(zo-z)}' 2 (= (3/2)1/3;

) 30



=0, z> (33 (3.22)

The above results are obtained by using various integrating techniques,
including change of variable and rational fractions [23¢]. Eq. (3.22) is for

the dl-case and with the assumption of negligible nucleation, i.e., 4’=0.

By use of the imposed normalization condition for F (z) [2la],
0
f -4
o =/<j £F (2)dz | (3.23)
in 0 o

one may substitute Fo(z) for z <= z s in expression (3.22), into (3.23), to
obtain the constant e Numerical calculation method may be used for
evaluating e Since Gincoﬂﬁ- is just the normalization constant for

z3Fo(z). The justification may be made by rearranging Eq. (3.23)

to the following expression:

oo
ol A E R NOLE
in )
(4
o0
3
= const | z"f (z)dz
o
0
= consr./’co . (3.23)°
,.W
in which Co—l = zJio(z)dz has been imposed, so that
( 3 _/Kjc = const

. . . - . . . . 1 .
That is tc say, if the integral can be evaluated, co is obtained,

so is the cozstaz: in

It

g. (3.23)7.

For expressiow (3.2i) of z <= z_» evaluation of c_ may be evaiuated

"

by change of variable several times, then the integral mayv be reduced to s

standard form namsd "exponential integral", so that proper mathematical

. 31
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111.6. Scaled distribution in ponzero volume fraction gi sinks

With ?=¢=0, correction term should be added, it can be written [21b],

after another tedious manipulation, for imstance, for X =1, dl-case,

XNz, 0)) = (1/2)] O] - 1/2]{1 + z€] - 2/3

F (2) cozz(zo—z)”’(z+3/z02)'9

x exp[-42/(z -2)], =z ¢ (3/2)1/3

=0, z> /3 (3.24)
Here ©OC =2 + (3207 + 18204)/(203 + 3)2
B =1+27/(3+ 203)2
§ =320+ 2 (3.25)
and € = (3fua, (0011/2
¢ - (AW/B)jgwR3n(R,'c)dR (3.26)

Here ?n is the ecuilibrium volumse fracziom of precipitate in solution (or

ic mei:z; after given quench, or eguivaiently ,g-={Cir - Ceq("‘)}vm {21b].

The effect of equilibrium volume fracrion ¢, on the scaled distributior
func:tion can be seen fror & set of pioitings, Fc(z) vs z in dl-case for

different ¢, (9, =0, 0.005, 0.015, 0.035, and 0.07

n

) as shown it Fig. 6.

It is interesting to note that,



R (ATV(’(R)]UZ

1/2

= a [4 W((a)] , when replace R by o a, and eby _(’_/08

= 2 (34,”80 f’o]”z, when the following conditions are imposed:

1) n(R,0)dR = [3%w/(4T>)]F(a, T )da,

% 3
2) J 2z F (z)dz = 1, and
0 o

3) a= z"(x, <{a> = ao—(x, and F(a) = COT-X.

By numerical calculation method, plottingz; for z Vs ¢,‘, . f(reduced
coarsening rate) vs 4’”, and a (Tl, (30, vs 4),:: are shown in Figs. 7, 8,
9 respectively. From Fig. 9 one can see that, as t?p slowly increases with
time, the average radius ao(?“,) increases slowly, the supersaturation
0’1(4’,0) decreases slowly, but the density of particles or droplets of the
minority phase 60(?09) decreases faster than the change of degree of
supersaturation. It can be deduced in this way, even if the supersaturation
reaches a minimum (Jo still changes fast because the expenditure of

smaller particles in growing the bigger ones should drastically reduce the
number density \po' Therefore the following power‘ laws may be considered

as the time rate as if ¢x instantaneously being kept constant.
t

O’l . t , anc



Table 1. &J(z, 0'1) = z—)\( O’l-—z-l)/3x - z/3, x-=(2+)\)_1

M=0, x=1/2,1k-case,u(z, cl’) A=}, x=1/3, dl-case, &J(z, O'i)
4 .
6= -21/2 -2 G=1 -9/8)1/3  =pl/2 =2
1/2 -0.83  -0.56 -0.17 -2.17 -2.05 ~1.34 -0.17
1 -0.33 -0.06 0.33 -0.33 -0.02 0.08 -0.67
(3/12)1/3 0
21/2 0
3/2 -0.28 -0.002 0.39 -0.28 -0.07 -0.002 -0.40
2 -0.33  -0.06 0.33 ~0.42 -0.26 -0.21 0.08
3 -0.56 -0.28 0.11 -0.78 -0.68 -0. 64 ~0.44
4 -0.56 -0.17 -1.15 -1.07 -1.04 -0.99
graphs, (See Fig.4, W= 0w/3z=0, (See Fig.5, #&=0«/3z=0, as
W Vs z as z = o”l=21/2.) zo=(3/2)1/3. 0/1=(9/4)1/3.)
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IV. DISCUSSION AND CONCLUDING-REMARKS

IV.l. Concentration gradient as driving force in diffusion

Consider one of the precipitate particles (sinks), around it there 1is a
concentration gradient for the other species, and that the rate of flow
of solute molecules in this concentration gradient is governed by Fick”’s
law”of diffusion., The Smoluchowski”s theory on the kinetics of colloid
coagulation as a diffusion-controlled process using Fick”s law of diffusion
[24a,38] led series of investigations and applications in this field both

theoretically and experimentally [39].

The mathematical solution for the fundamental differential equation
governed by Fick”s 2nd law drew attentions of a great number of physicists,
chemists, and scientists of related fields [39,40]. Here we deal with the
situation around one sink particle in very law sink concentration. In this
case, the concentration gradient for the unprecipitated solute in solution
is set up and the rate of flow of monomers of the solute into (or out from)
the sink (or source) can be sclved by imposing proper boundarv conditions.

For instance, ic case the syvstem is increasing supersaturation, i.e., the sink

i

shrinks amc ic bpecoming 2 source (giving up monomers insteac of absorzing
monomers), tn: tonceniraiion gradient of the monomer is negative, vCir,t) < C.

As the Ostwalc ripening begins, the concentration gradient will be reversec,

i.e., vC > C. st that the monomers diffuse into the precipitate (the sink,.

-
<
.
o
L]
w
C\
._
c
"t
-
o
il
(1)
"
]
(@]
! \
73]
'—4
1]

w, compariscn between selected works

For vC > 0, C(R,t

(¢ is a proper boundary condition for Ostwald
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ripening process both in physical meaning and mathematical logic. Since 1in
Ostwald ripening the monomer whenever strikes the surface of the sink, shall
be incorporated with the sink encountered. However, if not every monomer
reaching the reaction radius incoporates with the sink, an obvious

modification is to be assumed [38].

In Table 2, we outline several representative works in this field, in
different time period (1949 to 1984), from which techniques in solving the
fundamental partial differential equation, 2C/dt = szc + A, with A = 0 and
or A= 0, in accordance with imposed boundary condition (B. C.) and initial
condition (I. C.), are worth learning. For instance, the boundary and
initial conditions for the last stage of precipitation (Ostwald ripening)
are C(R,t)=0 and C(r,0)=C0 R<r{=¢c respectively in most of the methods
cited in Table 2. Bowever, there is a singularity at t=0 for the solution
chosen by Collins & Kimball [38], since they used the technique in solving
second order partial differential eguation on linear flow of heat [4}].
Also, since C(R)=0 can not be correct if not every monomer which reaches the
reaction radius reacts. Their modificatior for the boundary conditior is
C(R)=7(¢C/éz)_. We can see that the modified B. C. still holds if

R

C(r}F = c¢constan: so that (SC/Er)R = 0.

IV.Z. Approxioate soluticon for complicated process, exampis

Reiss and La Mer {42: proposed a very interesting idea: moving
bouncaries, connectec wiil the grow:th of coilidal particles. For this
compiicatel process, the differentizl equarion is difficult tc tresz:
marhecgaticailv. In considering the boundarv being not stationary, ths
boundary vaiue prodblem is not solubie by means of the familiar

methods. So that approximate solution techniques were used [42a].
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Interference of growing spherical precipitate particles were treated
by Wert and Zener [43a] using approximate method in a relatively simple
manner, A transformation law to fit the experimental data was developed
by Wert [43b], and results of derivations of Zener [43c] were used to
calculate the mean distaﬁce between nucclei [43b]. Following are the

concepts and equations they developed and applied for experimental fitting:

1. The amount of precipitate formed at any time is proportional to

Co - Cc(t).

2. The rate of transformation of the particles of a second phase

growing in a matrix without mutual interference may be written as, -
aw(t)/dt = £(t) (4.1)

where W(t) is the fraction of transformed material and f(t) 1s some
function of time. However, if interference between precipitate
particles are considered, the rate will be lessened and the decrease
will be proportional to the fraction already transformed, so that

the modified eguaztion becomes,
dw{z)sért = [1 - W(t)lf(e) (.23

3. Ec. {=.2: cen be integrated directly anc¢ the integreisc form is

1

t
Wit) = 1 - exp - i+ £(t7)dr”] {(4.3)
}
-G
An explicit Icrm usec by Wert [43b] for Eq. (4.3} is
c(e)ic_ =1 - expl(- (/)" (i.4)
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where AC(t) is the amount of transformed material, AC(t)-Co-C(t),
C° is the initial concentration of solute, T is a time constant
depending on Co’ T (the temperature of the system), and other
undertermined factors.

“C can be determined by fitting experimental data to log-ln-form

of Eq. (4.4), 1i.e.,
log ln[Co/ASC(t)] = n logt - n log (4.4)°

by plotting ln[Co/AIC(t)] versus t in log-scale, for a certain

. -n
temperature T, the slope is n and the intercept is T , so that

—~1/slope

<

intercept

Data for the precipitation of Fe.C in o&(-iron at various

3
temperatures were used for fitting [43b]. By taking average

of the slopes for different temperatures they obtained
n=1,45

Which can be approximated as n=3/2 as being usecd conventionally

3 . - o . .0
[43d}. The slope, n, varies berweern 1.2 to 1.7 from 43 °C to 3i2°C,
while { varies from abour 1200C¢ minutes to C.5 minute [43bi.
The radius of the spherical precipizate particie, 5, varies with

time {43ci according to,

/7 .
s = o, (pytf? (6.5)

where D is the atomic diffucion coe

h

ficient, ©X, is ths
dimeasioniess growth coefficient, ir which X 1is the number of

dimensions. For shperical particles ) =3 of course. oCB takes
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the form:

d% = K.[(ngo- n,)/(n_ -~ n )]l/2 (4.6)
3ttt ) 0 Lo *

Where o, = concentration of solute in precipitate,

n, = concentration of solute in the matrix which is in

equilibrium with the precipitate, and

N = concentration of solute in the matrix far away

from the precipitate.

IV.4. Experimental efforts following Theories

Light scattering studies of phase separation in fluid mixtures [10e-10h]
have provided a wealth of information about the complex, highly nonlinear
processes by which a nmew phase forms in a system that was originally
homogeneous. By light scattering and by direct microscopic observation
Chou and Goldburg [10g! confirmed the early conjecture of Cahn and Moldover
(Ref. 1 of [10g]) that hydrodvnamic effects are important in the lare stage
of the process, since droplet growth is speeded up by flui@ flow which in
turc is driven by the curvature of irregular surfaces which interpenetrate
the nucleating fiuid. woag ané Knobler [10f;, using ar ingenious pressure-

juEp technique tO Quenst the €Y

0n

ight scartterin

U]

rem, mgée extensive
meazsurements oi phase separation in isobutyric acid andé water. Thev found
tha: when the critical mixture is quenchec¢, the two-phase region scatters
light iz the form of & rimg which brightens, shaIpens, and decreases in

diameter as the system evolves toward its final eguilibrium state.

In accordance with Siggiz’s theoretical hyérodynamic arguments [10a},

Wong and Knobler [10h] experimentally found that the crossover wave number
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corresponding to the maximum in the scattering, km’ decreases initially as
t-1/3 and at long times as t-l. Their earlier work [10f] shows an ?_
inftial t2 growth in I(km), the intensity of scattering, followed by

a slower growth tl/z, correspondingly Siggia [10a] proposed a crossover

fromr . tl/3.

THe existence of crossover can be related to the volume fraction of the

new phase, 13. Wong and Knobler [10h] found that in dilute mixtures

-1/3

k_ =At vith A=A($) for 0.02 <= ¢ <= 0.10 (4.7)

and they found their case for 4>< 0.02 41s equivalent to Lifshitz-Slyozovc
growth in which A is supposéd to be iqdependent of ?. Wong and Knobler
{10h] aalso compared their results with the quantitative nonlinear theory by
Langer, Bar-on, and Miller [10b] usually called LBM-theory, and with
computer simulation on model systems, they found close agreement between

experiment, theory, and computer simulation [10h].

IV.5. Application of theory to allovs

It is well koown, in fluid dynamics, the diffusion constant of a

spherical drop of one fluid in another of similar viscosity |{10a,26b] is
D = k T/57pa (4.8)

Where a is the radius, [ is density, ané F is viscositv. Consider drops
i

., &nd nuzmber density P, for

i \d

of radius Ri’ diffusion comstan: D
i=1,2, one finds that, according to coiliszion theory, the number of collosions

between the two populations per uri:t time per unit voiume {10a) is:

= o o
Ly~ A‘rr(nl+R2)(Dl+D2)(°1 6 (4.9)



)

1f each collision causes one new droplet formation, then one may expect a
population of drops agglutination at a rate given by (4.9) approches a
stationary distribution when scaled by average values R, D, and f, i.e.,

R.+R_=2R, D +D_=2D, and with the assumption Ca ez - ez’ then

12 1772
ICre - -mn(a)a(z (4.10)
with (4“/3)R3(’= c}\ (4.11)

wWhere D(R) is the diffusion coefficient for a particle of radius R and ¢iﬁ

the volume fraction of particles.

By using the definition of kinematic viscosity [26c], })=’z/f' and

substituting ﬂ/f for Y into (4.8), also replace ™a" in (4.8) by R just for

convenience, one obtains
D(R) = kBT/S TR (4.12)

Substituting (4.12) ipto (4.10) with the aid of (4.11), after integration,one

obtains the power laws
- /
-t ! ana ®. 4»1’3 13 (4.13)

However, for the case of & binarv allov where we have a solic par:iicie in 2

solid matrix or ir very high viscous fluid, the diffusion coefliciez: &t low
temperatures is estimatel ,16t,2:b) to depenc on the radius as
: L o
D(R) . 1/R (&.14)
and at high temperatures as
3 413
D(R) . 1/R (4.13)

4}
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By use of the same deduction one can obtain the power laws as
(1 . ¢1/2 t-1/2 and R . ?1/6 t1/6

for low temperature case, and

md R )5 115

C 3 4)2/5 t‘3/5

for high temperature case. Similar but simplier analyses can be found

elsewhere [21b].

One may use Gibbs-Kelvin (Gibbs~Thomson) equation [46a], and write into

the following form

C(R) = C(o°) explau(R)/kT] = C(o2)[1+8m(R)/kT]
If higher order term(s) being added [46b], such as

C(R) = c(>)[] + a_lR—l + a_R ']

with a_l=f( o’,vm), a_4=f(q,6 . vm) [46b]. In which O is surface temsion, q is

charge of the particle, approximated as qiqj‘=q2, € is dielectric constant

of the medium, and Vo is molecular volume of the monomer as usual. However,
the surface tensior is aiso a function of droplet size and is expected to

decrease with cdecreasing in droplet size over wide range of circumstancec

3

[46c], thereicre the absolute value of a 1 ané & ; are goveraec by v

0(R), g, anc €. Notz that a_, > O, since ZUkm > 0 [46d]; anc a_, < C

i

-

[46b] as long as q,¢, < G. For colleidal particles, always with residing

charges, the above inverse power law in droplet radius is worthwhile tc apply.

IV.6. Svstem containing nonspherical sinks

So far we only discussed systems with assumed spherical particies.
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0dijk and Lekkerkerker recently reported [47] their work on theory of the
isotropic-liquid crystal phase separation for a solution of bidisperse
rodlike macrowolecules. They used Gaussian trial functions that depend on
adjustible parameters which were found by minizing the free energyv of the
system, Since the rods are never ideally hard particles, they are always
flexible, therefore 0dijk and Lekkerkerker took only the leading terms from
the asymptotic expansion of the Onsager theory in studying the complicated
influence of bidispersity. They found that the longer rods more highly

ordered than the shorter ones [47].
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Table 2. Comparison of Selected Works on Solution of
2C/3t = pvic + A, with A=0 and or A *
Ref. B. C. and I. C. Solution, C(r,t), while A=0 or A/O
Collins &| C(R,t)=0 C(r,t>‘co{1—(a/r>erfc[(r-a)um)‘”zl}
‘Kimball C(°",t)=Co Proposed B.C.: C(R)=( C/ r)R,‘{=D/k.
1949 [38] C(r,O)=Co, ™R D=diffusion coeff., k=rate constant
R=sink radius (See Appendix D.)
Reiss & C(r,0)=Co (1) A=0
2
La Mer C(x,t)=C e-iB' C(r,t)=C e th+C x/r > sin (r-x)
) o o ey n
1950 | ©c/or)__, =0 7Blexp(-A Dt)-exp(-YBr)]  #4»
X
[42a) |YB=constant (T'B—oCZD)a( ‘92
. n nn
x=sink radius
h=higher limit (2) A=-k(t)/D and C(x,t)=0 assumed
of boundary ” 2
C(r,t)=Cox/r§exp(-—0% Dt)[sind (r-x)}/o_f3
C(h,t)=<C(t)> 4
(See Fig.2b) + higher order terms - (x<r<h)
Lifshirtz C=C(t), C(O)=lr CP=Ca=+54/R, °¢=(207kT)VmC
& Slyozov! C_=C__ at the i=%ecior)  _=(8/R)(C - C.)
R “ec ) r=R R
boundary i
196: [9a] =(E/r){ 2 -%X/R}, S’=D/5. J =density

C x=s&t. conc.
R =criticai
radius a:

t=G

; £;=~c—bp==;egree of supersaturation at t=(
. o~ >

dR/dr =£/R ( L - X/R)
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Table 2, (continued)

Wagner C=average conc. Cr-C°[l+26Vm/ﬂrRT], V=1 for undissociated
1961 C _“=surface conc.| dr/dt=[{kDv /(kr+D)}(C -C)
m r
of particles
[9b] with radius=r = -(Dvm/r)(Cr'—C), for kr>>D, dl-case
C_=saturated conc = -kv (C_"-C), for kr<{D, 1ik-case
r mr
for particles
with radius=r R=gas constant
C =sat. s0l7n of T=absolute temperature

pgrticles of r=oe

Felderhof n(r)=0, r=R (1) A=0, n(r) = B - nOR/r
& Deutch =C, r=9p0 J=jjds=6TD Rn =k n , j=-D wvn
s o o oo o
1976 Here n(r) is (2) A=k _f<n>, d<od/d t=nov2<n>-k°(<n>
equivalent
[17) to C(r). P= sink density

_ _ - 3
n(r)—no+e°.r no(R/r) eo.r(R/r)

(See Appendix B.)

Marqusee C(r,t)R=Ceq(R) (1) A=0, C(r,t)=C0[l—R/r]+Ceq(R)R/r
& Ross ** | C(r,t) __=C_ JT=mmoR[co-ceq(R)}
1984 (2) A=-b Wf/vmj:;zvla,<c>}f>(ma;_
[21b] VIR,C]=dR/dt=(D v /R)i<C>-I_ (R)]

C(r,t) see Appendix B.

Py
! gﬂr,kj ané C(g, A) ses Appzadin C.

* A=sink/scurce term(s), B.C.=boundary condition, i,C.=ini:ziel coandi:ion.
** GSimilar works in perioc of 197%-£3 have previously reporzed 18-21hj,
k% % 0(n ané B} see definitions defined in [42a]-Egs. 1} ang 1..
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(Figures 3 to 9 are in this Section IV, see Figure

Captions, p. 89, and the Figures followed.)
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APPENDIX A

EVALUATION OF THE GROWTH LAW

Consider a spherical sink (the precipitate particle) of radius R,

(4“/3)R3/vm = volume of the sink/molecular volume

= total number of molecules in one sink = n (per sink)

Let I = dn/dt = rate of molecular adsorption or

desorption on the sink surface
= d/de[(4 1f/3)R3/vm]-
= (4W/v_)R%dR/dt (A1)
or equivalently,.d[(417/3)R3]/dt = v dn/dt.

Note that, since, I = JT and JT is the total flux of mass getting

into a single isolated particle, i.e.,
3o = - J ds.j = - 4TRn.Y (A.2)

where n is the out normal unit vector on the sink surface. The negative

sigrp in Eg. (A.2) tares care of the case for negative vC, in orcder to meke

3 positive {(se¢ Appendix B). By definmition,

I

|
o
1
)
"
-

n

]
(W)
N

S, B ‘C(r,t)ler

[¥8
1]
[
j=g
44
n
o]
o
[
rt
[
o]
o]
o]
L 1
e
0
po]

piace-equation in the conceniration field arround &
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single sink, which satisfies boundary conditions
C(r’t)r=R = Ceq(R) and
C(r’t)r=ao = Co' therefore
j=-plc, - Ceq(R)]/R

Su?stituting (A.3) into (A.2), one obtains,

Jp = 4 'n'RDo[Co—Ceq(R)]

After equating (A.1) and (A.4), one obtains for one single sink and comsider

t=0,

drR/dt = (Dovm/R)[Co—Ceq(R)]

(A.3)

(A.4)

(A.5)

For t > 0 and for a distribution of particles with number densioty, f, and

probability size distribution function, P(R), we define an average

concentration Cav(r,t) under the asumprion of particle

such that,

r = T C T )
Cav("t)/ t DO\ C (r,t;

.
]

P2, -
i BTdR/d: P(R)AE

;

- (LT )
: o .
G

The microscopic concenzration

(41

diffusion equation (see Appendix EJ.

independence,

{(4.6)

ieic {20, Z1b} obdevs the steady state

Now, consider the reie of molecular absorprion or desorption, I(=J

number-density of sinks n{R,z; or (K,t) as useé¢ bv some authors, the super

Q

saturation [C-Ceq}, anc the volume fraction g '14-16,18,21b] of the sinks,
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4D RIC -C, (R)], 85 t=0, ¢=0 (A.7)

1= k(R)

= 4TDRIC, ~C, (R)], as 30, $=0 (A.8)
I = k(R)

= 4‘WDOR [1+RJZ7?Fz§S][Cav-Ceq(R)], as t>0, #)0 (A.9)

Here “A‘WDOR is responsible for the effect of the size of the single particle,
[1+RIA’T€<R>] is responsible for the effect of particle concentration, and

[Cav-Ceq(R)] is responsible for the effect of concentration field difference,

the extent of supersaturation,
The growth law now becomes:

V(R,Cav)=dR/dt

=(D v /RINRTATIOI[C, -C, (R)] : (A.10)

This is the growth law and competition of sinks (precipitate particles)
an¢ under the influence of the concentration field gradient as well. mnow,

the rate constant in (A.9) becomes

k(R) =47D_ R{i+R G TPLR] (115
¥
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APPENDIX B

CONTINUITY EQUATION AND ITS LAPLACE TRANSFORM

As consider the sinks to be completely at rest, the monomer

concentration, C(r,t), satisfies the diffusion equation
2
oc(r,t)/dt = D v C(r,t) (B.1)

in the part of the space occupied by the solution. The microscopic

concentration field obeys the steady state diffusion equation
2
v Cc(r,t) =0 (B.2)

The so called Smoluchowski-boundary condition [24] requires C(r,t) to vanish
at the surface of the sink. the problem has the obvious electrostatic
analogue of finding the potential fbf a cdilectiéﬁ of ideally grounded metal

spheres.

According to Smoluchowski-theory [24] for the steady state reaction rate
in a dilute system of sphericai sinks, at sufficiently‘low sink densityv the
competitiuon for solute molecuies betweer sinks can be neglected and one
needs consider only tne eifect of a single siok. One assumes that & monomer

diffusing towarc the sink is a>sarbed

(S8

nscantensously upon c¢ontact anc
expresses this by requiring Cir,:)} te vaunish at the surface of tne sink, In

a steadv-state situation one tnsrefore must scive Ec. {B.2). The boundary

o~
tr
.

condition imposec on Ec.

'
«"

c(r,t) = C, at ér-:. {= (B.3)

where R is the sink racdius (sez Fig. 2)., The initial condition is

-
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C(r,t) = Co(r) at t = 0 (B.4)

For uniform concentration Co at infinity, the solution 1s
C(x) = Co - (COR/r) .(B.S)

For convenience, one may choose the coordinate origin located at the center
of the sink, so that from r=0 to r=infinity, there are numerous vectors with
r=R located on the surface of the sink. In this manner the meaning of ko

is self-evident, since
ko = 47TD0R implying ko proportional to R (see below)
The molecular flux encountering the sink surface is
j= -DovC, by operating v on Eq. (B.5) one obtains
vC = COR/rZ

J = Sj.ds = the total flux absorbed per second per sink
s

after integrating over the surface of the sink

i

3.0
) J(D C R/t", r” sing d6 dd&
/A c O /

47 RC =k C
¢ o <

{0 2 macrosCcOpi¢ siz.& tne equatiorn for the average WoONORET CONCELITETiun
it Cav = <C>, thereiore the continuity equation becomes
S z. . PO
@<C>/2t = p LY - k € <co (.6
'

with the rate constazt k_ = AWDOR and sink number density fﬁ
v t

Since C{r,t) in a concentrated solution varies rapidly, thereiore it

-
in
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no longer true that the concentration tends to a constant at a large distance
from a single sink. The magnitude of the effect of gradients may be

estimated by solving Eq. (B.2) with the condition
C(r) = Co te.r asr approaches infinity [17]
The solution is:
S C(r) = €+ et = C_(R/r) —e_.r(R2/r’) (B.7)

The particle flux into the sink is still J = &NDOR, so that it appears that
concentration gradients have no effect. However, the dipolar disturbance
(the last term in Eq. (B.7)) makes itself felt at large distances and,

when summed over a large number of sinks, contriﬁutions significantly to the

average local particle density.

I1f replace Eq. (B.1) by a microscopic equation valid for all space with

added sink terms representing the monopole and dipole contributions [17],

N

QCKr,t)/): =D [vZC(r,t) - 432: q.s(r-r.)
o P 3
N
+ IQTSZ pj.vé(r—rj)} (B.&:‘

i=1

where C{r,t)=0G at r-r, <=r (inside the sink or at the sink surlace!. By

J

use of (B.8) one mav take average as foliows:

LES: <€C{r,t}idty =20 /At =c<Coide

(=3

N
/- ..
P pj.jgx. rj)>

N

7 2 —-
RH5: <D “C{r,t)>=D v <C>-4TDp <2 q §(r-r )>4 D <
o 0 o *j 3 o i)

i=1
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After equating the two sides, one obtains:

é(C)/ét = Dov2<C> - An'DOQ(r,t)+anDoP(r,t)

= v.[D(()v<c>] - k((’) (’<c> (8.9)

with k(f)(<c>=4ﬂD°Q and D(f)v<C>=Dov<C>+knDoP (17}. Eq. (B.9) accounts
for the competition for monomers between sinks, as implied by k((). It

also shows, by D(f), the diffusion motion will be affected by sink

concentration f.

If choose only the monopole sink term which only approximates the

boundary condition but not affects the first order correction. The steady

2

staﬁe solution of Dov c(r,t)= (r)+ qj (r—rj) has the formal solution [21b},

N
C(r,t)=6_* ¢(r) 'Pjéco(r-rj)qj

Here the symbol Go* denotes the convolution, as an integral operator,
%* = - -7 <
6 *(r)= Jar e (r-r) ¢(x7)

and Go(r)=—l/AWDor is the free diffusion propagator. The Green”s func:ion

for the operator D v2 is, according to Creen’s Thecorem [23a,p.242},
(o]

- Ly ! A
Gir-r7) = - ;/(ArDoér—r )

Actually, "Smoluchowski' boundery condition, Z{(K,z; = (¢, at the suriace

of the particle is not seli-evidently valid [23a., so tha:t the "radiation”

or

bouncarvy condition [25%; mav De empliovec. Wilemsk! anc Fixman [25c] compared

these rwo boundarv copnditions and made thex equa: as se: £ =G in C(R*Z..

The continuity eguation (B.1) with boundary condition and initial

condition (B.3) and (B.¢) respecrivelv is more convenient to work with the
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Laplace representation obtained by Laplace transformation of Eq. (B.1) as

follows:

A

oo
L f(t)=Laplace transform of f(t)=.}f(t)e tdt=£(*9
[~

L {9c(r,t)/dc = Dovzc(r,t)}=Laplace transform of Eq. (C.1)

-\
c(r,t)e” ¢

»o o0 o0
LHS: L dC(r,t)/dt =j3C(r,t)/dt e-'xtdt +J>\c(r,t)->‘tdt
] 0 o %

~C (r) +Ac(r,N)

bo

RHS: L Dovzc(r,t) = Dov%j C(r,t) e-Atdt = Dovgg(r,kg
o

The Laplace representation for (B.l), with boundary condition (B.3) and

initial condition (B.4), now becomes:
30 _ 2 N .
E(r, ) - Co(r) = Dov Eﬂryk), is the Laplace transform variable,
_g(ir-ri (=R, X)) = 0, i=1,2,.....N,
!

This difussion probler can be viewed as a case of multiple scattering,
and the above equations are equivalent tc a ser of simultaneous equations by

1
i

statisiical averaging ané mean field approximsztion {17,18] or by Fourier-
Laplace transiorm tc obtein z configurational average Greern’s funczion [19].

The latter methoc¢ has besrn used by many aurthoers [ 205,21)]. A brief discus-

sion is shown in Appeacdix (C.
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MULTISCATTERING REPRESENTATION AND ITS FOURIER TRANSFORM

As shown in Appendix B, the Laplace transformed répresentation for the
partial differential equation, dC(r,t)/dt = Dovzc(r,t), is an ordinary

differential equation in the form
Clr,x) = ¢ (r) = D v’C(r,N) (c.1)

where X is the Laplace transformation variable amd EéCo(r) at t=0 and
‘E(‘r—ri'<=Ri,‘X0=0 are initial and boundary conditions respectively.
Where i=1,2......N for the radii of the N traps (sinks) located at {ri}
respectively. Many authors use "R" or "a" for all ‘r-ri‘, just for

convenience. Rearranging (C.l1) we obtain:

(N De(r, N = ¢ (1)

2.-1 .
SrN) = (A= v)7iC (1)
= Go(r)CO(r) in absence of sinks.
If more than one sinks are considered, one shoulé add the sink terms. 1In

this cese th: scrution becomes:

a

N
Cio )™ = ¢ imi (1) + 36 (), L. (e,
e gl i
wnere T, iz Inz t-operatsr for one sink located at 7 ané¢ C(r,”™ is :the
Laplace trensiomm of the concentration in the system which the sink at r,
is eliminatecd. Go(r} is the Greern”s fumction in the absence of traps.

Accorcing to Green’s theorem in handiing boundary cenditions in

. 53
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electrostatic or analogy [26], a simple application of the divergence theorem
leads to the solution of DovZC(r) = f(r) being C(r)n‘}c(r,r’)f(r')dr’,
provided G(r,r')=[Dov2]-1s(r-r’) is imposed, where §(r-r”) is the

Dirac delta function., The solution of

N
Dovzg(r,)\)= 4(r)+§lq15(r—ri) is

N
e, 2= farren,ed 4 (e 3 gy §em-r )]
i=}]

The physical meaning is that_g(r,)ﬁ can be obtained by integration with
an inverse operator of [X -Dovzl-l. The inverse operator is equivalent

to Green"s function in such a way

’ N
C(r,\) =‘SG(r,r’){+(r’)+ > qig(r'-ri)]dr'
i=1

=JP\—D v2] 1[<f(r’)+ > q,8(r7-r)]dr’ (C.2)
o - i i
i=]
In (C.2), oniv monopole terms are considered. Replacing [A-D V2}~; b

~
-

Go(r) and introducing another t-operator, one has

N
Cie 32 = 0 ieVr v = S o x fmns
Lio AN gc\.)\o\-; 2 ‘uo(r)tiilﬁr, J .52

N

Cir > = G U0 (ry + 2> G {o)t.c.(r, ) {Z.3>
* ¢ c . .0 i=3

A= i 2 -t

_j-‘,t*

where C,{r,»! ic the Lapiace transform of the concentration in the svs:enm

from which the simk &t v, is eliminasted, and t, is ths t operator icr one

e}
¥

sink located at ri.



By substituting (C.3b) into (C.3a) one obtains the multiscattering

(18-20,21b,d] representatioins, where t

is an integral operator [23e],

i

N
Clr, ) = 6 ()€ (1) + 2, 6 (r)t {6 (r)C_(r)

PN
tkgk(r y ™)

t.C.(r",2)
=3

To solve (C.3a) it is convenient to use Fourier transform technique.

[}

i=}

N
+ 3, 6y (0t L (r, ) (C.3c)

j=1 41
JTk(r,r’ X T )C(r Ndr”
T. " n’)\; . ll,)\d "
J(r r rJ)_j(r )dr

The

Fourier transform of a function, say f(r), is defined as

oc

F £(r) =f £(rye 19 Tdr = £(q)

-0

therefore the Fourier transform of Eq. (C.3a) is

oo

LES: F c(r,™ = | c(r, Ye "% Tdr = c(q,N)
c e

~
RHS: F [G_(r)C_(1) +% 6.ty C

-

(e, 2] = (1) + (I1), where

i
{ - -icr
(1) = VG ()T (r)e "*'dr
40 o
i 2. igr
= ﬁivc";u’ X:DO\ ) -
e ie feiderfar 2 +igr. p. N2 2
= ‘, ‘vﬁk.)\_- 1)\‘; (lq) e 1i {ig) =-¢
"
gE 13
sc, (I !(, e Viaarm o= -icré OR‘GENM' PQ%E\% YV
: o= a0 {T)ia+D ¢ T Eér PO : 3
s N4 IS i Lg__ oF OR
TR R . _—igr
= AT L it)e G:

i
(2}
[
—
Kol
~—

~

3 ; . 2.1 ..
» wWhere GC(Q}=i)\+ﬁ,Q‘J , similarly
4 19
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N -~
= N
PRRCNACHATCRY
i=1
After equating both sides, one obtains:

A - N -
(g, = 6 (q)C _(q) + Z_co(q)ri(q)ci(q,w (C.4)
i=1

and Ti(q) = (3 )'3j dq’Ti(q,q’,x;ri)P(q,q’)

Ti(q) is an integral operator, in which P(q,q”) is a permutation operator
that changes the index q of the operand to q°, and Ti(q,q’. ;ri) is a

convolution integral operator, in Fourier transform,
T.(q,q9", > ;1) = ar{ar-e 1T (prm a1 )
i )q b ,’ i i ’ b 3 i

N

~ P ) PN
substituring C(g,™)=6_(q)C _(g) +3 Go(q)Tj(q)Cj(q,)‘)
j=1
into (C.4), one obtains
~ N PN
C( =0 (6)C i) + G (g7 ¢ )
Clg,»2=C_(q)C {q. 5§:Co(q i\q){GO(Q)CO(q)
N
- 3o ien, {9l (e, M) (C.:
=l &= -
ir such & wa™ O0e Eav Subsiitute
- A ~
C.0g,~=C ()T {gi+ = G {1, (g)C. (¢ inte (C.33, and s¢ on,
500 < ¢ .0 Tk K-
K= ,=3
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The ultimate tepreSentation wii; :

- ~ N
c<q,k)=co(q)co(q) +

& co(q)Tl. (q){Go(q)Co(q)

; - N
jtl#ico(q)rj(q)lco(q)co(q) +

So (T, (0
kol 5y 0080
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APPENDIX D

SOLUTION OF FICK”S 2nd LAW, EXAMPLE

The solution of 2nd order partial differential equation, Fick’s

second law of diffusion,

dc/at = b viC (D.1)

chosen by Collins and Kimball [38a) with the boundary condition C(R,t)=0 on

the surface of a sink of radius R (see Table 2), is similar to the solution

1/2

of linear flow of heat [41]. For the normalization constant (4 TD)

the particular solution should be like this:

c(x,t) = t-l/zexp(-xz/éDt) (D.2a)
. 2 2 1/2
since by change of variable, x“/(4Dt)=u”, du=dx/(4Dt) ,
o~ . -]
{ C(x,t)dx = 2‘) C(x,t)dx (since C(x,t) in (D.2a) is an even function),

Lo (o

172 (% 2
= 2(WD)" ‘j exp{-u") du

<
1/2 172 .
= 2(7D) " = (4TD) (D.2b)
1/2 e o U
(47D) is the normalization constant of the chosern funciion, the error

function scolution. Now, consider one sphsarics. sizk of radius R and locatec

at the origirc, then the error-functiorn-soiution takes the following form

T e
1 ,_‘l,".—‘
¢}

C{r,t} = Coil - (R'1) fo o {r-fi{6Ds) i {B.3)

™
"
.
m
N
e
™

The sclution satisZies the boundary conditiorn

Ci{r,t) = 0, for 0 <=71 <= R
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so that the concentration field of the monomer is only defined in the range
of r-R to #~ ., 1In other words, the concentration of monomer is not defined
in the region frow r=0 to R, i.e., inside the precipitate-particle of

3 . . : .
volume 4MWR”/3, since inside this volume monomers not exist.

The total flux J, which is Lj.ds over the entire surface of the

assumed spherical precipitate particle, was defined by collins and Kimball

as '3 , L.e.,

$

J =Lj.ds (j=-DvC, ds is negative to j in this case)

2 pe
4MR° D(2CPr) o

1/2

4wR: pClir Ci1-(R/r) erfel(xr-R)/(4pt)'/?])

r=R

4R DC {(1/R) erfc[(r—R)/(ADt)l/zl}r=R

1/2

+ {(R/r) er: [(r-R)/{4Dt) (D.6)

]}r=R

To obtain Eq. (D.4j, the following Leibnitz-rule [44] should have been used,

(b(t) _

d/dt f{x,t)dx = fi{bity,tib"(t)-f{alry,tja"(t)

)a(t)
- . . [¢iix,t)/ezidx

Besides, by definition,

one can see that



ORIGINAL PAGE-IS
erf (0) = 0, erfc (0) = 1 - erf (0) = 1 OF POOR QUALITY

erf (¢#©) = 1, erfc (@) =1 - erf (p2) =0

Since r-R=0 if r=R, so that erf (I‘-R)/(I;Dt)l/2 = 0 as r=R, therefore

we obtain a very neat form for the total flux as follows:

1/2

9 = wmoRe_[1 + R/(TDL) /7] (D.5)

Moreover, Collins and Kimball defined 2 (=J) as the time derivative of the

total amount of the diffusion species, from the amount presented at t=0. i.e.,
2 (=J) = dM/dt

We can see from Eq. (D.3), the total amount of the precipitate is just equal
to the integration of the second term on the right hand side of Eq. (D.3)
over the entire region of the precipitate-particle sizes, for spherical-size
assumption, the volume element is dv=4ﬂizdr, i.e.,

oo

{2 1/2
M= Co.} L¥r {(R/r) erfc|{r-R)/{4Dt) }}dr

R
.’m
or . N e 1/2 \
= Co . 4TrR eric{(r-R)/(4Dt) jdr : (D.6)
3
wnich iz the totrel amoun:t of precipitate in all sizes of pariicles at time
t>0. By taring zim: derivziive of Egq. (D.6), ané by use < Leibrnic Rule

again, one obdtain

wn

=
dM T = d/éTiC : 4Trr erfcl{r-)/(4D)!idr
‘x
L /
= C TR r(d/de)yi2/(m)t e | _ exai-xT)dxidr
o ) L1z ‘
E (r-R)/ (4Dt}

60



oo

- comm(amr)'”z t’3’2£ r(r-R)exp[-(r-R)%/(4Dt)]dr

then, by change of variable: (r—R)2=u, dr=(4u)_l/2du, and change of

integrating limits from r=(R, ®) to u=(0,°), then
[ 4
g - am/de = 27mco(amn'”2 :'3/2{J ul/? exp[-u/(4Dt)]du
. 0

+ le exp[-u/(4Dt) Jdu} (D.7)
0

Eq. (D.7) can be evaluated by use of the following integrating formula,

oo

-j xl/2 exp(-ax)dx = (77/a)1

2

/21/(23)

provided we set the constant "a" equal to (ADt)-l. The integrated form
of Eq. (D.7) is,

-1/2t—3/2. /2

—-— I ,
£ = dM/dt = 27RC_(4DT) {2Dt(4Dz W) ' “+4RDt)
, - . — ‘}./Zy //2 .
= aFR-\,oD(D L) {((D7t) + R]
o 172 .
= 4FRDC 1+ R/{DFL) ] (.8
£g. (D.8) is jus:z tnz tore. fiux, € , reprasented dv Ec¢. (D.3). Frono :hs

above argumen:t one can see that the significance of the soiution of the

second order cdifferential ecuation of Ficks law of diffusion chosen by
Colline an< Fimball @3tz
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

FIGURE CAPTIONS

Cutoff - pair potential, which vanishes as r >= b.

(a) Two dimentional schematic representation of circular particles
in Dirichlet region.
(b) Reiss & LaMer“s model [42a], h-x = thickness of the diffusion

region (see Table 2).

Schematic representation of N(t) = n(R,t)dR. See Section III.I,

and Kahlweit and Teubner”s 1976 and 1980 works {22aii, 22b]}.
Az, Gi) vs z, ik-case (see Table 1).
4(z, 01) vs z, dl-case (see Table 1).

Scaled distribution function Fo(z) vs z, dl-case, for different

equilibrium volume fraction @, .
Cutoff size discribution, zo vs 4=go .

Reduced coarsening rate vs equilibrium volume fractiorn, /; vs #;,
s ?

-
e

§ () = <atfer i f<alny>® 121b].

Amplitude Zor ths densi:v of particles f;(?%o) Vs ?ﬁ:, eéveregs
racdius ao(§,p) ve %x, ancé the supersaturazion decay funciion
ul'd P ¢ ] 173 el ' 3
U AFoes ve I In woich a {$)=(479) s G L)=(9 - .
1 1 c i
. ~ oo ) 173 -1z
and fo = 1.6% are use:z {2ibl. The ¢ , T , anc
- . 172 ' P | AN
t factors zre :taken as [l + 0.815(+a=) 1, (i - C.8i5{F>e) I
L </ A 1/2. .
and {1-2.465{ % i respectively.
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Reduced coarsening vate vs
equilibrium volume fraction.
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Amplitude for the density of parti-
cles vs phi, average radius vs phi,
& sigma (spperset #cay Amcton ) Vs phi.
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