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SUMMARY 

An 1mportant problem that has emerged from comb1ned analytical/experimental 
1nvest1gat1ons 1s the task of 1dent1fy1ng and quant1fy1ng the d1fferences 
between results pred1cted by f.E. analys1s and results obta1ned from exper1ment. 
The object1ve of th1s study 1s to extend and evaluate the procedure developed 
by Sidhu for correlation of linear f.E. and modal test data to include struc­
tures w1th v1scous damping. The des1rab1lity of develop1ng th1s procedure 1s 
that the d1fferences are identified in terms of physical mass, damp1ng, and 
stiffness parameters instead of in terms of frequencies and modes shapes. 
Since the d1fferences are computed in terms of physical parameters, locations 

~ of mode11ng problems can be directly 1dent1f1ed 1n the f.E. model. 
o 
M 

~ from s1mulated data 1t was determ1ned that the accuracy of the computed 
differences increases as the number of exper1mental1y measured modes 1ncluded 
1n the calculat10ns is 1ncreased. When the number of exper1mental modes 1s at 
least equal to the number of translat10nal degrees of freedom 1n the f.E." model 
both the location and magnitude of the differences can be computed very accu­
rately. When the number of modes is less than this amount the location of the 
d1fferences may be determ1ned even though their magnitudes will be under 
est1mated. 

INTRODUCTION 

The dynamic characteristics of structural systems are often predicted 
using finite Element (f.E.) analysis and then later ver1f1ed exper1mentally 
w1th dynam1c analys1s test1ng systems. Increased demands for reliabi11ty, 
m1nimal v1brations, optimum performance, and low cost des1gn, among other cri-. 
ter1a, have 1ncreased designers needs for sophist1cated dynamic analys1s test-
1ng techniques. S1nce the 1960·s f.E. computer programs have become the 
preference of des1gners for analyt1cal dynam1c analys1s. The use of f.E. com­
puter codes has become especially w1despread in the automotive and aerospace 
1ndustr1es due to the requ1rement to analyze very large and complex structures. 
Commerc1al f.E. computer programs such as NASTRAN, ANSYS, and SAP (ref. 1) are 
ava11ab1e to anyone hav1ng access to a computer term1nal. 

In many s1tuations exper1mental verification is required to 1nsure the 
validity of the results predicted by the f.E. analysis. Aerospace structures, 
which are very expensive and have rigorous safety and re11abi11ty requirements 
normally require experimental ver1f1cat1on (ref. 2). Automobile prototypes 
are also exper1mentally verif1ed to insure that vibrat10n and no1se problems 
w1ll not exist 1n product1on models. Hundreds of other app11cat1ons of f.E. 
analys1s and exper1mental va11dat1on can be found. 



Digital signal analyzers are the most commonly used systems for experi­
mental verification. Digital signal analyzers, which utilize the Fast Fourier 
Transform (FFT) developed in the 1960 l s (ref. 3), allow rapid and relatively 
accurate determination of structural transfer functions, resonant frequenc1e~, 
and characteristic mode shapes. Modern digital analysis equipment has both 
automated the modal extraction process and decreased the required data acquisi­
tion and post-processing time. These systems have replaced traditional analog 
devices because of their high speed and their ability to measure many modes 
simultaneously. 

An important problem that has emerged from these combined ana1ytical/ 
experimental investigations is the task of identifying and quantifying the dif­
ferences between results predicted by F.E. analysis and results obtained from 
the experiment. Although both the F.E. and experimental methods can be 
accurate from a theoretical standpoint, inaccuracies do exist in their applica­
tions to real structural problems. In the case of F.E. modeling there is con­
siderable uncertainty in the modeling of items such as boundary conditions, 
joint f1exibilities, and damping. Because of this, the F.E. results are not 
exact since the input data itself is approximated. Also, it is not possible to. 
completely eliminate experimental error. F.E. analysts take the responsibility 
for producing theoretically correct computer codes but sometimes do not place 
enough emphasis on predicting the behavior of real world structures. The 
experimentalist, through testing, often show the limitations of the F.E. 
analysis, but do not always present clear cut procedures for quantifying the 
differences in a useful manner. 

A communication gap can exist between the experimentalist and the F.-E. 
analyst when the experimentalist can not provide the quantitative data required 
by the analyst to identify the differences between the experimental data and 
the F.E. model. The gap exists because the experimentalist normally measures 
frequencies and mode shapes in a vibration test, while the analyst requires a 
mass, damping, and stiffness matrix for describing the F.E. model. 

It would be useful if the differences between the experimental data and 
F.E. model could be found in terms of discrete mass, stiffness, and damping. 
If this could be done, and the experimental data was reliable, a more accurate 
F.E. model with improved mass, damping, and stiffness descriptions could be 
created. This model could then be used for not only subsequent dynamic anal­
ysis, but also for static analysis, for studying the effects of structural 
modifications, or for any analysis requiring the use of a mass, damping, or 
stiffness matrix. It would be ideal if the discrete parameters could be 
measured experimentally but this is not practical. For example, to measure 
the values for a row or column in the stiffness matrix, a displacement would 
have to be applied to the real structure while every other degree of freedom 
was constrained, and then the forces at all the other degrees of freedom would 
need to be measured. This would be both time consuming and require elaborate 
fixtures and instrumentation. Experimental measurement of the mass and damping 
matrix would be at least equally complex, if not impossible. 

One possible way to compare the experimental results to the F.E. model is 
.to compute analytical frequencies and mode shapes from the F.E. equation of 
motion and then compare them to the frequencies and mode shapes obtained from 
the experiment. The limitation of making a comparison at this level is that 
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even though disagreements can be identified, the cause of the disagreements 
namely differences in the mass, damping, and stiffness matrices, can not be 
identified ~f quantified. 

OJ 

A more useful comparison between F.E. and experiment can be made through 
the equations of motion. By using the original F.E. equations and the equa­
tions of motion derived from the experimental data, differences between experi­
ment and F.E. coefficients can be identified and corrected. Unfortunately. the 
procedure of deriving an equation of motion from the experimental frequencies 
and mode shapes is not straight forward. To derive the equation of motion from 
experimental data requires that the same number of modes as degrees of freedom 
in the F.E. model be experimentally measured and that the experimental data not 
contain any measurement error or noise. If both of these requirements are not 
met the experimental data can not be used to construct a correct equation of 
motion. Since the coefficients for the equations of motion are computed by 
inverting matrices containing the experimental mode shapes, these matrices must 
be square. In a typical experiment, the number of measured modes will not be 
equal to the number of degrees of freedom so the modal matrices will be 
rectangular instead of square. Another difficulty is that the experimental 
data will always contain some amount of experimental error and noise which 
makes the outcome of a matrix inversion questionable. Also, if the highest 
modes in the structure are not included in the experimental data the stiffness 
matrix computed from a modal matrix inversion will be incorrect (ref. 4). 
Finally, it is difficult to measure the values of the mode shapes corresponding 
to every degree of freedom used in the F.E. model. This causes the order of 
the experimental matrices to be less than those in the F.E. equations. 

Previous research in this area has focused on using experimental data to 
improve F.E. models rather than on identifying the differences. Most of the 
techniques have been based on some form of a least squares fit. In the work by 
Berman and Flannelly (ref. 4). the analytical matrices are assumed to be close 
to the actual solution and then the smallest change in the analytical model 
that makes the experimental and analytical frequencies and mode shapes iden­
tical is found. This assumption will not necessarily lead to an analytical 
model that is physically representative of the actual structure. The only 
assurance is that the revised model will correctly predict the modes that were 
measured. The problems arising from using "incomplete" data (data containing 
fewer modes than there are in the F.E. model) are also discussed in this work. 
In reference 5. Fuh. Chen, and Berman use similar approaches for correcting 
structures with viscous damping. 

Chen. Peretti, and Garba (ref. 6) refined a F.E. model of the Galileo 
spacecraft by first performing static tests to improve the stiffness matrix. 
and then dynamic tests for correcting the mass matrix. The mass matrix cor­
rection was based on a minimum change criteria. The limitations of this 
approach are that two independent sets of tests must be run. and again. there 
is no guarantee that actual physical characteristics will result from the least 
squares approach. 

Hart and Yao (ref. 7) discuss the advantages of using weighted least 
,squares and Bayesian estimation. By using these extended forms of least 
squares methods, uncertainties in both the experimental data and analytical 
model can be included in the updating procedure. It can be very important to 
define the uncertainty in the experimental data since this data often contains 
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more error than the F.E. description. It does not make much sense to attempt 
to improve a F.E. model with experimental data that is less certain than the 
F.E. model. By including relative uncertainties in the procedure, changes to 
the analytical model will not be applied indiscriminately and the possibility. 
exists for retaining the physical meaning of the structure in the updated 
model. 

Dobb, Blakely, and Gundey (ref. 8), and Blakely and Walton (ref. 9) 
applied the Bayesian estimation procedure to a F.E. model of an offshore plat­
form and a dam. In their study the effects of change in the uncertainties in 
both the experimental data and the F.E. parameters were investigated. Unfor­
tunately, well defined procedures do not exist for quantifying uncertainties 
so they had to be estimated using engineering judgement. 

Sidhu (ref. 10) developed a procedure for approximating the difference 
between experimentally measured frequencies and mode shapes and F.E. parameters 
in terms of differences in mass, damping, and stiffness matrices. This 
approach has the potential for providing a direction to correct a F.E. model 
while retaining the physical characteristics of the real structure. The objec­
tive of this work is to extend the procedure developed by Sidhu for correlation 
of linear finite element and modal test data to include structures with viscous 
damping. In this study, the derivation of the extended procedure and several 
case studies which use simulated experimental data are presented. The purpose 
of developing this procedure is to formalize a process for identifying the dif­
ferences between experimentally measured frequencies and mode shapes and F.E. 
models in terms of differences in mass, damping, and stiffness. 

FORMULATION OF EQUATIONS 

The free vibration equation of motion for a damped, linear system can be 
written as: 

[M]{~~ + [C]{~} + [K]{u} = {OJ (1) 

where [M] is the mass matrix, [e] is the viscous damping matrix, [K] is the 
stiffness matrix, and {u}, luI, and {u} are the acceleration, velocity, and 
displacement vectors, respectively. The size of [M], [e], and [K] are nxn 
and {u}, luI, and {u} are of size n, where n is the number of degrees 
of freedom in the equations of motion. 

In only special cases can equation (1) be decoupled using normal modes 
(ref. 11). In general, when damping is present, the solution of this equation 
results in complex eigenvalues and eigenvectors appearing in conjugate pairs. 
Since there are pairs of roots there will be twice as many roots as there are 
displacement degrees of freedom and the modal matrix will be of the order nx2n 
instead of nxn. This rectangular modal matrix can not be used to decouple 
equation (1). Equation (1) can be rewritten in state vector form as: 

[AHY} + [BHy} = {OJ 

where {y} [A] = 
[

[0] [M]] 
[M] [e] 
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[B] 
= [-[M] 

[0] 
[O]J 
[K] 

( 2) 



([A] and [B] are of order 2n x 2n and {y} 1s of order 2n.) 

The advantage of wr1t1ng the equat10n of mot1on 1n state vector form 1s 
that the modal matr1x can now be used to decouple the equat1on. Assum1ng a 
solut1on {y} = {t}est and subst1tut1ng 1nto equat10n (2) leads to the 
e1genvalue problem: 

{[A]s + [B]}{t} = {OJ (3) 

For less than cr1t1cal damp1ng, the solut1on of th1s equat10n y1elds 2n com­
plex e1genvalues sr, where sr = -wr 'r +/- 1wOr. wr 1s the natural fre­
quency, WOr 1s the damped natural frequency, and 'r 1s the damp1ng rat10 for 
mode r. An equal number of complex e1genvectors are also obta1ned. 

Subst1tut1ng the modal matr1x [t] 1nto equat10n (3) and premult1ply1ng 
by [t]T leads to: 

[t]T[A][t]["s,,] + [t]T[B][t] = {OJ (4) 

from orthog1na11ty 

[t]T[A][t] = ["a,,] and [t]T[B][t] = ["b,,] 

where ["a,,] and ["b,,] are d1agonal matr1ces. 

If the e1genvectors are norma11zed w1th respect to the [A] matr1x then: 

[t]T[A][t] = [I] (5) 

and 

(6) 

S1nce the object1ve 1s to determ1ne the d1fferences between the exper1-
mental model and the analyt1cal model we need to f1nd a common ground that 
w1ll allow the compar1son of the structural matr1ces computed from the F.E. 
analys1s to the exper1mental frequenc1es and mode shapes. The d1fferences 
between the F.E. "[B]" matr1x and the [B] matr1x computed from the exper1-
mental data (assum1ng that a [B] matr1x can be created from the exper1mental 
data) 1s wr1tten as: 

[O]B = [B]exp - [B]F.E. 

rearrang1ng 

[B]exp = [B]F.E. + [O]B 

then 1nvert1ng both s1des 

[B]exp-l = {[B]F.E. + [O]B}~' 

"and factor1ng out [B]F.E. 
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and 

-1 -1 -1-1 
[B]exp = {[I] + [B]F.E.[O]B} [B]F.E. 

If the bracketed expression in equation (8) is expanded using a Taylor 
series (refs. 12 and 13) and terms past the first derivative are dropped, 
equation (8) can be approximated by: 

-1 
multiplying out [B]F.E. 

and then rearranging 

-1 -1 -1 [] ]-1 -[B]exp + [B]F.E. ~ [B]F.E. 0 B[B F.E. 

and solving for [O]B 

( 8) 

(10) 

Using equation (6) to obtain [B]-l and substitUting into equation (10) 
the final expression for the difference matrix [O]B is obtained: 

The same approach can be used for deriving the difference in the [A] 
matrix. In this case: 

(12 ) 

The format of equations (11) and (12) are well suited for computing the 
differences between the F.E. model and experimental data. Since these equa­
tions do not require any inversion of the modal matrices, the fact that all the 
modes a~e not measured does not cause a problem. As discussed previously, the 
modal matrix will not be completely known since fewer modes than degrees of 
fre~dom are typically measured. An inversion of the frequency matrices are 
required, but this does not present any problems since these matrices are 
diagonal and their inverses are just the reciprocal of the diagonal terms. 
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Once [O]A and [O]S are computed, the d1sagreement between the F.E. 
and exper1mental descr1pt1ons of the structure can be found. S1nce there 1s a 
d1rect relat1onsh1p between the elements of the mass, damp1ng, and st1ffness 
matrices and the elements of the [A] and [6] matrices, the discrepancies ~n 
mass, damp1ng, and st1ffness at any degree of freedom 1n the structure can be 
found by merely p1ck1ng out values from the [O]A and [0]6 matr1ces. For 
example, the d1sagreement in damp1ng at the f1rst degree of freedom would be 
obta1ned from the [O]A matr1x at locat1on [O(n + 1, n + l)]A, the mass dis­
agreement at [0(1, n + l)]A, and the stiffness d1sagreement at [O(n + 1, 
n + 1)]6. Note that the mass d1screpancy can be found from e1ther one of 
two part1t1ons 1n the [O]A matr1x or the [O]S matrix. 

It was ment10ned previously that 1n preact1ve exper1mental mode shape data 
w1ll normally not be available at all of the degrees of freedom used 1n the 
F.E. model. When th1s s1tuat1on ex1sts, e1ther the mode shape data must be 
1nterpolarted (ref. 7) or the F.E. model reduced (ref. 16). In th1s paper 1t 
w1ll be assumed that one of these procedures has already been applied, thus 
render1ng the number of degrees of freedom equal to the number of experimental 
measurement po1nts where mode shape data 1s taken. It w1ll also be assumed 
that the exper1mental mode shapes are measured at the F.E. node locat1ons. 

Sample Problem One 

Sample problem one cons1sts of a planar cantilever beam. Two f1nite ele­
ment models were used 1n the analysis. This f1rst model, referred to as the 
analyt1cal model, 1s used for comput1ng the frequencies and mode shapes that 
would normally be generated by an analytical analysis. The second model, 
referred to as the "experimental" model, is used for simulating frequencies and 
mode shapes that would be obtained by performing an actual experimental modal 
analys1s on a real beam. It 1s advantageous to use s1mulated data 1n place of 
real data because the property matr1ces corresponding to the simulated data are 
known, whereas the property matr1ces for any real structure are unknown. S1nce 
the mass, damping, and stiffness matrix are known for the s1mulated exper1-
mental data, the exact error matr1ces can be compared to the error matr1ces 
generated by the equations derived 1n this study and the procedures can be 
evaluated. 

The analytical model is made up of nine, equally spaced node po1nts and 
e1ght connect1ng beam elements (f1g. 1). All of the degrees of freedom are 
constrained at node 1 and every degree of freedom except for the z-d1splacement 
and y-rotat10n are constrained at the other node points. Th1s leaves sixteen 
active degrees of freedom for the structure. The section propert1es for the 
beam elements are 2.6x10-3 for the moment of inert1a, 10x106 for Young's 
modulus, and 2.6x10-4 for the mass density per un1t length. 

The complex eigenvalue extract10n solut10n sequence (Solution 28) of the 
MSC/NASTRAN f1n1te element program was used to compute the free v1bration 
frequencies and mode shapes for the beam. The Hess method (ref. 14) was 
selected for extracting the modes since this method is more efficient when all 
of the modes are desired. All of the modes were initially required for a 
complete verification of the difference matrix routines. 
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The s1mulated exper1mental model was made to d1ffer.from the F.E. model by 
add1ng a concentrated mass, damper, and spr1ng to the beam. The 10cat10n of 
these elements 1s shown in figure 1. The values used for the elements are 
listed 1n table I as ~M, ~C, and ~K. The mass, damp1ng, and stiffness from 
the F.E. model at the same nodes and directions are also 11sted to g1ve an 
1nd1cat10n of the relative magnitude of the differences. NASTRAN was again 
used for computing the complex frequencies and mode shapes of the experimental 
model. 

Table II shows the comparison between the computed eigenvalues for the 
analytical model and the simulated experimental model for each of the four 
cases. All 16 of the modes were computed by NASTRAN. From table II, a com­
parison can be made between the complex valued eigenvalues. As expected, the 
real part of the analytical eigenvalues are zero since there is no damp1ng 
present 1n the F.E. model, and the real part of the exper1mental eigenvalues 
are non-zero since damping is present. In general, the addition of the tip 
mass and the damper tends to lower the frequencies wh1le the spring raises the 
frequencies. The modal damping is totally dependent on the concentrated 
damper. 

The imaginary (frequency) part of the F.E. and experimental eigenvalues 
are plotted in figure 3 for case 1. If the eigenvalues matched exactly they 
would plot directly on the straight, 45° line. There is a small devtation from 
the straight line, but not enough to indicate any significant differences 
between the analytical and exper1mental models. Even if there were large 
dev1ations between the analytical and experimental e1genvalues, there would 
not be any way to use the results in figure 3 or table II to relate the devia­
tions to differences in phys1cal mass, damping, or stiffness coeff1cients .. 

The real components of the first four mode shapes for the analytical model 
(case 1) are plotted in figure 4. Only the translational degrees of freedom 
are plotted. Even though the first frequency has the largest deviation 
(figure 3) the first mode shape matches up very closely. The opposite occurs 
for the second and third modes where the mode shapes deviate from each other 
while the frequencies are very similar. As with the frequency plots, there is 
no way to relate the deviation from perfect correlation in mode shape plots to 
physical differences in mass, damping, or stiffness. 

The Difference Matrix program was used to relate the differences between 
the experimental and analytical models in terms of differences in mass, damp­
ing, and stiffness. The computer program was verified using all four cases 
and various numbers of modes as input data. When all of the modes are included 
as input the only approximation in the procedure is from the Taylor series 
truncation. As previously discussed, in a real situation all the modes would 
not be available from tests. Plots of mass, damping, and stiffness d1fference 
matrices for case 1, using all 16 modes are shown in figure 4. The differences 
are plotted on a grid where each intersection of a grid line corresponds to a 
location in the matrix being plotted. For example, the mass difference shown 
in the figure corresponds to the (15, 15) location in the structure's mass 
matrix. In the figure the physical differences between the analytical and 
experimerital models are clearly defined. The mass difference matrix indicates 
a mass d1fference at degree of freedom 15 which corresponds to the transla­
tional direction at the beam tip where the concentrated mass was added. The 
damping and stiffness errors at degree of freedom seven and one respectively, 
correspond to the locations of the concentrated damper and spring. There 
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were no other differences between the analytical and experimental models which 
is indicated by the flat areas in all three of the difference matrix plots. 
Even though the location of the difference is exact, there is some amount of 
disagreement between the actual magnitudes of the mass and stiffness, and the 
magnitudes computed by the error matrix program. The program computed a mas~ 
difference of 0.00011 while the actual concentrated mass was 0.0002. The 
spring magnitude was computed to be 3294, while the real spring was 5000. The 
magnitudes of the actual damper and the magnitude computed by the program were 
both 1.0. It is not surprising that the computed mass differences was so far 
off since the mass added to the experimental model was almost as great as the 
original mass in the analytical model. Since all of the modes were included 
in these calculations, the differences between the real values and the computed 
ones can be attributed to the higher order terms that are missing in the Taylor 
expansion. A procedure for improving the accuracy of the magnitudes will be 
discussed later in this section. 

When less than all 16 modes are included in the calculations the results 
deteriorate. In figure 5 results are shown for the case where only one mode 
was included as input into the Difference Matrix program. The mass and damp1ng 
d1fference plots do not show anyth1ng but some d1str1buted n01se .. The st1ff­
ness d1fference plot 1nd1cates a difference at the spring location, but the 
d1fference is of the wrong magnitude. (After examining the data, the sign of 
the difference was also found to be incorrect) Figure 6 shows difference plots 
where 10 modes are included as input. In th1s case the n01se has virtually 
d1sappeared and the correct locations of the differences have shown up. 

A compilation of results for all four test cases are shown 1n f1gures 7 
to 9. In these figures the ratio of the computed to actual difference at the 
mass, damper, and spring 10cat10n are plotted as a funct10n of the number of 
modes used as 1nput data into the Difference program. All four cases were run 
us1ng 16, 8, 5, 3, 2, and 1 modes as 1nput into the Difference program. From 
the mass difference plot (fig. 7), 1t 1s seen that when the mass d1fference 1s 
large (case 1), the computed d1fference 1s only about half of the correct dif­
ference. When the mass d1fference was reduced (cases 2, 3 and 4) the computed 
difference was much closer to the correct difference. If the mass difference 
is as great or greater than the analytical mass, the location of the difference 
will be correct but the magnitude will not. From cases 2, to 4 it is also seen 
that the computed mass difference does not change with the level of the damping 
or stiffness d1fferences. 

Figure 8 shows the computed damping differences for the four cases. This 
plot shows that the differences are independent of the level of damping as well 
as independent of the magnitude of the mass and stiffness difference. Even 
when large amounts of damp1ng are present in the structure the damp1ng calcula­
t10ns are accurate (the damp1ng level in case 2 was close to critical). It 1s 
encouraging to note that the accuracy is independent of the damping difference 
level, because in analytical modeling it is the damping values that are the 
most difficult to predict. Thus for a typical structure the difference proce­
dure would work fairly well, since the mass and stiffness differences would 
ordinarily be small, and the magnitude of the damping difference would not 
matter. 
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Figure 9 shows the effects of the various difference ratios on the com­
puted stiffness differences. Similar to the mass calculations, the accuracy 
of the difference is dependent upon its relative magnitude. When the stiff­
ness difference is relatively large, the computed difference is inaccurate; 
when the difference is small, the computed value is much closer to the actual 
value. Again, the computed difference is independent of the level of the dif­
ferences in the other parameters. 

From any of the figures presented thus far it is apparent that when only 
a few modes are included the results are meaningless. When less than eight 
modes are included the results are poor, and past eight modes the results are 
good and do not improve by including more than the first eight modes. To 
determine how the number of degrees of freedom used in the model effects the 
number of modes required for good results, a new model of the cantilever beam 
was constructed using 32 degree of freedom instead of 16. 

The difference plots for this model were computed using the differences 
from case 3. The results are shown in figure 10. The difference matrices 
using 16 modes as input are shown in figure 11. From these results it is seen 
that while only 8 modes produced good results in the 16 degree of freedom 
model, at least 16 modes are needed in the 32 degree of freedom model. 

Previously, it has been shown that the accuracy of the computed differ­
ences are dependent on the magnitude of the differences and the number of modes 
included in the calculations. In an attempt to improve the accuracy an itera­
tive procedure was implemented (fig. 12). In this procedure the differences 
computed by the Difference program are accumulated from all previous iterations 
and are then added to the mass, damping, and stiffness matrices for the analyt­
ical model. The updated analytical model is then used to compute a new set of 
differences for the next iteration. 

The iterative procedure was tested using the differences from test case 3 
and the sixteen degree of freedom model. The results for three iterations are 
shown in figure 13. Without iterating, it was shown that when all sixteen 
modes are included in the calculations the results are very good. After iter­
ating only twice, the results are exact. The same is also true when only eight 
modes are used. In general, when less than eight modes are used, the accuracy 
of the computed differences are not improved significantly by iterating. When 
only a few modes are included, the accuracy is not improved at all. The 
advantage of using the iteration procedure is that when an adequate number of . 
modes are used the results will converge to the exact values regardless of the 
magnitude of the differences. The limitation of the iterative process is that 
it does not reduce the number of modes required for good results. 

SAMPLE PROBLEM TWO 

The second sample problem consists of a planar, simply supported beam. 
The finite element model of this problem is made up of nine node points and 
eight connecting beam elements (fig. 14). All of the degrees of freedom are 
constrained, except for the y-rotations at nodes one to nine, and the 
z-translations at nodes two through eight. There are sixteen degrees of 
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freedom for th1s problem. The same sect10n propert1es that were used of for 
the f1rst sample problem are also used here. The d1fference matr1x plots for 
th1s problem were generated us1ng the 1terat10n scheme shown 1n f1gure 16. 

The "exper1mental" model was made to d1ffer from the analyt1cal model by 
add1ng three concentrated spr1ngs and seven dampers to the beam model. The' 
10cat10ns and propert1es for these elements are shown 1n the f1gure. Th1s 
sample problem d1ffers from the f1rst one 1n that the d1fferences 1n the f1rst 
problem were 11m1ted to a s1ngle mass, damper, and spr1ng, wh11e 1n th1s 
problem there are several spr1ngs and dampers at every node. Also, the level 
of damp1ng 1s much less 1n th1s problem than 1n the prev10us one. 

A compar1son of the e1genvalues for the second sample problem 1s shown 1n 
table III. From th1s compar1son 1t 1s seen that the major d1fferences between 
the analyt1cal and exper1mental models are 1n the f1rst frequency and the modal 
damp1ng 1n the f1rst seven modes. Beyond the seventh mode there are not any 
d1fferences between the analyt1cal and exper1mental e1genvalues. The f1rst 
frequency 1s h1gher for the exper1mental model because of the add1t10nal st1ff­
ness from the three spr1ngs. The modal damp1ng 1s d1fferent because the exper-
1mental model has the seven translat10nal dampers wh11e the analyt1cal model 
does not have any damp1ng. It 1s understandable that there 1s no'modal damp1ng 
1n the h1gher modes for the exper1mental model s1nce the h1gher modes are 
dom1nated by rotat10ns and the dampers only act 1n the translat10n d1rect10n. 

The computed damp1ng and stiffness d1fference matrices us1ng the f1rst 
mode only as 1nput into the Difference program are shown in figure 15. From 
these plots it is 1mposs1ble to identify any of the d1fferences that actually 
exist between the analytical and experimental models. When only one mode was 
used for the f1rst sample problem calculations the d1fferences could not be 
1dent1f1ed e1ther. When the number of modes was 1ncreased to four (f1g. 16) 
the correct differences were reasonably apparent in the difference plots. For 
the stiffness matrix plot, differences appear at degree of freedom 4, 6, and 8 
which corresponds to the locations of the three springs that were added to the 
experimental model. In add1t10n to the differences at these degrees of free­
dom, d1fferences also appear at some of the other degrees of freedom. These 
d1fferences do not actually exist 1n the models and would not appear 1f more 
modes were used as input. Many of these "extra" differences can be e11minated 
by examining the possible coupling that may/exist in the analytical mode. For 
example, node two and six are not connected to each other so degrees of freedom 
2 (z-translat1on, node two) and degree of freedom 10 (z-translat1on, node six), 
are uncoupled which allows for location (2,10) and (10,2) 1n the difference 
matrix to be set to zero. The same logic can be used to eliminate some of the 
other unobtainable differences appear1ng in the plots. 

In f1gure 17, the d1fference plots using four modes are recreated, except 
that the differences at uncoupled degrees of freedom are set to zero. In these 
plots the correct d1fferences are even more evident although some differences 
continue to appear where there are not any true differences. There does not 
appear to be any way to e11m1nate these "extra" differences except by us1ng 
more modes 1n the calculations. When the number of modes is increased to six 
(fig. 18), both the computed stiffness and damping difference matrices are very 
accurate. In add1t10n, no s1gn1f1cant d1fferences appear where they do not 
'actually exist in the models. In f1gure 19, plots are shown where all s1xteen 
modes are included in the computat10ns, and as expected, the results are 
almost exact. 
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CONCLUSION 

A general procedure for identifying and quantifying the differences 
between F.E. models and experimental data has been developed and demonstrated 
with simulated experimental data. The differences, which can be computed for 
linear, viscously damped structures, are presented in terms of mass, damping, 
and stiffness coefficients. Since the differences are computed in terms of 
mass, damping, and stiffness coefficients, possible modeling problems can be 
identified in the F.E. or analytical model. 

From data generated for a damped cantilever beam and a damped simply sup­
ported beam, it was determined that the accuracy of the computed differences 
increases as the number of experimentally measured modes included in the cal­
culations is increased. When the number of experimental modes is at least 
equal to the number of translational degrees of freedom both the location and 
magnitude of the differences can be computed very accurately. When the number 
of modes is less than this amount the location of the differences may be 
determined even though their magnitudes will be under estimated. When too few 
modes are available neither the location or the magnitudes of the differences 
can be identified. 

In practice, it will be required to measure the experimental frequencies 
and mode shapes very accurately before the differences can be attributed to 
shortcomings in the analytical model. If the experimental data is not precise, 
the computed differences can still provide considerable insight into the pos­
sible locations of deficiences. The difference is that the deficiencies may be 
in the experiment and some judgement will be required to decide whether to 
modify the experiment or the analytical model. . 
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TABLE I. - TEST CASES FOR 

SAMPLE PROBLEM ONE 

Case AMIMa AC/Cb 

1 
2xl0-4 

LQ 
2.6xl0-4 0 

2 
5xl0- 5 1.8 

2.6xl0-4 --0 

5xl0- 5 
lJ!. 

3 2.6xl0-4 0 

4 
5xl0-5 1.0 

2.6xl0-4 --0 

aRat10 of mass 6 to f.E. 
mass at node 9. 

Ak/kc 

5000 
78000 

2500 
78000 

2500 
78000 

25000 
78000 

bRatl0 of damping A to F.E. 
damp1ng at node 5. 

CRat10 of stiffness .0. to 
F.E. stHfness at node 2. 

TABLE II. - COMPARISON OF ANALYTICAL AND "EXPERIMENTAL" EIGENVALUES FOR SAMPLE PR08LEM ONE 

Mode Analytical 
e1genva lue 

1 o • 1371 
2 o • 8401 
3 o • 2 3121 
4 0.44471 
5 o • 7 1971 
6 o .. 10 4271 
7 0.137571 
8 o • 16 3711 
9 o • 63 0171 

10 0.757271 
11 0.840331 
12 0.940261 
13 o • 103 9281 
14 o • 112 5991 
15 o • 119 2761 
16 o • 123 4711 

Case 1 Case 2 Case 3 

Exper1mental Exper1mental Exper1mental 
e1genvalue e1genvalue e1genvalue 

-44.3 • 1301 -123 • 1111 -53 • 1331 
-247 • 7611 -438 • 5811 -245 • 7821 
-179 .22711 -12. 23141 -74 • 2 3171 

-203.9 .43811 -378 • 4 3591 -21.4 • 4 4251 
-28.2 • 7 1781 -30 • 7 2031 -17 • 7 2071 

-195 • 10 4281 -360 • 10 3871 -202 • 10 4301 
-247 • 13 7941 -35 • 13 7761 -19.6.137801 
-197 • 16 3691 -359 • 16 3041 -199 • 16 3591 

o • 62 9221 o • 62 9821 o • 62 9821 
o • 75 7111 o • 75 7211 o • 75 7211 

-3 • 83 9441 -5 • 640191 -3 • 84 0191 
0.939741 0.940071 o • 94 0071 

-2 + 103 6751 -4 • 103 9091 -2 • 103 9091 
o • 112 5591 o + 112 5641 o • 112 5841 
o • 119 2561 -1 • 119 2701 o • 119 2701 
o • 123 4661 o + 123 4701 o + 123 4691 

Mode 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

TABLE [[I. - COMPARISON OF 

ANALYTICAL AND 

-EXPERIMENTAL· 

EIGENVALUES 

FOR SAMPLE 

PROBLEM 

TWO 

Analytical Exper1menta 1 
e1genvalue e1genvalue 

o • 3861 -48 • 4881 
o + 1 5411 -48 • 1 5601 
o + 3 4551 -48 • 3 4661 
o • 6 0931 -48 + 6 0951 
o • 9 3491 -47 • 9 3521 
o • 12 9171 -47 • 12 9191 
0.160311 -48 • 16 0331 
o + 62 6681 o • 62 6681 
o • 62 9301 o + 62 9301 
o • 76 6171 0.766171 
o • 85 5771 0+855771 
o • 95 5621 o • 95 5621 
o • 105 1191 o • 105 1191 
o • 113 3471 o • 113 3471 
o • 119 6331 o • 119 6331 
o + 123 5631 o • 123 5631 

Case 4 

Exper1mental 
e1genval ue 

-45 • 1501 
-258 • 8741 
-31 • 2 5251 

-183 .47941 
-59 • 7 6921 

-158 • 10 9721 
-55 • 14 2351 

-168 • 16 5721 
o • 62 9821 
o • 75 7211 

-3 • 64 0191 
o + 94 0071 

-2 + 103 9091 
o • 112 5641 
o • 119 2701 
o • 123 4701 
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