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SUMMARY

An important problem that has emerged from combined analytical/experimental
investigations is the task of identifying and quantifying the differences
between results predicted by F.E. analysis and results obtained from experiment.

The objective of this study is to extend and evaluate the procedure developed

by Sidhu for correlation of linear F.E. and modal test data to include struc-
tures with viscous damping. The desirability of developing this procedure is
that the differences are identified in terms of physical mass, damping, and
stiffness parameters instead of in terms of frequencies and modes shapes.
Since the differences are computed in terms of physical parameters, locations
of modeling problems can be directly identified in the F.E. model.

From simulated data it was determined that the accuracy of the computed
differences increases as the number of experimentally measured modes included
in the calculations is increased. When the number of experimental modes is at
least equal to the number of translational degrees of freedom in the F.E.- model”
both the location and magnitude of the differences can be computed very accu-
rately. When the number of modes is less than this amount the location of the
differences may be determined even though their magnitudes will be under
estimated.

INTRODUCTION

The dynamic characteristics of structural systems are often predicted
using Finite Element (F.E.) analysis and then later verified experimentally
with dynamic analysis testing systems. Increased demands for reliability,
minimal vibrations, optimum performance, and low cost design, among other cri-
teria, have increased designers needs for sophisticated dynamic analysis test-
ing techniques. Since the 1960's F.E. computer programs have become the
preference of designers for analytical dynamic analysis. The use of F.E. com-
puter codes has become especially widespread in the automotive and aerospace
industries due to the requirement to analyze very large and complex structures.
Commercial F.E. computer programs such as NASTRAN, ANSYS, and SAP (ref. 1) are
available to anyone having access to a computer terminal.

In many situations experimental verification is required to insure the
validity of the results predicted by the F.E. analysis. Aerospace structures,
which are very expensive and have rigorous safety and reliability requirements
normally require experimental verification (ref. 2). Automobile prototypes
are also experimentally verified to insure that vibration and noise problems
will not exist in production models. Hundreds of other applications of F.E.
analysis and experimental validation can be found.
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Digital signal analyzers are the most commonly used systems for experi-
mental verification. Digital signal analyzers, which utilize the Fast Fourier
Transform (FFT) developed in the 1960's (ref. 3), allow rapid and relatively
accurate determination of structural transfer functions, resonant frequencies,
and characteristic mode shapes. Modern digital analysis equipment has both
automated the modal extraction process and decreased the required data acquisi-
tion and post-processing time. These systems have replaced traditional analog
devices because of their high speed and their ability to measure many modes
simultaneously.

An important problem that has emerged from these combined analytical/
experimental investigations is the task of identifying and quantifying the dif-
ferences between results predicted by F.E. analysis and results obtained from
the experiment. Although both the F.E. and experimental methods can be
accurate from a theoretical standpoint, inaccuracies do exist in their applica-
tions to real structural problems. In the case of F.E. modeling there is con-
siderable uncertainty in the modeling of items such as boundary conditions,
joint flexibilities, and damping. Because of this, the F.E. results are not
exact since the input data itself is approximated. Also, it is not possible to
completely eliminate experimental error. F.E. analysts take the responsibility
for producing theoretically correct computer codes but sometimes do not place
enough emphasis on predicting the behavior of real world structures. The
experimentalist, through testing, often show the 1imitations of the F.E.
analysis, but do not always present clear cut procedures for quantifying the
differences in a useful manner.

A communication gap can exist between the experimentalist and the F.E.
analyst when the experimentalist can not provide the quantitative data required
by the analyst to identify the differences between the experimental data and
the F.E. model. The gap exists because the experimentalist normally measures
frequencies and mode shapes in a vibration test, while the analyst requires a
mass, damping, and stiffness matrix for describing the F.E. model.

It would be useful if the differences between the experimental data and
F.E. model could be found in terms of discrete mass, stiffness, and damping.
If this could be done, and the experimental data was reliable, a more accurate
F.E. model with improved mass, damping, and stiffness descriptions could be
created. This model could then be used for not only subsequent dynamic anal-
ysis, but also for static analysis, for studying the effects of structural
modifications, or for any analysis requiring the use of a mass, damping, or
stiffness matrix. It would be ideal if the discrete parameters could be
measured experimentally but this is not practical. For example, to measure
the values for a row or column in the stiffness matrix, a displacement would
have to be applied to the real structure while every other degree of freedom
was constrained, and then the forces at all the other degrees of freedom would
need to be measured. This would be both time consuming and require elaborate
fixtures and instrumentation. Experimental measurement of the mass and damping
matrix would be at least equally complex, if not impossible.

One possible way to compare the experimental results to the F.E. model is
to compute analytical frequencies and mode shapes from the F.E. equation of
motion and then compare them to the frequencies and mode shapes obtained from
the experiment. The 1imitation of making a comparison at this level is that



even though disagreements can be identified, the cause of the disagreements
namely differences in the mass, damping, and stiffness matrices, can not be
identified of quantified.

A more useful comparison between F.E. and experiment can be made through
the equations of motion. By using the original F.E. equations and the equa-
tions of motion derived from the experimental data, differences between experi-
ment and F.E. coefficients can be identified and corrected. Unfortunately, the
procedure of deriving an equation of motion from the experimental frequencies
and mode shapes 1s not straight forward. To derive the equation of motion from
experimental data requires that the same number of modes as degrees of freedom
in the F.E. model be experimentally measured and that the experimental data not
contain any measurement error or noise. If both of these requirements are not
met the experimental data can not be used to construct a correct equation of
motion. Since the coefficients for the equations of motion are computed by
inverting matrices containing the experimental mode shapes, these matrices must:
be square. In a typical experiment, the number of measured modes will not be
equal to the number of degrees of freedom so the modal matrices will be
rectangular instead of square. Another difficulty is that the experimental
data will always contain some amount of experimental error and noise which
makes the outcome of a matrix inversion questionable. Also, if the highest
modes in the structure are not included in the experimental data the stiffness
matrix computed from a modal matrix inversion will be incorrect (ref. 4).
Finally, it is difficult to measure the values of the mode shapes corresponding
to every degree of freedom used in the F.E. model. This causes the order of
the experimental matrices to be less than those in the F.E. equations.

Previous research in this area has focused on using experimental data to
improve F.E. models rather than on identifying the differences. Most of the
techniques have been based on some form of a least squares fit. In the work by
Berman and Flannelly (ref. 4), the analytical matrices are assumed to be close
to the actual solution and then the smallest change in the analytical model
that makes the experimental and analytical frequencies and mode shapes iden-
tical is found. This assumption will not necessarily lead to an analytical
model that 1s physically representative of the actual structure. The only
assurance is that the revised model will correctly predict the modes that were
measured. The problems arising from using "incomplete" data (data containing
fewer modes than there are in the F.E. model) are also discussed in this work.
In reference 5, Fuh, Chen, and Berman use simjlar approaches for correcting
structures with viscous damping.

Chen, Peretti, and Garba (ref. 6) refined a F.E. model of the Galileo
spacecraft by first performing static tests to improve the stiffness matrix,
and then dynamic tests for correcting the mass matrix. The mass matrix cor-
rection was based on a minimum change criteria. The limitations of this
approach are that two independent sets of tests must be run, and again, there
is no quarantee that actual physical characteristics will result from the least
squares approach.

Hart and Yao (ref. 7) discuss the advantages of using weighted least
squares and Bayesian estimation. By using these extended forms of least
squares methods, uncertainties in both the experimental data and analytical
model can be included in the updating procedure. It can be very important to
define the uncertainty in the experimental data since this data often contains



more error than the F.E. description. It does not make much sense to attempt
to improve a F.E. model with experimental data that is less certain than the
F.E. model. By including relative uncertainties in the procedure, changes to
the analytical model will not be applied indiscriminately and the possibility
exists for retaining the physical meaning of the structure in the updated
model.

Dobb, Blakely, and Gundey (ref. 8), and Blakely and Walton (ref. 9)
applied the Bayesian estimation procedure to a F.E. model of an offshore plat-
form and a dam. In their study the effects of change in the uncertainties in
both the experimental data and the F.E. parameters were investigated. Unfor-
tunately, well defined procedures do not exist for quantifying uncertainties
so they had to be estimated using engineering judgement.

Sidhu (ref. 10) developed a procedure for approximating the difference
between experimentally measured frequencies and mode shapes and F.E. parameters
in terms of differences in mass, damping, and stiffness matrices. This
approach has the potential for providing a direction to correct a F.E. model
while retaining the physical characteristics of the real structure. The objec-
tive of this work is to extend the procedure developed by Sidhu for correlation
of linear finite element and modal test data to include structures with viscous
damping. 1In this study, the derivation of the extended procedure and several
case studies which use simulated experimental data are presented. The purpose
of developing this procedure is to formalize a process for identifying the dif-
ferences between experimentally measured frequencies and mode shapes and F.E.
models in terms of differences in mass, damping, and stiffness.

FORMULATION OF EQUATIONS

- The free vibration equation of motion for a damped, linear system can be
written as:

[M1{G} + [C]{0} + [K]{u} = {O} (1)

where [M] 1is the mass matrix, [C] 1is the viscous damping matrix, [K] 1is the
stiffness matrix, and {U}, {0}, and {u} are the acceleration, velocity, and
displacement vectors, respectively. The size of ([M], [C], and [K] are nxn
and {U}, {0}, and {u} are of size n, where n 1is the number of degrees

of freedom in the equations of motion.

In only special cases can equation (1) be decoupled using normal modes
(ref. 11). 1In general, when damping is present, the solution of this equation
results in complex eigenvalues and eigenvectors appearing in conjugate pairs.
Since there are pairs of roots there will be twice as many roots as there are
displacement degrees of freedom and the modal matrix will be of the order nx2n
instead of nxn. This rectangular modal matrix can not be used to decouple
equation (1). Equation (1) can be rewritten in state vector form as:

[A1{y} + [B]{y} = {0} (2)

{0} 1001 [M] -[M1 (O]
where {y} = 4o (A= dpey per| 0B | po; [k



([A] and [B] are of order 2n x 2n and {y} 1is of order 2n.)

The advantage of writing the equation of motion in state vector form is
that the modal matrix can now be used to decouple the equation. Assuming a
solution {y} = {&}eSt and substituting into equation (2) leads to the
eigenvalue problem:

{{Als + [B]}{®} = {0} , (3)
For less than critical damping, the solution of this equation yields 2n com-
plex eigenvalues sy, where sy = -Wp Zr +/- iwpy. W 1is the natural fre-

quency, Wpr 1s the damped natural frequency, and ¢, 1is the damping ratio for
mode r. An equal number of complex eigenvectors are also obtained.

Substituting the modal matrix [®] into equaf1on (3) and premultiplying
by [2]T 1leads to:

[21T(AI[2][~~s~] + [2]T[B][2] = {0} | (4)
from orthoginality
[21T(AI[2] = [~a~.] and [2]T[BI[2] = [\b~]
where [~a<] and [~b~.] are diagonal matrices.
If the eigenvectors are normalized with respect to the [A] matrix then:
[21T(Al[2] = [I] L (5)
and
[21T[BI[2] = -[~s~] | (6)
Since the objective is to determine the differences between the experi-
mental model and the analytical model we need to find a common ground that
will allow the comparison of the structural matrices computed from the F.E.
analysis to the experimental frequencies and mode shapes. The differences
between the F.E. "[B]" matrix and the ([B] matrix computed from the experi-

mental data (assuming that a [B] matrix can be created from the experimental
data) is written as: :

[0]g = [Blexp - [Blf.E. (7
rearranging

(Blexp = [Blr.g. + (Dl
then inverting both sides

-1

-1
exp {[B]p g + [Dlg}

(8]

and factoring out ([Blf .



[Blgyp = {[B1; ¢ {[11 + [BI7'¢ [DIgh

and

[815gp = ([1) + [BI7'c (01517 (8] (8)

If the bracketed expression in equation (8) is expanded using a Taylor
series (refs. 12 and 13) and terms past the first derivative are dropped,
equation (8) can be approximated by:

[B15y, = {011 - [BI;'¢ [DIGHBI; .

multiplying out [B];’E

-1
exp

(Bl5yp ~ (BT5.c. - (1 ¢ [O1gIBT;

and then rearranging

“[Blgyp * [B1; g = [B1; ¢ (DIgIBI7 e

and solving for [D]g
(0] ~ (Bl ¢ ([81;) - (B M8l ¢ (10)

Using equation (6) to obtain [B]“1 and substituting into equation (10)
the final expression for the difference matrix ([D]g 1s obtained:

(01g ~ (Bl ¢ ([8) ¢ [~s<IgTg [81f ¢ - [Qlexp[\‘S\‘]glp [Qllxp}[B]F-E~

(11)

The same approach can be used for deriving the difference in the [A]
matrix. 1In this case:

(0], = [A]F.E.{[QJF.E.[Q];.E. - [Q]exp[Q]:xp}[A]F.E. (12)

The format of equations (11) and (12) are well suited for computing the
differences between the F.E. model and experimental data. Since these equa-
tions do not require any inversion of the modal matrices, the fact that all the
modes are not measured does not cause a problem. As discussed previously, the
modal matrix will not be completely known since fewer modes than degrees of
freedom are typically measured. An inversion of the frequency matrices are
required, but this does not present any problems since these matrices are
diagonal and their inverses are just the reciprocal of the diagonal terms.



Once [D]p and ([D]g are computed, the disagreement between the F.E.
and experimental descriptions of the structure can be found. Since there is a
direct relationship between the elements of the mass, damping, and stiffness
matrices and the elements of the [A] -and [B] matrices, the discrepancies in
mass, damping, and stiffness at any degree of freedom in the structure can be
found by merely picking out values from the ([D]Jp and ([D]g matrices. For
example, the disagreement in damping at the first degree of freedom would be
obtained from the ([D]n matrix at location ([D(n + 1, n + 1)]p, the mass dis-
agreement at [D(1, n + 1)]p, and the stiffness disagreement at [D(n + 1,
n + 1)]g. Note that the mass discrepancy can be found from either one of
two partitions in the [D]pn matrix or the [D]g matrix.

It was mentioned previously that in preactive experimental mode shape data
will normally not be available at all of the degrees of freedom used in the
F.E. model. When this situation exists, either the mode shape data must be
interpolarted (ref. 7) or the F.E. model reduced (ref. 16). In this paper it
will be assumed that one of these procedures has already been applied, thus
rendering the number of degrees of freedom equal to the number of experimental
measurement points where mode shape data is taken. It will also be assumed
that the experimental mode shapes are measured at the F.E. node locations.

Sample Problem One

Sample problem one consists of a planar cantilever beam. Two finite ele-
ment models were used in the analysis. This first model, referred to as the
analytical model, is used for computing the frequencies and mode shapes that
would normally be generated by an analytical analysis. The second model,
referred to as the "experimental" model, is used for simulating frequencies and
mode shapes that would be obtained by performing an actual experimental modal
analysis on a real beam. It is advantageous to use simulated data in place of
real data because the property matrices corresponding to the simulated data are
known, whereas the property matrices for any real structure are unknown. Since
the mass, damping, and stiffness matrix are known for the simulated experi-
mental data, the exact error matrices can be compared to the error matrices
generated by the equations derived in this study and the procedures can be
evaluated.

The analytical model is made up of nine, equally spaced node points and
eight connecting beam elements (fig. 1). A1l of the degrees of freedom are
constrained at node 1 and every degree of freedom except for the z-displacement
and y-rotation are constrained at the other node points. This leaves sixteen
active degrees of freedom for the structure. The section properties for the
beam elements are 2.6x10-3 for the moment of inertia, 10x10® for Young's
modulus, and 2.6x10~4 for the mass density per unit length.

The complex eigenvalue extraction solution sequence (Solution 28) of the
MSC/NASTRAN finite element program was used to compute the free vibration
frequencies and mode shapes for the beam. The Hess method (ref. 14) was
selected for extracting the modes since this method is more efficient when all
of the modes are desired. A1l of the modes were initially required for a
complete verification of the difference matrix routines.



The simulated experimental model was made to differ from the F.E. model by
adding a concentrated mass, damper, and spring to the beam. The location of
these elements is shown in figure 1. The values used for the elements are
1isted in table I as aM, AC, and AK. The mass, damping, and stiffness from
the F.E. model at the same nodes and directions are also listed to give an
indication of the relative magnitude of the differences. NASTRAN was again
used for computing the complex frequencies and mode shapes of the experimental
model.

Table II shows the comparison between the computed eigenvalues for the
analytical model and the simulated experimental model for each of the four
cases. All 16 of the modes were computed by NASTRAN. From table II, a com-
parison can be made between the complex valued eigenvalues. As expected, the
real part of the analytical eigenvalues are zero since there is no damping
present in the F.E. model, and the real part of the experimental eigenvalues
are non-zero since damping is present. 1In general, the addition of the tip
mass and the damper tends to lower the frequencies while the spring raises the
frequencies. The modal damping is totally dependent on the concentrated
damper.

The imaginary (frequency) part of the F.E. and experimental eigenvalues
are plotted in figure 3 for case 1. If the eigenvalues matched exactly they
would plot directly on the straight, 45° l1ine. There is a small deviation from
the straight 1ine, but not enough to indicate any significant differences
between the analytical and experimental models. Even if there were large
deviations between the analytical and experimental eigenvalues, there would
not be any way to use the results in figure 3 or table II to relate the devia-
tions to differences in physical mass, damping, or stiffness coefficients.

The real components of the first four mode shapes for the analytical model
(case 1) are plotted in figure 4. Only the translational degrees of freedom
are plotted. Even though the first frequency has the largest deviation
(figure 3) the first mode shape matches up very closely. The opposite occurs
for the second and third modes where the mode shapes deviate from each other
while the frequencies are very similar. As with the frequency plots, there is
no way to relate the deviation from perfect correlation in mode shape plots to
physical differences in mass, damping, or stiffness.

The Difference Matrix program was used to relate the differences between
the experimental and analytical models in terms of differences in mass, damp-
ing, and stiffness. The computer program was verified using all four cases
and various numbers of modes as input data. When all of the modes are included
as input the only approximation in the procedure is from the Taylor series
truncation. As previously discussed, in a real situation all the modes would
not be available from tests. Plots of mass, damping, and stiffness difference
matrices for case 1, using all 16 modes are shown in figure 4. The differences
are plotted on a grid where each intersection of a grid line corresponds to a
location in the matrix being plotted. For example, the mass difference shown
in the figure corresponds to the (15, 15) location in the structure's mass
matrix. In the figure the physical differences between the analytical and
experimental models are clearly defined. The mass difference matrix indicates
a mass difference at degree of freedom 15 which corresponds to the transla-
tional direction at the beam tip where the concentrated mass was added. The
damping and stiffness errors at degree of freedom seven and one respectively,
correspond to the locations of the concentrated damper and spring. There
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were no other differences between the analytical and experimental models which
is indicated by the flat areas in all three of the difference matrix plots.
Even though the location of the difference is exact, there is some amount of
disagreement between the actual magnitudes of the mass and stiffness, and the
magnitudes computed by the error matrix program. The program computed a mass
difference of 0.00011 while the actual concentrated mass was 0.0002. The
spring magnitude was computed to be 3294, while the real spring was 5000. The
magnitudes of the actual damper and the magnitude computed by the program were
both 1.0. It 1s not surprising that the computed mass differences was so far
off since the mass added to the experimental model was almost as great as the
original mass in the analytical model. Since all of the modes were included

in these calculations, the differences between the real values and the computed
ones can be attributed to the higher order terms that are missing in the Taylor
expansion. A procedure for improving the accuracy of the magnitudes will be
discussed later in this section.

When less than all 16 modes are included in the calculations the results
deteriorate. In figure 5 results are shown for the case where only one mode
was included as input into the Difference Matrix program. The mass and damping
difference plots do not show anything but some distributed noise.  The stiff-
ness difference plot indicates a difference at the spring location, but the
difference is of the wrong magnitude. (After examining the data, the sign of
the difference was also found to be incorrect) Figure 6 shows difference plots
where 10 modes are included as input. 1In this case the noise has virtually
disappeared and the correct locations of the differences have shown up.

A compilation of results for all four test cases are shown in figures 7
to 9. In these figures the ratio of the computed to actual difference at the
mass, damper, and spring location are plotted as a function of the number of
modes used as input data into the Difference program. A1l four cases were run
using 16, 8, 5, 3, 2, and 1 modes as input into the Difference program. From
the mass difference plot (fig. 7), it is seen that when the mass difference is
large (case 1), the computed difference is only about half of the correct dif-
ference. When the mass difference was reduced (cases 2, 3 and 4) the computed
difference was much closer to the correct difference. If the mass difference
is as great or greater than the analytical mass, the location of the difference
will be correct but the magnitude will not. From cases 2, to 4 it is also seen
that the computed mass difference does not change with the level of the damping
or stiffness differences.

Figure 8 shows the computed damping differences for the four cases. This
plot shows that the differences are independent of the level of damping as well
as independent of the magnitude of the mass and stiffness difference. Even
when large amounts of damping are present in the structure the damping calcula-
tions are accurate (the damping level in case 2 was close to critical). It is
encouraging to note that the accuracy is independent of the damping difference
level, because in analytical modeling it is the damping values that are the
most difficult to predict. Thus for a typical structure the difference proce-
dure would work fairly well, since the mass and stiffness differences would
ordinarily be small, and the magnitude of the damping difference would not
matter.



Figure 9 shows the effects of the various difference ratios on the com-
puted stiffness differences. Similar to the mass calculations, the accuracy
of the difference is dependent upon its relative magnitude. When the stiff-
ness difference is relatively large, the computed difference is inaccurate;
when the difference is small, the computed value is much closer to the actual
value. Again, the computed difference is independent of the level of the dif-
ferences in the other parameters.

From any of the figures presented thus far it is apparent that when only
a few modes are included the results are meaningless. When less than eight
modes are included the results are poor, and past eight modes the results are
good and do not improve by including more than the first eight modes. To
determine how the number of degrees of freedom used in the model effects the
number of modes required for good results, a new model of the cantilever beam
was constructed using 32 degree of freedom instead of 16.

The difference plots for this model were computed using the differences
from case 3. The results are shown in figure 10. The difference matrices
using 16 modes as input are shown in figure 11. From these results 1t is seen
that while only 8 modes produced good results in the 16 degree of freedom
model, at least 16 modes are needed in the 32 degree of freedom model.

Previously, it has been shown that the accuracy of the computed differ-
ences are dependent on the magnitude of the differences and the number of modes
included in the calculations. 1In an attempt to improve the accuracy an itera-
tive procedure was implemented (fig. 12). 1In this procedure the differences
computed by the Difference program are accumulated from all previous iterations
and are then added to the mass, damping, and stiffness matrices for the analyt-
tcal model. The updated analytical model is then used to compute a new set of
differences for the next iteration.

The iterative procedure was tested using the differences from test case 3
and the sixteen degree of freedom model. The results for three iterations are
shown in figure 13. Without iterating, it was shown that when all sixteen
modes are included in the calculations the results are very good. After iter-
ating only twice, the results are exact. The same is also true when only eight
modes are used. In general, when less than eight modes are used, the accuracy
of the computed differences are not improved significantly by iterating. When
only a few modes are included, the accuracy is not improved at all. The
advantage of using the iteration procedure is that when an adequate number of .
modes are used the results will converge to the exact values regardless of the
magnitude of the differences. The limitation of the iterative process is that:
it does not reduce the number of modes required for good results.

SAMPLE PROBLEM TWO

The second sample problem consists of a planar, simply supported beam.
The finite element model of this problem is made up of nine node points and
eight connecting beam elements (fig. 14). A1l of the degrees of freedom are
constrained, except for the y-rotations at nodes one to nine, and the
Z-translations at nodes two through eight. There are sixteen degrees of

10



freedom for this problem. The same section properties that were used of for
the first sample problem are also used here. The difference matrix plots for
this problem were generated using the iteration scheme shown in figure 16.

The "experimental" model was made to differ from the analytical model by
adding three concentrated springs and seven dampers to the beam model. The
locations and properties for these elements are shown in the figure. This
sample problem differs from the first one in that the differences in the first
problem were limited to a single mass, damper, and spring, while in this
problem there are several springs and dampers at every node. Also, the level
of damping is much less in this problem than in the previous one.

A comparison of the eigenvalues for the second sample probiem is shown in
table III. From this comparison it is seen that the major differences between
the analytical and experimental models are in the first frequency and the modal
damping in the first seven modes. Beyond the seventh mode there are not any
differences between the analytical and experimental eigenvalues. The first
frequency is higher for the experimental model because of the additional stiff-
ness from the three springs. The modal damping is different because the exper-
imental model has the seven translational dampers while the analytical model
does not have any damping. It is understandable that there is no modal damping
in the higher modes for the experimental model since the higher modes are
dominated by rotations and the dampers only act in the translation direction.

The computed damping and stiffness difference matrices using the first
mode only as input into the Difference program are shown in figure 15. From
these plots it is impossible to identify any of the differences that actually
exist between the analytical and experimental models. When only one mode was
used for the first sample problem calculations the differences could not be
identified either. When the number of modes was increased to four (fig. 16)
the correct differences were reasonably apparent in the difference plots. For
the stiffness matrix plot, differences appear at degree of freedom 4, 6, and 8
which corresponds to the locations of the three springs that were added to the
experimental model. 1In addition to the differences at these degrees of free-
dom, differences also appear at some of the other degrees of freedom. These
differences do not actually exist in the models and would not appear if more
modes were used as input. Many of these "extra" differences can be eliminated
by examining the possible coupiing that may.exist in the analytical mode. For
example, node two and six are not connected to each other so degrees of freedom
2 (z-translation, node two) and degree of freedom 10 (z-translation, node six).
are uncouplied which aliows for location (2,10) and (10,2) in the difference
matrix to be set to zero. The same logic can be used to eliminate some of the
other unobtainable differences appearing in the plots.

In fiqure 17, the difference plots using four modes are recreated, except
that the differences at uncoupled degrees of freedom are set to zero. In these
plots the correct differences are even more evident although some differences
continue to appear where there are not any true differences. There does not
appear to be any way to eliminate these "extra" differences except by using
‘more modes in the calculations. When the number of modes is increased to six
(fig. 18), both the computed stiffness and damping difference matrices are very
accurate. In addition, no significant differences appear where they do not
actually exist in the models. 1In figure 19, plots are shown where all sixteen
modes are included in the computations, and as expected, the results are
almost exact.
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CONCLUSION

A general procedure for identifying and quantifying the differences
between F.E. models and experimental data has been developed and demonstrated
with simulated experimental data. The differences, which can be computed for
linear, viscously damped structures, are presented in terms of mass, damping,
and stiffness coefficients. Since the differences are computed in terms of
mass, damping, and stiffness coefficients, possible modeling problems can be
identified in the F.E. or analytical model.

From data generated for a damped cantilever beam and a damped simply sup-
ported beam, it was determined that the accuracy of the computed differences
increases as the number of experimentally measured modes included in the cal-
culations 1s increased. When the number of experimental modes is at least
equal to the number of translational degrees of freedom both the location and
magnitude of the differences can be computed very accurately. When the number
of modes is less than this amount the location of the differences may be
determined even though their magnitudes will be under estimated. When too few
modes are available neither the location or the magnitudes of the differences
can be ijdentified.

In practice, it will be required to measure the experimental frequencies
and mode shapes very accurately before the differences can be attributed to
shortcomings in the analytical model. 1If the experimental data is not precise,
the computed differences can still provide considerable insight into the pos-
sible locations of deficiences. The difference is that the deficiencies may be
in the experiment and some judgement will be required to decide whether to
modify the experiment or the analytical model. '
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TABLE I. - TEST CASES FO
SAMPLE PROBLEM ONE

Case [ aM/Ma | ac/ch | ak/ke
] 21074 1.0 | 5000
2.6x10-* 0 | 78000
) sx1073 1.8 | 2500
2.6x107* 0 | 78000
5x107° 1.8 2500
3 | a0t 0 | 78000
\ sx1070 1.0 | 25000
2.6x10~ o | 78000
dpatio of mass A& to F.E.

mass at node 9.

bratio of damping & to F.E.

damping at node 5.
CRatio of stiffness a to
F.E. stiffness at node 2.

TABLE II. - COMPARISON OF ANALYTICAL AND *EXPERIMENTAL" EIGENVALUES FOR SAMPLE PROBLEM ONE

Mode Analytical Case 1 Case 2 Case 3 Case 4
eigenvalue
Experimental Experimental Experimental Experimental
eigenvalue eigenvalue eigenvalue eigenvalue
1 0+ 131 -44.3 + 1301 -123 + 114 -53 + 1334 -45 + 1501
2 0 + 8401 -247 + 7611 -438 + 5811 -245 + 7824 -258 + 8741
3 0+2 321 =179 + 2 2114 =12 + 2 314 =74 + 2 171 -31 +2 5254
4 0+ 4 4424 -203.9 + 4 3814 -378 + 4 3591 -21.4 + 4 4254 -183 + 4 7944
5 0+719N1 -28.2 + 7 1784 -30 + 7 2034 =17 + 7 2074 -59 + 7 6921
6 0+ 10 42714 -195 + 10 4284 -360 + 10 3871 -202 + 10 4304 -158 + 10 9724
7 0+ 13 751 -247 + 13 7941 -35 + 13 7761 -19.6 + 13 7804 -55 + 14 2354
8 0+ 16 3714 -197 + 16 3691 -359 + 16 3041 -199 + 16 359% -168 + 16 5721
9 0+ 63 0174 0 + 62 92214 0 + 62 9824 0 + 62 9824 0 + 62 9821
10 0+ 75 7121 0+75 TN 0+ 75 7211 0+ 75 72114 0+ 75 7211
n 0 + 84 0331 -3 + 83 9449 -5 + 840194 -3 + B4 0191 -3 + 84 019%
12 0 + 94 0261 0+ 939744 0 + 94 007 0 + 94 0071 0 + 94 0071
13 0 + 103 9284 -2 + 103 8754 -4 + 103 9091 -2 + 103 9094 -2 + 103 90914
14 0+ 112 5999 0+ 112 5599 0 + 112 5844 0 + 112 5841 0+ 112 5844
15 0+ 119 2784 0 + 119 2569 -1+ 119 2704 0 + 119 2704 0+ 119 270%
16 0+ 123 4114 0 + 123 4661 0 + 123 4704 0 + 123 4691 0 + 123 470%
TABLE III. - COMPARISON OF
ANALYTICAL AND
"EXPERIMENTAL"
EIGENVALUES
FOR SAMPLE
PROBLEM
TWO
Mode Analytical Experimental
eigenvalue eigenvalue
1 0 + 3861 -48 + 4881
2 0+ 1 541% -48 + 1 5601
3 0 + 3 4551 -48 + 3 4669
4 0+ 6 0931 -48 + 6 0951
5 0+ 9 3494 -47 + 9 3524
6 0 +12 N7 ~47 + 12 9194
1 0 + 16 0314 -48 + 16 0334
8 0 + 62 6681 0 + 62 6681
9 0 + 62 9301 0 + 62 9301
10 0+ 76 6171 0+ 76 6171
1 0 + 85 5774 0 + 85 5774
12 0 + 95 5624 0 + 95 5621
13 0 + 105 1199 0 + 105 1194
14 0+« 113 3474 0 + 113 3474
15 0 + 119 6331 0 + 119 6331
16 0 + 123 5631 0 + 123 5631




-lExperimental eigenvalue, Jm

(a) Analytical model.

(b) “Experimental "' model.

Figure 1, - Sample problem one.
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Figure 2. - Comparison of frequency data for sample problem one, case 1.
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Figure 3. - Comparison of mode shapes for sample problem one, case 1.
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Figure 4, - Computed differences for sample problem one, case 1, using 16 modes.
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- Figure 5. - Computed differences for sample problem one, case 1, using 1 mode.
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Figure 6, - Computed differences for sample problem one, case 1, using 10 modes.

{b} Stiffness difference matrix.



Computed differencel/exact difference

Computed differencel/exact difference
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Figure 7. - Mass difference at concentrated mass location (sample problem one), (*See
table I for case definition,)
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Figure 8. - Damping difference at concentrated damper location (sample problem one),
("See table I for case definition, )



Computed difference/exact difference
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Figure 9. - Stiffness difference at concentrated spring location (sample problem one).
("See table I for case definition, )
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(c) Stiffness difference.
Figure 10, - Computed differences for 32 D,0,F. model.
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Figure 11, - Computed differences for 32 D.0.F. model, using 16 modes, -
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Figure 12, - Iteration scheme,
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Figure 13, - Improvement in computed differences with iterations (sample problem one,
case 3).
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Figure 15. - Computed differences for sample problem two, using 1 mode,
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(b) Damping difference matrix.
Figure 16. - Computed differences for sample problem two, using 4 modes.

(a) Stiffness difference matrix.
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Figure 17. - Computed differences for sample problem two, using 4 modes and coupling constraints.
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Figure 18. - Computed differences for sample problem two, using 6 modes.



XS

A WAVAVAVAYAXA

e P R T T T X X M‘M‘0’

e 1 e e, o . v v A
A L W 2 o A L e S e S o

SO

X

X
U
&v@?ﬁe

&S /00&.190‘
KRR
0‘"0 ) o%%:

_ |

500 —

_ _
8 8 8 8
- —

o0 o~

a3uaJayip SV

(b) Damping difference matrix.
Figure 19. - Computed differences for sample problem two, using 16 modes,

{a} Stiffness difference matrix.



1. Report No. 2. Government Accession No. 3. Reciplent’s Catalog No.

NASA TM-87336

4, Title and Subtitle 5. Report Date
Identification of Differences Between Finite Element June 1986
Analysis and Experimental Vibration Data 6. Performing Organization Code
505-33-78B
7. Author(s) 8. Performing Organization Report No.

Charles Lawrence E-3082

10. Work Unit No.

9. Performing Organization Name and Address

National Aeronautics and Space Administration 11- Contract or Grant No.

Lewis Research Center

Cleveland ’ Ohio 44135 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration 14, Sponsoring Agency Code

Washington, D.C. 20546

15. Supplementary Notes

16. Abstract

An important problem that has emerged from combined analytical/experimental
investigations is the task of identifying and quantifying the differences between
results predicted by F.E. analysis and results obtained from experiment. The
objective of this study is to extend and evaluate the procedure developed by
Sidhu for correlation of linear F.E. and modal test data to include structures
with viscous damping. The desirability of developing this procedure is that the
differences are identified in terms of physical mass, damping, and stiffness
parameters instead of in terms of frequencies and modes shapes. Since the dif-
ferences are computed in terms of physical parameters, locations of modeling
problems can be directly identified in the F.E. model. From simulated data it
was determined that the accuracy of the computed differences increases as the
number of experimentally measured modes included in the calculations is increased.
When the number of experimental modes i1s at least equal to the number of trans-
lational degrees of freedom in the F.E. model both the location and magnitude of
the differences can be computed very accurately. When the number of modes is
less than this amount the location of the differences may be determined even
though their magnitudes will be under estimated.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

-System identification; Structural Unclassified - unlimited
dynamics; Experimental verification STAR Category 39

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price*

Unclassified Unclassified

*For sale by the Nationa!l Technical Information Service, Springfield, Virginia 22161



End of Document



