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RE-EXAMINATION OF CUMULATIVE FATIGUE DAMAGE ANALYSIS
' - AN ENGINEERING PERSPECTIVE

S.S. Manson
Case Western Reserve University
Cleveland, Ohio 44106
and
G.R. Halford
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
ABSTRACT
A method which has evo]Qed in our laboratories for the past 20 yr is
re-examined with the 1nteﬁt of 1mprov1n§ its accuracy and s1mp11c1fy of
application to eng1neerin§Aprob1ems. Several modifications aré introduced
both to the analytical formu]gtion of the Damage Curve Approach, and to the
procedure for modifying this approach to achieve a Doﬁble L1ne§r Damage Rule
formulation which immensely simplifies the calculation. Improvements are also
introduced in the treatment of mean stress for determining fatigue 1ife of the
individual eveqts that enter into a complex loading history. While the
procedure is coﬁplete]y consistent with the results of numerous two-level
tests that have been conducted on many materials, it s sti11 necessary to
verify applicability to complex 1oéd1ng histories. Caution 1s expressed that
certain phenomena can also influence the applicabiliity - for example, unusual
deformation and fracture modes inherent in complex loading - especially if.
stresses are multiaxial. Residual stresses at crack tips, and metallurgical
factors are also important in creating departures from the cumulative damage
theories; examples of departures are provided.
INTRODUCTION

Treatment of accumulated fatigue damage has received a large amount of

attention in recent years. The subject has been popular since Palmgren t]]



first suggested what is now known as a "Linear Damage Rule." The same rule
was later 1ndependent1y,propo§ed by Langer [2] and Miner [3]. However, it was
soon recognized that while the method has merit for simple treatment of
complex loading history, its predictions are often unconservative. Many
alternative methods of ané]ys1s to predict behavior more accurately followed

and 1t became necessary periodically to prepare review papers placing all the

new methods into perspective, among them the ones by Newmdhk;t4];ﬁaecheléufs],;a;"

Manson [6], 0'Neill [7] and Schive [8]. Schive's study Tists nearly 200 =% -

references pertinent to the treatment of the pfob]em and to'the'expérimeﬁféﬁ '
programs conducted to evaluate the concepts. | o |

No comprehensive reportvhas appeafed recently to review the considerable
effort made in the past 12 yr sincechh1ve's pub]1cat10n. Such a report is
long overdue, and it was our original intent to prepare such a review.
Because of space 1imitations, we found, however, that the review had to be
limited. Thus, in the discussion that follows we shall restrict ourselves to
elucidation and extension of those aspects of the subject with which we have
had personal association. Although we wi]] have occasion to refer to the work
of others, these references will be brief. The more comprehensive review
remains a subject for the future. |

CUMULATIVE FATIGUE FOR MECHANI@AL LOADING

Most theories of cumulative damage are based on observation of behavior
at a second loading once the material has undergone loading, short of fé11ure,
at a previous 1eve1. This behav1or.1s then extended by analogy to treatment
of a complete h1§tory 1nvp]v1ng numerous loading levels. In our work we have
-used three basic concepts for the formulation of procedures: the effect of
.prior loading on the convergence and rotation of the fatigue curve in
subsequent loading, the Damage Chrve Approach (DCA), and the Double Linear
Damage Rule (DLDR) concept. A critique of these methods will now be d1s;ussed.
2



Fatigue Curve Convergence and Rotation

Basis. - Oﬁr entry into the cumulative fatigue damage field arose because
of observations of a geometric relation between fatigue curves fepresent1ng
d1fferent degrees bf damage e1thér by prior fatigue or by damaging forms of
machining. Bennett [9] fn-1946 published the results of fatigue tests on
specimens stressed at two succeséivevlevels, in Fig. 1. Line PA 1is the
original S-N curve. Specimens prestressed at +54 ksi for 33 percent of mean
1ife, and then tested at other stress levels, yielded the new S-N curve
PB. When 90 percent of the lite was app11ed at +54 ksi, the remaining S-N
curve was - PC. It appeared to ds that all three S-N curves projécted to a
single point P at +60 kst at 20 000 cycles to failure, and that the concept
of convergence of S-N curves contained the potential for the formulation of
a cumulative fatigue damage procedure. |

Another Set of curves that suggested to us the convergence concept for
cumu]atjve fatique is shown in Fig. 2 [10]. Here fatigue for a medium
strength steel are shown for different types of surface finish. As\oné
~ proceeds from a ground finish through progressively rougher surface finishes,
-the S-N curves simply rotate about a point: P; If we regard each form of
machining as the imposition of a different level of surface damage similar to
that which occurs in fatique, this figure also suggests that each level of
fatigue damage reflects 1ts physical effect by causing a rotation of the S-N
curve for such materials in which the S-N cufve can be linearized.

On the basis of these observatfons, we proposed an approach to treatment
of cumulative fatique damage based on S-N curve rotation [11]. A
‘cons1dérab1e test prégram was undertaken to check the validity of the
approach, the major results being shown in Fig. 3. Here, the first loading
was at +100 ksi, for which the median 1ife was determined to be 22 000 cycles.
A series of specimens were therefore subjected to various fractions of this
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1ife, and then the S-N curve of the prestressed material was determined for
each condition of prestress. These S-N curves indeed appeared to be
derivable by rotation of the basic S-N curve of the material. Since one
point on the “remaining" S-N curve is known by subtraction of the prestress
cycles from the 1ife at the prestress level, the predicted S-N curve can be
determined by passing a straight line through this point from the point of
.rotation, P. While this point is unknown at the outset, it could be
determined as a material constant, as in Fig. 4, or it could be estimated by
using the pofht on the S-N curve at a stress near the ultimate tensile
strength. Once the rotation point is known the effect of any loading sequence
can be determined by successjve application of the concept for treating two
1oad1ngs.-_Each Toading uses as its S-N curve the rotated value already
produced by the prior loadings, as illustrated in Fig. 4.

In Refs. [11] and [12], we assumed that each loading progressively
reduced the endurance 1imit. However, for brevity, we shall not review this
issue. In many cases the existence of an endurance 1imit, and its progressive
changes, is not of importance; however, even if endurance limits need to be
considered, the rotation concept may not be the best vehicle for doing so. As
we shall see later, we feel that the convergence framework has other
Timitations as well. Thus we prefer to devote more research to the other
methods. Interested readers may, however, find Refs. [10] and [11] useful if °
there 1s need for information on changes of endurance T1imit.

In a more recent report Hash1n.and Rotem [13] have presented an
interesting discussion of_the convergence concept as a special case of a
‘framework they have devised for cumulative damage ané]ys1s. They avoid the
issue of determining-the convergence point as a material constant, and take
th%s point at a quarter of a cycle. They also speculate on alternative
formulations, for example, when the convergence point is at the endurancg
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1imit, Fig. 5. Such an approach would'not, of course, properly reprgsent the
usually observed loading order effect (1.e. high stress followed by low stress
producing a cycle ratio summation less than unity, while a low-high sequence
produces a sum greater than unity), but it 1s an interesting possibility for
academic study. Hashin aﬁd Rotem also consider the case when stress versus |
cyclic 1ife is 1inear on log-log coordinates, rather than semilogarithmic
coordinates of Figs. 3 and 4. Of course, in this case the constant damage
curves are presumed straight on the log-log coordinate system. Hashin and
Rotem do not really require linearity in any part1cu1ar'coord1nate system,
V’qn1y that the constant damage curves emanat1ng from the focal point be a
sysfematic set, never again iﬁtersécting anywhere. However, if they are not
1inear, then some other c}1ter10n mﬁst be introduced to establish the nature
of the curvature.

Critique. - Although our initial efforts at 1mp1ement1ng'the converdence
vconcept were quite vigorous, several limitations of the concept soon led us to
seek a]ternatefapproaches. One was the'obv1ous contradiction that would occur
if the prior cycling produced a "remaining 1ife" less than that at the
convergence point P. For example, in Fig. 6, if a prior loading af thé
.stress level of point A were a§p11ed to a degrge that the remaining life
Qere less than 1000 cycles, such as B, then fhe damage line after the initial
cycling would have a positive slope, BP, which means that higher stress would
produce longer life - a clear adabsurdum.

Secondly, as we conducted more tests on other materials it became clear
that the convergence approach does not always properly represent the damaging
Aeffect of prior loading on subsequent loading at lower stress levels. We can
“Allustrate thfs effect by a simple example in Fig. 7. Suppose, for example,
we apply the initial loading at the stress level of point A. If we apply
x percent of the 1ife, at this level, the remaining 1ife, (1 - x) percent at
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this stress level is shown at point A'. If, howevér, later testing is at
stress level B, fatlure would be expected at B', the linear projection of
PA' to the stress level of B. Exper1énce has indicated such a test would
produce a lower life, at B", and in some cases a higher 1ife, as at B"'.

To 11lustrate the somewhat general expectation we resort here to the use
of the Double Linear Damage Rule which we shall discuss later in the report.
It is appropriate to use this rule for 31lustration because it ref]e¢t§ more
accurately the experience we have had with many materials. Figure 8 shows the
results of detailed computations. Sg1ected 1ife fractions are assﬁmed to be
applied at stress level ’A,'and the remaining S-N cufves are calculated by
the DLDR approach to be A'B', A"B", etc. Two interesting resulté are
evident: The curves A'B', A"B", etc. are not straight 11nes, as required by
the 1inear-convergence concept; rather they are curved. Also, while A'B'
almost converges to P, the curves rebresent1ng more highly fatigued material
do not converge. After some fraction of preloading, they start to displace -
somewhat parallel to AB. Hence, the overall effect 1s one of rotation plus
translation.

Incidentally, the rotation plus translation overcomes the difficulty
envisioned earlier since the point B can be displaced to any desired life
level by prior loading without requiring the self-contradictory remaining life
curve such as BP 1in Fig. 6. This concept of rotation plus transiation was
first discussed by us in Ref. [14] when we introduced the DLDR concept. wé
have refined the approach in later publications, as we shall discuss, but the
basic feature of rotation plus translation is inherent in all the variants we
have studied. | |

On the basis of the above 1imitations of the rotation concept of

convergence, we have not pursued this.concept further. The alternatives not



only give more accurate behavior representation, but are easier to implement
as well.
Damage Curves

Basis for single-term damage curves. - The use of damage curves to

reflect the interaction of Toadings at different stress or strain levels has
been used since the goncepts of cumulative fatique damages have first been
con§1dered. In 1948 Richart and Newmark [15] introduced the idea, but did not
. provide definitive formulae for representing the damage curves in such a way
as. to predict quantitatively the h1gh-ldw load sequences. Maﬁy attempts have
been made s1nce'then to provide suitable analytical relations. 1In 1981 we
made our own attempt [16] based on a large amount of experjmenta] data for
two-level loading conducféd in our iaboratory. The form we»chose,
. B

D - ‘[0—.1—4|a0+(0.18_-a0) (ﬁ) ’ (M

was based on analogy to early Efack growth. f1gure 9 shows the concept as we

“applied it. The curves represent'the damage accumulation for each of the

decade 1ife levels from 102 to 106. As én example, if n cyc]eé are

applied at the 103 cycles to failure level the damage accumuiated will be
represented by point A. Changing to a secdnd load level, which produces a
1ife of 105 cycles to failure, moves us to point B at the same damage as

A, and cycling can continue for n2 cycles as damage accumulates from B

to failure at C. Thus, if the damage curve formulae are known, it is easy to
calculate n2/N2 once the n]/N] is specified if N] and N2 are known.
'The subscripts refer to sequence of the applied loadings, 1 is the first and 2
is the éecond level. A more convenient type of plot is shown in Fig. 10 where
'the.11fe scale 1s normalized to failure 1ife. From this figure it 1s clear

that if the first 1oéd1ng 1s at the higher stress (lower 1ife) and the second

is ‘at the lower stress (higher 1ife) the sum of the cycle ratios will be.
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smaller than unity. Since this is the most commonly observed behavior, the
qualitative nature of the damage curves is correct. Before discussing the
precise quantitative 1mp11cat1ohs 1t is useful to c]ér1fy a few points.

1. Flexibility of constants. - If we express the relation that the damage

at_ A and B are equal in Fig. 10, 1.e;, DA = DE’ then 1t is clear that

the a,s 0.18 and 2/3 terms in Eq. (1) cancel, and that

[1 03]

' 5
n n, 7110 ;

2 | (2)
0° [10%] o

More generally for any combination of life levels N] and N2 we obtain

0.4

—

the Damage Curve Approach .(DCA).

n n : | | |
2 1
-1 - (3)

n2/N2 and n]/N]

énd is independent of any constants that might be introduced in

Thus the relation between depends only on the ratio

Nl/NZ’
place of the a, 0.18, and 2/3. Thus, suppose we replace a

the 0.18 by 1.0 and the 2/3 by 0.02512 (equal to [1/10%1°0-%

o by zero,
), the damage

curve relation for the 104 1ife becomes 1inear and the damage curve for any
other value of N becomes simplified. In fact we can choose to linearize the

‘ 0.4
damage curve for any Nref by rep]acing the 2/3 by [1/Nref] . In

this case

Dy, =3— (4)

and -



(5)

Figure 11(a) shows the damage curves for 1ife levels from 10 to 107 when the
damage curve for 104 is taken as the reference straight 1ine. More

generaily, these same curves are obtained when any 1ife level N2 is taken

as the reference 1ife. The damage curves for other 1ives are labeled as a
function of N/Nref' as seen in Figs. 11(a) and (b) which produce the same .
curves for equal values of N/Nref whether the reference 1life 1; taken as
103 or 104 cycles. Only one set of damage curves is thus needed as long

as the designation is according to N/Nref' Note that the reference life
level can be used as the'f1r$t, second, or any other number in a sequence of
cumulative loadings.

2. Significance of the damage curves in relation to two-level loadings. -

Figure 12(a) shows the damage curves for two-level tests, using the first

(lower) T1ife N, as the reference which is forced to be a straight line.

1
If we wanted to use these curves to obtain the nz/N2 versus n]/N] curves

~for such a test, the procedure would be to go from A to B to produce the

arbitrary n]/N], determine C at the same damage as B, and measure n2/N2
as damage proceeds from C to E. Thus n2/N2 is equal to length CD. If we
plot n2/N2 versus n]/N]. as in Fig. 12(b), the point C' results. For other

choices of cycle ratto n]/N], n2/N2 falls at other points along the curve
A‘C'E'. Examination of Figs. 12(a) and (b) reveals that the curves ACE and
A'C'e* are similar. One can be obtained from the other by a 90° rotation
"about the central point X.' We can then generalize that if the curves of

vF1gs. 11(a) and (b) represent the damage 1ine relationships, the expected n]/N]




1
family of curves is shown in Fig. 12(c).

versus n /N2 curves can be obtained by a clockwise 90° rotation. Such a

Basis for a new double-term damage curve system. - Although the

single-term damage curve system was chosen by us to agree with many
experimental results generéted in two level testﬁ, there is one feature of the
system that has been of some concern to us from the very beginning of its
~use. This feature can be seen in Fig. 12(c). The initial drop of n2/N2

for a small value of n,/N, 1s exstremely rapid. Since the choice of the

1"
damage curve relation was derived mostly for two-level tests which did hot
involve such low values of n]/N]' as to be within the troublesome. low
range, the cho1cé was not in conflict with our experiments. However, after we
recognized that the resu]tﬁng.feature of the damage curve analysis was
prbbably-unrea1ist1c, we decided to attempt to improve its characteristics.
Br1ef_atfempts to modify the terms in Eq. (1) indicated that 1t would be

difficult to improve the very low n /N] part of the curve while

]
retaining 1ts good features in the remainder of the range. We decided,
therefore, that a more appropriate way would be to add a term that would have
a large significance at low values of ny/N,, but only relatively small
effect for larger values. In our procedure to alter the Damage Curve equation
we were guided by our Double-Linear Damage Rule analysis [16] which will be
discussed later.

To distinguish the new double-term damage curve from the original
single-term expression, we refer to it as the Double-Damage Curve Approaéh
(DDCA). Details of the derivation are given in Appendix A and'on1y fhe final

results are presented here:

1/v

" n 1Y(9,-1)
R [

10

(6)

where




N [+ 3
0.35 [ ref]‘ 8
N . N .
q, = q, = [ ] ; a=0.25 8=0.4, y=25

N e
ref
1 - 0.65 [—7r]

‘Note that q] is the slope of‘the first straight 1ine segment of the D

versus n/N curve in the-DLDR formulation, discussed in the next section.

fhe q2 term is thg exponent of the‘ D wversus n/N curve in the DCA

~ formulation, Eq. (5), and the constant Y‘ is introduced to represent two

intersecting ;traight 1ines by a curve having a single methematical formula;
Direct comparison of the newly formulated DDCA, Eq. (6), with the DLOR

and the original DCA is given in Fig. 13 for values of Nref/N of'10-],

1072

, and 10-3. As expécfgd,4the DDCA equation conforms closely to the
DLDR in the early portion of the Phasé I regime but blends directly into the
DCA curves which are also close to the DLDR in Phase iI.
Double L1near.Damage Rules

Background. - One'concept that developed early to explain devtations for
the Tinear damagelrules was that fatigue was at least a two-stage process -
crack initiation and crack growth; if the two processes developed at different
~rates for different 1ife levels, there is no reason for expectation of a
1inear damage accumulation rate for all 1ife levels. An immediate conjecture
was that while it is still possible for l1inear damage accumu]afioﬁ to develop
during the initiation stage, and linear accumulation during the propagation
stage, propag$t1on might develop at different fractions of l1ife for fhe
different 1ife levels. Therefore, a mixture of loadings involving several
1ife levels would not be amenable to analysis by a single linear damage

analysis. Thus two damage rules were needed; one for initiation and one for

propagation.

11



_ Probab]y‘the'f1rstvto‘QUggest analysis by two 11n;ér damaéé rules was
Langef [2]. Later, Grover [19] aga1n broposed the.concept 1ndependeht1yf
However, neither proposed quantifativé’reTat1ons for estab11sh1ng wheﬁ,one
v.procéss ended and the other began,;norihbw to'treat prob]ems fnvo1v1ng moré
than one loading Tevé]. Manson f14] made- an ear]y-attembt in- 1966 on the
basis of 11mﬁféd data, but the reTafion proposed at that tfme d1d notaprbve to .
be'suff1c1ent1y accurate to preditt results of later-experiments, sol |
add1t10na1‘attembts [20] were hadé.' Even these attehpts‘were not sufficiently
general, or of suff1§1ent definitive procedure to be of generé] engineering
use. However, in 1981 Manson and'Hé1ford [16]‘ref1ned;the formulation and
procedure to be directly appficab]e'tO'the analysis of eng1néer1ng problems.
Add1t10na1.va1uab1e contrfbutions both to formulation, and possibly to
defining the physical mechanisms 1nyo]ved, Qere made by Miller and his
co-workers'[zf and 22]. N

Definition of 1inear and double-11near'damage rules. - Rather than

progressing from damage curve to damage curve as loading increments
accumulate, considerable simplification can be introduced by u$1ng the wei]
known‘concepts of single and double-linear damage rules. Consider, for . |
example, Fig._14(a), which 1nvo]ve§ two loading lﬁfe levels. If the damage
curves are lineér, it is possible to normalize each by d1v1d1ng by the failure
1ife, reducing both damage lines to a single l1ine. Obviously, for this caseb
the proéedure discussed for summing damage increments 1ead§.to‘ z-n/Nf =

1, i.e., the linear damage rule (LDR). Adding loading levels to the history
does not change this conclusion as long as each damage level is straight.
Even if -the damage curves-cons1st of broken straight line segments, as shown
An Fig. 14(b), a linear damage rﬁ1e will apply if nofma1iz1ng relative to

- failure 1ife reduces all damage lines to.avsing1e set of broken lines.

Or, the damaée']1ne$‘aré curvilinear over their entire rangé, as shohn

12



by normalization to a single curve. Nor does it matter if more loading levels"
are involved, as long as all reduce to a single curve by one normalization.
'The merit of treating damage accumulation by a 1inear damage rule rather than
by damage curves is great §1mp11f1cat10n; loading order‘becomes unimportant,
and we sum all the cycle ratios without regard to sequence, even when
individual loadings at one level are interspersed with loadings at the other.
The amount of calculation involved, and the associated bookkeeping of damage
accumulation is, therefore, drastically reduced.

Now consider the case shown in Fig. 15(a). Two damage curves are shown:
one is stré1ght, the other shows a single break. Normalizing by dividing By
failure 1ife produces the'friangular shape in Fig. 15(b). Let us label as
DI the region of damage froﬁ'the origin to the level . of AB, and designate
it as Phase I since the linear nature of OA and 0B suggests that in this
region of damage accumulation the damage curves have something in common.
Similarly the Phase 1I region from AB to CE can be labeled DII‘ If in

the D, region we divide all cycle levels of curve O0A by NA and all

B |
-damage levels by DI’ the 1ine O0A" of Fig. 15(c) resu]ts.‘ The same
straight 1ine results when we normalize OB by.d1v1sion by NB and DI'

Figure 15(c) now states that as long as the damage has not yet reached
DI, we can use a single linear damage rule. In this region, it does not
matter how many f1mes load level changes from OA to 0B, the cycle ratios
along OA can be summed 1ndependentiy, and those along DB independently.
When the sum ofvcycle ratjos reaches unity, Phase I damage DI has been
Eomp]eted.

" figure 15(d) is constructed in a s1m11af manner from the segments AC

and BE of Fig. 15(a). Cycles are divided by N,. and N

AC BE’
respectively, and the increase in damage beyond DI is divided by DII‘

13



" Since both segments collapse to a single straight 1ine, we can treat damage
accumulation in this region as.1ndependent of appiication order as well.
Thus, no matter how many times, or in what sequence, the loading changes from
the OAC to the OBE level, the damage accumulation depends only on the total
“sum .of cycle ratios at each level. But cycle ratios must of course be-

damage, not

determined relative to the cyclés requiréd'to apply the DII

total cycles. »

In odr early work we designated the DI regﬁon as “crack initiation"
and the DII region as crack propagation. However, we could detect no
cracks at the transition between the regions, and for other philosophical
reasons discussed in [16] we haQe abandoned desighat1ons according to physical
1nterprefat1ons,vahd now éfmply call these regions 1'and 1I. "As we shall
later discuss, the engineering use of the concept is not restricted by absence

of physical designation.

Extension to multiple loading levels. - In the foregoing discussion we

have 1imited the consideration to two loads involving only one breék point
level in the damage relations. As long as breaks occurvat the same D Tlevel,
the procedure could be generalized to any number of load levels without change
in final result. The general case involving more than two load levels
fequ1res that the break points be at various levels. Consider first

Fig. 16(a) in which the damage 1ine O0FG has been added. We could, of
course, divide the damage range into three regions: below F, between F

and B, and above B. This would lead to triple-linear damage curves,

(Fig. 16(b)) and a triple-1inear damage rule (Fig. 16(c)). Inclusion of more
fhan three loading levels would involve even a larger number of distinct
1inear regions, and the desired simplicity is lost. We have, therefore,
chosen an a]ternate'éppréach,' Only two regions are used, but they are chosen
so as to preserve fidelity -to the important damage lines in a given loading

14



sequence and sacrifice fidelity to those loadings which do not have an .
important effect.
The basic philosophy is i1lustrated in Fig. 17. Here we choose OAP as

A the damage 1ine for the 1ife level N_. of the loading which will cause the

1
major damage in a particular application. As noted earlier, we can choose

this damage line as a straight 45° 1ine, ending at point P where D = 1.0

and n/N] = 1.0."The line "OBP for a 1ife N, 1s the normalized damage

2
1ine for the loading level that is of next ﬁmpoftance in producing damageAfor
this loading history. (Before performing the analysis the values of N] -
and N2 may not be knan, and an engineering judgment is made. "The
subsequent analysis prov1des‘better choices of N] and N2, which quickly
converge to appropr1ate'9a1ues.) As long as only the 1ife levels N] and
N2 are involved in a loading sequence, we can proceed as already

“discussed. If another life level N3 (between N, and Nz)'is added,

]
however, 1ts damage curve will be OCP, with a breakpoint at a higher damage
level, as previously discussed. One way to keep the breakpoints at the same
level of damage, is to replace OCP by OC'P, choosing C' where OC
intersects the damage level AB. We then have a damage 1ine which co1nf1des
with tﬁe real damage line in region OC' and lies above 1t in the region
C'CP. The replacement damage line thus errs on the conservative side since we
attribute a greater damage to an increment of loading at this level than Qou]d
occur by using the real damage line. Similarly, if we need to consider a
loading level with a 11fe.greater than N2 we could conservatively replace
1ts damage curve ODP by OD'P. Once we have forced all breakpoints to occur
V at the same damage level we can reduce the problem to one of a double-linear

. damage rule. While the schema of Fig. 17 i1s a viable framework for reducing

any problem to one involving a double-1inear damage rule, the procedure we
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have actually adopted 1s easier to apply and gives very good results, as will
be discussed.
Development of Practical Double-Linear Damage Rules

Earlier work. - Our objective for many years has been to estabiish a

practical double linear damage rule framework usable in design and analysis.
Progress has been gradual. Our first report dates back 20 yr when we first
proposed [14] that "crack initiation" and "crack propagation" as the phases
within which the two 1inear damage rules applied. Using limited information
on one material it first suggested that the crack initiation period be

0.6

Nf - 15Nf

whenever Nf > 750 cycles, and equal to 0 for Nf < 750. The

propagation period would, of éourse,'be 152'6 and Nf, respectively. This rule

was simple, but unfortunately not sufficiently accurate for other materials.
In 1967 a second report [20] examined data on other materials and test
conditions. We were forced to conclude that not only could we not, in general,

use the simple formula Np = TSNE'6 for the propagation phase, but that it was

inappropriate to use the terms "crack initiation" and'“crack propagation" as
descriptors of the two phases. Not only could we not detect any crack at the
" kneepoint of a two-level test, when the "crack" should have "initiated," but
the kneepoint shifted as we combined different levels of the second loading
with identical first load levels. Fof example, if a 1000 cyc]e'11fe level
loading is followed by a 10 000 cycle 1ife lToad level, the kneepoint implies
that "crack initiation" starts at about 200 cycles. However, if the 1000

6 cycles, the implied

cycle life level is followed by a loading of 1ife 10
"crack initiation" 1ife for the 1000 cycle level now becomes only about 60
éycles. Since the material cannot sense while it is initially loaded at the

1000 cycle level what the subsequent loading will be, why should it "crack"
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after 60 cycles in one case and 200 cycles in the other? For other choices

of loading ieve]s even greater discrepancies could result. Our conclusion was
that the type of 1inearity we perceived for so many materials and loading
combinations was not a manifestation of "crack initiation" and "propagation,"
_ but of some other phenomeﬁon that we did not yet fully understand.

In the 1967 report we salvaged the concept of a doub]e-]jhear damage
rule, but changed the terminology, calling the regions where the two rules
appeared to be valid as Phase 1 and Phase II; That we did not know the
physical significance of the;e phases did not invalidate the potential use of
the concept, but application required an empirical determination of the
kneepoint between the two phases for each sequence of loading to be
evaluated. Unfortunately; such an approach is not appeé]1ng to aAdesigher.
When one is trying to choosé a material among many candidates, and when the
loadings may in fact even depend on the material chosen, few designers have
the inclination, the facilities, or the lead-time to conduct the required
tests.

Recent development. - The matter lay dormant for many years, but interest

was again stimulated in this subject during our evaluation of the Damage Curve
Approach (DCA) for treating cumulative fatigue damage. The model fashioned
for DCA was, naturally, also based on the considerable amount of data
developed for two-level tests on many{mater\als, and the type of results that

we obtained were as shown in Fig. 18. The continuous curves in this figure

1.

show the results for the damage curves used at that time. 'We then

{ -
. question what these damage curves would look Tike if we replaced them with two

"~ tAs already discussed, our use of damage curve equations using only a
single term gave somewhat unrealistic results for low values of ny/Njy.
Use of the double damage curve equation (6) discussed earlier produces results
very similar to the dotted lines in this figure.
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straight 1ines, and sketched the dotted 1ines shown in the figure. Of special
interest was that the damage curves for a sequence involving two load levels

N, and N, depended only on the ratio N]/Nz, and not on the

1 2

individual values of N, and N,. The same curve would be obtained if

1 2

the first 1ife level were 1000 cycles and the second 10 000 cycles as would
result when a 100 000 cycle loading was followed by a 106 cycle loading.
therefore we would have to expect the same implication for the DLDR.

This observation was precisely the clue wé needed to understand the
confusing results derived by stating a DLDR based on crack initiation and
crack propagation concepts. Referring to the illustration used earlier, 1f a
1000 1ife level 1oad1ﬁg were_fo]]owed by a 10 000 cycle level, the N]/N2
ratio is 0.1, and we should expect the apparent knee to be at about 200

6

cycles. - But if the 1000 cycle 1ife loading level js followed by a 10~ life

level, the N1/N ratio becomes 10'3, and we should expect the apparent

2
knee to be at about 60 cycles. It was not.a.matter of "initiating" a crack at
é1ther of the two knee points. Rathef, it was a question of which N.'/N2
curve was involved. By defining Phase I as the region up to the kneepoint,
and Phase II as the region beyond the kneepoint, we can avoid the
philosophical question of its physical sign1ficance and yet devise a simple
but useful ana1ytica1 procedure.

We returned to our raw data to see if an equation could be derived for
the coordinates of the kneepoint based on the parameter' N1/N2 rather

than on the N, parameter as we had previously sought. The results are

1
shown in Fig. 10. Indeed the data of the kneepoint coordinates normalized
'better on the basis of the ratio N]/Nz. (By comparison we show in

Fig. 20 that when only N, was used to correlate the horizontal coordinate

1
of the kneepoint, as required if crack initiation occurs here, the results are

poor.)
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From F1gl 19 the coordinates of the kneepoint are

n O INT n N -
N—‘] - 0.35 [ﬂl] : N—2 - 0.65 il . a = 0.25 (7)
1]knee 2 2 lknee 2 ,

.Once the kneepoint is established, i1t becomes possible to re-examine all the
two-level tests we have conducted to determine if the data could have been
pfedicted in advance. Figure 21 shows how double-linear relations, using

Eq. (7) to establish the kneepoint, have worked for three materiaTs - 300CVM,
SAE4130, and T1-6A1-4V. The agreement gener&]]y is qu1te'good. '

Application to muitiple loadings. - We next consider how to treat

multiple loading levels.

7. Multiple changes in 1oad1ng_1nvo1v1ng two load levels: Consider a

case involving a m1xture-of loadings which if applied individually would
produce 1000 and 100 000 cycles to fallure. In this mixture changes occur
from one load to the other many times in arbitrary order. A §1mp1e case; for
example, is one in which blocks consisting 6f 1 percent each of the basic
loadings are successively applied until failure occurs. Etach b106k contains
10 cycles of the loading which alone produces a 1000 cycle 1ife, and 1000
cycles of the loading which alone produces 100 000 cycle 1ife. We seek to
determine how many blocks can be sustained. Figure 22 shows how this problem
would be organized.

The first step is to reinterpret the DLDR in terms of equivalent damage
curQes.. Figure 22(a) shows the double-linear representation on the basis that
Phase I 1s consumed entirely at the 103 cycle-to-failure level, and Phase II
'at the 105 cycle-to-failure level. The coordinates of point B are
computed by Eq. (7), and the numerical values are shown in the lower part of
the.f1gure. Figure 22(b) shows the equivalent damage lines obtained by a 90°
counterclockwise rotét1on of f1g. 22(a), as previously discussed. Thus

3

A'B"C' represents damage accumulation at the 10° 1ife loading, while
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A'B'C shows how damage accumulates for the 105 1ﬁfe loading for a problem
which contains only these two loadings.

The next step is to track the damdge accumulation as successive loading
.b]ocks are applied. In‘the early loading the damage accumulates along A'B"
when the 10° loading is applied, and along A'B' when the 10° loading is
applied. Thus the straightforward way is to move between these two lines as
block after block is applied, until the damage réaches the level B"B'.
Beyond this point the pertinent dahage 1ines to use are B8"C' and B'C'.
Again the stra1ghtf0rward procedure is to move back and forth between these
two 11nés, increasing damage until point C s reached; Proceeding in. this
way requires many changes from one line to the next (over 52 times).

However, if we recoghfze that until the damage reaches B"B', both damage
l1ines are straight, then a linear damage rule is valid and the loading order
does not matter. We can then assume that the same effect will be produced by
sebqrate]y Tumping together all the cyc1és of the 103 1ife level and all the
cycles of the 105 level. Thus if it requires B1 blocks to complete

cycles of the 103 l1ife level and 1000 B

PhasevI, then 10 B ~cycles

1 1
of the 105 1ife level will be appiied. Since the number of cycles to

5

complete Phase I for the 103 1ife level is 111, and for the 10~ life

level, is 79 445, the eqUat1on for B, 1in Fig. 22 appliies, and it is seen

1
that 9.74 b]ocks‘l~ are required to complete Phase I, By similar reasoning, -
1t follows from the calculations of Fig. 22(b) that 16.67 blocks are required
to complete Phase II, for a total number of 26.41 blocks. This is in contrast
to 50 blocks that would be,unconservativeTy predicted by the Miner Linear

Damage Rule (LDOR).

tFor simplicity we accept decimal values of blocks, even though a
nonintegral value means that some loadings of one level are required to
complete the block without being matched by the other loading.
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The simplicity of this type of approach is evident for the elementary
prob]gm 11lustrated here. When extended to more complex loading histories the
savjng of calculation labor is even more striking.

2. Loadings involving three load levels: 1In Fig. 23 we have added a

third load level which‘by itself would produce an intermediate 1ife of 10 000

“cycles, and aga1n'assume block loadings involving 1 percent of individual

Tives. As seen in the figure, B' and B" are obtained as.before. The
problem is with the damage curve that is to represent the 104 cycle life
level. Its.kneepo1nt, based on individual ;omb1nat10n with the 103 cycle
1ife 1oadiﬁ§ is at D, which does not have the same vertical coordinate as
B'B". To use a DLDR we must find a suitable reb]acement for the 1ine ADC

having a break-point a]ong‘ B'B". Several alternatives are possible. One is

‘to choose D' at the'average where AD and (D 1intersect the B'B" line so

that Ab'c replaces ADC. A second way is to use the interpolation formﬁ)a
shown in Fig. 23 which wés derived in [16]. Basically, it is an analytical
relation for the cycle ratio to the end of Phase I which is consistent with
the formulas used to get the coordinates of B' and GB" and which both
interpolates and extrapolates in a manner consistent with experimental
experience. This matter will be discussed in connection with Fig. 24.
For the case of the 10 000 cycle 1ife in Fig. 23, the formula produces a

Tocation for D' at n/Nf = 0.476 which 1s nearly the same as averaging
D" and D"'. The replacement damage 1ine AD'C in Fig. 23 is seen to be
below the real damage line ADC 1in the Phase I range, and above it in the
Phase II range, compensating for errors introduced by forcing all breakpoints
to have the same ordinate.

" Once we have forced all the breakpoints to be at the same ordinate,
1inear damage\ru]es can be expressed for the Phase I region below this

ordinate, and for the Phase II region above it. Damage calculations are shown
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in Fig. 23 for the case of blocks of 10, 100 and 1000 cycles applied

- respectively at 103, 104

, and 10° 14fe levels. As before, we first find

out how much Phase I damage a single block of loading produces, and then
détermine how many blocks it takes to complete Phase I. Similarly we
calculate how many blocks dre required to complete Phase II, and therefore the
total number of blocks to fallure. In this case, as seen in Fig. 23, a total
of 20.7 blocks are required. The LDR would have prédicted 33.3 blocks, about:
60 percent higher than fhe DLDR computation. To treat this sfmp1e problem by
the DCA would have required changing progresﬁive]y from one to the other of
the three damage curves, approximately 60 times. Even for this simple case
'the‘calcu1at1ons would 1nvo1v¢ an order of magnitude more labor thanm the DLDR
procedure. But the result would have been nearly identical to that obtained
by the DLDR. Ffor tﬁe DCA analysis the prediction is 21.0 blocks; for the DDCA
the prediction is 23.3 blocks, and for the DLDR analysis it is 20.7 blocks.

3. Cases involving large number of loading levels: In the more complex

problem involving many loading levels two important questions arise: 1) which
two load levels should be used as the baseline values around which to
establish when Phase I ends and Phase II begins, and 2) how to construct the
damage curves for loading levels in the extrapolated range, that is lower than
the lower 1ife of the reference damage 1ines or higher than the higher 1life of
the reference damage lines. |

Construction of damage curves. - We address the second of these questions

first by extending the simple problem we have been discussing using four

loading levels shown in Fig. 24, loadings which alone would produce lives of . °

03 5

10°, 104; 107, and 106 cycles. Also, to avoid the issue of which

loading produces most of the damage, we assume that each block contains

1 percent of the failure cycles for each loading level individually.
3

Figure 24(a) shows how each of the damage lines would be drawn if the 10
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damage 1ine is taken as the 45° reference 1ine. Note that the kneepoints do
not have the same value, as follows from Eq. (7). One of these kneepoints
needs to be chdsen, thus allowing us to retain only two damage curves, but the
~other two must be compromised.

In Fig. 24(b) the knéepoint associated with the 103 and 106 life

levels is retained, and the 104 and 105

1ife damage l1ines are compromised.
They are constructed in the same manner as used in Fig. 23, using the formula
ghown in this figure. The calculations for blocks to complete Phases I and II
are then made in an 1dgnt1ca1 manner as in Fig. 23, resulting in 11.47 blocks.

In Fig. 24(c) the 10° 1ife damage line is paired with the 10> life
damage curve, thus requiring the compromising of the 104 and 106 damage
curves, - one in the 1ntefpolated range of the faithful damage curves, and one
in the extrapolated range. Again the same formulas shown in Fig. 23 are used
to establish the location of the compromised damage curves, and the procédure
for determining number of blocks is the same. For this case the computed
number of blocks is 12.03.

Finally, in Fig. 24(d), the 103 and 104 1ife damage lines are
faithfully retained, and damage curves for 105 and 106‘11fe are
compromised. Again, of course, the formulas of Fig. 23 are used to establish
the coordinates of the kneepoints, and the computation procedure is the same
as in the previous cases. Half of the damage curves are now in the
extrapolated range, but the computed number of 13.77 blocks js not far
different from the other.

It should be recognized that this example represents an extreme case.
‘Here the contribution of each loading to the damage accumulation is the same,

since in each block all contribute equal numerical values of damage. VYet,

even though equally damaging damage lines were compromised, the computed
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.blocks differed by less than 10 percent. But fhe conclusion is clear that if
fhe reference damage curves are at 1east.as important in contributing damage
as those damage i1ines that have been compromised, the use of our basic
'eduat1on shown in Fig. 23 is adequate for establishing the damage lines used
in the analysis. |

~ Choice of the reference damage l1ines. - It stands to reason that the

degree of error introduced by compromising fidelity of a damage l1ine depends
on how importantly the loading associated with that damage 1ine contributes to
the total damage. Thus the most important loading events should be ﬁsed as
the reference uncompromised damage lines while the lesser events can be
compromised without 1ntroduc1ng much error. If, as seen in the example of
Fig. 24, compromising 1mpd}tant 1ines do not seriously affect the resu]ting
ca]pu]atjons, then compromising the lesser contributors shou]d not be too
serious. But first we have to know which are the important events. It would
seem that the answer could be obta1ned by a successive approximat1on

approach. The first step could be an ordinary linear damage analysis, and the
cycle ratio at failure for each of the contribution events determined. The
two most damaging events can be taken as N1 and N2, where N] is tﬁe

lower of the two. 1If there is ambiguity because several events contribute
approximately the same damage, then choose N] and N2 as far apart as

- possible, so that other important damaging events w11]Ahave 1ife values
between them. Then make a DLDR analysis, and review wh1cﬁ events are now the
most damaging. If other loadings now appear to be better candidates as N1
and N2, redo the analysj;. Since each ana]ysi; is quite simple, consisting
of only two sets of computations each of which is the same as a LDR analysis,
this procedure should not be too demanding. Further refinement could be added

by making successive iterations until l1ife predictions change 1ittle and the

final choice of N and N

] involves the most damaging events or unless

2
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they are recogn1z§d as the proper choices according to the engineering
Judgment of the analyst.

4. Complex service cycle: In Ref. [16] we analyzed a cycle that had

originally been discussed in Ref. [23] representing a complex mission cycle
for a jet engine.  The data for the calculations are shown in Table I. Evéry

" block of loading involved 14 events, each of known total strainrange a4c¢ and

tensile mean stress o columns (2) and (3). Each event was applied a
known number of times, per mission column (4). From these values, life was
calcu]ated+ for each event, column (5). The procedure used then was to

choose the cyclic life of the event that produced the lowest 1ife as the

N

the N2 value was the highest one for the events, 64 000 cycles for event

6. From these tWo values, N

value, in this case event No. 8 with a 1ife of 2500 cycles. Similarly,

1 and NII for each event was calculated

from the equations shown in Fig. 23. The remaining procedure was identical to

that described in earlier paragraphs. The n/N1 and n/NII values for

each event were calculated, cofumns (8) and (9), leading to a calculation of
the number of missions required to complete Phase I and Phase II,
respectively. Thus, for this problem 79 missions were required to ﬁomp]ete
Phase I and 200 missions for Phase II, leading to a total of 279 missions to
produce failure.

It is now appropriate to carry-the calculations one step further, and

revise the procedure to determine N] and N2 more appropriately. A

better choice of N] and N2 can be made by considering the higher and

tIn our earlier analysis we used a different formula for 1ife when mean

stress is present. Now that we have revised the procedure to include mean
stress effects, as discussed in Appendix B, the values in column (5) would be
somewhat different. However, since the changes would not seriously affect the
numerical values involves, and would have no significance on procedure, we
have not remade the calculations for column (5).
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lower of the two 11fe values for the events that produce the largest amounts
of damage, rather than the events that produce the highest and lowest cyclic
Tives.

Using the rationale already discussed, we have added in Table 1 the
column (10) which 1s not cdnta1ned in Ref. [23]. After the first calculation -
s made, as earlier proposed, and the number of missions required to complete
each of the two phases are calculated, the damage for each type of event is
calculated (column (10)). Events 4 and 8 are the most damaging. Hence we
remade fhe ca]cu]af1ons for N1 = 2500 and N2 = 5550. On this basis,
events 4 and 8 are still found to be the two most damaging, thus iteration of
calculation 1s not necessary. The total number of missions now calculated is
2717, which differs 1ittle from the 279 missions earlier determined, and gives
us confidence that we can err considerably on the choice of optimum values of
N1 and N2 without affecting the final 1ife calculation significantly.
However, the degree of error may depend significantly on the type of complex
cycle analyzed. For example, if the complex cycling involves a preponderance
of damage accumulation at a single 1ife level, errors due to choice of N1
and N2, or eveﬁ of choice of damage rule, will become insignificant.

Impetus to study cumulative damage ruTes for complex loading is provided
by the extreme high- and low-cycle fatigue operating conditions experienced by
components in the NASA Space Shuttle Main Engines (SSME). Several thermal
low-cycle fatigue and mechanically induced high-frequency, high-cycle fatigue
are superimposed on turbine blades and other critical structural components.
One such component,'called a LOX Post, is a slender tube carrying cryogenic
6xygen through its bore while exposed to'h1gh-temperature, hydrogen-rich steam
on ts exterior. Flow-induced vibration provides the high-cycle fatigue
excitation while the thermal transients of engine firing and shut-down

contribute to the low-cycle fatigue loadings. To understand better the damage
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1nt§racf1on in the alloys of construction, cumulative damage experiments were
conducted on botﬁ 316 SS and a cobalt-base superalloy, Haynes 188. Results
are presented in Refs. t25] to [27]. In view of the improvements (DDCA) to
the DCA, we have re-examined both sets of cumulative damage data aﬁd have
sought optimum material specific constants. Figure 25 shows the results for
316 SS at 1300 °F compared with ca]cu]ations'by the DDCA, Eq. (6). The
exponents o« and B from Eq: (6) have been optimized for the data shown, and
have values of 0.23 and 0.63, respectively. Agreement is better than obtaﬁned
earlier using the original DCA formulation and the single constant, B = 0.4.
The added flexibility of another constant in the DDCA promotes 1mpfoved
accuracy of representation.
Similar treatment, Ref.'[27], was given to the analysis of‘data on Haynes
188 reported by Bizon, et- al. [26]. The optimum constants are o« = 0.35 and
B = 0.60 in contrast to the universalized va]ue; of 0.25 and 0.40,
respectively. Comparison of the DDCA calculations with the-experjmental
~results are presented in Fig. 26. A band of expected-beha91or is shown,
reflecting the fact that tests were performed at somewhat different values of
Nl/NZ' Again, good agreement is obtained. Most 1mporfant1y is the
unconservative deviation (up to a factor of 10 in cyclic life) of the
experimental results from the classical LDR. The nonlinear features of the
DDOCA (and the DLDR) accurately model the interactions of high- and low-cycle
fatigue.
DISCUSSION
In this re-examination of our procedures for computing damage

-accumulation we have introduced three major changes. -

_ Restating the DCA by adding a term which enables us té make the damage
.curve nearly identical with the DLDR that has been found characteristic for a

large number of materials in two-level fatigue tests. The new equation is
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called the Double Damage Curve Approach (DDCA). We have also defined more
clearly the relation between damage curves and their approximation by the DLDR.

Introducing a successive-approximation prbcedure for the choice of the

parameters of Phases I and Il of the DLDR.

Modifying the procedure for including mean stress effects in cyclic

1ife. A few comments are appropr1ate'for each of these items.
Restatement of Damage Curve Approach and Relation to DLDR

It is important to emphasize that we treat each event on the basis of
1ife level, not the parameters that lead to its 1ife level. The strain range
and maximum, minimum, or mean stress_are 1nc1udedv1n the determ1nation of the
1ife level of the event. Thus any appropriate theory can be applied to
combined them to determine their 11fe level. Cumulative damage is then
calculated in the same manner as it would be at the same 1ife level produced
by other parameters leading to this life. This brocedure is in contrast to
other approaches, e.g. Dubuc, et al. [28] and Bui Quoc [29, 30], which
incorporate the complex stress and strain parameters into the expression for
the damage function. The advantage of our procedure is that the approach may
change for determining the 1ife ]eVe] without affecting the damage curve
analysis. For example, as already discussed, we have progressed to a more
accurate and generalized method of treating mean stress, but the change in
itself does not aiter the DCA.

However, we changed the functional form of the damage curve
represenfat1on to make it conform more closely to extensive data, and to make
it more consistent with the DLDR. The new functional form is called the
Doub]e Damage Curve Approach (DDCA). Thus when we make a comparison between
results obtained by the DDCA and DLDR analyses we do not have to sort out how

much of the difference is due to the simplifications used to establish the
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DLDR, .and how much js;due to the difference implicit in the two types of
damage function used. |

The change in our new function is consistent with some of the thinking
that has recently been introduced by other investigators. For example, Miller
and Zachariah [21] and Miller and Ibrahim [22] devised damage functions which
are also based on two stages ofidamage accumulation - development of shallow
surface cracks and propagation of a macroscopic dominant crack leading to
failure. 1In their first effort, damége curves were represented by straight
. 1ines on log-log coordinates, with breakpoints arranged in similar fashion to
ours, as seen in Figs. 23 and 24; that is, the line jo1n1ng the breakpoints
had a negative siope. However, in their 1a§er work they changed their damage
functions so that the slope of the 1ine Jo1n1n§ the breakpoints is positive.
It is interesting that while the results of damage curve analyses are similar
when baﬁed on either our curves or those of Miller and his co-workers, the
governing parameters are different. If we use crack length as the measure of
damage our crack lengths become macroscopic fairly early, while Miller and
co-workers derive crack lengths of ultra-microscopic size in the Phase I
stage, and macroscopic size only véry close to failure. The 1nterest1ng point
is that, as discussed earlier in the report, the damage accumulation process
in going from one damaging curve to another does not depend on all the
parameters defining the damage curves, but only on one or two critical
constants. Thus they can derive the same final result event though the
baseline information differs appreciably from ours.

Successive Approximation Procedures for Choice of N1 and N2

In our previous publications we recognized the importance of considering
the lowest and highest 1ives to establish the values of N] and N2 in
the DLDR formulation. A restriction was invoked requiring 1 percent life
fraction be imposed before a level could be considered an extreme. We have
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since come to realize that life levels for which the greatest amounts of
‘damage (1ife fraction, n/N) are accumulated are also of importance because
they represent the major participants in the problem. Thus, we have suggested
an iterative process that homes in on the two most damaging 1ife levels and
life levels in the DLDR. Calculations

uses them as the N, and N

1 2
presented in this paper have borne out the accuracy of this approach.
Modifying Procedure fof Including Mean Stress Effects

The cumulative fatigue damage approaches proposed in this paper do not
rely upon how mean stresses affect cyclic 1ife, or the spec1fic mean stress
formulation employed. Nonetheless, a cumulative damage analysis cannot
proceed until all the 1ife levels can be\quant1fied. Since mean stresses
strongly influence fatigue 1ife, a reliable, yet genefa], mean stress
formulation is a necessary adjunct to the cumulative damage approaches. We
have modified the mean stress approach from what was used in our earlier
publications, and have arrived at a more general means for representing these
important effects. It has been demonstrated in Appendix B that a wide range
of classical mean stress effects can be accommodated by the newly adopted
approach. Because of the approach's flexibility, however, it does require a
small amount of fatigue data involving mean stress to evaluate the constants.
. Evaluation techniques are discussed in Apbendix B.

CAUTIONS

While we have been active in developing a procedure for treating damage
accumulations either through damage curves or through a DLDR based on these
curves, few complex service histories have been treated by these methods.
Much experience should be gained in diverse applications before these or other
such methods, can be accepted for general use. In many cases, i1t can be
expected that the method will be successful by the very fortuitous nature of

such complex loading histories. They can contain many events, but in fact
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most wiil contribute negligibly to the damage, and 1ife will be governed by

one or two of the major loading event§; The results of the Teledyne study (in
Table I) are typical of what can happen in such cases. Current methods are
satisfactory for such cases sihceAthey were deve]obed from two load level
tests. .

The real caution comes in connection with circumstances tha{ have not yet
been factored into this or other methods. A partial 1ist of such
possibilities is:

Effect of Stress Multiaxiality '

" This subject is currently receiving intensive study that is beyond the
'scqpe of this paper, and may reveal unusual and difficult-to-predict results,
éspec1a1]y"when 1oad1hg§ in one set of directions or s]1p*systems.are
subsequently followed by loadings in othef directtions favoring other ;11p and
fracture systems. | ,

Deformation System§ in Complex Load1ng-Not.Revea1ed fn Individual Loadings

Wood and Reiﬁann [31] tesfed copper in torsion wherein large loading
amplitudes for a ﬁort1on of the 1ife were then followed by lower loading
amplitudes. The result did not follow a simpler linear damage rule,

Fig. 27(a). Reimann [32] later conductéd similar torsion tests of iron. More
cycles at the lower strain level were possible after the highér strain level
had been applied than if it had not been applied, Fig. 27(b). We have tested
copper and steels under similar conditions in axial loadings, but.did not
reproduce the type of effect observed in torsion. Wood exb]ained his results
on the basis that when the 1arger'amp11tudes were first applied the'stra1n
tended to be absorbed-by many slip-planes. Once activated to slip, they
remained effective in slipping when the lower amplitude was later applied,
éven though these p]énes might not have participated if the lower amplitude

loading were applied singly. Thus the plastic strain of the lower loading was
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distributed over more slip planes when preceded by the higher loading,
decreasing the strain per slip plane, and increasing the 1ife. Why we have
not seen such a phenomenon in the many materials we have tested axially is not
clear.
Residual Stresses

The importance of residual stress has been especiai]y revealed through
the recent emphasis on the fracture mechanics of cracked structures. One such-
experience is demonstrated by Fig. 28. Two-level load tests were conducted on
aluminum in bending [33]. We introduced a notch on only one side of the
specimen, and ran the high load first to the point at which a small crack had
developed at the root of the notch. The last of the high level loadings
app]ied was with the notch in tension, producing a residu$1 compressive. stress
at the tip of the crack when the load was removed. When the lower load was
applied, the remaining cycle ratio was not less than un1fy, as normally
expected, but it was greater by moré than 100 than the initial life of the
material at the lower load. The crack had been arrested by the residual
compression, and did not progress when the lower load level was applied. The
failure at the low load initiated at the opposite side of the specimen, when
there was no notch, and progressed toward fhe crack that had been started by
the high load. The DLDR certainly was not directly applicable here.

Metallurgical Instabilities

Stress and strain together with exposure to high temperature reactive
‘gases can produce metallurgical instabilities such as strain aging. Some
materials, subjected to strain at high temperature, develop precipitates on
fhe dislocations that alter the subsequent deformation and strength
characteristics of the material. Thus loadings which induce such

precipitations during one portion of the loading history will reveal a
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behavior in another portion which by itself would be different because of no
meta11urg1ca1 precipitation. An example is presented below.

While investigation creep-fatigue interaction in the cobalt-base
superalloy L-605, at 1400 °F, we observed a strong strain-aging effect [34].
Carbon, initially in solution with the matrix, prec1p1tafed formfng an
M23C6 type cérb1de along the generated dislocations. As the carbides
increased in number and size during cyc11ng,-the'cyc11c stress-strain respbnse
of the alloy changed dramatically. The alloy was thus increasing its cyclic
flow resistance and altering 1ts resistance to fatigue failure. The amount of
change depended upon several factors - amount and duration of deformat1onAand
temperature. The implication to cumulative damage analysis is that the
fatigue 1ife at a prescribed load or strain 1e§e1 is not a unique quantity
dictated by the magnitude of the loading. Instead, details of prior loadings
can alter the fatigue 1ife relation. For exémp]e, consider two high .
temperature loading levels. One under high strains gives rise to dislopatién
generation and carbide precipitation, producing a life, N]. The other is at
such a low strain level that no precipitation nuclei are formed, the material
does not harden and the ensuing 1ife is N > N]. If a few high strain
cycles are 1mpbsed on another sample, carbides will form, the material
hardens, and its fatigue resistance will be altered. When the partially
fatigued sample is subsequently loaded at the sma]]er-stra1n level, its

fatigue resistance should no longer be associated with N Competing

X
processes are occurring simultaneously; fatigue crack nucleation and growth
(damage) and material hardening. The difficulty to the analyst is in how to
separaté these factors to accurately predict remaining fatigue 1ife. Ffurther
research remains as to how best to resolve such complex problems.

Another example of altered fatigue resistance-at high temperatures is one

encountered while studying Strainrange Partitioning for creep-fatigue
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analysis, Ref. [35]. When 316 SS was tested with hold periods at peak
compressive stress, an oxide surface layer formed, which cracked during the

tensile portion of each'cycle. After a few cycles of loading, the surface was

"~ riddled with short cracks, most of which hadn't as yet penetrated the

substrate. For small cyclic strains, oxides still form, but would not crack
during the tens11e excursions. Hence, a sample loaded at large strains for a
fraction of i1ts 1ife and then fatigued to failure at a small strain range
would experience an additional damaging phenomenon (a cracked oxide surface
layer) not accounted for in the original fatigue curve of the alloy at the low
strain level. Determ1ﬁing the correct 1ife level for cumulative damage
analysis could becomeva tedious task. 0ur'approach does not specifically
address the issue raised above. Instead, the approach 1s‘more general and
deals only with 1ife levels and not with how the 1ife level is attained.

The phasing of temperature and strain cycling during thermal fatigue can
produce additional complications to the problems of cumulative damage
assessment. In a study, Ref. [36], of thermomechanical fatigue behavior of
the nickel-base superalloy, MAR M 200, we observed significant differences in
1ife depending upon whether in- or out-of-phase cycling was 1mbosed. During
in-phase cycling, early developed cracks became filled with oxide while being
held open by the tensile stress. This situation is not experienced in the
out-of-phase cycling for which compressive stresses close cracks at the high

temperature, retarding oxidation within the cracks. Out-of-phase cycling was

‘considerably less damaging than in-phase. Furthermo}e, the two phasings

result in different modes of cracking at the ubiquitous internal carbides.
in-phase cycling produced carbide-matrix interfacial cracking whi]e
out-of-phase cycling caused the carbides themselves to fracture. The
implication of the above findings to cumulative damage analysis are of
concern. For examp)g, consider two straining levels, Ae, and: Aez,
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giving rise to the same cyclic life, Nf. _One condition involves in-phase
cycling, Ac], and the other, out-of-phase, Ac2 [Ae2 >.Ac]]. If cycling of a
sample is started at Beq and is discontinued after a 1ife fraction n1/Nf' and
is resumed at ac, until fatlure occurs, the remaining 11?e fraction according
to the current rules (and the LDR) would simply be 'nZ/Nf =1 - n]/Nf, i.e.,

n, +n_ =N_.. Since both conditions produce the same 1ife, any combination

] 2 f

would be predicted also to produce the same l1ife. However, it is unlikely
that such a simple result would be borne out‘by experiment, due to different
damage*accgmulat1on mechanisms existing for the two loading conditions. With
different ﬁechan1sms‘of damage, the damage curves of p versus cycle fraction
n/Nf
would differ from 1.0.

would not coincide for the two conditions, and hence damage summations

The lésson to be learned from these examples fs”that the cumulative
damage rules developed in this paper which are based upon a single basic
fa§1gue crack initiation and. propagation mechanism, will require refinement
for application to unique high temperatufe conditions wherein additional
damage mechanisms can come into play.

CONCLUDING REMARKS

In this report we have described a philosophy of analysis that has
evolved in our laboratories over more than 20 yr. Our emphasis has been
simplicity of eng1neer1ng_app11cat10n, and minimizing the baseline information
required for'1mp1ementat10n. While much of the methodology has been discussed
in other reports, this presentation takes the evolution process a few steps
further. The format of the damage curve analysis has been altered and the
brocedufe clarified to be consistent with the implied damage curves used in
the Double-Linear Damage Rule (DLDR). We call the new formulation the Double
Damage Curve Approach (DDCA). We have gained insight as to how to iterate the
choice of these substitute damage curves to minimize error while still
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retaining simplicity in ana]ys1s.. Since our basic damage curves are now
consistent in both the DDCA and DLDR analyses, the usefulness of the damagé
curve analysis procedure has been increased. bBy making the same calculations
through the DDCA we can establish how much error is introduced by the
compromises brought about to alter them for DLDR analysis. On the other hand,
it also becomes clear from such calculations how much simplicity is gained by
the DLOR procedure compared to retention of damage curves with attendant
computational complexity.

An important feature of our methods i1s the characterization of an event
only by 1ts 1ife, not the parameters that enter into determining the 1life.
Thus a strainrange and associated mean stress that leads to a given l1ife 1is
treated in identical manner as a smaller strainrange with associated larger
tensile mean stress which also leads to the same life. In this way
improvements in 1ife calculation per se do not later the equations 1nvo1véd in
the DDCA or DLDR analyses. We have, in fact, discussed what we regard to be
improvement in accounting for mean stress. Thus, while the 1ife values that
enter into a damage calculation may be altered by using the new mean stress
relations, the equations operating on these 1ife values do not change.

Experience with the application of the method to a spectrum of complex
loading types is currently limited, but we hope to make detailed computationS
in generic cases to evaluate the effects of various parameters. Sample
~ computations are inciuded in this report.

Finally, we urge caution in the use of the method described, or indeed
any other method, to insure that some unexpected phenomenon, not inherently
Eonta1néd in the framework of the method, 1§ introduced inadvertently. Among
these are stress multiaxiality, unidentified deformation and fracture

mechanisms, unknown residual stresses (eépec1a11y at notches and crack tips),
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APPENDIX A
DERIVATION OF THE DOUBLE DAMAGE CURVE APPROACH (DDCA)

Our choice of terms to enter the two term damage curve approach was such
as to produce a continuous curve coinc1denf‘w1th the DLDR at small values of
19fe fraction and coincident with the single term DCA equation at large life
fractions. The first term is 11ﬁear in n/N and the second is a power

function of n/N

n nq2 '
D = q][ﬁ] + [ - q] [ﬁ] ' (A-1)

where:

N1 , N ]®
gy = {0.35 [—;ﬂ] 1 - 0.65 [;—ef] . a = 0.25

5
q, =[FN_] , B = 0.40
. ref :
The coefficient ‘q1 is the slope of the f1rst damage accumulation line in
the DLDR. The second term in Eq. (A-1) is the same as the ‘original single
damage curve term except for a reduct1on of its coefficient from 1 to
(1 - q])Ato force conformity with D =1 at n/N = 1. Nref is the
referencé 1ife condition for which damage could be considered to be
accumulating 11near1y toward unity, and N 1is the 1ife level of interest.
While Eq. (A-1) serves tp improve the slope of the damage curve at its
origin, especially for large values of N/Nref (Fig. A-1(a)), additional
1mprovemenf s required for lower vaiUes of N/Nref (Fig. A-1(b)). In both

cases, the double term equation deviates the greatest amount in the transition

region between the two terms.
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~To achieve improved fit over the entire range we resorted to a previously
used approach [17] and [ie]. Given an equation where the dependent variable
_1s expressgd as the sum of two power laws of the independent variable,
y= X" x" ~ | (A-6)
it 1s clear that y = X" when X" << Xm, and vy 5> X" when XW << X", Thus y

M at one extreme of X and nearly coincident

becomes nearly coincident withl X
with X" at the other extreme. Plotted on log-log coordinates y becomes
nearly straight in two regions of X. Between the two extreme regions y

changes slope gradually from m to n. However, we can force y to conform

to xm and xn over a wider range, and change more abruptly between the two

slopes by rewriting the equation in the form

yY = XY, xYn

(A-7)
when X" >> x", y still approaches Xm, and similarly when X" >> Xm,‘y > X",

" The asymptotic lines are thus preserved. However, by the proper choice of v

the curve of y wversus X can be altered in the range where X™ = X",
Figure A-2 shows the application of this concept for the case at hand.
Rewriting Eq. (A-5),
Y[qZ"] ] W
D,y _aYy 1 _
D = N, q + [ q;) [Nf] (A-8)

If we choose several values of vy and plot D versus n/N- for N/Nref = 10,'
we get the curves shown in Fig. A-2. 1t is clear that vy = 5 gives a
sufficiently close fit to the double 1inear damage 1ine, and we have, there-

fore, tentatively settled on this value.

40



‘ APPENDIX B ‘ ,
MODIFIED PROCEDURE FOR MEAN STRESS EFFECTS

Service cycles involving variable amplitude loading will likely encounter
mean stresses during portions of the loadings. Since mean stresses
significantly alter the ‘expected fatigue life relat1ye to a zero mean stress
condition, techniques must be implemented to determine the associated life
-levels for use with the cumulative damage approaches described in the body of
this report. ‘The following describes a promising modified procedure for more
reliably dealing with mean stress effects on fatigue 1ife. Consider a
material for which the Manson-Coffin-Basquin diagram has already been
established, as shown 1n Fig. B-1(a). No mean stresses are involved in this
figure. F1gure.B-1(b):1s exactly the same plot, except that the 1ife scale
has changed"to fef]ect the pre§ence of mean stress in accordance with the

formulation discussed by -

A+B]ong
Heidmann [24]. The multiplier on the 1ife scale is [1 - (ao/cf) ].

Although /t and b are known from Fig. B-1(a) the constants A and B

°t
are at the outset unknown. Several tests involving mean stresses are
necessary to determine these constants. As an example, assuhe these tests are
conducted with a mean stress ratio of 0.2, 1.e., coldf = 0.2, o, = 0.2 x

130 = 26 ksi. For i1llustration assume that two tests are conducted, one with
'én alternating stress of amp11fude 65 ksi, the other with an alternating
stress amb]itqde of 40 ks1. The 1ives are measured, and tabulated as shown in
Table B-1. We treat three cases in which the measured 1ives are assumed to be
those 1n Table B-1. Consider the analysis of the datum for Case I where

por2 = 130(2N) 210 . 65 ksi. “The elastic strain amplitude for the
é]ternat1ng stress is 65/30x103 = 0.002167 in./in. We thus proceed to

point P in Fig. B-1(b), indicating that the numerical value on the
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horizontal axis is 1024. Thus we apply this value and the measured life

(2Nf = 2 x 55) to the horizontal scale
1024 = (2 x 55) [1 - (0.2)7*B109(55), (fﬁlTBT (8-1)

from which we calculate
A+ 1.74B = 1.00 - (B-2)
If we apply the same procedure to the second datum for Case I, where
Ao/2 = 40 ksi, we develop the equation
A + (3.85)B = 1.00 (B-3)
Solving for A and B from Eqs. (B-2) and (B-3).
A=1.0; B=20

In a similar manner, if we treat the two measured points for Case II, we get

and finally for Case III, the measured 1ife values give
A=3.0; B=-0.42

Case I, therefore, represents a material of the Goodman-Morrow type. -All the
normalized alternating stress/mean stress diagrams consist of a single
straight 1ine, as in Fig. B-2. Case II represents a material fof which the
normalized diagram ;ons1sts of a single curve of the Gerber type, with convex °
curvature. Finally, Case III represents a material of general behavior,
wherein the normalized alternating stress/mean stress diagram consists of a
family of curves, one for each 1ife level. Once the material has been
characterized, any corresponding type of plot can be made that suits the needs
of the investigator. Figure B-3 shows the mean stress effect for each decade
11fe level between 103 to 106 cycles.

‘ Figure B-1 can also be used to analyze data wherein the strainrange and
hean stress are known. Thus if point Q is known from a total strainrange

(which may include appreciable plasticity), we can still establish the
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ab§c1ssa at point R. If mean stress is also known, together with the .values

of A and B for an already characterized material, N. can be determined

from a simple transcendentél equation. Aiternat1ve1y, if 1ife is known from

_-charactefﬁzation tests for wﬁich Ae and % Aare also known; values of A

and B can be Eomputeq in the same manner as already i11lustrated.
Obviously, for the sthematic 11lustrations, 6n1y two tests are‘needed}for

deterh1ning A and -B. In bra6t1ce, many tests may be used to get A and

B from a Jeast squares solution. Or, in fact, 1t may develop fhat'these many

tests will def1né a more genefa] funcfion.for Nf instead of the rg]af10n

-

A+ B]og(Nf).
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" TABLE B8-1. - HYPOTHETICAL FATIGUE LIVES UNDER

VARIOUS MEANS STRESS CONDITIONS.

EXAMPLES

USED TO EVALUATE CONSTANTS A AND B IN
GENERALIZED MEAN STRESS EQUATION

Nfo Ne,
cycle life
Tas o =0 g = 26 ksi
ksi
f Case I Case II Case III
:55 512 55 340 327
i40 65 736 7 058 43 704 15 332
Computed
N 1.00 2.00 3.00
;S [— 0 0 .42
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