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CHAPTER I. INTRODUCTION 

"For who would acquire a knowledge of the heavens let him give up 

his days and nights to the marvels of Orion,1I C. E. Barns wrote in 

1929: 

Here may be found every conceivable variation of celestial 
phenomena: stars, giants and dwarfs; variables, doubles •• 
triples •• multiples; binaries visual and spectroscopic; 
clusters wide and condensed; mYsterious rayless rifts and 
nebulae in boundless variety, with the supreme wonder of 
all supernal wonders at its heart--the Great Nebula •••• 
[an] abundant field for [astronomers], with their super
refinements of means and methods, for generations to come •••• 

The wonder expressed by Barns and inspired by the complexity of the 

Orion region only intensifies as knowledge of the region expands. At 

the time Barns wrote, the true nature of the dark or molecular clouds, 

the most massive entities in the region and probably the progenitor of 

most of the objects he included in his list of phenomena, remained as 

obscured as the clouds are opaque. The pioneering work of Tucker, 

Kutner, and Thaddeus (1973); Chin (1978); and Kutner et ale (1977; 

hereafter abbreviated to KTCT) revealed the first hints of the true 

extent and mass of the molecular clouds in the region. Their 

observations conclusively showed that radio emission from carbon 

monoxide (CO) acted as an excellent tracer of interstellar molecular 

hydrogen (H2)* and that previous large-scale surveys of atomic hydrogen 

* Emission from CO is easier to observe than emission from H2, the 
major constituent of molecular clouds, since HZ lacks the large dipole 
moment of CO and the infrared and ultraviolet (UV) transitions of H2, 
unlike CO observations at millimeter wavelengths, are hindered by the 
Earth's atmosphere. 
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and other tracers of the interstellar medium had been ineffective in 

identifying the predominent component of the interstellar medium in the 

Orion region (see Chin 1978 for a review of the previous work). Most 

molecular line studies of the region (see Goudis 1982 and references 

therein), excepting KTCT and later surveys of hydroxyl (OH) emission 

(Baud and Wouterloot 1980) and of formaldehyde (H2CO) absorption (Cohen 

et!l. 1983)~ have been confined to radio bright areas immediately 

surrounding the most prominent regions of star formation (e.g., the 

Orion Nebula, NGC 2023, 2024, 2063, 2067, 2068, and 2071), because the 

small beam size of most millimeter-wave telescopes makes a large-scale 

survey impractical. 

The survey by Chin (1978) used the recently built Columbia 

telescope which, with an 8 arcmin beam, maps large areas of the sky 

effectively. As this survey showed, the prominent regions of star 

formation constitute only a small fraction of the volume of the two 

molecular clouds found. Both clouds have a mass of 105 Me and a size 

of a few tens of parsecs, i.e., a size and mass now known to be typical 

of most molecular clouds throughout the Galaxy. One cloud is 

associated with the Orion Nebula and its radio continuum source, 

Orion A, the other with the radio continuum source Orion B and with the 

system of reflection nebulae NGC 2064, 2067, 2068, and 2071. (For the 

rest of this work, these clouds will be labeled the Orion A and B 

clouds.) These objects are probably the parent clouds from which the 

young OB association located just in front and slightly west of the 

clouds formed. 
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The Orion dark clouds offer an excellent laboratory for studying 

the formation of stars and the interactions between young stars and the 

interstellar gas: they are relatively nearby (~ 500 pc), and the 

region is well out of the galactic plane and consequently free from 

confusion created by other objects along the same line of sight. The 

interplay between clouds and stars may both fashion the appearance of 

such an active star-forming region and determine its evolution. 

Without a complete picture of molecular clouds in such a region, and of 

the star formation process, the largest-scale phenomena, which may 

ultimately be responsible for the formation of large star clusters and 

OB associations, are largely overlooked. This study presents a global 

view of the molecular cloud system in Orion and the neighboring 

constellation Monoceros, using radio emission from CO as a probe. 

The primary goals of the CO survey presented here were to delineate 

the full extent of molecular material associated with the Orion region 

and to study the structures found. The new survey includes a 

reexamination of the Orion A and B molecular clouds with improved 

sensitivity, better velocity resolution, and increased spatial coverage 

using the Columbia University radio telescope, an improved version of 

the instrument used by Chin (1978). 

The numerous dark clouds seen on the Palomar Observatory Sky 

Survey (POSS) prints outside the area surveyed by KTCT suggest that the 

full extent of the Orion complex of clouds had not been determined. 

Included in the new CO survey was the region bordered by the Orion 

molecular complex, the galactic plane, and the Taurus cloud complex, a 

total surveyed area of 850 deg2• Figure 111.4 indicates the extent of 
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the survey and shows the location of the objects found in this survey 

and previous surveys with the Columbia telescope in the third quadrant 

of the Galaxy. The network of molecular features discovered in the 

present survey includes two long, thin (~ 10° x 1/2°) molecular 

filaments, an expanding ring of clouds surrounding the H II region 

S 264 (Sharpless 1959) associated with ~ Ori, and many small clouds. 

The molecular cloud related to the Monoceros R2 association also lies 

within the surveyed region and has a linear size and mass indicative of 

a typical giant molecular cloud (see Morris, Montani, and Thaddeus 

1980; Maddalena et !l. 1982; and Thaddeus 1982 for preliminary accounts 

of this work). As shown in Chapter V,A and B, all these clouds may 

have a common origin and are part of a single cloud system over 300 pc 

in diameter and having a total mass of 4 x 105 Me. Aside from 

locations of the clouds, the data from the survey provides values for 

the gross properties of the clouds (e.g., mass, size, luminosity). 

Many of the molecular clouds found in this survey have interesting 

and unusual or unique properties in some way (Ch. IV,A). Cloud 

structures that are discussed at length include the two filamentary 

clouds which are cold but have wide spectral lines typical of those 

characterizing warmer clouds. The observations from this survey, 

combined with the preliminary results from observtions with high 

resolution, indicate that magnetic fields may play an important role in 

shaping the filaments and dominating their dynamics (Ch. IV,A,4). 

Chapter V,C discusses a small, possibly dynamically evolving cloud 

which may have internally subsonic motions. 

Many of the CO emission peaks show interactions between the clouds 
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and young stellar objects coincident with the emission peak. These 

interactions usually involve only the molecular material local to the 

stars, i.e., areas of the clouds less than a few parsecs across. Two 

large-scale interactions only hinted at in previous surveys and clearly 

seen in this survey are investigated in some detail. The Orion A and B 

clouds have temperature and density enhancements along.a narrow ridge 

located on the sides of the clouds facing the Orion OB association; in 

Chapter V,D the ways in which the OB stars could have created such a 

ridge is investigated. The A Ori ring of clouds is a second 

large-scale interaction; Chapter V,E provides a scenario for how A Ori 

and its H II region might have produced the expansion and distribution 

of gas structures observed in that region of Orion. The size and mass 

of the regions affected by each of these interactions are tens of 

parsecs and about 5 x 104 Me of interstellar gas. 

In the surveyed region along the galactic plane lie distant 

molecular clouds not associated with the Orion system, most discovered 

during the course of the survey (Chs. IV,B and V,G). A new cloud, 

labeled Q in Figure 111.4, lies ~ 2.°5 below the galactic plane and 

midway between the Rosette and CMa OB 1 cloud complexes (Blitz 1978) on 

the plane of the sky. This cloud, if at the most likely distance of 

3 kpc, is larger (250 x 100 pc) than all other clouds in Figure 111.4 

even though it covers less angular area than the closer Orion A. B. and 

Monoceros R2 clouds. The complete Orion system of clouds, discussed 

above, is the only object in the figure comparable in size and mass 

(~ 106 Me) to cloud Q. Although these smaller, nearby clouds show much 

evidence of associated star formation, the distant cloud shows very 
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little. These unusual properties, as well as the cloud's low 

temperature and wide spectral lines, are rarely found in combination for 

other molecular clouds. The observations indicate that Cloud Q may be a 

young object which has not yet extensively formed massive stars and 

which, after massive stars form, may in appearance resemble the Orion 

complex. 

Outer galaxy surveys previous to the present one used poorer 

resolutions, lower sensitivities (Gottlieb, Brock, and Thaddeus 1984; 

Murphy 1984), or less complete spatial coverage (Sanders, Solomon, and 

Scoville 1984; Kutner and Mead 1981, 1985) and are inadequate for 

tracing spiral arms in the outer Galaxy beyond a galactocentric radius 

of 13 kpc (cf. Grabelsky 1985). Although only a 16° segment of the 

galactic plane was surveyed (1 ~ 206° to - 222°), over a dozen clouds 

with a total mass of at least 15 x 105 Me were mapped, some lying as far 

as 6 kpc from the Sun, or about 15 kpc from the center of the Galaxy. 

The sizes of these outer galaxy clouds are similar to what is found 

locally or in the inner part of the Galaxy, but the luminosity and mass 

of these clouds are far less than their inner galaxy counterparts, 

similar to what Kutner and Mead (1981, 1985) have found. Regardless of 

the low density of molecular material outside the solar circle, the 

locations and distances of the clouds suggest that they lie in two 

spiral arms, one possibly a continuation of the Perseus Arm into the 

third quadrant and the other a more distant spiral arm. These 

observations give the first indication that CO emission from molecular 

clouds can be used to trace the spiral arm pattern of our Galaxy out to 

galactocentric distances of 15 kpc. 
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CHAPTER II. COLUMBIA TELESCOPE 

The survey consists of spectral line observations taken at the 

frequencies of the J = 1 + 0 rotational transition of 12CO (hereafter 

CO) and 13CO (115 271 MHz and 110 201 MHz, respectively), 

predominately from the Columbia 4 foot millimeter-wave radio 

telescope in New York City; further observations of CO and 13CO were 

made with the NRAO 36 foot telescope on Kitt Peak; the Bell Telephone 

Laboratory's 7 meter telescope at Crawford Hill, New Jersey; and the 

2.5 meter Petite Operation Millimetrique (P.O.M) telescope in 

Bordeaux, France. This chapter discusses the instrumentation, 

pointing accuracy, and calibration of the Columbia telescope, which 

provided all of the observations used for the large-scale survey of 

Orion. The instrumentation of the three higher-resolution telescopes 

used to reinvestigate portions of clouds observed in the Columbia 

survey is summarized in Table 11.1. 

A. Instrumentation 

The Columbia telescope, housed in a 12-foot Ash Dome on the roof 

of the Pupin Physics Laboratories of Columbia University in northern 

Manhattan, commands an unobstructed view of about 80% of the sky. 

Operated and maintained jointly by Columbia and the Goddard Space 

Flight Center, Institute for Space Studies (GISS), the telescope has 

been in use since 1974. Observations for this survey were made from 

1978 January through 1985 February, usually from the late fall 
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through early spring (November through April) when opacity due to 

atmospheric water vapor is low. On the average, over 100 days per 

year were suitable for observing. 

The components of the telescope are: the antenna optics, 

receiver, mount and drive, spectrometer, and computer. The optics of 

the telescope, a Cassegrain system, consists of a 4 foot parabolic 

primary with .a focal ratio of f/0.375. When a room-temperature 

Schottky diode receiver was replaced by a 

superconductor-insulator-superconductor (SIS) tunnel junction 

receiver in 1983 May, the effective focal ratio of the system changed 

from f/2.8 to f/3.8; the telescopels original hyperbolic secondary 

was replaced in order to compensate for the difference in positions. 

of the two receivers along the optical axis. The accuracy of all 

surfaces, A/75 at the 2.6 millimeter CO wavelength, is probably 

better than that of most telescopes operating at these wavelengths. 

In 1979 July, a pyramidal feed horn attached to the Schottky receiver 

was replaced by a scalar feed horn, similar to the scalar horn later 

used for the SIS receiver. 

When a remote 115 GHz transmitter was used as a point source, 

the antenna pattern of the telescope was found to be that calculated 

from scalar diffraction theory. With the combination of pyramidal 

horn, original secondary, and Schottky receiver the measured beam 

width of the telescope was 8. 1 0 at full width at half-maximum (FWHM) 

(Cohen 1978), and 8. 1 7 with the scalar horn, new secondary, and SIS 

receiver. Although the antenna pattern for the Schottky receiver 

with the scalar horn was not measured, Cohen (1978) calculated that 
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the beam would be 8.'3. The observed sidelobes in the telescope's 

diffraction pattern were 20 dB or more below the main lobe of the 

beam with the scalar horns (15 dB with the pyramidal horn). The beam 

efficiency of the telescope, altered after the changes in feed horn 

and receiver, is discussed in Chapter II,C. 

The observations before 1983 May, roughly three-quarters of the 

total, were taken with the Schottky receiver, developed at GISS, 

which had a single sideband (SSB) receiver noise temperature of 

900 K. The rest of the observations were taken with the SIS 

receiver, also developed at GISS, which had a noise temperature 

usually below 95 K SSB, the lowest to date for any receiver operating 

between 100 and 120 GHz. When this SIS receiver was installed, 

system noise temperatures referred to a point above the Earth's 

atmosphere (i.e., the combined noise from the telescope, spillover, 

and from the Earth's atmosphere) decreased from typically 2500 K SSB 

to 600 K SSB for CO observations (1700 K SSB to 300 K SSB for 13CO), 

making the SIS receiver about twenty times faster than its 

predecessor. Unlike the Schottky, the SIS receiver is a true single 

sideband receiver with 20 dB less sensitivity in its image sideband 

than in its signal sideband. Complete descriptions of the receivers 

are given by Cong (1977) and Cong, Kerr, and Mattauch (1979) for the 

Schottky and by Pan et~. (1983) and Pan (1984) for the SIS. 

The antenna and most of the receiver components are pointed by 

an altitude-azimuth fork mount. Using the output from 16-bit (19."8 

resolution) optical shaft encoders and tachometer generators, the 

computer monitors the pointing and slew rate of the telescope for 
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each axis of the mount every 0.01 sec and alters the torques supplied 

by direct-drive motors when necessary. The telescope's relative 

pointings are maintained to within 2' of the position requested (see 

Ch. II,B for the absolute pointing accuracy). Similarily, the 

position of the dome is maintained to within an allowable error of 

After detection and amplification, the incoming signal is passed 

from the receiver to a filter bank spectrometer, built at GISS 

following an NRAO design, that has 256 channels, each with a 

resolution of 0.250 MHz. At the frequencies used for CO and 13CO, 

the filter bank has resolutions of 0.65 and 0.68 km s-l and 

bandwidths of 166 and 174 km s-l, respectively, with higher velocity 

resolution observations possible using the methods described below 

(Ch. V,C). The outputs from the filter bank are integrated for 

48 msec, digitized, and sent to the computer. 

The computer (a Nova 1200 replaced in 1984 September by a 

Nova 4/X, both manufactured by Data General) monitors the telescope's 

position, updates the various commands to the telescope drives and to 

the reference frequency source for the receiver's local oscillator, 

acquires data digitized by the spectrometer, calibrates them 

(Ch. II,C), and stores them on a cartridge disk. The observer can 

perform some preliminary data reduction while observing (e.g., to 

display spectra previously stored on disk or being observed, and 

revise the parameters used to remove baselines). Available on the 

same system are various utility programs--for transfer of data from 

disk to computer tape or automatically searching through a list of 
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positions for the most suitable reference positions for a 

position-switched observation (Ch. III,A). After preliminary data 

reduction and storage of the data at the telescope, the remaining 

data reduction is performed at GISS with main-frame computers 

(IBM 4341 and an Amdahl 470/V6). 

B. Pointing Accuracy 

A comparison between the known optical center of the Sun, 

obtained from the Nautical Almanac, and the observed radio limb of 

the Sun,is used to test the pointing accuracy because Venus and 

Jupiter, the sources ordinarily used by millimeter-wave telescopes, 

subtend an area much smaller than the beam of the Columbia telescope 

with the result that their emission is severely diluted. The 

difference between atmospheric refraction at optical and millimeter 

wavelengths and the size of the telescope beam is assumed to be 

negligible. 

The parameters of the pointing (i.e., the orientation and tilt 

of the telescope pier and mount) were revised at least annually: 

first using the radio limb of the Sun to align the radio axis of the 

telescope on the center of the Sun; second, aligning the axis of an 

optical telescope, attached to the dish of the radio telescope, on 

the image of the Sun; and third, measuring with the optical telescope 

the pointing errors toward roughly 30 stars well distributed in the 

sky (Cohen 1978). Periodically, the pointing accuracy was checked by 

observing the radio limb of the Sun, to see if the observed radio 
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limb remained concentric with the expected optical center and daily 

by comparing the intensity toward strong CO sources in Orion and 

Monoceros (NGC 1976, NGC 2068, or the core of Mon R2) with 

intensities previously obtained. Absolute pointing errors were, at 

most, 21 and, typically, 11. 

C. Calibration of Spectra 

At 110 and 115 GHz the calibration of spectra must take into 

account the attenuation of the Earth's atmosphere, which was assumed 

to arise from an unchanging oxygen layer and a variable water vapor 

layer. The atmospheric opacities from water vapor were measured by 

antenna tipping before each day's observations of the Orion region 

(more frequently if the weather changed), and the values of receiver 

gain were updated with a chopper wheel calibration before each scan 

(Cohen 1978; Kutner 1978). This procedure gave antenna temperatures 

consistent to within 5%, regardless of the elevation of the source or 

the atmospheric opacity. 

The temperatures in the spectra were then converted to radiation 

temperatures, TR (Kutner and U1ich 1981), by correcting for beam 

efficiency, n, which, prior to 1979 July, equaled 0.67 but after the 

scalar feed horn replaced the pyramidal feed horn became 0.81. After 

the SIS receiver was installed n increased to 0.92. (The value of n 

for the Schottky receiver with scalar horn and original secondary was 

calculated from the theoretical radiation pattern of the scalar horn 
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and from scalar diffraction theory; the other values of n were 

obtained by comparing the observed intensities toward strong CO 

sources, such as Orion A, B 335, and W 51, before and after each 

modification.) The TR obtained with the Columbia telescope are 7 to 

10% lower than those seen with the Bell Laboratories, NRAO 36-foot, 

and Five College Radio Astronomy Observatory telescopes. 
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CHAPTER III. OBSERVATIONS--COLUMBIA TELESCOPE 

The Orion survey with the Columbia telescope covers a wide range 

in galactic latitude (-25°< £ < 4°) so, to make the survey as 

efficient as possible, different observing techniques were used for 

different regions. Observations were either position-switched or 

frequency-switched and taken at either full resolution or lower (1/4° 

or 1/2°) in which case the super-beam technique was used. After a 

description of each technique, the use of the techniques for the 

particular observations is discussed. 

A. Observational Techniques: Position and Frequncy Switching and 

Super-Beam technique 

Position-switched observations toward a source position require 

one or two nearby reference (off) positions found by 

frequency-switched observations to be devoid of CO emission stronger 

than typically 0.15 K. Because the spectrometer uses filters with 

non-linear responses, position-switching occasionally results in 

non-linear baselines when a large difference in power (DP) exists 

between the powers emitted by the Earth's atmosphere from the source 

and off positions. To reduce the baseline problem, two off positions 

are used, one with an elevation above the source position (negative 

DP) and one below (positive DP). The total time on the two off 
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positions equals the total on the source position, but the fraction 

of time on each off is chosen to produce spectra with a DP as small 

as possible. Observations with a single off position can give good 

results if either the sensitivity of the observation is not too high 

or a flat baseline in only a narrow velocity range is desired. 

Multiple off positions, which produce spectra requiring at most the 

removal of a first order baselines across the full bandwith of the 

spectrometer, give the widest range of usable velocity in the final 

spectra. 

In frequency-switched observations, the reference spectrum is 

obtained by shifting the frequency of the receiver1s local oscillator 

usually by 10 or 2.0 MHz for half of the observing time: if CO 

emission is present along a particular line of sight, the resultant 

spectrum contains both a signal line and an image of the signal line 

separated by 10 or 20 MHz. If the CO telluric lines and their 

images, both lying at predictable velocities, fall at velocities 

where emission is expected, then observations of the region are 

either delayed until the telluric lines are no longer a problem 

(i.e., when the component of the antenna1s velocity with respect to 

the local standard of rest, LSR, along the line of sight changes 

significantly) or the observations are made by position-switching. 

Frequency switching is used when narrow spectral lines are expected 

within a limited velocity range, and when looking for off positions 

for planned position-switched observations. 

After baseline removal--typically by a third-order polynomial 
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fit to the 20 channels on both sides of the signal and image 

lines--the frequency-switched spectra were folded, reducing the noise 

in the spectra so the integration time needed to obtain a certain 

noise level is 12 less than for position-switched observations. 

Since all observed emission lines were much narrower than the extent 

of the baseline used in the fit, the high-order fit should not have 

affected the processed spectra. For a random sample of spectra we 

checked for differences between this high-order baseline fit and a 

first-order baseline fit through the half dozen or so channels on 

either side of the signal and image line and found neither systematic 

nor significant differences (Fig. 111.1); the high-order fit gives 

more aesthetic plots with a larger useful baseline (- 40 km s-1) than 

a first-order fit. Figure 111.2 gives examples of both 

frequency-switched spectra, before and after folding, and 

position-switched spectra. 

The super-beam technique is used when the area to be surveyed is 

much larger than the area covered by the telescope beam. Since an 

unmanageable number of observations would be needed to cover that 

area, the amount of data could have been reduced by averaging or 

smoothing the high-resolution data after the observations were made. 

The super-beam technique performs the averaging by moving the 

telescope through a square grid of full-resolution positions while 

the data is being collected, thereby synthesizing a larger and 

essentially square beam; it makes efficient use of the time of the 

telescope and its computer, since only one observation needs to be 

taken, proccessed, and stored, but the higher resolution information 

is no longer available. 
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B. CO Observations 

The large-scale CO survey of Orion and Monoceros covers 850 deg 2 

(0.25 steradians) of the celestial sphere, extending roughly from the 

CMa OB 1 and Rosette (Mon OB 2) cloud complexes along the galactic 

plane down to a galactic latitude of -25 0 and from the Taurus dark 

cloud complex in the north to a declination of -14 0 (Fig. 111.4). 

Approximately half of the observations were taken by ~self or under 

my supervision; the remaining observations were made either by Mark 

Morris or Joseph Moscowitz. In total we observed over 12,500 

positions within that region at the locations indicated in 

Figure 111.3. With an rms noise level of at most 0.3 K and more 

typically 0.25 K, each observation, if frequency-switched, took 

9 minutes of integration with the Schottky receiver and 1/2 minutes 

with the SIS, or, if position-switched, 13 minutes and 3/4 minutes, 

respectively. 

The molecular emission from nearby objects at high galactic 

latitudes was expected to cover a narrower range in velocity than 

emission from objects along the galactic plane which could have a 

wide range in distances. For the sake of efficiency, but without 

compromising the quality of the observations, different observing 

methods were used for different regions within the survey, and the 

large survey can be divided into three sub-surveys (Fig. 111.4): 

full-resolution observations at intermediate latitudes, high-latitude 

observations, and galactic plane observations with 1/40 resolution. 
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1. Full-Resolution Observations at Intermediate Latitudes 

Full-resolution observations at intermediate latitudes 

constitute about 75% of the Orion survey and concentrated mainly 

toward the largest molecular clouds either known to exist prior to 

the start of the surveyor found duri ng its course. About a fourth 

of the observations were position-switched, using either one or two 

off positions (Table 111.1), and the majority frequency-switched. 

Initially observations were spaced 1/4° or 1/2° apart; when molecular 

emission from a cloud was found, the full extent of the cloud was 

covered by observations spaced either 1/4° or 1/8° apart. 

2. High-latitude Observations 

At high latitudes (b < _20°) in Orion, a great deal of CO 

emission is not expected first, because stellar winds and strong 

ultraviolet fluxes from stars in the Orion OB association in this 

area have probably dispersed or dissociated most molecular material; 

second, because the region at the 500 pc distance of Orion is four to 

five times the local scale height of molecular material from the 

galactic plane; and, third, because galaxy counts of the area 

indicate little obscuration from dark clouds. The extent of the area 

required us to space observations 1° apart and to use a super-beam 

1/2° on a side; all observations were frequency-switched. When the 

spectra showed possible emission, full-resolution observations were 

made to confirm the detection and to map the extent of any cloud 

found. 
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3. Galactic Plane, 1/4° Resolution Observations 

Observations along the galactic plane, position-switched with 

two off positions (Table 111.1), were taken with the SIS receiver at 

a resolution of 1/4°, using the super-beam technique, and spaced 1/4° 

apart. In addition to determining whether there was any molecular 

emission in the galactic plane associated with the local Orion 

clouds, the goal of this part of the survey was to find how much 

molecular material exists outside the solar circle. The sensitivity 

(rms noise of 0.20 K) and the spatial resolution were sufficient to 

detect any cloud closer than 5 kpc with a diameter of at least 10 pc 

and a peak temperature greater than 1 K. 

C. 13CO Observation 

Since the LTE method of determining cloud masses requires both 

CO and 13CO observations at the same location within a cloud, we 

looked for 13CO emission at approximately 135 positions known from 

the CO survey to have strong emission. All observations were taken 

at full resolution by frequency-switching to an rms noise level of 

0.15 K or better. In addition to full-resolution observations, we 

similarly surveyed all of the Orion A and B clouds using a super-beam 

resolution of 1/2° and an rms noise of 0.20 K. The 310 position 

observed for 13CO emission are shown in Figure 111.5. 
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CHAPTER IV. RESULTS 

The observed emission can be separated into emission coming from 

objects that are part of the local arm of the galaxy and emission 

from more distant objects that lie in the outer arms of our galaxy. 

The first section of this chapter concentrates on the results toward 

clouds with distances of about 1 kpc or less, including clouds 

associated with the Orion and Monoceros star-forming regions; the 

rest discusses the outer galaxy clouds. A later chapter discusses 

some particularly noteworthy cloud structures. 

A. Clouds Associated with the Orion and Monoceros Complexes 

About 100 deg2 of the region surveyed show CO emission exceeding 

a TR of 0.8 K in the velocity range -10 to 20 km s-l. Most of this 

molecular material is concentrated into large clouds associated with 

Orion A, Orion B, Mon R2, and into two filamentary clouds. The 

remaining clouds can be divided into groups with apparently similar 

characteristics or a similar origin. 

The results are summarized in Figures IV.1-IV.4. Figure IV.1 

presents a contour map of velocity-integrated intensity of CO 

emission, WCO, for the region surveyed. Figure IV.2 identifies the 

most prominent molecular features and indicates the main peaks in the 

CO brightness temperature distribution; Table IV.1 lists the 

position, maximum measured temperature, temperature-weighted mean 
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velocity, Weo, and associated astronomical objects (e.g., dust clouds 

or H II regions) for each peak. Figure IV.3 shows the 

temperature-weighted mean velocity field, ([1 TR v dv] I 1 TR dv), 

generally approximating the average velocity of the molecular 

material in a particular direction. Figure IV.4 displays line widths 

defined throughout this work, unless otherwise stated, as 

Weo I TR(PEAK); since most observed spectral lines are approximately 

Gaussian in shape, the displayed line widths are equal to 1.064 times 

FWHM and to 1.253 times twice the rms line widths. For blended lines 

the velocity displayed in Figure IV.3 is a weighted average of the 

components; the line width displayed in Figure IV.4, then, lies 

between those of t~e individual components and of the whole multiple 

line. The only large region of double lines with close, overlapping 

components lies in the Orion B cloud between NGC 2023, 2024 and 

NGC 2064, 2067, 2068, and 2071. In two regions, near a = 5h 52m, 

6 = 2° and a = 5h 52m, 6 = _9°, the spectra show two widely separated 

() 8 km s-1) velocity components that imply overlapping and 

presumably distinct clouds. Each component is treated separately in 

these regions, and, for the sake of clarity, the data for one of the 

velocity components are displaced from their actual positions in 

Figures IV.1-IV.4. 

1. Orion A and B 

The molecular clouds associated with Orion A and B, which h~ve a 

distance of - 500 pc, subtend some 29 and 19 deg2 (see Fig. IV.1 and 
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the magnified-scale Figs. IV.5 and IV.6), or substantially more than in 

Chin's (1978) survey which had a detection limit of 2 K, three times 

that of the present survey. In the present survey, Orion B extends to 

6 = 5°, well above the 6 = 2° limit of the previous survey. Where 

Orion B's northern extension narrows at 6 ~ 1.°5 and Barnard's loop 

crosses it in projection, the Orion East cloud (LDN 1621 and 1622) is 

superposed (Ch. IV,A,6). At the southeastern extreme of the Orion A 

cloud, where velocities are 3-5 km s-l, a second molecular feature, 

NGC 2149 (Ch. IV,A,3), with a velocity of 14 km s-l, overlaps the 

Orion A cloud. 

The apparent connection of Orion A and B by low-level emission 

without a discontinuity in velocity suggests that these clouds may be 

physically connected. Both Orion A and B have higher CO temperatures 

on their western edges and a ridge of emission where recent star 

formation seems preferentially located that falls off more quickly to 

the west than toward the east; Chapter V,D discusses ways in which the 

Orion OB I association located just to the west of the molecular clouds 

may have been responsible for this molecular ridge. 

In the region of the Orion B cloud between NGC 2023, 2024 and 

NGC 2064, 2067, 2068, and 2071 the temperature-weighted mean velocities 

are systematically lower (7 km s-l) and the line widths are 

significantly larger than those observed either directly to the north or 

south (Figs. IV.3 and IV.4). Most of the line profiles in this region 

are double: the weaker, low velocity component ranges from 3-8 km s-1 

and the stronger, high velocity component from 8-11 km s-l. The 
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velocities within this region are summarized in Figure IV.7. The 

high-velocity component seems continuous from north to south, while 

the low-velocity appears and disappears. Two explanations of the 

presence of double spectral lines can be offered: first, two 

molecular clouds with slightly differing velocities may exist in this 

region, or, second, strong stellar winds, typical for young stars 

like those in this region or in the nearby Orion OB I association, 

may accelerate one part of the molecular cloud relative to another. 

Except for this region of double lines, the Orion B cloud has no 

organized or ordered velocity structure. 

We confirm for the Orion A cloud the substantial velocity 

gradient (from 11 km s-1 near a = 5h 28m, ~ = _3° to 5 km s-1 near 

a = 5h 48m, ~ = _10°, Fig. IV.8) noted by Chin (1978) and KTCT, which 

they suggest may indicate rotation of. the cloud about an axis 

perpendicular to the galactic plane in a direction oppOSite to 

galactic rotation. Channel maps for the Orion A and B clouds 

(Fig. IV.9) illustrate the velocity structure of these two clouds. 

A few small clouds (13, 14, 28, 29, 39, and 40, Table IV.1) are 

located to the west of the Orion A and B clouds 'in the general 

vicinity of the OB association. The cloud with peaks 39 and 40 

(Table IV.1) may be related to Barnard's loop (Ch. IV,A,7). Both 

cloud 13, associated with the reflection nebula VDB 33 (van den Bergh 

1966) with an estimated distance of - 420 pc (Racine 1968), and 

cloud 14, associated with the optical H II region S 278, are located 

well away from the major clouds. Peak 14 coincides with a position 
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of excess y-ray emission that cannot be accounted for by the 

interaction of cosmic rays with the column density of interstellar 

gas implied by both 21 cm (Heiles and Habing 1974) and our 

observations (Bloemen et ~. 1984; Bignami and Caraveo 1985). 

Clouds 13, 14, 28, and 29 may be remnants of the molecular material 

from which the nearby OB association formed or they may be clouds 

pushed to their present locations by pressure associated with 

energetic events (e.g., strong stellar winds, supernova explosions, 

or H II region expansion) accompanying the evolution of the OB 

association (Cowie, Songaila, and York 1979; also Ch. V,D). 

2. Monoceros R2 

The Monoceros R2 complex of reflection nebulae, first studied 

by van den Bergh (1966) and Racine (1968), is an intense source of 

molecular emission. Previous studies of CO, CS, HCN, H2CO, and NH3 

(Loren, Peters, and Vanden Bout 1974; Downes et al. 1975; Kutner and -- . 

Tucker 1975; Loren 1977; Wilson and Folch-Pi 1981) concentrated on a 

4 deg 2 region centered on the reflection nebulae. Mon R2 is also 

associated with a cluster of embedded infrared sources (Harper 1975; 

Beckwith et ~. 1976; Hudson and Soifer 1976; Thronson et~. 1980), 

a compact H II region (Shimmins, Clarke, and Ekers 1966; Shimmins et 

al. 1966; Downes et ~. 1975), and both H20 and OH masers (Downes et 

al. 1975; Knapp and Brown 1976; Morris and Knapp 1976). The spatial 

distribution of these indicators of recent star formation suggests 

that the core of Mon R2 is a less complex, possibly younger version 
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of the Orion Nebula region (Thronson et !L. 1980): a cluster of 

infrared stars remains embedded and massive stars, inferred from the 

presence of compact H II regions and reflection nebulae irradiated by 

B stars, are just beginning to form at the near edge of the cloud. 

In the present study;- co emission around Mon R2 is found to 

subtend 14 deg2 (Fig. IV.1 and, in more detail, Fig. IV.10), so the 

Man R2 cloud, if at a distance of 830 ± 50 pc (Racine 1968; Herbst 

and. Racine 1976), would be comparable in size (110 pc x 40 pc) and in 

CO luminosity to the Orion A or B clouds: the Mon R2 cloud, then, is 

a substantial giant molecular cloud. 

The outline of the cloud associated with Mon R2, within which 

Weo > 6.4 Kkm s-l, corresponds remarkably well to the one Lynds 

(1962) depicted for the dark clouds LON 1643, 1644, 1645, and 1646. 

The predominant hot spots (61, 63, and 65, Table IV.1), first 

identified by Kutner and Tucker (1975), coincide with the greatest 

concentrations of. reflection nebulae on the POSS prints (van den 

Bergh 1966; Herbst and Racine 1976). Unlike Orion A'or B, most of 

the Man R2 cloud subtends an area that largely exhibits emission well 

below 10 K km s-1 with a few holes in the CO emission within the 

cloud boundary. Apparently this cloud is more centrally condensed 

than either the Orion A or B clouds with most of the emission coming 

from the cloud1s core and little from the envelope. Like Orion A and 

B, the western edge of Mon R2 (near a - 6h 03m, ~ - _6° 301) has a 

steeper temperature gradient than the eastern, and the region with 

the largest temperature gradient has spectral lines significantly 
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wider (- 5 km s·l) than elsewhere in the cloud (Fig. IV.4). In the 

areas centered on the hot spots coincident with the ref1ection 

nebulae (peaks 61, 63, and 65) the lines are similarily wide. 

Velocities are higher in the northwest (13 km s·l) than in the 

southeast (8 km s-1), while the central, active region of Mon R2 has 

a velocity of 7 km s-1, relatively lower than that of the immediately 

sJrrounding areas (Fig. IV.3). Apart from this low velocity region, 

tHe overall velocity gradient, although not as smooth, is reminiscent 

of the gradient found in the Orion A cloud and may also be due to 

rotation of the cloud about an axis perpendicular to the galactic 

plane in a direction counter to galactic rotation. 

3. NGC 2149 Clouds 

Toward the southeastern end of the Orion A molecular cloud, 

where the velocities are typically 3-5 km 5-1, a. second component at 

- 14 km s-1 indicates a separate object along the line of sight. 

As the lower inset of Figure IV.1 shows, the emission from this 

high-velocity feature extends from a point within the boundary of the 

drion A cloud (at a = 5h 36m, 0 = _90 00 1
) to the Mon R2 cloud (at 

a d 6h 04m, 0 = -100 30 1
) and peaks near the reflection nebula 

NGC 2149 (VDS 66) and further west (peaks 43, 44, and 48, 

Table IV.1). Three more molecular clouds (peaks 45, 46, and 47) 

lying immediately to the south of the NGC 2149 cloud have similar 

velocities and are probably physically related to and at the same 

distance as peaks 43, 44, and 48. 
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Both the similarity in velocity between these clouds and the 

nearby Mon R2 cloud and the respective distance moduli of 9.6 and 9.5 

(Racine 1968) for the irradiating stars of NGC 2149 and the 

reflection nebula, VDB 64, associated with peak 47 imply that the 

NGC 2149 clouds lie at the same distance as Mon R2 (830 pc, 

Ch. IV,A,2). At this distance, the western extreme of the cloud is 

- 300 pc below the galactic plane. Possible relationships between 

NGC 2149, Mon R2, and the Southern filament are discussed in the next 

section. 

4. Northern and Southern Filaments 

The Northern filament, a continuous cloud typically 1/2° wide, 

extends - 10° in right ascension from the eastern edge of the A Ori 

cloud group almost to the Rosette Nebula and its associated molecular 

clouds (Blitz 1978). At a - 6h 04m, 0 - 2° and a - 6h 12m, 0 - 3°, 

the filament widens into features similar to typical molecular 

clouds. On the POSS prints the Northern filament appears as 

unconnected, opaque patches. There is no evidence of T Tauri stars 

or reflection nebulae, nor of other signs of recent star formation 

within this filament, so its distance is hard to estimate. Following 

the method of Herbst and Sawyer (1981), star counts imply that the 

distance is 801 ± 91 pc to the Northern filament (details presented 

in Table IV.2). This method is crude, and, given the almost 

identical 11 km s-l velocities of the filament and the nearby Orion B 
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cloud, the filament is likely to be at the Orion B distance of 

500 pc, which is the distance adopted. The Northern filament has 

smooth velocity gradients along spans of a few degrees and, where 

velocities shift abruptly by 2-3 km s-I, both optical obscuration on 

the POSS prints and WCO tend to increase. If the smooth velocity 

gradients indicate that material accelerates along the filament, 

presumably from the pull of gravity toward the galactic plane, then 

those places of abrupt velocity changes, higher obscuration, and 

increased WCO might be where the filament is bent along the line of 

sight. 

The Southern filament, another long, thin (10° x < 1/2°), and 

almost continuous feature, extends eastward from the southeastern 

edge of Mon R2 to the galactic plane near CMa OB I. Like the 

Northern filament, it makes an average angle of 50° with the galactic 

plane and has much wider spectral lines than are expected in an 

apparently quiescent cloud without young stars. A smooth velocity 

gradient exists along its length, from 8 km s-1 at a = 6h 20m, 

6 = -10° 30' to 18 km s-l at a = 6h 52m, 6 = -11° 30', which, like 

gradients seen in the Northern filament, may be due to the 

accelerated flow of material toward the galactic plane. East of 

6h 52m, the velocity field in the Southern filament undergoes abrupt 

and apparently unsystematic shifts that may indicate line of sight 

confusion between the filament and the molecular clouds associated 

with CMa OB I (Blitz 1978). 

A second linear feature, - 3° long, intersects the Southern 
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filament near the position a = 6h 30m, 6 = _9° 30' and creates an 

object we call the Crossbones. It appears to be a single cloud, not 

a chance superposition of two clouds; the velocity gradients along 

both its arms are in the same sense and merge smoothly at the 

intersection. 

The velocities of the western portion of the Southern filament 

being roughly the same as those of the nearby Mon R2 cloud, the 

distance to that portion of the filament may be the same as to Mon R2 

(830 pc). Of several CO emission peaks discernible in the 

Crossbones, one (67, Table IV.1) coincides with three reflection 

nebulae, VOS 80a, b, and c which have associated stars at about 

912 pc (Racine 1968), close to the distance of 1009 ± 77 pc estimated 

from star counts (Table IV.2). Six reflection nebulae (VOS 88, 89, 

90, 92a, b, and c), with an average distance of 1060 ± 130 pc (Racine 

1968; Eggen 1978), lie just beyond the eastern end of the Southern 

filament (a = 7h 04m, 6 = _12°), but whether they are physically 

associated with this filament or with the nearby CMa OS 1 clouds, 

which have a distance of 1200 pc (Eggen 1978), is unclear. The 

Southern filament is less discernible on the POSS prints than the. 

Northern filament, implying more foreground stars for the Southern 

filament and corroborating the greater distance. These distance 

estimates indicate that the Southern filament may extend some 230 

along the line of sight, which is similar to its projected length 

the sky. It is possible that the Southern filament is a physical 

bridge between the Mon R2 and CMa OS 1 clouds. The continuity in 

velocity from the NGC 2149 cloud to the southern end of the Mon R2 

pc 

on 
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cloud and from the Man R2 cloud to the Southern filament suggests 

that the southern part of the Man R2 cloud connects the NGC 2149 

clouds and the Southern filament; if so, a single, continuous, and 

linear structure would then extend 300 pc in the plane of the sky, 

from 5h 36m to 7h 04m. 

One naturally wonders how molecular gas is confined to such 

long, slender filamentary structures. The p Oph clouds, also 

filamentary but smaller, possess interstellar magnetic fields aligned 

along the long axis (Vrba, Strom, and Strom 1976); Vrba (1977) 

suggests that the shape of the p Oph clouds come from the confinement 

of molecular material by the magnetic field. The polarization of 

light from stars behind the Orion filaments may provide a clue as to 

the field orientation near these clouds and whether the shape of the 

clouds result from magnetic fields. Although some stars in the 

direction of the filament have measured polarizations (see Fig. IV.11 

and references in the caption), too few lie behind or near the 

filaments (Figs. IV.12 and IV.13) to conclusively indicate the 

direction of the magnetic field. If the gas presuure implied by the 

observation (<< p [AVFWHM]2, where p is the density derived from the 

estimated volume and mass of the filaments [Table V.1] and AVFWHM is 

the observed line width) is comparable to the magnetic field pressure 

(B2 / 8 ~) then a crude estimate to the field strength is 30 ~G, a 

value ten times higher than is typical for diffuse H I clouds and 3 

times higher than that measures by Hei1es and Troland (1982) in the 

envelope of the Orion A cloud. 
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The relationship between the filaments and the other objects in 

the region is unclear. If the molecular clouds formed at about their 

present displacement from the galactic plane, then the material in 

the filaments may represent gas which was originally part of the 

Orion A, B or Mon R2 clouds but now is falling toward the galactic 

plane probably along paths dictated by magnetic fields. If the 

clouds formed in or close to the plane and then moved out of the 

plane, possibly because of their own velocities or that imparted by 

explosive events such as supernovae, then the filaments may represent 

material left behind as the clouds moved. The filaments may also 

have formed through a method proposed by Chiang (1984) and Chiang and 

Prendergast (1985). In their numerical simulation of the interaction 

between young stars and the interstellar medium, filamentary 

structures, with properties very similar to those observed in Orion, 

frequently formed alongside larger gas condensations. 

High resolution observations were made toward both filaments 

using the NRAO 36 foot telescope, the Bell Telephone Laboratory's 7 

meter telescope, and the Petite Operation Mil1imetrique (P.O.M) 

4 meter telescope (see Table 11.1 for the instrumentation and 

observing methods for each telescope) in the hope of learning more 

about the internal structure of these enigmatic clouds. As shown in 

Figures IV.14, the observations consist of strips of positions 

oriented parallel or perpendicular to the long axis of the filaments; 

Figure IV.1S, contour maps of the velocity structure within strips, 

presents representative results from the telescope at Bell 

Laboratory. 
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Although the analysis of the high resolution data is not yet 

complete, the observations indicate the same wide lines as seen by 

the Columbia telescope and reveal multiple emission peaks and 

velocity structures within the clouds that abruptly change form one 

strip to the next ~ 1.3 pc away (e.g., Fig. IV.15b and c). The 

filaments probably consist of an envelope of low density molecular 

material in which is embedded numerous denser clumps moving at speeds 

of a few km s-l relative to each other; the magnetic fields proposed 

above, and as discussed in Chapter V,A, may tie the clumps together 

and prevent the expansion of the clouds. The observations show some 

evidence of a general velocity gradient across the width of the 

Southern filament that may be due to rotation of the cloud about its 

long axis (Fig. IV.15e, f, and g), but each of the clumps within the 

Northern filament have different and opposing velocity gradients. 

Other systematic trends in the velocity structure were looked for but 

none has yet been found. A more detailed study of the filaments is 

in preparation. 

5. A Orionis 

Several molecular clouds (peaks 1-12) are located along the 

border of S 264, the large, conspicuous H II region centered on a 

complex of DB stars including the 08 star A Ori. Although no 

large-scale molecular surveys have been done, several observations 

have been made toward some of the dark clouds lying along the border 
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of the H II region (Lada and Black 1976; Kutner et !l. 1980; Baran 

1983). 

Murdin and Penston (1977) and Duerr, Imhoff, and Lada (1982), who 

investigated the ages and distribution of the DB stars and Ha emission 

objects in the region, suggest that soon after the DB stars in the A 

Ori complex formed, the expansion of the resultant H II region 

disrupted the parent molecular cloud. Resembling a classical 

Stromgren sphere which is ionization bounded and in a late stage of 

development, th.e H II region now is surrounded by dark clouds (Barnard 

1927; Coulson et !l. 1978) and possibly an expanding H I shell (Wade 

1957, 1958; Crezelius 1984), all either remnants of the disrupted 

parent cloud or material swept up during the expansion of the H II 

region. 

The molecular clouds revealed by our survey are arranged on a 

ring that has' the same radius as both the 100pm ring seen by IRAS and 

the radius of the H II region found by Reich (1978) in the radio 

continuum and by Isobe (1973) in Ha emission. The large, systematic 

velocity shifts, similar to those found for H I (Wade 1957, 1958; 

Crezelius 1984), suggest that the dark clouds, rather than being 

spherically distributed, lie on a ring expanding away from a center 

located close to A Ori; see Chapter V,E for a discussion of the 

shape, orientation, and dynamics of the ring, and proof that A Ori is 

responsible for the ring of clouds. 

Three of the molecular clouds forming the A Ori ring which were 

originally cataloged by Barnard (1927) as dust clouds (B 30, B 35, 
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and B 223) have bright optical rims toward ~ Ori where CO 

temperatures tend to be higher than elsewhere in the clouds. 

According to Lada and Wilking (1980), the temperature enhancement for 

B 35 seen by Lada and Black (1976) and in our data may result from 

heating or compression of the molecular gas by the stellar wind from 

~ Ori; from the shock front associated with the expansion of S 264; 

or from magnetic viscous heating (Ch. V,D,2). No luminous, embedded 

infrared source, which might otherwise account for the heating of 

this cloud, seems to be present (Lada and Black 1976; Lada and 

Wilking 1980; Lada et !l. 1981). Heating processes like those 

conjectured for B 35 may be occurring in the other clouds of the 

~ Ori ring. 

Other individual clouds in the ring are noteworthy. In 

particular, one cloud (peaks 2 and 3), which has strong CO emission 

but has not been cataloged as a dark nebula and is invisible on the 

POSS prints, is associated with the two reflection nebulae VDB 35 and 

37. The star associated with VDB 35 has a distance of about 460 pc 

(Racine 1968), close to the 400 pc of the ~ Ori association. Duerr 

et !l. (1982) suggest that the B 30 cloud (9, Table IV.1) may have 

been the parent molecular cloud for a group of Ha emission objects 

clustered around a center southeast of the cloud; for these young 

stars to be currently visible, the originally obscuring cloud 

material RUst have been dissipated by the H II region or pushed aside 

by its expansion (Ch. V,E,2). 

The molecular cloud B 223 associated with the H II regions S 263 
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and S 265 contains the dark clouds LDN 1588, 1589, and 1590 which 

have bright rims both on their northeast edge facing ~ Ori and toward 

the south; Ha and UV maps of the Orion region (O'Dell, York, and 

Henize 1967; Isobe 1973; Reynolds and Ogden 1979) show a faint 

extension of Barnard's loop superposed on the B 223 cloud 

(Fig. IV.2). The average distance of 307 ± 50 pc for three 

reflection nebulae associated with this cloud, VDB 38, 40, and 43 

(Racine 1968), is comparable to the 400 pc to A Ori and Barnard's 

loop (Reynolds and Ogden 1979), suggesting that the loop may be 

responsible for the bright southern rims. 

6. Orion East (LDN 1621 and 1622) 

The bright-rimmed cloud called Orion East by Herbig and Rao 

(1972), at an estimated distance of 500 ± 140 pc (Herbst 1982; 

Table IV.2), is associated with LDN 1621 and 1622, at least five 

T Tauri stars (Herbig and Rao 1972; Cohen and Kuhi 1979) and the two 

reflection nebulae VDB 62 and VDB 63 (Fig. IV.16); it is very well 

defined on the pass prints 10 northeast of Barnard's loop. CO 

emission from Orion East covers - 1 deg2 at a vLSR - 1 km s-1 

(Fig. IV.16), 9 km s-1 less than that of the Orion B cloud in this 

direction. An interaction of this cloud with Barnard's loop is 

suggested by the strong CO emission along the edge of the cloud 

closest to the loop and, noticeable on the pass prints, the bright 

rim on the side of the cloud facing the loop. In addition to the 
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possible heating OT the gas arising from this interaction, heating by 

T Tauri stars and reflection nebulae within 1/20 of the strongest CO 

emission peak may be significant. Embedded infrared sources, if 

present, would also contribute to the heating of the cloud. The 

cloud's line widths are small, generally less than 1.5 km s-l; 

usually, wider lines are found for clouds which have similarly 

intense CO lines and are interacting with young stars and objects 

similar to Barnard's loop. Even with the low spectral resolution of 

the filter bank (0.65 km s-1), velocity shifts between different 

positions within the cloud suggest that the cloud may not be 

gravitationally bound. In an attempt to see if the cloud is bound, 

and also to determine whether the narrow lines indicate subsonic 

motions, CO and 13CO observations with high velocity resolution 

(0.22 km s-1) were made at three positions within the cloud 

(Fig. IV.16). See Chapter V,C for the observational techniques, data 

reduction, and the implication of the observations. 

7. Barnard's Loop 

At least three clouds other than Orion East may be related to 

Barnard's loop. Two (41 and 42, Table IV.1) located directly on the 

loop are possibly the northern and southern sections of LDN 1638 (see 

Fig. 1, KTCT). Whether these clouds, with velocities and positions 

intermediate between the western side of Mon R2 and the eastern side 

of the Orion A and B clouds, are associated with the loop or Mon R2 

or Orion A and B remains unclear. 
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The third cloud (39 and 40, Table IV.l) lies between the Orion B 

and B 223 clouds near where Barnard's loop fades away on the POSS 

prints. The cloud has no bright rims and, unlike most clouds with 

such strong CO emission, is barely discernible on the prints. 

Peak 39, probably associated with the reflection nebula VOB 49 and 

its illuminating star w Ori, may be at an approximate distance of 

320 pc (Racine 1968), similar to the distances of 400 pc to 

Barnard's loop (Reynolds and Ogden 1979) and 307 pc to B 223. Since 

neither of these distances is well known, this cloud could be 

physically related to Barnard's loop, to B 223, or both. The western 

portion near peak 39 has a velocity of approximately 3 km s-1 and 

shows some evidence for a north-south velocity gradient, while the 

velocity of its eastern portion near peak 40 is approximately 

9 km s-1 (Fig. IV.3). In the region between peaks 39 and 40, double 

spectral lines with velocities of 6 and 10 km s-1 indicate that the 

cloud may actually consist of two unrelated components seen in 

projection. 

8. LON 1653, 1654, 1655, and 1656 

North of the Southern filament CO emission matches the dark 

nebula LON 1653, 1654, 1655, and 1656 on the western border of the 

CMa DB I complex (Fig. IV.2) observed by Blitz (1978). Emission from 

CO intensifies at 74 (Table IV.1) toward the H II region 220-01/1 in 

Marsalkova's (1974) catalog and its associated bright nebula 
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NGC 2316. The velocity one beam (7. 1 5) to the east of this peak is 

7 km 5-1, versus 12 km 5-1 found toward the rest of the cloud, a 

discontinuity suggestive of an interaction between the H II region 

and the cloud. Peak 72 (Table IV.1) lies near the reflection nebula 

VOB 86, which has an associated star with a distance of 500 pc (Eggen 

1978). The proximity of clouds 72-74 to CMa OB 1, and the modest 

difference in the velocity of these clouds (12 km 5-1) compared to 

that of CMa OB 1 (18 km 5-1, Blitz 1978), lead us tentatively to 

adopt for the LON 1653, 1654, 1655, and 1656 clouds the same 1200 pc 

distance as that of CMa OB 1 (Eggen 1978). Alternatively, these may 

be associated with the neighboring section of the Southern filament 

at a distance of approximately 1060 pc (Ch. IV,A,4). 

B. Outer Galaxy 

Observations along the galactic plane revealed emission which in 

part probably arises from clouds at distances greater than 1 kpc from 

the Sun. The results of the 1/40 super-beam observation 

(Ch. III,B,3) are summarized in Figures IV.17-IV.20, maps of WCO 

integrated over various velocity ranges, and in Figure IV.21, a 

galactic longitude-velocity (l-~) diagram integrated over galactic 

latitude. A section of the Rosette cloud complex (B, Figs. IV.17 and 

IV.18) previously observed by Blitz (1978), is included in the 

figures as well as a section of the Northern filament and the 

LON 1653, 1654, 1655, and 1656 clouds {A and T, Figs. IV.17 and 
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IV.18), discussed above. Table IV.3 lists the observed parameters, 

estimated distances, displacements from the galactic plane, and 

masses (Chs. V,A; V,F; and V,G) for the clouds labelled in Figures 

IV.17-IV.21. 

A cloud located at 1 - 216°, £ - -2.5° (Q, Table IV.3) covers 

the largest angular area of any cloud along the galactic plane in the 

observed range of galactic longitude. Figure IV.22 gives the spatial 

distribution of TR and the positions of observation. Other than the 

newly discovered cloud located at 1 = 216°, ~ = -2.5°, Figure IV.22 

shows a small cloud (P, Table IV.2) with low intensity CO emission 

and a significant molecular cloud located at 1 = 218°, £ = 0° (S, 

Table IV.3), associated with the optical H II region S 287. 

The properties of the large cloud differ from those of the 

smaller clouds and of other typical molecular clouds found throughout 

the Galaxy. Its TR rarely exceeds 2 K (Significantly less than the 

5 K typical for envelopes of large molecular clouds; Fig. IV.22b), 

yet its s~ectral line widths (- 7 km s-1 FWHM) are ai wide as those 

found toward the small emission peaks in the Orion molecular clouds 

where temperatures are far higher. Figure IV.23 gives both the 

averaged spectrum and a typical observed spectrum for this cloud. 

The temperatures obtained from 13CO observations at a few positions 

within the cloud were typically 1/4 or 1/5 as intense as the CO 

emission at the same position, as is normally found toward molecular 

clouds. Spot checks of CO and 13CO with the 4.9 meter radio 

tel escope at McDonal d Observatory, Uni versity of Texas (Lei sawitz 
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1984; Morris 1984) and the 14 m telescope of Five College Radio 

Astronomy Observatory (Solomon 1985) yielded temperatures that agree 

with ours, indicating that the observed TR reflects a low kinetic 

temperature for the cloud rather than effects of clumping or of 

optically thin CO. The cloud covers nearly 6 deg2 of sky and its 

velocity with respect to the local standard of rest is 27 km s-l. 

Figure IV.24, a velocity-longitude diagram for the cloud, shows a 

velocity gradient from 25 km s-l at 1 = 215° to 32 km s-l at 

1 = 219°, close to that expected from differential galactic rotation. 

(An extended discussion of this object is given in Chapter V,F and by 

Maddalena and Thaddeus 1985) 

Some features at low velocity « 18 km s-l) located between 

1 - 206° and 211° (C, 0, E, G, I, and J; Table IV.3) are probably 

related to the Man OB 2 cloud complexes previously surveyed by Blitz 

(1978). One object (L, Table IV.2) with a velocity of 7 km s-1 and 

an unknown distance maybe a local cloud. At higher velocities 

(> 35 km s-1), the linear arrangement of the observed clouds (F, H, 

K, M, N, 0, and R, Table IV.2) on the l-,Y. diagram (Fig. IV.21) 

indicates that these clouds may be part of a large galactic structure 

such as an outer arm to our Galaxy. (Further details as to 

distances, masses, associated objects, and a comparison of the outer 

galaxy clouds with local or inner galaxy clouds are presented in 

Chapter V,G.) 
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CHAPTER V. DISCUSSION 

A. Cloud Masses 

For each of the local clouds in Table V.1 we estimated virial 

masses Mvir' LTE masses MLTE' and CO masses MCO. (For a detailed 

discussion of the methods, see Appendix A.) Both Mvir and MLTE' as 

explained in Appendix A, are upper limits, and for MLTE and MCO we 

assumed that all hydrogen within the clouds is molecular in form. Each 

method is based on an independent set of assumptions and each gives 

values roughly within a factor of 2 of the others (Table V.1), an 

agreement supportive of the validity of the estimates. Only CO masses 

were calculated for the outer galaxy clouds (Table IV.3) since MCO is 

easier to derive than Mvir and MLTE, an~ appears to be equally 

reliable. 

Taking into account that the extent of emission in our survey 

greatly exceeds that of previous surveys, we find that the masses for 

Orion A (- 1.0 x 105 Me) and Orion B (- 0.8 x 105 Me) are consistent 

with those previously found using CO (1.0 x 105 Me and 0.6 x 105 Me' 

KTCT), OH (Baud and Wouterlout 1980) and formaldehyde (Cohen et !l. 

1983). Similarly, previous estimates of mass for the Mon R2 cloud 

derived from the spatially limited CO surveys of Kutner and Tucker 

(M ) 0.32 x 105 Me; 1975) and Loren (M = 0.23 x 105 Me; 1977) are 

consistent with our results (M - 0.9 x 105 Me). 

Although virial masses are sensitive to the assumed shape and 

internal structure of the cloud, Mvir agrees fairly well with MLTE and 
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Mea. For the Northern and Southern filaments, Mvir are about five 

times higher than Mea and MLTE suggesting that the clouds may not be 

graviationally bound and could be rapidly evolving. If these clouds 

are not short-lived structures, a force acting to confine the clouds is 

needed. The pressure from the magnetic fields proposed in 

Chapter IV,A,4 may act as the confining force if the fields outside of 

the clouds are substantially tied to the intercloud gas so that they 

cannot move.' The discrepency in the mass estimates is resolved when 

the effects of such a magnetic field is included in the virial mass 

calculation. Alternatively, the discrepancy might be explained if the 

filaments were sheets seen edge-on, a geometry inconsistent with the 

form of the virial theorem selected; this second possibility, however, 

is unlikely, because two sheets seen edge-on probably would not be 

parallel to each other, have such large apparent length~to-width 

ratios, or remain planar over the large scale observed. 

B. Relationships Between the Orion and Monoceros R2 Cloud Cpmplexes 

It is worth asking whether most of the molecular clouds observed 

between 400 and 1200 pc are related and form a single large-scale 

system with, perhaps, a common origin. The Orion A and B clouds are 

probably related since they lie at the same distance, have similar 

velocities, and are connected in emission. Relationships between the 

Orion B and both the A Ori clouds and the Northern filament are also 

plausible, since these clouds are close to each other and have similar 
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velocities, and are connected in emission. Relationships between the 

Orion B and both the A Ori clouds and the Northern filament are also 

plausible, since these clouds are close to each other and have similar 

velocities or distances. There is little doubt that, due to 

similarities in their distances and velocities, the Southern filament, 

the Mon R2 cloud, and the NGC 2149 clouds are related. The question 

remains, however, whether the Orion complex (Orion A, B, Northern 

filament, and A Ori clouds) is associated with the Mon R2 complex 

(Southern filament, Mon R2, and NGC 2149 clouds). 

From the observed mass spectrum of molecular clouds (Dame 1983) 

and the density of molecular material within 1 kpc of the Sun (Dame and 

Thaddeus 1985) we find it unlikely on an ~ priori basis that two such 

complexes would lie so close together. On the other hand, the boundary 

of the survey were chosen to include both the Orion and Mon R2 

complexes so statistical arguments are inconclusive. Were the Orion 

and Mon R2 complexes part of a single, gravitationally-bound unit, then 

the virial mass for the entire surveyed region would be approximately 

the sum of masses given in Table V.l plus the mass of atomic gas 

between the clouds. The FWHM for a composite spectral line for all 

clouds with distances of 1 kpc or less is 6 km s-l, a velocity 

dispersion due probably to either random motions of the clouds or the 

expansion of the cloud system from galactic tidal fprces, and taking a 

radius of 8° for the region surveyed and an average cloud distance of 

700 pc gives a virial mass of 7 x 105 Me, which is comparable to the 

sum of the molecular masses (- 4 x 105 Me; Table V.l) and the atomic 

gas (2 x 105 Me) implied by 21 cm observations (Heiles and Habing 

1974). 
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A demonstration of clouds located along the line of sight between 

the Orion and Man R2 complexes would provide the strongest argument for 

a relationship between the two complexes. The NGC 2149 clouds, 

extending in projection from Man R2 to Orion A (Fig. IV.2), may span 

the difference in line-of-sight distance (300 pc). A bridge of this 

kind between the Orion and Man R2 complexes would appear even more 

plausible if the velocities between Orion A and the Man R2 clouds were 

continuous, which they are not, and were either the distance to the 

southwestern section of Man R2 less than 830 pc or the distance to the 

southeastern section of Orion A more than 500 pc. If it can be shown 

that the Orion and Man R2 complexes are physically connected, a common 

origin for the whole system would be worth consideration. 

C. High Velocity Resolution Observations of the Orion East Cloud 

The line widths toward the major fraction of the Orion East cloud 

(LON 1621 and 1622) which are mostly at the resolution of the 

telescope's spectrometer (0.65 km s-l) are comparable to differences in 

velocities between locations within the cloud. If the line width 

observed at any point in a cloud reflects the velocity dispersion of 

the gas through the cloud averaged over the beam of the telescope, then 

the mass within that beam as well as the local escape velocity of the 

cloud at that point can be calculated using the virial theorem. If the 

difference in velocity between points within a cloud is larger than the 

typical line widths, then the relative velocities between points in the 
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cloud exceed the escape velocity and the cloud cannot be in 

gravitational equilibrium: the cloud may be expanding or contracting, 

or possibly not gravitationally bound. Narrow line widths may indicate 

subsonic motion within the cloud, usually seen only in small, Bok 

globule-like clouds (see, e.g., Dickman and Clemens 1983). 

To obtain high velocity resolution with our low-resolution 

spectrometer, a position in the cloud was observed three times, the 

velocity of the center of the spectrometer shifted by one-third of a 

channel width (0.22 km s-1) between observations. Since the response 

of the filters in the spectrometer are known to a high accuracy, the 

response of the filters was easily deconvolved from the three 

observations to produce a high resolution (0.22 km s-1) spectrum. This 

procedure was performed for CO and 13CO at three positions within the 

cloud: at the position of the strongest CO emission, at the geometric 

center of the cloud, and near one edge of the cloud (Fig. IV.16). 

Figures V.l and V.2 show the deconvolved spectra and Table V.2 presents 

the parameters for the spectra. 

Although observations of CO cannot be used to investigate subsonic 

motion because the emission lines are probably saturated, they can be 

used to measure velocity shifts from one point to another. The largest 

difference in velocity (1.4 ± 0.2 km s-1) occurs between points 2 and 3 

(Table V.2). All three 13CO observations, which are less apt to be 

saturated and so should better represent the actual velocity dispersion 

through the cloud, have line"widths of 0.9 km s-1 FWHM. The 

differences in velocity between positions in the cloud exceed the line 

widths indicating that the cloud is evolving dynamically; possibly, 
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having been stable at one time, the cloud is now being disturbed by the 

star formation occurring within it or by an interaction with nearby 

Barnard's loop. 

The maximum turbulent velocity dispersion (0) within the cloud 

(see, e.g., Dickman and Clemens 1983), is given by: 

A 2 _ kT ]1/2 
o = [ 3 (.,.,...Ll ..... V--..,... 

8 1n 2 mCO 
• (V.1) 

We get a = 0.65 km s-1 after taking !J.v equal to the observed 13CO FWHM 

line width (0.9 km s-1), T the kinetic temperature of the cloud (~ 14 K 

as implied by the CO observations), and mea the 13CO molecular mass. 

The adiabatic sound speed (C = [5kT/3~]1/2 ~ 0.3 km s-1 where ~ is 

1.26, the mean mass per particle) is less than half 0 0 implying 

supersonic motion. 

However, the actual value of a is probably smaller than that 

calculated: the observed !J.v may be contaminated by either the proposed 

expansion or contraction of the cloud, or by saturation effects. 

Observations of rarer isotopes or a less saturated transition (e.g., 

12C180 J = 1 + a or CO J = 2 + 1) may confirm the prescence of subsonic 

turbulence. 

D. The Molecular Ridge in the Orion A and B Molecular Clouds 

The western halves of the Orion A and B clouds, as mentioned in-

Chapter IV,A,1, have higher TR and WCO than the eastern halves. 

Figures V.3-V.6 imply that the western halves are twice as warm as the 

eastern halves and, if N(H2) is proportional to WCO (Appendix A) have 

twice the column density. This ridge of emission where most of the 
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present star formation apparently occurs in these clouds has kinetic 

temperatures of about 15 K and n(H2) ~ 300 cm-3, if the star forming 

regions are ignored and if the clouds can be assumed to extend ~ 30 pc 

along the line of sight. In contrast, the eastern, non-ridge regions 

have kinetic temperatures and densities of about 8 K and 150 cm-3• 

Figures IV.5-IV.6 and Figure V.3-V.6, show a much sharper falling off 

in CO emission west of the ridge than toward the east. A similar but 

less steep falling off is seen in H I and, not surprisingly, galaxy 

counts increase just west of the ridge. 

The location of most of the stars in the Orion OB Association west 

of the clouds suggests that the density and temperature enhancements 

along the ridge may have been created by interactions between the 

clouds and the starlight, stellar winds, or the occasional supernovae 

remnant produced by the association over the course of its lifetime. 

1. Density Enhancement 

The density enhancement may reflect the dissociation of the 

molecular material preferentially along the western edges of the clouds 

by the UV photons emanating from the OB association; if the clouds were 

originally symmetric with a dense core, the increased dissociation on one 

side of the cloud would leave them noticeably asymmetric after a long 

enough time. The flux of photons, however, is probably not high enough 

to have dissociated a significant fraction of the cloud over the lifetime 

of the association (Jura 1974; Hill and Hollenbach 1978), nor, as would 
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be expected, are the highest column densities of H I or H II found just 

west of the clouds. Instead the density enhancement was probably created 

by the compression of the gas by a region of high pressure abutting the 

edge of the cloud. The star formation in the clouds, located almost 

exclusively along the full length of the ridge, may have been stimulated 

by the compression of the gas. Possible sources of pressure include 

radiation pressure from optical photons and stellar winds from the nearby 

OS stars, the most likely candidate being the pressure source which 

creates the highest pressure. 

The radiation pressure from the stars is 1 x 10-12 ergs cm-3 if we 

assume that Prad = L* Q / (16 n r2 c) where L* is the total luminosity of 

the stars in the association (- 2 x 105 La), Q equals 2 if the incident 

photons are absorbed by the dust in the cloud and re-radiated 

isotropically, and r is an assumed distance of 30 pc between the source 

of the photons and the edge of the cloud. If the mass loss rate by 

stellar winds for each of the stars in Orion is given by 

dM/dt = 6.8 x 10-13 (L*/Le)1.10 Me yr-1 (Barlow and Cohen 1977), and if 

the wind velocity (Vsw ) is approximately three times the escape velocity 

for the stars (Abbott 1978) or - 3000 km s-1, then the pressure from 

stellar winds (Psw = dMT/dt [Vsw / 4 n r2] where dMT/dt is the sum of the 

mass loss rates for the OS stars [- 4 x 10-6 Me yr-1]) is 

2 x 10-12 ergs cm-3• 

According to the models of Cowie et!L. (1979), with the confirming 

results of Reynolds and Ogden (1979), a pressure of magnitude 

P* - 10-10 ergs cm-3, probably created by the cumulative effects of the 
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roughly ten supernovae which occurred in the association over its 

lifetime, extends for 45 pc around the center of the OB association 

(Fig. V.7). According to this model, derived from UV absorption line 

measurements toward stars in the region, Barnard's Loop, an ionization 

shock, delineates the eastern edge of the high pressure region which 

expands with a velocity of 10 km s-l. A lower pressure region 

(~ 10-12 ergs cm-3) outside the high pressure region extends as far as a 

radiative shock, with a radius of 100 pc and expansion velocity of 

100 km s-l, that most likely was created by the last supernova that 

occurred in Orion probably less than 1 Myrs ago. Outside the radiative 

shell the pressure is that of the ambient interstellar medium 

(~ 10-13 ergs cm-3). The Loop and the OB stars, as seen on the POSS 

prints, lie in front of the molecular clouds, so it can be conjectured 

that the clouds lie partially on the back surface of the high pressure 

region (Fig. V.7). When the high pressure region first hit the cloud, 

most likely along its western side, a shock wave would propagate through 

the cloud with a velocity of - (p*/p)1/2, assuming that the pre-shock 

pressure is much lower than P*. The width of the ridge, using the 

density (p) implied by the observations, would then be the propagation 

velocity (- 5 km s-l) times the length of time during which P* has 

abutted the cloud (~ 2 Myrs; Cowie et !L. 1979), or about 10 pc. This 

width is roughly the same as the observed 5 pc so, if the model and its 

geometry are correct, the density enhancement may reflect the compression 

of the molecular gas by the high pressure region. 
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2. Temperature Enhancement 

The higher temperatures in the ridge may come from heating by 

starlight from stars embedded within the clouds or 'stars external to 

the clouds; by shocks within the clouds produced by stellar winds, 

supernovae, ionization fronts or dissociation fronts; or by the 

relaxation of magnetic fields within the clouds. Optical photons, when 

absorbed by the dust grains in the cloud, heat the grains which can 

then heat the gas if enough collisions between the gas molecules and 

the grains occur before the grains have a chance to radiate away their 

heat in the infrared. Densities in excess of n(H2} = 104 cm- 3 are 

needed for this mechanism to be efficient (Leung 1975; Goldsmith and 

Langer 1978), and the heating would only affect a thin section of the 

cloud since optical photons do not penetrate deeply into a cloud. A 

very large number of embedded stars located along the full length of 

the ridge, each surrounded by a dense molecular region, would be needed 

to produce the observed temperature enhancement. 

The maximum depth to which a shock wave, generated by any 

mechanism, can heat a cloud is given by: A < (p ~v2 u / 8 A) 

(Elmegreen, Dickinson, and Lada 1978) where p and ~v are the density 

and velocity dispersion in the shocked layer, u the shock velocity, and 

A the cooling rate for the shocked material. Using the observed 

densities and line widths of the ridge, and taking u = 10 km s-l and A 

suggested by Goldsmith and Langer (1978) for these densities and 

temperature, A is many orders of magnitude less than the observed 5 pc 
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width of the ridge, indicating that shocks, like starlight, will not 

heat a large fraction of the cloud. 

Along with the compression of the cloud gas by the high pressure 

region found by Cowie et!l. (1979), the magnetic field within the 

cloud would be compressed and accelerate the relaxation of the field 

within the cloud. Viscous processes between the ions, moving with the 

quickly diffusing field, and the stationary neutral particles provide 

an additional heat source for the cloud. In this heating mechanism the 

compression of the gas acts only as a catalyst which allows the energy 

stored in the magnetic field to enter the cloud as heat. 

If this mechanism is at work, then the total heating rate (rT), 

assumed to be the sum of the heating by cosmic rays (rCR)' the most 

likely heat source for cold molecular clouds, and the relaxation of the 

magnetic field (rB), should balance the molecular cooling rate (A), or, 

rT = rCR + rB = A. The rate of cosmic-ray heating is 

rCR ~ 6 x 10-28 n(H2) (Goldsmith and Langer 1978) while, at the density 

of either the ridge or non-ridge region in the Orion A and B clouds, 

A ~ 5 x 10-27 T1.6 (Goldsmith and Langer 1978). The magnetic heating 

rate is simply the energy density of the field (B2 / 8 n) divided by 

the magnetic diffusion time, LB, which, if the diffusion of the ions 

through the neutral gas is supersonic, is given by: 

LB = A3/ 2 (4 n mH n(H2) ni <0 C> / C)1/2 / B (V.2) 
2 

(Elmegreen 1981). The quantity A is the distance over which the the 

field is diffusing, (assumed to be the width of the ridge), mH2
is the 

mass of a hydrogen molecule, ni is the ion density assumed to be 
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5 x 10-8 n(H2) (Wootten, Snell, and Glassgold 1979), C the sound speed 

in the region, and <0 C> = 2 x 10-9 ergs (Spitzer 1978) where 0 is the 

cross section for ion-neutral collisions. Given that rB « B3, the 

total heating rate depends crucially on the little known magnetic field 

strengths within the clouds. If clouds are supported from compression 

by the magnetic field pressure, the field strength in the ridge and 

non-ridge regions can be estimated by B2 = 8 n P where P is the 

external pressure impinging upon the clouds on their western 

(, 10-10 ergs cm-3) and eastern (, 10-12 ergs cm-3) faces. Table V.3 

lists the parameters used in estimating rT and A for the ridge and 

non-ridge regions of the Orion A and B clouds. As expected, TB for the 

ridge is longer than the lifetime of the pressure source (2 Myrs) if 

heating still occurs and is much less than that for the non-ridge 

regions. The predicted heating rates are close to the predicted 

cooling rates indicating that the 10-10 ergs cm-3 pressure region 

surrounding the Orion OB association could cause the observed 

temperature enhancement, as well as the density enhancement •. 

E. The A Orionis Ring of Clouds 

1. Expansion and Mass of Ring 

The A Ori ring of molecular clouds displays another kind of 

interaction between a young, massive star and its environment. In 

addition to strong CO emission usually present on the sides of the 
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clouds facing A Ori (see below), the velocity structure of the overall 

system of clouds indicates a large-scale, dynamic interaction between 

the clouds and the H II region formed by A Ori. The nearly circularly 

arranged clouds coincide with the edge of the H II region, as defined 

by the distribution of radio continuum (Reich 1978; Crezelius 1984) and 

by Ha (Isobe 1973), and, proceeding counterclockwise from the B 30 

cloud, the smooth, systematic increase and then decrease in velocities 

suggests that the clouds are distributed on an expanding or contracting 

ring with an axis tilted slightly to the line of sight. Although peaks 

1, 2, and 3 (Table IV.l) lie well outside the edge of the ionized 

region, and may not be part of the ring but only accidentally nearby, 

their velocities f~ll nicely into the systematic pattern found for the 

rest of the clouds. Since the ring is associated with an expanding 

H II region and the total mass inside it is small (shown below), a 

contracting or rotating ring is unlikely. 

Figures V.9-V.ll show a least-square fit to the positions and 

velocities of the peaks within the A Ori clouds, assuming the clouds 

lie on an expanding ring with central coordinates ac, ~o' radial 

velocity Va' radius R, and an expansion velocity Vx, tilted at an angle 

~ with respect to the plane of the sky along an axis with position 

angle e (Fig. V.8). The fitted values for ac, 60 , Va' Vx' R, ~, and e 

are given in Table V.4. Note the good agreement beween the coordinates 

of A Ori (a = 5h 34.1m, ~ = 9° 55 1
) and the center of the ring (Figure 

V.g) and between the age of the star (2-4 Myrs; Murdin and Pens ton 

1977) and the expansion age of the ring (Tx - 2.4 Myrs). The 
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deviations of the clouds from the ,fitted ring is best illustrated in 

Figure V.11 where, as seen from the center of the ring, the angle 

between the plane of the sky and each cloud is plotted against the 

position angle of each cloud; the sine curve is derived from the model 

ring. 

The combined results of the CO, 21 cm (Wade 1957, 1958; Heiles and 

Habing 1974; Crezelius 1984), radio continuum (Reich 1978; Crezelius 

1984), and infrared (Boulanger 1985) surveys indicate the following 

morphology for the region. The H II region which has a radius of ~ 4° 

in the radio continuum (Fig V.12) contains approximately 5 x 103 Me of 

ionized material at a temperature of 7500 K and electron density of 

2.2 cm-3• The excit~tion parameter for the H II region (47.3 pc cm-2) 

is consistent with A Ori being responsible for the ionization 

(Crezelius 1984). Concentric with the center of the H II region and 

the position of A Ori, molecular clouds with a total mass of about 

3 x 104 Mo lie just outside the H II region on an expanding ring with a 

5° radius (Fig. V.13). 

Figure V.14 shows that the column density of atomic gas is low 

toward the center of the H II region, as expected if either the UV 

photons from A Ori ionized the gas or the leading edge of the expanding 

H II region had swept up the gas. The H I column density rises where 

the H II region ends and the molecular ring begins (Figures V.13-V.14). 

Analyzing the H I emission in more detail, Wade (1957,1958) and 

Crezelius (1984) find a similar velocity structure to what is observed 

in CO but less clearly seen; they disagree between themselves on the 

amount of atomic g~s in the ring by an order of magnitude (7 x 104 vs 
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7 x 103 Me). Coulson et~. (1978), measuring the column density of 

dust within a small section of the ring, suggest a total mass of 

7 x 104 Me in the ring; this dust is apparently associated with H I gas 

since there is little CO emission in the region they surveyed. 

However, the H I column density over a wide range in longitude outside 

the borders of the H II region is fairly constant (Fig. V.14); an 

enhancement of as little as 104 Me of atomic gas lying in a ring with 

dimensions similar to the molecular ring would be noticeable, if it 

were present, in Figure V.14. (The change in column density with 

latitude is almost exclusively due to the gradient in atomic gas 

perpendicular to the galactic plane.) Approximately 104 Mg of atomic 

gas would be swept up by the H II region if it expanded into an 

intercloud medium with a density of 1 cm-3• Thus, the maximum amount 

of atomic gas in the shell is closer to 104 Me than to 7 x 104 Me. 

In contrast to the molecular emission which occupies less 

than one-half the perimeter of the ring, infrared emission from warm 

dust, seen by IRAS at 100~ (Fig. V.15), makes an almost perfect ring 

coincident with all of the molecular clouds except peaks 1, 2, and 3 

(Table IV.l). If the dissociating UV flux from A Ori is typical of 

stars of its type, the amount of molecular material dissociated over 

the lifetime of the star is likely to be only a few percent of the 

present molecular mass (Jura 1974; Hill and Hollenbach 1978). The 

infrared emission observed along the full perimeter of the ring, and 

between the molecular clouds, must primarily be associated with warm 

dust accompanying swept-up atomic gas rather than dissociated molecular 
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gas. Because of the difficulty in separating the emission from 

foreground and background emission at 21 cm from that associated with 

the H II region, it is impossible to determine whether the atomic gas 

and the infrared ring are tilted with respect to the line of sight in 

the same way as the molecular clouds. 

Most of the mass associated with the A Ori H II region is 

concentrated in the molecular clouds. The total mass in the ring, 

including a maximum contribution of 104 Mo from atomic gas, is 

~ 4 x 104 Me' implying a kinetic energy of 8 x 1049 ergs and a momentum 

(Pcloud) of 1 x 1044 g cm s-1 for all the gas within the ring, if it is 

expanding at the 14 km s-1 determined by the least-square fit. 

2. Evolution of the A Orionis Cloud System 

From the optical, radio continuum, H I, infrared, and CO 

observations of the ring, an evolutionary scenario can be devised. The 

small deviations of the molecular clouds from the fitted ring and the 

orientation of the molecular ring with respect to the Sun suggest that 

A Ori, along with the few B stars in the region with similar ages, 

formed at the center of a flattened molecular cloud with an axis tilted 

at an angle of - 36° with respect to the line of sight. After the 

formation of A Ori and its H II region, momentum might have been 

transferred to the clouds by the stellar winds from A Ori, by radiation 

pressure from stellar photons, or by the gas pressure in the H II 

region. 
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The maximum momentum imparted to the clouds by stellar winds over 

the lifetime of A Ori is given by 

Psw = T Vsw (dM/dt) (O/4n), (V.4) 

where 0 is the solid angle subtended by the clouds as seen by A Ori, 

averaged over T the age of the star (2-4 Myrs), and Vsw and dM/dt the 

measured wind velocity (3050 km s-l) and mass loss rate 

(3.8 x 10-7 Me yr-1) (Barlow and Cohen 1977); Psw 

[~ 5 x 1041 (O/4n) g cm s-l] is then at least two orders of magnitude 

less than Pcloud (1 x 1044 g cm s-l). 

Using the measured luminosity of A Ori (L* ~ 1.7 x 105 La), and 

assuming dust reradiates an absorbed photon isotropically (i.e., 

Q = 2), 

Prad = T L* Q (O/4n)/ 4 c ~ 7 x 1041 (O/4n) g cm s-l, (V.5) 

a value much lower than pcloud. These mechanisms for transferring 

momentum may have been more important in the past than now had dM/dt, 

Vsw , or L* then been much higher; it is unlikely, however, that any of 

these parameters were two orders of magnitude higher in the past. 

Were the clouds situated at the edge of or just outside the H II 

region, the gas pressure within the H II region would accelerate them. 

If the clouds were always just at the edge of the H II region, and 

ignoring negligible gas pressure within the clouds, 

Pgas = 4 n r2 ~ ne k T T, (V.6) 

where ~ is the mean mass per electron in the H II region (2.09), r, ne, 
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and T are the radius, electron density, and temperature of the H II 

region, respectively, and k the Boltzmann constant. With values of 

r = 35 pc, ne = 2.2 cm- 3, and T = 7500 K, (Crezelius 1984), 

Pgas - 6 x 1043 g cm s-l, or roughly the same as Pcloud. Mazurek 

(1980) solved the equation of motion for the momentum transfer between 

an expanding H II region and a massive cloud in which the H II region 

was originally embedded; applying his results to the A Ori system, 

yields a predicted expansion velocity (- 12 km s-l) similar to Vx• 

(Using parameters for the A Ori system that subsequently were updated, 

Mazurek has independently derived a similar expansion velocity for the 

ring.) 

The gas pressure from the H II region would then have accelerated 

the cloud material preferentially along the long dimension of the cloud 

almost perpendicular to the present-day line of sight (Fig. V.16a). At 

some point the size of the H II region would become comparable to the 

small dimension of the cloud and the edge of the H II region would 

break through the surface of the cloud (Fig. V.16b), possibly tearing 

the cloud into the fragments constituting the molecular ring. At this 

time the H II region would rapidly expand along the line of sight into 

the low density gas outside of the cloud. The molecular clouds, 

however, would still confine the H II region from rapidly expanding 

perpendicular to the line of sight. Thus, the extent of the H II 

region along the line of sight would exceed that observed perpendicular 

to the line of sight (Fig. V.16c). 

The rocket effect may also contribute to the acceleration of the 
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clouds. When an H II region originally embedded within a molecular 

cloud expands so its edge bursts through the nearest surface of the 

cloud, the H II region would grow rapidly where the rupture occurred 

since it would no longer be confined by the high density molecular 

material (Fig. V.16b). Starting at the location of the rupture, a 

rarification wave would propagate back through the H II region, 

lowering the column density of gas between the ionizing star and the 

remaining molecular clouds. The UV photons from the ionizing star, 

originally absorbed by the intervening gas, then could reach the clouds 

and increase the dissociation and ionization of cloud material on the 

sides facing the star. Each dissociated or ionized gas particle would 

move away from the.clouds preferentially toward the H II region at the 

sound speed of the H II region (- 10 km s-l) and give an impulse to the 

cloud in the opposite direction, ultimately accelerating the clouds 

radially outward from the H II region. If a molecular cloud were to be 

engulfed by the H II region, the dissociation and ionization of the gas 

in the cloud, though still preferentially occurihg on the side of the 

cloud facing the ionizing star, would also occur on all sides of the 

cloud and, thereby, would reduce the magnitude of the rocket effect. 

Bally and Scoville (1980) investigated the effect of this mechanism on 

a similar H II region associated with the Pelican nebula and, although 

the parameters in their models differ slightly from those for the A Ori 

system, predicted a 10 km s-l expansion velocity after 4 Myrs. The 

momentum of the clouds, therefore, may have been produced over all or 

part of the lifetime of the H II region either by the gas pressure 

within it, or by the pressure produced by the rocket effect. As shown 
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in Appendix B, a more rigorous and detailed theoretical model for the 

disruption of a spherical molecular cloud, a combination of gas 

pressure and the rocket effect could produce the gas and velocity 

structures found in the vicinity of A Ori. 

The acceleration of the clouds would have compressed the gas on 

the sides of the clouds facing the H II region and, probably through 

the ion-viscous processes previously described (Chapter V,D,2), heated 

the edges of the clouds as observed in CO. The compression of the gas 

may have triggered the formation in the clouds of the observed low mass 

stars which were left behind as the clouds subsequently were further 

accelerated (Fig. V.16c,d; also Duerr et !l. 1982). As the H II region 

and the molecular ring expanded, H I gas and its associated. dust would 

have been swept up into a shell- or ring-like structure (Fig. V.16c,d). 

Unlike the formation of massive stars in other molecular clouds in the 

Galaxy (e.g., the Orion A and B clouds) which occurs mostly at the 

edges of the parent clouds, this scenario of the evolution of the A Ori 

system may depict the disruptive effects of a massive star which formed 

at the center of a molecular cloud. 

This scenario, however, cannot easily explain the proper motion 

and radial velocity of A Ori nor UV absorption line measurements toward 

the star. The proper motion of A Ori (Boss 1937) would imply that if 

the star had not recently aquired this velocity then 2 Myrs ago the 

star was not at the center of the ring but close to one side 

(Fig. V.9); the errors in the measured proper motion are comparable to 

the values themselves and should be measured again. If the H II region 
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centered on A Ori created the velocity structure in the ring, then the 

radial velocity of A Ori (33.4 ± 0.5 km s-1 heliocentric or 

18 ± 0.5 km s-1 with respect to LSR; Wilson 1963) should fall within 

the ring structure seen in Figure V.10; but it does not. The UV 

absorption by interstellar gas between the star and the Sun occurs at 

velocities (10.6 and 1.6 km s-1 vLSR; Hobbs 1969) that correspond to 

both the near and far sides of the ring, indicating that the star may 

be behind the ring rather than in it. 

For an evolutionary scenario for A Ori to be consistent with these 

observations, the UV absorption features would have to arise from 

unassociated atomic clouds coincidentally having the same velocities as 

the ring, and the present day velocity of A Ori would have to reflect a 

recent acceleration of the star by, for example, either a close 

encounter with another star or the expulsion of a stellar companion 

from the multiple star system of which A Ori is or was a member. 

Alternatively, if the original molecular clouds and A Ori had a 

relative drift velocity of ~ 12 km s-1 along the line of sight when the 

H II region started to form, then the ring of clouds would remain 

centered where A Ori was located 2 Myrs ago, but the star would drift 

and eventually pass through the rear side of the more slowly expanding 

ring. (In 2 Myrs, the star would travel ~ 24 pc along the line of 

sight relative to the center of the ring.) Since the H II region would 

have been centered on the star as it drifted, this scenario would imply 

that the projected radii of both the H II region and molecular ring are 

coincidentally the same. The proposed mechanisms for accelerating the 
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clouds, however, would also have to be modified, because the clouds 

would have to have been accelerated to their present velocities soon 

after the H II region formed. 

Another possibility is that the expanding ring is unrelated to 

A Ori and was formed either by the action of another star that 

subsequently became a supernova, or perhaps by the remnant of such a 

supernova. If the progenitor of the supernova and A Ori wer part of 

the same multiple star system, then A Ori might now be a runaway star; 

the discordant velocity of A Ori could have resulted in this way. The 

kinetic energy in the expanding ring of cloud (~ 1050 ergs) is a few 

percent of what are typical for supernovae. The supernova would have 

occured ~ 2 Myrs ago, the expansion age of the ring, so the remnant 

probably is today impossible to detect. In this case, A Ori has 

usurped the pre-eminece of the former star. 

F. Large and Unusual Cloud in the Galactic Plane 

1. Distance and Size 

The large and cold outer galaxy cloud labeled Q in Figures IV.17 

and IV.19, and whose observational charactersistics are summarized in 

Figures IV.22-IV.24, has a kinematic distance of 2.7 kpc as 

determined from the flat rotation curve of Blitz (1979). Because the 

rotation curve is based on few observations inside the region 

2050 < 1 < 2250 with distances greater than 1.5 kpc, the uncertainty 
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in the distance is probably as large as 1 kpc. Further evidence for 

this distance comes from S 287, the H II region located nearby at 

1 = 218.°1, ~ = -0.°4, which has a photometric distance of 3.2 kpc 

(Moffat, Fitzgerald, and Jackson 1979). The radial velocity of cloud 

Q and that of the molecular cloud associated with S 287 (S, 

Table IV.3) are similar (27 km s-l; also Blitz, Fich, and Stark 

1982). The proximity between the S 287 cloud and the large cloud Q 

in Figure IV.22 and the similarity in cloud velocities suggest that 

these clouds are part of the same complex. Since no emission appears 

to connect them, they may be unrelated. 

The open cluster NGC 2286, at 1.28 kpc (Becker and Fenkart 

1971), is within the cloud boundary at 1 = 215.°3, ~ = _2.°3. The 

low color excess (0.41 mag) for the stars in the cluster and the age 

of the cluster (108 years), determined from the earliest spectral 

type found within the cluster, indicate that the cluster is a 

foreground object unrelated to cloud Q. 

In Figure 111.4 the fairly small angular separation between 

cloud Q and the sets of clouds associated with the Rosette Nebula 

(distance = 1.6 kpc, Turner 1976; velocity = 15 km s-l, Blitz 1978) 

and CMa OB 1 (distance = 1.2 kpc, Eggen 1978; velocity = 18 km s-l 

Blitz 1978), suggest that cloud Q might be related physically to 

either set, but the velocity discrepancy of about 11 km s-l probably 

rules out any association. Although the size and mass of cloud Q 

would be significantly smaller than those derived below if the 

distance were 1.2 kpc instead of 3 kpc, the cloud would remain an 

unusual object. 
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At 3 kpc s cloud Q is one of the largest molecular clouds knowns 

with a major axis of 250 pc and a minor axis of 100 pc. The outer 

Galaxy is not warped at the location of the cloud (Henderson s 

Jacksons and Kerr 1982)s so its galactic latitude probably 

corresponds to a true displacement from the galactic midplane. The 

displacement is similar to that of the nearby Orion cloud and s 

likewise, is unusually large: 145 pc or about two times the 

half-thickness at half-maximum of molecular material at the solar 

circle (Dame and Thaddeus 1985; see Ch. V,G for more details). 

2. Associated Objects 

The POSS prints for the location of cloud Q show a slight trace of 

optical obscuration s consistent with the cloud's large distance and with 

most observable stars being in the foreground. Khavtassi (1955) notes a 

dark cloud subtending about 3 deg2 in the same general region. The 

object coincides with a region of H I enhancement (Weaver and Williams 

1973) and an excess of y-ray emission not entirely accounted for by the 

interaction of cosmic rays and the gas implied by 21 em observations 

(Bloemen et !l. 1984). The cloud is not a source of infrared emission; 

all cataloged point infrared sources in its direction have been 

attributed to nearby stars (Neugebauer and Leighton 1969; Walker and 

Price 1975; Longmore, Hyland, and Allen 1976; Price and Walker 1976) and 

the cloud does not show up in the 100~m IRAS survey (Boulanger 1985). 

Low mass stars s T Tauri stars s or Herbig-Haro objects would be 
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difficult to detect because of this cloud's large distance. Any H II 

regions or OB stars on the near side of the cloud should be 

visible; the cloud itself is optically visible, and S 287, lying in the 

galactic plane where foreground obscuration presumably is the same or 

higher, is easily seen. There are no H II regions or OB stars toward 

this cloud in the standard catalogs (Sharpless 1959; Goy 1973; 

Cruz-Gonzalez et !l. 1974; Marsalkova 1974; Humphreys 1978). 

Radio continuum surveys toward the general area of the molecular 

cloud (see Table V.5) were used to see if any obscured H II regions were 

present. First, it was determined which of the continuum sources in the 

direction of the cloud have the thermal spectrum indicative of an H II 

region. Second, excitation parameters, u(pc cm-2) = 
K(v,T) [D(kpc)2 Sv(Jy)]1/3, were found for the possible H II regions; 0 

is the distance to the H II region (assumed 3 kpc), Sv is the observed 

flux density at frequency v, and K(v,T), which depends on the 

temperature assumed for the HII region (~ 104 K) and only slightly on 

the frequency of observation, equals 13.5 for v = 1415 MHz (Hjellming 

1968). It is assumed that the H II region is unresolved, ionization 

bounded, and optically thin at the frequency of the observations used to 

find u. Last, from u one can ascertain the number and type of 0 or B 

zero-age main sequence (ZAMS) stars responsible for the H II region 

(Panagia 1973). 
. 

A proper analysis depends on whether the possible H II region is 

optically thin at the frequency used to calculate u. The radio surveys 

completed toward this cloud remain inadequate to determine optical 
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thickness, and the sensitivities of these surveys are low; at 3 kpc, 

only H II regions excited by stars earlier than a BO star could have 

been detected. Table V.5 presents preliminary estimates of u and 

stellar spectral types; all need to be checked by surveys of higher 

sensitivity. 

Of the five continuum sources detected toward the molecular 

cloud, only 4C~02.28 appears to be an H II region which, if at a 

distance of 3 kpc, may be excited by an 06 ZAMS star. Recombination 

line studies toward 4C-02.28 could test whether a relation exists 

between the cloud and the H II region. If the H II region is 

unrelated to the molecular cloud, recombination line observations may 

determine whether the radial velocity of the H II region differs from 

the cloud's velocity. 

3. Evolutionary State of Cloud Q 

There is little evidence that cloud Q is currently forming 

stars. Although S 287, at the same distance as this cloud, has at 

least three associated early-type stars (Moffat et ~ 1979), no stars 

of this type were found in the direction of cloud Q. Were young 

stars embedded in the cloud and interacting with it, its far-infrared 

emission would be expected to be more intense than was observed by 

IRAS (Boulanger 1985); strong temperature peaks, a common sign of 

newly formed stars that interact with the parent molecular cloud, are 

absent. Since MCO is comparable to Mvir (Table IV.3), the internal 



67 

pressure sources created, for example, by strong stellar winds from 

young stars or gas heated by recently formed stars, may be absent. 

Radio continuum data suggest that 4C-02.28 may be an H II region, but 

it cannot be said whether the H II region is associated with the 

cloud. 

Most molecular objects of the size and mass of cloud Q are cloud 

complexes consisting of a collection of individual clouds whose 

ragged internal structure is usually attributed to the violent 

activity that accompanies massive star formation (e.g., H II region 

expansion, strong stellar winds, supernovae). Unlike cloud 

complexes, cloud Q is a single, continuous object, and these violent 

events are not likely to have occurred near it. 

The unusual spectra, as well as the absence of star formation, 

suggest three interpretations for the cloud. First, it may possibly 

be a member of a small population of objects that never form massive 

stars, although clouds of such size and mass should gravitationally 

contract and form stars in a fairly short time. Second, even though 

the cloud may have formed stars in the past, it is now quiescent; but 

previous star formation should have left some evidence in the cloud's 

vicinity (e.g., a cluster of stars) and the cloud should be more 

fragmented than it appears. The third, and most plausible 

possibility is that the cloud is young and in a stage of evolution 

prior to the onset of star formation. A molecular cloud recently 

formed out of a diffuse H I cloud, for which line widths are 

typically 10 km s-1, may have line widths as large as those found for 
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the new cloud. The short free-fall time for molecular clouds implies 

that cloud Q will soon begin to form stars and that, given enough 

time, it may mature into a typical cloud complex, similar in size, 

mass, and structure to the nearby Orion complex. 

4. Clouds with Similar Properties 

To estimate the number of clouds in the Galaxy with properties 

similar to those of the new cloud, the extensive Columbia CO surveys 

of the first, second, and third quadrants were examined for clouds 

with masses greater than 105 Me' with lines weaker than 2 K and wider 

than 6 km s-l, and having no indications of star formation. 

Within 1 kpc of the sun, large molecular clouds, with spectra 

that showed typically higher TR and narrower line widths than those 

found toward the cloud Q, are invariably associated with extensive 

star formation. Although the Orion molecular filaments (Ch. IV,A,4) 

have wide lines but no star formation, their masses are an order of 

magnitude less than that of the new cloud (Table IV.3 and V.1). 

There is no evidence for similar clouds in the Perseus arm (Gottlieb, 

Brock, and Thaddeus 1984) or elsewhere in the second and third 

quadrants (Blitz 1978; Baran 1983; Huang 1985). 

The analysis of large cloud complexes in the first quadrant by 

Dame et!l. (1985) was generally limited to clouds with a total CO 

luminosity (SCO = f WCO dO) of 8 K km s-l deg2 or greater, so an 

object with SCO equal to that of cloud Q (42.6 K km s-l deg2 at 
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3 kpc) would have been designated a cloud if it were closer than 

7 kpc from the Sun. Unfortunately, the diffuse CO background 

emission in the inner Galaxy, and the methods used by Dame et !l. 

(1985) to separate clouds from the background emission would make it 

difficult to pick out clouds with temperatures as low as those found 

for cloud Q. 

Nevertheless, two clouds, which Dame et!l. (1985) designated 

(39,32) and (41,37), have TR < 2.5 K and large spectral line widths 

(6 km s-l FWHM). Located near each other, between 1 = 38° and 42° at 

~ , 0.°5, with a vLSR ' 35 km s-l and at a distance of 2.2-2.6 kpc, 

and possibly associated with the W50 molecular cloud (Huang, Dame, 

and Thaddeus 1983), these clouds may be a single object with a mass 

of 106 Me and a linear size about half that of the new cloud. Both 

are apparently devoid of the usual signs of associated star formation 

(e.g., H II regions or far-infrared sources, Myers et !l. 1985). 

In conclusion, such clouds in the outer Galaxy are probably rare 

and do not make up a significant fraction of the molecular gas in the 

Milky Way. They might be more common in the inner Galaxy where they 

might be confused with the CO emission from numerous very small 

clouds. It is not clear that observations with higher angular 

resolution will be of much help in distinguishing such clouds. 
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G. Outer Galaxy Clouds 

1. Distances and Locations Within Spiral Arms in the Outer Galaxy 

The distances to most of the outer galaxy clouds were estimated 

using the rotation curve of Blitz (1979), but this rotation curve does 

not extend to the galactocentric distance {RG) of clouds K, M, N, 0, 

and R (Table IV.3) for which a flat rotation curve (Re = 10 kpc, 

00 = 250 km s-1 kpc-1) was adopted. For a few objects with velocities 

and positions close to that of the Rosette complex, the distance to 

that complex, 1.6 kpc (Turner 1976), was assumed. Clouds I, J, M, and 

S may be associated with H II regions and reflection nebulae with 

estimated photometric distances; in these cases the photometric 

distances agree remarkably well with the cloud distances estimated from 

the rotation curves, suggesting that the distances i~s~~ed for clouds 

without associated objects are not seriously in error. The large 

distances (3-5 kpc) attributed to the optical objects associated with 

the clouds illustrate the unusually low obscuration from foreground 

material in this region of the galactic plane. Very little of the 

molecular emission in the region comes from local clouds. Either the 

local material usually found in the galactic plane is absent from these 

directions, or, more likely, the nearby Orion clouds represent local 

material which should be in the plane but which has been displaced by 

some unknown cause (Ch. IV,A,4). 

All clouds, except those associated with the Rosette complex, 

lie either at distances of ' 3 kpc (P, Q, and 5, Table IV.3) or 
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, 5.5 kpc (F, K, M, N, 0, and R, Table 1V.3). The 3 kpc distance of 

the Gem OB 1 cloud complex at 1 ' 1900 (Fig. 111.4), approximately the 

same distance as clouds located within the Perseus Arm near 1 = 1700 

(Gottlieb et !l., 1984), suggests that the clouds with distance close 

to 3 kpc form part of an extension of the Perseus arm of the Galaxy in 

the third quadrant. Other authors (e.g., Verschuur 1973; Moffat et !l. 

1979; Henderson et !l. 1982) looking at the distribution of young 

objects and the atomic gas in which the molecular clouds are apparently 

embedded, have suggested this extension of the Perseus arm. The more 

distant clouds (at' 5.5 kpc) lie within a major and extensive H I 

feature in the Galaxy (Minn and Greenburg 1973; Weaver and Williams 

1973; Henderson et°!l. 1982) which apparently delineates an outer arm 

to our Galaxy; the observed molecular clouds are probably the first 

examples of molecular clouds tracing out a spiral arm at such a large 

galactocentric distance as 15 kpc. (Kutner and Mead (1985) have 

observed clouds out to 18 kpc; the spatial coverage of their 

observations is inadequate to trace the pattern of spiral arms.) 

Though only 150 of the galactic plane was sampled, these observations, 

with the coinciding H I structure, suggest that other molecular clouds 

probably exist within that outer arm of the Galaxy and that molecular 

clouds can be used as a tracer of outer-galaxy spiral structure even 

though, as shown by Sanders, Solomon, and Scoville (1984) and as will 

. be shown here, the density of molecular clouds in the outer galaxy is 

low. 
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2. Comparison Between Outer and Inner Galaxy Clouds 

A comparison of the properties of clouds in the outer galaxy with 

those in the inner galaxy may be useful even though the sample of outer 

galaxy clouds in the present survey is not extensive, does not cover a 

significant fraction of the outer galaxy, and because small, cold 

clouds, which may_ be an important part of the molecular content of the 

outer Galaxy, would have been overlooked because of beam dilution from 

the low resolution of the observations. 

The sizes of the clouds in Table IV.3 were defined by counting the 

number of observed positions where emission exceeded 0.6 K at 

velocities within a few km s-l to that of the rest of the cloud. (The 

areas which the clouds cover are usually twice that shown in 

Figures V.17-V.20). The cloud sizes are similar to what is seen in the 

inner parts of the galaxy although, due to the resolution of the 

survey, the smaller clouds have been missed. If the Orion complex was 

at a distance of 3 or 5 kpc, and was observed with the same resolution 

as that used for the outer galaxy survey, its observed peak temperature 

and SCO would be, respectively, about two and four times higher than 

those seen for the outer galaxy clouds (Fig. V.l7); the emission from 

the Mon R2 cloud at those distances would still be stronger but not as 

impressive as the Orion clouds. If the Orion and Monoceros clouds are 

typical of local clouds, the outer galaxy clquds, even though they have 

similar sizes, are apparently a little colder and have lower WCO than 

inner galaxy clouds. Kutner and Mead (1981, 1985), observing a similar 
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dependence of cloud emissivity as a function of RG, suggest that the 

difference in emission may be due to a metallicity or cosmic-ray 

gradient in the galaxy, either of which could change the cooling and 

heating rates for clouds at different RG. 

The CO masses derived for the outer galaxy clouds are lower than 

those found for objects of similar size in the inner galaxy. However, 

these masses must be taken with some caution: the value of N(H2}/WCO 

used, similar to what is found throughout the inner galaxy (Bloemen et 

!l. 1985), may be inappropriate for clouds beyond the solar circle. 

The mass within the observed section of the galactic plane, if typical 

of the rest of the galaxy, implies a total mass of 4 x 107 Me for 

molecular clouds with masses greater than a few times 104 Me lying 

between RG = 10 and 15 kpc. The surface density of molecular material 

projected onto the plane of the galaxy, including the contribution from 

He, would be 0.10 Me pc-2, 100 times less than that within the 

molecular ring (Sanders et !L. 1984). This value, possibly low by a 

factor of two or so because some molecular material may have been 

missed in the survey, is about twenty times lower than the local value 

(Dame and Thaddeus 1985) and about five times lower than that found by 

Sanders et!L. (1984) for the sam~ range in RG if their analysis had 

used the same N(H2}/WCO as used here. The Sanders et !L. survey 

covered a smaller total area than the present survey but looked at a 

wider range in galactic longitudes so it may have been contaminated by 

occasional, but uncorrelated, areas rich in molecular material while 

the results of the present survey may reflect an unusually rare and 

large area with little molecular gas. 
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The z-distribution of molecular material outside of the solar 

circle, as well as surface density, is summarized in Table V.6. In 

determing the centroid of molecular material [Zc = (I Mi Zi) / (I Mi) 

where the Mi and Zi are the mass and z-displacements of the individual 

clouds, Table IV.3] and the rms dispersion 

[Zrms 2 = (I Mi(Zi - Zc)2) / (I Mi)], the distribution of the large 

molecular clouds (Table IV.3) is assumed to follow the distribution of 

all molecular clouds, including those low mass clouds not detected. 

The rms dispersion, similar to the local value (Dame and Thaddeus 

1985), is fairly constant from RG = 10 to 15 kpc (about 65 pc 

corresponding to a half width at half density of 78 pc), although Zc 

shows a significant deviation of -98 pc from the galactic plane between 

RG = 10 and 13 kpc which is solely due to the large z-displacement of 

cloud Q (Table IV.3). If that cloud is dropped from the calculation of 

Zc' then Zc is reduced to -32 pc. The value of Zc for all ranges in RG 

are consistent with the distribution of atomic gas (Henderson et !l. 

1982). 
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CHAPTER VI. SUMMARY 

Approximately one-eighth of the 850 deg2 region surveyed in 

Orion and Monoceros showed CO emission, either from 1) clouds at 

distances upto 1 kpc and having locations well out of the galactic 

plane or 2) emission from more distant clouds lying within a few 

degrees of the plane. 

Masses for many of the clouds were calculated by three different 

methods; the results show that masses derived from the CO 

luminosity of the cloud are consistent with more complicated 

approximations. About 4.3 x 105 Me lies within 1 kpc of the Sun 

between 1 = 206° and 222°; however, only 15.6 x 105 Me was found 

between 1 and 6 kpc in the same sector indicating that the Orion 

region is either rich in molecular clouds or that the part of the 

outer galaxy surveyed has little molecular material. 

Most of the local emission comes from the large molecular clouds 

associated with Orion A and B, previously mapped with lower 

sensitivity and velocity resolution (KTCT) than in the present 

survey, and from a large cloud associated with the Monoceros R2 

system of reflection nebulae. Two thin filamentary clouds were 

discovered as well as clouds distributed symmetrically in a ring 

surrounding the H II region S 264 ionized by A Ori. Clouds that may 

be associated with Barnard's loop and the CMa OB 1 association were 

also found. 

The filaments, which may represent a new type of object, are 

extremely narrow (, 10 pc), one possibly longer than 300 pc, and have 
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large line widths indicative of strong turbulence, low temperatures, 

and no apparent associated star formation. Preliminary analysis of 

high resolution observations indicate that the filaments can be 

modelled in terms of a number of small clumps moving at speeds of a 

few km s-1 relative to each other. The filamentary shapes, similar 

to those of the p Oph clouds, may be dictated by oriented magnetic 

fields which may also help tie the clumps together preventing the 

filaments from expanding. The few polarization measurements made 

toward background stars are not sufficient to determine field 

directions; more polarization measurements and a determination of 

field strengths may provide clues to the causes of the enigmatic 

properties of the clouds. 

Other clouds in the survey showed unusual properties. For 

example, Orion East; apparently interacting with Barnard's loop, has 

high temperatures (, 10 K) but line widths at or below the velocity 

resolution of the telescope's spectrometer. Observations with high 

velocity resolution (Chap. V,C) hint that this cloud may have 

subsonic line widths and may be contracting, expanding, or unbound; 

future observation of optically thin transitions are needed. 

A few large-scale interactions between the events accompanying 

massive star formation and the parent molecular clouds are evident in 

the data for the local « 1 kpc) clouds. The double-line region in 

the Orion B cloud may be due to. the acceleration of one part of the 

cloud relative to another by the pressures from the winds of nearby 

young stars. A ridge of high temperature and high density extends 

almost the full length of the Orion A and B clouds just inside their 
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western borders. Neither stellar radiation, stellar winds, 

ionization or dissociation fronts, nor shock fronts from supernovae 

could have created the large-scale temperature and density 

enhancement along the ridge. A high pressure (10-10 ergs cm-3) 

region created by the cumulative effects of about ten supernovae, may 

exist inside Barnard's loop; if such a pressure was abutting the 

clouds on one side, a geometry which is very plausible, then the 

density and temperature enhancements could be explained by 

compression of the gas and the increase in heating from ion-neutral 

viscous processes as a compressed magnetic field rapidly diffuses out 

of the cloud. 

The A Ori ring of clouds is another example of an interaction 

between a young star and its parent cloud. The observed velocity 

structure of the system of clouds in the ring suggest that the clouds 

are confined to an expanding ring wtth an axis roughly perpendicular 

to the line of sight. A detailed evolutionary sequence to explain 

the CO, H I, infrared, and radio continuum structures associated with 

A Ori, is given in Chapter V,E. High resolution surveys toward more 

distant complexes may reveal that structures like the ridge in the 

Orion A and B clouds and the A Ori ring are common throughout the 

Galaxy. 

The distances and distributions of the local clouds suggest 

that, at most, two molecular complexes are present; the Orion complex 

at 500 pc and the Man R2 complex at 830 pc or more. The low 

probability that two such complexes would accidently lie so close to 

each other suggests that these complexes may actually be components 
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of a single system. Better determinations of the distances to 

objects associated with clouds are needed to confirm this suggested 

relationship. 

Beyond 1 kpc and along the galactic plane, clouds with distances 

of up to 6 kpc or more were observed; one of them (Q, Table IV.3) is 

large with the unusual property of both being cold but quite massive, 

and with wide CO lines across its entire face. If at 3 kpc, the 

cloud is one of the largest known, its size, 250 pc by 100 pc, and 

mass, 7-11 x 105 Me' comparable to those of a typical molecular cloud 

complex. Unlike a typical cloud complex, cloud Q is apparently a 

single, continuous object with, except for a possible H II region, no 

associated star formation. This is consistent with the idea that 

star formation and the disruptive activity associated with it has not 

yet occurred. Similar objects are apparently rare in the Galaxy. It 

is reasonable to imagine that this is a young cloud not yet forming 

stars that may evolve into a typical cloud complex when star 

formation occurs. 

Only a small fraction of the galactic plane was surveyed for 

outer galaxy clouds, and small, cold clouds which may be widespread 

in the outer galaxy, may have been missed because of the coarse 

resolution of the observation. The distances and placement of the 

outer galaxy clouds is suggestive of two outer arms to the galaxy, 

one of which may be an extension of the Perseus arm of the galaxy 

into the third quadrant. Molecular clouds apparently can be used to 

trace spiral structure out to gal~ctocentric radii of 15 kpc, even 

though the density of molecular material beyond the solar circle is 
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low. The outer galaxy clouds are colder and have much lower eo 
luminosities (Seo) than inner galaxy clouds, even though they have 

similar sizes. The scale height of molecular material outside the 

solar circle is consistently the same as the local value (65 pc rms) 

but the surface density may be twenty times lower. 
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APPENDIX A. CLOUD MASSES 

1. Viria1 Masses 

The virial theorem for a homogeneous sphere with no density 

gradient implies that Mvir = 5 R (6VFWHM)2 / [8 G 1n(2)], or 

(App.1) 

where G is the gravitational constant, R the radius of the cloud, D 

its distance, and e its angular radius. This is an upper limit to 

the mass of a cloud, since the effects of density gradients, magnetic 

fields, sources of pressure, and cloud contractions have been 

omitted. Intensity gradients close to the edges of the clouds 

indicate little CO below the sensitivity limit of the lowest contour 

level (- 1.3 K km s-l) so e was taken to be (A / n)1/2, where A is 

the area in square degrees subtended by CO emission. 

Since the actual FWHM velocity dispersion of gas in the cloud is 

unknown, it is assumed that it can be represented by the composite CO 

line width. Composite spectra for each region in Table V~l were 

determined by interpolating TR(PEAK), V(PEAK), and Weo for each 

unmeasured grid point and then summing Gaussian line profiles with 

height TR(PEAK), Gaussian equivalent FWHM width of 

0.94 Weo / TR(PEAK), and centers on V(PEAK) over all grid points 

within the region (not including the effects of double spectral 

lines). As a check, composite spectra for the Orion A cloud and the 
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large galactic plane cloud (Q, Table IV.2) were constructed by adding 

the actual spectra for those fully sampled clouds. A comparison of 

these composite spectra and the previous results showed no significant 

differences (Figs. APPENDIX.1-APPENDIX.2). 

Since the above form of the viria1 theorem may be inappropriate 

to the geometry of the filamentary clouds, a form appropriate to a 

cylinder with a radius much smaller than its length was used for the 

Northern and Southern filaments. Then Mvir = L (~VFWHM)2 1 [4 G 1n(2)] 

or 

Mvir{Me) = 83.8 D{pc) [~VFWHM(km s-1)]2 tan{l) (App.2) 

was used where L is the linear length of the filament and 1 its 

angular length in degrees. 

2. LTE Masses 

For Orion A and B, CO spectra were synthesized with a resolution 

of 1/20 from the single-beam data, and, using the LTE method of Blitz 

(1978) and a value of 2 x 10-6 for N{13CO)/N{H2) (Dickman 1978), these 

spectra were combined with observations of 13CO which have the same 

resolution (Ch. III,C) to obtain average hydrogen molecule column 

densities, NLTE(H2). If the areas covered by 13CO.emission (11.3 deg2 

for Orion A and 4.8 deg2 for Orion B) were used, the masses derived 

from column densities would be lower limits, because the CO survey 

shows that the clouds are actually much larger. Assuming that 1.36 is 

the mean atomic weight per H atom for the interstellar medium and that 
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all hydrogen is molecular, the lower limits are 0.38 x 105 Me for 

Orion A and 0.19 x 105 Me for Orion B. To obtain upper limits to the 

masses (Table V.1), the average column density in the cloud periphery 

where 13CO was not detected is assumed to be equal to the mean value 

of the derived column densities in the small, denser, central areas 

detected in 13CO. 

For all regions in Table IV.1, including the Orion A and B 

clouds, between three and twelve full-resolution 13CO spectra near and 

away from CO temperature peaks were combined with the CO spectra for 

the same positions to give column densities. By assuming that the 

derived column densities are representive of the area covered by CO 

emission, upper limits to the LTE masses (Table V.1) could be 

obtained for all clouds. The masses calculated in this fashion for 

Orion A and B were consistent with the upper limits derived above. 

Since 13CO pbservations were not made toward the galactic plane 

clouds, MLTE were not calculated for them. 

3. WCO Masses 

Empirically, WCO traces the molecular column density, although CO 

is generally believed to be so abundant that most of its emission 

lines should be saturated; for example, optically thick CO line 

profiles generally mimic thin 13CO line profiles observed at the same 

positions. To convert from WCO to N(H2) the results of Bloemen et al. --
(1984) were used. They assume that the y-ray flux observed by the 

COS-B satellite toward a large subsection of the region covered in the 

Columbia CO survey of Orion is proportional to the number of nucleons, 
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N(H I) and N(H2), along the line of sight. If Weo is proportional to 

N(H2)' the predicted y-ray flux will be Fy = A N(H I) + B Weo + e, 

where the observations determine A, the emissivity per nucleon, B, 

which equals 2 A N(H2) / Weo, and e, the contribution from background 

sources. In a maximum likelihood analysis of predicted versus 

observed y-ray flux which combined the eo observations and the 

Berkeley 21 cm surveys, Bloemen et!L. (1984) found 

N(H2)/WCO = (2.6 ± 1.3) x 1020 cm-2 (K km s-l)-l. Similarly, Lebrun 

et~. (1983), investigating the inner galaxy, used the WCO 

measurements from the Columbia first quadrant survey and found a ratio 

of (1 - 3) x 1020 • These are approximately the same values Kutner and 

Leung (1985) found by applying radiative transfer theory to 

theoretical radiative transfer models of the type of cloud envelopes 

that make up the major portion of our survey. Using visual extinction 

and WCO measurements toward Taurus, Frerking, Langer, and Wilson 

(1982) obtained a ratio of 1.8 x 1020 • However, Sanders, Solomon, and 

Scoville (1984), who used the same extinction measurements as Frerking 

et !L. but instead used 13eo integrated intensities to infer eo 

intensities, obtained 3.6 x 1020 • All these ratios are somewhat 

smaller than the value proposed by Liszt (1982): 5 x 1020 • 

Using various beam sizes (i.e., full-resolution and 1/20 

resolution observations corresponding to 1.25 and 5 pc at a distance 

of 500 pc), NLTE(H2) appears to be proportional to Weo over a wide 

range in densities (Fig. APPENDIX.3). The somewhat low value for the 

Wco-to-N(H2) ratio (0.91 x 1020 cm-2 (K km s-l)-l) implied by 
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Figure APPENDIX.3 suggests that either the proposed N(H2)/WCO values 

are systematically too high or, more likely, the low values for NLTE 

resulted from using a value for N(13CO)/N(H2) which was high by a 

factor of 2 or so. 

Assuming that the correct value for N(H2)/WCO is 

2.6 x 1020 cm-2 (K km s-l)-l, that the mean atomic weight per H atom 

for the interstellar medium is 1.36, and that all hydrogen is 

molecular 

MCO(Ma) = 1.73 x 10-3 D{pc)2 SCO(K km s-l deg2) (App.3) 

where 0 is the distance to a region and Seo is the integrated eo 

emission summed over that region. 
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Appendix B. MODEL FOR THE DISRUPTION OF A MOLECULAR CLOUD BY AN 

EMBEDDED H II REGION 

As shown in Chapter V,E, the structures in the interstellar medium 

now surrounding A Ori may have been caused by expansion of the H II 

region excited by the star. The symmetric distribution of the 

molecular, atomic, and ionized gases indicate that after the 

star formed, probably near the center of a molecular cloud, the 

disruption of the interstellar gases proceeded symmetrically around the 

star; the half-dozen molecular clouds detected by the present CO survey 

are probably fragments of the original cloud. 

This appendi~ presents a theoretical model to show how an H II 

region created by a star similar to A Ori might disrupt the molecular 

cloud in which it formed. The model entails the transfer of momentum 

from the H II region to the surrounding medium and predicts the 

distribution of molecular, atomic, and ionized gases and the expansion 

velocities of the gas structures at different stages in the region's 

evolution. The predictions are then compared to the observed 

distributions and velocities of the A Ori system. Although the model 

can be applied to a wide range of cloud sizes and types of stars, I 

will concentrate on initial parameters suitable for the A Ori system. 

A newly-formed star, taken to be of spectral type 08, and its 

associated H II region are centered within a molecular cloud at the 

initial stage of the model. Although the observed clouds in the A Ori 

system lie in a single plane, suggesting that the original cloud was 

shaped more like a pancake than a sphere (Fig. V.I6a), I will consider 
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only the case of a spherical cloud. Were the original dimensions of 

the A Ori molecular cloud known, a more detailed model could be 

constructed. 

It is assumed that the cloud has a uniform density, n{H2), of 

150 cm~3 (the average density of the molecular clouds found in the 

Orion survey), and is surrounded by an intercloud medium of uniform 

atomic gas at a density, n{H}, of 1.5 cm-3• Both the molecular and 

atomic gases are taken to be dust-free and composed only of hydrogen. 

Throughout all stages of the model, the ionization, dissociation, and 

shock fronts associated with the expansion of the H II region are 

considered a single discontinuity; since the model never approaches the 

stage where the pressure in the H II region equals that of the 

surrounding gas, the difference between the velocities of the 

shock-fronts and ionization-fronts remains small {Spitzer 1978}, so the 

fronts stay close together. The initial radius of the cloud, assumed 

to be 10 pc, is the only parameter in the model for which observations 

do not suggest a value. The model predicts, as a function of radius 

for the H II region, the expansion velocity of the H II region, the 

elapsed time sfnce the start of the expansion, the atomic and molecular 

mass associated with the shell surrounding the H II region, and the 

density and mass of ionized gas within the H II region. 

The model evolves through four stages: 

A. Initial Expansion 

The expansion of the H II region to its Stromgren radius, ro, 



87 

occurs rapidly (for a detailed description see Spitzer 1978). If the 

molecular cloud has a proton density, nc = 2 n(H2), then 

ro3 = 3 Q / 4 ~ a nc2, Q being the number of ionizing photons per 

second produced by the star and a the hydrogen recombinatfon 

coefficient. For n(H2) = 150 cm-3, Q appropriate for an 08 star 

(3.9 x 1048 s-I), and a = 3.1 x 10-13 cm-3 s-1 (Spitzer 1978), the 

Stromgren radius is 1 pc, much smaller than the 10 pc radius of the 

molecular cloud. At the end of this stage, the expansion velocity, Us' 

of the H II region will be (4 C2 / 3)1/2, where C is the isothermal 

velocity within the H II region and equals (2 R Tii)1/2 for gas 

constant R. If the gas temperature within the H II region has remained 

constant over the lifetime of the system (7500 K; Crezelius 1984), then 

C = 11.2 km s-1 and Us = 12.9 km s-l. The initial mass within the H II 

region (MiiO) is then 35 Ma. 

B. Expansion and Growth of the Molecular Shell 

The gas pressure within the H II region, exceeding the typical 

pressure in the molecular cloud by 3 orders of magnitude, drives the 

expansion of the H II region into the molecular cloud. A shell of high 

density molecular gas forms just outside the H II region and 

accumulates mass as the H II region grows in size. The results of 

Mazurek (1980) are summarized here. 

If r is the radius of the shell, Us its expansion velocity 

(dr/dt), n;; the particle density within the H II region 

(= 2 nc [ro / rJ3/2; Spitzer 1978), and P the gas pressure within the 
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H II region (nii k Tii), then the change in momentum per unit time for 

the shell satisfies 

d (M U) = 4 w r2 P _ G Ms (Ms + 2Mii) 
crt s s 2 r2 

(App. 4) 

The insignificant forces from the pressure external to the H II region, 

from stellar winds, and from radiation pressure are ignored. The next 

to last term represents the sum of the approximate self-gravity force 

on a shell of mass Ms plus the force on the shell from the mass of 

ionized gas (Mii) within the H II region. The rate of momentum 

transfer to the H II region is given by the last term. Defining 

x = r / ro, y = Us2 / C2, and B = G Mii o / ro C2, then Mii and Ms equal 

Mii o x3/ 2 and Mii o x3 (1 - x-3/ 2), respectively, and the equation of 

motion can be rewritten as: 

dy = 6 x1/2 - B x (1 + x-3/ 2) ax x3 _ x3/2 
6 x2 - 1.5 x1/ 2 y • (App. 5) 

x3 _ x3/ 2 

The equation being of the form dy/dx = P(x) y + Q(x), it can be 

solved analytically, though with some difficulty. Instead of 

approximately solving the equation, as Mazurek has done, I solved it 

numerically using the third-order predictor-corrector method of 

Adams-Moulton. Figure APPENDIX.4 illustrates the results obtained with 

the parameters of the ~ Ori system using as initial values the radius 

and expansion velocities of the H II region at the end of the first 

stage in evolution. The numerical results agree with the results of 
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Mazurek: as the mass in the shell grows with the expansion of the H II 

region, Us decreases. 

The third evolutionary stage begins when the outer radius of the 

shell reaches the radius of the cloud. For the cloud and star under 

consideration, this process takes 2.5 Myrs, at which point 

Us = 2.0 km s-l. Were the cloud 14 pc or larger in radius, instead of 

10 pc, expansion would halt before all molecular material is enveloped 

by the shell, and the third evolutionary stage would not occur. For a 

nonspherical cloud, the third stage begins when the radius of the shell 

approaches half the short diameter of the cloud. The evolution of 

spherical and nonspherical clouds is identical up to this point. 

c. Expansion of the Shell into the Intercloud Medium 

When the shell reaches the edge of the cloud, the expansion 

accelerates because, during expansion into the low density intercloud 

medium, the shell accumulates mass at a low rate. A growing H I shell 

precedes the molecular shell, which continues to lose mass to the 

expanding H II region, and the surface density of molecular and atomic 

gas in the shell decreases as the shell radius expands. Equation App. 4 

remains appropriate for this stage of evolution, but now 

Ms = Mc (1 - f - 0 z3/2 + f z3) and Mii = Mc 0 z3/2, where the original 

mass of the molecular cloud, Mc' equals 3.1 x 104 Mo' 

f = n(H) / n{H2) = 0.005, 0 = (ro / rc}3/2 = 0.034, and z = r / rc. 

Similar to the way Equation App. 5 was obtained, the new equation of 

motion can be written as: 
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dy = 6 zl/2 0 + (0 B zl/2 - 3 f z2) (1 - f - f z3 + 0 z3) 
dz 1 - f - f z3 - 0 z3 

+ 1.S 0 zl/2 - 3 f z2 Y 
1 - f - f z3 - 0 z3 

(App. 6) 

The results of the numerical differentiation, which uses the final 

velocity of the second stage as the initial velocity, are shown in 

Figure APPENDIX.4. In calculating the masses in the figure, I have 

assumed that atomic gas is not converted into molecular gas, and vice 

versa, and that only molecular gas enters the H II region. 

If the shell does not enter the fourth stage of evolution, 

expansion stops when enough mass accumulates in the shell, when the 

pressure within the H II region approaches the external pressure, or 

when the star evolves off the main sequence. Because Mazurek did not 

include the intercloud medium, the shell in his model accelerates at a 

higher rate during this stage of evolution and stops expanding only when 

the pressure inside the H II region approaches the external pressure or 

when the star evolves. 

If the cloud were shaped like a pancake instead of a sphere, some 

sections of it would continue to go through the second stage of 

evolution while other sections would already be in the third 

(Fig. V.16b). Depending on the exact dimensions of the cloud, the shell 

may stop expanding along the major axis of the cloud and expand rapidly 

along the minor axis. In this case, the velocity structure of the 

system would be difficult to predict. 

Accelerated by the low-density gas in the H II region, the shell 
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eventually develops a Rayleigh-Taylor instability. The once-uniform 

molecular material forms clumps and eventually a break in the shell 

occurs. No longer confined at the location of the break, the gas in the 

H II region flows rapidly through the hole in the shell. If the 

molecular clumps in the shell have a turbulent velocity dispersion, Vt , 

typical of molecular clouds (~ 2 km s-1), and if the acceleration of the 

shell is g, then the thickness of the shell, ~, is ~ Vt2 / 2 g and the 

growth time, T, for the development of the instability is ~ (2 w ~ / 

g)1/2 or 21/2 Vt / g. The instability does not have a chance to grow 

Significantly during the second stage of the model since g is low then. 

However, with the high acceleration during the third stage, T becomes 

shorter than 1 My~s. Since the depressurization of the H II region 

takes ~ r / C, or an additional 1 Myrs after the shell is punctured, the 

model progresses to the fourth stage approximately 2 Myrs after the 

start of the third stage. At the close of the third stage, the radius 

and expansion velocity of the shell are 18.6 pc and 6.6 km s-1. 

D. Expansion After the Shell is Punctured. 

Many studies (e.g., Tenorio-Tagle 1978; Bodenheimer et !l. 1979; 

Bally and Scoville 1980) investigated the evolution of an H II region 

after its border breaks through a confining shell into the intercloud 

medium. The H II region wants to expand approximately to the size it 

might have had if it had formed in the intercloud medium (~ 40 pc). The 

border of the expanded H II region is not spherical; the remnant of the 

shell delineates some fraction of the border of the H II region. If the 
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puncture of the shell occurred over a small region of the shell, most of 

the atomic gas exterior to the molecular shell should be unaffected. 

Since the shell remnant lies within the new Stromgren radius of the 

H II region, ionization of shell material increases on the side of the 

shell facing the star. The ionized gases stream away from the shell 

remnant at about the sound speed in the H II region and, rather like a 

rocket engine, give an impulse back to the remnant. The rate of 

ionization is self-regulating; an excess flux of UV photons increases 

ionization, but newly ionized gases subsequently absorb the excess. The 

flux of ionized gases away from the remnant, therefore, is ~ nii C, and 

the force on the remnant from the rocket effect is approximately the 

same as the force of the gas pressure. If the shell retains most of its 

original spherical geometry; the equation of motion can be derived from 

Equations App. 4 and App. 6 simply by do'ubling the pressure term. The 

shell, still accumulating atomic mass, continues to expand, but will 

finally come to rest. In the meantime, the pressure forces die out as 

the central star evolves. 

At a comparable radius of 34 pc, the observed parameters of the 

A Ori system and those predicted by the model, agree rather well 

(Table App.l), even though the geometry of the A Ori molecular cloud was 

probably nonspherical. The radius of the molecular cloud being the only 

parameter in the model for which observations do not suggest a value, 

the agreement between predictions and observations is probably more than 

fortuitous. 
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Table II.l 

Comparison Among Telescopes 

======================================================================= 

Parameter 

Aperature 

Molecule 

Beam Width 

Spaci ng Between 

Observations 

Velocity Resolution 

rms Noise 

NRAO 

11m 

CO 

1. 10 

1.10 

0.65 km s-1 

0.2 K 

Telescope 

Bell Telephone P.O.M. 

7 m 2.5 m 

13CO 13CO 

1.15 4. 1 4 

1.10 4.14 

0.65 km s-1 0.26 km s-1 

0.1 K 0.15 k 

----------------------------------------------------------------------
Note: All observations were position-switched with first-order 

baselines removed. The rms noise values given are approximate 

or average. 
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Table III.l 

Off Positions 

======================================================================== 

a (1950) 15 (1950) a (1950) 15 (1950) a(1950) 15(1950) 

------------------------------------------------------------------------
5h20m27s 20°57'26 11 * 6h06m52s 9°08'2411 * 6h37m14S 18°43'14 11 * 

5 41 00 8 40 00 6 10 50 -11 22 30 6 39 27 -6 17 12* 

5 44 50 -11 15 00 6 11 00 2 47 30 6 42 55 13 49 53* 

5 46 29 17 47 11* 6 11 41 6 57 13* 6 44 01 -8 30 18* 

5 48 00 5 10 00 6 12 16 21 16 08* 6 47 33 11 36 44* 

5 48 00 -3 35 00 6 14 50 -7 15 00 6 52 09 9 23 33* 

5 50 20 -7 00 00* 6 14 52 24 46 34* 6 52 20 -7 30 00* 

5 51 47 15 38 32* 6 16 30 -8 52 30 7 01 17 4 57 23* 

5 53 07 21 02 02* 6 17 33 10 34 32* 7 05 51 2 44 29* 

5 54 20 -14 07 30 6 18 36 24 53 22* 7 13 43 -15 59 25* 

5 56 20 -6 00 00* 6 18 39 16 24 00* 7 15 03 -1 40 41* 

5 56 50 o 47 30 6 21 06 2 33 35* 7 19 42 -3 52 50* 

5 56 56 13 29 07* 6 23 40 22 41 11* 7 24 25 -6 04 37* 

5 59 00 -3 05 00 6 26 44 20 14 49* 7 29 12 -8 15 59* 

5 59 20 -8 15 00* 6 28 38 20 28 40* 7 35 04 -10 52 58* 

6 01 57 11 19 03* 6 30 19 -1 51 22* 7 45 46 -17 26 16* 

6 06 00 4 02 30 

------------------------------------------------------------------------
Note: All off positions were observed to an rms noise level of 0.20 K 

or, if marked with an asterisk, to 0.15 K or less. 



Table IV.1 

CO Emission Peaks - Local Clouds 

======================================================================================== 

No. a(1950) 6(1950} TR <V> WCO Associated Objectsa 

(h m) (0 I) (K) (km s-l) (K km s-l) 

----------------------------------------------------------------------------------------
>. Ori oni s Clouds 

1 5 8.0 10 38 5.7 1.4 9.3 LON 1571,72 

2 5 14.0 15 0 5.2 0.8 15.7 
\0 
\J1 

3 5 16.0 13 0 5.4 0.8 17.6 VOB 37 

4 5 18.1 7 30 6.6 1.9 29.4 B 223; LON 1588,89,90; S 263,65; 

VOB 38; Mel 1 
. 

5 5 22.5 7 8 3.7 3.4 14.7 LON 1595*; VOB 40 

6 5 25.5 6 8 3.3 0.6 6.1 LON 1595; VOB 40* 

7 5 26.5 14 23 3.8 8.3 11.2 

8 5 28.5 16 0 2.8 8.7 9.0 

9 5 28.5 12 30 9.8 10.2 18.9 B 30,31,32,225; LON 1573,77,81,82,83,84 

10 5 42.4 9 3 6.6 11.5 14.0 B 35; LON 1594,96 



Table IV.1 (Continued) 

======================================================================================== 

No. a(1950) 6(1950) TR <v> 

11 5 42.4 

12 5 50.0 

Orion A Cloud 

6 3 

8 25 

13 5 04.0 -3 23 

14 5 17.0 -5 53 

15 5 26.5 -2 30 

16 5 28.0 -3 0 

3.7 13.2 

6.6 11.7 

5.8 7.7 

6.1 7.9 

5.3 11.9 

8.5 10.6 

17 5 28.5 -4 23 8.0 10.7 

18 5 29.5 -5 30 . 5.7 9.6 

19 5 31.0 -3 53 7.1 11.0 

20 5 32.8 -5 25 30.8 

21 5 33.5 -6 15 16.1 

22 5 36.5 -7 8 

23b 5 36.5 -8 30 

9.2 

6.0 

9.3 

8.4 

5.4 

5.9 

WCO 

8.8 

15.1 

15.2 

. 14.5 

15.0 

19.2 

29.4 

17.6 

23.7 

161.9 

55.6 

42.9 

22.7 

2.8 11.8 6.4 

Associated Objects 

LON 1602,03 

S 36*; LON 1598; LON 1597,99* 

LON 1615,16; NGC 1788; VOS 33 

LON 1634;· S 278 

VOS 44; IC 420 

VOS 42 

Orion Nebula; NGC 1976,82; 

NGC 1999*; IC 427,28*; VOS 46*; 

* HH 33,34,40; HH 1,2,3,35,36 

IC 429,30; LON 1641; HH 38,43 

LON 1641 

\0 
C' 



Table IV.1 (Continued) 

======================================================================================== 

No. a(1950) 6 (l950) TR <V> WCO Associated Objects 

----------------------------------------------------------------------------------------
24b 5 38.5 -9 23 7.3 2.8 20.0 LON 1647; VDB 53 

2.8 11.0 5.9 

25c 5 40.0 -8 15 12.5 2.8 28.7 VDB 55 

7.4 6.9 14.8 

26 5 43.0 -5 30 8.0 9.2 20.1 

27 6 0.2 -10 45 5.5 4.9 8.1 \0 
-...J 

Orion B Cloud 

28 5 29.0 -0 53 3.9 12.3 11.8 Delta Ori*; IC 423,24* 

29 5 31.5 0 0 2.3 12.0 6.7 Delta Ori*; IC 424 
. 

NGC 2024; S 277; IC 432; IC 431*; VDB 51; 30c 5 39.0 -1 45 3.4 3.9 11.7 

20.5 9.9 95.1 VDB 50* 

31 5 39.0 -2 15 17.6 10.1 73.6 Horsehead Nebula; B 33; NGC 2023; 

IC 434,35; VDB 52; VDB 57* 

32c 5 41.0 -1 30 5.8 3.0 26.0 LON 1630 

33 5 42.5 -3 30 7.3 9.2 26.9 



Table IV.1 (Continued) 

======================================================================================== 

No. a(1950) &(1950) TR <v> WCO Associated Objects 

34 5 44.0 0 0 16.2 10.3 54.4 LON 1627; NGC 2064,67,68,71; VOB 59,60; 

HH 19 - HH 27 

35c 5 45.0 -0 53 3.2 4.8 16.3 LON 1630 

7.0 10.3 17 .3 

36 5 48.5 4 40 4.8 8.3 10.7 LON 1617; VOB 61* 

37c 5 50.5 2 25 5.5 8.6 12.1 LON 1617 
\0 
<» 

3.5 10.9 11.4 

Orion East Cloud 

38d 5 52.0 1 48 9.3 0.7 20.2 LON 1621,22; VOB 62,63 

4.1 10.4 9.6 

Barnard's Loop Clouds 

39 5 39.0 3 23 3.4 2.6 9.9 VOB 49* 

40 5 40.5 3 15 3.9 9.1 12.2 

41 5 54.3 -6 45 3.0 9.1 3.7 LON 1638* 

42 5 55.5 -3 5 4.1 9.0 9.6 LON 1638 



Table IV.1 (Continued) 

======================================================================================== 

No. a (1950) ~ (1950) TR <V> WCO Associated Objects 

----------------------------------------------------------------------------------------
NGC 2149 Clouds 

43e 5 43.0 -9 23 1.0 4.0 3.7 LON 1647* 

3.3 10.3 4.0 

44 5 48.6 -9 0 4.1 11.1 7.7 LON 1648 

45e 5 51.6 -10 30 1.6 5.8 4.4 

5.5 10.3 12.5 
\0 
\0 

46 5 54.6 -12 0 2.3 11.4 5.9 

47 5 55.6 -13 38 3.8 9.5 9.6 VOB 64 

48 5 58.2 -9 53 4.7 12.3 19.5 

49 6 0.8 -9 45 7.9 12.3 23.9 NGC 2149; VOB 66 

Northern Filament 

50 5 49.0 6 3 4.2 12.5 8.0 

51 5 53.0 5 40 3.5 9.1 9.9 

52c 5 57.5 5 10 3.5 8.8 5.1 LON 1611; LON 1612* 

3.8 11.4 8.8 

53 6 3.0 4 10 4.4 9.9 11.0 LON 1618,19 



Table IV.1 (Continued) 

======================================================================================== 

No. a(1950) 6 (1950) TR <V> WCO Associated Objects 

----------------------------------------------------------------------------------------
54 6 7.0 2 48 3.4 9.3 13.6 LON 1628,29 

55c 6 7.5 2 40 1.7 6.2 4.8 LON 1628,29 

4.4 9.8 10.7 

56 6 8.5 1 55 3.6 7.8 14.0 

57 6 16.6 3 55 4.0 9.4 13.6 

58 6 20.5 o 25 2.4 15.6 '4.0 
..... 

59c 6 21.6 3 40 3.5 
0 

7.0 10.7 LON 1633 0 

3.4 10.0 10.3 

Monoceros R2 Cloud 

60 6 2.0 -4 20 3.5 13.7 15.1 tON 1643* 

61 6 ·5.3 -6 23 13.9 10.7 62.9 LON 1646; NGC 2170; VOB 67,68,69 

62 6 5.3 -6 53 5.9 10.0 25.0 

63c 6 6.3 -6 0 4.4 10.3 7.7 LON 1646; NGC 2182*; VOB 68,69,72* 

5.8 12.4 13.6 

64 6 7.4 -8 45 3.0 11.0 13.2 

65 6 8.4 -6 15 6.9 10.7 28.3 LON 1646*; NGC 2182,83,85; VOB 72,73,74 



Table IV.l (Continued) 

======================================================================================== 

No. a(1950) ~(1950) TR 

Southern Filament 

66 6 24.6 -10 8 3.0 

67 6 28.7 -9 30 4.7 

68 6 32.7 -9 8 4.1 

69 6 34.3 -10 38 3.0 

70 6 36.4 -10 30 2.8 

71 6 54.8 -11 30 4.0 

LON 1653,54,55,56 Clouds 

72 6 54.1 -10 8 3.4 

73 6 54.4 -8 23 3.5 

74 6 57.3 -7 45 5.6 

<v> 

12.2 

11.8 

12.0 

12.7 

14.4 

11.9 

12.8 

13.1 

13.3 

Weo 

12.9 

13.2 

9.6 

11.0 

9.6 

7.7 

Associated Objects 

LON 1652 

'CROSSBONES·f; VOB 80 

'CROSSBONES·f 

11.4 VOB 86 

8.1 LON 1655,56; S 291* 

16.2 LON 1654; NGC 2316; MRSL 220-01/1 

a LON, Dark clouds (Lynds 1962); VOB, Reflection nebulae (van den Bergh 1966); B, 

Dark clouds (Barnard 1927); s, HII regions (Sharpless 1959); Mel, Bright nebulae (Melotte 

I-' 
o 
I-' 



Table IV.1 (Continued) 

1926); NGC, Nonstellar objects (Sulentic and Tift 1973); IC, Nonstellar objects (Dreyer 

1908); HH, Herbig-Haro objects (Herbig 1974); MRSL, HII regions (Marsalkova 1974). 

Asterisks indicate an object or objects not coincident with and perhaps not associated 

with CO peak. 

b Second spectral line due to overlapping NGC 2149 Cloud. 

c Double CO lines. 

d Second spectral line due to overlapping Orion B Cloud. 

e First spectral line due to overlapping Orion A Cloud. 

f Refers to molecular feature crossing the Southern Filament. ..... 
o 
N 
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Table IV.2 

Star Counts 

======================================================================= 

Cloud Positiona Oistancee 

a(1950) <5(1950) (pc) 

-----------------------------------------------------------------------
Northern Filament 5h 5Sm 5° 151 98. 25 5.0 ± 1.0 801 ± 91 

6 03 4 15 

6 07 2 45 

Southern Filament 6 25 -10 00 157. 60 7.5 ± 1.0 1009 ± 77 

6 28 -9 30 

Orion Eastf 5 52 1 45 216. 22 2.0 ± 0.4 475 ± 54 

Orion Ag 5 38 -9 00 137. 14 2.0 ± 0.5 475 ± 68 

5 40 -10 15 

Monoceros R2g 6 05 -5 15 196. 58 5.8 ± 0.8 872 ± 69 

6 03 -6 30 

Notes: a Position given to within nearest 1/4°; chosen near locations 

of high WCO to reduce number of background stars. 

b The total area (square arcmin) in which stars were counted; a 

51 diaphragm was used at a number of locations roughly 

centered on the indicated positions. 

c Total number of stars found on POSS blue prints within A. 
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Table IV.2 (Continued) 

d Average number of stars found within a 51 diaphragm. 

e Distance from empirical relation of Herbst and Sawyer 

(1981). 

f Included as a test of the method; distance agrees with that 

found by Herbst (1982) using the same method. 

9 Included as a test of the method; distances agree with 

previously determined photometric distances of associated 

stars. 
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Table IV.3 

Molecular Clouds -- Outer Galaxy 

========================================================================= 

Cloud 1 b <v>a AREAb TRc. SCOd De zf MC09 Notes 

(a) (a) (km s-l) (deg2) (K) (kpc) (pc) 

-------------------------------------------------------------------------
A 204.3 -S.2 10. 9.1 4.4 52.3 0.5 -71. 0.2 * 
B 207.3 -l.S 15. 2.5 21.0 1.6h -50. ....3. * ••• 

C 207.6 2.4 14. >O.S; 2.1 >2.4; 1.6h 67. >0.1 ; 

D 207.6 1.1 lS. >0.2; 1.7 >O.S; 1.6h 31. >0.04; 

E 20S.9 2.1 11. 2.1 4.0 9.5 1.6h 59. 0.4 * 
F 209.6 0.6 30. 0.3 1.6 0.6 4.7j 49. 0.2 

G 209.6 -0.1 15. >0.4; 1.0 >O.S; 1.6h o. >0.04; 

H 210.4 -0.1 37. 0.1 3.3 0.7 6.0j -10. 0.4 

I 210.9 -3.3 21. O.S loS 2.S 1.6h -92. 0.1 * 
J 211.4 -0.4 22. 0.4 2.1 0.6 2.3j -16. 0.05 * 
K 211.6 1.1 45. 0.3 1.1 0.7 5.Sk 111. 0.4 

L 211.9 1.9 7. >0.5; 2.7 >1.7; .... 1. 33. >0.03; * 
M 212.1 -0.9 44. 0.5 2.0 1.3 5.Sk -S6. 0.7 * 
N 212.9 1.1 44. O.S 1.4 1.4 5.Sk 106. 0.7 

0 215.1 0.9 4S. 0.5 2.1 1.6 5.7k 90. 0.9 

p 215.4 -0.4 2S. 1.1 1.6 1.5 2.9j -20. 0.2 

Q 216.6 -2.S 27. 5.S 3.S 42.6 3.01 -145. 6.6 * 
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Table IV.3 (Continued) 

========================================================================= 

Cloud 1 b <v> AREA TR SCO 0 z MCO Notes 

----.-----.-.------.--:.-_-------------_._--------------------"--------------------

R 217.4 0.1 49. 0.8 1.8 1.9 5.5k 10. 1.0 

S 218.1 -0.4 27. 1.3 3.3 5.1 3.01 -21 0.8 

T 221.8 -2.6 13. 1.9 5.6 15.4 1.2 -54. 0.3 

Notes to Individual Clouds: 

A) Section of the Northern filament (Chap. IV,A,4). 

B) Section of the Rosette cloud complex; data for the complex is from 

B1 Hz (1978). 

E) Associated with LON 1639. 

I) May be associated with S 280 and S 282 (photometric distances of 

1.5 ± 0.5 kpc; Georgel;n 1975). 

* 

* 

* 

J) May be associated with NGC 2282, IC 2172, MRSL 211-00/1, and VOB 85 

(photometric distance of 1.7 ± 0.4 kpc; Racine 1968). 

L) Associated with cloud 184 in Khavtassi (1955). No reliable distance 

estimate; assumed 1 kpc. 

M) Associated with the H II regions B02 and S 284 with photometric 

distances of 4.8 ± 0.7 and 5.2 ± 0.8 kpc (Moffat and Vogt 1975; 

Moffat, Fitzgerald, and Jackson 1979). 

Q) Cloud described in Chap. V,F. Associated with cloud 181 in Khavtassi 

(1955). Mvir = 10.8 x 105 Me using 8.5 km s-l line width from 

Fig. IV.23. 



107 

Table IV.3 (Continued) 

R) Possibly associated with S 286. 

S) Associated with S 287 with a photometric distance of 3.2 ± 0.8 kpc 

(Moffat et !l. 1979) and with LON 1649 and 1650. 

T} Section of the LON 1652, 1653, 1654, and 1655 clouds (Chap. IV,A,8). 

Notes: 

a Mean velocity of the cloud. 

b Area subtended by the cloud (Chap. V,G). 

c Maximum radiation temperature observed within the cloud. 

d Intensity of CO emission integrated over the extent of the cloud 

(K km s-l deg2). 

e Distance from the Sun. 

f Displacement of the cloud from the galactic plane. 

g Mass from the CO luminosity (App. A,3) in units of 105 Me. 

h Assumed distance the same as the Rosette Complex (1.6 kpc; Turner 

1976). 

i Not fully covered in this survey; Area, SCO, and MCO are minimum 

values. 

j Distance estimated from the rotation curve ~f Blitz (1979). 

k Distance estimated from a flat rotation curve (ea = 250 km s-l kpc-1, 

Re = 10 kpc). 

1 Distance determination described in Ch. V,F,l. 
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Table V.1 

Masses - Local Clouds 

======================================================================= 

Object 0 6Va A SCO Mvir MLTE MCO 

(pc) (km s-l) (deg2) (K km (lOS M@) 

s-l deg2) 

-----------------------------------------------------------------------
). Ori ani s 400 11.7 100.6 0.14 0.28 

Orion A 500 5.1 28.6 309.6 1.44 0.98 1.04 

Orion B 500 4.0 19.0 246.9 0.72 0.74 0.83 

Orion East 500 1.6 0.8 5.0 0.02 0.04 0.02 

Barnard I s Loop 320 1.8 6.2 ... 0.01 0.01 

NGC 2149 830 2.9 7.9 47.4 0.41 0.44 0.44 

Northern Filament 500 3.6 9.1 52.3 1.01b 0.13 0.18 

Monoceros R2 830 3.9 13.6 93.8 0.96 1.22 0.86 

Southern Filament 900 3.0 6.1 28.9 1.26b 0.41 0.32 

LON 1653,4,5,6 1200 3.4 1.9 15.4 0.40 0.25 0.30 

Total: 100.5 906.1 6.51 4.36 4.28 

----------------------------------------------------------------------
Notes: a FWHM of composite spectral line. 

b Assuming cylindrical geometry. 
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Table V.2 

High Velocity Resolution Observations of Orion East 

======================================================================= 

Position Molecule Vc 

No.a a(1950) 6(1950) (K) (K km s-l) (km s-l) (km s-l) 

-----------------------------------------------------------------------
1 5h 52m 1° 40' CO 8.2 11.2 0.99 1.58 

13CO 2.2 2.4 1.14 0.97 

2 5 52 2 17.5 CO 3.1 4.5 0.26 1.37 

13CO 0.5 0.5 -0.18 0.85 

3 5 53.5 2 10 CO 6.6 8.6 1.61 1.24 

13CO 1.9 1.9 1.69 0.92 

a Number refers to the positions circled in Fig. IV.16. 

b The rms noise levels are 0.15 and 0.10 for CO and 13CO. 

Second velocity component from the Orion B cloud is ignored. 

c Velocity of Gaussian fitted to deconvolved spectra; the high 

signal-to-noise for CO observations implies that the CO velocities are 

more accurate than 13CO. The 1a errors in the fitted Gaussians are 

typically 0.1 and 0.2 km s-l for CO and 13CO observations, respectively. 

d FWHM width of deconvolved spectra; la errors are about the same 

as for V. 
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Table V.3 

Orion A and B Ridge Heating and Cooling 

====.===.-================.=====.=.============.============================= 

Parameter Ridge Non-Ridge 

). 5 pc 10 pc 

Pext 10-10 ergs cm-3 10-12 ergs cm-3 

n(H2) 300 cm-3 150 cm-3 

TK 15 K 8 K 

ne 1.5 x 10-5 cm-3 7.5 x 10-5 cm-3 

C 0.27 km s-1 0.20 km s-l 

B 50 pG 5 pG 

'[B 5 Myrs 75 Myrs 

rCR 2 x 10-25 ergs cm-3 s-1 1 x 10-25 ergs cm-3 s-1 

rB 7 x 10-25 ergs cm-3 s-l 4 x 10-28 ergs cm-3 s-l 

rT 9 x 10-25 ergs cm-3 s-1 1 x 10-25 ergs cm-3 s-l 

A 4 x 10-25 ergs cm-3 s-1 1 x 10-25 ergs cm-3 s-l 

Note: See Chapter V,D for description of paramaters. 
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Table V.4 

Fitted Parameters of Lambda Orionis Ring 

====================================================================== 

Paramater Value 

5h 29.8m ± 1.6m 

9° 541 ± 241 

6.0 ± 0.9 km s-l 

156.°1 ± 7.°6 

-36.4 ± 5.°1 

14.3 ± 2.5 km s-l 

34.5 ± 2.0 pc 

( 5.°0 ± 0.°1 ) 

2.4 ± 0.4 Myrs 

Note: Errors correspond to the a of the fitted model. See Fig. v.a for 

explanation of parameters. 



Table V.5 

Radio Continuum Observations Toward Large and Unusual Cloud 

==============================~============================================================ 

Source 1 b v(MHz) S(Jy)a Ref. a Spectrum u(pc cm-2)b StarC 

-------------------------------------------------------------------------------------------
4C-02.28 214.°7 -1.°7 178 6.1 1 IV 0.3d thermal IV 60.d,e IV 06d ,e 

408 IV 9.d 2 

820 IV lO.d 3 

1415e ... 4 

OH 066 214.9 -3.8 178 < 2. 1 > -0.6 nonthermal? 23.9 09.5 

1415 0.62 4 t-' 
t-' 
N 

4C-03.24 215.4 -2.9 86 < 20. 5 -2.6 to -1.4 nonthermal < 15.2· 

178 2.9 1 

1415 < 0.16 4 

4C-03.25 215.8 -1.5 178 2.5 1 -0.7 nonthermal 22.7 

1415 0.53 4 

4C-05.24 . 217.6 -3.2 86 25. 5 -1.4 nonthermal 22.0 

178 5.2 1 

1415 0.48 4 



Table V.5 (Continued) 

NOTES: a Upper limits in flux densities are from the catalogs. 

b Excitation parameter using the flux density at the highest observed frequency 

and assuming a distance of 3 kpc. 

c Spectral type of ZAMS star which, if the source were thermal, would give the 

derived u. Used Table 2 of Panagia (1973). 

d Flux densities are not accurate and were derived, after subtracting an 

approximate galactic background flux, from published contour plots. The a, u, 

and derived spectral type are approximations. 

e Source only partially covered by survey at 1415 MHz (Ehman, Dixon, and Kraus 

1970) with no accurate flux density ascertainable at this frequency. Used 

observations at 820 MHZ to derive u and stellar spectral type. 

REFERENC~S: (1) Gower, Scott, and Wills (1967); (2) Haslam, Quigley, and Salter (1970); 

Haslam et!l. (1982); (3) Berkhuijsen (1972); (4) Ehman, Dixon, and Kraus 

(1970); (5) Mills, Slee, and Hill (1958). 

t-' 
t-' 
W 
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Table V.6 

Outer Galaxy Molecular Gas 

====================================================================== 

Range in RG 

10 < RG < 13 kpc 

13 < RG < 15 

10 < RG < 15 

0.13 Me pc-2 

0.06 

0.10 

34 x 106 Me 

13 x 106 

47 x 106 

Zc 

-98 pc 

+36 

-61 

61 pc 

69 

87 

a Surface density and mass of molecular clouds, including the 

contribution from He and metals, implied for the whole of the outer 

galaxy from the observations between 1 = 206° and 1 = 222°. 
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Table App. 1 

Comparison Between Predictions and Observations of the A Ori System 

~======================================================== 

Quantity Predictions Observations 

Us 14.0 km s-l 14.3 ± 2.5 km s-l 

Texp 5.9 Myrs 2-6 Myrs 

M(H2) = Mc 2.4 x 104 Me 2.8 x 104 ME) 

M(H I) = Ms - Mc 6.0 x 103 ME) < 1 x 104 Me 

M(H II) 6.5 x 103 ME) 5 ± 2 x 103 Me 

nii 3.5 cm-3 4.4 ± 1.0 cm-3 

Predictions when r in the model equals 34 pc, the observed radius 

of the A Ori ring (Chap. V,E). Observed Us and M(H2) from the CO 

observations. Texp should correspond to age of A Ori which Murdin 

and Penston (1977) estimate as 2-4 Myrs; Stothers (1985) estimates 

6 Myrs. All other observed quantities from Crezelius (1984) 



116 

REFERENCES 

Abbott, D. C. 1978, Ap. J., 225, 893. 

Appenzeller, I. 1966, Z. Astr., 64, 269. 

______ . 1968,Ap. J:, i51, 9b7~ 

_______ 1974, Astr. Ap., 36, 99. 

Axon, D. J., and Ellis, R. S. 1976, M.N.R.A.S, 177, 499. 

Baran, G. P. 1983, Ph. D. thesis, Columbia University. 

Bally, J., and Scoville, N. Z. 1980, Ap. J., 239, 121. 

Barlow, M. J., and Cohen, M. 1977, Ap. J., 213, 737. 

Barnard, E. E. 1927, in A Photographic Atlas of Selected Regions of 

the Milky Way, ed. E. B. Frost, and M. R. Calvert (Washington, 

D.C.: Carnegie Institution of Washington). 

Barns, C.E.· 19~9, iOOI·Ce~~stial Wonders (California: Pac~fic Science 

Press) • 

Baud, B., and Wouterloot, J. G. A. 1980, Astr. Ap., 90, 297. 

Becker, W., and Fenkart, R. 1971, Astr. Ap. Suppl., 4, 241. 

Beckwith, S., Evans, N. J. II, Becklin, E. E., and Neugebauer, G. 1976, 

Ap. J., 208, 390. 

Berkhuijsen, E. M. 1972, Astr. Ap. Suppl., 5, 263. 

Bignami, G. F., and Caraveo, P. A. 1985, private communication. 

Blitz, L. 1978, Ph. D. thesis, Columbia University. 

Blitz, L. 1979, Ap. J. (Letters), 231, L115. 

Blitz, L., Fich, M., and Stark, A. A. 1982, Ap. J. Suppl., 49, 183. 

Bloemen, J. B. G. M. et!l. 1985, Astr. Ap., submitted. 



117 

Bloemen, J. B. G. M., Caraveo, P. A., Hermsen, W., Lebrun, F., 

Maddalena, R. J., Strong, A. W., and Thaddeus, P. 1984, Astr. Ap., 

139, 37. 

Boss, B. 1937, General Catalogue of 33342 Stars for the Epoch 1950 

(Washington D.C.: Carnegie Institution of Washington). 

Bodenheimer, P., Tenorio-TAgle, G., and Yorke, H. W. 1979, Ap. J., 

233, 85. 

Boulanger, F. 1985, private communication. 

Chiang, W.-H. 1984, Ph. D thesis, Columbia Uni vers i ty. 

Chiang, W .-H., and Prendergast, K. H. 1985, Ap. J., 297, 

Chin, G. 1978, Ph. D. thesis, Columbia University. 

Cohen, M., and Kuhi, L. V. 1979, Ap. J. Suppl., 41, 743. 

Cohen, R. J., Matthews, N., Few, R. W., and Booth, R. S. 

M.N.R.A.S., 203, 1123. 

Cohen, R. S. 1978, Ph. D. thesis, Columbia University. 

Cong, H.-I. 1977, Ph. D. thesis, Columbia University. 

507. 

1982, 

Cong, H.-I., Kerr, A. R., and Mattauch, R. J. 1979, IEEE Trans. MTT-27, 

No.3, p. 245. 

Coulson, I. M., Murdin, P. G., MacGillivray, H. T., and Zealey, W. J. 

1978, M.N.R.A.S., 184, 171. 

Cowie, L. L., Songaila, A., and York, D. G. 1979, Ape J., 230, 469. 

Crezelius, C. 1984, private communication. 

Cruz-Gonzalez, C., Recillas-Cruz, E., Costero, R., Peimbert, M., and 

Torres-Peimbert, S. 1974, Rev. Mexicana Astr. Ap., 1, 211. 

Dame, T. M. 1983, Ph. D. thesis, Columbia University. 



118 

Dame, T. M., Elmegreen, B. G., Cohen, R. S., and Thaddeus, P. 1985, 

Ap. J., submitted. 

Dame, T. M., and Thaddeus, P. 1985, Ap. J., 297, 751. 

Dickman, R. L.~978,_Ap. J. Suppl., 37,407. 

Dickman, R. L., and Clemens, D. P. 1983, Ap. J., 271, 143. 

Downes, D., Winnberg, A., Goss, W. M., and Johansson, L. E. B. 1975, 

Astr. Ap., 44, 243. 

Dreyer, J. L. E. 1910, Second Index Catalogue of Nebulae and Clusters 

of Stars, Mem. R.A.S., 59, 105. 

Duerr, R., Imhoff, C. L., and Lada, C. J. 1982, Ap. J., 261, 135. 

Eggen, O. J. 1978, Pub. A.S.P., 90, 436. 

Ehman, J. R., Dixon, R. S., and Kr~u~, J. D. 1970, A. J., 75, 351. 

Elmegreen, B. G. 1981 in The Formation of Planetary Systems, ed. A. 

B~ahic (Touleuse: Cepadues Editions), p. 61. 

Elmegreen, B. G., Dickinson, D. F., and Lada, C. J. 1978, Ap. J., 220, 

853. 

Frerking, M. A., Langer, W. D., and Wilson, R. W. 1982, Ap .• J., 262, 

590. 

Georgelin, Y. M. 1975, thesis, University of Marseille. 

Goldsmith, P. F., and Langer, W. D. 1978, Ap. J., 222, 881. 

Gottlieb, E. W., Brock, J., and Thaddeus, P. 1984, private 

communication. 

Goudis, C. 1982, The Orion Complex: A Case Study of Interstellar Matter 

(Dordecht: D. Reidel), p. 156. 



119 

Gower, J. F. R., Scott, P. F., and Wills, D. 1967, Mem. R.A.S., 

71, 49. 

Goy, G. 1973, Astr. Ap. Suppl., 12, 277. 

Grabelsky, D. A. 1985, Ph. D. thesis, Columbia University. 

Hall, J. S., 1958, Publ. U.S. Naval Obs., 2nd Ser, Vol. 17, Part 14. 

Harper, D. A. 1975, in H II Regions and Related Topics, ed. T. L. 

Wilson, and D. Downes (New York: Springer-Verlag), p. 343. 

Haslam, C. G. T., Quigley, M. J. S., and Salter, C.J. 1970, 

M.N.R.A.S., 147, 405. 

Haslam, C. G. T., Salter, C. J., Stoffel, H., and Wilson, W. E. 1982, 

Astr. Ap. Suppl., 47, 1. 

Heiles, C., and Habing, H. J. 1974, Astr. Ap. Suppl., 14, 1. 

Heiles, C., and Troland, T. H. 1982, Ap. J. (Letters), 260, L23. 

Henderson, A. P., Jackson, P. D., and Kerr, F. J. 1982, Ap. J., 263, 

116. 

Herbig, G. H. 1974, Lick Obs. Bull., 658, 5. 

Herbig, G. H., and Rao, N. K. 1972, Ap. J., 174, 401. 

Herbst, W. 1982, private communication. 

Herbst, W., and Racine, R. 1976, A. J., 81, 840. 

Herbst, W., and Sawyer, D. L. 1981, Ap. J., 243, 935. 

Hill, J. K., and Hollenbach, D. J. 1978, Ap. J., 225, 390. 

Hiltner, W. A. 1951, Ap. J., 114, 241. 

______ 19542.., Ap. J., 120, 41. 

______ 1954£, Ap. J., 120, 454. 

Hjellming, R. M. 1968, Ap. J., 154, 533. 



120 

Hobbs, L. M. 1969, Ap. J., 157, 135. 

Huang, Y.-L. 1985, Ph. D. thesis, Columbia University. 

Huang, Y.-L., Dame, T. M., and Thaddeus, P. 1983, Ap. J., 272, 609. 

Hudson, H. S., and Soifer, B. T. 1976, Ap. J., 206, 100. 

Humphreys, R. M. 1978, Ap. J. Suppl., 38, 309. 

Isobe, S. 1973, in IAU Symposium 52, Interstellar Dust and Related 

Topics"ed. J. M. Greenberg, and H. C. Van de Hulst (Dordrecht: 

D. Reidel), p. 433. 

Jura, M. 1974, Ap. J., 191, 375. 

Khavtassi, D. She 1955, Bull. Abastumanskoy Ap. Obs., No. 18, p. 29. 

Knapp, G. R., and Brown, R. L. 1976, Ap. J., 204, 21. 

Kutner, M. L. 1978, Ap. Letters, 19, 81. 

Kutner, M. L., and Leung, C. M. 1985"Ap. J., 291, 188. 

Kutner, M. L., Machnik, D. E., Tucker, K. D., and Dickman, R. L. 1980, 

Ap. J., 237, 734. 

Kutner, M. L., and Mead, K.1~81, Ap. J. (Letters), 249, L15 

------------------------ 1985, private communication. 

Kutner, M. L., and Tucker, K. D. 1975, Ap. J., 199, 79. 

Kutner, M. L., Tucker, K. D., Chin, .G., 'and Thaddeus, P. 1977, Ap. J., 

215, 521 (KTCT). 

Kutner, M. L., and Ulich, B. L. 1981, Ap. J., 250, 341. 

Lada, C. J., and Blac~, J. H. 1976, Ap. J. (Letters), 203, L75. 

Lada, C. J., Thronson, H. A. Jr., Smith, H. A., Harper, D. A., Keene, 

J., Loewenstein, R. F., and Smith, J. 1981, Ap. J. (Letters), 

251, L91. 



121 

lada, C. J., and Wilking, B. A. 1980, Ap. J., 242, 1056. 

lebrun, F. et al. 1983, Ap. J., 274, 231. 

leisawitz, D. 1984, private communication. 

leung, C. M. 1975, Ap. J., 199, 340. 

liszt, H. S. 1982, Ap. J., 262, 198~ 

Longmore, A. J., Hyland, A. R., and Allen, D. A. 1976, Proc. Astr. Soc. 

Australia., 3, 47. 

loren, R. B. 1977, Ap. J., 215, 129. 

loren, R. B. Peters, W. l., and Vanden Bout, P. A. 1974, Ap. J. 

(letters). 194, l103. 

lynds, B. T. 1962, Ap. J. Suppl., 7, 1. 

Maddalena, R. J., .Moscowitz, J., Morris, M., and Thaddeus, P. 1982, 

Bul. A.A.S., 14, 615. 

Maddalena, R. J., and Thaddeus, P. 1985, Ap. J., 294, 231. 

Marsalkova, P. 1974, Ap. Space Sci., 27, 3. 

Mathewson, D. S., and Ford, V. l. 1970, Mem. R.A.S., 74, 139. 

Mazurek, T. J. 1980, Astr. Ap., 90, 65. 

Melotte, P. J. 1926, M.N.R.A.S., 86, 636. 

Mills, B. Y., Slee, O. B., and Hill, E. R. 1958, Australian J. Phys., 

11, 360. 

Minn, Y. K., and Greenburg, J. M. 1973, Astr. Ap., 24, 393. 

Moffat, A. F. J., Fitzgerald, M. P., and Jackson, P. D. 1979, Astron. 

Ap. Suppl., 38, 197. 

Moffat, A. F. J., and Vogt, N. 1975, Astr. Ap. Suppl., 20,85. 

Morris, M. 1984, private communiction. 



122 

Morris, M., and Knapp, G. R. 1976, Ap. J., 204, 415. 

Morris, M., Montani, J., and Thaddeus, P. 1980, in tAU Symposium 87, 

Interstellar Molecules, ed. B. H. Andrew (Dordecht: D. Reidel), 

p. 197. 

Murdin, P., and Penston, M. V. 1977, M.N.R.A.S., 181, 657. 

Murphy, D. 1984, private communication. 

Myers_P. C., Dame, T. M., Thaddeus, P., Cohen, R. S., Silverberg, R. F., 

Dwek, E., Hauser, M. G. 1985, Ap. J., submitted. 

Neugebauer, G., and Leighton, R. B. 1969, Two Micron Sky Survey: A 

Preliminary Catalog, (Pasadena: California Institute of 

Technology) • 

OIDell C. R., York, D. G., and Henize, K. G. 1967, A. J., 72, 820. 

Pan, S.-K. 1984, Ph. D. thesis, Columbia University. 

Pan, S.-K., Feldman, M. J., Kerr, A. R., and Timbie, P. 1983, Appl. 

Phys. Letters, 43, 786~ 

Panagia, N. 1973, A. J., 78, 929. 

Price, S. D., and Walker,R. G. 1976, The AFGL Four Color Infrared Sky 

Survey: Catalog of Obsevations at 4.2, 11.0, 19.8, and 27.4 pm 

(AFGL-TR-76-0208). 

Racine, R. 1968, A. J. 73, 233. 

Reich, W. 1978, Astr. Ap., 64, 407. 

Reynolds, R. J., and Ogden, P. M. 1979, Ap. J., 229, 942. 

Sanders, D. B., Solomon, P. M., and Scoville, N. Z. 1984, Ap. J., 276, 

182. 

Sharpless, S. 1959, Ap. J. Suppl., 4, 257. 



123 

Shimmins, A. J., Clarke, M. E., and Ekers, R. D. 1966, Australian 

J. Phys., 19, 649. 

Shimmins, A. J., Day, G. A., Ekers, R. D., and Cole, D. J. 1966, 

Australian J. Phys., 19, 837. 

Smith, E. van P. 1956, Ap. J., 124, 43. 

Solomon, P. M. 1985, private communication. 

Spitzer, L. Jr. 1978, Physical Processes in the Interstellar Medium, 

(New York: John Wiley and Sons). 

Stothers, R. 1985, private communication. 

Sulentic, J. W., and Tifft, W. G. 1973, The Revised New General 

Catalogue of Nonstellar Astronomical Objects (Tuscon: University 

of Arizonia Press). 

Tenorio-Tagle, G. 1979, Astr. Ap., 71, 59. 

Thaddeus, P. 1982 in Symposium on the Orion Nebula to Honor Henry 

Draper, ed. A. E. Glassgold, P. J. Huggins, and E. L. Schucking 

(Ann. NY Acad. Sci., No. 395), p. 9. 

Thronson, H. A. Jr., Gatley, I., Harvey, P. M., Sellgren, K., and 

Werner, M. W. 1980, Ap. J., 237, 66. 

Tucker, K. D., Kutner, M. L., and Thaddeus, P. 1973, Ap. J. (Letters), 

186, L13. 

Turner, D. G. 1976, Ap. J., 210, 65. 

van den Bergh, S. 1966, A. J., 71, 990. 

Verschuur, G. L. 1973, Astr. Ap., 27, 73. 

Vrba, F. J. 1977, A. J., 82, 198. 

Vrba, F. J., Strom, S. E., and Strom, K. M., 1976, A. J., 81, 958. 



124 

Wade, C. M. 1957, A. J., 62, 148. 

, 1958, Rev. Modern Phys., 30, 946. --------
Walker, R. G., and Price, S. D. 1975, AFCRL Infrared Sky Survey: 

Volume 1. Catalog of Observations at 4, 11, and 20 Microns 

(AFCRL-TR-75-0373). 

Weaver, H., and Williams, D. R. W. 1973, Astr. Ap. Suppl., 8, 1. 

Wilson, R. E. 1953, General Catalogue of Stellar Radial Velocities 

(Washington, D. C.: Carnegie Institution of Washington). 

Willson, R. F., and Folch-Pi, F. J. 1981, A. J., 86, 1084. 

Wootten, T. A., Snell, R., and Glassgold, A. E. 1979, Ap. J., 234, 

876. 



125 

FIGURE CAPTIONS 

Figure 111.1. Comparison of total integrated intensity (WCO) obtained 

after a third-order baseline fit (x-axis) and a first-order fit 

(y-axis) for a random sample of 65 position observed by frequency 

switching. The solid line has a slope of one and the dashed line is 

the line of best-fit through the data (slope = 1.07) through the 

origin. 

Figure 111.2. The top row shows two typical frequency-switched spectra 

taken with the SIS receiver and the next row shows the same spectra 

after third-order baseline removal and folding. The bottom row shows 

two typical position-switched spectra after a constant term was taken 

out of each channel. The y-axis in all cases is in units of antenna 

temperature and the x-axis is in units of channel number, except the 

middle row, which is in units of vLSR. 

Figure 111.3. The 12,520 positions observed for CO. Small circles 

indicate the positions of full resolution (B. 1 7) observations and large 

circles indicate the positions of 1/4° and 1/2° resolution 

observations. The equivalent beam shape for low resolution 

observations (1/4° and 1/2°) is roughly square, not circular as shown 

(see Ch. III,A). 

Figure 111.4. The distribution of the larger molecular clouds found by 

the Columbia millimeter-wave telescope in the third galactic quadrant 
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(Blitz 1978; Baran 1983; Huang 1984; and this work). All molecular 

clouds larger than 0.5 deg2 in area and with WCD > 2.5 K km s-1 and 

located within the region outlined by the dashed line have probably 

been found. The region surveyed for this work is outlined by the thick 

solid line. The areas labeled 1, 2, and 3 correspond to the subsurveys 

discussed in Ch. III,B. 

Figure 111.5. The 310 positions observed for 13eD emission. As in 

Fig. 111.3, the small circles indicate the positions of full 

resolution observations and the large circles indicate the positions of 

1/20 resolution observations. 

Figure IV.l. Contour map of integrated intensity of eo emission (WeD) 

in the velocity range of -10 to 20 km s-l. (Along the galactic plane, 

eo emission was found at higher velocities, presumably from unrelated 

clouds, shown in Figs. IV.17-IV.24, more distant than the Orion 

clouds.) The lowest contour level is at 1.28 K km s-1 with subsequent 

levels at 3, 5, 7, ••• times this value. The peaks of emission from 

the Orion Nebula and from NGC 2023 and 2024 (see Fig. IV.2) are 

designated by crosses. Two clouds, shown here in insets (see Ch. IV,A 

and also Figs. IV.2-IV.5), that overlap other clouds in the survey lie 

at the positions indicated by arrows. 

Figure IV.2. Schematic diagram of the molecular clouds using the 

lowest contour from Fig. IV.l. Dots with numbers corresponding to 

those in Table IV.l indicate locations of CO emission peaks. Some NGC 
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numbers indicate optically prominent objects coincident with CO peaks. 

The extent of UV emission from Barnard's Loop is indicated by the 

shaded arc (from O'Dell, York, and Henize 1967; Isobe 1973). The 

dashed line roughly indicates the extent of the ~ Ori ring of clouds 

(Ch. IV,A,6). 

Figure IV.3. False-color map of temperature-weighted mean velocity for 

the clouds in Fig. IV.1 and for some molecular clouds in the Taurus 

complex of dark nebulae previously observed by Baran (1983) and not 

discussed here. 

Figure IV.4. False-color diagram of line width (defined in Ch. IV.A) 

for the clouds in Fig. IV.3. 

Figure IV.5. Contour map of CO emission (WCO) for the Orion A cloud. 

Contour levels are more widely spaced here (the lowest is at 

1.28 K km s-1, with subsequent levels at 5, 9, 11, ••• times this 

value) than in Fig. IV.1 to emphasize the high intensity, central 

region of the cloud. 

Figure IV.6. Orion B; contours of WCO, as in Fig. IV.5. 

Figure IV.7. Position-velocity diagrams for the region between 

NGC 2023 and 2024 and NGC 2064-71. Each diagram has contour values of 

1., 3., 5., ••• K and consists of slices through the Orion B cloud 

along lines of constant declination from ~ = -2.°5 to 0.°0 and spaced 

by 0.°25. 



128 

Figure IV.8. Position-velocity diagram through the Orion A cloud 

parallel to the galactic plane at a latitude of -19.°4; initial 

contour level and increment are 1.5 K. 

Figure IV.9. Series of channel maps of the Orion A and B clouds; 

velocity range for each map indicated in lower right corner. Initial 

contour level is 1.5 K km s-l, with subsequent levels at 3, 5, 7, •• ~ 

times this value. 

Figure IV.10. Monoceros R2; contours of Weo, as in Fig. IV.5. 

Figure IV.11. Dots indicate all stars within the surveyed region 

(Fig. 111.4) for which polarization measurements are available (Hiltner 

1951, 1954~, 1954~; Smith 1956; Hall 1958; Appenzeller 1966, 1968, 

1974; Mathewson and Ford 1970; Axon and Ellis 1976); lengths of the 

vectors are proportional to the measured polarization (1° equals 

2% polarization). 

Figure 1V.12. Same as in Fig. IV.11 but for stars with known 

distances in excess of 400 pc. 

Figure IV.13. Same as in Fig. IV.12 but for stars with known 

distances in excess of 800 pc. 

Figure IV.14. (a) The locations of the high resolution strips observed 
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at NRAO (thick dashed lines), Bell Telephone Laboratories (thick solid 

lines), and P.O.M (thin dashed lines) superimposed on the outline of 

the Northern Filament. 

(b) Same as (a) for the Southern Filament. 

Figure IV.15. (a) Velocity-position diagram for a strip of positions 

observed in 13CO with the Bell Telephone Labs telescope across the 

Northern Filament; the x-axis is labeled in offsets in arcmin of 

declination from a = 6h 22m 57s, ~ = 30 20 1 12" and the strip is 

oriented as in Fig. IV.14. Initial contour level and increment are 

0.1 K in units of antenna temperature. 

(b) Same as (a) except offsets are from a = 6h 22m 28s, 

~ = 30 25 1 49". 

(c) Same as (a) except offsets are from a = 6h 21m 53s, 

~ = 30 321 52" and contour levels are at 0.2 K. 

(d) Same as (a) except offsets are from a = 6h 21m 39s, 

~ = 30 351 50". 

(e) Same as (a) for the Southern Filament except offsets 

are from a = 6h 35m 50s, ~ = _10 0 151• 

(f) Same as (e) except offsets are from a = 6h 36m 30s, 

~ = -10 0 15 1• 

(g) Same as (e) except offsets are from a = 6h 36m 50s, 

~ = -100 151. 

(h) Same as (e) except offsets are from a = 6h 36m 30s, 

~ = -100 151• 
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Figure IV.1S. Contour diagram of WCO for the Orion East cloud with 

initial contour level and increment of 1.3 K km s-1; the positions of 

T Tauri stars and reflection nebulae are indicated. The positions 

observed with high velocity resolution (Ch. V,C) are numbered as in 

Table V.2. 

Figure IV.17. WCO for clouds found along the galactic plane within the 

velocity range of -10 to 60 km s-l; initial contour level and increment 

are 1.5 K km s-l. All channels with TR < O.S K were set to zero to 

increase the contrast between emission from clouds and noise. The area 

within the dashed line was surveyed fully at 1/40 resolution while 

outside that area full-resolution (B. 1 7) observations were made at the 

positions indicated by dots. The letters next to the clouds correspond 

to those in Table IV.3; clouds A and T are illustrated in 

Figs. IV.1-IV.4. 

Figure IV.1B. Same as Fig. IV.17, only for a velocity range (-10 

to 17 km s-l) that should include most clouds with distances less than 

1.7 kpc. 

Figure IV.19. Same as Fig. IV.17, only for a velocity range (17 to 

35 km s-l) that should include most clouds with distances between 

1.7-4. kpc. 

Figure IV.20. Same as Fig. IV.17 only for a velocity range (35 to 

SO km s-1) that should include most clouds with distances between 

4.-B. kpc. 
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Figure IV.21. Longitude-velocity diagram for galactic plane clouds 

integrated from ~ = _1° to ~ = 4°, the letters corresponding to those 

in the figures above and in Table IV.3. All channels with TR < 0.6 K 

were set to zero and the initial contour level and increment are 

0.25 K deg. 

Figure IV.22. (a) A map of cloud Q (Table IV.3) and its vicinity that 

shows TR in the velocity range of 15 to 40 km s-l. The lowest contour 

level and the increment between levels are 1 K. Dots indicate the 

positions of observations at full angular resolution (8.'7). North of 

the dotted line the resolution of the telescope was reduced to 1/4° • 

. Figure IV.23. (a) Sum of all spectra for cloud Q (Table IV.3) with 

_5° < b< _1°. Includes interpolated spectra for unobserved positions 

within the surveyed region (see Fig. APPENDIX.2). 

(b) The spectrum observed toward 1 = 216.375°, 

~ = _2.75°, typical of those found toward the cloud. 

Figure IV.24. Velocity-longitude diagram for cloud Q (Table IV.3) 

constructed by integrating over the galactic latitude extent of the 

cloud (-5 < ~ < _1°). The contour level and increment are 0.24 K deg. 

Figure V.1. The three high velocity resolution observations of CO 

toward Orion East. In the first three panels *'s indicate observed 

spectral values and the curves represent Gaussians fitted to the 
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deconvolved spectra.; the deconvolved spectra are superimposed in the 

fourth panel. Numbers accompanying the spectra refer to those in 

Fig. IV.16 and Table~.2. 

Figure V.2. Same as Fig. V.I but for 13eo observations. 

Figure V.3. ,The variation of TR in strips across the Orion A cloud 

separated in declination by 0.°5; the scale was chosen so one degree in 

declination equals 31 K. 

Figure V.4. The variation of Weo in strips across the Orion A cloud 

separated in declination by 0.°5; the scale was chosen so one degree in 

declination equals 62 K km s-1. 

Figure V.S. Same as Fig. V.4 but for the Orion B cloud. 

Figure V.6. Same as Fig. V.4 but for the Orion B cloud. 

Figure V.7. The large-scale model of the Orion region proposed by 

Cowie et!l. (1978). The *IS indicate the general locations of the 

subassociations within the Orion OB association and the thick lines 

represent molecular clouds. An expanding high-pressure and 

high-temperature H II region, probably created by cumulative effects of 

supernovae (~ 10) which occurred in the association, is enclosed by an 
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ionization shock, its eastern border being seen in Ha as Barnard's 

Loop; the western side of the shock, owing to inhomogeneities in the 

interstellar medium, is not well defined. Molecular clouds, probably 

located just within the back side of the shock, first felt effects of 

the high pressure region on the western faces. The latest supernova 

probably produced a second, possibly radiative shock lying outside the 

first. 

Figure V.S. Paramaters of the ring fitted to the A Ori cloud system. 

Initial guesses were made for the center (ao, ~o, and Vol, radius (Rx), 

and expansion velocity (Vx) of the ring. A circle of radius Rx was 

centered at ao, ~o' 0 = 0 where 0 is distance relative to the center of 

the ring. The circle was then tilted at an angle ~ along an axis with 

a position angle of S. Each cloud in the ring would have coordinates 

ai, ~i' and Di [= (Vi-Vo) Rx / Vx, where Vi is the radial velocity of 

each cloud]. Paramaters ao, ~o, Vo, Rx, VXt ~, and 9 were then 

modfified to minimize the sum of the square of distances between the 

circle and the clouds. 

Figure V.g. Contour diagram of WCO (same levels as in Fig. IV.l); dots 

indicate the positions used to fit the ring shown. Cross and open 

circle indicate the position of the center of the ring and the location 

of A Ori, respectively; the observed proper motion of the star implies 

that when the star formed 2 Myrs ago it was located at the position 

marked by a *. 
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Figure V.10. (a) Position-velocity diagram (right ascension versus 

velocity) integrated over the range in declination of the ~ Ori system 

of clouds. (Instead of adding actual spectra, Gaussian profiles were 

fitted to the data, and then added.) Dots indicate positions used to 

fit the ring shown. The + and circle respectively indicate the 

position of the center of the ring and the right ascension and radial 

velocity of ~ Ori. 

(b) Same as (a), except declination versus velocity is 

plotted and the integration was over the range in right ascension for 

the system of clouds. 

Figure V.11 The *'s indicate angular coordinates (~ and ~), relative 

to the best-fitted center of the ring, of points used to fit the ring 

(i.e., the dots in Figs. V.9-V.10); The angle ~ is the position angle 

of the points (= tan-1 [(6i - 60 )/(ai - ao)J) and ~ the angle between 

the plane of the sky and those pOints 

(= tan-1 [Rx (Vi-Vo) 1 Vx([ai - aoJ2 + [6i -60 J2)1/2J) •. The sine 

curve depicts the best-fitted ring. 

Figure V.12. Radio continuum observations at 1.4 GHz toward the ~ Ori 

system of clouds; displayed in galactic coordinates and not in the 

original equatorial coordinates, the figure, copied from Reich (1978), 

has a noticeable distortion. Contour values are as labeled; the figure 

is not to the same scale as Fig. V.12. 
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Figure V.13. Same as Figure V.9, but in galactic coordinates and to 

the same scale as Figs. V.14-V.15. 

Figure V.14. H I emission integrated between -5 and 16 km s-1 toward 

the ~ Ori system of clouds (Heiles and Habing 1974). Contour levels 

are 100 K km s-1 apart; the figure is on the same scale as Fig. V.12. 

Figure V.IS. IRAS 100~m observations toward the ~ Ori system of clouds 

(Boulanger 1985; the same scale as in Fig. V.12. Contour levels are at 

26, 33, 40, 50, 60, 73.5 and 91.7 MJy and every other level is dashed. 

Moonlight contaminated the data in the blank region that runs 

diagonally across the plot. 

Figure V.16. The evolution of the ~ Orionis system as seen from Earth 

(column 1) and from a position at right angles to the line of sight 

(column 2). The star and the border of the H II region it produced are 

shown by the * and the thick dashed line, respectively; molecular 

clouds are outlined by the solid lines~ 

After the H II region breaks through the cloud (b), remnants of 

the molecular clouds are accelerated and atomic gas begins to be swept 

up, as shown, by the expanding edge of the H II region (c and d). Low 

mass stars, shown as dots, may have been created in areas of clouds 

compressed by expansion of the H II region (c) and left behind when the 

clouds were further accelerated by the H II region (d). 
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Figure V.17. (a) The Orion and Monoceros complexes as they would 

appear at six times their actual distances (or 3 kpc) and as if 

observed with the full resolution of the Columbia telescope with the 

same noise level as in the outer galaxy survey. This figure can be 

compared with Figs. IV.17-IV.20 where the contour levels (1.5 K km s-l 

in steps of 1.5 K km s-l) and scale are the same. 

(b) The same as (a) but as if were observed with a 1/40 

superbeam. 

(c) The same as (a) but as if the complexes were at ten 

times their actual distances (or 5 kpc) and observed with a 1/40 

superbeam. 

Figure APPENDIX.1. Comparison between line width determined for a 

9 deg 2 section of the Orion A cloud using, the method described in 

Appendix A,l (thin line) and that determined by adding actual spectra 

(thick line). 

Figure APPENDIX.2. Same as Figure APPENDIX.1 but for the entire area 

of Cloud Q (Table IV.3). The spectrum represented by the thick line is 

the one already shown in Fig. 23a and used in the the calculation of 

Mvir in Table IV.3. 

Figure APPENDIX.3. Comparison between calculated NLTE and observed 

WCO. Solid line is weighted least-square line of best-fit through the 

origln while the dashed line is the line predicted from results of 

Bloemen et!l. (1984). Circles represent full resolution and crosses 

1/20 resolution observations. 
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Figure APPENDIX.4. (a) Predicted expansion velocity for the ~ Or; 

shell. A, B, and C represent the conclusion of the first, second, and 

third stages of the model, and 0 indicates when the shell radius is 

equals to the observed 34 pc. The numbers along the drawn line 

indicate the time elapsed since the birth of the star. 

(b) The solid line indicates the remaining 

molecular mass, Mc, in the system. The decrease in Mc corresponds to 

the increase in ionized mass interior to the shell. The dashed line is 

the mass of both atomic and molecular gas, Ms , enveloped by the shell. 

When the radius is greter than 10 pc, the difference between the two 

lines illustrates the atomic mass swept up in the expansion. 
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