/7/7755 e
597

NASA Technical Memorandum 88234

4 777

{NASA-TH-88234) TIME-BASEL AIEK TRAFFIC N86-28068
MANAGEMENT USING EXPEERT SYSTEMS (NASA) 59 p
HC a04,/MF a01 CSCL 076G

Unclas

G3/03 43477

Time-Based Air Traffic
Management Using Expert
Systems

L. Tobias and J.L. Scoggins

April 1986

NASA

National Aeronautics and
Space Administration

NASA Technical Memorandum 88234

Time-Based Air Traffic
Management Using Expert
Systems

L. Tobias,
J. L. Scoggins, Ames Research Center, Moffett Field, California .

April 1986

NASA

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

SUMMARY

A prototype expert system has been developed for the time scheduling of
aircraft into the terminal area. The three functions of the air-traffic-control
schedule advisor are as follows: First, for each new arrival, it develops an admis-
sible flight plan for that aircraft. Second, as the aircraft progresses through the
terminal area, it monitors deviations from the aircraft's flight plan and provides
advisories to return the aircraft to its assigned schedule. Third, if major disrup-
tions such as missed approaches occur, it develops a revised plan. The advisor is
operational on a Symbolics 3600, and is programmed in MRS (a logic programming
language), Lisp, and Fortran.

INTRODUCTION

At present, the decision-making process of air traffic control (ATC) in the
extended terminal area (from 150 n. mi. from touchdown until touchdown) is a manual
one, Controllers expertly direct traffic flow to maximize capacity without compro-
mising safety by issuing to each airecraft clearances which specify speed, altitude,
or heading requirements. In terms of arrivals to a single runway at a major termi-
nal area, this is generally accomplished as follows: along each of the three to
four major arrival directions, traffic is spaced uniformly. However, the traffic
flows from the various arrival directions are uncoordinated. It is the responsibil-
ity of the final controller to take these uncoordinated flows and establish a
sequence of traffic which does not violate separation constraints between consecu-
tive aircraft.

The automation of selected ATC decision-making functions using a time-based
framework has been the subject of a series of real-time simulation studies (1). The
goals of these studies have been to increase landing rate and to reduce fuel con-
sumption, and in addition, to reduce controller workload. Time scheduling is to be
accomplished by developing a time plan, and a means of controlling aircraft to
achieve a desired time, so that traffic flows which reach the final controller are
coordinated, and that little maneuvering is required to achieve the final
sequencing.

The key element in the time-based system is a four-dimensional (4D) algorithm
(2) which, given the present position, route, and touchdown time, generates a time-
table of commands to control the aircraft to follow the route specified and touch-
down at the specified time. Flight tests of aircraft equipped with the 4D software
have demonstrated that accuracies of #5 sec can be obtained. In addition, it has

been demonstrated in simulation studies (3) that modifications of the YD algorithms
can be used by the ATC computer to generate a speed advisory to assist in achieving
time accuracies of *20 sec for airecraft which are unequipped.

Real-time simulation studies have used these 4D algorithms to investigate the
feasibility of a time-based set of candidate operational procedures for handling a
mix of UD-equipped and -unequipped aircraft in the terminal area. The operational
procedures include a time-assignment procedure for new arrivals, a procedure to
correct for time errors as the aircraft progresses through the terminal area, and a
means of handling missed approaches. Results indicate that the procedures investi-
gated are promising; however, they represent only a limited (but important) subset
of the procedures which will be required for implementing a time-based system.
Attention needs to be focused on a more complete, adaptable plan for scheduling
traffic into the terminal area.

This paper describes the initial step in implementing a more complete, time-
based system for traffic management in the extended terminal area using the frame-
work of expert systems. A prototype schedule advisor formulated as an expert system
is described. First, the rationale for an expert systems approach is given. This
is followed by a detailed description of the ATC problem. The software design is
then outlined, with a complete, documented code given in the appendix. Finally,
plans for the continued development of the schedule advisor are discussed.

RATIONALE FOR AN EXPERT SYSTEMS APPROACH FOR A
SCHEDULE ADVISOR

The plan for implementing a schedule advisor in an actual operating environment
will be initially to provide a system with limited capabilities, and to gradually
increase the sophistication of the computer software as more of the controller's
expertise is understood. Thus, the controller would initially possess considerable
knowledge not resident in the advisor, and would need to interact with the advisor
to modify or override the computer-generated plans. The controller may want to
prohibit the scheduling of aircraft during a time interval because of runway visi-
bility problems, to assign priority to one aircraft because it is low on fuel, or to
request a particular landing order for a group of aircraft to increase the landing
rate.

In addition to the interaction requirement, it is also necessary for the
advisor to explain its actions to the controller. The controllers may initially be
skeptical of the computer-generated plans, particularly if the computer solution is

Without speed advisories, time accuracies of *2 min have been achieved by
contrgllers in the en route area.

The explanation capability of expert systems in the ATC context is discussed
in Ref. 4,

not in complete agreement with their own intuitive plan. If the logic of the com-
puter plan is understood, the controller will gain confidence in the system more
quickly.

It is also expected that the initial set of heuristies will need to be modi-
fied. The new heuristies can readily be formulated as added or modified rules: for
example, the controller may wish to add a rule to restrict the speed of an aircraft
which is in a given altitude range of a given sector under specified traffic flow
conditions. It is important that the modifications described be readily
implemented.

It is for these primary reasons--the need for a software system which is inter-
active, which can explain its behavior, and which can easily accept procedural
modifications--that an expert systems approach has been formulated. In addition, it
should also be noted that there are many other suggested expert system guidelines
(5) that are met for this problem area. There are many domain experts that under-
stand and operate the present ATC system, and there are some whose expertise has
been built over a long period of time who can commit a substantial amount of time to
the development of the system. In addition, the problem domain is well bounded--the
problem under consideration is restricted to routes in a major terminal area from
120 n. mi. from touchdown until touchdown. At any one time the number of aircraft
in the plan is less than 100, and thus reasoning about aircraft schedules in real
time should not be a problem.

THE PROTOTYPE SCHEDULE ADVISOR: THE ATC PROBLEM

A prototype ATC Schedule Advisor has been developed, and will now be described.
First, the ATC problem will be presented, followed by a discussion of the system
design.

A plan for new arrivals

The terminal area under consideration, shown in Fig. 1, is based on the route
structure in a 150 n. mi. radius of Denver, Colorado. The Denver route structure is
a "four-corner-post" system with conventional jet aircraft arriving from either
Drako from the northwest, Keann from the northeast, Kiowa from the southeast, and
Byson from the southwest. A route for low-speed, general-aviation traffic which
emanates from Colorado Springs is also considered. It is assumed that Instrument
Flight Rules (IFR) prevail, and that all landings are at the Denver Stapleton
Airport on runway 26L. The area under consideration contains the Denver Terminal
Radar Approach Control (TRACON) and a portion of the Denver Air Route Traffic
Control Center (ARTCC).

Conventional jet traffic enters the terminal area region at one of the feeder
fixes of the four corner posts described, and general-aviation traffic enters from
Colorado Springs. When the traffic enters the terminal area, a time assignment is
generated for the aircraft to reach touchdown. The time assignment is based on the

range of feasible times for the aircraft to fly the route. The aircraft has a
preferred nominal time, but can speed up or slow down within a specified range.

There is an additional FAA requirement in which consecutive aircraft must be
separated by a minimum distance; this distance is a function of the weight cate-
gories of the aircraft. Three categories have been defined: 1light, large, and
heavy. For the route system under consideration, light aireraft are restricted to
the Colorado Springs route, while both large and heavy aircraft can fly on the four
jet routes. These distance-separation requirements can be translated into minimum
separation times for the purpose of time scheduling (1). Thus, scheduling new
arrivals involves both determining the range of feasible times for the aircraft and
checking that the proposed schedule does not conflict with previously scheduled
aircraft. In the prototype design, the schedule of aircraft which have arrived
earlier are considered fixed, and the plan for a new arrival is based on meeting
separation constraints with respect to these schedules. It may be possible that no
conflict-free time exists. In this case, the new arrival is scheduled for later
departure and will hold at the route entry point (feeder fix) until its assigned
time.

A typical situation is shown in Fig. 2, which is a time-line representation of
all the aircraft currently in the system at time 12:37:03. A separate line is drawn
for each of the arrival routes previously discussed, and there is also a line for
the missed-approach route, which will be discussed. On the Keann route, two air-
craft are shown which have been scheduled; PAOO3, for which time at touchdown is
12:46:10, and UA0O3, which directly follows it at 12:49:05. Suppose that at time
12:37:03, WA3T4 reaches the feeder fix at Drako. The following times are computed
by the planner: nominal time to touchdown is 12:52:38, with a range of 12:51:38 to
12:54:38. Any time assignment outside this range would necessitate some holding at
Drako. The planner first attempts to schedule WA374 at the nominal, then tries
other times on either side of the nominal until the range limits are reached. In
this example, the aircraft can be assigned at its nominal time, and no initial
holding is necessary. Holding is permitted at some interior points in the region,
but interior holding is not part of the initial schedule plan.

Correcting minor schedule deviations

After creating an initial schedule plan, the next function of the schedule
advisor is to monitor each aircraft as it proceeds from feeder fix to touchdown,
detect deviations from its assigned UD route, and suggest corrective actions. It is
important to note that, while advisories can perhaps be generated continuously in
real-time operation, the number of corrective actions (i.e., tlearances based on
computer-generated advisories) must be kept small. There is still a substantial
research problem to optimize the number of advisories, the type of advisories, and
the times in which they should be given to the aircraft to minimize the deviation
from scheduled touchdown time. One time of advisory, the speed advisory, has been
mentioned earlier. In the prototype schedule advisor, the only advisories used are
heading and path advisories, which will now be discussed.

When the aircraft departs the feeder fix, a planned touchdown time has been
established. A UD route is synthesized and used as the reference trajectory as the
aircraft proceeds from feeder fix to touchdown. To correct for minor deviations
from the 4D route, a decision point has been established on each of the routes.
Figure 3 shows the decision point for the two northern routes. When the aircraft
reaches the decision point Dy on Keann, or Dp on Drako, a path correction is
generated so that the aircraft can meet its assigned time schedule. From Drako, the
aircraft will be required to adjust its time to turn, while from Keann, a heading
change will be required. Note that the advisory will include a warning if, even
with the largest correction allowed, an error remains. In the prototype system, no
attempt is made to resolve this type of problem. At present, it is necessary for
the controller to call for a missed approach, or take some other action to resolve
the problem.

Schedule revisions

So far, only minor deviations have been considered, and the strategy has been
to generate corrections to return the aircraft to its assigned time so that the
schedule plan for other aircraft need not be altered. However, the schedule advisor
must consider the situation when major disruptions occur, i.e., when it is not
possible to retain the existing plan. These changes may be necessitated by aircraft
executing a missed approach or an emergency landing, or by weather-related modifica-
tions such as rerouting to avoid severe weather, runway closure, or runway use
changes caused by shifting winds. A revised plan must be generated which must
handle the disruption in a continually safe manner, and which will return to an
expeditious flow after an initial transient period. In the prototype system, two
classes of major disruptions are considered: missed approaches and runway closures.

If an aircraft is to execute a missed approach (Fig. 4), it proceeds along its
route in level flight toward the touchdown point, then to the departure end of the
runway, and then turns right heading toward point Hp where it rejoins the Drako
route for a second attempt at a flight to touchdown. A new touchdown time must be
assigned for this aircraft, and it is preferred that the missed-approach aircraft be
given priority to land at its earliest possible time. This may necessitate holding
other aircraft at the feeder fixes or the internal holding points until a revised
conflict-free touchdown time is available.

A sample holding situation is illustrated in Fig. 5. Figure 5a shows a time-
line plot at time 13:06:54. At this time, the controller decides that AA251 needs
to execute a missed approach. The missed-approach command is entered into schedule
advisor, and the revised time line shown in Fig. 5b is generated. The aircraft
AA251 now appears on the missed-approach line, and has been rescheduled without
holding.

Elements of a plan for handling runway closure have been developed. Suppose
that the controller declares that a runway is closed for the interval (t;,tp),
where t; 1is the time when the closure is first effective, and ty 1is the time
when the runway is to be r'eopened.3 The advisor first determines which flights are

currently assigned in the blocked interval. These flights and any flights which

follow them are sequentially rescheduled. Any flight which has passed the last
holding point will be told to execute a missed approach and proceed in for a new
approach or for holding as required.

A sample runway closure situation is shown in Fig. 6. Figure 6a shows a time
line plot at 13:20:16. At this time the controller decides that no aircraft can
land in the interval from now until 13:23. One aircraft, PA35, is scheduled to land
in this interval. The revised plan is shown in Fig. 6b. No aircraft are scheduled
in the blocked interval. The aircraft PA35 has executed a missed approach and is
now rescheduled without holding.

THE PROTOTYPE SCHEDULE ADVISOR: SOFTWARE DESIGN

A prototype for the ATC schedule advisor has been programmed on a
Symbolics 3600 Lisp machine. A fully commented program listing is given in the
appendix; this discussion serves to highlight the key features of the software
involved. The intention was to combine existing numerical subroutines, capable of
4D planning single flights, with artificial intelligence (AI) planning techniques to
produce an intelligent 4D scheduler for a system of flights. In addition, this
scheduler will serve as a research tool, with the ability to add new features as
they are developed.

Problem representation

A generalized representation of the problem is to treat the terminal area as a
directed graph. A sample graph is given in Fig. 7. Each node on the graph repre-
sents some physical point such as touchdown or a feeder fix. These nodes are
labeled "a" through "k" in the figure. Each directed arc represents a transition in
terms of the time required for a flight to move between the two connected nodes.

For example, between the feeder fix "j" and the waypoint "f," a flight may have the
option to wait at the holding point labeled "b."

Various information is maintained for each arc, such as the distance to the
runway, alternate paths, and procedures that must be executed whenever a flight
enters or exits the arec. For example, if a given arc represents the travel between
a decision point and the runway, the arc's entry procedure would then include a code
to generate a path correction.

Two ordered lists are also maintained for each arc which denote, respectively,
the flights that are scheduled to enter and exit the arc. In Fig. 7, the flight
PA35 is scheduled to enter at 13:02:23 and then exit at 13:11:45. Upon exiting,
PA35 should be flying at an altitude of 36,000 ft and a calibrated airspeed of

3The case when the runway is closed indefinitely is more complex and is not
considered in the prototype system.

182 knots. Likewise, the flight AA24 has already entered the arc at 12:50:33 and is
scheduled to exit at 12:59:57.

This information shows the planned state of the arc at any given time, and can
be used to help reschedule flights and to detect potential conflicts. Also, the
system can use the list of entering flights at the touchdown arc to determine possi-
ble "time slots'" .where aircraft can be allowed to land. Given this representation,
the problem is to develop a planner which finds good time-based paths through the
graph for flights that need to be scheduled, and to develop a control structure
which operates on the graph as events occur (i.e., flights enter and exit arcs,
plans are revised, ete.).

Planning functions

The first planning goal is to always have a consistent plan for the overall
system. Each flight in the system must always have a scheduled path from its cur-
rent position to touchdown. This path consists of a list of scheduled waypoint
arrival times which cannot confliet with blocked-runway time intervals or separation
requirements for other flights. If situations arise in which the system cannot
adequately plan for all of the arriving flights, some of the air traffic will then
be placed in holding patterns. For example, if the runway is blocked and a number
of flights arrive at the feeder fixes, then some of the flights may have to hold
until conflict-free touchdown times can be scheduled.

Next, consider what kind of information the planner must understand and main-
tain for each flight. This is determined by the numerical routines for 4D path
generation and control which lie at the heart of the planner. Input parameters to
these routines consist of current time, altitude, calibrated airspeed, distance to
touchdown, and speed profile. OQutput parameters from these routines consist of a
list of the computed altitude, airspeed, and distance for the flight at various time
steps to touchdown, and the controller advisories required to execute the plan.

The planner must determine a good strategy for a given flight, feed the correct
parameters to the numerical routines, and check the resulting plan for any conflicts
with flights that are already scheduled in the system. The strategy determines
whether a flight should hold at the feeder fix, or use a faster or slower speed pro-
file, ete., and hence determines the parameters to the numerical routines. Plan
segments that could be added to arcs on the graph are interpolated from the time
steps of the computed flight parameters. Then the planner checks for separation
confliets, blocked-runway conflicts, etc., to test the candidate plan along its path
through the graph. This plan is returned if valid; otherwise, the planner back-
tracks to attempt some alternate strategy.

The planner therefore uses a "generate and test" structure, backtracking when-
ever some conflict is found. Logic programming is used to encode the planner since
backtracking is an inherent feature. Flight strategies can also be represented
symbolically and reasoned about conveniently. Heuristics can be added to guide the
backtracking. As more engineering knowledge is applied to the ATC problem, more

expertise will be encoded into these heuristics to make the path-generation process
more efficient.

System architecture

The schedule advisor runs in the Symbolies Zetalisp environment using software
programmed in MRS, Lisp, and Fortran. The Lisp functions call a Fortran program to
run when the numerical subroutines are needed, and parameters are communicated
through input and output data files. The numerical subroutines for UD path genera-
tion and control consist of nearly 3000 lines of a Fortran 77 code originally devel-
oped under VAX VMS (3). This code performs a Runge-Kutta integration to determine
optimal descent paths. The Symbolics software provides a Fortran 77 development
environment and only a few minor changes were needed to port these routines. For
instance, the Symbolics Fortran had a shorter line length, and exclamation points
could not be used for in-line comments.

Combining Lisp and Fortran code into the same software system produces some
challenges. Fortran requires a main program to run before any subroutines can be
called, which restricts the use of Fortran subroutines within Lisp programs. To
avoid this, the software can be run as a Fortran main program with Lisp functions
called as subroutines. Fortunately, data types such as characters, integers, and
reals tend to be machine-independent; hence, parameter passing does not require any
coercion. Another option chosen for this system is to run Fortran routines as sep-
arate programs, or even separate processes, and have Lisp and Fortran communicate
through data files or input/output buffers.

One interesting point is that Symbolies Fortran uses Lisp as the intermediate
code during compilation, and that it retains the user-defined Fortran variable names
for the corresponding Lisp symbols in the intermediate code. This is unfortunate
since Fortran programmers tend to use the real variable "T" to denote time values,
but the name "T" in Lisp denotes a system-wide symbol for truth. For this system,
it was sufficient to remname all Fortran "T" variables as "T1."

Most of the general programming has been Jone in the Symbolics Lisp language
called Zetalisp, which is very close to Common Lisp. This has proven to be a very
powerful and well-designed programming language. One major feature is that Zetalisp
has a good set of software tools available for writing and debugging code, such as
the ZMACS screen editor.

Zetalisp also provides several useful packages, such as TV for windows and
graphics, and Flavors for object-oriented programming. The user interface, pro-
grammed using the TV package, consists of three windows and various menus as shown
in Fig. 8. A "Time Routes" window shows a graphic depiction of the time-scheduled
flights in the terminal area. An "Advisories" window displays advisories and expec-
tations about the descending flights. A "Listener" window gives the user access

into the system by providing a command prompt and a mouse with sensitive pop-up
menus.

Objects, defined with the Flavors package, are useful for representing data
structures and for representing knowledge about the system which changes frequently
or involves "inheritance." For example, an object is created for each flight that
enters the system. Various slots are defined for each flight object, such as
"touchdown time," or "neighboring flights." Inheritance is useful in defining
classes of objects. For instance, a general class of objects called PLANE could
have attributes such as "scheduled touchdown time'" "neighboring flights," which all
aircraft must have values for. Another type of objects could be defined for HEAVY-
AIRCRAFT. As a subclass of PLANE, these would inherit all the properties of PLANE
objects, and possibly add other more spe01f1c attributes, such as "“separation
requirements for heavy aircraft."

Other forms of knowledge about the system are represented in MRS, which pro-
vides logic programming similar to the Prolog language. MRS, which stands for Meta-
level Reasoning System, was developed by Genesereth (6)." Logic programming is
generally more straightforward than algorithmic methods, so long as the problem can
be formulated efficiently in predicate logic. Essentially, the steps are to
1) encode the specifications for a given problem solution, 2) assert the relevant
facts into the knowledge base, and 3) query a theorem prover to determine some
specific solution. One advantage of formulating ATC planning in logic programming
is that the rules can be easily modified and amended as the expertise involved in
air traffic control becomes better understood. Another advantage is that the
resulting facts and rules can be viewed as the specifications for an optimized
version of the system.

MRS has features for solving problems with backward chaining, forward chaining,
condition-action rules, and more. In addition, MRS automatically backtracks to
search for solutions, and meta-level rules can be defined to order this backtracking
(i.e., to incorporate heuristic searches). The planning functions required in this
system rely on heuristic techniques since a real-time advisor cannot afford to spend
very much time generating alternative UD paths.

Facts which do not change over time, such as "Flight XX007 executed a missed
approach at time 11:30:45," or "Waypoint WP3 is a feeder fix for the KIOWA route,"
are stored in the MRS knowledge base, along with the various rules. To handle a new
arriving flight, the rules determine a good, feasible flight plan in the following
order:

1. Use heuristics to develop a possible strategy
2. Call numeric subroutines to compute a plan from this strategy

3. Check constraint rules to test the plan for violations, blocks

nAn earlier version of the schedule advisor by B. Boesch, D. Gregory, J. L.
Scoggins, and L. Tobias was implemented entirely in MRS as a class project in
Building Expert Systems at Stanford University.

Failure to satisfy the constraint rules at any point will invoke backtracking to
search for an alternative plan.

Program operation

Assume that the schedule advisor software runs on a personal workstation net-
worked to host computers for real-time data access. Actual operation of the system
basically differs from simulation by the source of the data. Using the Symbolics
interface facilities, which provide multiple graphics windows and user interaction
menus, the user can create new arrivals, block runways, alter the data structures
and knowledge base, execute scenario data files, and step or reset the system clock.

The main program executes a loop to
1. Look for and process input data
2. Update the system clock

3. Check the graph for events that should have occurred by the new current
clock time and execute them

At any time, the user can activate a mouse button to interrupt the main loop
and request a command menu. Most of the commands are used for data input, such as
creating new arrivals, signaling a missed approach, or blocking the runway for some
time period. Some other commands provide system controls, such as regulating the
Lisp machine's memory garbage collection, or resetting the system clock.

To create a new arrival, for instance, the user selects the "New Arrival" menu
option. A special menu then prompts for the flight identification number, type of
aircraft, arrival feeder fix, estimated arrival time at the feeder fix, etc. A new
object is created to represent this flight, and the planning begins. The resulting
advisories are displayed, and the aircraft symbol is plotted on the time line.

CONCLUDING R_MARKS

A prototype schedule advisor formulated as an expert system has been developed
to assist the air traffic controller in the time scheduling of traffic in the
extended terminal area. The advisor develops a time plan for all new arrivals into
the terminal area, which takes into account the aircraft performance requirements
and the schedules of other aircraft which have already entered into the terminal
area. The advisor monitors aircraft flight progress through the terminal area and
generates advisories (candidate ATC clearances) to the controller to correct devia-
tions from the time plan. Some initial procedures for revising the plan to accommo-
date missed approaches and blocked runways have been included.

Future research will be focused on refining the advisor, i.e., applying knowl-
edge of engineering techniques to develop better planning heuristics. The rules

10

developed so far basically demonstrate what types of reasoning can be done, without
attempting to be detailed, or to be very precise. This knowledge engineering would
depend on a better understanding of the problem domain through:

1. ATC expertise
2. NASA research through simulation, field testing, etec.
3. Encoded domain policies and conventions, e.g., FAA regulations

Among the general issues that need to be addressed in refining the schedule
advisor are flight-path optimization, procedures to minimize time deviations at key
schedule points, and strategies to improve airport capacity. For example, when
planning new arrivals, one question to address would be whether to hold a flight for
some time and have it follow a fast speed profile, or to have it just follow a slow
speed profile without holding., Another question would be to switch the landing
order of scheduled flights as new flights arrive.

As far as the system architecture is concerned, the next step would be to
distribute the advisor. For example, it would be good to have both the numerical
subroutines and the graphic display windows run as spearate processes. This could
alleviate some of the problems found in combining various programming languages in
the same run-time environment.

The overall system should be represented in terms of standard data structures,
such as directed graph, priority queues, etc. The logic programming would then be
used exclusively for the planner; that is, to generate and test strategies and
represent search heuristics.

1

References

(1) Tobias, L., Erzberger, H., Lee, H.Q. and O'Brien, P.J.: "Mixing Four-
Dimensional Equipped and Unequipped Aircraft in the Terminal Area," AIAA
Journal of Guidance, Control and Dynamics, Vol. 8, No. 3, p. 296: May-June
1985.

(2) Lee, H.Q. and Erzberger, H.: "Time-Controlled Descent Guidance Algorithm for
Simulation of Advanced ATC Systems," NASA TM-84373, 1983.

(3) Erzberger, H. and Chapel, J.D.: "Ground Based Concept for Time Control of
Aircraft Entering the Terminal Area," Proceedings AIAA Guidance and Control
Conference, Snowmass, CO, Aug. 1985.

(4) Cross, S.E.: "Model-Based Reasoning in Expert Systems: An Application to
Enroute Air Traffic Control," Proceedings AIAA/IEEE Sixth Digital Avionics
Systems Conference, Baltimore, MD, Dec. 1984.

(5) Prerau, D.S.: "Selection of an Appropriate Domain," AI Magazine, Vol. 7,
No. 2, p. 18: Summer 1985.

(6) Genesereth, M.R. and Ginsberg, M.L., "Logic Programming," Communications of the
ACM, Vol. 28, No. 9, p. 933: Sept. 1985.

12

APPENDIX

PROGRAM LISTING

13

CHA:>Scoggins>newaveo>atc.1isp.8 12/718/85 11:32:18

-3- Mode: LISP; Package: MRS; Syntax: Zetalisp; Base: 10 -3-

NB: Change this first 1ine and all 1ife as you know {t will cease to exist...

John Scoggins
NASA/Ames Research Center
M/S 210-9
Moffett Field, CA 94035
(415) 634-5431

Overview

This file contains the top level definitions and system calls to start the
ATC Scheduler expert system. Simply use the command:

Load File CHA:>Scogginsdnewaveo>atc
This file will then:
Add the ATC system as a select option on the 1isp machine
Define the ATC system in terms of fils dependencies

Compile and load the ATC system
Run the command loop to start ths system

W V6 VI B VI LI TP GO VO VS WO VP VI VO VI Ve VI WE VI Yo WO Ve WP VO B We
W BE WI S W WP W WP WO VI VI WS WS Ve Ve WS WE WS WO We VO e WS Bo Wi W
e & o o

W W VI UL WS B U VS W Ve WS WS VO WE B¢ VS WS Ve WP NI VP WS WP W B US

ssecsses R R N R R R R R R R R]
P22 3099032300000 2005005000000 90220 00303020990

-
we
we
we
e
we
we
-e
s
we
-
e
e
e
-

-
-e
e
we

; Define the system in terms of the required files and which
;compilers they use

(defsystem ATC-Scheduler

:name "NASA Air Traffic Control Scheduler®") ;System names and defaults
:short-name "ATC Scheduler®)

:pathname-default "CHA:>Scogginsdnewaveod*)

spackage MRS)

(
(
(
(
(:module fonts ("atcfont"}) ;Module names and files
(:module pathgen (*pathgen"))

(:module objects {“user® "graph®))

(:module planner (“planner"))

(:load-bfd fonts) ;Compiler dependencies
(:fortran-compile-load pathgen)
(:
{
)

:compile-load objects)
:readfile planner)

; Compile and load the system -
(make-system °*ATC-Scheduler

:compile
:noconfirm

; Call the command loop for FRAME to run the system
{send FRAME :command-loop)

(Comment (process-run-function
YATC Scheduler®

*(lambda ()
(send FRAME :command-loop)
)
)
)

14

CHA:>Scoggins>newaveo>planner.1isp.40 1716786 21:27:58

-%- Mode: LISP; Package: MRS; Syntax: Zetalisp; Base: 10 -s-

;;; NB8: Change this first line and all 1ife as you know it will cease to exist..

WO WO WS WE U VS B WS YO B WE W U WO e WP W B we

John Sceoggins
NASA/Ames Research Center
M/S 210-9
Moffett Field, CA 94035
(415) 694-5431

Overview

This file contains the MRS rules and facts required for the planning
functions in the ATC Scheduler expert system.

This file will:

Create and clear its own MRS theory called ATC

Set up the meta level definitions for the knowledge base

Stash the rules, facts and demons into the knowledge base
Define the planning functions and interface to the FORTRAMN code

--- sssovesssesesscnse
l.'.l’.D"DID"...’D.'l."l.""..”lI.”’l."""DI"l’.’l"".D.’.'IDII)"”

WO WP W WE W WE WE UG WS WP VS W S WE WS WE WO WS we
W4 WO W WO WS WO WS WS WS VE WS WS WS WE WS VI WO W we

15

CHA:>Scoggins>newaveo>planner.lisp.40 1/16/86 21:27:58

...

These rules, facts and functions make up the systems level incantations
needed to suppori demons, backward chaining, rule ordering, and

; procedural attachment into 1isp and the object base. Logicians use
the term "meta" to describe propositions about an {nference process.
Basically, we use the meta level to short-circuit MRS, for example

; when we need to access the object base.

; Contrary to what the manual may say... we have included any *“wisdom"
; about the MRS system that we had to learn the hard way, ie. there

; are bugs and contradictions to the documentation.
H
H
H
H
H

The proposittons DONE and CUT will only work at the meta level .
; and not at the base level. EVAL has been added to take the place
; of DONE at the base level.

The difference between ELEMENT and MEMBER is that only the latter
will bind its first argument to a 1ist of varijables.

RESIDUE will not support generate and test strategies since it
tries to find all solutions instead of backtracking when necessary.

..

S IR PRSPPI PPPIIPBPPIPPOIIPIPIIRIIIIIIRIIIPIIIIIPIIIIPIITS

(setq theory °‘GLOBAL) ;repair meta level to forward chain

{unstash ‘(toassert (and . &1) assert-and)) ;with more than one conclusion - this

(stash ‘(toassert & fc)) ;enables explanations for the demons

(stash ‘(toassert (and . &1) assert-and))

(setq theory °‘ATC) ;define a theory and clear 1t each tirs

(empty theory) ;we reload the file - also locad any

: (load *CHA:>mrs)>set") ;necessary MRS packages, 1ike SET

(stash *(tolookup (EVAL &funct . &args) ;procedural attachment to call
fq-1ookup}) sLISP and FORTRAN routines from

(stash *(tolookups (EVAL &funct . &args) ;MRS

fq-1ookups))
(stash *(11sp EVAL EVAL))

; Short cuts to call the most commonly need LISP functions without using EVAL - see
;the "Complete Guide to MRS' under procedural attachment

(stash ‘(tolookup (FORMAT . &args) lisp-lookup))
(stash *(tolookups (FORMAT . &args) 1isp-lookups))

(stash ‘(tolookup (GETBDG . &args) lisp-lookup}))
(stash *‘(tolookups (GETBDOG . &args) l1isp-lookups))

(stash *(tolookup (SEND . &args) l1isp-lookup))
(stash ‘(tolookups (SEND . &args) 11sp-lookups))

(stash *(tolookup (SETQ . &args) lisp-lookup))
(stash ‘(tolookups (SETQ . &args) lisp-lookups))

(Defun LISP-LOOKUP

(p) ;MRS has FQ-LOOKUPS defined to do this
(let ((vals (get-term p))) skind of procedural attachment, but it
(unifyp ;really only works for the numerical
(eval ;functions. LISP-LOOKUP(S) replaces the
(car vals)) ;the EVAL proposition defined in RULES.LISP
(cadr vals))) ;This 1s called a “computable representation”

;see the file CHA: DMRSYefrepn.lisp

(Defun LISP-LOOKUPS
(p) ;MRS requires a pluralized form for each

{(let ((vals (get-term p))) ;computable representation
(pluralize
16

CHA:>Scoggins>newaveo>planner.1isp.40

- (unifyp

(eval
{car vals))
(cadr vais))))

(Defun LEQP
(&rest args)

_ Sapply €= args)

(Defun GEQP
(&rest args)

gapply *>= args)

1/16/86 21:27:58

;MRS defines these comparison operators
;for two operands only... this patch allows
;us to use queries like:

: (TRUEP *(<= 2 3 4))

17

CHA:>Scoggins>newaveo>planner.11isp.40 1/16/88 21:27:53

S I ISR PIINIIRPIPIPIPPIPIPIIPPIIPIIIIPPIPPIIPINIIIPIPILPPISIIIIIIIILIILLS

333 Utility Rules and Definitions

;;; These misfit propositions have nothing to do with either the meta level

33 or the domain knowledge base. They just make life easier when using MRS.

Y

PN IR NP I PRI PRI PP PPIIRIPPIRPPIRISIIRDPIIIPSIPIIIIIPILIIIIIIISIILS

(stash ‘(append nil $1st $1st)) ;Append two 11st to return a third
;1ist as the result - this is an

(stash ‘(append $1st nil $1st)) ;excellent example of logic programming

;for any Prologer who wants to learn MRS

(stash ‘(if (append $cdr $1st $ans)
(append ($car . $cdr) $1st (Scar . $ans))
))

18

CHA:>Scoggins>newaveo>planner.1isp.40 1/16/86 21:27:58

...

(Dafun PLAN-NEW-ARRIVAL
(flight class route time alt cas)

Instantiate flight with its parms
set flight)
(make-instance ‘FLIGHT
:1abel (get-pname flight)
:class class
:current-route route

N

’

;Query to find and install plan segments

(lets ((approach (eval (implode (append ‘(A P P -) (explode rcute)))))
(init-seg (1ist (eval flight) approach time time (send approach :dist-to-td) alt cas))
(query (truep ‘(planned ,init-seg $segs $advs)))

(

)
(send (eval flight) :install-plan (getvar ’$segs query) (getvar ’$advs query))
)

(Defun PLAN-MISSED-APPROACH
(flight)

; Find the flight’s segment on TD-ARC and meve it to MISSED
(lets ((td-seg (send flight :edit-plan-at TD-ARC))
(miss-seg (11st flight MISSED (nth 2 td-seg) (nth 3 td-seg) 0.0 36000.0 180.0%)

)
(send TD-ARC :del-flight td-seg)
(send flight :install-plan
{(1ist miss-seqg)
(11st (format nil "Flight ~A executes a missed apprcach at ~\time\"
(send flight :label) (nth 2 miss-seg)))
)

;Query to find and install revised plan segments
(lets ((query (truep ‘(planned ,miss-seg $segs $advs)))

(send flight :install-plan (getvar ’$segs query) (getvai ’S$advs query))
)

(Defun PLAN-BLOCKED-RUNWAY
(fiight)

’
; Remove flight plan segments past current arc
(lets ((oldies {(reverse (send flight :segments)))
(init-cur (send flight :edit-plan-at (send flight :current-arc)))
(cur-segs (send flight :segments))
(init-old (1ist flight MISSED (nth 2 (car oldies)) (nth 2 (car oldies)) 0.0 36000.0 180.0))
(o1d-segs (reverse (cons init-old {(cdr oldies)))))

;Remove all trace of the flight until it is replanned

(send flight :set-segments oldies)

(send flight :remove-self)

(send flight :describe) —_—
(send TERMINAL-GRAPH :add-flight flight)

(send flight :set-segments nil)

»
;Query to find and install revised plan segments
(lets ((query (truep ‘(block-replanned ,init-cur ,cur-segs ,init-cld ,0id-segs $segs $advs)))

(send flight :install-plan (getvar ’$segs query) (getvar °'Sadvs query))
)
)

) 19

CHA:>Scoggins>newaveo>planner.11sp.40 1716786 21:

.......

(stash

(stash

(stash

(stash

(stash

(stash

(stash

..

...

*(if (and (planned $init-old $segs1 Sadvst)
(append $old-segs $segsl $segs)
(append Sadvs1 ("Missed approach forced by blocked runway") $advs)

(block-replanned $init-cur $cur-segs $init-old $0ld-seqgs $segs Sadvs)
))

“(1f (and (planned $init-cur $segsi Sadvsil) .
(append Scur-segs $segsi $segs)
(append $advs1 (“Rescheduled due to blocked runway") $advs)

)
(block-replanned $init-cur $cur-segs $init-old $old-segs $segs $advs)
)) ’

*(1f (and (= $init-seg ($f1t Sarc Sentry $exit $dis $alt Scas))
(gen-path $arc ($arc . $path))
(gen-segs $init-seg $path $segs Sadvs)
(no-block-conflicts $segs)

)
(planned $init-seg $segs $advs)
))

*(if (and (send $arc :next-arcs $next-arcs)
(member $next $next-arcs)
(gen-path $next Sresult-path)

{gen-path $arc ($arc . $result-path))
))

‘(gen-path ,TD-ARC (,TD-ARC))
)

‘(if (and (= $init-seg ($f1t $arc Sentry Sexit $dis $alt $cas))
(strategy $profile)
(eval (PATH-GEN ‘Sprofile ‘$f1t ‘$path ‘Sexit *$alt ‘Scas)
($segs $advs))
(no-flight-conflicts $segs)

)
(gen-segs $init-seg $path $segs $advs)
))

*(1f (and (send $hold-arc :isa-hold-pt t)
(gen-hold $init-seg $hold-arc $hold-seg $hold-adv)
(no-flight-conflicts ($hold-seg))
(gen-segs $hold-seg $path $segs Sadvs)
)

(
)

t(if (and (= $init-seg ($f1t $arc Sentry Sexit $dis $alt Scas))

(send $f1t :label $fit-label)

(send Shold-arc :label Sarc-label)

(member $hold (30 60 120 240 480 10000))

(+ Sexit $Shold Shold-exit)

(format nil
“Fiight ~A holds for ~0$ sec at ~0$ ft over the ~A"
'$f1t-label ’*$hold ’S$alt ’$arc-label
$hold-adv

)
(= $hold-seg ($f1t Shold-arc Sexit $hold-exit $dis $alt $cas))

)
(gen-hold $1nit-seg $hold-arc Shold-seg $hold-adv)
20

27:53

gen-segs $init-seg (Shold-arc . Spath) (Shold-seg . $segs) ($hold-adv— Sadvs))
)

CHA:>Scoggins>newaveo>planner.1isp.40 1/16/86 21:27:58

))

(stash *(if {unprovable
{(and (member $this-seg $segs)
(= ($f1t Sarc Sentry $exit $dis $alt $cas) $this-seg)
(send $arc :will-conflict ’Sthis-seg ($front $back))
(+ $front $back $Sconflict)
(> Sconflict 0)

))
{no-flight-conflicts $segs)
))

(stash ‘(if (unprovable
(and (member ($f1t ,TD-ARC Sentry Sexit $dis $alt $cas) $segs)
{blocked-runway $t1 $t2)
(< $t1 Sentry $t2)

)
(no-block-conflicts $segs)
))

(stash ‘(strategy FAST) ;until FORTRAN 1s debugged...
)

21

CHA:>Scoggins>newaveo>planner.lisp.40 1/16/86 21:27:58

..

.................................

(Defun PATH-GEN
(type flight path time altd spd)

’
(1ist
(loop with prev-time = 0.0 ‘
for (arc enter dis alt cas)
in (reverse (PATH-GEN-AUX type (reverse path) time altd spd))

for exit first enter then prev-time
collect (1ist flight arc enter exit dis alt cas) into segs
do (setq prev-time enter)
finally (return segs)

(cons
(format nil "Flight ~A:* (send fiight :label))
(with-open-file
(advs "CHA:>Scogginsdadvisories.data" ‘:direction ‘:input)
(loop while (send advs :1isten)
collect (readline advs)

)

(Defun PATH-GEN-AUX
(type path time altd spd) .

’
; Find the distances for each arc in the given path
(setq path
(loop for arc in (reverse path)
collect (cons arc (send arc :dist-to-td))

)

1
; Write the initial flight parameters to the file "flt-parms.data”
(with-open-file
(parms "CHA:>Scoggins>fit-parms.data® :direction :output)
(format parms
*vp ~§ ~§ ~§ ~3%"
(selectg type ;map the speed profile parameter value
(FAST 1) (NOMINAL 2) (SLOW 3))
(float time)
(cdar path) -
(max altd 4650.0) serror check the alt parameter
gmax spd 154.0) ;error check the cas parameter

)

(f77:execute PathGen

:tnit-to-zero t ;Initialize FORTRAN variables to zero
spathname-default "CHA:>Scoggins)>* ;Define logical units for files
:units ((2 “cmdtab.data)

(9 “eprdata3.data")

(18 “f1t-parms.data*)

(19 "fl1t-segs.data")

(20 *advisories.data")

(lets
((tim (make-array *(100))
(dis (make-array *‘(100))
(alt (make-array *(100))
(cas (make-array *‘(100))
(nsegs 0)
(coords nil)

) 22

CHA:>Scoggins>newaveo>planner.lisp.40 1/16/86 21:27:

{with-open-file
(segs "CHA:>Scoggins>fit-segs.data® :direction :input)
(loop for 4 from 0 below 100
while (send segs :1isten)
do (aset (read-for-top-level segs) tim 1)
do (aset (read-for-top-level segs) dis 1)
do (aset (read-for-top-level segs) alt 1)
do (aset (read-for-top-level segs) cas 1)
finally (setq nsegs (if %((argf dis (- 1 2)) 0.0)
-12

(-11)
)]
)
)

(aset (+ (aref tim (1- nsegs))
(/7 (= (aref dis (1- nsegs))
3600.0)
(aref cas (1- nsegs)) : —

tim
nsegs)

(aset 0.0 dis nsegs)
(aset 0.0 alt nsegs)
(aset (aref cas (1- nsegs)) cas nsegs)
(catch *PROF-EXIT
(loop for j from 0 below nsegs
as di = (aref dis j)
as d2 = (aref dis (1+ j))
do (loop for (arc . d) in path
while (>= di d d2)

do (push
(14st arc
(+ time ;time
{pt-slope d
dl (fix (aref tim j))
d2 (fix {(aref tim (1+ 3))))
d ;distance
{pt-slope d s;altitude
d1 (aref alt j)
d2 (aref alt (1+ 3))
)
(pt-slope d ; speed
dt (aref cas j)
d2 (aref cas {1+ Jj))
) . .
)
coords)

do (pop path) .
when (null path) do (throw ‘PROF-EXIT (reverse coords))
)

{Defun PT-SLOPE ;use the point-slope formula to
(x x1 y1 x2 y2) ; 1inearly interpolate between two points

(cond ({zerop (- x2 x1))
‘Undefined

)
((floatp y1)
(+ y1
(s (- x x1)
(77 (- y2 y1)
(- x2 x1))))

)
(t
(+ ¥
(Fix (2 (- x x1)
(77 (float (- y2 y1))
(- x2 x1)))))
23

CHA:>Scoggins>newaveo>planner.11sp.40

24

1/16/868 21:27:568

CHA:>Scoggins>newaveo>planner.1isp.40 1/16/86 21:27:52

we
we
we
we
we
-e
-
-
ws
-
-e
we
we
-
e
Y
we
we
-e
-
we
ws
e
we
we
-
we
e
we
we
..
-e
we
-e
s
we
we
-e
-
e
we
-e
we
-
-e
we
we
-e
-e
we
e
ve
we
we
Y
e
we
s
we
we

Planning Facts and Rules for Path Correction

For now, we just use a uniformly distributed random variable to simulate the
amount of path error.

This should even be smarter, fe. if a flight is too early, but there is no
runway block or time separation confliict in front of its scheduled touchdown,
then why bother with path stretching?

e WS WO WE B W W WS WE WO WE We e
WO W WE We WO W W Ve We We We We we
WO W ® W WO W W WO WE WO WY we we

-e
we
we
-
ws
we
we
-e
-e
e
we
we
Y
..
we
we
e
-
we
we
we
.
we
e
we
-e
we
e
e
-
e
we
we
e
we
we
we
-e
we
we
-.
we
e
we
Y
-

we
we
we
-
-
we
-
we
..
e
we
we
e
e
we
..
we
-
ve

: CORRECTION determines how a flight should maneuver to correct, based on the °
scalculated time descrepancy.

(stash *(if (and (- Stdly $delta Serror)
(format nil
*Flight ~A executes ~A ~28 lzte to correct for time error~XWARNING Flight ~A is ~0% s
ec early even with corrections*
*$label ’S$man *$ddly °$ladbel ’Serror Smsg)

)
(correction $label $t $man $delta $dadv $tadv $ddly S$tdly $msg)
b))

{stash *(1f (and (<= $tdly %$delta)
(s $delta $ddly $Stemp)
(// $temp $tdly Scorrect)
{format nil
“Flight ~A executes ~A ~2$ late to correct for time error®
*$1abel ’$man *$correct S$msg)

)
(correction $izbel $t $man $delta $dadv $tadv $ddly $tdly Smsg)
)

{stash *(if (and ({= -5.0 $delta)
(format nil
*Flight ~A requires no path correction®
"~ *$label S$msg)

)
(correction $label $t $man $delta $dadv $tadv $ddly $tdly $msg)
))

(stash *(if (and (< 5.0 $delta)
(% $delta $dadv Stemp)
(// $temp $tadv $correct)
(format nil
*Flight ~A executes ~A ~2$ early to correct for time error®
*$label ’$man 'Scorrect $msg)

)
(correction $label $t $man $delta $dadv $tadv $ddly $tdly Smsg)
»

(stash ’(if (and (< $tadv $delta)
(- $delta $tadv $error)
(format nil
*Flight ~A executes ~A ~2% ear1y to correct for time error~%WARNING Flight ~A is ~0§
sec late even with corrections®
*$1abel ’$man ’S$dadv ’$1abel ’Serror $msg)

)
(correction $1abel $t $man $delta $dadv Stadv $ddly $tdiy $msg)
)) .

25

CHA:>Scoggins>newaveo>graph.11isp.31 1/16/86 18:42:39

-s- Mode: LISP; Package: MRS; Syntax: Zetalisp; Base: 10 -%-
NB: Change this first line and all life as you know 1t will cease to exist...
John Scoggins
NASA/Ames Research Center
M/S 210-9
Moffett Field, CA 94035
(415) 694-5431
Overview

This file defines the flavors and methods uscd in the ...

s WO WE WO WS We We WP VE WE Ve We We we w6
e W WE W WS WE WE B WS We W We We W we
@t WO W WE WS e We WS VO Ve WE WE Ws WE we

----- R R R N R N N I N I I N I N I . sae oo e
9992299599200 000099390000 PPIIDRINDIRODNINIINIIDIIIIIRINIINIINDINIDIINSIDIIIY

(Declare
(special
;Here’s a 1ist of all the names for instantiated objects which will be
sreferred to by these flavors and methods, ie. the "forward references®.

FRAME
T0-ARC

TERMINAL -GRAPH
)

26

CHA:>Scoggins>newaveo>graph.11isp.31 17/16/86 18:42:

..

Here’s what a flight segment is supposed to look like:
{FLIGHT ARC ENTER-TIME EXIT-TIME DIS ALT CAS)

...

(DefFlavor FLIGHT
;This is the generic flight flavor to represent aircraft in the

;system.
((class nil) ;atrcraft size class
(current-arc nil) ;current position
(current-route nil) scurrent route
(advisories nil) ;advisories list
(segments nil) ;plan segment list
(label nil) ;printed label string
{(icon #/a) ;graphics character
; —
Q)
H
:gettable-instance-variables ;these flags mean that any of the
:settable-instance-variables ;flavor’s slot can be initialized,
:initable-instance-variables ;accessed or reset

)

{DefMethod (FLIGHT :after :init)
(ignore)
;This demon adds every newly instantiated flight to the TERMINAL-GRAPH’s
;1ist of flights.

isetq icon (if (eq class ’small) #/b #/3))
(send TERMINAL-GRAPH :add-flight self)
)

(DefMethod (FLIGHT :install-plan)
(new-segs new-advs)

(setq advisories (append advisories new-advs))

(if new-advs (send FRAME :print-advisories new-advs))

(setq segments (sort (append segments new-segs)

*(1ambda (segl seg2)

(< (nth 2 segl) (nth 2 seg?))
)) -

(loop for seg in new-segs
do (send (nth 1 seg) :add-flight seg)
)

(DefMethod (FLIGHT :edit-plan-at)
(last-arc)

(loop for seg in segments
while (neq last-arc (nth 1 seg)) collect seg into good-segs
finally (setq segments good-segs)
finally (return seg)

(DefMethod (FLIGHT :time-sep)
(other-fiight)

?
(cadr (assoc (cons class (send other~flight :class))
*(((HEAVY . HEAVY) 94) ((HEAVY . LARGE) 74) ((HEAVY . SMALL) 74)
((LARGE . HEAVY) 114) ((LARGE . LARGE) 74) ((LARGE . SMALL) 74)
((SMALL . HEAVY) 167) ((SMALL . LARGE) 38) ((SMALL . SMALL) 98))

27

~

9

9

CHA:>Scoggins>newaveo>graph.1isp.31 1/16/86 18:42:39

)

(DefMethod (FLIGHT :report-plan)
Q)

E]oop for (flight arc enter exit dis alt cas) in (reverse segments)
initially (format t *~%Flight ~A is scheduled as follows:~%* label)
do (format t "~%~\time\ ~A" enter (send arc :label))

(DefMethod (FLIGHT :remove-self)
Q0

iloop for seg in segments
for arc = (nth 1 seg)
do (send arc :del-flight seg)
)

{send TERMINAL-GRAPH :del-flight self)
)

28

CHA:>Scoggins>newaveo>graph.lisp.31 1/16/86 18:42:39

{DefFlavor ARC
;This is the generic arc flavor to represent an arc between
;waypoints in the terminal area.

((entering-flights nil) sentering fliaght segments
(exiting-flights nil) ;exiting flight segments
(isa-hold-pt nil) ;flag for holding arcs
{from-node nil) ;source waypoint
(to-node nil) ;destination waypoint
{(dist-to-td 0.0) ;distance to touchdown
(next-arcs nil) sconnecting arcs
(parent-route nil) ;parent route
(1abel nil) ;printed label string
{symbol nil) ;object symbol name
)

O

;gettable-1nstance-var1ab1es
:settable-instance-variables
:initable-instance-variables

)

(DefMethod (ARC :after :1nit)
(ignore)
;This daemon adds every newly instantiated arc to the TERMINAL-GRAPH’S
;1ist of flights.

(send TERMIMAL-GRAPH :add-arc self)
)

(DefMethod (ARC :add-fiight)
(fit-seqg)
;This method inserts a new flight plan segment "flit-seg® into the list
;of flight segments in sorted order.

1]
(if (2 (nth 3 fit-seg) (send FRAME :time))
(setq entering-flights
(sort (cons flt-seg entering-flights)
’(lambda (segi seg2)
(< (nth 2 segl) (nth 2 seg2)))
)) L

(Deftethod (ARC :deli-flight)
(flt-seq)
;This method deletes the given flight plan segment "flt-seg” from the list
;of flight segments.

(setq entering-fiights (remove flt-seg entering-flights)
exiting-flights (remove flt-seg exiting-flights)
)

(DefMethod (ARC :reset)

;This method removes all the old flight plans to reset the system state before
;& scenario file is restored.
(setq entering-flights nil

exiting-flights nil

)

29

CHA:>Scoggins>newaveo>graph.1isp.31

{DefMethod (ARC :run-entry-code)
(fit-seg time)

Zsend FRAME :print-advisories

1716786 18:42:39

(1ist (format nil "Flight ~A should have reached the ~A by ~\time*

(send (car fit-seg) :label)
label
time

1))
(send (car flt-seg) :set-current-arc self)

(setq entering-flights
(remove flt-seg entering-flights))

(setq exiting-flights
(sort (cons flt-seg exiting-flights)
*(lambda (segl seg2?)
(< (nth 3 segl) (nth 3 seg2)))
))

(DefMethod (ARC :run-exit-code)
(fit-seg time)

setq exiting-flights
(remove flt-seg exiting-flights))
+ 1 time)

—~ ~ue

(DefMethod (ARC :update)
(time)

Zloop for fit-seg in entering-flights
while (2 time (nth 2 fit-seg))
do (send self :run-entry-code flt-seg time)

Z]oop for fit-seg in exiting-flights
while (2 time (nth 3 flt-seg))
do (send self :run-exit-cocde flt-seg time)

(DefMethod (ARC :will-conflict)
{new-seg)

(lets ((fnt-bck -
(loop with front = nil
with enter-time = (nth 2 new-seg)
for seg in entering-flights
when (< enter-time (nth 2 seg))
return (cons nil seg)
while (2 enter-time (nth 2 seg))
do (setq front seg)
finally (return (cons front

;execute the arc’s entry code

sexecute the arc’s exit code

(cadr (member front
entering-flights))))

)
))

(1ist (send self :segs-conflict (cdr fnt-bck) new-seg)
(send self :segs~conflict new-seg (car fnt-bck)))

(DefMethod (ARC :segs-conflict)
(segl seg?2)

i1f {not (and segtl seg2))
0

(abs (min 0
(- (nth 2 segl)
30

CHA:>Scoggins>newaveo>graph.lisp.31 1716786 18:42:39

(nth 2 seg?)
(send (car segl) :time-sep (car seg2))

))) .

31

CHA:>Scoggins>newaveo>graph.11sp.31 1/16/86 18:42:39

...

..

(DefFlavor APPROACH-ARC

Q)
(ARC)
)
{DefFlavor HOLDING-ARC
((isa-hold-pt t) ;holding flag set true
)
(ARC)

(DefMethod (HOLDING-ARC :will-conflict)
(new-seg)

H
; Nothing conflicts here yet...
nil

)

(DefFlavor CORRECTION-ARC
((advance 3.0)
(delay 4.0)
(maneuver "turn to base leg")

)
(ARC) .

(DefMethod (CORRECTION-ARC :after :run-entry-code)
(flt-seg time)

(send (car flt-seg) :install-plan
nil
(list
(getbdg ’'S$msgs
(1ist ’correction

(send (nth 0 flt-seg) :label) ;flight label
(nth 2 fit-seg) ;entering (correction) time
maneuver ;required maneuver
(- (mod (abs (random)) 20) 10) -randomly generated error
advance ;distance of advance allowed
(// (s advance 7200.0) ;time of advance allowed
(nth 6 flt-seg))
delay ;distance of delay allowed
(// (% delay -7200.0) ;time of delay allowed
(nth 6 flt-seg))
;?msgs ;returned correction messages

(DefFlavor TOUCHDOWN-ARC
Q)
(ARC)

(DefMethod (TOUCHDOWN-ARC :block-runway)
(timel time2)

H
(loop for (flight arc enter . rest) in entering-flights
when (£ timel enter time2)
do (PLAN-BLOCKED-RUIWAY f1ight)
)

32

CHA:>Scoggins>newaveo>graph.lisp.31 1/16/786 18:42:39

{DefFlavor MISSED-ARC

Q)
(ARC)

(DefMethod (MISSED-ARC :after :run-entry-code)
(f1t-seg time)

Esend {(car flt-seg) :set-current-route *MISSED)

33

CHA:>Scoggins>newaveo>graph.1isp.31 1/16/86 18:42:390

..

...

{DefFlavor GRAPH

E(arc-list nil)
(flight-1ist nil)
)

)

?

:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables

)

~e

(DefMethod (GRAPH :add-arc)
(arc)

Esetq arc-11st (cons arc arc-1ist))

(DefMethod (GRAPH :del-arc)
(arc)

setq arc-1ist (remove arc arc-1list))

e

(DefMethod (GRAPH :add-flight)
(fiight)

setq flight-1ist (cons flight flight-1ist))

e

(DefMethod (GRAPH :del-flight)
(flight)

setq flight-1ist {(remove flight flight-1ist))

-~

(DefMethod (GRAPH :update)
(time) .

(loop for arc in arc-list
do (send arc :update time)

)

(DefMethod (GRAPH :save-scenario)
(pathname)

(with-open-file
(save pathname :direction :output)

EWrite file attribute 1list
(format save *; -3- Mode: LISP; Package: MRS; Syntax: Zetalisp; Base: 10 -~x-~2%")

;Write the 1ist of runway blocks
{(loop for block in (trueps ’(blocked-runway $t1 $t2))
collect (format save
*(stash *‘(blocked-runway ~A ~A))~2%"
(getvar *'$t1 block)
(getvar "$t2 block)
)

CHA:>Scoggins>newaveo>graph.l1isp.31 1/16/86 18:42:39

;Write the current system time

(format save
“(send FRAME :reset-time ~A)~2%"
(send FRAME :time)
)

Write 1ist of flight object instances
loop for fl1t in (reverse flight-1ist)
for label = (send f1t :label)
do {fcrmat save
*(setq ~A (make-instance ‘FLIGHT
:label (get-pname *~A)
sclass *‘~A
scurrent-route ‘~A
scurrent-arc ~A
))~an

(

Yabel

label

{send fl1t :class)

(send f1t :current-route)

(send (send fit :current-arc) :symbol)

do (format save

*(send ~A :instali-plan ‘~A ntl)~2%"

label

(loop for (f1t2 arc . rest) in (send flt :segments)

collect (format nil

"(,~A ,~A . ~A)*"
label
(send arc :symbol)
rest

)

(DefMethod (GRAPH :restore-scenario)
(pathname)

;Remove all the old filights and flight plans and empty scratch theory
(setq flight-1ist nil)
(loop for arc in arc-list
do (send arc :reset)
)
(empty theory) . .

»

;Read in the given scenario file
(load pathname) e
)

35

CHA:>Scoggins>newaveo>graph.lisp.31 1/16/86 18:42:29

{Compile-Flavor-Methods
FLIGHT
ARC APPROACH-ARC HOLDING-ARC CORRECTION-ARC TOUCHDOWN-ARC MISSED-ARC
GRAPH
)

(setq TERMINAL-GRAPH
(make-instance ’'GRAPH))

(Comment (init-path Drako wp6 wp10 wp14 wp20 wp53 wp42 wp35 wp39 D TD)
(init-path Keann wp4 wpiS wpl17 wp19 wp20 wp53 wp42 wp35 wp39 D TD)
(init-path COS wp9 wp45 wpé2 wp35 wp3d D TD)

(init-path Kiowa wp3 wp22 wp23 wp25 wp54 wp42 wp35 wp39 D TD)
(init-path Byson wp7 wp28 wp29 wp25 wp54 wp42 wp35 wp39 D TD)
(init-path Missed D TD Miss wp53 wp42 D TD)

)

{setq MISSED
(make-instance °MISSED-ARC
:dist-to-td 150.0
:label "missed approach point*
:symbol *MISSED
)

(setq TD-ARC
(make-1instance °*®TOUCHDOWN-ARC
:dist-to-td 0.0
:1abel "runway"
:symbol *TD-ARC
))

(setq COR-DRAKO
(make-instance ®CORRECTION-ARC
:dist-to-td 30.0
:label "Drako decision point®
:symbol ’COR-DRAKO
))

(setq COR-KEANN
(make-instance ’CORRECTION-ARC
:dist-to-td 30.0 .
:label “"Keann decision point®
:symbol *COR-KEANN
))

(setq COR-COS
(make-instance *CORRECTION-ARC
:dist-to-td 30.0
:label *COS decision point"
:symbol ’COR-COS
»

(setq COR-KIOWA
(make-instance 'CORRECTION-ARC
:dist-to-td 30.0
:label *Kiowa decision point*®
:symbol °COR-KIOWA
))

(setq COR-BYSON
(make-instance ’CORRECTION-ARC
sdist-to-td 30.0
:label "Byson decision point"
:symbol ’COR-BYSON
))

36

CHA:>Scoggins>newaveo>graph.lisp.31

(setq

(setq

(setq

(setq

(setq

(setq

(setq

(setq

(setq

(setq

(setq

FF-DRAKO
(make-instance

FF-KEANN
(make-instance

FF-COS
(make-instance

FF-KIOWA
(make-instance

FF-BYSON
(make-instance

HOLD~DRAKO
(make-instance

HOLD-KEANN
{make-instance

HOLD-COS
(make-instance

HOLD-KIOWA
{make-instance

HOLD-BYSON
(make-instance

APP-DRAKO
(make-instance

’ARC

:dist-to-td 100.0

:label "Drako feeder fix*
:symbol ’FF-DRAKO

))

*ARC

:dist-to-td 100.0

:iabel "Keann feeder fix"
:symbol *FF-KEAMNN

N

*ARC

:dist-to-td 100.0
:label "COS feeder fix*
:symbol ’FF-COS

)

*ARC

:dist-to-td 100.0

:label "Kiowa feeder fix*
:symbol *FF-KIOWA

))

*ARC

tdist-to-td 100.0

:label "Byson feeder fix"
;symbol *FF-BYSON

).

*HOLDING-ARC

:dist-to-td 100.0

:label "Drako holding point*
;symbol ? HOLD-DRAKO

)

*HOLDING-ARC

:dist-to-td 100.0

:1abel “Keann holding point*
:symbol ’HOLD-KEANN

))

*HOLDING-ARC -
tdist-to-td 100.0

:label "COS holding point*
:symbol *HOLD-COS

)

*HOLDING-ARC

:dist-to-td 100.0

:label "Kiowa holding point®
:symbol *HOLD-KIOWA

))

*HOLDING-ARC

:dist-to-td 100.0

:label "Byson holding point"
:symbol *HOLD-BYSON

))

* APPRCACH-ARC

:dist-to-td 100.0

:label "Drako approach path"
:symbol *APP-DRAKO

37

1/16/86 18:42:29

CHA:>Scoggins>newaveo>graph.11isp.31 1/16/86 18:42:39

b))

{setq APP-KEANN :
{make-instance ’APPROACH-ARC
:dist-to-td 100.0
:label "Keann approach path®
:symbol ’APP-KEANN
)

(setq APP-COS
(make-instance *APPROACH-ARC
sdist-to-td 100.0
:label "COS approach path*
:symbol ’APP-COS
))

(setq APP-KIOWA
{make-instance ’APPROACH-ARC
:dist-to-td 100.0
:label “Kiowa approach path*
;;ymbol *APP-KIOWA

(setq APP-BYSON
({make-instance "APPROACH-ARC
:dist-to-td 100.0
:label *Byson approach path"
:symbol ’APP-BYSON
))

38

CHA:>Scoggins>newaveo>graph.lisp.31 1/16/86 18:42:39

{send MISSED
:set-next-arcs (11st FF-DRAKO HOLD-DRAX0))

(send TD-ARC
:set-next-arcs nil)

(send COR-LCRAKO
sset-next-arcs (1ist TD-ARC))

(send COR-KEANN
sset-next-arcs (1ist TD-ARC))

(send COR-COS
:set-next-arcs (1ist TD-ARC))

(send COR-KIOWA
:set-next-arcs (1ist TD-ARC))

(send COR-BYSON
:set-next-arcs (1ist TD-ARC))

(send FF-DRAKO
:set-next-arcs (1ist COR-DRAKO))

(send FF-KEANN
:set-next-arcs (1ist COR-KEANN))

(send FF-COS
:set-next-arcs (1ist COR-COS))

(send FF-KIOWA
:set-next-arcs (1ist COR-KIOWA))

(send FF-BYSON
:set-next-arcs (11st COR-BYSON))

{send HOLD-DRAKO
:set-next-arcs (1ist FF-DRAKO))

(send HOLD-KEANN
:set-next-arcs (1ist FF-KEANN))

(send HOLD-COS
:set-next-arcs (1ist FF-COS)) .

({send HOLD-KIOWA
:set-next-arcs (1ist FF-KIOWA))

(send HOLD-BYSON
:set-next-arcs (1ist FF-BYSCON))

(send APP-DRAKO
:set-next-arcs (1ist FF~DRAKO HOLD-DRAKO))

(send APP-KEANN
:set-next-arcs (1ist FF-KEANN HOLD-KEANN))

{send APP-COS
tset-next-arcs (1ist FF-COS HOLD-CO0S))

(send APP-KIOWA
:set-next-arcs (1ist FF-KIOWA HOLD-KIOWA))

(send APP-BYSON
:set-next-arcs (1ist FF-BYSON HOLD-BYSON))

39

CHA:>Scoggins>newaveo>user.1isp.40 1/16/86 17:10:27

-%- Mode: LISP; Package: MRS; Syntax: Zetalisp; Base: 10 -=-

NB: Change this first line and all 1ife as you know 1t will cease to exist...

John Scoggins
NASA/Ames Research Center
M/S 210-9
Moffett Field, CA 94035
(415) 694-5431

Overview

the ATC Scheduler expert system. For documentation about the syntax and
features of the Flavors package, please see the Symbolics manual called *
“"Reference Guide to Symbolics-Lisp*, p. 417. Since much of this file
concerns the graphics and user interface packages, it is also helpful to

see the Symbolics manual called "Programming the User Interface", p. 73.

This file will:

* Define the global variables for the system
¢ Define the flavors and methods for windows, routes and planes

A1l of this code is defined in terms of 1isp functions or calls to the
Flavors package, so 1t might be useful to compile this file for faster

H
]
1
HE
K
HH
HH
HH
1
3
"
;3 This file defines the flavors and methods used in the object base of
e
HY
HH
HH
H
HH
»
H
B
HH
H]
;3 execution.
HH

4o

CHA:>Scoggins>newaveo>user.lisp.40 1716786 17:10:27

instead of the typical use of SETQ. This defines variables in terms
of the Flavors package. Primarily, this results in cleaner programming and
less compiler warnings, but no change in the execution semantics.

WO e WP we WE we we we we

;; We use the function (DECLARE (SPECIAL <var>)) to define global variahles

...

(comment (Declare
(special FRAME
MENU-FLIGHT —
MENU-CLASS .
MENU-ROUTE
MENU-TIME1
MENU-TIME2
MENU~ALT
MENU-CAS
MENU-ARC
MENU-MORE
MENU-FLIGHTS
MENU-TRACE
MENU-STEP
MENU-GC
o))

)

; Menu variable initial definitions

(setq MENU-ID ’PA0C1)

(setq MENU-FLIGHT nil)

(setq MENU-CLASS ’HEAVY)

(setq MENU-ROUTE ’DRAKO)

(setq MENU-TIME1 (time:get-universal-time))
(setq MENU-TIME2 (time:get-universal-time))
(setq MENU-ALT 36000.0)

(setq MENU-CAS 180.0)

(setq MENU-ARC ’'TD-ARC)

(setq MENU-MORE nil)

(setq MENU-FLIGHTS nil)

(setq MENU-TRACE nil)

(setq MENU-STEP t)

(setq MENU-MINSTEP 4)

(setq MENU-SAVE ’SAVE)

(setq MENU-FILE "CHA:>Scoggins>TestCases.save") '
(setg MENU-GC ’gc-off)

41

CHA:>Scoggins>newaveo>user.1isp.40 1/16/86 17:10:27

..

(DefFlavor LISTENER-PANE ((who-line “*)

(tv:window)
:gettable-instance-variables ;these flags mean that any of the
:settable-instance-vartiables ;flavor’s slot can be initialized,
:initable-instance-variables ;accessed or reset

)
(DefMethod (LISTENER-PANE :who-1line-documentation-string)
Q) ;explain mouse features

who-1ine
)

42

CHA:>Scoggins>newaveo>user.1isp.40 1/16/86 17:10:27

..

...
»

(DefFlavor FRAME ((advisories nil)
(command-menu nil)
(listener nil)
(time-routes nil)
(min-time-step 4)
(last-time 0)
(time 0) ;displayed time
(routes nil)

{(tv:bordered-constraint-frame-with-shared-io-buffer
tv:basic-frame

:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables

(DefMethod (FRAME :after :init)
(ignore)

(setq advisories (send self :get-pane ’*ADVISORIES)
command-menu (send self :get-pane ’COMMAND-MENU)

listener (send self :get-pane ’LISTENER)
time-routes (send self :get-pane °’TIME-ROUTES) *
time (time:get-universal-time)
last-time (time:get-universal-time)
(send self :set-save-bits t) ;save screen when deexposed

{send self :select-pane listener)

(DefMethod (FRAME :command-loop)
Q)

;command loop for system - this enables

;the use of mouse/menu driven user input
{(loop do (catch-error-restart

((ERROR SYS:ABORT) "Return to the ATC Scheduler prompt")

(send self :expose)
(setq TERMINAL-IO listener) ,
(send listener :fresh-line)

(cond ((or MENU-STEP -
{send listener :1listen)

)
(multiple-value-bind (value flag)
(with-input-editing-options
((:preemptable :blip)
{:prompt "ATC Scheduler: *)

(read-or-end listener ’read-command-or-form))
(selectq flag
(:end
(format t "~&~A" "Leaving the ATC Scheduler...")
(return t)

(:blip
(selectq (car value)
(:menu
(catch 'MENU-ABORT
(format listener *~&~A" (eval (caddadr value)))

(:mouse-button
(selectq (cadr value)
(#\mouse-1-1
nil

) 33

CHA:>Scoggins>newaveo>user.11sp.40 1/16/86 17:10:27

{#\mouse-m-1
(setq MENU-STEP (not MENU-STEP))
(if (not MENU-STEP)
(send listener :set-more-p nil)

)

(#\mouse-r-1
nil
)

)

{otherwise
(format 1listener “Random blip -- ~$" value)))

(:command
(format listener “"Execute ~:C command® (second value))

(otherwise
(send listener :fresh-1ine)
{format listener “~&~A* (eval value))
)
)
)

)
({cond ((and (not MENU-STEP)
(< min-time-step
(abs (- last-time
(time:get-universal-time))))

)
(send FRAME :update-time)
(send FRAME :draw-time-routes)
(send TERMINAL-GRAPH :update time))
))

(DefMethod (FRAME :draw-time-routes)
(

;Draw the time lines
(send time-routes :clear-window)
(loop for (route . 1ines) in routes
do (eval ‘(send ,time-routes :draw-lines tv:alu-ior ,@lines))
do (send time-routes :draw-string (get-pname route) 0 (+ 12 (cadr lines)))

)
;Draw each flight .
(loop for (flight arc enter exit dis alt cas)
in (send TD-ARC :entering-flights)
with max-x = (send time-routes :width)
with scale = (// max-x 4000.0)
with front = nil
for x-pos = (- max-x (round (% (- enter time) scale)))
for y-pos = (nth 2 (assoc (send flicht :current-route) routes))
for x-sep first 0 then (round (t scale (send flight :time-sep front)))
do (send time-routes :draw-string (send flight :label) x-pos (- y-pos 12))
do (send time-routes :draw-char fonts:ATCFONT (send flight :icon) x-pos y-pos)
do (send time-routes :draw-rectangle x-sep 3 x-pos {1- y-pos))
do (setq front flight)

;:Oraw the current time

(send time-routes ;redisplay the current time - the bit logic
:draw-string ;function TV:ALU-XOR seems to right justify
(format nil "Current Time: ~\time\" time)
(- (send time-routes :width) 100)
{- (send time-routes :height) 20)
tv:alu-xor

(DefMethod (FRAME :print-advisories)
(advs)
:Dizrlay a 1ist of new advisories onto
ADVISORIES pane

Iy

CHA:>Scoggins>newaveo>user.1isp.40

(loop for m in (reverse
(cond ((atom advs) (1ist advs))
- (t advs)))
do (send advisories :home-cursor)
do (send advisories :insert-line)
do (send advisories :string-out m)

(DefMethod (FRAME :reset-time)
(new-time)

H
(setq time new-time
last-time (time:get-universal-time)

)

(DefMethod (FRAME :update-time)
QO

»
(lets ((this-time (time:get-universal-time)))
(setq time (+ time (- this-time last- tine))
last-time this-time
)
time -
)
)

45

1/16/86 17:10:27

CHA:>Scoggins>newaveo>user.lisp.40 1/16/86 17:10:27

..

(Defvar MENU-ITEMS
(("New Arrival

svalue (lets ()
(setq MENU-TIME1 (send FRAME :update-time))
(tv:choose-variable-values
*((MENU-ID "Flight ID" :expression)
(MENU-CLASS “Class" :choose
(HEAVY LARGE SMALL))
(MENU-ROUTE “Current Route® :choose
(DRAKO KEANN COS KIOWA BYSON MISSED))
(MENU-TIME1 “Time @ Feeder Fix" :date)
(MENU-ALT *Current Altitude" :decimal-number)
(MENU-CAS "Current CAS" :decimal-number)

)
:label "Arrival Flight Parameters"
:margin-choices "(("Abort* (throw ’MENU-ABORT "Menu Options Aborted")})
)

)
(PLAN-NEW-ARRIVAL
MENU-ID MENU-CLASS MENU-ROUTE MENU-TIME1 MENU-ALT MENU-CAS))
:documentation " Create a new arrival*

("Blocked Runway"
svalue (lets ()
(setq MENU-TIME1 (send FRAME :update-time))
(setq MENU-TIME2 MENU-TIME1)
(tv:choose-variable-values
*((MENU-TIME1 “From " :date)
(MENU-TIME2 "Until" :date)

:label "Blocked Runway Parameters"
:margin-choices *(("Abort" (throw °*MENU-ABORT *Menu Options Aborted"))
)

)
(stash *(blocked-runway ,MENU-TIME1 ,MENU-TIME2))
(send TD-ARC :block-runway MENU-TIME1 MENU-TIME2)

:documentation * Signal a blocked runway condition"

("Missed Approach®
:value (lets ()
(setq MENU-FLIGHT nil)
(tv:choose-variable-values
*((MENU-FLIGHT “F1ight to miss approach®
tassoc ,(mapcar ’*(lambda (f1t)
(cons (send fl1t :label) fit))

(send TERMINAL-GRAPH :flight-1ist)
))

)
:margin-choices *(("Abort" (throw *MENU-ABORT "Menu Options Aborted"))
)

)
(1f MENU-FLIGHT
(PLAN-MISSED-APPROACH MENU-FLIGHT))

:documentation ® Signal a missed approach condition*

)

{("Display Flight Plan®
:value (lets ((old-more-p (send TERMINAL-IO :more-p))
)

(send TERMINAL-IO :set-more-p t)
(setq MENU-FLIGHT nt1)
(tv:choose-variable-values
*((MENU-FLIGHT "Flight to display”
:assoc ,(mapcar ’(lambda (fit)
(cons (send f1t :label) fIt))

46

CHA:>Scoggins>newaveo>user.lisp.40 1716786 17:10:27

giend TERMINAL-GRAPH :flight-1ist)

)
:margin-choices ’(("Abort" (throw ’MENU-ABORT "Menu Cptions Aborted"))
)

)
(send TERMINAL-IO :clear-window)
(1f MENU-FLIGHT
(send MENU-FLIGHT :report-plan))
(send TERMINAL-IO :set-more-p old-more-p)

)
:documentation “ Display a report of some flight’s scheduled pian®

("Obliterate F1ight"
:value (letx ()
(setq MENU-FLIGHT nil)
{tv:choose-variable-values
*((MENU-FLIGHT *"Flight to remove"
:assoc ,{mapcar ’(lambda (f1t)
(cons (send f1t :label) fit))
g;end TERMINAL-GRAPH :flight-1ist)

) .
:margin-choices *(("Abort* (throw °MENU-ABORT “Menu Cptions Aborted"))
)

)
(if MENU-FLIGHT
(send MENU-FLIGHT :remove-self))

:documentation " Disavow any information concerning a particular flight*

)

{"Modify Clock"
:value (lets ()
(setq MENU-TIME1 (send FRAME :update-time))
(tv:choose-variable-values
*((MENU-TIME1 “New Time" :date)
(MENU-MINSTEP “Minimum Time Step" :integer)
(MENU-STEP "Time Stepping Mode" :assoc (("Real-Time* . nil)
{"Manual-Step* . t)
))

)
:margin-choices *({“Abort* (throw °MENU-ABORT "Menu Cptions Aborted"))
)

)
(if (not MENU-STEP)
(send TERMINAL-IO :set-more-p nil)

)
(send FRAME :reset-time MENU-TIME1)

'documentation * Change the system clock parameters”

("Save or Restore"
:value (lets ()
{tv:choose-variable-values
’((MENU-FILE "“Scenario file" :pathname)
(MENU-SAVE "Perform with file* :choose (SAVE RESTORE))

)
:margin-choices ’{("Abort" (throw ’MENU-ABORT "Menu Options Aborted"))
)

)
(selectq MENU-SAVE -—
(SAVE
{send TERMINAL-GRAPH :save-scenario MENU-FILE))
(RESTORE
(send TERMINAL-GRAPH :restore-scenario MENU-FILE))
)

:documentation ® Use a saved scenario file to control the simulation®

("More Processing"
:value (lets ()
{(tv:choose-variable-values

47

CHA:>Scoggins>newaveo>user.1isp.40 1/16/86 17:10:27

*((MENU-MORE “Listener #3MORE#%x processing" :assoc ({"On" . t)
("Off* . n11)
))

) .
:margin-choices *(("Abort" (throw ’MENU-ABORT "Menu Options Aborted"))
)

)
(1f MENU-MORE
(setq MENU-STEP t)

)
(send TERMINAL-IO :set-more-p MENU-MORE)

:documentation * Toggle Listener 3:MORE*$ processing”
)

(*MRS Task Tracing" .
:value (lete ()
(tv:choose-variable-values
* ((MENU-TRACE “"MRS task tracing® :assoc (("On" . t)
S“OFf" . nil)
)

)
:margin-choices '(("Abort"%throw *MENU-ABORT "Menu Cptions Aborted"))
)

)
(1f MENU-TRACE
(tracetask ’'&x)
(untracetask)

)
sdocumentation " Toggle MRS task tracing”
)

(*Garbage Collection"
svalue (letx ((old-state MENU-GC)
)
(tv:choose-variable-values
*((MENU-GC "Garbage collection® :assocc (("On" . gc-on)
("off" . gc-off)
(*Immediately” . gc-immediately)
(“Status” . gc-status)
))

:margin-choices *({"Abort* (throw 'MENU-ABORT *Menu Options Aborted"))
)
)
(apply MENU-GC nil)

(if (eq MENU-GC ’gc-status) .
(setq MENU-GC old-state)
)

:documentation * Change the'garbage collection state"
)
)

48

CHA:>Scoggins>newaveo>user.1isp.40 17/16/86 17:10:27

Compile, Load Flavors; and Instantiate Objects

HH

HHH

0

33; We give the compiler the names of each flavor to be used 1n the system.
:;: Then as this file is compiled, all flavor definitions and methods will be
;3; compiled into the bin file. Also, data structures for all the flavors will
;33 then be created at load time. Otherwise the flavors and methods wouild be
;s; compiled at run time.

20

...

(Compile-Flavor-Methods
LISTENER-PANE

FRAME .
)
(setq FRAME
(tv:make-window ’FRAME
sroutes
*((Drako 0 50 900 50 900 100 1067 100)
(Keann 0 100 1067 100)
{COs 0 150 900 150 900 100 1067 100)
(Kiowa 0 200 900 200 900 100 1067 100)
(Byson 0 250 900 250 900 100 1067 100)
(Missed 0 300 900 300 900 100 1067 100)
)
:panes
*((COMMAND-MENU tv:command-menu-pane
sitem-1ist ,MENU-ITEMS
) —
(TIME-ROUTES tv:window-pane
:font-map ,(1ist fonts:h17)
slabel "Time Routes®
:blinker-p nil
)
(ADVISORIES tv:window-pane
:font-map ,(11st fonts:tvfont)
:label "Advisories"
:more-p nil
:blinker-p nil
)
(LISTENER LISTENER-PANE °®
:font-map ,(1ist fonts:tvfont)
:label "Listener*
:more-p nil
:who-Tine
* M: Real Time on//off..."
)
)
sconstraints
*((main . ((TIME-ROUTES bottom-strip)
((bottom-strip :horizontal (0.5)
(ADVISORIES COMMAMD-MENU LISTENER)
((ADVISORIES 0.46)
(COMMAND-MENU 0.14)
(LISTENER 0.40))))
((TIME-ROUTES :even))))
)
)

49

Fig.

1

COLORADO
SPRINGS

Denver Route Structure.

50

WA374
DRAKO T

UA003 PA003

EANN " J
: » »

cos

KIOWA

BYSON

MISSED

TIME ROUTES CURRENT TIME: 12:37:03

Fig. 2 Schedule for New Arrival.

DRAKO
TYPE CORRECTION TYPE CORRECTION
CHANGE TURN POINT CHANGE HEADING
A: EARLIEST TURN POINT MIN. CHANGE 04
B: LATEST TURN POINT MAX. CHANGE 0,

Fig. 3 Path Correction.

51

MISSED APPROACH ROUTE

Fig. 4 Missed Approach Route.

52

Fig. 5 Time Line.

for AA251.

DRAKO

PA35 WA211

AA251

KEANN

L

> »

cos

KIiOWA

BYSON

MISSED

TIME ROUTES

CURRENT TIME: 13:05:54

(a)

DRAKO

PA35 WA211

KEANN

v T

> »

cos

KIOWA

BYSON

AA251

MISSED

TIME ROUTES

CURRENT TIME: 13:09:05

(b)

53

(a) Just before Missed Approach for AA251. (b) Missed Approach

DRAKO
AA251 PA35

KEANN " '*
cos
KIOWA
BYSON
MISSED
TIME ROUTES CURRENT TIME: 13:20:10
{a)
DRAKO

AA251
KEANN T

»
cos
KIOWA
BYSON
PA35
MISSED T
»

TIME ROUTES CURRENT TIME: 13:21:51
(b)

Fig. 6 Time Line. (a) Runway Closure. (b) Revised Schedule Due to Runway Closure.

54

INFORMATION FOR ARCJ —~H

DISTANCE-TO-TOUCHDOWN:
ALTERNATE-PATH:
ENTRY-CODE:

EXIT-CODE:
ENTERING-FLIGHTS:

EXITING-FLIGHTS:

165 n.mi.

J>F

FEEDER FiIX ENTRY PROC
FEEDER FIX EXIT PROC

(PA35 13:02:23 13:11:45 36000 182)
(VAOQ7 13:10:55 13:20:01 34500 178)

({AA24 12:50:33 12:59:57 32800 191)
{XX01 12:55:41 13:03:28 29000 193)

Fig. 7 Terminal area represented as a direct graph.

55

OF POOR QUALITY

actwd the Keamn feeder fim by 1721796 12183437
Fligm w2t
1) Aocelerasts to s nalrtaining ~J008.00 fpn
~3000.08 7pm te ns. W O
1.00 TPR te LUNES.08 L AlL

. ASINCEINIng .00 fpn
N Comire vith standsrd spprosch
Fligmt MRISI requires no peth correction
Fligm W23l srwule heve reached Uhe Byson decisten point By 721786 13162108
Fligm W7 srould howw rescred the mowey by)-21786 12:34:2%

how rescrwe

te Byuen feeter Tin by J/72)784 12134123

F1igne ARty
1) Accelerste to 0.04 Mach , aaintstning ~J000.08 fam
D Mevcerd @ 9.54 N, -JEES.00 fpm te I56.08 CMS

.98 PR s 1000
+» maimtaining

o Are

.98 fpm
N Catirw with

Fligm esd sraaile

Advisories

MRS Tesk Tracing
Garbage Lollection

TC serwasiers

L -1h

I ”

ReFLIOM 13217008

PTC Sctwavier: (send 54331 spet=icon N
il

T Sorwaviert
T Sorwasien
FTC Sareauiers
el

(porc sal3l 1ewt=~tcon 96)

ATC Sorwaslen

T Borwauters

P Sarwaviers

(oere #11)

PTC Scheauters

(sevel 24231 10et-1con %)

Listener

HHI)DCORPINS I NEwveD/aLC. 118D Yiu

Fig. 8 User interface.

56

wore
e '
3
weny ponssy
e T T
> =
|oos
s
prvecn
perzry
Qrrem fmet 111/ 2aTES
Time Routes
Firgm WG74 snouid e reschwd thw Drae fevdss fix Dy 172}/ 12136150 New Armival e
Flignt UMES souid hows reschwd the Kearm feeder fir by 1721786 1212633 B‘OCde Runwa Tt Sorwen!
Filignt PRIC) sheuld heve resched the Keann feeder Pix by 1/21/86 13:36:53 4 Y ATt sereavtien
Fligmt MO meeatss turn te base 103 0.X3 esrly te cerrect for tine erree Missed Approach pa
Fligm MOSt sroid e reacted the Dyson decisian peirt by 1721786 12:39:3) Digp]ay thh-_ Plan :‘Tt Serwators \ . .
. . " oUw?

::::: :gl"mlu reacrwd e Byeon feednr Cla Gy 1721788 12198047 Dblnenu Fllgh’. n:m.:nu. t:;';n:;-:) e

1) Acasierets ta 8.84 Rach , Aatntaining -J008.80 fan Modify Clock hiow Wt potinene 1rwrtesd (aufauit O Scwgyingsfigure2_sma)? ORI

D descovd & 5.94 Nach, -~2000.00 fpn te IM.00 O Save or Restore [Fosoviresfentloses. com

N Descord ¢ 259.08 CF8 , 1.80 EPR to 19008.080 L Ay Mo Processin osding OR180ngy 1 e’ Tevtlases. ane 11te Package P

© Destlersts to 230.00 A8 , nairtaining 0.6 fpn re 9 Ot rtesgine Tertlases. sme

13219006 S(TOUOMONMAC 116647167 27157164262 T713714262 0.0 0.0 249
-0)

lely

1.

NASA TM-88234

Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

4.

Title and Subtitle 5. Report Date

TIME-BASED AIR TRAFFIC MANAGEMENT USING April 1986

B 6. Performing Organization Code
EXPERT SYSTEMS

7.

Author(s) 8. Performing Organization Report No.

L. Tobias and J. L. Scoggins A-86188

10. Work Unit No.

9.

Performing Organization Name and Address

Ames Research Center 11. Contract or Grant No.
Moffett Field, CA 94035

13. Type of Report and Period Covered

12

Sponsoring Agency Name and Address .
Technical Memorandum

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, DC 20546 505-66-1

15.

Supplementary Notes

Point of Contact: L. Tobias, Ames Research Center, M/S 210-9, Moffett
Field, CA 94035. (415) 694-5430 or FTS 464-5430

16.

Abstract

A prototype expert system has been developed for the time scheduling
of aircraft into the terminal area. The three functions of the air-
traffic~control schedule advisor are as follows: First, for each new
arrival, it develops an admissible flight plan for that aircraft. Second,
as the aircraft progresses through the terminal area, it monitors devia-
tions from the aircraft's flight plan and provides advisories to return
the aircraft to its assigned schedule. Third, if major disruptions such
as missed approaches occur, it develops a revised plan. The advisor is
operational on a Symbolics 3600, and is programmed in MRS (a logic pro-
gramming language), Lisp, and Fortran.

17.

19.

Key Words (Suggested by Author(s)) 18. Distribution Statement
Air traffic control * Unlimited
Expert system
Scheduling

Subject Category - 03
Security Classif. (of this report} 20. Security Classif. (of this page) 21. No. of Pages 22. Price®
Unclassified Unclassified 58 AO4

*For sale by the National Technical Information Service, Springfield, Virginia 22161

