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SECTION 1

INTRODUCTION

This report presents the results of a two-year effort sponsored by the

NASA Langley Research Center under contract NASI-17411 to develop automatic

control design procedures for restructurable aircraft control systems. The

restructurable aircraft control problem involves designing a fault tolerant

control system which can accommodate a wide variety of unanticipated aircraft

failures. Under NASA sponsorship, ALPHATECH has been developing and testing

many of the technologies which make such a system possible. Future work under

this contract will focus on developing a methodology for integrating these

technologies and demonstration of a complete system.

The automatic control design procedure developed during the first year of

this project [i] assumes that failures are correctly detected and identified

and makes use of feedforward and feedback controls to stabilize the aircraft

and recover as much dynamic performance as is possible. The objectives of the

work reported herein are to (I) thoroughly test the feedback control redesign

procedure under a variety of failure conditions and (2) complete development

of an automatic feedforward "trim" algorithm.

This project was divided into three tasks. Task i involved performing a

complete linearized analysis of the feedback control redesign procedure for

the Boeing 737 aircraft. This included examination of eigenvalues_ singular

*References are indicated by numbers in square brackets; the list appears at
the end of of this report.
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values and llnear simulations for a variety of failure and control redesign

options. Task 2 was aimed at examining the performance of the various ele-

ments of the overall control redesign procedure on NASA Langley Research

Center's nonlinear slmulation. Finally, Task 3 completed development of an

algorithm to automatically trim the aircraft with feedforward control and

developed the integrated control system redesign procedure.

i.i BACKGROUND

As aircraft become increasingly sophisticated, and as static stability

is decreased in the interests of efficiency and maneuverability, the potential

damage caused by unanticipated failure increases dramatically. Although pilots

can be trained to react in the case of anticipated major failures, they cannot

be expected to respond correctly, and in time, for all conceivable failures.

This is particularly frustrating because modern aircraft, with complex controls,

may remain controllable despite individual failures, as happened recently in

two well publicized cases. In one case, (a Delta LI011 flight [2]) the pilot

was able to reconfigure his available controls to save the plane. In another,

(the Chlcago DCIO crash [3]) the pilot could not, although hindsight revealed

the plane could have been saved.

The objective of a restructurable control system is to automatically and

quickly solve the control problem facing a pilot during an emergency. The

class of problems of interest includes those where the failure or failures are

unanticipated, but excludes those unsolvable areas (wings falling off) where

the plane cannot be saved.

The general area of emergency control modification can be divided into

two categories: reconflgurable and restructurable control. The first cate-

gory includes failures which can be anticipated and solved in advance such as
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engine or instrument failures. The most important failures in this class are

analyzed and pilots are trained in emergency procedures to compensate for

them. The major advances in reconflgurable controls in the near future may be

expected to occur in computer storage and automatic activation of pre-solved

emergency procedures. This involves computerizing "the book", and ensuring

that emergency procedures do not simply rely on pilot training and memory

under stress.

The second class of problems, and the one of interest here, includes

those emergencies which cannot easily be anticipated and planned for. It

includes those cases where "the book" must be thrown out. Ideally, the solu-

tion to this class of problems would place the experience and expertise of the

best pilots and aircraft control system designers immediately at the disposal

of the pilot in trouble. Such experts would analyze the problem and recommend

solutions (some, perhaps, unconventional). Their actions would return the

aircraft to a safe operating condition, and they would remain available to

answer "what if" questions for the remainder of the flight, in particular

involving changes to the aircraft to prepare for landing.

This assembly of experts would, in fact, be answering the following

questions:

i. Did a failure occur?

2. What failure(s) occurred?

3. Must I restructure the controls to accommodate the failure(s),

and if so, how?

4. What else will happen if I change the controls?

The first two questions constitute failure detection and identification,

(FDI) and have received much research interest in the last decade [4]-[14].

Automatic techniques exist for determining whether a failure has occurred and

3



for isolating the failure component. Significant advances in designing robust

FDI systems which can accomplish their mission with "real world" plant uncer-

tainty and disturbances have recently been made and some early prototypes are

being tested [4]-[5].

If a new aircraft model were available from an FDI system, a reliable

automatic procedure would be required to answer the third and fourth question.

Control restructuring must take place when a failure is beyond the accommoda-

tion capabilities of the normally configured aircraft. Thus an FDI system

must provide an estimate of failure severity in order for a decision about the

need for control restructuring to take place. When required, a restructuring

of the control system then provides the desired forces and moments on the

aircraft in spite of the failure. Techniques for accomplishing this control

redesign were the topic of the first year's effort of this contract.

1.2 AN INTEGRATED APPROACH TO RFCS DESIGN

The development of an integrated Restructurable Flight Control System

(RFCS) is best viewed as a problem in failure accommodation. As indicated in

Fig. I-i, failures can be accommodated either passively or actively.

Passive fault tolerance can be thought of as robustness -- the aircraft

with its normal flight control system (including the pilot) can tolerate

certain failures without modification. Other failures, however, may be too

severe for the normal (i.e., any acceptable normal) controller to handle,

and thus require active system modification. This modification involves

(implicitly or explicitly) two processes: (I) failure detection and identi-

fication (including identification of the post-failure system model) and

(2) control system reconfiguratlon in light of the identified failure.

4
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Figure i-i. Failure Accommodation Decomposition

A successful near-term RFCS has to possess several characterisics. These

include:

i. the ability to handle variations due to failures whose impact
ranges from negligible to nearly debilitating,

2. the ability to perform in a highly uncertain and noisy system
environment,

3. the ability to degrade gracefully with the severity of the
failures, and

4. the ability to maintain the aircraft performance during and

after reconfiguration. To accomplish these goals both

passive and active failure accommodation methods are needed.

Figure 1-2 provides a functional component description of a RFCS which

exploits both passive and active failure accommodation. This system consists

of a robust multivariable flight control system, a failure detection and iden-

tification algorithm and a procedure for automatic control system redesign.

A robust multivariable flight control system is essential to any RFCS.

This system must exploit the inherent control redundancy in the aircraft to

minimize the effects of actuator failures and other damage. Of course, it is
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Figure 1-2. RFCS Component Decomposition

unlikely that a robust control system alone would be sufficient to handle the

wide range of failure/damage modes. Such a system would require infeasibly

high loop gains and bandwidth, must unacceptably compromise the performance of

the unfailed aircraft, or would require unnecessarily complex FCS hardware to

achieve reliability. However, a properly designed robust flight control sys-

tem applied to the unfailed aircraft will be able to handle the less severe

failure/damage modes, and will lengthen the time available for reconfiguring

the FCS.
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The more severe failure/damage modes will requlre a reconfiguratlon of

the FCS. As indicated In Fig. 1-2, the reconfiguratlon is initiated by a FDI

system. The problems of false alarms and missed detections are mlnlmlzed by

combining the FDI system with a nominal robust control system. As noted,

the nominal control system is designed to handle as many as possible of the

failure/damage conditions. The FDI system is then only required to handle

failure/damages that severly impact performance. As the severity of the

impact of a failure on the aircraft performance increases, the urgency of

reaction increases and the time available to reconfigure decreases. However,

this trend is compensated by the corresponding increase in the signature of

the failure, which reduces the required time for the FDI system to respond.

This phenomenon, coupled with the effects of the robust control system and

robust FDI design techniques should allow a properly designed FDI system to

virtually eliminate the problem of false alarms and missed detection.

The last component in Fig. 1-2 consists of an automatic control system

redesign procedure and has been the primary focus of the research completed

under this project [I], [15]-[17]. The automatic redesign module (ARM) uses

the information about failures provided by the FDI system to modify the nominal

robust FCS. To be effective, the new control system must be able to recon-

struct the desired forces and moments as much as possible given the presence

of large disturbances due to failures, and constraints on the control system.

Since control system constraints were important in the design of the nominal

robust control system, the engineering tradeoffs which went into that design

should be reflected in the new control deslgn. Furthermore, the ARM should

be tolerant of FDI limitations. Incorporation of FDI uncertainty into the



redesign procedure will allow the new control system to hedge against imper-

fectly detected or isolated failures. Finally, graceful degradation of per-

formance as the severity of failure increases should be a property of the ARM

and can be obtained by ensuring that the nominal control system is recovered

by the ARM when no failures are present.

1.3 OUTLINE OF THIS REPORT

The remainder of this report is organized as follows. Section 2 presents

a precise description of the automatic control redesign problem. The problem

is decomposed into finding feedforward control values which will (ideally) trim

the aircraft and a modification of the nominal feedback control law which is

used to remove the effects of uncertainty and provide as much dynamic response

to pilot commands as is possible. Section 3 provides the details of the feed-

forward "automatic trim" problem and provides an algorithm for its solution.

Section 4 presents a redesign procedure for determining a new feedback control

law. This redesign procedure is based on the linear quadratic (LQ) regulator

problem, however, it is not necessary that LQ be used to design the nominal

control law which is used during unfailed operation. Section 5 puts these

two subsystems (automatic trim and control law redesign) together and shows

how the solutions to these problems are implemented. Section 6 applies the

techniques developed in Sections 3 through 5 to a model of a modified Boeing

737 aircraft. An LQ design methodology is used to develop a robust feedback

control law which forms the basis for the control law redesign procedure.

Solutions to the trim problem are investigated for a variety of realistic

failure modes, and a variety of linear analyses of the redesign procedure

are performed for these same failure cases. The llnear analyses include an



eigenvalue analysis and linear simulations. Section 7 describes an investi-

gation of the two subsystems using the NASA Langley Research Center's nonlin-

ear aircraft simulation. Finally, a summary and conclusions are provided in

Section 8.



SECTION 2

PROBLEM FORMULATION

In this section, we provide a precise description of the restructurable

control problem and discuss some of the desirable features which any solution

should contain.

We assume that under normal operation, the motion of the aircraft can be

described by the nonlinear, time invariant differential equation,

x = fo(X,U) (2-1)

Y = ho(x,u) (2-2)

where x is the n-dimensional state vector and u is an m-dimensional vector

of controls (e.g., all control surfaces, engine controls, possible thrust

vectoring, etc.) and y is a vector of "important" quantities (not necessarily

measurable)• The unfailed aircraft is said to be "trimmed" when

fo(xT,UT) = 0 (2-3)

ho(XT,UT) = Yd (2-4)

for some constant values of (XT,UT) with Yd being the desired values of the

important quantities (e.g., flight path angle, forward velocity, angular

rates, etc.). Furtherfore, we will assume that a nominal control system is

employed (for stability augmentation, control augmentation, disturbance

rejection, etc.) and takes the form,
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u = Go x + ur (2-5)

where in general, the feedback gain, Go, may be a function of flight condition

and ur is a dynamic reference signal which is ultimately derived from the

pilot inputs, r. Note that Eq. 2-5 assumes that any feedback compensator

dynamics are embodied in Eq. 2-1.

In general, those aircraft failures which potentially result in emergency

conditions can be modeled by

x = fF(x,u) + w (2-6)

y = hF(x,u ) (2-7)

Equations 2-6 and 2-7 include changes in the aerodynamics of the aircraft,

changes in control effectiveness, and potentially large disturbances (e.g.,

due to a stuck, off-centered control surface)• The nominal control gain, Go,

is typically designed without the effect of failures in mind. However, a

large degree of fault tolerance may be achieved by proper choice of Go • If

Go distributes the control authority amongst a variety of surfaces then any

single surface failure becomes less critical in terms of reduction in command

following performance. Furthermore, the use of integral action in the com-

pensator (i.e., high loop gains at low frequencies) may allow the aircraft to

recover automatically from a failure. That is, it may be possible to achieve

fF(XF,UF) = 0 (2-8)

hF(XF,UF) = Yd (2-9)

automatically for some failures with the proper choice of Go .
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Naturally, there will be some failures (or combination of failures) for

which the nominal control system is not adequate. In these cases, we want to

find a new control law of the form,

u = GF x + urF + uFT (2-10)

where GF represents a new feedback gain, urF represents a new pilot reference

signal and uF is a feedforward control that can be used to (approximately)

reject the disturbances, w. The control system redesign problem becomes,

therefore, one of choosing GF,UF, and the relationship between urF and the

pilot inputs, r. These choices are made so that the aircraft is stabilized,

disturbances can be rejected, the aircraft will follow the pilot commands and

(more importantly) so that the limitations of the aircraft are not violated.

Furthermore, these choices must take into account the fact that the aircraft

model in Eqs. 2-8 and 2-9 are uncertain since we may rely on some FDI algo-

rithm to identify this model. That is, in addition to the performance goals

and aircraft constraints, a degree of robustness which is typically greater

than would be considered for a normal aircraft must be achieved.

The automatic redesign algorithms developed for this project were devel-

oped within this framework and address all of the issues discussed above. The

nominal feedback control law is designed using an LQ design procedure which

will distribute the control authority amongst all available surfaces. As a

result, a large degree of fault tolerance is achievable with no reconfigura-

tlon. The feedback control redesign procedure uses the design parameters

(state and control weighting matrices) of the nominal control law as a basis

for any redesign. In this way, performance can be optimized while maintaining

the bandwidth constraints that are embodied in the nominal design. Finally,
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an automatic feedforward trim algorithm Is developed so that any large dis-

turbances due to a failure can be quickly accommodated.

In the remainder of this report, we will review the control redesign

algorithm developed for this project and demonstrate the performance and

robustness capabilities of a nominal LQ control design and the new control

system produced by the redesign procedure for a variety of failure modes.
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SECTION 3

THE AUTOMATIC TRIM PROBLEM

The solution of the automatic trim problem is one of the most time-critical

components of the restructurable control system. This is because substantial

deviations from the desired trim condition (following a failure) is likely

to result in a situation where the remaining control authority available for

recovery is insufficient• In this section, we present a formal description of

the automatic trim problem and describe a decomposition of that problem which

allows us to use fast and efficient algorithms in the solution procedure.

3.1 THE NONLINEAR TRIM PROBLEM

During normal flight, the motion of an aircraft with respect to some

inertial reference frame can, in general, be described by the nonlinear time-

invarient differential equations

x = fo(X,U) +

(3-1)
y = ho(x,u )

where x is an n-dimensional state vector, u is an m-dimensional control vector,

is a vector of (presumably unmeasurable) disturbances, and y is an output

vector of important quantities. The aircraft is trimmed at the nominal values

(Xn,Un) when

fo(Xn,Un) = 0
(3-2)

ho(xn,Un) = 0
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For example, during straight and level flight, nominal control settings,

Un, are established which maintain steady state flight (x = O) at constant

altitude (flight path angle, y = 8 -c = O) at some desired airspeed and

heading and level wings.

Following a failure, the aircraft dynamics are assumed to satisfy

x = f(x,u) + _ + w

(3-3)
y = h(x,u)

where w is a constant (or slowly varying) measurable disturbance vector. For

example, in the case of a stuck actuator, w represents the force and moment

disturbance that results from the constant nonzero deflection. Following a

failure, then, a trim condition results when

f(Xn,Un) + w = 0
(3-4)

h(xn,Un) = 0

The primary goal of an automatic trim function is to find a solution

(Xn,Un) which satifies Eq 3-4. We can then apply the control un to the air-

craft directly (assuming no control system; linear combinations of Xn and Un

are applied when feedback is employed) and achieve a fast initial recovery.

This result, of course, can only be achieved if the solution (Xn,Un) is

a feasible one. That is, certain constraints on the allowable values of xn

and un must be imposed• For example, restrictions on un would include the

travel limits on the control surfaces and the power limits on the engine

inputs. Restrictions on xn represent the region of validity of the aircraft

model in Eq. 3-3 and would include minimum airspeeds (e.g., above stall),

angle of attack limits, and altitude restrictions•
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Finally, in order to create a formal well-posed problem statement we note

that two cases of special interest exist. In the first case, several solutions

to Eq. 3-4 exist within the feasible region. In this case, we will choose a

solution which minlmizes the norm (e.g., in a weighted least squares sense) of

the difference between the vector (Xn,Un) and some "desired" vector (xnO,unO).

This allows us to ensure that maximal 'residual' control authority remains

available for disturbance rejection and command following. The second case

arises when no solution to Eq. 3-4 exists within the feasible region. In this

case we will choose the solution which minimizes the norm (again, e.g., in a

weighted least squares sense) of the left hand side of Eq. 3-4.

Maklng the following definitions, we can now formally state the nonlinear

trim problem. Let

z = (X n - xnO , u n - unO )

F = {z : xn and un are feasible solutions}

D = _z : z = arg min(llf(z) + wll + IIh(z)U)} .

The solution to the nonlinear trim problem, z*, is then given by:

z* = arg min llzll

Subject to (3-5)

z_F, z_D

That is, we want to choose a feasible z which satisfies Eq. 3-4 as nearly as

possible, and if more than one such solution exists, to choose the one of

least norm.
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As discussed in [I], while the above problem statement accurately repre-

sents the goals of an automatic trim system, solution methods may be compli-

cated by the various nonlinear functions which are used to describe the

system. Furthermore, these complexities may not be truly representative of

the complexities which must be faced in establishing an adequate trim solu-

tion. For example, for small enough perturbations about some nominal value of

z, Eq. 3-4 can be well approximated by a set of linear equations. As we will

discuss subsequently, fast and efficient solution procedures can be utilized

to solve Eq. 3-5 when Eq. 3-4 is linear.

Making use of linear approximations, we can decompose the nonlinear trim

problem into two subproblems which are solved (and possibly iterated upon) in

order to determine a complete solution. The first subproblem is the operating

point selection problem. The primary purpose here is to determine nominal

values of the states (xn) and control variables (un) which results in a

trimmed unfailed aircraft. A llnearized version of the aircraft dynamics

about this nominal can then be determined and, the constraints, objectives

and/or priorities for the second subproblem, the linear trim problem, estab-

lished. The linear trim problem then solves for feasible perturbations from

the nominal values which adequately reject the failure induced disturbances.

The determination of a suitable operating point is a function of a number

of factors and is based on the desired flight objective. For example, during

a landing approach, it may be sufficient to select a single operating point

which corresponds to level wings and some nominal flight path angle. If

another flight path is desired, the pilot controls deviations from this

nominal to achieve the desired result. A linearized model for this operating

point can then be identified along with an estimate of the model's "region of
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validity." This region is then translated into constraints on the state and

control perturbations for the linear trim problem. After examlnatlon of the

solution to the linear trim problem, the operating point selection problem may

take advantage of parts of the nonlinear problem in order to find a combina-

tion of flight objective and linearized model for which an acceptable linear

trim solution can be found. Included in this part of the operating point

selection problem are such (nonlinear) factors as the use of "discrete" con-

trol elements which primarily influence the linear model (e.g., fuel dumping

and c.g. changes), the nonlinear effect of velocity and altitude changes and

possible changes to the flight objective.

3.2 THE LINEAR TRIM PROBLEM

For the linear trim problem, we assume that a linearized model of the

aircraft about some nominal states and controls can be given by:

Xp(t) = Axp(t) + Bup(t) + Wp (3-6)

where Xp(t) is the perturbation of the state vector (Xp = x - Xo, Up(t) is

the vector of available control perturbations (Up = u - Uo) and Wp is a vector

of constant disturbances. The vector Wp can be used to represent forces and

moments generated by failed surfaces.

The key quantities that are to be regulated can in general be denoted by:

yp = Cxp (3-7)

Elements of y might represent quantities such as altitude, bank angle, flight

path angle, and rotational rate perturbations. The primary objective of the

linear disturbance rejection problem is to automatically select Xp and Up such
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that y achieves some desired value in steady state. More precisely, the

linear trim objective can be expressed as

Yp = Yd (3-8)

and

0 = Axp + BUp + Wp (3-9)

As in the nonlinear trim problem, we will want to impose some constraints

on the allowable perturbations (x,u) for which a solution will be sought. In

the linear trim case, these restrictions must be more conservative in order to

insure that the resulting trim solution remains within the region of validity

of the linear model. In most cases, these constraints can be described as

upper and lower limits on the allowable perturbations, viz.,

xL _ Xp < xU
(3-10)

uL < Up < uU

Equations 3-8 through 3-10 describe the objectives of the linear trim

problem. Like the nonlinear trim problem, in order to form a well-posed

optimization problem we must examine two special cases. When several solu-

tions to Eqs. 3-8 through 3-10 exist, we will call the problem feasible and

choose (Xp,Up) to minimize the norm of the difference between (Xp,Up) and some

desired value (xpO,upO). In particular, we have:
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Feasible Problem

Minimize Jl = nXp - xpOn + qUp - upOg

Subject to 0 = Axp + Bup + Wp

Yd = Cxp (3-11)

xL • Xp • xU

uL • Up • uU

Various norms and weighting matrices can be used in Eq. 3-11 as discussed

in [18]. These choices can be made off-line based on the physical character-

istics of the aircraft and its control surfaces. It should also be noted that

Eq. 3-11 must be solved on-line after the disturbance w has been measured or

estimated. However, in the least squares case, Eq. 3-11 is a standard quad-

ratic programming problem for which a number of fast, efficient solution algo-

rithms have been developed.

If a solution to Eqs. 3-8 through 3-10 exists, it guarantees that the

principal objectives can be satisfied. That is, the important quantities can

be zeroed (Eq. 3-8), steady state flight is possible (Eq. 3-9), and no pre-

specified state or control constraints have been violated (Eq. 3-10). It is

possible, however, that Eqs. 3-8 through 3-10 overspecify the problem. In

this case, it is impossible to achieve the objectives of the linear trim prob-

lem at the chosen flight condition. However, a variation of Eq. 3-11 can be

used to gain time to choose a new nominal flight condition or to achieve

slowly degrading flight. The key is to try to minimize the size of both the

important quantities, yp, and the state perturbation derivatives:
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Infeasible Problem

Minimize J2 = lIAxp+ Bup + wpll + nCxp - yd H

(3-12)
Subject to xL _ Xp < xU

uL _ Up _ uU

The objective in Eq. 3-12 attempts to keep the size of the state deriva-

tive and key quantities small. Again, various norms and weighting matrices

can be used. A solution to Eq. 3-12 will always exist. As with Eq. 3-11, a

least squares formulation of Eq. 3-12 leads to a quadratic programming problem

and can easily be solved on-line using fast and efficient algorithms.

As in the nonlinear trim problem, the two problems described above

(feasible and infeasible) can be compactly described as follows. Let,

z = (Xp - Xpo, Up - Up°)

F = {z : zL < z < zU}

D = {z : (Xp,Up) = arg min J2} •

The solution to the linear trim problem is given by,

z* = arg min Jl

Subject to (3-13)

z_F, zcD

That is, we start by solving the infeasible problem (Eq. 3-12) and determining

the optimal objective function, J2*. If, in fact, the feasible problem has

a solution, then J2* = O, and in general, more than one solution may exist.

The second stage is to minimize the objective Jl (Eq. 3-11) subject to the

constraints of Eq. 3-10 and the constraint J2 = J2*"
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This completes our discussion of the automatic trim problem and the

decomposition of that problem into an operating point selection problem, and

a linear trim problem. The linear trim problem provides a formulation which

allows fast and efficient quadratic programming algorithms to be used when the

norms are interpreted in the least squares sense. In the next section, we

will describe a quadratic programming algorithm which takes special advantage

of the structure of the problem (Eq. 3-13) and the constraint set, F.

3.3 A QUADRATIC PROGRAMMING ALGORITHM

In this subsection we describe a quadratic programming algorithm which

takes advantage of the special structure of the problem described in the pre-

vious section. The simplicity of the constraint set and the special nature

of minimum norm quadratic programming problems will allow us to use fast and

efficient methods in computing the necessary quantities for the algorithm's

operation.

As discussed in the previous section, the problem which we are attempting

to solve is a least squares problem which can in general be represented by

Minimize (Jl = zT z)

Subject to zL < z < zU (3-14)

z_ z : z = arg min J2 = -- (Fz - d)T(Fz - d)
2

where the solution variables, z, are in Rn, F is an m×n matrix and d is in Rm.

That is, of all the solutions, z, which minimize J2, we want the feasible one

of the least norm.
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3.3.1 Solution Procedure: Overview

The most common solution procedure for any quadratic programming problem

is the active set method [19]. This method is an iteratlve procedure in which,

at each stage in the algorithm, the current iterate satisfies the inequality

constraints in Eq. 3-14.

The first step in the active set solution procedure is the selection of

any feasible solution to the inequality constraints in (Eq. 3-14) (e.g., z=0

when zL < 0 and zU > O)_and the determination of which of these constraints

are active (i.e., satisfied with equality).

Next, a step direction is obtained which minimizes J2 in the subspace of

active constraints. For the problem at hand, this minimization is obtained

by simply removing the elements of z which are active (constrained) from

consideration, partitioning F into active and inactive columns, adding the

effect of the constrained elements to the value of d in Eq. 3-14, and finally,

finding the remaining elements of z by using a singular value decomposition

of the inactive part of F. Details of this procedure will be provided in the

next subsection. Note here, however, that the singular value decomposition

of a matrix provides a basis for its' range and null spaces and as such, will

be used to find the minimum norm (of the remaining elements of z) solution if

the reduced problem is under-constrained.

The next step in the procedure is to check if the solution to the con-

strained optimum problem found above is feasible. If any of the inequality

constraints are violated, then the step direction (defined by the current

feasible solution and the solution to the constrained optimization problem

found above) is scaled so that the next iterate is also feasible. That is,
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if a step in the direction of the constrained optimum runs into a currently

inactive constraint, then that constraint is added to the set of active con-

straints and the process above is repeated.

If, at this point in the solution procedure, the number of constraints

equals the number of elements in z, then the current iterate is at a vertex

of the constraint region. In this case we then check a set of stopping

criteria to see if a single active constraint can be removed. If this is

possible, a constraint is removed and the above process is continued. If the

step direction does not need to be scaled (i.e., no inactive constraints will

be violated), then the stopping criteria are also checked and the algorithm

continued if an active constraint can be removed. The algorithm terminates

when the stopping criteria indicate that no active constraints can be removed.

Stopping Criteria

In order to determine if the current iterate is the solution which is

sought, the algorithm must check if any of the currently active constraints

can be removed. If no constraints are active or if no constraints can be

removed, then the current iterate solves Eq. 3-14. Furthermore, if several

constraints can be removed, we must choose one of these for the algorithm to

be continued. (This is to avoid so called cycling problems such as those

discussed in [19]).

The method by which the above is accomplished is by the use of Lagrange

multipliers [20]. In the solution to any constrained optimization problem, it

is possible to compute or estimate such multipliers. The reason these quan-

tities are useful is that they represent the price associated with the active

constraints. That is, each multiplier indicates the sensitivity of the cost
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function which is being optimized to a feasible perturbation of the current

iterate in a subspace which corresponds to the remaining constraints. Thus,

for example, if all multipliers indicate that the cost function would increase

(for a minimization problem) then we may conclude that the current iterate is

optimal. (Note, this is just a statement of the Kuhn/Tucker conditions given

in [19],[20]).

For Eq. 3-14, there are two cost functions (Jl and J2) for which we

desire Lagrange multipliers corresponding to the current set of active con-

straints. In the procedure to be detailed in the next subsection, we first

compute multipliers which correspond to the sensitivity of J2 (Eq. 3-14) to

the current active constraints. If these multipliers indicate that a set of

constraints can be removed, we choose the constraint which reduces the cost

the most (i.e., largest multiplier, in magnitude). If these multipliers indi-

cate that no constraint can be removed to reduce J2, then we compute multi-

pliers which correspond to the sensitivity of Jl to the active constraints

with the further restriction that the feasible perturbations lie in the sub-

space defined by J2 = J2* (where J2* = current value of J2)" As detailed in

the next subsection, the latter computation is easily accomplished by comput-

ing the singular value decomposition of the matrix F (in Eq. 3-14) augmented

with appropriate selection matrices corresponding to the above constraints.

The constraints associated with the largest cost reduction is chosen at this

point. The stopping criteria are satisfied when, at this stage, no constraint

can be removed.

The algorithm descrlbed above is summarized as follows.

I. Determine an initial feasible point, zk(k=O), which satisfies
the inequality constraints.
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2. Compute the optimum z (say _), along the current set of
active constraints.

3. Compute the new step direction P = Ks(_-Zk) where = is chosen

so that Zk+ I = zk + P is feasible.

4. If Ks = i or if Zk+ I is a vertex go to 6.

5. Else: k = k+l, go to 2.

6. Compute Lagrange multipliers corresponding to the active

constraints for the problem of minimizing J2"

7. If any constraints can be removed_ remove the one which

reduces J2 the most. Update k = k+l. Go to 2.

8. If no constraint can be removed, compute the Lagrange
multipliers corresponding to the active constraints for

the problem of minimizing Jl subject to J2 = J2"-

9. If any constraint can now be removed, choose the one which

reduces Jl the most. Update k = k+l. Go to 2.

I0. Else: Done.

3.3.2 Solution Procedure Details

In this subsection we provide some of the details of the algorithm

described above. The description here follows the steps outlined in the

above summary description.

Step I: Initial Feasible Point

For most purposes, an initial value of z = 0 will satisfy the inequality

constraints. If this is not the case, an initial feasible solution can be

easily chosen as any combination of upper and lower bounds ZLi , zul (the nota-

tion zi will be used to denote the i'th element of z).

Step 2: Solve Constrained Minimization Problem

The upper and lower bounds on the value of any zi cannot both be active

at the same time. If we keep track of these constraints separately, somewhat
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simpler computations can be achieved over those needed in the application of

a standard quadratic programming algorithm to this problem. To keep track of

these constraints, we define two index sets based on the current value of z;

IL = {l:zI = zLl }

(3-15)

Iu = {i:zi = zui }

We now define a matrix Fc,

Fc = [FL FU ] (3-16)

where FL consists of the columns of the matrix F for all iclL and FU consists

of the columns of the matrix F for all i£IU. Also, let

bT-- [bLT , buT ] (3-17)

where bL and bU are elements of the bounds on z (zL and zU respectively) cor-

responding to all i € IL and all i £ IU respectively.

In the subspace corresponding to the active constraints (indicated by

Eq. 3-15) the objective function J2 (see Eq. 3-14) can be written as

_2 : (F-zf - d)T([zf - d-) (3-18)

where

F = the columns of F corresponding to all inactive constraints,

(i.e., the ith column of F appears in F if i _ (IL U Iu) c _ If,
where c denotes complement),

zf = elements of z which are not constrained,

d = d-Fc b •
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Thus, the solution to the constrained minimization problem (i.e., minimize J2

subject to the active constraints remaining active) can be found by solving

the unconstrained problem: mlnimize _ 2. Since this is just a standard least

squares problem, the solution is formally given by

zf = F--?id (3-19)

where _# represents the Penrose pseudo inverse of F. Note that in the compu-

tation of zf by Eq. 3-19, if the problem of minimizing J_ is under-constralned,

then zf is the solution of minimum norm in the least squares sense (e.g.,

see [34]).

The most reliable way to compute zf is through the singular value decom-

position (SVD) of the matrix _. (Many of the issues associated with this

problem are also addressed in [34].) If _ is an m x n matrix of numerical

rank r, then its SVD takes the form

F = Ul U2 SI 0 vIT

0 E v2T (3-20)

= U g VT

where

UI is an m x r matrix of left singular vectors,

U2 is an m x m-r matrix of left singular vectors,

SI is an r x r diagonal matrix of singular values each of which

is greater than some prespeclfled tolerance,

E is an m-r x n-r diagonal 'error' matrix,

VI is an n x r matrix of right singular vectors,

V2 is an n x n-r matrix of right singular vectors.
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Furthermore, U and V are orthonormal matrices (i.e., uTu = vTv = I). From

these properties, one can show that V2 is a basis for the null space of F and

U 1 is a basis for its range space. The solution, zf, to the unconstrained

problem of minimizing J2 can then be computed by

zf = (VI) (Sl)-I(uI)T _ (3-21)

Step 3: Compute the New Step Direction

The new step direction, P, is defined by the equation

p = Ks(_ - Zk) (3-22)

where zk is the current iterate,

_i = zLi for all i € I L

_i = zui for all i € IU

_If(j) = zfJ, where If(j) denotes the j-th element of If _ (ILU IU)C

and where Ks is computed as follows. Let

ZLi - Zki

KL = min 1 , , for all i: i _ If , _i _ zki _ 0 (3-23)

_i zki

Zui - zki
Ku = min 1 , -- -- , for all i: i € If , £i _ zki ) 0 (3-24)

_i zki

then Ks is defined by

Ks = min {KL , KU , i} (3-25)
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If Ks = I, then no constraints need to be added. Otherwise, the index set

IL (or IU) is updated to include the index, i, which achieves the minimum in

Eq. 3-23 (or 3-24).

Step 6: Compute the First set of Lagrange Multipliers

The f_rst set of multipliers correspond to the problem of minimizing J2

subject to i E (ILU IU). These multipliers can be computed by forming the

so-called Hamiltonian function [20],

H = J2 - I ILJ(zk j - ZL j) - [ Iui[zk i - zui) (3-26)
j i

and setting the partial derivative of H with respect to z equal to zero (i.e.,

solving one of the necessary conditions of optimality as given in [20]). Since

the sets IL and IU are mutually exclusive, it can be shown that the desired

multipliers are given by

liT = [ILT , IuT ]

(3-27)

= FT(Fzk - d)

Step 7: Test Multipliers and Update Constraints

Equations 3-26 and 3-27 indicate that the current solution is globally

optimal if %L i _ 0 for all i and if %Uj • 0 for all j. This can be seen as

Zki ZL i " .follows. At the current Zk, = and ZkS = zu J for i _ IL and j _ IU.

Therefore, H(Zk) = J2(Zk). But, zk was obtained by minimizing H, so for any

_ _ IUiother Zk, say z, H(zk) • H(_). If z is feasible and if ILi ) 0 and • O,

then, referring to Eq. 3-26, H(_) • J2(_). From these arguments, we have

J2(zk) • J2(_) for any feasible z; which is equivalent to stating that zk is

globally optimal.
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If any of the Lagrange multipliers violate the conditions stated at the

top of the previous paragraph, then the current iterate, Zk, is not optimal

and one of the constraints can be removed. If several of the multipliers

violate the above conditions, the index, i, corresponding to the largest (in

absolute value) of these multipliers is chosen as the index of the constraint

to be removed.

Step 8: Compute the Second Set of Multipliers

The second set of multipliers corresponds to the problem of minimizing

Jl subject to i _(ILU IU) and J2 remaining unchanged. That is, the problem

Min _zk + AzN 2

Subject to (zk + Az) g F

FAz = 0

has the solution Az = O, along the currently active constraints (this is how

zk was determined in step 6) and Lagrange multipliers given by

_2T = (A2T)# zk (3-28)

where

AT = IFr SET SuT ]

SL(i,j ) = i if IL(i) = j ; otherwise St(i,j ) = 0

Su(i,j ) = i if Iu(i) = j ; otherwise Su(i,j ) = 0

2T = [%FT , %2LT , %2U T]
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Step 9: Test Multipliers and Update Constraints

As in Step 7, the condition of global optimality is _Li ) O, _Ui _ O. If

any of these conditions are violated, we remove the constraint corresponding

to the largest (in magnitude) %2i of those which do not satisfy the optimality

conditions.

At this stage, if no constraint can be removed, (i.e., the optimality

conditions are satisfied) then the algorithm terminates with the current

iterate as the solution.

3.3.3 Scaling

Convergence of the quadratic programming algorithm described in subsec-

tions 3.3.1 and 3.3.2 is greatly dependent on the relative sizes of the ele-

ments in F and d in Eq. 3-14. In Section 6.3, the effect of scaling on speed

of convergence is demonstrated for the B-737 application. In general, we can

transform Eq. 3-14 as follows. Let,

zs = Sz-I z

(3-29)
ds = Sd-i d

where Sz and Sd are diagonal weightingmatrices. If the i-th diagonal element

of Sz is large, then the i-th element of z will tend to have larger values in

the feasible problem. If the i-th diagonal of Sd is large, then the error in

the i-th disturbancedirectionwill be larger. Problem (Eq. 3-14) then

becomes
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Min J1 = zsT Zs

Subject to Sz-I zL < zs < Sz-I zU

z € {z : z = arg mln J2 TM IFs ° Zs - Sd " ds!

where

Fs = F Sz (3-30)

3.4 LINEAR TRIM WITH UNCERTAINTY

Until now, our discussions of the linear trim problem have focused on

solutions for the case where both the disturbance w (see Eq. 3-3) and the

control effectiveness matrix, B, were known exactly. As in the development

of control redesign procedures ([I]), it is desirable to formulate a problem

in which specific knowledge about relative uncertainty can be used. That is,

for example, we would llke to incorporate into the quadratic programming algo-

rithm, the capacity for trading off the use of control surfaces which may have

a large nominal, but uncertain effect for those which may have more certain

but small nominal effects. Furthermore, we would llke the algorithm to be

able to distinguish between those disturbances which are well known and those

which are uncertain so that excessive control authority is not lost in trying

to compensate for a poorly modeled or estimated disturbance.

We can accomplish these goals by formulating the trim problem with uncer-

tainty in a similar vein to the development of control system redesign proce-

dures [i]. Suppose, in Eq. 3-14, the matrix F and disturbance d are random

variables with

F = Fn + AF

E{AF} = 0 (3-31)

E{AF T AF} = QF
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d = dn + Ad

E{Ad) = 0 (3-32)

Z{Ad T Ad} = Rd

where E(o) denotes expected value.

Using Eqs. 3-31 and 3-32, the objective function J2 (Eq. 3-1) can then be

expanded as,

J2 = (Fz - d)T(Fz - d)

= zT FnT Fn z + 2 z FnT AF z + zT AFT AF z

(3-33)

- 2 dnT Fn z - 2 dnT AF z - 2 AdT Fn z - 2 AdT AF z

+ dnTd n + 2 dnT Ad + AdTAd

Since AF and Ad are random variables, J2 is now a random variable. In order

to provide a deterministic quantity which can be optimized in the linear trim

problem, we must consider some kind of statistical average of J2" Two such

averages are the average cost E(J2} , and the mean square cost, E{J22}. The

average cost case is considered below.

Minimum Average Cost

Combining Eqs. 3-31 through 3-33, and assuming that Ad and AF are uncor-

related, the expected value of J2 is_

E(J 2) = zT(Fn T Fn + QF)Z - 2 dnT Fn z + dnT dn + Rd (3-34)

Equation 3-34 can then be put into standard form (Eq. 3-14) by completing the

square resulting in,
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Z{J2} = (fz - _)Z(fz - _) + g (3-35)
where

_T _ = Fn T Fn + QF (3-36)

_T _ = FnT dn (3-37)

_z_ + g = dnZdn+ Rd (3-38)

The effect of including uncertainty Information In the description of the

linear trim problem and minimizing the average cost can be seen by examination

of Eq. 3-34. The uncertainty in d results In a constant positive value (R)

added to the cost, but does not change the optimal solution, z*, which minl-

mizes E(J2}. The uncertainty in F results In the addition of the term zT Q z

to the cost. This term amounts to an additional weighting or scaling of the

solution variables, z, that reflects the relative amount of uncertainty con-

tributed by each element of z. Elements of z with large uncertainty contrib-

ute more to the expected cost than do elements with small values so that the

solution, z*, will realize a tradeoff between the use of elements which have

different nominal effectivenesses and different amounts of uncertainty associ-

ated wlth their disturbance rejection capabilities. Note that uncertainty in

the A, B, and C matrices in Eqs. 3-6 and 3-7 can be incorporated into this

formulation.

The average cost function described above provides a problem formulation

that results in an automatic tradeoff between solution elements of various

effectiveness and uncertainty. However, the uncertainty in the disturbance to

be rejected does not affect the solution. Examining Eq. 3-33, we can see that

while, on average, Ad only creates an increase in J2 which is unrelated to
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the choice of z (Ad TAd term), the actual value of Ad does create a z-dependent

effect on the actual cost function. Thus, one would expect that the z-dependent

impact of Ad on the cost occurs primarily in higher order moments of the cost

function (e.g., E{(J2)2} ). Minimization of the mean square cost is then a

likely candidate objective function. The resulting solution to the mlnlmlza-

tlon of such an objective would provide the desired tradeoff between the use

of solution elements to cancel disturbances of uncertain effect. Disturbance

directions, which are not well known, result in large mean square values of

J2 when certain elements of z in the solution are large. The algorithm would

then balance this uncertainty with its ability to achieve the desired nominal

disturbance rejection capability. Unfortunately, the computation of E{J22 }

involves fourth-order moments of AF and Ad which would need to be specified

(or derived from a Gaussian error assumption). Furthermore, the resulting

objective cannot necessarily be factored in a form which results in a qua-

dratic programming algorithm. Therefore, the minimum average cost provides

the easiest method for incorporating knowledge about the uncertainty in F into

the linear trim problem.
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SECTION 4

AN LQ-BASED CONTROL LAW REDESIGN PROCEDURE

4.1 PRELIMINARIES

The purpose of this section is to formulate and solve an optlmizatlon

problem that forms the basis for the automatic redesign procedure. The pri-

mary criteria for the automatic redesign optimization problem will be to maxi-

mlze the performance of the feedback system, in a specific sense, subject to

constraints on the system bandwidth. The automatic redesign system will be

based on Linear Quadratic design techniques [23]-[25]. The Kalman Equality

[26] is used to determine the benefits that result from a LQ design and to

formulate an approximation to the bandwidth constraints of the control system.

A performance measure then is formulated to approximate these benefits.

We will assume that the system is described in state variable form by:

x(t) = Aox(t) + Bou(t ) (4-1)

where x(t) is an n-dimensional vector consisting of both the aircraft and

control system compensation states, and u(t) is an m-dimensional vector of

aircraft control effectors. It will also be assumed that the aircraft control

system has been designed using LQ design techniques, and hence that the con-

trol u(t) minimizes

J = f [xT CoT CoX + uT Rou]dt • (4-2)
0
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Hence, the control u(t) is given by

u(t) - -Ro-i BoT K x(t) _-GoX(t ) (4-3)

where K solves:

AoT K + KAo + CoT Co - KB o Ro-I BoT K = 0 . (4-4)

For any state weighting matrix Co and any input weighting matrix Ro,

the return difference D of the LQ feedback system with the loop broken at the

input to the plant satisfies the Kalman Equality [26]:

D(-s)T RoD(s) = Ro + Lo(-s)T Lo(s) (4-5)

where

D(s) = I + Go(sl - Ao) -I Bo (4-6)

to(s) = Co(sl - Ao)-I Bo • (4-7)

Many performance issues are most readily discussed in terms of sensi-

tivity function (i.e., the inverse of the return difference) of the closed

loop system evaluated at the plant input:

S(s) = D(s) -I (4-8)

The relationship of S to feedback system performance has been discussed exten-

sively in the literature (c.f. [24]-[31]). In general, one obtains benefits

from feedback at those frequencies for which

US(j_)IJ < i (4-9)
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The benefits include improved response due to dynamic input disturbances and

a reduction of the effects of parameter variation. The frequency range over

which Eq. 4-9 can be achieved is generally limited by the dynamic uncertainty

of the plant, sensors, and actuators. As a result of these uncertainties, the

loop transfer function

L(s) = Go(sl - Ao)-i Bo (4-10)

must be rolled off before the uncertainties become significant.

The bandwidth limitations on the loop transfer function L(s) (Eq. 4-10)

can be imposed by unmodeled plant, sensor, or actuator dynamics. We will

assume that these constraints can be expressed in terms of a constraint on

the norm of the loop transfer function at the input of the closed loop plant

of the following form:

_PL(j_c) U < I . (4-11)

In condition 4-11, wc represents a frequency (typically the loop cross-

over frequency) at which bandwidth constraints are to be modeled. Since the

loops of a multivariable system can have different bandwidths, the weighting

matrix P is used to model the relative maximum size that the control loops

may have at a frequency chosen to model the constraints. In effect, the

matrix P can be regarded as scaling the input matrix for redesign synthesis

and analysis purposes. The ability of this constraint model to accurately

represent effects of the true physical uncertainties (such as actuator rate

limits and aeroelastlc phenomena) relles on the ablllty to represent all these

effects at a single frequency. In a general design setting, such a represen-

tation is usually not possible. However, by assuming that the original design
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for the unfailed aircraft satisfied all such constraints and by retaining any

augmented dynamics (such as notch filters or dynamics that add additional

rolloff in the loop shapes), the constraint model (Eq. 4-11) becomes useful.

Thus, the higher frequency loop shapes of the original design will be quali-

tatively retained and the constraint model (Eq. 4-11) will force the quantita-

tive constraints. This use of the constraint model (Eq. 4-11) will be adopted

by the automatic redesign procedure developed in subsection 4.2.

The constraint 4-11 uses the control loop gain G explicitly. Since the

gain G is related to the LQ design parameters C and R in a complex, nonlinear

manner, it is desirable to approximate Eq. 4-11 with a constraint that employs

C and R explicitly. Fortunately, a simple approximation to Eq. 4-11 can be

obtained from the Kalman Equality (Eq. 4-5).

The attempt to ensure that the loop transfer function is small (i.e.,

condition 4-11 can be roughly approximated by trying to keep the return dif-

ference small (i.e., near unity). The latter can be accomplished by con-

trolling the size of the right-hand side of Eq. 4-5. Let N denote the square

root of Ro-l:

Ro-i = No NoT

or (4-12)

Ro = No-T No-i

After premultiplylng Eq. 4-5 by NoT and postmultiplying by No, Eq. 4-5

becomes:

[No-i D(-s) No]T[No -I D(s) No] = I + Lc(-S) T Lc(s ) (4-13)

where

Lc(s) = Co(sl - Ao)-i BoNo • (4-14)
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Thus, we can approximately impose Eq. 4-11 by using the transfer function

Lc(s ) in Eq. 4-11 rather the true transfer function L(s). That isj we can

replace Eq. 4-11 by:

IeCo(Jwcl - Ao)-I BoNo! • I . (4-15)

Thus, Eq. 4-15 approximately represents the bandwidth llmlatlons and is

expressed only in terms of open loop and design quanlties.

4.2 DEVELOPMENT OF THE AUTOMATIC DESIGN PROCEDURE

Given a failure of one or more aircraft control surfaces, the objective

of the linear restructurable control system is to redesign the linear control

law in a manner that preserves as much of the aircraft safety and performance

as possible. Clearly, the primary objective is to stabilize the aircraft.

Assuming that this is possible for the given flight condition and available

actuator power and bandwidth, the secondary but still important objective of

maintaining aircraft performance can then be considered. This objective can

be translated into the control system objective of maximizing the amount of

beneficial feedback in order to both maximize robustness due to uncertain

system parameters and to minimize disturbance effects.

The preceding considerations form the basis for the linear restructuring

algorithm developed in this section. The automatic redesign procedure will

use LQ regulator designs for the restructured FCS. Thus the design parameters

to be chosen by the automatic redesign procedure are the quadratic penalty

matrices C and R.

We will assume that a nominal LQ design for the unfalled aircraft is

available. The design can be characterized by the quadratic weights Co and

Ro that were used to develop the nominal design. The automatic redesign
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procedure exploits the engineering trade-offs that were made in the choice of

Co and Ro for the unfailed aircraft by fixing the new state weights,

¢N = Co (4-16)

and choosing new control weights, RN. The choice of CN, as in Eq. 4-16, en-

sures that the relative importance of each state (or combination of states)

is maintained in the Linear Quadratic regulator problem for the failed air-

craft design, thereby incorporating the physical engineering trade-offs from

the unfailed FCS design In the restructured design.

The remaining design parameter that must be specified by the automatic

redesign procedure is the input penalty matrix R. The formal objective of the

automatic design procedures will be to choose R to maximize performance in an

appropriate sense while satisfying the bandwidth constraints (Eq. 4-15).

Following a failure, we will assume that the automatic redesign module

is supplied with estimates of the state and control matrices, Af and Bf of the

failed aircraft. To simplify the presentation, we will assume that Af = Ao.

The estimated control effectiveness matrix Bf will differ from the true con-

trol effectiveness matrix Bf of the failed aircraft by an amount AB:

Bf = Bf + AB (4-17)

where AB represents the uncertainty in the effectiveness. We will assume that

the uncertainty has zero mean:

E{AB} -- 0 (4-18)

and that the covarlance between the (i,j)th element and the (k,£)th element is:

E{_BIj ABk£} = 81jk_ • (4-19)
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It should be emphasized that thls error model for the uncertainty of the con-

trol effectiveness coefficient Is for the estimates of the failed aircraft

coefficients. Since it Is assumed that the nominal values are supplied by the

FDI algorithm, it is reasonable to assume that these estimates are unbiased.

The post-fallure control system performance Is a function of the new gain

G (which we wish to select) and is determined by the "size" of the return

difference:

D--(s)= I + G(sl - Ao)-I Bf (4-20)

Since Bf is random, so is _(s). In order to ensure that D is large when

control effectivenessuncertaintyexists, we wish to choose G so that both the
&

expected size of D is large and the expected size of the uncertaintyabout D

Is small. Thls can be done as follows. Define D(s) = N-I _(s) N, where N is

the square root of the new control weightingmatrix RN. The cost functional,

which we wish to minimize, is:

The cost J will be large when the expected size of D is large and the expected

size of the uncertainty is small. Using the Kalman Equality we can rewrite

J as,

J = Ul + NT Bf(-sl - Ao)-T CoTCo(Sl - Ao)-IBf N
(4-21)

- Nr E{ABT(-sl - Ao) -T GT RN G(sl - Ao) -I AB}N_ •

Equation 4-21 wlll be used as the measure of performance that is to be

maximized by the choice of RN (i.e., N) and, hence, G. We now define the

norm in Eq. 4-21 as the trace of the integral of the frequency terms,
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J ffiTr{NT[Wco - Wu]N} (4-22)

where

Woo - BfT Wo Bf (4-23)

Wu = E{AB T W_ AB} (4-24)

co

Wo = f (-j_l - Ao)-T CoT Co(J_ I - Ao)-I d_ (4-25)0

Wo ffif_(-j_l - Ao)-T GT RN G(J_l - Ao)-I d_ . (4-26)0

Formulas 4-23 and 4-26 can be simplified. First, by using the approximation

GT RG = CoT Co (4-27)

Eqs. 4-25 and 4-26 become identical. By Parseval's theorem, if Ao has all

its eigenvalues in the left half plane, Wo is the solution to the Lyapunov

equation:

AoT Wo + WoT Ao + CoT Co = 0 . (4-28)

If Ao has one or more eigenvalues in the right half plane, a stable factoriza-

tlon of Eq. 4-25 can be used to compute Wo from an analogous Lypunov equation.

Assume that the system matrix has the spectral decomposition:

A° = [Ws Wu] I n (4-29)
u

where As is a diagonal matrix with its diagonal elements being the left half

plane eigenvalues of Ao, and Au is a diagonal matrix with its diagonal ele-

ments being the right half plane eigenvalues of Ao. Define
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rvsH7A-[wsWuJ (4-S0)

Then Wo is the solution of the Lyapunov equation (Eq. 4-28) with A replacing

Ao. For computationalpurposes',W and V in Eqs. 4-29 and 4-30 can be replaced

by any matrices that effect a decompositionof Ao into its stable and unstable

invariant subspaces. Assuming that the system matrix is not significantly

affected by the failure, these matrices can be computed off-line. If the

failure effects on the system must be incorporated, the matrices can be com-

puted efficiently and accurately.

Finally, Eq. 4-24 can be rewritten as:

n n

: [ [ Wok£Ski£ j • (4-31)Wuij k=l £=1

where _ki£j = E{ABki AB£j}.

The objective is to maximize J in Eq. 4-22. This is to be achieved sub-

ject to the bandwidth limitations as expressed by Eq. 4-15. That is, we must

satisfy,

IIPCo(j_c - Ao)-I BfN_ _ i . (4-32)

Using the Schwarz inequality,

NPCo(j_ c - Ao)-i BfN, _ _PCo(j_ c - Ao)-I BfNoU . UNo-I Nil .

If we are dealing only with failures that result in decreased effectiveness

and/or decreased bandwidth, then

meCo(J_c - Ao)-I BfNo! _ nPCo(j_ c - Ao)-I BoNo! _ i
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where the last inequality comes from the assumption that the nominal LQ design

satisfies the bandwidth constraints as modeled by Eq. 4-15. Thus, Eq. 4-32

is achieved when N satisfies,

INo-I NI ( i • (4-32b)

Hence the objective of maximizing performance in the presence of control effec-

tiveness uncertainty is formulated as solving Eq. 4-22 subject to Eq. 4-32b.

4.3 SOLUTION OF THE OPTIMIZATION PROBLEM

Define

Y = No-i N • (4-33)

Then Eqs. 4-22 and 4-32b become:

max Tr {yTwy } (4-34 )

subject to

#Y! _ i (4-35)

where

W = NoT[Wco - Wu]N o . (4-36)

The solution can be obtained in terms of the eigenvectors of W. Let the

columns of Y be an orthonormal basis for the invariant subspace (eigenspace)

of W corresponding to the nonnegative eigenvalues of W. Then Y solves Eqs.

4-34 through 4-36. The matrix N is given by

N = NoY (4-37)

and the design matrix R and is specified by

RN-I = N NT • (4-38)
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4.4 DISCUSSION

Objective 4-22 has a nice interpretation in terms of the effectiveness of

control on the important state variables. Recall that it was assumed that Co

has been chosen to reflect the relative importance of the various state vari-

ables to the performance of the aircraft. The matrix BiT Wo Bf then reflects

the amount of energy that can be transmitted to those variables, weighted by

their perceived importance, from each of the available control surfaces.

Hence, Eq. 4-22 captures the issue of quantifying control effectiveness via

the matrix Wco. Objective 4-22 also captures the issue of quantifying control

surface uncertainty through the matrix Wu. Hence, the objective is to maxi-

mize the beneficial feedback (Wco) minus the uncertainty (Wu).

The solution (Eqs. 4-37 and 4-38) reflects these issues. A negative

eigenvalue of W results only if uncertainty exceeds benefit in some direction.

This direction is represented by the corresponding eigenvector of W and is

eliminated from conslderatin in the control law design. Hence, the solution

eliminates those combinations of controls for which the control uncertainty

exceeds the control effectiveness within the feedback design.

The automatic design algorithm can be summarized as follows. It assumes

that a nominal LQ design has been chosen with nominal weights Co and Ro. It

also assumes that an FDI algorithm has indicated a control surface failure:

Step i: Form the matrices Bf and No.

Step 2: Compute W from Eqs. 4-23, 4-28 through 4-31 and 4-36.

Step 3: Find the eigenvectors Vl,...,v A corresponding to the
nonnegative eigenvalues of W. Define

N = No[Vl,...,vA] .
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Step 4: Compute

RN-I = N NT •

Step 5: Solve the LQ regulator problem

AoT K + KAo + CoTC o - KBfRN-I BfT K = 0

G = RN-I BfT K .

If Wu = 0, the solution of the automatic redesign optimization problem

(Eqs. 4-22 and 4-32) is almost trivial. Since

Wo > 0 (4-39)

the objective functional, J, (Eq. 4-22) is also positive for any choice of N,

and is monotonely nondecreasing as N increases in size. Thus, N should be

chosen as large as possible. The only constraint on N is the bandwidth con-

straint 4-32b. Hence the choice

N = No (4-40)

solves the automatic redesign problem.

Thus, in the case when information about control effector uncertainty is

not used by the automatic redesign procedure, the procedure simply solves a

LQ regulator problem with the new system description supplied by the FDI algo-

rithm and the nominal design quadratic weights Co and Ro. This has the advan-

tage of not requiring any computation to choose the design parameters. Yet,

since it is the solution to the automatic redesign optimization, this simple

procedure effectively maximizes the achievable performance within the band-

width constraints of the system.
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4.5 EXTENSION OF THE REDESIGN PROCEDURE FOR PLANTS WITH INTEGRATOR STATES

In this subsection, we modify the redesign procedure so that plants with

integrator states (poles at the origin) may be handled. Recall that when we

had unstable poles, a unique positive definite solution to the Lyapunov equa-

tion was obtained by evaluating the observabllity Grammlan for the same system

with the unstable poles reflected about the j_ axis. This procedure is neces-

sitated by the fact that the procedure for computing the grammian guarantees

a unique positive definite solution only when the system is stable. The

grammian obtained by this method solves the desired frequency integral for

the unstable system.

When the system has poles at the origin, the desired frequency integral

is infinite so we must modify the procedure to obtain meaningful answers. To

begin our discussion, recall that the redesign procedure is based on maximizing

some matrix norms of the frequency integral,

Wco = _ L(s) L(-s) H ds (4-41)

where

L(s) = C(sl - A)-I B (4-42)

and

Q = Cr C (4-43)

Furthermore, when the system has integator states, we can write,

A = _C_l _ (4-44)
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Q = " (4-47)
PIT QI

where

Qp = MpT Mp

QI --MIT MI

QPI = MpT MI .

Using Eqs. 4-44 through 4-47 in Eq. 4-22, we have

i

L(s) = Mp(Sl - Ap) -I Bp + _ MICI(sl _ Ap)-I Bp . (4-48)S

At low frequencies, the second term in Eq. 4-48 dominates while at high fre-

quencies, the first term is dominant. In the frequency region of interest,

both terms may be important.

The notion that a particular range of frequencies is of primary impor-

tance can now be exploited for our purposes. Suppose we define a new loop

transfer function,

Lw(s) = L(s) • W(s) . (4-49)

Then the integral (Eq. 4-41) using Lw(s ) instead of L(s) is just a frequency

weighted integral,

L(s) H(s) L(-s) H (4-50)

where

H(s) = W(s) W(-s) H . (4-51)
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The weighting W(s) can now be used to cancel the integrator poles and thereby

make Wco finite.

To see how this is implemented, consider a simple example with,

Is)W(s) = I • _ (4-52)
s+a

Note that in general, one may want to use different frequency welghtlngs for

S

each loop (e.g., [W(s)]i i = _). Now although one could simply argue
s + ai

that the state matrix, A, with the additional dynamics for W(s), define a

new Q matrix, and solve the Lyapunov equation, this procedure will result in

numerical problems because of the implicit pole-zero cancellations. In order

to avoid these numerical problems, we perform the pole-zero cancellations

explicitly and develop a new A and Q matrix which results in the desired Wco

when the Lyapunov equation is solved.

Using Eqs. 4-52, 4-49,and 4-48, we have

s I

Lw(s ) = Mp(sl - Ap) -I Bp _ + MICI(sl - Ap) -I Bp _ . (4-53)
s+a s+a

Let W(s) be obtained from the minimal realization,

W(s) = Cw(sl - Aw)-i Bw + Dw (4-54)

with

Aw = -al

Bw = I

Cw = -al

Dw= I •
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If we define,

Aa " _B_w _ (4-55)

(4-56)

then it can be verified that

Lw(s) = Ca(sl - Aa)-I Ba (4-57)

with

Qp -aQp + QpiCl 1

Qa = CaTCa =

-aQpT + CITQpIT CITQICI + a2Qp _ aCITQpIT _ aQpiCl

(4-58)

Finally,

Wco= f Lw(s) Lw(-s)H ds (4-59)

is solved by the Lyapunov equation

AaTWo + WoTAa + Qa = 0 (4-60)

and

Wco = BaT Wo Ba • (4-61)
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SECTION 5

A PROTOTYPE RESTRUCTURABLE CONTROL SYSTEM

This subsection will give an explicit description of the entire restruc-

turable control system, so that the operation of the system can be seen.

5.1 PRELIMINARIES

We assume that we have our llnearlzed aircraft model in state-space form

x = Ax + Bu u c Rm Rnx

y = Cx Y _ RP (5-1)

xr = CrX xr £ Rn-p

E rE "C : I • 0 = 0 • I

pxp pxn-p n-pxp n-pxn-p

x r

where y are the important states that we would like to control very closely.

Note that we must have (A,B) a controllable pair and (A,C) an observable pair,

with rank (C) = p, rank (B)) p in order to independently control the output y.

While the automatic trim system will attempt to reduce the effect of dis-

turbances (e.g., stuck surfaces), there will always be some residual constant
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disturbance that we didn't predict. In order to reject this disturbance com-

pletely from those important states we need to add integrators. Thus, we form

the new augmented system

= + u (5-2)
x I C 0 x I 0

or

z = Az + Bu . (5-3)

We now pose the LQ problem for this augmented system:

Find u(t) to minimize

J = f [zTQz + uTRu] dt (5-4)
0

where Q = QT _ 0 is n+pxn+p and R = RT > 0 is mxm.

The solution is given by

u = -Gz = - y • Gr • GI xr (5-5)

xI

where

G = R-IBTK (5-6)

and K = KT _ 0 solves

0 --A_TK + K_ + Q - KBR-I'_TK . (5-7)

A command-following control system using this state-feedback gain G is shown

in Fig. 5-1. Here, r is the desired deviation from the setpoint Yo and is

controlled by the pilot through some input shaping filter•
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Fibre 5-1. Com_nd Following With LQ

Due to the integrators, we will achieve y = r + Yo exactly in steady state

(i.e., r _ constant)• The closed-loop system of Fig. 2-10 with r _ 0 is

z = _ + _[-Gz+ Uo+ GZo] (5-8)

where uo and zo are the setpoints desired by the automatic trim system. They

must satisfy

0 = Az o + _o " (5-9)

ExoNote that we are selecting zo = so that we can pick a setpoint for
XlO

the integrator states xI. Suppose we pick xlO to be zero. That means that

the integrated xalue of y = Cx must be zero (since xI approaches xlO in steady

state) and in general, we will obtain an overshoot in our initial condition

response, even if all eigenvalues of A-BG are real. To see this, consider the

simple example in Fig. 5-2, with the initial conditions

x1(O)= 0 (5-10)

x2(O)= -1 (5-11)
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J
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R-283

Figure 5-2. Simple Example Demonstrating Overshoot

Since the system is stable, xl,x2 both decay to zero, but

t

xl(t) = f X2(T)dT
o

(5-11 )

so that the area under x2(t) must go to zero - so we have overshoot. Note

that the eigenvalues of this system are -1 and -2 and are both real. To see

what the freedom in picking the initial condition of the integrator state

(xl here) can do for us, consider the eigenvectors of the A matrix associated

with the above system:

A = [-~ -~ ]
Al = -1 vl = [ .707l

-.707 -I

A2 = -2 v2 = [-~ ]
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ThusiweIckoE:]wehavextXoeltndthereisnoovorshoot.
Another posslbillby would be to pick xo = _i__ and we would see only the

elgenvalue at -2, and thus a much faster response.

From this simple example, it seems very likely that the freedom of choosing

the integrator setpoint can have an impact on the resulting initial condition

response. This subject will remain a topic for future research and will not

be addressed any more in this report. It should be emphasized, however, that

this type of overshoot with well-damped poles does not occur in the command

response and is only important for determining the dynamic translent-response

to changes in setpoint.

5.2 A RESTRUCTURABLE FLIGHT CONTROL SYSTEM

Now we are ready to put the whole system together. We link all the sub-

systems together as shown in Fig. 5-3. The Failure Detection and Isolation

(FDI) block determines when a failure has occurred and computes the new A and

B matrices for the aircraft. Since here we are only concerned with actuator

failures, only the B matrix will change. The automatic trim system block then

determines the best operating point for the aircraft, based on the solution of

the trim problem described in Section 3. This operating point is used by the

dynamic compensator (as in Fig. 5-1). The control redesign block also uses

the A,B matrices from the FDI block in order to compute the new gain matrix G

which is used by the dynamic compensator. The Q and R matrices are parameters

for the control redesign block and are computed from the redesign procedures

described in Section 4. Under no uncertainty, Q and R remain the same and G

is computed by solving the regulator problem with the new A and B matrices.
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Figure 5-3. Complete Restructurable Control System

The pilots commands go through a shaping filter before being introduced

into the control loop. This is to both mix the pilot commands (if necessary)

and to slow them down if necessary. They are mixed so that the pilot stick

commands are interpreted correctly by the control system. They are filtered

so that steps are not introduced into the control loops, thus reducing over-

shoots and control saturation. A possible form for a preshaping filter is

given in Fig. 5-4. Note that what the pilot controls is a deviation from the

operating point which is determined by the trim problem. Thus, if undesir-

able attitude coupling appears in the trim solution (e.g., side slip during a

rudder failure which necessitates a de-crab maneuver before touchdown) it can

be removed by the pilot through application of non-zero, constant r(t).
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Figure 5-4. Example of a Shaping Filter for the i-th Control Channel

Finally, the supervising block determines the flow and order of recon-

figuration actions. This block must decide on a variety of issues which

include:

I. Sequencing and fading of trim and redesign solution application,

2. Adequacy of trim solution and need to select a new operating
point,

3. Immediacy versus accuracy of trim solutions which require large
numbers of iterations for convergence,

4. Weightings and scalings of variables in the trim problem,

5. The need for refinement of redesign and trim solutions based

on more accurate FDI information, and

6. Logical interfacing with the pilot through a flight-director.
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SECTION 6

APPLICATION TO A TRANSPORT CLASS AIRCRAFT (BOEING 737 MODEL)

The automatic redesign procedure (presented in Section 4) and the auto-

matic trim solution (presented in Section 3) will be demonstrated in this

section on a llnearized model of a modified Boeing 737 aircraft. The model

is described in subsection 6.1. Subsection 6.2 develops the nominal state-

feedback design for the unfailed aircraft, and subsections 6.3 and 6.4 present

some linear analyses of the trim and redesign procedures.

6.1 AIRCRAFT MODEL "

A linearized model of the modified NASA Boeing 737 aircraft operating at

different flight conditions was supplied by NASA to ALPHATECH to demonstrate

the automatic design procedure. Since the aircraft potentially has nine inde-

pendent control surfaces, it is an ideal candidate for control restructuring.

For this demonstration, an operating point with a flight angle (y) of -3

degrees, pitch angle (0) of -.7 degrees, forward velocity (u) of 215 feet/sec,

downward velocity (w) of 8.7 feet/sec, and altitude of 1500 ft was chosen.

The flaps are set at 40 degrees•

The linear aircraft model is in the form

Xa(t) = Aa Xa(t) + Ba Ua(t) (6-1)

where Xa(t) is a state vector of the linear aircraft dynamics and Ua(t ) is the

vector of available control surfaces• The state vector is given by
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u forward velocity, ft/sec

w vertical velocity, ft/sec

q pitch rate, tad/see

e pitch angle, rad

Xa = = (6-2)
v side velocity, ft/sec

p roll rate, rad/sec

r yaw rate, rad/sec

roll angle, rad

The NASA model included a nlnth state for yaw angle which was eliminated

since it will not be controlled by the regulation system. The longitudinal

dynamics are decoupled from the lateral dynamics in the unfailed aircraft.

The first four states represent the longitudinal dynamics and the second four

represent the lateral dynamics.

The input vector is given by

_LT left engine thrust, ibs

_RT right engine thrust, ibs

6LS left stabilator, deg

_RS right stabilator, deg

Ua = _R = rudder, deg (6-3)

_LE left elevator, deg

_RE right elevator, deg

_LA left aileron, deg

_RA right aileron, deg
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The system matrix for this operating condition is given by

"-0.03735 0.1055 -8.692 -32.17 0.0 0.0 0.0 0.0 -

-0.2763 -0.7054 215.41 0.4196 0.0 0.0 0.0 0.0

-0.0002007 -0.006228 -0.5193 -0.0003222 0.0 0.0 0.0 0.0

0.0 0.0 O.0 1.0 0.0 0.0 0.0 0.0
A a "

0.0 0.0 0.0 0.0 -0.1451 10.35 -214.5 32.17

0.0 0.0 0.0 0.0 -0.01685 -I.529 0.8053 0.000003381

0.0 0.0 0.0 0.0 0.003239 -0.1212 -0.1458 -0.004113

0.0 0.0 0.0 0.0 0.0 1.0 -0.0120 0.0D m

(6-4)

The input matrix is given by

m

0.0003785 0.0003785 0.006813 0.006813 0.0 0.003265 0.0032660 0.003647 0.003647--

-0.0000002952 -0.0000002952 -0,1688 -0.1688 0.0 -0.08093 -0.08093 -0.09037 -0,09037

0.000006263 0.000006263-0.0221 -0.0221 0.0 -0.01059 -0.01059 -0.002849 -0.002849

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ba m

0.0 0.0 0.0 0.0 0.1389 0.0 0.0 0.0004774-0.0004774

0.000002128-0.000002128 0.007411 -0,007411 0.009317 0.003552 -0.003552 0.008208 "0.008208

0.00001245 -0.00001245 0.0004336-0.0004336-0.0109 0.0002637-0.0002637 0.0007019-0.0007019

-- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(6-5)

The open-loop eigenvalues of the aircraft are:

Longitudinal I Short Period: -0.614 ± l.Sj

) Phugold: -0.0167 ± 0.17j

I Dutch Roll: -.058 ± 1.106j

Lateral Spiral: -.0063

Roll Subsidence: -1.699
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6.2 CONTROLLER DESIGN

This subsection describes the design process followed to arrive at the

final state-feedback controller. Since the longitudinal and lateral dynamics

are decoupled for the unfailed aircraft, we can design them separately. To

decouple the inputs, we need to mix them to obtain differentlal and collective

inputs. We do this as follows. Let

0 0 i I 0 0 0 0 0

0 0 0 0 0 I I 0 0

i I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 i i

BMI x _ 0 0 0 0 i 0 0 0 0 9 x9 (6-6)

0 0 0 0 0 0 0 I -i

0 0 I -i 0 0 0 0 0

0 0 0 0 0 i -I 0 0

i -I 0 0 0 0 0 0 0

SO

UNE W = BMI X • ua

where

6CS collective stabilator

6CE collector elevator

Longitudinal

_CT collective thrust

6CA collective aileron

Une w = = (6-7)

dR rudder

6DA differential aileron

6DS differential stabilator Lateral

_ DE differential elevator6DT _ _ differential thrust
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We now need to scale the inputs according to their maximum values. Note that

we cannot define absolute maximum limits for dlfferentlal and collectlve

Inputs independently. However, as we are just using thls to scale the Inputs

so things are weighted correctly D it is not as important. We pick the scaling

for the new inputs as follows

Up = SI-I Une w

where

SI _ dlagIlO,20,1000,20,20,20,10,20,1000) • (6-8)

We then let

BI = Ba(BMIX) -I SI (6-9)

be our new B matrix, which is mixed and scaled•

In order to make the state variables easier to work with, we would llke

to scale them so that I unit in each of the state variables is approximately

equivalent in terms of importance. If we choose

Xp = TI • xa (6-10)

where

TI = diag_O.01,0.01,1,1,0.Ol,l,l,l) (6-11)

then our new system matrices are

Ap = TI • Aa • TI-I (6-12)

Bp = TI • BI (6-13)

and the linear aircraft model becomes

Xp = Ap Xp + Bp Up .
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We can now split the aircraft model into a longitudinal model and a

lateral model, and devise an LQ design for each of these.

6.2.1 Lateral Design

The lateral model is given by

"--0.1451 0.1035 -2.1450 0.3216

-1.6853 -1.5292 0.8053 0.0000

ALAT = (6-14)
0.3239 -0.1212 -0.1458 -0.0041

|o.oooo 1.oooo -o.o12o o.oooo
L-.

0.0278 0.0001 0.0000 0.0000 0.0000

0.1863 0.1642 0.0741 0.0710 0.0021

BLAT = (6-15)
-0.2180 0.0140 0.0043 0.0053 0.0124

0.0000 0.0000 0.0000 0.0000 0.0000

The states are the scaled versions of the lateral states, viz.,

--v/100_ --side velocity, ft/sec

|
p ---- roll rate, rad/sec

x = i = (6-16)

r 1 yaw rate, rad/sec
$ roll angle, rad

and the scaled inputs are

6R/20

_DA/20

u = _DS/10 (6-17)

_DE/20

_ _DT/I000
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One of the goals we would llke to achieve in the lateral axis is auto-

matically coordinated flight. _e way to achieve this approximately is to

control s_de-veloclty and bank angle• _us, a nonzero commanded bank angle

with a zero-commanded side velocity would produce a steady turn, with only a

s_ll residual side acceleration that the p_lot can eliminate with the side

velocity controls (rudder pedals)• _is also allows for coordinated turns

with failures, without the pilot having to worry about the coordination of

the turn•

Thus, we decide to control side velocity, v, and bank angle, _. To

eliminate steady-state errors, we put integrators on those states• Let

1 0 00]

CLAT = (6-18)
0 0 0 I

so that

y = = CLA T x (6-19)

_r new augmented plant is given by

= = + u (6-20)

xI CLA r 0 _ L Xl 0

or

• _ ~ (6 21)z = +Bu .

Our first trial was

R = I

Q = I .
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The resulting closed-loop elgenvalues are

-0.377 ± 1.200J

-1.7058

-0.435 ± 0.269j

-0.139

These closed-loop eigenvalues are too lightly damped. So, in order to increase

the damping, we increased the weighting on the roll rate. In addition, in

order to raise the integrator action somewhat, we Increased the weights on the

two integrator states. We finally settled on

R = I (6-22)

m

3 0 0 0 0 0

0 20 0 0 0 0

0 0 i 0 0 0

QLAT = (6-23 )
0 0 0 I 0 0

0 0 0 0 4O 0

0 0 0 0 0 40

which produced closed-loop eigenvalues of

-0.855 ± 1.50j

-.616 ± 0.504j

-1.877

-1.104

and a state-feedback gain matrix of
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8.0152 -0.8558 -12.6637 -2.8876 5.9409 -2.1514 --

-2.6946 5.1579 5.5219 10.3317 1.8254 5.0554

GLT I -1.1336 2.2747 2.3427 4.5473 0.8477 2.2211 (6-24)

-1.1340 2.2109 2.3305 4.4249 0.7986 2.1638

-0.5543 0.4002 1.0030 0.8584 -0.1300 0.4463

By examining the individual elements of GLT , we can determine that the control

gains are not too large and are quite acceptable. Remember that the inputs

and states have been scaled.

The singular values of the scaled loop transfer function for this final

design are given in Fig. 6-1. The dominant contributing inputs to each loop

are shown on the plot, as determined by examining the left singular vectors.

The loop transfer function crossover frequency of about 3 rad/sec provides

sufficient bandwidth for command following and adequate stability margins.

Figure 6-2 shows the singular values of the loop broken at the error signal

for command following (x in Fig. 5-1). They look quite good and we expect

the lateral subsystem to follow v and _ commands very well. Figure 6-3 shows

the singular values of the closed-loop map from reference inputs to actual

outputs. We expect it to follow commands well out to about i rad/sec, and do

extremely well out to O.1 rad/sec.

6.2.2 Longitudinal Design

The longitudinal model we have is given by

---0.0374 0.1055 -0.0869 -0.3217 --

-0.2763 -0.7054 2.1541 0.0042

ALON = (6-25)
-0.0201 -0.6228 -0.5193 -0.0003

0.0000 0.0000 1.0000 0.0000
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Figure 6-1. Singular Values of Lateral Loop at Plant Input
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0.0007 0.0007 0.0038 0.0007 --

-0.0169 -0.0162 0.0000 -0.0181

BLON = (6-26)
-0.2210 -0.2118 0.0063 -0.0570

o.oo00 o.oooo o.oooo o.o0oo

with states

4

Fu/IO0-- forward velocity, ft/sec

I downward velocity, ft/sec

w/100

x = = (6-27)
l q pitch rate, rad/sec

0 pitch angle, radm

and inputs

I -_cs/lO

_CE/20

u = (6-28)

I _CT/IO00_CA/20 -J

At first, it was decided to control just pitch angle in the longitudinal

axis. The pilot's thrust control would then be used as a setpoint for the

control system, with the feedback system making adjustments to that setpoint.

In order to control pitch angle with zero error in steady state, we

augment the system with an integrator on pitch angle. Let

CLO N = [ 0 0 0 i ] (6-29)

so that

8 = CLO N x (6-30)
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Then our new (augmented) system model becomes

°°]E]E°]• ffiz ffi + u (6-31)

xI CLO N 0 xI 0

or

We then proceed to design an LQ regulator for this augmented model. We used

RLO N = I (6-32)

and tried several diagonal Q matrices. However, we could not get the eigen-

values sufficiently far into the left-half plane to obtain satisfactory speeds

of response, so we used the following trick. We let

AT = A + al (6-33)

for _ = 0.I. We then solve the LQ problem for some Qo and Ro matrices using

AT and B. This corresponds to solving the problem of minimizing

J = f e2at[ xTQx + uTRu ]dt • (6-34)
0

When the resulting state-feedback matrix G is used with the matrix _, we are

guaranteed that

Re{li(_-BG)} _ - e , i = 1,2,...,n+p . (6-35)
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In order to be able to recalculate this G with the normal Rlccatl equa-

tion, we note that the R_ccatl equation for this problem is

0 = K[_+_I] + [_+_I ]T K + Qo - KBRo-IBTK (6-36)

or

0 = K_ + ArK + [Qo+2O_K] - K_Ro-I_T K . (6-37)

Therefore, if we solve Eq. 6-36 for K, then Eq. 6-37 shows that the solution

is identical to the standard solution with

QLON = Qo + 2c_K . (6-38)

We have, as usual, G = -Ro-IBK. The computationof QLON in Eq. 6-38 is nec-

essary for redesign purposes. We selected

2 0 0 0 0

0 2 0 0 0

Qo = 0 0 40 0 0 . (6-39)

i00000j0 0 0 0 60

The heavy weighting on the pitch rate state tends to help damp those modes

associated with it and the weighting on the integrator state brings the inte-

grator action (as seen in the singular values) up to a suitable level.

The singular values of the loop transfer function for this design are

shown in Fig. 6-4. Note that the loop corresponding to thrust is quite low.

This implies that those states which are regulated using collective thrust

will not be regulated very well. By projecting the left singular vector cor-

responding to this loop onto the space spanned by the columns of the G matrix
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Figure 6-4. Singular Values of Longitudinal Loop at Input
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for this design, we see that forward velocity is the dominant state being con-

trolled at low frequencies for this loop. Thus, we would expect inadequate

regulation of u from this design. This is shown in Fig. 6-5 which gives the

scaled closed-loop response to a step in commanded pitch angle.

While this design may be adequate for a pilot in the loop control systems,

our present goal is to develop a control law which can be demonstrated auto-

nomously on the NASA-Langley Research Center nonlinear simulation. Therefore,

better regulation of forward velocity (u) is desired. Several designs which

brought the thrust loop up to a higher level at low frequencies were examined.

However, none were able to achieve good steady state regulation without severely

reducing the robustness of the design to the highly significant throttle

dynamics. For this reason, we added an integrator state corresponding to the

integral of forward velocity.

With this additional integrator, the augmented system model is given by

Eq. 6-31 with

CLON = • (6-40)
I 0 0 0

Initially, we tried using the trick described by Eqs. 6-33 through 6-38 with,

Qo = diag[2, 2, 40, 6, 60, 2] (6-41)

(which is the same as Eq. 6-39 with an additional weight for the integral of

u state). This design produced good steady state regulation of u and good

robustness to engine dynamics, but resulted in too much control action in _CA"

In order to keep the singular values of the scaled loop transfer function the

same and shift the control action from _CA to 6CT , the diagonal element of the
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RLO N corresponding to thrust was decreased by a factor of ten and the rows

and columns of the Q matrix computed from Eq. 6-41 and Eqs. 6-33 through 6-38

which correspond to welghtlngs on u and fu were also reduced by a factor of

ten. The result is,

NEO N = dlag[l, I, .I, I] (6-42)

D

69.7531 9.5838 -3.1061 -19.7252 13.6632 1.3749 --

9.5838 4.5549 -1.6185 -6.0149 1.5320 0.1662

QLON = -3.1061 -1.6185 46.2520 11.1358 5.3199 -0.0729 (6-43)

-19.7252 -6.0149 11.1358 46.2064 16.8045 -0.3857

13.6632 1.5320 5.3199 16.8045 88.8258 0.1769

1.3749 0.1662 -0.0729 -0.3857 0.1769 0.6618m

and

1.3978 1.4598 -6.8311 -11.6557 -6.2575 0.1939 --

1.3388 1.3988 -6.5467 -11.1701 -5.9972 0.1858

GEON = (6-44)
27.9237 3.8726 1.4870 -4.0887 10.0066 2.4249

-0.8064 0.1156 -1.6578 -2.4716 -1.9209 -0.0407

The singular values of the scaled loop transfer function for this design are

shown in Fig. 6-6. The design has adequate robustness to engine dynamics and

improves the regulation of u during a pitch step as shown in Fig. 6-7. Of

course, increased use of thrust is made during the pitch step of .i radian.

In fact, it requires about 8000 ibs. of collective thrust in the steady state

to regulate forward velocity during this maneuver. This is deemed reasonable.
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Figure 6-6. Singular Values of Scaled Longitudinal Loop at Plant Input

79



0 _L.',
| I I I

L} 20 _

I
! *
I

|i • W
_1 I 'l

A ¢:_'_ " _" .... _ • .

"k '-----

-0 1.} _ "..... U "-_"-
.°.._-o'_

-,:. -'-,-" ! ! I I

SEC R-3126

Figure 6-7. Closed Loop Response to Pitch Step(Scaled Quantities)

80



The closed loop e_genvalues are

-1.17 ± .97J

-1.07

(6-45)
-.71

-.I0 ± .02j

Figure 6-8 shows the closed loop command following singular values.

Based on th_s f_gure, velocity following is good to about .05 r/s and pitch

angle follow_ng is good to about 2 r/s.

6.2.3 Global Design

We can now assemble the two subsystem designs into one global design.

To do this, we simply set

i

ALo N 0 _
AGLOB = 12×12 (6-46)

0 ALA T

L_FBLON 0

BGLOB = I 12x9 (6-47)

0 BLA T

where (ALoN,BLON) is the augmented longitudinal subsystem and (ALAT,BLAT) is

the augmented lateral subsystem. We continue

QGLOB = 12x12 (6-48)

0 QLAT

RLo N 0

RGLOB = 9x9 (6-49)

0 RLA T
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and we can solve one large Riccatl equation to get the feedback gain

GLo N 0

- 9x12 (6-50)
GGLOB 0 GLA T

where GLO N and GLA T should equal the gains we calculated in the previous two

subsections (6.2.1 and 6.2.2).

We would llke to convert our feedback gain back to the original inputs

and states, so that it can be used on the full nonlinear simulation. Since

Xp = TI • xa (6-51)

Up = Sl-i • BMI X • ua (6-52)

and our regulator design minimizes

oo

J = f [XpT QGLOB Xp + upT RGLO B Up]d t (6-53)0

for Xp and up scaled. We could use

J = f=[XaugT QFXaug + ua RFUa]dt (6-54)
0

where XaugT = (xaT , CxaT )

and

Aa 0

AF = 12x12 (6-55)
C 0

 Ba]BF -- 12 x9 (6- 56 )
0
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IO 0 0 1 0 0 0 07C = 0 0 0 0 I 0 0 0 J (6-57)

0 0 0 0 0 0 0 i
1 0 0 0 0 0 0 0

so that

Xaug = AF Xaug + BF Ua (6-58)

and

q

0

V

-- Cxa • (6-59)

u

We then define a larger scaling matrix

C )T2 = diag .01, .01, i, I, I, .01, • .01, I, i, i, .01, 1 (6-60)

where we must scale the integrator states too, and a permutation matrix P

i 0 0 0 0 0 0 0 0 0 0 0-7
O i O O O O O O O 0 O O

0 0 i 0 0 0 0 0 0 0 0 O

I 0 0 0 i 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 i 0 0 O

p = O O O 0 0 0 0 0 0 0 0 i 12x12

0 0 0 0 i 0 0 0 0 0 O 0

0 0 0 0 0 I 0 0 0 0 0 0

0 0 0 O 0 0 i 0 0 0 O 0

0 0 0 0 0 0 0 i 0 0 0 O

0 0 0 0 0 0 0 0 0 I 0 0

O 0 0 0 0 O O 0 0 0 i O (6-61)

in order to mix the integrator states back into the order we used for AGLOB.

Then we use

QF = pT . T2T . QGLOB " T2 " P (6-62)
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and

RF - (SI-I BMIX)T • RGLOB • ISl-I • BMIX) (6-63)

with the model (Eqs. 6-55 and 6-56) to obtain a state feedback matrix which

corresponds to the scaled design versions (i.e., same physical feedback). The

matrices are

I.IO00D-06 -9.0000D-07 O.OOOOD+'O0 O.OO00D+OO O.OOOOD+-OO O.O000D+O0 0.OOOOI>+O0 O.OO001)+O0 O.OOOOD+-O0 --

-9.0000D-07 I .IOOOD-06 O. OOOOD+.OO O. O00OI>+OO O. OOOOM O.O000D+O0 O. OOOOD+OO 0.0000D+OO O. O0001>+OO

O.OO00D+O0 0.00OOD+OO 2 .OOOOD-O20 .OOOOD+O00. OOO0D-H)O O.0000I>+O0 O.O00OD+O0 O.O0001>_0 O.O000D-H)O

O.O000D+O0 O.OOOOD+O0O.OOOOD+O02.0000D-02 O.OOOOD+O0O.O000D+O0 O.OOOOI>+OOO.O00OD+O0 O.OOOOI>+O0

P'F" 0.O000D+O0 0.0000D+O0 0.OO00D+O0 0.00001)+O0 2.50001)-.O3O.00001)+O0 0.O00OD+O0 0.O000D+O0 0.00OOD+.O0

O.O000D+O0 0.0000D+O0 0.0000D+O0 O.O000D+O0 0.0000D+O0 5.0000D-03 0.OO00D+O0 O.0000D+O0 0.O000D+O0

O.O000D+O0 0.O000D+O0 O. 0000D+O0 0. O000D+O0 O. 0000D+O0 O. 0000D+O0 5.0000D-03 O.O000D+O0 O. O00OD+O0

O. O000D+O0 O.O000D+O0 O.OOOOD+O0 O.O000D+O0 O.O000D+O0 O.O000D+O0 O. OOOOD+OO 5.0000D-03 O. O00OD+OO

--O.O000D+O0 O.OO00D+O0 O.O000D+O0 O.O000D+O0 O.OO00D+O0 O.0000D+O0 O.OOOOD+OO O.OO00D+O0 5.0OOOD-03__

(6-64)

6.9753D--O3 9.$838D-O4 -3.1061D-O2 -1.9725_--0! O.OOOOD_OO O.OOOOD+OO 0.OOOO_-00 0.OOOO_'.OO 1.3_3D-Ol 0.0OO0_+00 0.0OOOC_30 1.37_9D--O4

9.58_$D--OA A.5549D-O4 *L*6Z85D-O2 -6.0149D--O2 O.(XX)OD4430 0.OO_3D*_O O.OOOOD_O_ 0.O_OOD_OO Z.5320D"02 O,OOOOD*O0 O.O0_3D*_O L*6616D--0_

-3.10%ID-O2 -l.&185D-O2 4.625EP+O1 1.1136D_O1 O.0OOOD+OO O.0OOOD_O_ 0.O(X)O_ 0.00OOD_OO 5.3199D+00 O.OOOOD+OO O.OOOOD+00 -7.2934D-O4

-1.9725_,-01 ,_.0149D-O2 1.11361_"O1 4.62OE1_O! 0.0OO0_+00 O.OOOOC_OO 0.OOOO_-00 0.0OO01)_30 1.680_I_-01 O.OO0_D_30 0.0OO0_OO -3.$}71D-03

O. OOOOD+OO O. OOOOD*<)O 0.0OOOD'e-_ O.OOOOD+OO 3. 0000_34 0. OOOOD+OO 0. OOOOD+O0 0. OOOOD*O0 0 .OO_ 0,*-OO O. 00_ D,6,00 0. 00000._OO O.0OOOD,_O

O. O_D-'OO O.OOOOD+OO O.OOOOD_ 0.00_D_00 0,0000D*OO 2.0000D_Ol O.OOOOD+OO 0.OOOOD*OO 0.OOOOC_<)O O .OOCOD_ O.OOOOD*OO O.OOOOD+OO

0. OOOOD+OO 0.OC_D*OO 0. OO0_D*OO 0 •OOOOD'*OO 0. OOOOD+OO 0.OOO_ D-'OO 1. O0_)0._O0 0. O000D',,O0 O.OQOOD.,OO 0.00_OD_O 0.0000D+OO O.OOOOD+O0

0 .OOOOD+OO 0 .0_0 D.*-OO O.OO0_D_OO 0.0OO0_00 0. OOOOD+O0 0.00_D,.OO 0. OOOOD+OO 1. 00_O_O O. _O0_,O0 0. OOOOD,OO 0.0OOOD.,O0 0.0OOO_.00

I. 3663D--O1 !. 5320D-O2 S. 3199D_00 1.6804_.01 0.0OOOD4-_O 0. O(X3OI>+OO O. OOOOD*OO 0. OOOOD+OO |.8826D_'O1 O. OOOOC+OO O. OOOODº*_O 1• 7685D-'03

O .0OOOC_-O0 0.0000D_OO 0.0OOOD*_O 0.0OOCD_OO O.0OOOD_OO O.(XX)OD*OO 0.0OOO_)_00 O.0OOOD_OO 0.0OO0_OO _.OOOOD-O3 0.OOOOD_OO 0.O0_D_)O

0. OOOOO'_O O. OOOOD'_O O. OOO_D+OO 0. OOOOD--OO O.OOOOD+_ 0. OOOOD--OO 0. OOOOD+00 0.0OOOD*OO 0.0OO_D-"OO O.OOOOD._O _ .OO_D+O1 O.OOOOD'_O

1.3749D--O4 1.66160-O5 -?.293_D-O4 -3.8571D-O3 0.0OOOD.,-OO 0.OOOOD_OO 0.OOOOD_OO O.OOOOI>,.O0 1.768-8D-O3 O.0_OOD+OO O.OOOOD+OO 6.6181D-05

(6-65)

-- 1.39&IF+O2 1.9358IM'O! 7._412D+O2 -2.0_27D+03 -2.771_1>,w30 2.OOIOD',O2 5.O151D'_O2 4.29190*02 5.0039D','O3 "-_.5(X_TD-OI 2.2317D_-O2 1.2124E_4DI

1.3961D*_2 1.9358D'_'01 7._412C,_O2 -_.0427D4-O3 2._713C-,'OO -2.OOIOD'_32 -5.0151D+g2 -4.29|9D4-02 5.0_3qD'*_3 6.5OO7D--01 -2.23l?D+O2 1.2|2_D+Ol

7.OO_2D-O2 7.3015D-O2 -3.6156D4-O1 -_.8283I>+O1 -5.66801>-02 1.137_I>,_01 1.1716C"O1 2.2737D.w01 -3.12821_'01 _.238_D-02 I.IIO_D'_31 9.71160--03

7.00_2D-02 7.3Ol5D-02 -3.4156D+01 -}.8283D+0! 5._68OD-O2 o1.1374I>"O1 -1.1714D'_01 -2.2737I>,'01 -3.12_2P,'O1 "-4.2385P-02 -I.II0%D_OI _.?i14D--03

_7 " 1.29OID-15 2.9076{)-16 -3._417D-I_ -5.2611D-1_ 1.60301>,-00 *I*711_D'_01 -2.5327D'_32 -_.7752I)*O1 1.0922D-14 1.18_82D'W)O -4.3027D+O1 2.0720D-16

1.336OD-O1 1.398_D--O1 -_.5_66D'_O1 -I.|169;>,'O2-l.1340D-Ol ._.2109D',-O1Z.33051_01 4._249D-'O! -5.9980D-'O1 7.9_58D-O2 2.163_D_01 1.8_5_D--O2

1.33_OD-O1 1.398_D-'O1 -_.5466D+O1 -1.|1_9D-,'O2 1.1340D--O1 -2.2109i>,'O1 -2.3305D'_O1 -4.4_491>,-01 -5.998OD',-O| -7.985H2 -2.1638D+O1 l.gS_SD-O2

-_.0708I)--O2 1.1551D--02 -I.6578D4K)I -2._714D','01 -2.6946D-O1 5.15791>"O1 5.52191>_01 1.0332D_2 -I._211D_01 1.825_D-01 5.055_D-'01 -4.0715D-O3

-8.O708D-02 1.1551D-O2 -I.6578D+OI -2.471_D_O1 2,694_-0! -5.1579D_01 -5.5219_._1 -I.0332_+O2 oI._211_'_I -I.$ZS&D-OI -5,055_O! -4.0751D-O3

(6-66)
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These matrlces can now be used with the original scaling and organization of

inputs.

Let

Gy -- [G4 G5 G8 GI] (6-67)

Gr = [G2 G3 G6 G7] (6-68)

GI = [G9 GIO GII GI2] (6-69)

where Gi is the Ith column of GF in Eq. 6-66 .

Then the equations of the compensator are:

xI = -r + Cxa - Cxo (6-70)

u = uo - GrX r - GyCx a + GyCx o + Gyr - GlX I (6-71)

where

0 0 0 I 0 0 0 0

C = 0 0 0 0 I 0 0 0 (6-72)

0 0 O 0 0 0 0 i

I 0 0 0 0 0 0 0

xr = Crxa

m

0 1 0 0 0 0 0 0

Cr = 0 0 1 0 0 0 0 0 (6-73)

0 0 0 0 0 I 0 0

0 0 0 0 0 0 i 0

and uo and xo are the desired setpoints.
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6.2.4 Summary of Nominal Control Design

A variety of linear simulations of the unfailed aircraft were performed.

These included responses to command steps with and without wind gusts. For

the gust simulations, the Dryden wind model [32] was used with a i000 ft. tur-

bulence scale length in the vertical and horizontal directions and a low rms

velocity (_ = 2 ft/s).

Since these linear simulations resemble the nonlinear simulation results

described in Section 7, we forego discussion of these results at this point.

6.3 INVESTIGATION OF TRIM SOLUTIONS FOR STUCK FAILURES

In this subsection, we provide some results of applying the quadratic

programming algorithm described in Section 3 to the linear trim problem for a

landing approach scenario. We assume, as usual, that sufficient information

about the failure is made available from the FDI algorithm (see Fig. 5-3).

Scenario Definition

The normal (unfailed) operating point for a B-737 aircraft flying at 127

knots, I000 feet, and a -3 degree flight path angle is given by the nominal

state vector, xn,

u I = 215 ft/s = velocity along the x-body axis

w = 8.7 ft/s = velocity along the z-body axis

q -- 0 r/s -- angular velocity about y-body axis

8 = -.68 deg. = pitch angle

Xn = Iv = 0 f/s = velocity along the y-body axis

I

!/ = 0 r/s = angular veloclty about x-body axls= 0 r/s = angular velocity about z-body axis
= 0 deg. -- roll angle (6-74)

87



and the nominal input vector, Un,

- 4251 ibs - left engine thrust

= 4251 Ibs = right engine thrust

= -5.45 deg. = left stabJlator deflection

6RS = -5.45 deg. = right stabilator deflection

Un = 6R = 0 deg. = rudder deflection

_LE = 0 deg. = left elevator servo deflectlon

= 0 deg. = right elevator servo deflection

= 0 deg. = left aileron deflection

= 0 deg. = right right aileron deflection (6-75)

The above flight condition includes a 40 degree flap extension, no spoiler

deflection and extended landing gear at a gross weight of 85,000 pounds.

A linear model for the aircraft about this operating point is given by

Eqs. 6-1 through 6-5. For this investigation, we will assume that the measur-

able disturbance (Wp in Eq. 3-6) which we wish to reject is caused by a stuck

failure of a control element. That is, the disturbance Wp, in each of the

cases we will examine takes the form

Wp = Adi bl (6-76)

where Adi is the difference between the stuck value of the i'th control element

and its nominal value, and bi is the i'th column of the B matrix in Eq. 6-1.

Regulated Variables

As demonstrated in [18], the choice of important quantlties, y, for trim

regulation greatly impacts the resulting solution. When y = x, for example,
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the linear trim problem results in a balancing of the force and moment dlstur-

bances by forces and moments applied by the control elements alone. While

this result may satisfactorily reject the disturbances, the amount of remaining

control authority available for use in controlling the airplane is substan-

tially smaller than when other choices of y are made.

For the current demonstration, our choice of y is motivated by two

factors. First a landing approach scenario, the primary objective should be

to maintain the desired approach flight path angle (in this case -3 degrees).

If this objective is met, and the aircraft can achieve it in a steady state

condition (i.e., x=-O) then runway intercept can be achieved as long as the

pilot/control-system has sufficient remaining control authority to establish/

re-establish the desired altitude and heading. Note that, while one m_ght

specify heading angle as a desired regulated variable, the trim solution will

not achieve the desired heading on its own. This is due to the fact that,

while the trim problem guarantees that its solution is an equilibrium point

for the system (Eq. 6-1), it does not guarantee that application of the re-

sulting nominal control values will achieve the solution unless the system is

strictly stable. Since heading angle appears as an integrator state in the

open loop aircraft, it can only be chosen as a regulated quantity if a heading

loop is present in the control system. Also, the solution to the trim problem

(if feasible) guarantees that the linear system used to approximate the air-

craft is in steady state. To insure that the true aircraft is in steady

state, the nonlinear equations of motion must be examined. The kinematic

equations relating angular rates to Euler angles (e.g., see [33]), suggest

that we can achieve constant Euler angles (e.g., e = _ = 0) by requiring that

all angular rates equal zero (i.e., P = Q = R = 0). If the linear model used
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in solving the trim problem corresponds to zero nominal angular rates, then we

will achieve steady state flight by requiring the angular rate perturbations to

be zero.

For the results that follow, yT = (y,q,p,r), where y represents perturba-

tions to the desired (nominal) flight path angle, and p,q,r represent pertur-

bations to the desired (nominal) angular rates. As in [18], the flight path

angle, y, is nonllnearly related to the states in Eq. 6-74. The C matrix

needed in Eq. 3-7 is, therefore, composed of the linear coefficients of the

Taylor expansion for this relationship. As shown in [18], we have

.00019 -.00465 0 i 0 0 0 0-_C = 0 0 I 0 0 0 0 0 _ (6-77)

0 0 0 0 0 i 0 0

0 0 0 0 0 0 i 0

Note that in the above, the constraint q = 0 is redundant for this linear

trim problem since at this operating point (Eqs. 6-74 and 6-75) e = q. Thus

q = 0 is already specified by the linear trim problem by the requirement x = O.

Constraints

In order to make the solution to the linear trim problem reasonable, we

must constrain the states and controls to the linear and realizable region

of the model in Eq. 6-1. First, we assume that the absolute limits on each

control are given by

_Lr, _RT € [1600, 17,000] ibs

6LS, _RS € [-14, 3] degrees

_R _ [-I0, i0] degrees (6-78)

6LE, _RE g [-i0, i0] degrees

_LA, _RA _ [-i0, i0] degrees
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Furthermore, we would llke to leave about 5 degreees of control authority

for each control surface so that these controls do not saturate when used

dynamically.

The linear region in state space is determined by a number of factors.

I. For nonviscous flows such as those encountered in most aircraft,
the llft and drag forces caused by control surface deflection
is approximately proportional to dynamic pressure or, equiva-
lently, to total velocity squared. Thus, each B matrix element
can be written

Bij = 8ijV2 = Bij(Vn+v)2 (6-79)

where Vn is the nominal total velocity and v is the perturba-
tion to Vn. For an allowable error of 20 percent in the B
matrix we must require that

8ij(Vn+v)2 - 8ijVn2 _ .28ijVn2 (6-80)

For v << 2Vn, Eq. 6-80 is true for Iv[ < .iVn or about
20 ft/sec.

2. For the flight path angle linearization (represented by C

in Eq. 6-77) to be valid, perturbations to Vx and Vz must be
limited. If we plot values of true y versus linear predicted

for various combinations of Vz and Vx, we see that the error
in y can be limited to.5 degrees by requiring perturbations to

Vx to be smaller than 20 ft/sec., and perturbations to Vz to
lie about within the range [-30, 20] ft/sec. Of course, if we

limit the angle of attack to a presumably linear range of 0

to I0 degrees, the constraint on perturbations to Vz becomes
roughly [-8.7, 20] ft/sec.

3. Assuming a linear envelope of plus and minus 5 degrees sideslip

angle, the side velocity perturbation limits are roughly plus

and minus 19 ft/sec. (based on a maximum velocity magnitude of

Vn + v = 215 + 20 = 225 ft/sec.).

4. For a landing approach, the attitude of the aircraft must be

such that the pilot can see the runway, and a safe landing

achieved. This implies that O be within the range of about

plus and minus i0 degrees and _ be within about ±5 degrees.

5. Since we will be minimizing perturbations to P, Q, and R, limits

on these values are arbitrary. In the algorithm definition,

we will use limits of [-_, _] radians/sec, which will never be
active. However, in cases where P, Q, and R are not regulated,

we might require IPl _ 3 deg/s and IQI,IRI _ 15 deg/s.
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Results

One of the most important factors in obtaining a fast and meaningful solu-

tion to the linear trim problem is the scaling of the solution variables. As

mentioned in [18], we can reflect the relative importance of the various ele-

ments in x and u by choosing a diagonal weighting or scaling matrix S such that

= S-lz

where z is the vector of states and controls given by zT = (xT,uT). Referring

to the quadratic programming problem (Eq. 3-14), the new (scaled) cost J2 becomes

_2 = (FS _- d)T(Fs _ - d) (6-81)

and the solution, z is given by z = Sz. The objective Jl will be the Euclidean

-- S-izL -- S-Izu.norm of z, and the constraints on z are _ z

The use of the scaling matrix S as detailed above implies that variables

which have large scale factors tend to be used more in the final solution.

For the purposes of this investigation, a reasonable choice of scale factors

result when the remaining "authority" of each variable is used as its scaling.

That is, if the limit on zi is symmetric about zero and equal to zLi , then Sii

is set equal to zLi. This will mean that variables whose nominal values are

far from their limits will be used more in achieving the minimum norm solution.

Also, this scaling implies that the scaled limits on zi are -i < z--i _ I.

Summarizing, the parameters of the quadratic programming algorithm (Eq.

3-14) for this investigation, we have,

zLT = (-20,-8.7,-3,-0.20,-19,-3,-3,-.09,-2650, (6-82)

-2650,-3.5,-3.5,-5,-8,-8,-5,-5)

zuT = (20,20,3,.20,19,3,3,.09,7750,7750,3.5, (6-83)

3.5,5,2,2,5,5)
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(i.e., S is a diagonal matrix with the values of zU given in Eq. 6-83 along

its diagonal)

I-w)d -- (6-86 )
0

Table 6-1 presents the linear trim solutions for disturbances, w, corre-

sponding to single stuck or frozen control elements at non-zero positions (as

in Eq. 6-76).

The engine failure (first column in the table) corresponds to a total

loss of thrust. In this case, the failure is compensated by applying a large

thrust to the remaining engine and then compensating for the remaining imbal-

ances by a combination of surface deflections and state perturbations. The

resulting flight-path angle can be computed by applying the perturbations of

Vx, Vz and e to the nominal values in Eq. 6-74 and 6-75 and computing the

resulting value of y = e - arctan(Vz/V x) = -3.5 degrees. Note that the total

Vy and _ values are nonzero indicating that the aircraft is using a sideslip

configuration to reject some of the lateral disturbances. This effect, and

the use of nonzero perturbations of Vx, Vz, and 6, we will call "attitude

coupling." The use of attitude coupling in the tr_m solution allows the air-

craft to achieve the desired condition (x=O, Y=Yd) w_th smaller values of sur-

face deflection as compared to the case where forces and moments are balanced
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TABLE 6-1. QP SOLUTIONS FOR VARIOUS FAILURES

FAILURE LEFT LEFT LEFT LEFT

ENGINE STABILATOR RUDDER ELEVATOR AILERON

SOLUTION -4251 LBS -8 DEG i0 DEG -12 DEG i0 DEG

STATE PERTURBATIONS:

Vx (f/s) -20 -20 2.9 -4.9 .08

Vz (f/s) 8.0 7.9 -1.2 2.0 -i.0

Q (r/s) 0 0 0 0 0

e (r/s) .036 .041 -.006 .01 -.005

Vy (f/s) 6.3 -5.4 Ii -2.7 5.4

P (r/s) 0 0 0 0 0

I
R (r/s) 0 0 0 0 0

(r) .049 -.018 .006 -.009 .017

CONTROL PERTURBATIONS:

LT (ibs) 0 -150 2750 24 -336

RT (ibs) 3113 -580 -2650 -200 130

LS (deg) 3.5 0 1.6 2.5 -.69

RS (deg) -3.0 3.5 -1.2 2.3 -.32

R (deg) -5.0 -1.5 0 -.81 1.7

LE (deg) 2.0 1.7 .26 0 -.II

RE (deg) -8.0 1.6 -.20 .36 -.05

LA (deg) 5.0 2.95 3.3 .80 0

RA (deg) -5.0 2.1 -3.8 .37 .28

NUMBER OF ITERATIONS

FOR CONVERGENCE: i0 3 2 i i
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by the control surfaces alone (i.e., forcing all states to remain unperturbed

and solving for a minimum J2 = JBu + wl). The use of attitude coupling is

particularly pronounced in the rudder failure case where a sideslip angle of

about 3 degrees results, and in the engine failure case where a bank angle of

2.8 degrees is maintained.

The effect of scaling is demonstrated by comparing Table 6-1 with Table

6-2. In Table 6-2 the same failure cases are used, but the scaling matrix S

is set equal to the identity (i.e., no scaling). For the rudder and engine

failures, two effects are clearly discernible. First, with no scaling (Table

6-2), the tendency is to use considerably more control-surface and attitude-

coupling perturbations with less thrust perturbations. This might be expected

since the scaled results (Table 6-1) put a smaller price on the use of thrust

perturbations. Also, in these two cases, several variables are at their

limits, and as a result, the number of iterations needed to find these solu-

tions is substantially greater than those in Table 6-1. In the other failure

cases, substantially smaller thrust perturbations appear as compared to Table

6-1, but the control surface and attitude coupling perturbations are not

affected as greatly as in the case of rudder and engine failures.

The above solutions provide some idea of the capabilities of the linear

trim algorithm for some fairly severe failure situations. In all cases

defined above, the feasible solution provided perfect disturbance rejection

capabilities (in the sense that Fz - d = 0 in Eq. 3-14). One of the issues

raised in early assessments of the restructurable control problem (e.g., see

[34]), was how the use of various nonstandard control surfaces would impact

the ability to recover a stable flight condition following a major failure.

The above results suggest that sufficient control authority among the normal
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TABLE 6-2. QP SOLUTIONS FOR VARIOUS FAILURES - NO SCALING

FAILURE LEFT LEFT LEFT LEFT

ENGINE STABILATOR RUDDER ELEVATOR AILERON

SOLUTION -4251 LBS -8 DEG i0 DEG -12 DEG I0 DEG

STATE PERTURBATIONS:

VX (f/s) -20 -12.9 -20 .07 5.3

Vz (f/s) 5.5 4.4 8.4 -.03 -3.1

Q (r/s) -.0O6 0 0 0 0

0 (r) .017 .02 .04 -.0002 -.01

Vy (f/s) 1.9 -6.3 15.8 -1.3 3.9

P (r/s) -.002 0 0 0 0

R (r/s) -.0002 0 0 0 0

(r) .03 -.018 .03 -.004 .01

CONTROL PERTURBATIONS:

LT (ibs) 0 -30 1510 -.01 -.21

RT (ibs) 2030 -30 -2140 -.01 -.2

LS (deg) 3.5 0 3.5 3.5 -2.6

RS (deg) -3.5 3.5 -3.0 1.8 2.4

R (deg) -5.0 -2.3 0 -.5 1.6

LE (deg) 1.6 2.0 2.0 0 -1.2

RE (deg) -8.0 2.0 -8.0 .87 1.2

LA (deg) 5.0 5.0 5.0 .99 0

RA (deg) 5.0 5.0 -5.0 -.93 -1.6

i

NI_ER OF ITERATIONS I

FOR CONVERGENCE: >30 6 9 2 I
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control elements seems to be available for rejecting the disturbances caused

by any single stuck or frozen control element failure. Therefore, the only

impact of using nonstandard control elements in the failure cases we have

examined would be in increasing the amount of remaining control authority of

the primary surfaces while maintaining the desired disturbance rejection capa-

bilities. We now demonstrate this effect by including the use of spoilers in

conjunction with the other surfaces in solving the trim problem.

Three issues which must be addressed before adding spoilers as a control

element in the trim problem are: (I) the nominal deflection value (about

which minimum perturbations will be sought), (2) the scale factor or weight

which will be used, and (3) the linear range of spoiler deflection.

While some advantage to using nonzero nominal spoiler deflections in the

trim problem exist (e.g., the ease with which these surfaces might be included

in a redesigned control system), such use is likely to result in spoiler de-

ployment upon a false failure alarm. While this may not be a major drawback,

_t would increase the burden on any executive control logic system for deter-

mining when spoiler deployment is desirable. Therefore, in the results that

follow, we will assume a nominal value of zero spoiler angle in which, if

there are no disturbances to reject, all of the unfailed nominal deflections

will be maintained.

In order to insure that the spoilers are used when a failure does exist,

their use must be made cheap by proper choice of their corresponding scale

factors. For example, we can guarantee that a full spoiler deflection (of say

i0 degrees) is used before, say, 0.5 degrees of another surface (if they would

produce the same disturbance rejection capabilities) by making the ratio of
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their scale factors 200:1. For example, a scale factor of 5 on other surfaces

gives a desired spoiler scale factor I000 degrees. Finally, to maintain model

accuracy, we must limit spoiler deflection to the range [0,8] degrees.

The augmented B matrix for the results that follow is

O.38E-O3 O.38E-03 0.0068 0.0068 0.0OOO 0.0032 0.0032 0.0036 0.0036 -O.0164 -0.0164 --

-0.29E-06 -0.29E-06 -0.1688 -0.1688 0.00OO -0.0809 -0.0809 -0.0904 -0.0904 O.1733 0.1733

O.63E-05 0.63E-05 -0.0221 -O.0221 0.0OOO -O.O106 -0.O106 -0.0028 -0.0028 0.0021 0.O021

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
B-

0.0000 0.0000 0.0000 0.0000 0.1389 0.0000 0.0000 0.0005-0.0005 0.0262-0.0262

0.21Z-05-0.21£-050.0076-0.00740.0093 0.0036-0.0036 0.0082-0.0082-0.0X970.0197

0.12E-04 -0.12E-04 0.0004 -0.0004 -0.0109 0.0003 -0.0003 0.0007 -0.0007 -0.0026 0.0026

__0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 O.0000 0.0000 0.0000 0.0000 0.0000

(6-87)

where the last two columns correspond to the estimated spoiler effectiveness.

Table 6-3 summarizes the result of applying the quadratic programming

algorithm with the spoiler-augmented B matrix to the linear trim problem for

the failure cases used in the previous discussion. Comparing Tables 6-1 and

6-3, we see that in the case of engine, rudder and aileron failures, the use

of spoilers, as expected, reduces the amount that the primary control surfaces

must contribute to the trim solution.

Summary

The results presented in this section demonstrate the operation of a

quadratic programming algorithm in the solution of the linear trim problem

for several failure cases of interest. The importance of scaling the solution

variables was demonstrated and it was seen that: (i) the amount of control

usage of one element relative to other elements (and the relative amount of

attitude coupling) could be modified by proper choice of scale factors, and
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TABLE 6-3. QP SOLUTIONS FOR VARIOUS FAILURES - WITH SPOILER DEFLECTIONS

FAILURE LEFT LEFT LEFT LEFT

ENGINE STABILATOR RUDDER ELEVATOR AILERON

SOLUTION -4251 LBS -8 DEG i0 DEG -12 DEG I0 DEG

STATE PERTURBATIONS:

Vx (f/s) -6.9 -20 1.33 -4.8 .92

Vz (f/s) 4.6 7.9 1.29 2.07 -.01

Q (deg/s) 0 0 0 0 0

8 (deg) 1.3 2.3 .32 .60 -.01

Vy (f/s) 9.25 -5.4 15.6 -1.9 .36

P (deg/s) 0 0 0 0 0

R (deg/s) 0 0 0 0 0

(deg) 3.93 -1.02 1.9 -.34 -.06

CONTROL PERTURBATIONS:

LT (Ibs) 0 -148 1815 9.6 129

RT (ibs) 4558 -577 -1222 -140 119

LS (deg) .80 0 .31 2.51 -.30

RS (deg) -1.3 3.50 .18 2.39 -.30

R (deg) -5.0 ! -1.51 0 -.52 -.13

LE (deg) .14 1.69 .05 0 -.05

RE (deg) -.23 1.63 .021 .37 -.05

LA (deg) 3.6 2.95 .35 .74 0

RA (deg) -2.0 2.10 -.12 .44 -.05

LSP (deg 0 0 0 0 4.90

RSP (deg) 8.0 0 8.0 .65 1.08

NUMBER OF ITERATIONS

FOR CONVERGENCE: 20 3 5 2 3
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(2) the number of iterations needed to obtain a solution is greatly influenced

by the particular choice of scale factors. In addition, the use of nonstan-

dard control elements was demonstrated by considering the addition of spoiler

control elements. In most cases, the addition of spoilers caused the resulting

solution to achieve the desired flight condition with smaller values of nominal

primary control surface perturbations.

6.4 LINEAR ANALYSIS OF CONTROL LAWS FOR STUCK FAILURES

In this subsection we present a brief summary of the results of an exten-

sive linear analysis of the control redesign procedure. The matrix of test

cases is shown in Table 6-4. For each test case, the closed-loop eigenvalues

were determined, the singular values of the loop transfer function (LTF) were

plotted versus frequency, a linear simulation of the aircraft response to

wind gusts was performed, step responses to stabilator and engine failures

were examined, and, in the correct redesign cases (4xx), the initial condi-

tlon response to a particular trim solution was found. In addition, wind

gust responses for the no-failure case were found. Note that in these trials

using the redesigned control law when there is no failure, is identical to the

case when there is a failure and it is correctly identified. The simulations

are all based on a linear rigid body approximation to the aircraft dynamics.

No actuator dynamics and no travel limits are imposed, however, in most cases,

the control surfaces remain within their saturation limits. Some character-

istic results are presented below.
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TABLE 6-4. MATRIX OF TEST CASES WITH MNEMONICS

NO CORRECT INCORRECT INCORRECT

REDESIGN REDESIGN REDESIGN REDESIGN

LT 3LT 4LT

LS 3LS 4LS 5LS/LE

R 3R 4R 5R/LA

LE 3LE 4LE 5LE/RE 5LE/LS

LA 3LA 4LA 5LA/R

LA & RA 3LARA 4LARA

LS & RS 3LSRS 4LSRS

LS & LE 3LSLE 4LSLE

Key: R/LT = Right/Left Engine 3XX = No Redesign Cases

R/LS = Right/Left Stabilizer 4xx = Correct Redesign Cases

R = Rudder 5xx = In Correct Redesign Cases

R/LE = Right/Left Elevator

R/LA = Right/Left Aileron

I01



Table 6-5 provides the eigenvalues (listed In order of decreasing real

part) for some of the no redesign and correct redesign cases (3xx and 4xx).

Note that no distinction between lateral and longitudinal modes is made in the

table since the aircraft does not, in general, decouple when a failure occurs.

For comparison, the open loop eigenvalues (including the 4 integrator states)

are:

Longitudinal Modes Lateral Modes

-.61 ± 1.5J (short period) -1.7 (roll subsidence)

-.017 ± .17 (phugold) -.058 ± l.lj (dutch roll)

0.0 (integrator) -.0063 (spiral) (6-88)

0.0 (integrator) 0.0 (integrator)

0.0 (integrator)

and the closed loop eigenvalues for the baseline design are

Longitudinal Modes Lateral Modes

-1.2 ± .97j -1.9

-I.i -i.i (6-89)

-.71 -.86 ± 1.5j

-.i0 ± .023j -.62 ± .50j

In Table 6-5, a * denotes elgenvalues which are significantly different with

the redesigned control law as compared to the nominal control law when the

corresponding failure is present.

The most striking result is for the rudder failure (test cases 3R and 4R).

With no redesign, one elgenvalue appears at -.007 r/s. Although this is close

to the open loop spiral mode, the eigenvector associated with this mode is

actually comprised mostly of the side velocity integrator state. The rede-

signed control law moves this mode to -.16 r/s which is presumably superior.
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TABLE 6-5. CLOSED LOOP EIGENVALUES FOR TEST CASES (3XX) AND (4XX)

i I
3LT 4LT 3LS 4LS 3R 4R

-1.9 -1.9 -1.9 -1.9 -1.9 -1.9

-1.2 _ .97J -1.2 _ .97J -1.1 -1.1 -1.2 ± .97J -1.2 ± .97]

-1.1 -1.1 -1.1 _ 1.2J -1.1 _ 1.1J -1.1 -1.1

-1.1 -1.1 -.85 _ 1.5J -.86 ± 1.5J -.71 -.71

-.86 ± 1.5J -.86 _ 1.5J -.65 _ .36J -.78 ± .14j* -.47 _ .54J -.50 ± .55J

-.72 -.71 -.56 _ .46J -.62 _ .48J* -.13 _ 1.1J -.18 _ l.lJ

-.62 ± .5J -.62 ± 0.Sj -.I ± .02J -.I _ .02J -.I0 ± .02J -.16"

-.082 -.085 -.007 -.I0 ± .02j

-.065 -.066

i
3LE 4LE l 3_ I 4LA

[
-1.9 -1.9 -1.8 -1.8

-1.1 -1.1 _ 1.1j -1.2 ± .99J -1.2 ± .98j

-1.I ± 1.2j -1.1 -1.1 i -1.1

-.85 ± l.SJ -.86 _ l.Sj -I.0 -I.0

-.66 Z .34j -.79 ± .12j* -.82 Z 1.5j -.86 _ 1.5j

-.56 _ .47j -.61 ± .49J -.74 -.73

-.I0 _ .02j -.I0 _ .02J -.44 _ .46j -.60 ± .42j*

-.I0 _ .02j -.I0 _ .02j

I
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The wind gust response for these (rudder failure) cases shows slightly better

regulation of bank angle with the redesigned control law, although in both

deslgns, the oscillations are not desirable and much larger than the gust

response of the unfailed aircraft with the nominal control law. This is shown

in Figs. 6-9 through 6-11. Although the bank angle appears divergent in Figs.

6-10 and 6-11, it is actually reasonably regulated when the simulation is run

for longer time periods. With the redesigned control law, any improvement

in regulation is accomplished through the increased use of differential ele-

vators, stabilators and throttle. It appears that differential aileron is

used in the same manner for both cases 3R and 4R.

Table 6-6 shows the closed loop eigenvalues for several combinations of

stuck failures. For the failure of both ailerons (test cases 3LARA and 4LARA),

the eigenvalue at -.84 ± .05j with no redesign becomes overdamped at -i.0

and -.98 when the redesigned control law is implemented. In the other cases,

underdamped modes with no redesign become better damped when the redesigned

control law is used. In addition, it is interesting to note that in many

cases, the redesigned eivenvalues revert back closer to the original baseline

eigenvalues than do the non-redesigned eivenvalues. The wind gust responses

for cases 3LSLE and 4LSLE show that better regulation of forward velocity (u)

is achieved with the redesigned control law and that this is accomplished

through the increased use of collective ailerons and throttle. Figures 6-12

and 6-13 compare the velocity regulation performance of the nominal and rede-

signed control law with stuck left stabilator and left elevator•

The step response of the closed loop system to a hard-over failure is

given by

x = (A-BG)x + w (6-90)
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where x is the perturbation of the state variables from their unfailed trim

values, w is the step disturbance caused by a hard-over failure (see Eq. 6-76),

B is the effectiveness matrix for the failed aircraft, and G is the feedback

gain. Figures 6-14 and 6-15 compare the response to a failed throttle using

the nominal feedback gain (no restructuring) and the feedback gain determined

by the control resdeslgn procedure. Surprisingly, the aircraft seems to

recover from the failure without saturation of any control element even with

no control law redesign. The maximum angle of attack during this recovery is

3.5 degrees and the maximum bank angle is about i degree. Forward velocity

is reduced by about 8 fps before it begins to increase. With the redesigned

control law, the most noticable effect is the slightly decreased use of rudder

and aileron controls during recovery.

The step response to a stabilator runaway (both stabilators hard-over to

their negative limit) was also examined. In both the cases (redesign and no

redesign) recovery is accomplished only by exceeding the saturation limits of

the elevators. When the feedforward trim solution is applied for this case,

recovery is accomplished without saturation of the elevators, however, the

remaining throttle is initia!ly retarded to zero thrust which, presumably,

violates allowable operation. Further examination of these cases appears in

Section 7, where they are simulated on a nonlinear aircraft model which includes

the various surface travel and rate limits as well as actuator dynamics.

Finally, Table 6-7 shows the closed loop eigenvalues for several misclas-

sification cases. That is, the actual control effectiveness (B matrix) corre-

sponds to one failure, buu the control law redesign is implemented for another.

The net effect of a misclassiflcation is to remove both the surface which is

failed and the surface which is identified as failed from use in the redesigned
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control system. As a result, the elgenvalues in Table 6-6 tend to resemble

the cases corresponding to a failure with no redesign. This is particularly

evident for case 5R/LA where we see the integrator mode at -.008 r/s which is

very close to the mode at -.007 for case 3R.
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TABLE 6-6. CLOSED LOOP EIGENVALUES FOR COMBINED FAILURE TEST CASES

-1.7 -1.7 -1.8 -1.8 -1.9 -1.9

-1.2 -1.2 ± .98j -1.1 -1.1 -1.1 -1.1

-1.2 ± 1.021 -1.0 _ -.87 ± 1.3J -1.0 ± 1.2J -.90 ± 1.3j -1.0 + 1.121

-.84 _- .0521 -.98" -.85 ± l.SJ -.86 4"1.5J -.83 ± 1.5J -.86 + 1.5J-.73

-.80 *- l.Sj -.87 ± 1.5j -.55 ± .49j -.69 _- .22j* -.65 -+ .44j -.66 -+ .24j

-.26 -_ .35j -.59 ± .24j* -.45 -+ .39j -.61 -+ .47j* -.36 -+ .41J -.63 -+ .45j*

-.iO ± .02J -.I0 +- .02j -.I0 -_ .02J -.I0 +- .02j -.I0 -+ .02J -.IO -+ .O2J

TABLE 6-7. CLOSED LOOP EIGENVALUES FOR MISCLASSIFICATION CASES (5XX)

5LE/RE 5LE/LS 5LS/LE 5R/LA 5LA/R

-1.8 -1.9 -1.9 -1.8 -1.8

-I.I -I.I -I.I -1.2 t .98j -1.2 ± .99j

-.96 m 1.3j -.95 _ 1.321 -.95 ± 1.3J -I.0 -l.O

-.85 _ l.SJ -.84 ± 1.5J -.84 _ 1.5j -.72 -.74

-.58 ± .46j -.65 _ .43j -.65 _ .43j -.41 ± .48j -.33 t .5OJ

-.57 ± .3721 -.14 ± .4OJ -.43 ± .40J -.II ± l.lj -.15 ± l.lJ

-.10 _ .0221 -.I0 t .02J .lO ± .02j -.lO ± .0221 -.16

-.008 -.10 ± .02j
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SECTION 7

SIMULATION RESULTS

The performance of the restructurable flight control system (RFCS)

described in Section 5 was tested at the NASA Langley Research Center using

that facility's modified B-737 aircraft (batch) simulation. This simulation

was chosen because of its extensive capabilities for simulating realistic

responses (during normal and failed flight) of the B-737 aircraft. Models

of this aircraft were used during this project for design and evaluation of

the RFCS concept and it is anticipated that some limited flight tests on

NASA's Advanced Transport Operations (ATOPS) B-737 aircraft may be possible.

A summary of the simulation's capabilities and the test results is presented

next. This is then followed by a more detailed description of the full test

plan and a discussion of some of the more interesting results.

7.1 Sb_RY

The capabilities of the simulation which are relevant to this project

are listed in Table 7-1. The simulation is based on the 6 degree of freedom

equations of motion for a rigid body driven by aerodynamic, propulsive, and

gravity forces. The aerodynamic model is nonlinear and, for this project,

could not be altered. Full independent control authority is available and

realistic actuator models including rate and travel limits are employed. The

control system described in subsection 6.2 was implemented with the capability

to change the control gains and the nominal "trim" values at any preselected
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TABLE 7-1. CAPABILITIES OF NASA's MODIFIED B-737 SIMULATION

6 DOF R_gld body Equations

Nonlinear Aerodynamic Model

Independent Control Authority

Actuator Models (Rate and Travel Limits)

Control System

Command Generation

Sensor Noise

Wind Gusts

Failures

times during the simulation. All control redesign and trim calculations were

made off-line for the selected failure cases. A command generator which pro-

vided steps and ramps of commanded pitch angle, bank angle, sideslip, and

longitudinal velocity was also made implemented. Finally, the simulation

had the capability to simulate stuck (at last value) and hard-over (runaway)

failures including engine out conditions.

There were three important general results that were observed. First,

the nontraditional use of traditional control surfaces in a nominal feedback

control system to spread control authority amongst many redundant (in terms

of the forces and moments which can be produced) control elements provided

a significant amount of fault tolerance without any use of restructuring

techniques. In most single element failures, "recovery" was automatically

achieved and little loss in command response performance was observed. A

stuck rudder failure provided the most challenging single element failure
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situation since it is used extensively for damping the dutch roll mode and

since generation of side force is generally not possible with the other con-

trol elements.

Secondly, the use of new feedback gains (provided by the feedback control

redesign procedure) following a failure, alone can provide significantly

improved recovery as long as the control elements remain within their travel

limits and as long as uncertainty about the failure identity is properly

handled. This effect is particularly evident in the stuck rudder failure case.

When control elements reach their travel limits during a failure, performance

generally degrades as expected. In failure cases where the nominal control

system performed well by itself, the application of redesigned feedback gains

resulted in little, if any improvement. However, when a failure is misclassi-

fied and feedback control redesign is based on the incorrect control element,

potentially severe performance degradation can take place. By embedding FDI

uncertainty in the redesign procedure, significantly better performance is

achieved (over the misclassified failure case) although it is clear that cor-

rect failure identification (and subsequent application of redesigned feedback

gains) provides the best performance during failures.

Finally, the use of the feedforward trim solution in conjunction with

redesigned feedback gains, allows recovery to take place in most cases, even

when significant control saturation occurs. This is generally due to the fact

that any servo errors resulting from a failure are quickly reduced by appli-

cation of the feedforward trim solution. Since the redesigned control system

stabilizes the aircraft and the servo errors remain small due to the feed-

forward trim, recovery is generally achieved even when many control elements

reach and remain at their travel limits.
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7.2 IMPLEMENTATION AND TEST PLAN DETAILS

In all of the results to be subsequently presented, the following assump-

tlons were made.

I. All simulation runs were begun in the nominal configuration

defined in subsection 6.1. The nominal trim values (Xo,Uo)
initially applied to the aircraft are given by Eqs. 6-74
and 6-75.

2. In order to handle windup of the integrator states during

control saturation, Eqs. 6-70 and 6-71 are modified to:

Xl = GI (Y - Yo - r) (7-1)

u = uo - Grx r - Gy(y - Yo - r) - xI (7-2)

Since there is, now, one integrator state per control element,

when a particular control reaches its travel limit, the cor-
responding integrator state is held at its last value until

the corresponding control comes out of saturation.

3. In most cases (except where noted in subsection 7.3) the

travel limits on each control element are given by their

allowable perturbations from trim and take the following
values•

Stabilator limits (-9 to 8 degrees)

Elevator limits (±20 degrees)

Aileron limits (110 degrees)

Rudder limits (±i0 degrees)

Spoiler limits (0 to 40 degrees)

Throttle limits (-i0 to 40 degrees)

4. All applications of the redesign technique (except where
noted) were implemented by setting the column of the B

matrix defined in Eq. 6-5 corresponding to the failed
control element equal to zero.

5. Finally, the definitions and values used in solving the
trim problem are (except where noted) given by Eqs. 6-82
through 6-87.
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The overall test plan was designed to demonstrate the ability of the

aircraft to recover from a failure and follow subsequent commands under the

following conditions.

I. No redesign (nominal feedback system only),

2. Gains only (application of redesigned feedback gains at the
time of failure),

3. Gains and Trim (application of redesigned feedback gains

and feedforward trim values at the time of failure),

4. FDI delay (application of gains and trim at seledcted times

following a failure),

5. FDI mlsclasslficatlon (application of redesigned control

gains for an unfailed control at the time of failure and

use of uncertainty in the redesign technique),

6. Spoilers (use of spoilers in the solution of the trim problem

and application of gains and trim values at the time of
failure.

Each of these "test cases" were examined for a variety of failure modes

including:

I. Individual stuck surfaces (left or right stabilator, elevator,
aileron and rudder),

2. Stabilator runaway (runaway up and runaway down),

3. Engine out,

4. Combinations of stuck failures.

In the next subsection, we present some of the more interesting results which

provide substantiation for the conclusions drawn in subsection 7.1.

7.3 DETAILED RESULTS

For single element stuck failures (including the engine out failure),

the nominal LQ control system performed quite well, both in terms of recovery

and subsequent command following.
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Figure 7-1 shows the command responses for a bank-sldeslip-pitch maneuver

for the unfailed aircraft (7-1a) and with the left elevator stuck at 3.6

degrees at t = 4 seconds (7-1b). We notice very little effect in the bank

response (4) during the bank maneuver in which the failure occurred or In

the subsequent sideslip response. The pitch response with the left elevator

failure shows slightly greater coupling during these lateral maneuvers but

follows the pitch command nearly as well as with no failure. Surprisingly,

little coupling in the lateral axis occurs during the pitch maneuver with

the stuck elevator failure. Figures 7-2 and 7-3 show the control usage for

the no-failure and left elevator stuck failure cases, respectively. Notice

that the disturbance caused by the stuck off-centered elevator is compensated

by a small amount of differential stabilator which is not present when there

is no failure.

Figures 7-4 through 7-7 examine the impact of a stuck rudder failure

occurring during a sideslip maneuver. Figure 7-4 shows the unfailed responses

to the baseline sidesllp-bank-pltch maneuver sequence. Figure 7-5 and 7-6 show

the sideslip (8) and bank (4) responses for a stuck rudder fallure occurring

at about t = 3 seconds (stuck off-center at about 7 degrees) for a variety of

test cases. With no reconfiguratlon, we see signficant dutch roll oscilla-

tions as expected from the linear analyses of Section 6. Significant residual

sideslip is still present at t = 60 secs. (about 55 secs. following the 8 = 0

command). The bank maneuver is performed with some loss in performance due to

the fact that the ailerons become saturated. This occurs because of the slg-

nlflcant use of ailerons to counteract the rolling moment of the stuck rudder.

A roll command in the opposite direction, would, of course, not cause aileron
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saturation and presumably result in much improved performance. When the rede-

signed feedback control gains are employed, we see that, although the dutch

roll oscillations are still not adequately damped (as expected from Section 6

analyses), B is eventually reduced to near zero. During the bank maneuver,

coordination is not maintained as desired, but the roll response is much im-

proved due to the fact that the ailerons no longer saturate. This is because

the redesigned control law makes greater use of differential elevator and sta-

bilator in rolling the aircraft to compensate for the lost rudder. When we

employ a feedforward trim (implemented at the time of failure assuming perfect

FDI) we see small changes in the B and _ responses. However, the control

usage is drastically altered, in general, keeping the stabilators and elevators

further from their limits and making more use of differential throttle to

compensate for the yawing moment induced by the stuck rudder. Note that two

trim cases were examined. In the first case, _ was constrained as described

in subsection 6.3 whereas in the second case, B = 0 was added as a condition

for feasible trim. The trim solution in both cases was feasible (zero error)

however, it is clear that the control usage is drastically different in these

two cases. Finally, Fig. 7-7 shows the throttle responses for the various

test cases. From this figure it is clear that the (steady state) reduction

in B error following a failure is due to the increased use of differential

throttle controls in the reconfigured cases.

Figure 7-8 through 7-13 deal with a stabilator runaway failure occurring

during the normal landing approach (no command generation). In each of these

cases, both stabilator panels are slewed to their negative limits (trailing

edge up) at about t = 3 seconds. Also, we employed elevator travel limits of

±15 degrees (instead of ±20 degree limits assumed in other runs). Figure 7-8
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shows various responses to the failure with no reconfiguration. A very high

pitch attitude (e) is reached before it begins decreasing with what appears

to be a stable phugoid oscillation. The high pitch attitude is accompanied

by a reduction of almost 20 knots in airspeed. This reduction comes very

close to the stall speed of the aircraft and at that time both elevators and

both ailerons are at their travel limits. No use of throttle is made because

of the "conflicting" (at least in terms of throttle usage in the nominal con-

trol system) elements of positive pitch error and negative airspeed error.

The use of redesigned feedback control gains by themselves provides little

help in this case as shown in Fig. 7-9. The problem is that, by design, we

can expect no faster responses from the redesigned control law (the bandwidth

limits of the original design are maintained) and all control elements, except

the throttle, reach their saturation limits fairly quickly. The throttle can-

not, of course, be used alone to recover from the dangerous near stall condi-

tion and is therefore not used in the redesigned control law. When we add the "

feedforward trim to the RFCS solution, a very reasonable recovery is achieved.

This is shown in Fig. 7-10. Notice that while the elevators saturate in this

case too (the trim solution is infeasible), the increased use of elevators,

ailerons and a throttle reduction, keeps the pitch attitude error from getting

very large. The velocity is kept large enough to easily avoid a stall by

its regulation to a new trim value of -11.8 knots below the old trim value.

Notice that the steady-state pitch attitude and velocity are different than

the unfailed trim case but that the flight path angle (y = -3) degrees) is

maintained reasonably well.

In Figs. 7-11 through 7-12, we investigated the effect of FDI delay by

varying the time at which reconfiguration (application of redesigned feedback
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control gains and feedforward trim) takes place. Figure 7-11 contains a 1

second delay (before any of the control elements saturate), Fig. 7-12 contains

a 3 second delay (after the elevators but before the ailerons saturate) and

Fig. 7-13 contains a I0 second delay (after both ailerons and elevators). As

expected, recovery performance degrades with increasing FDI delay, however,

in all eases, performance is better than without reconfiguration. Even with

a I0 second delay (Fig. 7-13), application of the feedforward trim solution

causes the throttle to be initially reduced which results in reduction of the

pitch error before the airspeed is decreased too much. The change of sign in

the pitch error then causes the elevator to come out of saturation to recover

the new pitch trim while the throttle is being increased to recover the new

airspeed trim. This nonstandard combination of control use to avoid stalling

the aircraft during a stabilator runaway, may be an obvious solution in retro-

spect. However, the ability to have this solution available, automatically,

to any pilot is an exciting advance in the potential for increased aviation

safety.

In the last set of tests, we examined the impact of uncertainty in the

FDI algorithm. Figure 7-14 shows various responses to a left elevator failure

(see Figs. 7-1 through 7-3 for baseline cases) for three different "uncertainty"

cases. The first plot in each series corresponds to an FDI misclassification

in which the left and right ailerons are declared failed instead of the left

elevator. We then implement only the feedback control gains corresponding to

a left and right aileron failure. In the second plot of each series we assume

a naive method of accounting for FDI uncertainty. In this case, since there

is, by assumption, confusion between three possible failure modes (left ele-

vator and left and right aileron) we use the feedback gains corresponding to
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failure of all three surfaces. Finally, in the last plot of each series, we

examine the efficacy of utilizing knowledge of uncertainty in the redesign

method (see Section 4). In the first two cases, the important responses are

fairly wild. This is, in part, due to the fact that we have three surfaces

which are not being used for both of these cases. In the last case, we

assumed the following:

I. The probability that the left elevator is failed (stuck)

P6, is .5,

2. The probability that the left or right a11erons are failed

(stuck), P7 and PS, are .25,

3. The expected value of the true B matrix is Bo (the unfailed
B matrix; note that this is formally inconsistent with the

assumptions I and 2, but can be justified on other grounds).

These three assumptions allow us to form the required sta-

tistics described in Section 4 for computing a redesigned

control law. In particular, we have (see Eqs. 4-17 and 4-19),

Bf = Bo

I 0 for j € i

_kilj =
_j2 . Bol j . Bok j otherwise

_j = pj(l-pj)

where j is the index corresponding to the potentially
failed surfaces.

The resulting performance in the last case is clearly superior to either

of the previous cases. This is due to that fact that all potentially failed

surfaces have nonzero gains (as expected). Comparing this case to Figs. 7-1

and 7-3, we see that the command responses are virtually the same as when no

redesign takes place, however, the control use in achieving these responses

139



is quite different. It is anticipated that in more severe cases (e.g., for

unstable alrcraft) that the use of the knowledge about FDI uncertainty in the

control redesign algorithm would show more dramatic performance improvements

as compared to the no-redeslgn case as well as in comparison to FDI m_sclas-

slficatlon cases.

140



SECTION 8

CONCLUSIONS

This report has presented the results of the last year in a two-year

effort to develop an automatic control redesign procedure for restructurable

aircraft control. During the first year of the project, a redesign technique

was developed for the feedback portion of the flight control system. During

the second year, this system was tested and integrated with a feedforward

system for automatically trimming the aircraft to remove the known portion

of the failure-induced force and moment imbalances. The complete system was

tested on a nonlinear simulation of a Boeing 737 aircraft that was modified

to permit individual control surface motion.

Three important general results were observed. First, the nontraditional

use of standard control surfaces in a nominal feedback control system to

spread control authority amongst many redundant (in terms of the forces and

moments which can be produced) control elements provided a significant amount

of fault tolerance without any use of restructuring techniques. In most single

element failures, "recovery" was automatically achieved and little loss in

command response performance was observed. A stuck rudder failure provided

the most challenging single element failure situation since it is used exten-

sively for damping the dutch roll mode and since only weak side forces are

produced by the other control elements.
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Secondly, the use of new feedback galns alone (from the feedback control

redesign procedure but without retrlmming) following a failure can provide

slgnlflcantly Improved recovery as long as the control elements remain within

their travel limits and as long as uncertalnty about the failure identity is

properly handled. This effect is particularly evident in the stuck rudder

failure case. When control elements reach their travel limits during a fail-

ure, performance generally degrades as expected. In failure cases where the

nominal control system performed well by itself, the application of redesigned

feedback gains resulted in little, if any, improvement.

Finally, the use of the feedforward trim solution, in conjunction with

redesigned feedback gains, allows recovery to take place even when signifi-

cant control saturation occurs. This is generally due to the fact that servo

errors resulting from a failure are quickly reduced by application of the

feedforward trim solution. Since the redesigned control system stabilizes

the aircraft and the servo errors remain small due to the feedforward trim,

recovery is generally achieved even when many control elements reach and

remain at their travel limits.

In summary, the results to date indicate that the combination of a robust

nominal controller with an on-line redesign system can accommodate a variety

of failures and result in a safe stable aircraft. The major program objective

of developing the control design components of a restructurable control system

have been met.

8.1 .RECOMMENDATIONS FOR FUTURE WORK

Several steps remain, however, before a complete restructuring system

can be implemented. The first is the integration of the redesign system with
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a Failure Detection and Identification (FDI) system. This integration is the

subject of the next phase of this project.

Other issues which need to be addressed in the future include

I. The need to model the post-failure aircraft,

2. The need to design the nominal controller, the FDI system, and

the redesign sysem as a coordinated, fault tolerant whole,

3. The need to integrate the fault tolerant control system

(including redesign components) with the rest of the aircraft

design process, and

4. The need to verify emergency performance.

The first issue refers to the need for post-failure aircraft models in the

redesign system. Although this system is designed to work with uncertain

aircraft models, and could therefore use stored approximate models for a

variety of anticipated failures, it can also take advantage of the better

information which might be available after failure from the use of parameter

identification procedures. The concepts used to detect and identify the

failures, explicitly address many problems which are inherent to identifica-

tion procedures. These procedures should also be useful for estimating the

failure effects as well.

The second issue results from the differing abilities of each part of the

fault tolerant control system for handling different failures. For example,

those failures which can be handled by passive robustness are likely to be

the hardest to detect and identify, since the aircraft performance will not

be seriously affected. Conversely, those failures which result in serious

performance degradation are also the easiest to find quickly. Such concerns

point to the need to develop a methodology for designing all the fault tolerant

controller components in a coordinated manner, so that failures not covered

by one part of the system can be accommodated by another.
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Third, the incorporation of a restructurable control system in an air-

craft must be integrated with the rest of the aircraft design. For example,

if differential elevator control is incorporated in an aircraft design for

emergency use in restructuring, then the aircraft structure must be designed

to accommodate it. This leads to a conflict between designing for normal

operation and building in margins for emergency use. Although our restruc-

turing system can accommodate limits on control authority (much as it handles

bandwidth or travel limitations), the aircraft designer will need to trade

off the cost of such limits in terms of failure coverage against the cost in

structure. Tools to accomplish this multidlsciplinary trade-off will be

needed.

Finally, the restructurable control system will need to be flight tested

to investigate its performance under real-world conditions. An important

issue in such testing (and in subsequent validation of production designs) is

the simulation of failures and their effects. Such testing under realistic

conditions is essential to demonstrate the technology and bring it out of the

research stage.
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