WALL EFFECTS IN WIND TUNNELS
J.P.. Chevallier and X. Vaucheret

A synthesis of current trends in the reduction and computation of wall effects is presented. Some of the points discussed include: (1) for the two-dimensional, transonic tests, various control techniques of boundary conditions are used with adaptive walls offering high precision in determining reference conditions and residual corrections. A reduction in the boundary layer effects of the lateral walls is obtained at T2; (2) for the three-dimensional tests, the methods for the reduction of wall effects are still seldom applied due to a lesser need and to their complexity: (3) the supports holding the model of the probes have to be taken into account in the estimation of perturbatory effects.
NASA TM-88447

p.2 3rd para.
It is generally achieved
should be: This reduction in wall effects - CHANGES MEANING COMPI

p.2 4th para.
used speed should be velocity. (Velocity has to have a special dir

p.3 2nd para:
used "at the center of Ames" Should be at NASA Ames.

p.4
vectorizing should be minimizing
" " tunnel run
NASA center of Wright Field should be AFFDL at Wright Field

ATTACHMENT 1: RECON printout 86N28097
ATTACHMENT 2: Translation Evaluation Form
ATTACHMENT 3: Original document RECON printout
WALL EFFECTS IN WIND TUNNELS
by J.P. Chevallier and X. Vaucheret

INTRODUCTION

The recent first commercial operation of the NRF high Reynolds number wind tunnel (NASA Langley) [1], the European ETW wind tunnel project [2] and the continuous request of manufacturers for more specific test conditions in existing installations have led to the creation of different work groups to study the problem of wall effects from the three-fold standpoint of their determination, their reduction and their correction. We may mention in particular an AGARD work group under the auspices of the "Wind Tunnel Testing Subcommittee of the Fluid Dynamics Panel" [3], and the GARTEUR action groups [4]. The most important results were also presented during the following meetings:

-AGARD-FDP Meeting at London on May 19, 20, 1982 (17 reports on wall effects in wind tunnels) [5];

-AGARD FMP Meeting at Smyrne on October 11 to 15, 1982 [6];

-Working sessions on "the reduction and correction of wind tunnel wall effects" NASA Langley Research Center January 25-26 1983 [7].

-53rd AGARD FDP Meeting on "Wind Tunnels and Testing Techniques" at Cesme on September 26 to 29, 1983 where 36 reports were presented, particularly that of Bionion and Kraft [8], presenting the conclusions of the 1982 meeting at London [5].

Of all studies presented, our purpose is to reveal which of these are current trends and to specify our own practices. To accomplish this, we shall first examine the means currently used to reduce wall effects, then recent methods of calculating these effects, because the two problems are now intricately interrelated.
It seems that there is a quasi general agreement on the need to use measurements of the speed field in the vicinity of the walls to calculate interferences. Measurements of the same type will be used for testing the boundary conditions when we try to minimize these interferences.

In the second part the methods are applied to industrial wind tunnels based on parietal measurements so as to test the representation of the model and its support.

1 - VARIOUS METHODS FOR REDUCING OR CALCULATING WALL EFFECTS

1.1 - REDUCING WALL EFFECTS

It is generally achieved because the term "adaptive walls" is used. It is a vague term covering highly diverse practices using for example:

- permeable walls (perforated walls with variable porosity, fractionated suction chambers, controlled back-pressure; changing slits with valves or counterplates; transversal flaps),

- flexible solid walls.

Various devices for measuring the speed field are combined with these means of testing the transversal flow component: isolated probes, longitudinal tubes fitted with pressure taps, laser velocimetry, parietal taps. We will limit ourselves to a brief description of operational systems, the results of which are published and to the most advanced projects, primarily for two-dimensional testing. The characteristics reduced in terms of test section height (table 1) facilitate comparisons.
Wind Tunnels With Perforated Walls and Multiple Chambers

The first developed at CALSPAN based on Sears' ideas [9] has a section 25 cm wide and 30 cm high, walls with normal perforations (22.5% opening) with 8 lower chambers and 10 upper chambers, tested individually. Measurements of the flow speed and direction on the control surface, performed at the beginning with clinometric probes now are due to the calibration of longitudinal tubes equipped with 2 rows of pressure taps arranged over opposite generators. These tubes, installed over a rotary support, should enable measurements to be performed on a cylindrical control surface for the extension of three-dimensional flows (Wind tunnels 1T, then 4T of AEDC) figure 1.

Wind Tunnel With Slits and Multiple Chambers

At the center of AMES [10], a 25 x 13 cm² wind tunnel has 6 suction compartments for each wall. These compartments are in turn divided widthwise into 3 chambers for a three-dimensional adaptation. The measurement of 2 disturbance speed components on one control surface is replaced by the use of 2 control surfaces with measurement of the one cross-component using a laser velocimeter.

2D Wind Tunnels With Solid Flexible Walls

At the University of Southampton, the TSWT (Transonic Self Streamlining Wind Tunnel) has a 15 x 15 cm² square section and a very long test section (1.12 m) whose upper and lower walls are each shaped using 20 electric actuators with a similar number of parietal pressure taps [11]. As such the wind tunnel was used for two- and three-dimensional testing to determine whether the disturbances to be measured on the walls of these are difficult to obtain with precision (figure 1).

At the Technical University of Berlin [12], the T.U.B. wind
tunnel has a 15 x 15 cm² square section with two flexible walls over 0.69 m each shaped by 8 direct current actuators with a 25 mm path and equipped with some 20 pressure taps.

At CERT at Toulouse, the T2 wind tunnel [18], which was the subject of 2 reports [13, 14] has over its competitors the advantages of one order of magnitude at least with respect to the Reynolds numbers (0.37 x 0.38 m² test section and generating pressure 5b) and an excellent relative precision in the knowledge of wall shapes (using potentiometers of about 0.05 mm) and speed distributions (with 91 pressure taps on each wall). By vectorizing the program for calculating the virtual field and optimizing the relaxation factors reducing the time required for adaptation during a gust of a few tens of seconds.

In addition to these advantages, the T2 wind tunnel has a relatively short test section (table 1). What can we conclude about the precision of the reference conditions obtained in these conditions? We shall return to this essential point after a brief review of the new methods of assessing wall effects. It should be pointed out that an attempt has been made to compensate for lateral boundary layer effects using reliefs made by gluing paper cut out in the shape of level lines [15]. This procedure finds its justification in recent CEAT tests [16] which show the existence at the root of the model two small counter-rotative vortices, very different from the modelization proposed by Preston [17].

3D Wind Tunnels With Flexible Walls

At the NASA center of Wright Field a 9' x 9' test section (i.e. about 23 x 23 cm) operating under 4b has 2 flat side walls whereas the other two are made up of flexible rods with alternating circular and triangular sections activated by some 100 actuators. No measurement was performed on the walls [3].
At the Technical University of Berlin [12] a second test section, with an 18 x 15 cm\(^2\) octogonal section, is used for 3D tests. The feasibility of such tests was demonstrated recently in an operation at Cesme in September 1983 (figure 3), despite the small deformations to be achieved (of the order of one mm).

At DFVLR, in the advanced project, Dehnbare Adapative Mebstrecke (DAM) the circular test section was made up of an elastic tube 800 mm thick whose diameter was stretched into 8 sections by 8 actuators [12] (figure 5).

1.2 - NEW METHODS OF CORRECTING WALL EFFECTS

This was the title, in singular form, of a report presented at the 14th Symposium of Applied Aerodynamics at Toulouse in 1977 [19]. We still use this name for methods which have multiplied for 6 years and whose common points is to call on measurements made on walls or in their vicinity. Created from the necessity of being applicable to adaptive, but not perfectly adapted walls, this type of method has for conventional walls the advantage of eliminating certain controversial assumptions on lineary boundary conditions [18, 20].

Without going into too much detail, we may mention the following methods in the order they appeared:

Kemp: the unknown intensity of the singularities arranged at the walls and at the location of the model is determined to satisfy with speed measurements on an equal number of control points, on the model and at the walls, by resolving the linear system formed with the corresponding impact factors. The parietal singularities thus defined contribute alone to the interferences under investigation.

Smith [25]: the NLR I method differs from that of Kemp only
in the limitation of the unknown singularities at the wall, the
model being represented by given singularities, functions of its
geometry and of overall lift and drag measurements.

Capalier et alii [19]: in contrast to the two aforementioned
methods the formulation expressed in terms of integrals of the
speed deviations measured at the walls and calculated for the model
avoids resolving the linear system and therefore eliminates the
consequences of random errors in the measurements. This method
applies not only to the two-dimensional case, but also to three-
dimensional flows in test sections with a rectangular section and
flat side walls.

Swada [22] presented a very similar method which he recently
applied to two-dimensional unsteady flows [37].

Mokry and Ohman [23]: Direchlet's problem for the axial speed
inside the surface upon which boundary data are collected is solv-
ed in the form of a Fourier-Bessel series for three-dimensional
cases. Their coefficients are obtained using rapid Fourier trans-
forms.

For corrections calculated on the axis of the test section,
a cylindrical control surface may be used no matter what the
shape of the test section has.

Mokry compared these methods [24] on a two-dimensional test
case and showed that [19] and [23] gave identical results and
[22] and [25] deviated only very slightly.

Ashill [27] as well as Smith in the unpublished NLR II method
avoiding the use of the model which may be delicate in the presence
of supersonic or separation regions in the flow. They should
therefore use measurements of the two disturbance components in
the vicinity of the walls.
All of these methods are of the linear type and are limited for this reason below M = 1. Also they implicitly assume that the boundary conditions are homogeneous enough for the measurements near the walls to be significant.

For any method used, the precision required in knowing the two disturbance components will be brought to light through the explicit formulation of the speed and incidence corrections based on the relative longitudinal disturbance component u [19] cu, according to the so-called conjugated formulation [28] on the relative transversal component. By letting u_i and v_i be the wall interference components at the center of the test section and by simplifying the formulas given in [18] based on an empty test section.

\begin{align*}
(1) \quad u_i (x, 0) &= \frac{1}{\beta k} \int_{-\infty}^{\infty} \frac{u(\xi, \frac{k}{2}) + u(\xi, -\frac{k}{2})}{\cosh (\frac{\xi - x}{\beta k})} d\xi \\
(2) \quad v_i (x, 0) &= \frac{1}{\beta k} \int_{-\infty}^{\infty} \frac{u(\xi, \frac{k}{2}) - u(\xi, -\frac{k}{2})}{e^{2\pi (\xi - x)/\beta k} + 1} d\xi + C \\
(3) \quad u_i (x, 0) &= \frac{1}{\beta k} \int_{-\infty}^{\infty} \frac{v(\xi, \frac{k}{2}) - v(\xi, -\frac{k}{2})}{e^{2\pi (\xi - x)/\beta k} + 1} d\xi + C \\
(4) \quad v_i (x, 0) &= \frac{1}{\beta k} \int_{-\infty}^{\infty} \frac{u(\xi, \frac{k}{2}) + u(\xi, -\frac{k}{2})}{\cosh (\frac{\xi - x}{\beta k})} d\xi
\end{align*}

No problem is raised by using formula (1) because it was shown that it tolerates the truncation of the integration terminals owing to the rapid decrease in the impact function and the fact that it eliminates the reference errors. The same is true for formula (4) in regard to incidence. Conversely, for formula (2) it is necessary to determine the constant C. It is zero if we adopt as reference a flow direction which is sufficiently upstream so that the difference $u(\xi, \frac{k}{2}) - u(\xi, -\frac{k}{2})$ is zero. It also shows in the nucleus of the integral a speed difference which is delicate to measure.
Based on these formulas we therefore conclude that to apply the so-called new correction methods it is necessary to know, at a right angle with the model, the speed vector in modulus and direction, in the vicinity of the walls, with a precision of the same order of as that required on so-called "upstream infinity" conditions.

1.3 - DETERMINING THE REFERENCE CONDITIONS

The crucial importance of determining these conditions accurately was recently recalled in a report under the "Wind Tunnel Testing Techniques" Committee of AGARD-FDP which set forth the requirements of airplane manufacturers with respect to wind tunnels [29].

The investigation of an error limited to $\Delta C_x = 0.0001$ leads to $\Delta M = 0.001$ and $\Delta \alpha = 0.01^\circ$ in regard to the Mach number and the incidence. This goal, which seems a challenge, actually deserves considerable effort because in other sources [30] it is shown that a 1% gain in the cruise drag (considerable only in these conditions) is profitable even if we have to quintuple the number of aerodynamic tests of a transport aircraft.

How can we possibly know the direction and speed of an "infinite upstream" flow in a wind tunnel with such accuracy?

Excluding the support effects, which will be discussed in the second part, and remembering that we have to know the direction and speed on a control surface with the same precision, by examining the errors inherent to the various procedures for measuring the flow disturbance components (laser, clinometric probes, etc), here at ONERA we think that there is only one valid procedure: using deformable solid walls where the quality of the surface condition and pressure taps is equal to that obtained on airfoils and position measurements showing the shape of the wall (which will be
corrected for the boundary layer displacement thicknesses).

Among the wind tunnels which try to achieve these conditions, we see that T2 has a shorter test section, but that it is long enough to define the reference conditions perfectly, given the balance functions discussed above. It has the largest number of parietal pressure measurements and actuators near the model and the best definition of the wall positions. The scope of the displacements is slightly smaller and as a result the dimension of the model is limited. The displacement pitch in other regions is too strong.

In these apparently optimal conditions, has the objective focussed on been achieved? It is virtually impossible to calculate an error: the shapes of adaptive walls are derived by processing an external virtual flow using Green's formula and whose parietal speed measurements are the data. Conversely, the overspeeds at a right angle with the model are also functionals of the slopes obtained by smoothing and interpolation of the measured dimensions. An intrinsic validation was therefore tried by placing the same model (CAS 7 airfoil with a 200 mm chord) over the axis of the wind tunnel and at 80 mm below this axis. By adapting each case, the wall shapes and parietal pressure distributions are totally different [15]. The variation of the lift factor as a function of the Mach number for angles of 0 and 1°, shown in figure 6 on a large scale, shows the dispersion of the measuring points. The latter does not show any systematic deviation due to the difference in testing conditions and it seems small enough for us to be able to conclude that the objective is virtually if not fully achieved. This success in two-dimensional testing leaves promising prospects for extensions to three-dimensional flows provided that all precautions are taken to observe the purity of the flows, the homogeneity of the boundary conditions and the precision of the parietal measurements in the presence of considerably smaller disturbance fields.
In wind tunnels not yet equipped with adaptive walls and with magnetic suspensions, it is still necessary to make corrections for wall and support effects to restore as far as possible the results which would be obtained on models in an unlimited atmosphere. There are two types of corrections to be made for the potentials under consideration:

- the wall effects are calculated based on the interference potential promoted by the walls,

- the support effects are the result of the sum of the potential of the supports in an unlimited atmosphere and of the interference potential promoted by the walls.

2.1 WALL EFFECTS

Two methods are currently employed for calculating wall effects. These methods have already been presented.

The first method, called the "conventional method" [31] consists of calculating the potential promoted by the walls by solving a problem whose data are the following:

- the potential of the model in an unlimited atmosphere,

- the boundary conditions on the walls of the test section involving the concept of equivalent uniform wall porosity.

The second method, called the "signature method" [19] allows the potential promoted by the walls to be derived from data consisting of:

- the potential of the model in an unlimited atmosphere,
- the distributions of pressures measured on the control surfaces of the test section (signatures).

These two methods have in common the assumption of a cylindrical test section reaching to infinity, and the necessity of making use of a mathematical description of the model.

2.1.1 Mathematical Description of the Model

Since we are referring to a corrective calculation and not a calculation of the flow on the model, the specification of the model is rudimentary: it should include the required number of singularities for the model field to be properly represented at a distance from the model. The best way to control the specification consists of comparing the signatures measured and calculated on the walls of the test section in a configuration with perfectly known boundary conditions: in this case the use of solid walls is unambiguous.

The iterative process (figure 7) is the following: using signature measurements on the walls of a guided test section, in the presence and in the absence of a model, by adding and subtracting we find the parts for the locking and lift terms corresponding to an isolated model. The model specification associated with zero porosity conditions of the walls makes it possible to obtain signatures at the same locations of the test section and to divide them into locking and lift terms. An examination of the differences between calculated and measured signatures makes it possible to check whether the model specification should be improved and in this case which part of the specification, volume, wake, lift is to be altered to be acceptable in terms of manufacturer specifications.

Two examples illustrate the mathematical specifications of the model.
The first example concerns tests on a profile in a flat current in S3MA in a guided test section configuration. An example of the signatures measured in the presence of a profile, then corrected of the readings in the absence of a profile (figure 8) show that the tapping errors were eliminated as well as the effect of the wake comb located downstream. A comparison of the calculated and measured signatures (figure 9) show that the lift description due to two intensity vortices derived from measurements of C_z and C_M is adequate [32]. At zero lift, the description of the volume using a single doublets is also adequate. Conversely, the description of the wake using a single source is increasingly incorrect when Z_z (therefore C_{xz}) increases. This is due to the absence of the tapping by considering the separations in the description. Work is now underway to correct this.

The second example concerns a space model (figure 10) in a 47 m2 SIMA test section. The description of the streamlined bodies is here a double doublets number of the ratio between the length and diameter of the body. We see that the calculated signatures, in good agreement with the measurements, personalize well the shape of the model: flat signature for the fuselage alone, bulging for the entire spacecraft.

When the mathematical description of the model is considered to be correct, calculations may begin to correct the wall effects.

2.1.2 Signatures Method

As indicated above, this method does not require knowledge of wall porosities. One simply needs to measure the signatures over a control surface so that the wall porosity effects are homogeneous.

In perforated walls, and a fortiori solid ones, these control surfaces are the walls themselves. The duration of the signature measurements does not exceed that of the wake measurements of a
flat current profile. This method is systematically applied to profile testing in S3MA. The corrected results obtained on the CAST 7 profile are in good agreement with those obtained in the test section with adaptive walls of the T2 wind tunnel of CERT/TOULOUSE (figure 11) as well as for the lift curves and for the stability curves of the maximum C_z.

In the case of walls with slits, the signatures may no longer be sampled on the walls. According to a recent publication [20], the signatures should be recorded at a distance from the walls which is virtually equal to the slit pitch. This is a problem for the test section which as a limited number of slits.

2.1.3 Conventional Method

In addition to a correction description of the model, it is necessary in the conventional method to know the wall porosity laws as a function of the Mach and of the generating pressure and to validate the concept of uniform wall porosity.

The reference tests [31] are referred to determine the wall porosity laws. These tests may be obtained by performing tests on the same model, with the same Reynolds number:

- in the same test section rendered guided by the ventilation mask,

- in a test section with such dimensions that the wall effects are negligible.

As far as possible the second type of reference is preferred because it has no limits due to the test section locking and does not require corrections which are high in three-dimensional cases.

The iterative process used for defining the porosity laws is the following (figure 12).
The work always includes an interpolation in M, C_z of the wind tunnel data. The first assessment of the deviations to be reabsorbed by corrections is established in incidence deviations as a function of C_z at a fixed Mach, and in C_x deviations as a function of M for a given C_z.

The deviations of M and C_z between interpolated results, corrected for the reference test and not corrected for the ventilated wall test are introduced into the curve networks established as a function of porosity. This gives the first porosity law. It is used to correct the results of the ventilated wall test. The differences between the interpolated results corrected for both tests are then examined. If these differences satisfy the manufacturer's precision specifications, the work is completed. Otherwise, the process is repeated. In general, three iterations are necessary. If differences still exist, the reasons are investigated.

An examination of the pressure distributions measured on the walls of the test section make it possible to define the Mach-incidence limits beyond which the Mach number is greater than 1. In fact, this value is obtained on the ceiling and there is not yet any locking of the test section: the supersonic region on the top skin of the wings reaches the ceiling. The wall corrections are no longer applicable. Figure 13 shows, for a corrected Mach, the limits obtained at SIMA for three slit conditions and at S2MA for 2 homothetic models.

In the case of an S2MA transonic test section, for two used conditions of perforated walls (by opening slide valves by 100 and 55% to modify the porosity), the porosity laws (figure 14) were established by using as reference tests tests on the same model in SIMA with an area 13 times larger than that of S2MA. These laws proved to be correct for full and half civilian aircraft models up to Mach 0.92 and for full military aircraft models up to the limits due to supersonic zones.
In the case of a 20 m² SIMA test section, the porosity laws (figure 14) of 4-slotted or 8-slotted open configurations were defined in the reference for tests performed in closed slotted configuration. These laws are correct up to Mach 0.85.

Beyond this value, there are still differences between the corrected results, obtained for the three test section cases, and an attempt is being made to resolve these differences.

2.1.4 Indirect Signatures Method

One variant of the conventional method consists of basing on itself on the signatures calculation as a function of the porosity parameter assumed to be uniform and by comparison with the measured signatures to derive the wall porosity cartography. This variant was used for the case of the S3MA perforated wall test section. After verifying the correct description of the locking and lift terms in a guided test section, figure 15 shows that for perforated walls, a comparison of the signatures leads to a uniform porosity parameter Q of 0.2 on the walls. This porosity is moreover identical to that derived from the overall efforts in a guided reference test section.

In fact, this indirect signatures method is used to check the validity of the wall uniform porosity concept.

In test sections with perforated walls, a porosity test by comparing the measured and calculated signatures has not raised any special problems. As with this case the concept of a uniform equivalent porosity was not handicapped by examining the signatures. The conventional method was retained because it is not penalizing in terms of computer time, after the porosity laws are established. Generally speaking, the more the porosity concept is uniform, the more the mathematical description of models and stings proves to be inadequate.
2.2 MODEL SUPPORT INTERFERENCES

 Corrections of the Mach number and of the Archimedean thrust brought about by the presence of model supports may be obtained experimentally based on measurements of the Kp distributions at the location which the model fuselage axis would occupy. A clinometric sounding would also make it possible to know the tail unit setting correction due to supports.

 To avoid costly soundings, a calculation may be performed. Two methods are used at present.

 The surface singularities method begins with a meshing of obstacles in the test section of on its walls. This technique is directly derived from techniques used by manufacturers in an unlimited atmosphere by adding the walls to simulate the contained atmosphere of the test sections. Illustrations of the meshing are therefore borrowed from manufacturers. Figure 16 shows [33] the sting and sting holder in the S5 guided test section of CEAT-TOULOUSE used by DASSAULT-BREGUET. Figure 17 shows the meshing of a Mirage model installed on the wall of the S2MA guided test section and of the device with 6 degrees of liberty to study load trajectories: calculations performed by LE BOXEZ of AMD-BA.

 Figure 18 is concerned with the assembly of a civilian aircraft twin sting in a guided test section meshed by AEROSPATIALE. More complex cases including ventilated walls and descriptions of test section ends and upstream parts with tapered section are under study. This method is still complicated to use and requires powerful computers.

 A description of test section obstacles using singularities distributed over their skeletons of various shapes has been tried recently by ONERA [34]. The only data are the coordinates of the assembly skeleton and the area rule.
An attempt is made to validate this method in an unlimited atmosphere by comparison with the results of previous more sophisticated methods. Figure 19 shows, in these conditions, a good agreement of the Kps and incidence promoted by an inclined support used in a sabre assembly of the F4 model.

The support description is tested in the guided test section by comparing the measured and calculated signatures. In this case, a description of the model-support system is used. Figure 14 shows the case of an ONERA standard model assembled in a straight sting in the S3MA guided-rendered test section. A modelization with 20 doublets for the model and 15 for the sting provide a good agreement of the signatures.

Returning to the case of the F4 model in an S2MA transonic test section, figure 19 gives the Kp distributions on the line which the fuselage axis would occupy for various wall porosities.

We should insist on the relative magnitude of the wall effects and sting interferences. In the case of an S2MA wind tunnel (figure 20), in the perforated wall version with maximum rate, the incidence corrections are zero. The drag corrections resulting from the longitudinal gradients promoted on the support sting and the wall effects are in a 3 to 4 ratio for a civilian aircraft model. The sting interference is more crucial for military aircraft models whose incidences may exceed 40 degrees (and even higher for missiles) [35,36]. Given these high values and the stresses to contain, the volumes of model support mechanisms are such that the wall effects for a well conditioned test section may seem secondary. This real problem, in the absence of a magnetic suspension, deserves to be considered first for future active wall wind tunnels.

2.3 APPLICATION TO INDUSTRIAL TESTING

We now have correct descriptions of models and its supports and of the test section porosity laws. As of now the corrections
are all calculated prior to testing for a specific case of a test section, wall configuration, supports, model.

These corrections (figure 21) include four parts:

- corrections relative to an empty test section obtained from corrected soundings, if necessary, and from the influence of the probe support,

- calculated or measured support interferences,

- corrections of wall effects and of the field impact of the model on the test reference.

In all the computer calculations provide a set of corrections depending on M, C_x, C_z (or incidence) expressed in the form of a table or polynomial laws which are introduced in the wind tunnel calculations to obtained real time corrected results. The correction calculations also provide the total field promoted by the walls and supports, for a Mach distribution and incidence correction on any point of the model. It is easy to know the spin and camber corrections of the wind promoted by the walls and the local M and tail unit setting corrections due to the model supports.

CONCLUSION

The advantage of pressure measurements on the walls of test sections was clearly established for calculations of wall effects. For reasons of convenience associated with the intended use of wind tunnels, these pressure measurements are still performed:

- occasionally in 3d to control the concept of uniform porosity of perforated walls and to check the mathematical descriptions of models and supports in a guided test section,

- systematically in 2D for direct access to corrections,
- imperatively in test sections with adaptive walls,

- finally with suspicion in test sections with slotted walls.

The measurements should be performed at a distance from the walls which is technologically difficult to do.

If the advantage of additional measurements of the other component of the local flow on control surfaces is to eliminate any model description, a real problem of measurement precision has not yet been solved.

Optimized test configurations (test section, sting, model) is the result of a compromise between wind tunnel investments, the cost of testing and the quickness with which the results prepared are rectified. In three-dimensional cases, the wall effect levels are reduced by limitations in model size due to the span for civilian aircraft, due to the length for high incidence military aircraft. Small displacements of flexible walls will require greater accuracy in pressure measurements and in the positions of adaptive actuators. Test sections with 3d adaptive walls are still too recent to know their application limits and operating difficulties.

Meanwhile, it is suggested to use adaptations to the main point of a test program. These adaptations may concern:

- **models** whose manufacturing specifications account for distortions in the flow of conventional walls (as practiced for aeroelasticity);

- **walls** which should meet specifications using conventional padding whether or not associated with improved ventilation distributions.

In any case, continuous revisions of concepts for minimizing wall effects should follow improvements in the specifications for precision required by manufacturers.
REFERENCES

1. L. McKinney, "Operational Experience with the National Transonic Facility", AGARD Cesme 1983.

25. J. Smith, "A Method For Determining 2D Wall Interference on an Airfoil From Measured Pressure Distributions Near the Walls and on the Model NLR TR 81016 U 1981.

21

<table>
<thead>
<tr>
<th>Wind Tunnel</th>
<th>Location</th>
<th>Test Section</th>
<th>Length/H</th>
<th>Boundary Conditions</th>
<th>Model C/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.S.W.T.</td>
<td>University of South Hampton</td>
<td>15x15cm²</td>
<td>7.33</td>
<td>20 actuators</td>
<td>0.6 to 1</td>
</tr>
<tr>
<td>T.U.B.</td>
<td>Technical University of Berlin</td>
<td>15x15cm²</td>
<td>4.6</td>
<td>8 actuators</td>
<td>0.66</td>
</tr>
<tr>
<td>T²</td>
<td>ONERA-CERT Toulouse</td>
<td>39x37 cm²</td>
<td>3.5</td>
<td>16 actuators</td>
<td>0.3 to 0.5</td>
</tr>
<tr>
<td>CALSPAN AEDC</td>
<td>Buffalo Tullahoma</td>
<td>25x30cm²</td>
<td>4.6</td>
<td>10 boxes (perforated walls)</td>
<td>0.3 to 0.5</td>
</tr>
<tr>
<td>NASA Ames</td>
<td>California</td>
<td>25x13cm²</td>
<td>5.66</td>
<td>3x6 boxes (slotted holes)</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 1
Wind Tunnels With Controlled 2D Boundary Conditions
Table 2

Main Methods of Calculating Wall Effects Using Parietal Data

<table>
<thead>
<tr>
<th>Author</th>
<th>Data Required At Wall</th>
<th>On Model</th>
<th>Resolution Method</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEMP [21]</td>
<td>(u_p)</td>
<td>(u_m)</td>
<td>(n+p) sing. distribution on wall and linear model system</td>
<td>2D and potentially 3D</td>
</tr>
<tr>
<td>CAPELIER [19]</td>
<td>(u) or (v)</td>
<td>(C_x, C_y, C_z) geometry & measurement</td>
<td>Numerical Integration</td>
<td>2D and 3D in rectangular test section with flat lateral walls.</td>
</tr>
<tr>
<td>SMITH [25]</td>
<td>(u_p)</td>
<td>(C_x, C_y, C_z) geometry & measurements</td>
<td>Singularities distributions on walls</td>
<td>2D</td>
</tr>
<tr>
<td>NLR I</td>
<td>(u)</td>
<td>Representation of model</td>
<td>Linear system</td>
<td>2D and 3D with unsteady 2D</td>
</tr>
<tr>
<td>SAWADA [22] [37]</td>
<td>(u)</td>
<td>(C_x, C_y, C_z) geometry & measurements</td>
<td>Fast FFT Fourier Series</td>
<td>2D and 3D with cylindrical surface control</td>
</tr>
<tr>
<td>MORRY [24]</td>
<td>(u)</td>
<td>Representation of model</td>
<td>Green's theorem</td>
<td></td>
</tr>
<tr>
<td>ASHILL [25] and NRL II</td>
<td>(u) & (v)</td>
<td>No representation</td>
<td>Fast FFT Fourier Series</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Green's theorem applied inside the control surface</td>
<td></td>
</tr>
</tbody>
</table>
Variable porosity

\[V \text{ measuring tube} \]

Fig. 1 - A.E.D.C.

3D Model

2D Model

Fixed Convergent \hspace{1cm} \text{Mach Number Control}

Actuator Marks

Reference Pressure \hspace{1cm} \text{Adapted Length} \hspace{1cm} \text{Probe}

Induction

Fig. 2 - Wind Tunnel of Southampton University
Fig. 3 - University of Berlin Wind Tunnel

Fig. 4 - DFVLR Test Section Project with Elastic Wall
Fig. 5 - AFFDL Pilot Wind Tunnel With Flexible Wall Elements

Fig. 6 - CAST 7 Profile. Lift as a Function of Mach Number
Fig. 7 - Description of Model in Test Section
Fig. 8 - 2D - Rough and Corrected Signatures of Empty Test Section
Fig. 9 - 2D Comparison of Calculated and Measured Signatures

Fig. 10 - 3D Signatures on Solid Walls
Fig. 11 - CAST 7 Profile - Comparison S3MA-T2 Results

Fig. 12 - Determination of the Porosity Laws of a Test Section With Ventilated Walls.
$M_{max} / \text{Walls} = 0.1$

S1MA

$S/C = 0.055$

- Closed Slots
- 4 Slots
- 8 Slots

Perforated Walls S2MA

(Slides - 100%)

- $S/C = 0.015$
- $S/C = 0.059$

Fig. 13 - Limitations Due to Supersonic Field

S2MA

Perforated Walls

SIMA

40 m² Slotted Test Section

Fig. 14 - S1Ma, S2MA Porosity Laws
Fig. - Signatures on Perforated and Solid Walls - S3MA

Fig. 16 - Sting Interference in Guided S5 CEAT Test Section
Fig. 17 - Support Interference in S2MA Guided Test Section
ASSEMBLY WITH S2MA
Fig. 19 - Sting Interference. Calculations in Unlimited Atmosphere.
Fig. 20 - Wall Effects on Sting Interference
CASE OF \(f(M, \alpha, C_x, \text{Porosity}) \)

\{ MODEL STING TEST SECTION \}

- **Empty Test Section Sounding + Probe Support Th?**
- **Sting Interfer.**
- **Model Impact on Reference Tapping**
- **Wall Effects on Model Alone**

RESULTS/ CORRECTION TABLES

- **Chart**
 \[
 \frac{\Delta c_t}{\Delta c} = f(M, \alpha, C_x, \text{Porosity})
 \]
 \[
 \frac{\Delta c_t}{\Delta c} = \frac{q_c}{\frac{c}{qu}} \left(\frac{\Delta c}{\Delta c} \right) + \left(\frac{q_c}{\frac{c}{qu}} - 1 \right) \frac{1}{\frac{c}{\Delta}}
 \]

- **Lift**
- **Lock**

Fig. 21 - Preliminary Corrections Calculations
WALL EFFECTS IN WIND TUNNELS
J.P. Chevallier and X. Vaucheret

WALL EFFECTS IN WIND TUNNELS

A synthesis of current trends in the reduction and computation of wall effects is presented. Some of the points discussed include: (1) for the two-dimensional, transonic tests, various control techniques of boundary conditions are used with adaptive walls offering high precision in determining reference conditions and residual corrections. A reduction in the boundary layer effects of the lateral walls is obtained at T2; (2) for the three-dimensional tests, the methods for the reduction of wall effects are still seldom

Please reference foreign text until further notice!

Corrected Copy

Stephen Wolf
A synthesis of current trends in the reduction and computation of wall effects is presented. Some of the points discussed include: (1) for the two-dimensional, transonic tests, various control techniques of boundary conditions are used with adaptive walls offering high precision in determining reference conditions and residual corrections. A reduction in the boundary layer effects of the lateral walls is obtained at T2; (2) for the three-dimensional tests, the methods for the reduction of wall effects are still seldom applied due to a lesser need and to their complexity; (3) the supports holding the model of the probes have to be taken into account in the estimation of perturbatory effects.
The recent first commercial operation of the NRF high Reynolds number wind tunnel (NASA Langley) [1], the European ETW wind tunnel project [2] and the continuous request of manufacturers for more specific test conditions in existing installations have led to the creation of different work groups to study the problem of wall effects from the three-fold standpoint of their determination, their reduction and their correction. We may mention in particular an AGARD work group under the auspices of the "Wind Tunnel Testing Subcommittee of the Fluid Dynamics Panel" [3], and the GARTEUR action groups [4]. The most important results were also presented during the following meetings:

- AGARD-FDP Meeting at London on May 19, 20, 1982 (17 reports on wall effects in wind tunnels) [5];

- AGARD FMP Meeting at Smyrne on October 11 to 15, 1982 [6];

- Working sessions on "the reduction and correction of wind tunnel wall effects" NASA Langley Research Center January 25-26 1983 [7].

- 53rd AGARD FDP Meeting on "Wind Tunnels and Testing Techniques" at Cesme on September 26 to 29, 1983 where 36 reports were presented, particularly that of Bičnion and Kraft [8], presenting the conclusions of the 1982 meeting at London [5].

Of all studies presented, our purpose is to reveal which of these are current trends and to specify our own practices. To accomplish this, we shall first examine the means currently used to reduce wall effects, then recent methods of calculating these effects, because the two problems are now intricately interrelated.
It seems that there is a general agreement on the need to use measurements of the speed field in the vicinity of the walls to calculate interferences. Measurements of the same type will be used for testing the boundary conditions when we try to minimize these interferences.

In the second part the methods are applied to industrial wind tunnels based on parietal measurements so as to test the representation of the model and its support.

1 - VARIOUS METHODS FOR REDUCING OR CALCULATING WALL EFFECTS

1.1 - REDUCING WALL EFFECTS

This reduction in wall effects is generally achieved because the term "adaptive walls" is used: It is a vague term covering highly diverse practices using for example:

- permeable walls (perforated walls with variable porosity, fractionated suction chambers, controlled back-pressure; changing slits with valves or counterplates; transversal flaps),

- flexible solid walls.

Various devices for measuring the speed field are combined with these means of testing the transversal flow component: isolated probes, longitudinal tubes fitted with pressure taps, laser velocimetry, parietal taps. We will limit ourselves to a brief description of operational systems, the results of which are published and to the most advanced projects, primarily for two-dimensional testing. The characteristics reduced in terms of test section height (table 1) facilitate comparisons.
-Wind Tunnels With Perforated Walls and Multiple Chambers

The first developed at CALSPAN based on Sears' ideas [9] has a section 25 cm wide and 30 cm high, walls with normal perforations (22.5% opening) with 8 lower chambers and 10 upper chambers, tested individually. Measurements of the flow speed and direction on the control surface, performed at the beginning with clinometric probes now are due to the calibration of longitudinal tubes equipped with 2 rows of pressure taps arranged over opposite generators. These tubes, installed over a rotary support, should enable measurements to be performed on a cylindrical control surface for the extension of three-dimensional flows (Wind tunnels 1T, then 4T of AEDC) figure 1.

-Wind Tunnel With Slits and Multiple Chambers

At the center of Ames [10], a 25 x 13 cm² wind tunnel has 6 suction compartments for each wall. These compartments are in turn divided widthwise into 3 chambers for a three-dimensional adaptation. The measurement of 2 disturbance speed components on one control surface is replaced by the use of 2 control surfaces with measurement of the one cross-component using a laser velocimeter.

-2D Wind Tunnels With Solid Flexible Walls

At the University of Southampton, the TSWT (Transonic Streamlining Wind Tunnel) has a 15 x 15 cm² square section and a very long test section (1.12 m) whose upper and lower walls are each shaped using 20 electric actuators with a similar number of parietal pressure taps [11]. As such the wind tunnel was used for two- and three-dimensional testing to determine whether the disturbances measured on the walls of these are difficult to obtain with precision (figure 1).

At the Technical University of Berlin [12], the T.U.B. wind
tunnel has a $15 \times 15 \text{ cm}^2$ square section with two flexible walls over 0.69 m each shaped by 8 direct current actuators with a 25 mm path and equipped with some 20 pressure taps.

At CERT at Toulouse, the T2 wind tunnel [18], which was the subject of 2 reports [13, 14] has over its competitors the advantages of one order of magnitude at least with respect to the Reynolds numbers ($0.37 \times 0.38 \text{ m}^2$ test section and generating pressure 5 bar) and an excellent relative precision in the knowledge of wall shapes (using potentiometers of about 0.05 mm and speed distributions (with 91 pressure taps on each wall). By vectorizing the program for calculating the virtual field and optimizing the relaxation factors reducing the time required for adaptation during a gust of a few tens of seconds.

In addition to these advantages, the T2 wind tunnel has a relatively short test section (table 1). What can we conclude about the precision of the reference conditions obtained in these conditions? We shall return to this essential point after a brief review of the new methods of assessing wall effects. It should be pointed out that an attempt has been made to compensate for lateral boundary layer effects using reliefs made by gluing paper cut out in the shape of level lines [15]. This procedure finds its justification in recent CEAT tests [16] which show the existence at the root of the model two small counter-rotative vortices, very different from the modelization proposed by Preston [17].

3D Wind Tunnels With Flexible Walls

At the NASA center of Wright Field, a $9''\times 9''$ test section (i.e. about $23 \times 23 \text{ cm}$) operating under 4bar has 2 flat side walls whereas the other two are made up of flexible rods with alternating circular and triangular sections activated by some 100 actuators. No measurement was performed on the walls [3].
At the Technical University of Berlin [12] a second test section, with an 18 x 15 cm2 octagonal section, is used for 3D tests. The feasibility of such tests was demonstrated recently in an operation at Cesme in September 1983 (figure 3), despite the small deformations to-be-achieved (of the order of one mm).

At DFVLR, in the advanced project, Dehnbare Adapative Meßstrecke (DAM) the circular test section was made up of an elastic tube 800 mm thick whose diameter was stretched into 8 sections by 64 actuators [12] (figure 3).

1.2 - NEW METHODS OF CORRECTING WALL EFFECTS

This was the title, in singular form, of a report presented at the 14th Symposium of Applied Aerodynamics at Toulouse in 1977 [19]. We still use this name for methods which have multiplied for 6 years and whose common points is to call on measurements made on walls or in their vicinity. Created from the necessity of being applicable to adaptive but not perfectly adapted walls, this type of method has for conventional walls the advantage of eliminating certain controversial assumptions on linear boundary conditions [18, 20].

Without going into too much detail, we may mention the following methods in the order they appeared:

Kemp: the unknown intensity of the singularities arranged at the walls and at the location of the model is determined from velocity measurements or an equal number of control points, on the model and at the walls, by resolving the linear system formed with the corresponding impact factors. The parietal singularities thus defined contribute alone to the interferences under investigation.

-Smith [25]: the NLR I method differs from that of Kemp only
in the limitation of the unknown singularities at the wall, the model being represented by given singularities, functions of its geometry and of overall lift and drag measurements.

Capalier et al [19]: In contrast to the two aforementioned methods, the formulation expressed in terms of integrals of the speed deviations measured at the walls and calculated for the model. This avoids resolving the linear system and therefore eliminates the consequences of random errors in the measurements. This method applies not only to the two-dimensional case, but also to three-dimensional flows in test sections with a rectangular section and flat side walls.

Swada [22] presented a very similar method which he recently applied to two-dimensional unsteady flows [37].

Mokry and Ohman [23]: Direchlet's problem for the axial speed inside the surface upon which boundary data are collected is solved in the form of a Fourier-Bessle series for three-dimensional cases. Their coefficients are obtained using rapid Fourier transforms.

For corrections calculated on the axis of the test section, a cylindrical control surface may be used no matter what the shape of the test section has.

Mokry compared these methods [24] on a two-dimensional test case and showed that [19] and [23] gave identical results and [22] and [25] deviated only very slightly.

Ashill [27] as well as Smith in the unpublished NLR II method avoiding the use of the model which may be delicate in the presence of supersonic or separation regions in the flow. They should therefore use measurements of the two disturbance components in the vicinity of the walls.
All of these methods are of the linear type and are limited for this reason below \(\text{Mach} \leq 1 \). Also they implicitly assume that the boundary conditions are homogeneous enough for the measurements near the walls to be significant.

For any method used, the precision required in knowing the two disturbance components will be brought to light through the explicit formulation of the speed and incidence corrections, based on the relative longitudinal disturbance component \(u \) [19] \(cu \), according to the so-called conjugated formulation [28], on the relative transversal component \(\nabla r \). By letting \(u_i \) and \(v_i \) be the wall interference components at the center of the test section and by simplifying the formulas given in [18] based on an empty test section.

\[
\begin{align*}
(1) \quad u_i (x, 0) &= \frac{\lambda}{\beta h} \int_{-\infty}^{\infty} \frac{u(\xi, \frac{h}{2}) + u(\xi, -\frac{h}{2})}{2 \cosh (\xi - x) / \beta h} \ d\xi \\
(2) \quad v_i (x, 0) &= \frac{\lambda}{\beta h} \int_{-\infty}^{\infty} \frac{u(\xi, \frac{h}{2}) - u(\xi, -\frac{h}{2})}{e^{2\pi i (\xi - x) / \beta h} + 1} \ d\xi + C \\
(3) \quad u_i (x, 0) &= \frac{\lambda}{\beta h} \int_{-\infty}^{\infty} \frac{u(\xi, \frac{h}{2}) - u(\xi, -\frac{h}{2})}{e^{2\pi i (\xi - x) / \beta h} + 1} \ d\xi + C \\
(4) \quad v_i (x, 0) &= \frac{\lambda}{\beta h} \int_{-\infty}^{\infty} \frac{u(\xi, \frac{h}{2}) + u(\xi, -\frac{h}{2})}{2 \cosh (\xi - x) / \beta h} \ d\xi
\end{align*}
\]

No problem is raised by using formula (1) because it was shown that it tolerates the truncation of the integration, terms owing to the rapid decrease in the impact function and the fact that it eliminates the reference errors. The same is true for formula (4) in regard to incidence. Conversely, for formula (2) it is necessary to determine the constant \(C \). It is zero if we adopt as reference a flow direction which is sufficiently upstream so that the difference \(u(\xi, \frac{h}{2}) - u(\xi, -\frac{h}{2}) \) is zero. It also shows in the nucleus of the integral a speed difference which is delicate to measure.
Based on these formulas we therefore conclude that to apply the so-called new correction methods it is necessary to know, at a right angle with the model, the speed vector in modulus and direction, in the vicinity of the walls, with a precision of the same order of as that required on so-called "upstream infinity" conditions.

1.3 - DETERMINING THE REFERENCE CONDITIONS

The crucial importance of determining these conditions accurately was recently recalled in a report under the "Wind Tunnel Testing Techniques" Committee of AGARD-FDP which set forth the requirements of airplane manufacturers with respect to wind tunnels [29].

The investigation of an error limited to $\Delta C_x = 0.0001$ leads to $\Delta M = 0.001$ and $\Delta \alpha = 0.01^\circ$ in regard to the Mach number and the incidence. This goal, which seems a challenge, actually deserves considerable effort because in other sources [30] it is shown that a 1% gain in the cruise drag (considerable only in these conditions) is profitable even if we have to quintuple the number of aerodynamic tests of a transport aircraft.

How can we possibly know the direction and speed of an "infinite upstream" flow in a wind tunnel with such accuracy?

Excluding the support effects, which will be discussed in the second part, and remembering that we have to know the direction and speed on a control surface with the same precision, by examining the errors inherent to the various procedures for measuring the flow disturbance components (laser, clinometric probes, etc), here at ONERA we think that there is only one valid procedure: using deformable solid walls where the quality of the surface condition and pressure taps is equal to that obtained on airfoils and position measurements showing the shape of the wall (which will be...
corrected for the boundary layer displacement thicknesses).

Among the wind tunnels which try to achieve these conditions, we see that T2 has a shorter test section, but that it is long enough to define the reference conditions perfectly, given the balance functions discussed above. It has the largest number of parietal pressure measurements and actuators near the model and the best definition of the wall positions. The scope of the displacements is slightly smaller and as a result the dimension of the model is limited. The displacement pitch in other regions is too strong.

In these apparently optimal conditions, has the objective focussed on been achieved? It is virtually impossible to calculate an error: the shapes of adaptive walls are derived by processing an external virtual flow using Green's formula and whose wall parietal speed measurements are the data. Conversely, the over-speeds at a right angle with the model are also functionals of the slopes obtained by smoothing and interpolation of the measured dimensions. An intrinsic validation was therefore tried by placing the same model (CAST7 airfoil with a 200 mm chord) over the axis of the wind tunnel and at 80 mm below this axis. By adapting for each case, the wall shapes and parietal pressure distributions are totally different [15]. The variation of the lift factor as a function of the Mach number for angles of 0 and 1°, shown in figure 6 on a large scale, shows the dispersion of the measuring points. The latter does not show any systematic deviation due to the difference in testing conditions and it seems small enough for us to be able to conclude that the objective is virtually if not fully achieved. This success in two-dimensional testing leaves promising prospects for extensions to three-dimensional flows provided that all precautions are taken to observe the purity of the flows, the homogeneity of the boundary conditions and the precision of the parietal measurements in the presence of considerably smaller disturbance fields.
In wind tunnels not yet equipped with adaptive walls and with magnetic suspensions, it is still necessary to make corrections for wall and support effects to restore as far as possible the results which would be obtained on models in an unlimited atmosphere. There are two types of corrections to be made for the potentials under consideration:

- the wall effects are calculated based on the interference potential promoted by the walls,
- the support effects are the result of the sum of the potential of the supports in an unlimited atmosphere and of the interference potential promoted by the walls.

2.1 WALL EFFECTS

Two methods are currently employed for calculating wall effects. These methods have already been presented.

The first method, called the "conventional method" [31] consists of calculating the potential promoted by the walls by solving a problem whose data are:

- the potential of the model in an unlimited atmosphere,
- the boundary conditions on the walls of the test section involving the concept of 'equivalent uniform wall porosity'.

The second method, called the "signature method" [19] allows the potential promoted by the walls to be derived from data consisting of:

- the potential of the model in an unlimited atmosphere,
-the distributions of pressures measured on the control surfaces of the test section (signatures).

These two methods have in common the assumption of a cylindrical test section reaching to infinity, and the necessity of making use of a mathematical description of the model.

2.1.1 Mathematical Description of the Model

Since we are referring to a corrective calculation and not a calculation of the flow on the model, the specification of the model is rudimentary: it should include the required number of singularities for the model field to be properly represented at a distance from the model. The best way to control the specification consists of comparing the signatures measured and calculated on the walls of the test section in a configuration with perfectly known boundary conditions: in this case the use of solid walls is unambiguous.

The iterative process (figure 7) is the following: using signature measurements on the walls of a guided test section, in the presence and in the absence of a model, by adding and subtracting we find the parts for the blocking and lift terms corresponding to an isolated model. The model specification associated with zero porosity conditions of the walls makes it possible to obtain signatures at the same locations of the test section and to divide them into blocking and lift terms. An examination of the differences between calculated and measured signatures makes it possible to check whether the model specification should be improved and in this case which part of the specification, volume, wake, lift is to be altered to be acceptable in terms of manufacturer specifications.

Two examples illustrate the mathematical specifications of the model.
The first example concerns tests on a profile in a flat stream in S3MA in a guided test section configuration. An example of the signatures measured in the presence of a profile, then corrected of the readings in the absence of a profile (figure 8), show that the tapping errors were eliminated as well as the effect of the wake comb located downstream. A comparison of the calculated and measured signatures (figure 9) show that the lift distribution due to two intensity vortices derived from measurements of C_z and C_M is adequate [32]. At zero lift, the description of the volume using a single doublets is also adequate. Conversely, the description of the wake using a single source is increasingly incorrect when Z_z (therefore C_y) increases. This is due to the absence of the tapping by considering the separations in the description. Work is now underway to correct this.

The second example concerns a space model (figure 10) in a 47 m^2 SIMA test section. The description of the streamlined bodies is here a double doublets of the ratio between the length and diameter of the body. We see that the calculated signatures are in good agreement with the measurements, personalize well the shape of the model: a flat signature for the fuselage alone, bulging shape for the entire spacecraft.

When the mathematical description of the model is considered to be correct, calculations may begin to correct the wall effects.

2.1.2 Signatures Method

As indicated above, this method does not require knowledge of wall porosities. One simply needs to measure the signatures over a control surface so that the wall porosity effects are homogeneous.

In perforated walls, and a fortiori solid ones, these control surfaces are the walls themselves. The duration of the signature measurements does not exceed that of the wake measurements of a
flat current profile. This method is systematically applied to profile testing in S3MA. The corrected results obtained on the CAST 7 profile are in good agreement with those obtained in the test section with adaptive walls of the T2 wind tunnel of CERT/TOULOUSE (figure 11), as well as for the lift curves and for the stability curves of the maximum C_L.

In the case of walls with slits, the signatures may no longer be sampled on the walls. According to a recent publication [20], the signatures should be recorded at a distance from the walls which is virtually equal to the slit pitch. This is a problem for the test section which has a limited number of slits.

2.1.3 Conventional Method

In addition to a correction description of the model, it is necessary in the conventional method to know the wall porosity laws as a function of the Mach and of the generating pressure, and to validate the concept of uniform wall porosity.

The reference tests [31] are referred to determine the wall porosity laws. These tests may be obtained by performing tests on the same model, with the same Reynolds number:

- in the same test section rendered guided by the ventilation mask,
- in a test section with such dimensions that the wall effects are negligible.

As far as possible the second type of reference is preferred because it has no limits due to the test section locking and does not require corrections which are high in three-dimensional cases.

The iterative process used for defining the porosity laws is the following (figure 12).
The work always includes an interpolation in M, C_z of the wind tunnel data. The first assessment of the deviations to be reabsorbed by corrections is established in incidence deviations as a function of C_z at a fixed Mach, and in C_x deviations as a function of M for a given C_z.

The deviations of M and C_z between interpolated results, corrected for the reference test and not corrected for the ventilated wall test are introduced into the curve networks established as a function of porosity. This gives the first porosity law. It is used to correct the results of the ventilated wall test. The differences between the interpolated results corrected for both tests are then examined. If these differences satisfy the manufacturer's precision specifications, the work is completed. Otherwise, the process is repeated. In general, three iterations are necessary. If differences still exist, the reasons are investigated.

An examination of the pressure distributions measured on the walls of the test section make it possible to define the Mach-incidence limits beyond which the Mach number is greater than 1. In fact, this value is obtained on the ceiling and there is not yet any choking of the test section: the supersonic region on the top skin of the wings reaches the ceiling. The wall corrections are then no longer applicable. Figure 13 shows, for a corrected Mach, the limits obtained at SIMA for three slit conditions and at S2MA for 2 homothetic models.

In the case of an S2MA transonic test section, for two used conditions of perforated walls (by opening slide valves by 100 and 55% to modify the porosity), the porosity laws (figure 14) were established by using as reference tests tests on the same model in SIMA with an area 13 times larger than that of S2MA. These laws proved to be correct for full and half civilian aircraft models up to Mach 0.92 and for full military aircraft models up to the limits due to supersonic zones.
In the case of a 20 m2 SIMA test section, the porosity laws (figure 14) of 4-slotted or 8-slotted open configurations were defined in the reference for tests performed in closed slotted configuration. These laws are correct up to Mach 0.85.

Beyond this value, there are still differences between the corrected results, obtained for the three test section cases, and an attempt is being made to resolve these differences.

2.1.4 Indirect Signatures Method

One variant of the conventional method consists of basing oneself on the signatures calculation as a function of the porosity parameter assumed to be uniform and by comparison with the measured signatures to derive the wall porosity cartography. This variant was used for the case of the S3MA perforated wall test section. After verifying the correct description of the locking and lift terms in a guided test section, figure 15 shows that for perforated walls, a comparison of the signatures leads to a uniform porosity parameter Q of 0.2 on the walls. This porosity is moreover identical to that derived from the overall efforts in a guided reference test section.

In fact, this indirect signatures method is used to check the validity of the wall uniform porosity concept.

In test sections with perforated walls, a porosity test by comparing the measured and calculated signatures has not raised any special problems. As with this case, the concept of a uniform equivalent porosity was not handicapped by examining the signatures. The conventional method was retained because it is not penalizing in terms of computer time, after the porosity laws are established. Generally speaking, the more the porosity concept is uniform, the more the mathematical description of models and stings proves to be inadequate.
2.2 MODEL SUPPORT INTERFERENCES

Corrections of the Mach number and of the Archimedean thrust brought about by the presence of model supports may be obtained experimentally based on measurements of the Kp distributions at the location which the model fuselage axis would occupy. A clinometric sounding would also make it possible to know the tail unit setting correction due to supports interference.

To avoid costly soundings, a calculation may be performed. Two methods are used at present.

The surface singularities method begins with a meshing of obstacles in the test section or on its walls. This technique is directly derived from techniques used by manufacturers in an unconfined flow limited atmosphere by adding the walls to simulate the contained confined atmosphere of the test sections. Illustrations of the meshing are therefore borrowed from manufacturers. Figure 16 shows the sting and sting holder in the S5 guided test section of CEAT-TOULOUSE used by DASSAULT-BREGUET. Figure 17 shows the meshing of a Mirage model installed on the wall of the S2MA guided test section and of the device with 6 degrees of freedom to study load trajectories: calculations performed by LE BOXEZ of AMD-BA.

Figure 18 is concerned with the assembly of a civilian aircraft twin sting in a guided test section meshed by AEROSPATIALE. More complex cases including ventilated walls and descriptions of test section ends and upstream parts with tapered section are under study. This method is still complicated to use and requires powerful computers.

A description of test section obstacles using singularities distributed over their skeletons of various shapes has been tried recently by ONERA [34]. The only data are the coordinates of the assembly skeleton and the area rule.
An attempt is made to validate this method in an unlimited atmosphere by comparison with the results of previous more sophisticated methods. Figure 19 shows, in these conditions, a good agreement of the Kps and incidence promoted by an inclined support used in a sabre assembly of the F4 model.

The support description is tested in the guided test section by comparing the measured and calculated signatures. In this case, a description of the model-support system is used. Figure 13 shows the case of an ONERA standard model assembled in a straight sting in the S3MA guided-test section. A model-orientation with 20 doublets for the model and 15 for the sting provide a good agreement of the signatures.

Returning to the case of the F4 model in an S2MA transonic test section, figure 19 gives the Kp distributions on the line which the fuselage axis would occupy for various wall porosities.

We should insist on the relative magnitude of the wall effects and sting interferences. In the case of an S2MA wind tunnel (figure 20), in the perforated wall version with maximum incidence, the incidence corrections are zero. The drag corrections resulting from the longitudinal gradients promoted on the support sting and the wall effects are in a 3 to 4 ratio for a civilian aircraft model. The sting interference is more crucial for military aircraft models whose incidences may exceed 40 degrees (and even higher for missiles) [35,36]. Given these high values and the stresses to contain, the volumes of model-support mechanisms are such that the wall effects for a well-conditioned test section may seem secondary. This real problem, in the absence of a magnetic suspension, deserves to be considered first for future active wall wind tunnels.

2.3 APPLICATION TO INDUSTRIAL TESTING

We now have correct descriptions of models and its supports and of the test section porosity laws. As of now, the corrections
are all calculated prior to testing for a specific case of a test section, wall configuration, supports, model.

These corrections (figure 21) include four parts:

- corrections relative to an empty test section obtained from corrected soundings, if necessary, and from the influence of the probe support,

- calculated or measured support interferences,

- corrections of wall effects and of the field impact of the model on the test reference, test.

In all the computer calculations provide a set of corrections depending on M, C_x, C_z (or incidence) expressed in the form of a table or polynomial laws which are introduced in the wind tunnel calculations to obtained real time corrected results. The correction calculations also provide the total field-promoted by the walls and supports for a Mach distribution and incidence correction on any point of the model. It is easy to know the spin and camber corrections of the wind promoted by the walls and the local M, and tail unit setting corrections due to the model supports.

CONCLUSION

The advantage of pressure measurements on the walls of test sections was clearly established for calculations of wall effects. For reasons of convenience, associated with the intended use of wind tunnels, these pressure measurements are still performed:

- occasionally in 3D to control the concept of uniform porosity of perforated walls and to check the mathematical descriptions of models and supports in a guided test section,

- systematically in 2D for direct access to corrections,
imperatively in test sections with adaptive walls,

finally with suspicion in test sections with slotted walls. The measurements should be performed at a distance from the walls which is technologically difficult to do.

If the advantage of additional measurements of the other component of the local flow on control surfaces is to eliminate any model description, a real problem of measurement precision has not yet been solved.

Optimized test configurations (test section, sting, model) is the result of a compromise between wind tunnel investments, the cost of testing and the quickness with which the results prepared are rectified. In three-dimensional cases, the wall effect levels are reduced by limitations in model size due to the span for civilian aircraft and due to the length for high incidence military aircraft. Small displacements of flexible walls will require greater accuracy in pressure measurements and in the positions of adaptive actuators. Test sections with 3d adaptive walls are still too recent to know their application limits and operating difficulties.

Meanwhile, it is suggested to use adaptations to the main point of a test program. These adaptations may concern:

- models whose manufacturing specifications account for distortions in the flow of conventional walls (as practiced for aeroelasticity);

- walls which should meet specifications using conventional padding whether or not associated with improved ventilation distributions.

In any case, continuous revisions of concepts for minimizing wall effects should follow improvements in the specifications for precision required by manufacturers.
REFERENCES

25. J. Smith, "A Method For Determining 2D Wall Interference on an Airfoil From Measured Pressure Distributions Near the Walls and on the Model. NLR TR 81016 U 1981.

Table 1
Wind Tunnels With Controlled 2D Boundary Conditions

<table>
<thead>
<tr>
<th>Wind Tunnel</th>
<th>Location</th>
<th>Test Section</th>
<th>Boundary Conditions</th>
<th>Model C/H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Section L x H</td>
<td>Control (paths,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length/H</td>
<td>Nb Points,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Threshold/H</td>
<td></td>
</tr>
<tr>
<td>T.S.W.T.</td>
<td>University of South- Hampton</td>
<td>15x15 cm²</td>
<td>7.33</td>
<td>20 actuators</td>
</tr>
<tr>
<td>T.U.B.</td>
<td>Technical University of Berlin</td>
<td>15x15 cm²</td>
<td>4.6</td>
<td>8 actuators</td>
</tr>
<tr>
<td>T₂</td>
<td>ONERA-CERT Toulouse</td>
<td>39x37 cm²</td>
<td>3.5</td>
<td>16 actuators</td>
</tr>
<tr>
<td>CALSPAN</td>
<td>Buffalo Tullahoma</td>
<td>25x30 cm²</td>
<td>4.6</td>
<td>10 boxes</td>
</tr>
<tr>
<td>AEDC</td>
<td></td>
<td></td>
<td></td>
<td>(perforated walls, slotted holes over two)</td>
</tr>
<tr>
<td>NASA Ames</td>
<td>California</td>
<td>25x13 cm²</td>
<td>5.66</td>
<td>3x6 boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(slotted holes)</td>
</tr>
</tbody>
</table>

23
Fig. 1 - A.E.D.C. IT Tunnel

Fig. 2 - Wind-Tunnel of Southampton University, UK.
Fig. 3 - University of Berlin Wind Tunnel

Fig. 4 - DFVLR Test Section Project with Elastic Walls: rubber
Fig. 5 - AFFDL Pilot Wind Tunnel With Flexible Wall Elements

Fig. 6 - CAST 7 Profile. Lift as a Function of Mach Number
This Page Intentionally Left Blank
Fig. 8 - 2D - Rough and Corrected Signatures of Empty Test Section
Fig. 9 - 2D Comparison of Calculated and Measured Signatures

Fig. 10 - 3D Signatures on Solid Walls
Fig. 11 - CAST 7 Profile - Comparison S3MA-T2 Results

Fig. 12 - Determination of the Porosity Laws of a Test Section With Ventilated Walls.