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This report describes the design of a cyrogenic wind tunnel
operating continuously, capable of attaining transonic speeds
at generating pressures of about 3 bars. Its stainless steel
construction with inside insulation allows for ver_frapid
temperature variations promoted by rapid changes i-nthe li-
quid nitrogen "flow.
A comparative study of temperaturemeasuring probes shows a
good reliability of "thin sheet" thermocouples. To measure
fluctuations, only a "cold wire" makes it possible to record
frequencies of about 300 Hr.
The use of an integral computer method makes it possible to
determine the impact of the wall temperature ratio to the
adiabatic wall temperature for the various parameters charac-
terizing the boundary layer. These cases are processed with
positive and negative pressure gradients.
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SUMMARY

Description of the adjustment of a cyrogenic wind tunnel

under continuous operation, capable of attaining transonic speeds

at generating pressures of about 3 bars. Its construction in

stainless steel with an inside insulation permits very rapid tem-

perature variations csused by rapid changes in the liquid nitrogen

flow.

A comparative study of probes for measuring temperatures

shows a good reliability of "thin sheet" thermocouples. To meas-

ure fluctuations, only a "cold wire" makes it possible to record

frequencies of about 300 Hz.

The use of an integral computer method makes it possible to

determine the impact of the wall temperature ratio to the adiabatic

wall temperature for the various parameters characterizing the

boundary layer. These cases are processed with positive and nega-

tive pressure gradients.
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CYROGENIC WIND TUNNELS - PROBLEMS OF CONTINUOUS OPERATION
AT LOW TEMPERATURES

D. Faulmann

1 - STUDY OBJECTIVE

To conduct a study on a small available installation of the

essential problems which arise for the operation of wind tunnels

at low temperatures both from the standpoint of performance and

flow qualities, and from the standpoint of instrumentation and

measuring instruments.

To specifically analyse the impact of a wall temperature which

may be different from the adiabatic on the boundary layer charac-

teristics.

The activities developed were divided into three phases:

.Phase I: Development and implementation of a small pilot instal-

lation operating continuously: cyrogenic T'3 wind tunnel.

.Phase 2: Experimentall _echniqUe and instrumentation for measure-

mentes in a cyrogenic: environment.

.Phase 3: Problems associated with thermal flows and with wall temp-

eratures.

2 - BENEFIT OF THE STUDY

2.1 - Specific Research Objectives

To use a pilot installation under continuous operation to

study the problems and to define the solutions relevant to cyro-

genic wind tunnels under continuous operation. To very specially

analyze the qualities of the flow as a function of the various
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factors which the _arious consecutive elements represent.

.To design and implement in the available installation var-

ious experimental systems permitting the completest possible char-

acterization of the flow magnitudes at low temperatures.

.To fundamentally study the impact of an essential similarity

parameter which is the ratio of the wall temperature to the adia-

batic wall temperature on the boundary layer characteristics.

2.2 Background of the Study and Previous Results Obtained

Construction of a typical circuit of a cyrogenic wind tunnel

operating continuously permitting flows at temperatures in the vic-

inity of 120°K and pressurable to 3 bars. It was turned on in the /3

first phase with a low power blower, creating a flow at a tempera-

ture of about 120°K for low speeds.

Methods were established at DERAT for calculating turbulent

boundary layers for compressible flows to be used to study the im-

pact of the wall temperature.

3 - CONDUCTING THE STUDY

3.1 - Summary of the Various Phases

Phase 1

T'3 wind tunnel equipment of a blower with a large compression

ratio and driven by a variable speed engine with a power of 125 KW.

The performance was tested. The test section was adapted to allow

transonic speeds to be reached.

The operation of the cyrogenic wind tunnel was adjusted: flows

were created for various temperature levels and for various Mach

numbers in the test section.
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Initial flow quality studies: measurement of the spatial

gradients and the temperature fluctuations.

Phase 2

To compare and test different measuring techniques to qualify

flows at low temperatures. To develop experimental techniques for

cyrogenic installations. Knowledge of the various flow parameters

at low temperatures is indispensable for cases of steady flows.

It becomes fundamental for cases of unsteady phenomena which occur,

for example, when starting up of gust wind tunnel or when the test

conditions are rapidly changed in a wind tunnel under continuous

operation.

Phase 3

Development of an integral computer method to determine the

impact of the wall temperature on the characteristics of turbulent

boundary layers: case of a negative pressure gradient and finally,

case of a positive pressure gradient which may lead to separation.

3.2 - Results Obtained

3.21 Tests on a Continuous T'3 Cyrogenic Pilot Installation

Figures 1 and 2 shows the T'3 continuous cyrogenic wind tunnel

which is made up of the following elements:

2
i) - Test section: i00 x 120 mm section. The two side gates /4

installed on hinges, each of which has three windows, two of which

have a 50 mm diameter, and one a 150 mm diameter.

As shown in figure 3, the slope of the upper and lower wall

may be adjusted using screw jacks. Each wall is equipped with i0
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static taps.

2) The neck element is equipped with two screw jacks

permitting a connection to the walls of the test section on the

one hand and, the formation of a neck in the case of a transonic

operation. The outlet section remains stationary (i00 x 160 mm2).

Five upper and lower static taps are connected with those of the

test section to a scanivalve connector attached to one of the three

doors of the box of the test section. Test section length: 600 mm,

neck element: 300 mm.

3) Rectangle-circle transformation piece: length 500 mm, in-
2

let section 100 x 160 mm , outlet diameter DN 150.

4) Nozzle: inlet diameter DN 150, outlet diameter DN 250,

length 1,000 mm.

5) Elbow no. 1 DN 250. Spacing 300 mm. It has 5 blades

made up of a 3 mm thick sheet, bent by a 800 radius followed at

the trailing edge by a straight part 30 mm long. This straight

part is inclined about 5° to the inside with respect to the bend

axis. The blades are soldered on the inside by an ellipsis 140 mm

high and 10 mm thick.

61 DN 250 van end, height 200 mm. It is equipped with

four DN 50 tappings placed at 90 °. They may be used for obser-

vation or for injecting liquid nitrogen.

7) Elbow no. 2 DN 250. Same design as elbow no. l, but its

attachment is over the overmultiplier and the sleeve of a trans-

mission shaft made up of a tube which maintains the atmospheric

pressure in the casing and in the compressor bearing system.

8) Compressor element.
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9) Return circuit: DN 250 inlet diameter, DN 350 outlet dia-

meter, length 1,200 mm. Four tappings with a DN 50 diameter equip

this element.

i0) Cone, length 900 mm, with DN 350 - DN 400 diameters.

ii) DN 400 cylindrical element, length 700 mm, also equipped

with four DN 50 tappings. It also has the support of the wind

tunnel and allows the wind tunnel to expand longitudinally, with

the fixed point being the geared motor located near bend no. 2.

121 Bend no. 3. Same manufacture as bend no. 1 and 2. /5

13) Bend no. 4. Identical to preceding bend.

14) Plenum chamber. A cone followed by a cylindrical part

constitutes the carcass of this part which holds the pressure.

In contrast the covering is made of a thin 1.5 mm stainless steel

sheet and has a 400 mm x 400 mm, 290 mm long square-circle trans-

formation element, three 400 x 400 mm frames 100 mm long and a

convergent 290 mm long. At the outlet of the transformation ele-

ment there is an aluminum honeycomb 40 mm long, with a 6 nun mesh.

Two grids are clamped between 400 x 400 nun frames. A cloth fil-

ter 10 mm thick (P 15 500 cadi) is attached in front of the last

grid. Any fittings with the convergent is attached on one side

to a DN 600 flange provided with a 100 x 120 mm opening (with the

insulator). The other side of this flange receives the test sec-

tion.

Thermal insulation applied to the inside of the continuous

wind tunnel has the great advantage of being able to vary the tem-

perature in relatively short periods of time, because it is not

necessary to cool the outside casing too_which undergoes pressure

stresses. This condition of a large dT/dt gradient obviously re-

quires a low heat storage capacity on the surface. In the case



of use in T'3, we are satisfied with a 5 mm thickness, since

this dimension was suitable for insulating the T2 gust wind tun-

nel with an operating time of about 30 seconds.

The use of two insulators and four different glues allowed

us to test several combinations in the various sections of the

circuit.

The insulators used were the following:

a - Cork agglomerated with Triplex, 5 mm thickness;

b - Rigid polyurethane foam (Klegecell) with Triplex, 5 mm

thickness.

"Triplex" is made up of an aluminum sheet, with a thickness

of e = 40 _, glued between two fiberglass fabric sheets and coated

with a polyurethane based glue. The advantege of this layer glued

to the insulator consists of making the insulator impervious and

protecting it from possible abrasion. The disadvantage, on the

other hand, lies in the greater surface heat storage capacity, re-

sulting in a greater liquid nitrogen consumption and in the poten-

tial for establishing a heat gradient as a function of a shorter

time.

Five glues were tested:

a - Sapropene or Bostik; contact glue.

b - Elastuff 504 (DOW): polyurethane based glue, i/i mixture, /6

fast drying.

c - Macroplast UK 8202/UK 5430 (HENKEL). Polyurethane based

adhesive free of solvents, 1/4 mixture, easy to use

d - Resin XF 415 A/XF 415 B (PROCHAL). Epoxy resin based ad-

hesive containing no solvent, 3/1 mixture, highly viscous paste.



e - Araldite AV 144/HV 997 (CIBA-GEIGY). Epoxy resin ad-

hesive without solvent, 3/2 mixture, highly viscous paste.

The following combinations are shown in figure l:

1 and 2: side walls: Klegecell + Macroplast 8202

top wall: Cork + Elastuff 504

bottom wall: Kegecell + Elastuff 504

3: Cork + Prochal 415

4: Cork + Prochal 415

5: Cork + Macroplast 8202

6: Cork + Macroplast 8202

7: Cork + Prochal 415

9: Kegecell + Macroplast 8202

i0: Klegecell + Elastuff 504

ii: Klegecell + Elastuff 504

12: Klegecell + Macroplast 8202

13: Klegecell + Macroplast 8202

14: Klegecell + Macroplast 8202

15: Transformation piece: Cork + Saproprene

Frames: Cork + Saproprene

Convergent: Cork + Araldite

For the bends, the parts between the blades were covered

with cork and fastened with Saproprene or Bostik type contact glue.

The blades themselves are not heat insulated.

Given the dimensions of the wind tunnel and the electrical

availability, we limited the power of the driving system to 125 KW.

Figure 4 shows a sectional view of the axial compressor, the

connector of the driving pin in its sleeve, the 3,000 - 11,4000 rpm

multiplier with a gear stage and the speed changeable engine.

The multiplier and the engine are mounted over a chassis
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which holds at the same time bend no. 2 and therefore the entire

rear part of the wind tunnel. A Rilson pad placed under the sup-

port of part no. ii allows the system to expand.

The one-stage compressor (Technofan ECT 900-118) is made up

of a 14-blade wheel with one 57° bitangent. A nozzle equipped

with 17 blades (79.55° bitangent) is placed downstream from the

wheel. The system is fastened with three arms in the entirely

stainless steel cylindrical carcass and which has no inside in-

sulation.

A rib is placed upstream and downstream from the compressor.

The wheel and rectifier are made of AS 7 G 06 and are subjected to

a Y 23 heat treatment. The annular passage section is formed by

the outside diameter of 247 mm and the hub diameter of 190 mm.

The wheel is driven by the transmission shaft (which can re-

volve 11,400 rpm) which crosses bend no. 2 in a 40 mm diameter

sleeve. Seals placed after the compressor bearings make it possible

to maintain the atmospheric pressure in the casing as well as in
the sleeve.

The oil tank is placed under the multiplier. The multiplier

and wheel bearing lubricator uses high fluidity oil, even at temp-

eratures as low as -50°C (Aeroshell Fluide 4). A pressure con-

troller monitors the lubrication pressure. In contrast, a thermo-

stat placed on the oil return circuit of the compressor actuates

a heating resistance in the oil tank when the oil temperature

drops too low.

The multiplier with a 3.8 ratio is driven by a C.E.M.d.c.

engine with a power of 125 KW. The regulated rotation speed is

displayed using a thyristor variator and may vary between 0 and

3,000 !_m. By subsequently connecting it to a computer it is pos-

sible to vary the rotation speed very rapidly and to thus create
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Mach number levels which should be accompanied by an increase

or decrease in the nitrogen rate if the temperature is to be

kept constant.

Figure 5 shows the theoretical compressor characteristics.

Figure 6 show the results obtainedwhen the equipment is accepted

and transposed forcyrogenic conditions. These tests were conducted

with suction in the open air. Figure 7 gives a comparison of the

Ap value measured at the time of acceptance in the T'3 wind tunnel.

Compared to the preceding system, for the case of very low

speeds, the liquid nitrogen injection system was modified only

very slightly. Rather than injecting in the direction of the flow,

we mounted the nozzles so that they be tangential to the wall and

sprayed perpendicular to the flow. Four nozzles may therefore be /8

installed in the three tapping sections: NW 50(6), (9) and (ii).

Figure 8 shows one of the nozzles on an NW 50 flange.

To increase the evaporation distance as far as possible in

the aerydynamic circuit and to benefit from a high kinetic energy,

we finally mounted the four nozzles at the outlet of the circle-

square transformation piece (3) behind the test section. The rods

bearing sprayers are secured by a Teflon disk and clamped between

DN 150 flanges with fastener bolts.

In regard to storage and the liquid nitrogen injector (figure

9), we simply increased the tappings on the liquid outlet of the

tank. The small dimension of the pipes (1/2") does not make it

possible to have large liquid flows when operating at high Mach

numbers and pressures of about 3 bars.

Figure i0 shows the capabilities for a rapid variation of the

Mach number (at ambient temperature).



Plate ii shows the Mach variationas a function of the

temperaturefor Pi = 1 bar and 9,880 rpm.

Figures 12 and 13 show a standard test for the temperature

and Mach number as a function of time.

3.22 - Experimental And Instrumentation Techniques

To qualify low temperature flows, we had to develop different

measuring techniques and compare them. In particular we tested the

means for measuring temperatures and their fluctuations. These

values are not only high for a wind tunnel under continuous opera-

tion, but they are also necessary to characterize the process of

rapid changes in the test conditions and for all unsteady phenomena

occurring, for example, when a gust wind tunnel is put into service.

To measure the temperatures, we have:

Platinum resistors which are also used for calibrating other

measuring systems. The response time of these probes is very high.

A platinum wire wound around a silicon rod and covered with an in-

sulator for protection (resistance of about i00 _) is used.

The thermocouples: For the temperature level which interests

us, the use of constant copper wires is generally recommended.

The wire diameter (about i/i0 mm) and the weld determines the re-

sponse time (a few Hz). The aging of the weld (preferably electri-

cal) alters the measuring reliability of the couples.

A very definite improvement in the measuring accuracy via

electromotive force is provided by sheet thermocouples made by an

evaporation process under vacuum. The thickness is so thin that

the thermocouple must be maintained over a think insulating sheet.

The response time is definitely higher compared to conventional

thermocouples.
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To measure the temperature fluctuations, we tested cold wires

which are therefore heat'resistant sensors powered under a low cur-

rent (hot wire). The sensors used, during tests performed by DERMES

are made from standard supports (55-P-01 type DISA probes) equipped

with platinized tungsten wires with a 9 _ diameter. This diameter

was adopted for reasons of mechanical strength. Preliminary tests

showed an excessive fragility of wires with smaller diameters (2.5

or 5 _), for flow velocities exceeding M = 0.2.

The sensors were calibrated between 300°K and II0°K and the

results showed a linear response and sensitivity of 5 mV/K for the

measuring current used. The measuring equipment is made up of a

constant current power supply (I = 4 mA), the voltage received at

the terminals of the sensor is then amplified in a 100 ratio. For

such power conditions and in flows with velocities exceeding M = 0.2,

the self-heating of the wire due to the power dissipated by Joule

effect remains less than 0.15°K, given the sensitivity of the back-

ground noise of the apparatus and this self-heating value. The ac-

curacy of the temperature measurements may be assessed to be _ 0.2°

with respect to temperature fluctuations. Measurements of the sen-

sor _ response times performed using pulse techniques, lead to an

assessment of the wire time constant between 500 and 600 _s in

flows at a temperature of 120°K and at a speed equal to M = 0.2,

i.e a bandwidth of about 250 Hz to 300 Hz.

In current tests, this bandwidth seems to be adequate. How-

ever, if this feature proved to be inadequate, the measuring ap-

paratus makes i% possible to perform field measurements of the

sensor time constant. It is then possible to correct the raw in-

dication of the termometer to characterize the temperature fluc-

tuations in a higher frequency range than the natural bandwidth

of the wire.

In effect, by illustrating the wire with a first order model,

we may express:
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dT
T _ + T = Tf

where T = time constant of the sensor

T = instantaneous temperature indicated by the sensor

Tf= instantaneous temperature of the fluid.

If we know T, by deriving the signal T, then multiplying and

adding to the signal we. are able to calculate the temperature :

Tf in a frequency band 5 to i0 times higher than the cut-off fre-
quency relative to the time constant of the wire, or for wires

currently used, frequencies of the order of 2 kHz.

Figure 14 gives a comparison of the response time of the /10

sheet thermocouples and of the cold wire.

Figures 15 and 16 show two vertical scannings of the T'3 test

section. In the first case, the mean temperature, measured with

a thermocouple and a platinum resistor was 108°K. The engine speed:

1,500 rpm; (M = 0.4), wire diameter: 9 _. The pmobe (A) was fas-

tened to a displacement device capable of scanning the test sec-

tion vertically, whereas probe (B) was stationary in the middle

of the test section and placed about 340 mm downstream from probe

A_._ Given the scanner path, the sounding does not account for the

boundary layer thickness.

Figure 18 summarizes the development of a gust recorded this

time with two cold wires, one of which was used for sounding in the

two previous figures.

3.23 Problems Associated with Heat Fluxes and With Wall Temperatures

Besides the Reynolds number, an essential similarities para-

meter is the temperature at which the model walls actually form

during cyrogenic wind tunnel tests. The essential question is to

estimate the impact of a deviation between this temperature and

the adiabatic wall temperature corresponding to a zero heat flux.
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We analyzed this problem using the test acquired at DERAT

in the theoretical and calculation range for boundary layers

while applying methods of calculating turbulent boundary layers

developed for compressible flows with heat flux.

Method of Calculation Used

The method of calculation primarily.used in these applica-

tions is an integral method which consists of solving overall

equations of boundary layer momentum and energy to which an over-

all equation of continuity (or,equation of drive) is included.

Additional relationships between the various integral magnitudes

of the boundary layer, required for closure, are derived from

similarities solutions formed using a diagram of the mixing length.

The method enables the main typical boundary layer thicknesses to

be calculated (displacement thickness 6., momentum thickness 8,

parameters in compressible and incompressible form, H and Hi,

as well as the local friction factor Cf and the heat flux factor
C
n"

Configurations Studied /ll

Since the goal is to analyze the impact of the wall tempera-

ture as a function of the pressure gardients which may appear on

two-dimensional obstacles, in applying the calculation method, we

considered various distributions of the Mach number of the flow

outside the boundary layer. These distributions are shown in fi-

giure 17.

A uniform flow at M = 0.7 is primarily formed over a 0.4 mo

length.

Various distributions of the Mach number then give negative

puressure gradients (-7, -5, -3), a zero gradient (0) and positive

pressure gradients of variable intensity (i, 2, 3, 4, 5, 6, 7)

capable of leading to a separation of the boundary layer, assumed

13



to be turbulent from the beginning.

The total length calculated is L = 0.86 m.

The calculations were performed for three generating pres-

sures, P. = 0.1, 1 and i0 bars, for a cyrogenic flow temperaturelO
T. = 120°K.
lO

The Reynolds numbers based on the Mach number M = 0.7 areo
respectively:

PoVoL
= 3.82.106; 3.82.107 ; 3.82.108

_o

We will more especially analyze the results relative to P.lo

= 1 bar, the Reynolds number of which is the order of magnitude

of one flight Reynolds number.

To demonstrate as clearly as possible the impact of the wall

temperature, our calculations included large temperature varia-

tions, considering one case of a cold wall T = 60°K, one adia-
P

batic case T = 118.9 and two hot call cases T = 200°K and T =
P P P

250°K. The ratios of these temperatures to the adiabatic wall

temperature corresponding to M = 0.7 are respectively:o

T
-_P = 0.5; l; 1.68; 2.1

Tfo

Results Obtained

The results for the case of an adiabatic wall (Tp = I18.9°K)
for P. = 1 bar, are shown in figures 18 and 19.

10

The variation of the dispalcement thickness and of momentum

for various pressure gradients is shown in figure 18. We see very

clearly the essential impact of the pressure gradient on the

14



thickening of the boundary layer after X - 0.4 m. The negative

gradients lead to a decrease in 61and in e with respect to the
case of a zero pressure gradient. The positive gradients result

in a cons£derable increase in these thicknesses.

., characteris-Figure 19 gives the incompressible parameter Hl

tic of the shape of the speed profile of the turbulent boundary

layer, as well as the coefficient of local friction Cf. The im-

pact of the pressure gradient is also very important, especially

for positive gradients. Depending on their intensity, there is

a considerable increase in the shape parameter and a definite

decrease in the coefficient of friction. We are thus led to a zero

coefficient of friction, namely to a separation of the boundary

la_er whose position advances :as the pressure gradient increases.

The results on the other various wall temperature values are

shown in the same way in figures 20 and 21 for T = 260°K, 22 andP
23 for T = 200°K, 24 and 25 for T = 250°K.

P P

Qualitatively, the observations are perfectly comparable

to those made for the adiabatic case: the positive pressure gra-

dients always result in a considerable thickening of the boundary

layer and in a decrease in the coefficient of friction, namely

to a separation.

Figures 26 and 27 demonstrate the impact of the wall temper-

ature. To accomplish this, we started with a fixed abscissa, X =

0;6 mm, i.e. at about the middle of the pressure gradient part.

We plotted for the various pressure gradient cases the variation

in the thicknesses, in the shape parameter, and in the friction

as a function of the wall temperature.

The main observations are therefore the following:

.The displacement thickness increases in all cases with the

15



wall temperature level. The effect increases with the pressure

gradient.

The effect of the wall temperature on the momentum thick-

ness is much smaller. The latter increases slightly with Tp/Tf
for the case of intense positive pressure gradients. On the con-

trary it tneds to decrease when Tp/Tf increases when we switch
from intense positive gradients to negative gradients.

In regard to the impact on the shape parameter of the speed

profile, we see that the negative pressure gradients involve low

H. values. The impact of the wall temperature is too low It1

increases only for intense positive gradients resulting in speed

profiles and shape parameters which are close to those of a separ-
ation.

The impact on the friction coefficient is very clear: an in- /13

crease in Tp/Tf leads in all cases to a decrease in Cf, which
considerably increases the tendency for separation.

Figure 28 shows simultaneously the impact of three parameters:

pressure gradient, wall temperature and pressure (or Reynolds num-

ber) on the separation of a turbulent boundary layer.

We see on the distribution curves of the outside Mach number

the position of the separation calculated for various wall temper-

atures, for P. = 0.i and 1 and i0 bars successively.10

It is clear that the separation advances _s the intensity of

the gradient increases, and as the wall temperature increases.

We also find more advanced separations as the generating pres-

sure decreases, a phenomenon which is obviously associated with

a thickets, boundary layer.
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4 - SUMMARY OF THE RESULTS ACQUIRED

Phase i: Adjustment of A Cyrogenic T'3 Wind Tunnel

Assembly and adjustment of a cyrogenic wind tunnel under con-

tinuous operation. Installation of a new compressor with its

driving system made up of an overmultiplier with a 3.8 ratio and

a direct current engine of 125 KW. Designed for regulating the

engine speed between 0 and 3,Q00 rotations per minute.

Study of compressor performance.

Adaptation of test section to achieve transonic speeds in

the temperature range of about 120°K.

Feasibility testing of the various insulators and glues which

should hold at low temperatures.

Phase 2: Experimental Technique and Adjusting Instrumentation
for a Cyrogenic Environment

Comparison of various heat sensors to determine the response

time. Study of temperature fluctuations near 120°K.

Sensor calibration. Verification of bandwidths of about 250

to 300 Hz.

Phase 3: Problems Associated with H at Fluxes and With Wall Temp-
eratures /14

Analysis of the problem of the main parameters characterizing

the boundary lyaer, namely: displacement thickness, momentum thick-

ness, shape parameter, friction coefficient and heat flux coeffi-

cient as a function of the various pressure gradients and of the

various temperature ratios Tp/Tfo. Considerable impact of positive
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pressure gradients on the boundary layer and displacement thick-

nesses as well as on the shape parameter and on the friction coef-
ficient.

Increase in the displacement thickness with the temperature
level.

Considerable increase in the shape parameter for intense

positive pressure gradients up to values near separation.

Decrease in the friction coefficient with an increase in the

ratio of Tp/Tf.

5 - CONCLUSIONS

Although it operates differently than a wind tunnel with

conventional gust, we were able to show that a wind tunnel under

continuous operation makes it possible to study and solve many

problems which arise when building a wind tunnel operating at

very low temperatures. The availability of the driving energy

also allows very rapid variations in the test generating condi-

tions, such as the Mach number, pressure or temperature. The

graident of the rotation speed of the compressor depends only on

the mechnical strength of the compressor and on its multiplier.

The variation in the engine speed is virtually instantaneous.

Inside insulation makes it possible to quickly vary the temp-

erature levels by varying the liquid nitrogen injection rate which

is not required to also cool the outside wall of the wind tunnel,

for example. As it is made entirely of stainless steel, a con-

tinous operation is possible.

The installation of a compressor ofr temperatures of about

120°K shows us that a construction in aluminum alloy holds well

despite the high temperature gradients it undergoes during the
various tests.
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A comparative study of several temperature probes, such as

a thermocouple, resistance probes, a sheet thermocouple and cold

wires enabled us to determine their response time. Use of a cold

wire with a diameter of 9 _ is very useful for measruing tempera-

ture fluctuations up to frequencies of the order of 250 to 300 Hz.

The first theoretical calculations of the variation of the /15

various parameters characterizing a boundary layer as a function

of the ratio of the Temperatures Tp/Tfo for negative and positive
pressure gradients make it possible to predict tendencies for these

parameters to increase or decrease.

6 - FUTURE PROSPECTS

The first adjustment tests on the cyrogenic wind tunnel under

continuous operation and using liquid nitrogen injection into the

aerodyanmic circuit has shown the good performance of the system

and the feasibility of testing and determining the various para-

meters to characterize a transonic flow at low temperatures.

The installation of a very simple model should allow us to

check a certain number of theoretical calculations performed as

of now. The feasibility of a rapid variation in ithe rotation

speed of the compressor, in conjunction with an increase or decrease

in the injection of liquid_nitrogen into the circuit should per-

mit a very broad variation in the parameters. A data acquisition

system which is highly performing during the assembly will facil-

itate this operation.

An increase in the capacity of the liquid nitrogen tank

stored at a pressure of 12 bars, also makes it possible to increase

the speeds in the test section while the wind. tunnel is operating

under pressure.

At the same time, we will continue to perfect the theoretical

studies to have a better understanding of the droplet evaporation

phenomenon for different storage conditions.
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Figure 2 - The T'3 Cyrogenic Wind Tunnel
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Figure 5 - Theoretical Performance of the Compressor
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Figure 6 - Experimental Results
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Figure  9 - Liquid Nitrogen Storage and I n j e c t i o n  System 
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