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_.a conventional prime factor discrete Fourier transform (DFT) algorithm

is used to realize a discrete Fourier-like transform on the finite fieM, GF(qg ). A pipeline

structure is used to implement this prime factor DFT over GF(qn). This algorithm is

developed to compute cyclic convolutions of complex numbers and to decode Reed-

Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(qg _) is regular,

simple, expandable, and naturally suitable for VLSI implementation. An e_ample illus-

trating the pipeline aspect of a 30-point transform over GF(q n) is presented.

I. Introduction

Let GF(q n) be a finite field, where q is a prime number. A

discrete Fourier-like transform over GF(q n ) is defined by

d-1

an a nk mod q,O <<.k<_d- 1 (1)

n=o

where Ak, an eGF(q n), a is the dth root of unity in GF(q n)

and dlq n - 1.

In some applications of finite field transforms to coding and

digital filters, the transform length d is not a power of two.

Thus, the usual FFT algorithm cannot be used to calculate

transforms of as many as d points.

In this article it will be shown that if d = d I • d2 . . . dr,

where (di, di)= I for i :_j, then the transform in Eq. (1) and

its inverse can be calculated by the fast prime factor DFT

algorithm (Refs. 1-3). The prime factor DFT algorithm is

based on the use of the Chinese remainder theorem (Ref. 4).

In this algorithm, the one-dimensional d-point Fourier trans-

form over GF(q n) is converted into an r-dimensional, d i-

point, (for i= 1,2 ..... r) Fourier transforms over GF(qn).

This algorithm is called a prime factor DFT algorithm over

GF(q n ).

A primary advantage of the prime factor DFT is that the

VLSI processor for computing a d-point transform over

GF(q n) is composed only of d 1 + d 2 + ...+ dr basic cells.

Each basic cell performs a sum and product operation in

GF(q n ).

It is well known that the systolic array of a DFT computa-

tion requires d basic cells (Ref. 5). Therefore, the number of

basic cells of a prime factor DFT algorithm over GF(q n) are
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substantially fewer than the systolic array implementation of

the DFT. Of course, this advantage must be weighed against

the difficulty of the rearrangement of two input and output

sequences ofd samples in the VLSI implementation.

In this article, a pipeline structure for rearranging input

and output data is developed for a prime factor DFT over

GF(qn). As a consequence, a pipeline fast prime factor DFT

over GF(q n) can be developed. Finally, it is shown that a
pipeline fast prime factor DFT over GF(2 s) can be used to

decode a (255,223) Reed-Solomon Code (Ref. 6) and that a

pipeline fast prime factor DFT over GF(q 2), where q = 2v - 1

is a Mersenne prime, can be used to compute the cyclic convo-

lutions of two sequences of 8 • p symbols.

Stage 1

dl-I

nlk 1
A 1 = _ a

(11
(k 1,i 2 ..... i r) _.J (nl,n 2 ..... n r)

nl=O

Stage 2

d 2 - 1

nlk 1A 2
= E AI

(kl,k 2 .....ir) -- (kl,i 2 .....ir) Or2

• i2=0

, O_<k2_<d2-1

II. A Pipeline Fast Prime Factor DFT
Over GF(_)

In this section a method for computing a d-point DFT

over GF(qn), based on the Chinese remainder theorem, is

investigated.

Let d = d 1 • d2... dr, where (4, d/) = 1 for i,/,and also

let k and n in Eq. (1) be represented by the r-tuple (kl, k2,

.... kr) and (nl, n2 ..... _), respectively, where kj = k

mod dj and nj = n mod d/ for 1 _< j _< r. By the use of the
Chinese remainder theorem, it is shown (Ref. 4) that a d-point

DFT over GF(q n) in Eq. (1) can be decomposed into an r,

di-point, DFTs (i = 1,2 ..... r). In other words, the computa-

tion ofA k given in Eq. (1) can be written explicitly in terms

of the dtth root of unit in GF(q n) as

dl.-r-1 d2-1 dr-I

A k = A(kl,k 2 ..... k r) = E E "'" E a(nl,n 2 ..... n r)

nl=O n2=O nr=O

nlk I n2k 2 n k

c_1 _2 ...a rr for l<_k.<_d. (2)
r 1 ]

where

(d.a_ a .d . d )d-I
ol. = a , z"" _1 j+t"" r j
I

with

(did 2 ...d/_ 1 d]+ 1 ...d)'d71_ l modd.I I

and (d? 1 , d]) = 1 (for ] = 1,2 ..... r) is a d/th root of unity in
GF(q n) (Ref. 6).

From Eq. (2), this algorithm consists of the following r

stages:

Stage r

= A r
A� (xl,k2 ..... kr )

d-1
r

= E r-I Otnrkr O<_k <_d- 1
h(kl,k 2 .... ,kr_ 1 , ir) r '

Instead of computing Eq. (3) directly, an alternate pipe-

line technique can be developed to compute Eq. (3). To see

this, let d = d1 • d2 ..... dr = dlO . d2(1), where d_ =d I •
d2 ..... dr_ x , d2(l) = d r and (dlO), d}2)) = 1. Thus, by Eq. (3)

a one-dimensional transform of d samples can be converted

into a two d_l)-point transforms, for i = 1,2. In a similar

fashion, the one-dimensional transform for d_1) can be con-

verted into two d/(2)-point transforms, for i = 1,2, where

d_2) = d I " d2,..., dr_ 2 and d (2) = dr_l, and so forth. This
algorithm is called a pipeline prime factor DFT algorithm on

GF(qn). It is shown in the next section that this new algo-

rithm can be readily implemented in VLSI technology.

III. VLSI Design for Computing a Pipeline
Fast Prime Factor DFT Over GF(q")

A VLSI processor for computing Eq. (1), composed of

d basic cells, is now developed, using the direct approach.

Each basic cell performs a sum and product operation in

GF(qn). That is, a _ a + b • c, where "_" denotes the opera-

tion "is replaced by." The VLSI architecture of the DFT over

GF(q n) using a method similar to the systolic array technique

is illustrated in the following example.

Example 1. Architecture of a 6-point DFT using the direct

systolic array technique.
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A 6-point DFT over GF(q n) is defined by

6-1

Ak = E an °tnk
n=O

where a is a 6th root of unity in GF(qn). A VLSI architecture

structure for computing this transform over GF(q n) is shown

in Fig. 1. This architecture contains six basic cells. The princi-

pal function of each basic cell is to perform the operation a

a + b • c. In this example ank, which is stored in the registers

A k for 0 _ k _<5, is assumed to be precomputed.

First, the complex symbol sequence an for 0 _< n _ 5 is
sent to all of the cells, simultaneously. Assume initially that

all registers are set to zero. After the input data are entered,

the components of A k in Eq. (1) are contained in registers
B k for 0 _< k _ 5. The values computed in this manner are

shifted sequentially out of register B 0.

The application of Eq. (3) to the VLSI design of a d-point

DFT is illustrated in the following example.

Example 2. Architecture of a 6-point DFT given in Eq. (1)

using Eq. (3).

Since d = d I • d2 = 3 • 2, by Eq. (3) one obtains a 6-point
DFT as

2-1

n2k 2

A 1 = ot 2(nl,k 2) _ a(nl,n 2)

n2:O

3-1

nlk 1

A k 2 = _ A 1= A(kl,k2 ) _ (nl,k 2) Ot 1

nl=O

(4a)

(4b)

where ot2 = ¢z3 and tz I = a 4 are the 2nd and 3rd roots of unity

in GF(qn).

To compute Eq. _(4a), first, one maps the input index n

into a pair of indices n I and n2, where n 1 - n mod 3 and

n2 = n mod 2. That is, a0 _ a(o,o), a I _ ao,o, a2 _ (a2,o) ,

a3 _ (ao.l) , a4 _ aO,o), and as _ a(2,O. The method used to

convert an to a(nl,n2 ) is described in Example A.1 in the
appendix.

The pipeline structure for computing the 6-point DFT

given above in Example 2 is shown in Fig. 2. This pipeline

architecture makes possible an efficient design with fewer

cells and a small loss in throughput rate.

In this figure, the input sequence an, first, is shifted sequen-

tially into the memory A, which is composed of six registers

A o, A l ..... and A s. Then, each column of memory A is
shifted right out of the last column into the unit of the 2-point

DFT. Then each column of A is cyclically shifted up by one

symbol, except for the first column.

Simultaneously, a 2-point transform of the first column is

computed by the direct systolic array method. These opera-

tions are continued repeatedly until the first column of mem-

ory A is shifted out of the circuit. "The components of

A_n 1 ,k1) are obtained in memory B.

Finally, two 3-point transforms of the first and second rows

of memory B are calculated by Eq. (4b). The components of

A(kl ,g2) are obtained in memory C (see Fig. 2).

The method used to rearrange the output data fromA(k 1,k2)
back to A k is illustrated for Example A.1 in the appendix.
Each column of memory C is shifted up and out of the first

row and then into the last stage. After this, each row of C is

cyclically shifted right by one symbol except for the third

row. These operations are continued repeatedly until the last
row of memory C is shifted out of the circuit.

The first three samples, A o through A2, are obtained by

switching them to the output line of memory C. The next
three samples are obtained by switching them to the other

output line with a three-stage delay element (see Fig. 2).

If a structure similar to that used in Example 2 is used

recursively, the general pipeline fast prime factor DFT algo-

rithm over GF(q n) can be obtained. This is illustrated by
the following example.

Example 3. Architecture of a d = d 1 • d2 = 5 × 6-point
DFT over GF(q n) using Eq. (3)

To compute this 30-point DFT over GF(qn), first, one

computes the two-dimensional 5 × 6 DFT over GF(q n) by

6-1

n 2 k 2

A1 = E _2 (Sa)
(n 2 ,k 2) a(n 1 ,n 2)

n2=O

and

5-1
nlk 1

A(kl,k 2) E Al czl (Sb)= (nl, k 2)

nl=O
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where etl = et6 and et2 = et2S are the 5th and 6th roots of unity
in GF(qn), respectively.

To compute Eq. (5a), one needs to convert an into a(n 1,n2) ,
where n 1 = n mod 5 and n2 = n mod 6. The procedure for

rearranging this input sequence is given in Example A.2 in

the appendix. Then, the 6-point DFT over GF(q n) in Eq. (5a)
can be decomposed into a two-dimensional 3 × 2 transform.

This 2-D transform can be implemented by Example 2.

A 5-point DFT over GF(q n) in Eq. (5b) can be computed

by the direct systolic array method. Finally, the resulting data

A(k 1,k2) is arranged in the reverse manner back to A k (see
Example A.2 in the appendix). A pipeline architecture for

implementing a prime factor 30-point DFT over GF(q n) is
shown in Fig. 3.

In Fig. 3, one observes that one needs to permute the

index n2 of the last column of d2 = 6 symbols in matrix A

and the index k 2 of the first row of d2 = 6 symbols in matrix

C, where n2 = n mod 6 and k 2 = k mod 6. Thus, in order to
reduce the number of permutations in the hardware, one

should choose d2 < dl, where d = d I • d2. Then, one needs

only to permute the index n_ of the sequence ofd 2 symbols.

In Example 3, if one chooses d = d I • d2 = 6 • 5, then one

does not need to permute the index n2 of the last column of

d2 = 5 symbols in a 6 X 5 matrix. In general, if d I - d 2 = 1,
then no permutations are needed for index n2.

IV. Applications

In this section it is shown that a pipeline fast pipeline

prime DFT over GF(q n) has application to future designs of
coding and digital signal processors.

A. Coding

It is shown (Ref. 6) that a 255-point transform over GF(2 a)
can be used to decode a (255,233) Reed-Solomon Code.

Since the transform length of this transform is d= 255 = 17 ×

5 X 3 = 17 × 15 = d I • d2, the transform can be computed

by an algorithm similar to that used in Example 2. Thus, a

pipeline fast prime factor DFT algorithm over GF(2 a) can be
used to decode a (255,223) Reed-Solomon Code.

The arithmetic needed to compute the 255-point transform

over GF(28) in RS decoder requires only 3 + 5 + 17 = 25

basic cells. Each basic cell performs a sum and product opera-
tion over GF(2a).

B. Digital Signal Processor

Recently the authors (Ref. 7) defined transforms over

GF(q 2) of the form

d-1

Ak = Z anetnkm°dq
n=O

where q = 2t' - 1 is a Mersenne prime, et is a dth root of unit
in GF(q 2) and dlq 2 - 1. They showed that the convolution of

two finite sequences of d samples can be obtained as the

inverse transform of the product of their transforms.

Nussbaumer in Ref. 8 showed that the complex integer

(1 + i) is an 8 • pth root of unity in GF(q2). Multiplications

by powers of (1 + i) can be performed by simple bit rotations.

As a consequence, the operations needed to compute an

8 • p-point transform over GF(q 2) requires only cyclic shifts
and additions.

If one uses the direct systolic array method, the VLSI

processor needed to compute the above 8 ° p-point transform
over GF(q 2) would require 8 • p basic cells. Each basic cell of

this transform performs only a sum and cyclic shift in GF(q2).

Before developing further the pipeline fast prime factor

DFT over GF(q2), consider further some properties of the
finite field, GF(qn).

Theorem 1. Let GF(q n) be a finite field. Also let d =

d_l • d22 ..... d_r, where (di, d]) _ 1 fori 4:/and dlq n - 1.
Then, et is an element of order d in GF(q n) if and only if
eta/ai__ 1 mod q for i= 1,2 ..... r.

Proof. If et is an element of order d, then d is the smallest
integer such that

cta = 1 mod q

This implies aa/ai _ 1 mod q.

Assume a is not an element of order d. Then, the order of

et is O(et) :/: d, where O(et) denotes an order of et. Thus, there
exists h _e lsuch that

nl n2 d nr = h. 0(a) (6)d=dl "d2 ' ' r

By (Ref. 6), one observes that dilh for some i. Therefore,

d/d i
et = 1 mod q
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Corollary 1. If c_ is an element of order of d in GF(qn),
then a/is also an element of order d for (j, d) = 1.

Proof. Since (j, d) = 1, then di2j, where d i is a prime factor
of d. Thus,

(a/) a/ai = (J/ai) j = (Oti)J mod q

= a a is an element of order d i and a = did i.where ai

Assume

a_ -= 1 mod q

Then, ] must be a multiple of d i. But (], di) = 1. Hence (aa)i _ 1
rood q, i.e., (a/) a/di _ 1 mod q. By Theorem 1, aJ is an ele-

ment of order of a for (], d) = 1.

From Corollary 1, one observes that the number of ele-
ments of order d in GF(q n) is ¢(d), where ¢(d) denotes
Euler's Function.

Corollary 2. Let GF(q 2 ) be a Golois field,where q = 2p - 1

is a Mersenne prime, an 8 • pth root of unity in GF(q 2) is

(1 + i).

and

Proof. First note the identity

(1 + i) sp/p = (1 + i) a = 2 4 _ 1 mod q

(1 + i) ap/2 = (1 + i) 4v = (-22) p = -22p

= -1 _ 1 rood q

Thus, by Theorem 1, it follows that (1 + i) is an 8 .pth
root of unity in GF(q 2 ).

Corollary 3. Let GF(q 2) be a Golois field, where q = 2P - 1

is a Mersenne prime, 21 is a pth root of unity in GF(q 2) for
]= 1,2 ..... p-1.

Proof. First note the identity

2p/p---2_ lmodq

Thus, by Theorem 1, it follows that 2 is a pth root of unity in

GF(q 2 ). Also by Corollary 1, 2/is also a pth root of unity in

GF(q 2 ) for (], p) = l, i.e.,] = 1,2 ..... p-1.

Corollary 4. Let GF(q 2 ) be a Golois field, where q = 2P - 1

is a Mersenne prime. An 8th root of unity in GF(q 2) is in one

of forms _+2(p-1)/2 (1 -+i) mod q.

Proof. First note the identity

(2 (p-1)/2 (1 + i))4 = 22 (p-l) (1 + i)4 _ 2-2 (_2 2) _- -1 rood q

Thus, by Theorem 1, it follows that 2(p-I)/2 (1 + i) is an 8th

root of unity in GF(q2). Also, by Corollary 1, (2( p-l)/2 (1 + i))/

for] = 3, 5, 7, are 8th roots of unity in GF(q2). That is,

2 p-1)/2 (1 3+ 0 = 2(p-1)/2 (1 + i) 2p-1 (1 + 0 2

- 2 (p-l)/2 (-1 +i)modq

+i))s= 2(p_1)/2(1 +i) (2(P-1)/2(1+i))4

-2 (p-1)/2 (1 + i) mod q

and

2 (p-1_2 (1 + i))7_=2(P_i)/2(I+ i)(2(p-I)/2(I+ i))

= -2 (p-l)/2 (-1 + i)

Therefore, an 8th root of unity in GF(q 2) is in one of forms

_+2(p-1)/2 (1 -+i) mod q.

By Corollary 2, for p = 31, (1 + i)is a 31 • 8th of unity in

GF(q2). If we let d = d 1 • d2 = 31 • 8, then a 31 • 8-point
transform over GF(q 2) is

31.8-1

Ak = Z an _nk

n=O

(7)

where c_= (1 + i) is a 8 • pth root of unity in GF(q2).

From Eq. (3), the transform given in Eq. (7) consists of the

following two stages:

8-1 n2k2

A1 =-" Z a(n 1, a2 mod q (8a)(nl,k 2) n2)
n2=O

and

31-1 nlkl

Ak 2 = E 1 a I mod q= A(kl,k2 ) A(nl,k 2)
_l O=

(8b)
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where ct2 = (1 + 0217 = 2 is (1 - i) and oq = (1 + i) a2 = 212.

If one uses an algorithm similar to that used in Example 3, a

pipeline structure can be used to implement Eqs. (8a) and

(8b). For p = 31, the VLSI processor for computing an

8 ° p-point transform over GF(q 2) is only composed of
8 + 31 = 39 basic cells. Each basic cell in this transform

performs only a summation and cyclic shifts.

V. Concluding Remarks

It has been shown that a conventional prime factor dis-

crete Fourier transform (DFT) algorithm can be used to

realize a discrete Fourier-like transform on the field GF(qn).

This algorithm can also be used to compute cyclic convolu-

tions of complex numbers and to decode Reed-Solomon codes.

A primary advantage of the prime factor DFT is that the

number of VLSI processors needed is substantially fewer than

that of the more conventional systolic array implementation.

The difficulty of the rearrangement of two input and output
sequences of samples in the VLSI implementation was shown

to be a soluble problem. As a consequence, a pipeline fast

prime factor DFT over GF(q n) can be developed.

It is possible to use the pipeline fast prime factor DFT

over GF(2 s) in decoding a Reed-Solomon code. Further-

more, a pipeline fast prime factor DFT over GF(q2), where

q = 2v - 1 is a Mersenne prime, can be used to compute the

cyclic convolutions of two sequences of 8 • p symbols.
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Appendix

Algorithm for Rearranging the Input and Output Sequences
in the Prime Factor DFT Over GF(q n)

To perform Eq. (3), one needs to convert input data from

an to a(nl,n2) and inversely to convert output data from

A(kl,k2) toA k,where0_<n,k<_d =d 1 "d 2-1,n i -nmod
di and ki =- k modd i for i = 1,2. To see this, let the one-dimen-
sional input data of DFT be an, where 0 _<n _<d = d1 • d2 - 1.
This one-dimensional input data can be shifted sequentially

into a d I × d2 two-dimensional matrix as follows:

at/1-1 .... a2 al ao

a2dl-1 " • " , a2d 1 +2 ad I +1 aldl

a3dl_ 1 • . . , a3dl+ 2 a2dl+l g2d I

ad2dl_ 1 • . . ,a(d2_l)dl+2 a(d2-1)dl+l a(d2-1)d 1

(A-l)

In (A-I) the input index n is mapped into the pair of indices

(nl, n2), where n I = n modd 1 and n2 - n rood d2 . The vector

of index n2 of the last and next to last columns of the
matrix in (A-I) are, respectively.

[0.d lmodd 2,1-d,modd2,2"d,modd 2 ..... (d 2-1)

• d 1 mod d2] T

(A-2)

and

[(O'd I + 1)mod d2,(1 .d I + 1)mod d2,(2 -d 1 + 1)

mod d2,...,((d 2 - 1)- d I + 1) modd2lr

(A-3)

where T denotes matrix transpose.

Then, one can find 1 in (A-3) and some value i in (A-2)
such that

1 = i" d 1 rood d2 (A-4)

Given d I and d2, the solution of congruence (A-4) is i. The

index th is periodic with period d2. If the indices in (A-3)
are cyclically shifted up by i or down by d2 - i, the index

n2 of the resulting sequence is equal to the index n2 of the
sequence in (A-2). In a similar fashion, if the data of the kth
column of (A-I) is cyclically shifted up or down by i or by

d2 - i, then the index n2 of the resulting data of the kth

column is equal to the index n2 of the data of the (k + 1)th
column of the matrix in (A-l). To illustrate this, two examples

are presented.

Example A.1. Let the length of input sequence be d =

d1 • d2 = 3 • 2. Convert an into a(n l,n2) and inversely con-

vert A(n 1,n2) into An, where 0 _< n _< 5, n I - n rood 3 and
n2 - n mod 2. First, the input sequence an, 0 <_ n <_ 5, is
shifted sequentially into a 3 × 2 matrix as follows:

a 2 a 1 a 0

as a4 q3

(A-5)

Then, the index of an is mapped into two pairs of indices

(nl, n2). Thus, the matrix in (A-5) becomes

a(2,o) a(l,O

a(2, D ao,o )

a(o,o)

a(o,l)

(A-6)

The index th of the last and next to last columns of (A-5) are

[0 • 3 mod 2, 1 • 3 rood 2] T (A-7)

and

[(0 - 3 + 1) mod 2, (1 • 3 + 1) mod 2] T (A-8)

respectively.
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From (A-4), one obtains the congruence as

l=i • 3mod2 (A-9)

First, the input sequence an, 0 < n <_ 30 is shifted sequen-
tially into a 5 × 6 matrix as follows:

The solution of (A-9) is i = 1. Let the data of the first and

second columns of the 3 × 2 matrix in (A-6) be cyclically

shifted up by two and by one, respectively. Then, the 2-D

matrix is arranged in the same order as the index n2 of the
last column:

a(2,o) a(1,o) a(o,o)

a(2,1) a(1,1) a(o,l)

(A-10)

a4 a3

% %

al 4 al 3

a19 a18

a24 a23

a29 a2s

a2 aI ao

a7 a6 a s

al 2 al 1 al 0

al 7 al 6 al s

a22 a21 a20

a27 a26 a2s

This matrix is used to input data for a prime factor DFT

algorithm over GF(q 2) after taking three 2-point transforms

of the columns and then taking two 3-point transforms of the

rows in (A-10); then, (A-10) becomes

A(2,o)

A(2,0

A(I,O) A(o,o)

A(l,l) A(o,1)

(A-11)

To inversely convert 2-D matrix in (A-11) into 1-D A n for
0 < n _< 5, first, the data of the first and second columns of

the 3 × 2 matrix in (A-11) are cyclically shifted down by two

and by one, respectively. Then, the matrix in (A-11) becomes

or

A(2,o) A(I,1) A(o,o)

A(2,1) A(l,O) A(o,D

A 2 A 1 A o

A s A 4 A a

Finally, an is shifted out sequentially from this matrix.

Example A.2. Let the length of input sequence be d =

d I • d 2 = 5 • 6. Convert an into a(n I ,n2) and inversely con-

vert from output sequence A(k 1,k2) into Ak, where 0 < n,
k<_ 30, ni=nmod5,andki=kmod6 fori =1,2.

(A-12)

If the index of an is mapped into the pair of indices (nl, n2),

where n 1 = n mod 5 and n2 = n mod 6, then the matrix in
(A-12) becomes

a(4,4)

a(4,3)

a(4,2)

a(4,1)

a(4,o)

a(4,s)

a(3,3) a(2,2)

a(3,2) a(2,1)

a(3,1) a(2,0)

a(3,0) a(2,s)

a(a,s) a(2,4)

a(3,4) a(2,3)

a(l,l)

ao,o)

a(1,s)

a(1,4)

a(l,3)

a(1,2)

a(o,o)

a(o,s)

a(o,4)

a(o,3)

a(0,2)

a(o,o

(A-13)

In order to arrange the second index of a pair (nx, n2) , i.e.,
n2 in order, from (A-12), one solves the congruence

1 =i- 5 mod 6 (A-14)

The solution of (A-14) is i = 5 or d2 - i = 6 - 5 = 1. If the data
of the 1st, 2nd, 3rd, and 4th columns of (A-3) are cyclically
shifted down by 4, 3, 2, and 1 ,the columns of the 5 × 6 matrix

in (A-13) are rearranged in the same order as the last column

of (A-13) as follows:
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a(4,0) a<3,0) a(2,0) a(1,0)

a(4,4) a(3,4) a(2,4) a(l,4)

a(3, )

%:) %,I) %,O %:)

a(o,o)

a(o,5)

a(o,4)

a(o,3)

a(o,2)

a(O,l)

(A-15)

Finally, if one arranges the rows so that the index r_ is in

numerical sequence,(A-15)becomes the desired result, namely,

To rearrange from A(k 1,k2) in (A-17) into A_, first one

arranges the rows in (A-17) such that the index n2 of 5 × 6

matrix in (A-17) are in the same order as the index in (A-15)

as follows:

A(4,0) A(3,0)

A(4,s) A(3,5)

A(4,4) A(3,4)

A(4,3) A(a,3)

A(4,2) A(3,2)

A(4,1) A(3,1)

A(2,o)

A(2,5)

A(2,4)

A(2,3)

A(2,2)

A(2,1)

A(1,o) A(o,o)

A(t,s) A(o,s)
°

A(1,4) A(0,4)

A(1,3) A(0,3)

A(1,2) A(o,2)

AO,1) A(o,O

a(4,0) a(3,0)

a(4,1) a(3,1)

a(4,2) a(3,2)

a(4,3) a(3,3)

a(4,4) a(3,4)

a(4,s) a(3,s)

a(2,o)

a(2,D

a(2,2)

a_2,3)

a<2,4)

af2,s)

G(1,O) a(0,0)

a_i,1) a<o,1)

a<l,2) a<o,:)

a_1,3) a<o,3)

a( 1,4) a(0,4)

a_l,s) a(o,s)

(A-16)

After taking five 6-point transforms of the columns and then

taking six 5-point transforms of the rows in (A-16), (A-16)

becomes

(A-IS)

Then, the 1st, 2nd, 3rd, and 4th columns of the matrix are

cyclically shifted up by four, three, two, and one data, respec-

tively. Thus, one obtains

A(4,4) A(3,3)

A(4,3) A(3,2)

A(4,2) A(3,1)

A(2,2)

A(2,1)

A(2,o)

AO,I) A(o,o)

A(1,o)

A(I,S)

A(4,1) A(3,0) A(2,s) A(1,4)

A(4,o) A(2,4)

A(2,3)

A(3,s)

A(3,4)A(4,s)

A(l,a)

A(1,2)

A(o,s)

A(o,4)

A(o,3)

A(o,2)

A(o,1)

A(4,o)

A(4,1)

A(4,2)

A(4,3)

A(4,4)

A(4,s)

A(3,o)

A(3,1)

A(3,2)

A(3,3)

A(3,4)

A(3,s)

A(2,o)

A(2,1)

A(2,2)

A(2,3)

A(2,4)

A(:,s)

AO ,0) A(o,o)

A(l,t) A(o, D

A(I,2) A(0,2)

A(1,3) A(0,3)

A(1,4) A(o,4)

A(I,s) A(o,s)

(A-17)

Finally,A k is shifted sequentially out from this matrix.

(A-19)
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