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Abstract

The combination of trellis coding and multiple phase-shift-keyed (MPSK)

signaling with the addition of asymmetry to the signal set is discussed with

regard to its suitability as a modulation/coding scheme for the fading mobile

satellite channel. For MPSK, introducing nonuniformity (asymmetry) into the

spacing between signal points in the constellation buys a further improvement

in performance over that achievable with trellis coded symmetric MPSK, all

this without increasing the average or peak power, or changing the bandwidth

constraints imposed on the system.

Whereas previous contributions have considered the performance of trellis

coded modulation transmitted over an additive white Gaussian noise (AWGN)

channel, the emphasis in this paper is on the performance of trellis coded

MPSK in the fading environment. The results will be obtained by using a

combination of analysis and simulation. It will be assumed that the effect of

the fading on the phase of the received signal is fully compensated for either

by tracking it with some form of phase-locked loop or with pilot tone

calibration techniques. Thus, our results will reflect only the degradation

due to the effect of the fading on the amplitude of the received signal.

Also, we shall consider only the case where interleaving/deinterleaving is

employed to further combat the fading. This allows for considerable

simplification of the analysis and is of great practical interest. Finally,

the impact of the availability of channel state information on average bit

error probability performance is assessed.
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Trellis Coded QPSK in the Presence of Rician Fading ..... 25

10. Bit Error Probability Performance vs E^/NO for Rate 1/2
Trellis Coded QPSK in the Presence of Rician Fading;
2 States, K = 10; No Channel State Information ........ 29

11. Bit Error Probability Performance vs E^/NQ for Rate 1/2
Trellis Coded QPSK in the Presence of Rayleigh Fading;
2 States; No Channel State Information ............ 30

12. Performance of 2/3, 16 State Code Over Fading
Channel With/Without CSI With/Without Interleaving ...... 35

13. Performance of 2/3, 16 State Trellis Coded 8-PSK Modulation
(TCM) Over Rician Fading Channel With CSI and Interleaving . . 36

14. Performance of TCM vs QPSK With DTCT . . . ........ . . 38

Table

1. Summary of Results ...................... 37

vi



SECTION I

INTRODUCTION

There is a growing need for reliable transmission of high-quality voice

and digital data in satellite-based land mobile communication systems. These

systems, which will be part of an emerging all-digital network, are both power

and bandwidth limited. To satisfy the bandwidth limitation, one can employ

bandwidth-efficient modulation techniques such as those that have been

developed over the past several years for terrestrial microwave communications

systems. Examples of these are multiple phase-shift keying (MPSK), quadrature

amplitude modulation (QAM) and the various forms of continuous phase frequency

modulation (CPM). When power is limited, forward error correction (FEC)

coding is ordinarily used.

When both limitations are imposed simultaneously, as in the mobile

satellite application, it is most often not possible to achieve the desired

throughput with either technique acting alone. Instead, what is required is

the integration of a bandwidth-efficient modulation scheme with some form of

FEC coding to exploit the best possible attributes of both.

In the past, coding and modulation were treated as separate operations

with regard to overall system design. In particular, most earlier works on

coded digital communication systems independently optimized: (a) conventional

(block or convolutional) coding with maximized minimum Hamming distance, and

(b) conventional modulation with maximally separated signals.

About a decade ago, using random coding bound arguments, it was shown

that considerable performance improvement could be obtained by treating coding

and modulation as a single entity [1], Many years later, this concept was

formalized into a rigorous theory which showed that optimally designed rate

n/(n+l) trellis codes suitably mapped (to maximize Euclidean distance) into

conventional 2 -point signal sets can provide significant coding gain

without bandwidth expansion when compared with uncoded conventional 2 -point

signal sets [2]. It is this work that has laid the foundation for the design



and development of all power and bandwidth-efficient digital modems found in

practice today and those that are to come in the future.

The most common application of such trellis coded modulation (TCM)

techniques is in the new generation of modems being developed, for the

telephone channel. Indeed, the present state of the art. is a rate 6/7,

8-state trellis coded 128-point QAM which is capable of transmitting 14.4 kbps

(2.4 ksps) over good-quality (Dl-conditioned or better) leased telephone

lines [3].

Thus, if it is practical to send 14.4 kbps over the telephone channel,

transmitting 4.8 or 9.6 kbps information over a 5-kHz satellite channel

(typical of present considerations) might appear to be simple.

Several reasons make this supposition untrue, most of which relate to the

additional sources of degradation present on the mobile satellite channel but

absent on the telephone channel. First, Doppler frequency shifts due to

mobile vehicle motion can be a serious source of performance degradation if

not compensated for. Second, the fact that the 5-kHz mobile channel is

actually a slot in a frequency-division multiple access (FDMA) system brings

on the problem of interference due to energy spillover from adjacent

channels. Third, the satellite channel is inherently a nonlinear one

primarily due to the HPA in the transmitter. Thus, one must either employ

constant envelope modulations and operate at full power or, if using a

nonconstant envelope, but bandwidth-efficient modulations such as QAM, the HPA

operating point must be backed off in power to produce an approximately linear

channel. The most serious source of impairment that does not exist on the

telephone channel is the combination of multipath fading and shadowing, i.e.,

for reliable performance, the system must combat short fades and recover

quickly from long fades. Fading, which for mobile satellite channels can be

assumed to be modelled by a Rician distribution, not only introduces an error

floor into the system but also makes the problem of carrier recovery more

difficult. Depending on the ratio of direct and specular (coherent component)

to diffuse (noncoherent component) signal power, one might even be required to

employ differentially coherent or noncoherent detection techniques, thus

sacrificing the power saving associated with coherent detection. Finally,



even if the above sources of degradation were absent, the power limitation

imposed by the mobile satellite channel would preclude transmission at the

high data rates achievable on the telephone channel.

Also, whatever technique is decided upon must be able to be implemented

and installed in the vehicle with a minimum of cost and complexity, perhaps

two orders of magnitude less than that associated with a telephone channel

modem.

This report shows that the combination of trellis coding and MPSK

signaling with the addition of asymmetry to the signal set is a desirable

modulation/coding scheme for the fading mobile satellite channel. For MPSK,

introducing nonuniformity (asymmetry) into the spacing between signal points

in the constellation (see Figure 1 for example) buys a further improvement in

performance over that achievable with trellis coded symmetric MPSK, all this

without increasing the average or peak power, or changing the bandwidth

constraints imposed on the system [4,5].

Sl

SYMMETRIC 8PSK ASYMMETRIC 8PSK

Figure 1. Symmetric and Asymmetric MPSK Signal Sets



Whereas previous contributions [2-5] have considered the performance of

trellis coded modulation transmitted over an additive white Gaussian noise

(AWGN) channel, the emphasis in this report is on the performance of trellis

coded MPSK in the fading environment. The results will be obtained by using a

combination of analysis and simulation. It will be assumed that the effect of

the fading on the phase of the received signal is fully compensated for either

by tracking it with some form of phase-locked loop or with pilot tone

calibration techniques [6,7]. Thus, our results will reflect only the

degradation due to the effect of the fading on the amplitude of the received

signal. Also, we shall consider only the case where interleaving/

deinterleaving is employed to further combat the fading. This allows for

considerable simplification of the analysis and is of great practical interest.



SECTION II

SYSTEM MODEL

Figure 2 is a block diagram of the end-to-end system under

investigation. Input bits representing data or digitally encoded speech are

passed through a rate n/(n+l) trellis encoder which is normally implemented

with a combination of n shift registers (the memory of the. encoding operation)

and appropriate mod-2 adders (XOR gates). The encoder output symbols are then

block interleaved to break up burst errors caused by amplitude fades of

duration greater than one symbol time. While in practice the depth of

interleaving is finite and chosen in relation to the maximum fade duration

anticipated, for the purpose of analysis, we shall make the usual assumption

of infinite interleaving depth. This assumption provides a memoryless channel

for which well-known bit error probability bounding techniques can be

applied. Our simulation results will, however, reflect a finite interleaving

depth. Thus, these results will be slightly pessimistic when compared with

those derived from theory. The primary purpose of the analysis is to indicate

through simple example the trend of the performance behavior as a function of

the various system parameters leaving the actual numerical performance to be

predicted by the software simulations.

Groups of n+1 interleaved symbols are mapped (with a ROM) into the MPSK

signal set according to the set partitioning method [2]. The in-phase and

quadrature components of the mapped signal point are digitally pulse shaped

[to limit intersymbol interference (ISI)] and modulated onto quadrature

carriers for transmission over the channel. If pilot tone calibration

techniques [6,7] are used to recover the faded carrier at the receiver, then

the pilot tone (or tones) must be added to the above data-modulated signal

before transmission.

At the receiver, the faded, noise-corrupted in-phase and quadrature

signal components are demodulated with the extracted pilot tone(s), q-bit

quantized for soft decision decoding, and then block deinterleaved. The

metric chosen for the Viterbi algorithm in the decoder depends upon whether or

not channel state information (CSI) is provided [8]. As indicated in
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Figure 2, a measure of CSI can be obtained from the power in the recovered

pilot tone(s). Furthermore, the number of bits of quantization, p, for this

operation can be much smaller than q since the accuracy of the CSI has only a

secondary effect when compared with that of the soft decisions themselves.

Finally, the tentative soft decisions from the Viterbi decoder are stored in a

buffer whose size is, in our application, a design parameter. In particular,

for the case of speech transmission, the total coding/decoding delay must be

kept below about 60 ms so as not to be objectionable to the listener. Thus,

for a given input bit rate, the decoder buffer and interleaving frame sizes

must be limited so as to* produce at most a 60-ms delay. Again for simplicity,

we shall assume an infinite buffer in the analysis, whereas the simulations .

will reflect a finite buffer size in accordance with the delay limitation.



SECTION III

DERIVATION OF THE PAIRWISE ERROR PROBABILITY BOUND

The basic analysis model for the system of Figure 2 is illustrated in

Figure 3. The box labelled encoder is actually the combination of the trellis

encoder (with binary input and output) and the mapping function of .Figure 2

which, as shown in [9] can be described by a trellis encoder with binary input

and M-ary output. In our notation, M = 2 . Also, if the input bit rate

is denoted by. R, , then the symbol rate input to the channel is

denote a coded symbol sequence of length N by

- We

(1)

where the kth element of x, namely x, , represents the transmitted MPSK

symbol at time k and is a nonlinear function of the state of the encoder s.

and the n information bits, u, , at its input, vis.,

= f( (2)

The next state of the encoder s, , at time k+1 is a nonlinear function of
k+1

the present state s, and the n-bit input u, which is mathematically

described by

= g( (3)

Corresponding to x, the channel outputs the sequence

y_ = (4)

ENCODER
x MEMORYLESS CODING

CHANNEL
P(^|X, z), q(z)

zm DECODER

i

z

1

Figure 3. General Memoryless Channel

8



where the kth element y, , representing the output at time k, is given by

nk

In (5), p is a normalized (unit mean-squared value) random amplitude

whose probability statistics depend on the fading channel model (to be

discussed later on) and n, is a sample of a zero-mean Gaussian noise process
2with variance a . If side information is available, the corresponding

side information sequence z will be denoted by

z = (.Zĵ i z2, ..., ZN) (6)

As stated in the introduction, we shall assume adequate (theoretically

infinite) interleaving and deinterleaving so .that the coding channel is

memoryless. Under this assumption, the pt's are independent random

variables (r.v.'s):and hence the channel probabilities satisfy

N

(7)
• " n • n n ;

n=l

«

PN(yJx,z) =[~]P(yn|xn,Zn]

and

N

qn(z) =|| l(zn) (8'

n=l

For any coded communication system, the decoding process uses a metric of

the form m(y,x; z) if side information is available and m(ŷ ,x) if it is:not.

Whatever metric is selected, it is desirable from the standpoint of

simplifying the decoding process that it have an additive property, namely

that the total metric for a sequence of symbols is the sum of the metrics for

each channel input and output pair. In terms of (1), (4), and (6), this takes

the form

N

^

n=l



The maximum-likelihood metric

m(jr,x; z) = 2-n PN(y_|x,z) (lOa)

when side information is available or

m(y,x) = fcn PN(y_|x) . , (lOb)

when no side information is available satisfies the requirement in (9). This

is easily seen by substituting (7) in (10) and recalling that the logarithm of

a product equals the sum of the logarithms. Thus, we shall use this metric in

what follows. Also for simplicity, we shall use only the notation of (lOa)

keeping in mind that the case where no side information is available is a

special case where the metric m(y,x; z) does not depend on z.

To find an upper bound on the average bit error probability performance of

the Viterbi decoder, we must first find the pairwise error probability

P(x -» x) which represents the probability of choosing the coded sequence

x = (xj_, X2, ..., XN) instead of x = (xj_, X2, ..., xpj). Since the decoder

incorrectly decides x is the transmitted sequence when

m(x,x; z) ̂  m(£,x; z) (lla)

or, equivalently

N N

n = l n = l • • ' . . : -

the pairwise probability £ (x •» x) is given by . • , . . : '

N

n=l

10



Applying the Chernoff bound, (12) becomes [10]

P(x •* x) <| I E{exp (X[m(y ,x ; z ) - m(y ,x ; z )])|x} (13)

nen

where "E" is the statistical expectation operation, X is the Chernoff

parameter to be optimized, and n is the set of all n such that x ^ x .

To simplify (13) further, we must specify whether or not side information is

available.

A. IDEAL CHANNEL STATE INFORMATION

The assumption of ideal channel state information is tantamount to assum-

ing that the side information r.v. z is equal to the fading amplitude p .

Thus, since n is Gaussian distributed and in general, x and y are

complex quantities, then using (5) and (lOa) gives

2
where for simplicity we shall ignore the l/2a factor since it would later be

absorbed in the Chernoff bound parameter X anyway. Substituting (14) into (13)

and conditioning on p_ we get

P(x •» x|p_) < |~~T exp t-Xp2|xn - xj
2] E{exp [-2XpnRe{nn(xn - Jn>*}]} (15)

nen

Representing the complex noise r.v. n in terms of its real and imaginary

parts where Re{n } and Im{n } are uncorrelated zero-mean Gaussian r.v.'s,
n 2 2 n

each with variance a., = a /2, it can be shown that
N

E{exp [-2XpnRe{nn(xn - xn)*}]} = exp

Substituting (16) into (15) gives after some simplification

P(x -» x|p_) < ~T exp [-^|xn - xJ2(l - 2Xa^)] (17)

11

nen



2
Since OM is independent of n, optimizing (17) over the Chernoff bound

parameter X yields

Xopt ~ 4o2 (18)

which when substituted in (17) produces the desired result, namely,

_
n n n ; D = exp (-l/8o2) (19)

nen

Finally, (19) can be rewritten as

P(x •» x|̂ ) <. Dd2^»x) (20)

where

d2(x x) A X^'p^lx - x I2 (21)

nen

represents the square of the weighted Euclidean distance between the two

symbol sequences x and x.

Finally, the pairwise error probability upperbound is obtained by

averaging (20) over the probability density function (p.d.f.) of p_.

B. NO CHANNEL STATE INFORMATION

When no channel state information is available, then the metric of (lOb)

becomes

(22)

12



Substituting (5) into (22), then, analogous to (15), we now get

P(x -» x|o_) < exp [-X|xn - xj*

nen

x E{exp [-2Xp Re{n (x - x )*}]} (23)

Again using (16), Eq. (23) simplifies to

P(x •» x|p_) < T~T exp [-X|xn - xn|
2(l - 2Xa2)

nen

- 2X(pn - 1) Re{xn(xn - xn)*}]

"
For constant envelope signal sets such as MPSK where |x| = |x| , (24) can be

further simplified by noting that

|x - x|2 = 2Re{x(x - x)*} (25)

Thus, substituting (25) into (24) and renormalizing the Chernoff parameter
2

(i.e., replace X by 2XaM), we get the desired result analogous to (17),

namely,

p.(x -> x|£,x) < D
c2(5^le.A) . (26)

where D is again given by (19) and

c2(x,|p_,X) = 4 X ( p - X)|xn -

nen

- x|2 - 4X2d2(x,x) (27)

nen

Note that unlike (17), Eq. (26) cannot be optimized over X to yield a constant

value for this parameter. Thus, in this case, we must first average over the

fading distribution.

13



SECTION IV

DERIVATION OF THE BIT ERROR PROBABILITY BOUND

To derive the upper bound on bit error probability from the pairwise

error probability bound, we follow the transfer function approach taken in

[5J. In particular, we first find the unconditioned pairwise error

probability by averaging (20) or (26) over the p.d.f. of p. (This averaging

will be denoted by an overbar.) When this is done, the pairwise error

probability can be expressed in the form*

P(x -> x) = DA (28)

where for the ideal channel state information case

A = p2|x - x |2 (29a)rn' n n1

nen

and for the no channel state information case

A =y 4X(p - X) |x - x j2 (29b)£ _^ n n TI
nen

In dealing with upper bounds of this type, it is convenient to work with

a pair-state transition diagram [11] where the pair-state S, and pair-
tc

information symbol U, are defined as

sk £ <V V
(30)

\ S <v

*For uniformity of notation, we shall drop the dependence of the pairwise
error probabilty on X for the no channel state information case.

14



where s^ and u^ are the estimates for the state of the decoder and the

information symbol, respectively. We are in a correct pair-state when sjj = s^

and in an incorrect pair-state when s, ̂  s, . Substituting (2) into (29), we

can write the latter as

A = V* 62(S ,U ) (31)
/ ̂  n n
nen

where

,un) -f(-n.«n)|
2 (32.)

or

62(Sn,Un) = 4X(pn - X)|£(sn,un) - f(sn,un)|
2 (32b)

When no fading is present, (28) is given by [5]

P(x -> x) = DA (33)

where A is still of the form in (31) with, however,

62(Sn,Un)= |f(sn,un)-f(sn,un)|2 (34)

In terms of the above definitions, it can be shown by analogy with the

results in [5] that the average bit error probability P is upper bounded by

(35)

where T(D,I) is the transfer function of the pair-state transition diagram

whose branch label gains are modified from those for the no fading case as

follows. In the absence of fading each branch label gain has a factor

D (Sn,Un) where 6^(Sn,Un) is given by (34). For the fading case, we

simply replace D^ (Sn,Un) by D* (Sn,Un) where again the overbar denotes

15



2
averaging over the p.d.f. of p and & (S ,U ) is given by (32a) or (32b) as

appropriate depending on the availability of channel state information.

Finally, for the case of no channel state information, we must minimize

the upper bound of (35) over the Chernoff parameter to obtain the tightest

upper bound. Recall that for the ideal channel state information case, we

were able to perform this optimization at the pairwise error probability level,

16



SECTION V

CHARACTERIZATION OF THE FADING CHANNEL

For mobile satellite communication, multipath fading produces a received

signal with an amplitude* which can be modelled by Rician statistics with

parameter K representing the ratio of the power in the direct (line-of-sight)

and specular component to that in the diffuse component. If shadowing is

severe, then a Rayleigh statistical model becomes appropriate which can be

looked upon as the limiting case of a Rician channel when K approaches zero.

Of course, the case of no fading corresponds to a Rician channel with K

approaching infinity.

Mathematically speaking, the above statements correspond to a p.d.f. for

the fading r.v. given by

2p(l + K) exp [-K - p̂ (l + K)]I (2p /K(l + K)); p > 0
p(p) = { U (36)

0 ; otherwise

where In(x) is the zero-order modified Bessel function of the first kind.

*We assume that the phase distortion produced by the fading is fully compen-
sated for either by tracking it with some form of phase-locked loop or with
pilot tone calibration techniques [6,7].

17



SECTION VI

AN EXAMPLE

Consider the case of rate 1/2 trellis coded asymmetric QFSK using a

2-state trellis. The appropriate set partitioning is illustrated in Figure 4,

the trellis diagram in Figure 5, and the pair-state transition diagram in

Figure 6. The performance of this system in the absence of fading was treated

in [5] with the following results:

T(D.I) = ; a = | D4 ; b = \ D ; c = D (37a)

or

(37b)

4(l+2<x)

ID 1-KX

^ - —

1 - ID

where D as defined in (19) becomes [5]

D = exp I- TJT- I ; — = system bit energy-to-noise spectral (38)
\ O/ 0 density ratio

and a is the ratio of powers between the I and Q channels which is related

to the angle <j> that defines the asymmetry (see Figure 4) by

a = tan2 (39)

Substituting (37) into (35) gives

(40)
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Figure 4. Set Partitioning of Asymmetric 4-PSK

Figure 5. Trellis Diagram and MPSK Signal Assignment for 4-PSK

1/2

Figure 6. Pair-State Transition Diagram for Figure 5
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Optimizing (40) over the asymmetry produces

4 &n D - VN0 .a - - -jST - l = an~T - l

which when substituted into (40) gives the desired upper bound

P < ~ exp (-2/N (42)

A. IDEAL CHANNEL STATE INFORMATION

Recalling (29a), we see that the transfer function T(D,I) of the

pair-state transition diagram for the case of ideal channel state information

is obtained merely by replacing D^ by DP ̂  in the branch label gains of (37a)

where B =4, 4/(l + a), or 4a/(l + a) as appropriate. For the Rician p.d.f. of

(36), DP2° evaluates to*

D"" • I.: K : BYj ° "™"
T' * • 4-it <"*:

which for the Rayleigh special case (K = 0) becomes

1 + BY

Evaluating T(D,I) of (37a) using (43) and performing the differentiation

required in (35) gives the upper bound on P, as

P, < — - r (44)
~

*Note that E]j represents the total average received power (direct plus
specular plus diffuse) in the data bandwidth. In the general case of an
n/(n+l) code rate, E^ in the definition of X would be replaced by
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where

. - v
r __ i _ . f __ l + K _ . i - 1 2 3
M ~ 1 + K + Q.v * M ~ 1 + K + B.Y ' ~ ' 'i1 i'

To obtain the best performance in the presence of fading, one should

optimize (44) over the asymmetry parameter a. Before doing this, however, we

shall first examine the behavior of (44) for the symmetric case, i.e., a = 1,

and the optimum asymmetry in the absence of fading as given by (41).

Substituting a = 1 in (45), the parameters £• and, (,. simplify to

r
1 + K + 4y ' M ~ 1 + K + 4y

(46)

r = K 1
S2 ^3 1 + K + 2y ' 2 1 + K + 2y

The curve labelled "symmetric" on Figure 7 is a plot of the upper bound of

(44) combined with (46) as a function of the average bit energy-to-noise ratio

E, /N^ with a Rician parameter K = 10 (typical of the mobile satellite channel).

When the value of a in (41) is substituted in (45), after some

simplification (44) and (45) can be written as

(47,

(1 - £2 exp (-C2))'

and

1 + K
. i/ , n! » i = 1» 2, 3'i 1 4- K + RI ' M 1 + K + fi^

(48)

, !b , S
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Figure 7. Bit Error Probability Performance vs E^/Ng for Rate 1/2
Trellis Coded QPSK in the Presence of Rician Fading;
2 States, K = 10; Ideal Channel State Information

The behavior of (47) combined with (48) is also illustrated Figure 7 by the

curve labelled "optimum asymmetry (no fading)."

For the Rayleigh case, the above results simplify even further. In

particular, for the symmetric signal QPSK constellation, we get

(49)

whereas for the optimum asymmetry in the absence of fading,

g.n3

8,n3 V
(50)
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These results are illustrated in Figure 8. Note that here the curve labelled

"optimum asymmetry (no fading)" gives worse performance than that of the

symmetric case. Thus, at least here, we clearly see the need for performing

the asymmetry optimization in the presence of the fading.

To determine the optimum value of a for the Rician case, we need to

differentiate (44) with respect to a and equate the result to zero. This

leads to a transcendental equation which must be solved numerically. Rather

than doing that, it is more expedient to directly minimize (44) with respect

to a using numerical techniques. When this is done, we obtain the optimum

bit error probability bound labelled "optimum asymmetry (fading)" in

Figure 7. For K = 10, this curve lies quite close to the "optimum asymmetry

(no fading)" curve. However, as we can already deduce from Figure 8, this

statement is not true for small values of K, in particular the Rayleigh

10',-1

10,-2

io-3

10-4

10,-5

I
— THEORY

SIMULATION

UNCODED

OPTIMUM ASYMMETRY
(NO FADING)

OPTIMUM
ASYMMETRY
(FADING)

SYMMETRIC

10 15 20 25

' dB

Figure 8. Bit Error Probability Performance vs E^/NO for Rate 1/2
Trellis Coded QPSK in the Presence of Rayleigh Fading;
2 States; Ideal Channel State Information
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channel with K = 0. To exhibit the sensitivity of the optimum asymmetry

condition to K, Figure 9 illustrates the. optimum value of a as a function of

E./N^ with K as a parameter.

For the Rayleigh case, we can indeed determine the optimum asymmetry

condition in .closed form. In particular, differentiating (44) with K = 0 in

(45) and equating the result to zero has the solution

-4 + E /N
ct = -^—^ ^ (51)

which when substituted back in (44) gives

(3 + v/17 + 8Eb/NQ) [4(Eb/NQ)
2 + (Eb/NQ)

2(7 + v/17 + 8Eb/NQ)]
2

t ^ '. " __ " \ -) ̂  /

16(\/17 + 8Eb/NQ - l)(Eb/N0)
2(l + Eb/NQ)

4

This result is illustrated by the curve labelled "optimum asymmetry (fading)"

in Figure 8 and is clearly superior to that corresponding to the symmetric

signal constellation.

Finally, for purpose of comparison, the corresponding upper bound on the

performance of uncoded BPSK (same bandwidth as rate 1/2 trellis coded QPSK) in

the presence of Rician and Rayleigh fading is also illustrated in Figures 7

and 8. The analytical results for these curves are well known and are given by

p 1+K / KVN0 , ,_„P < exp I - I (53)
1 + K + E,/N. \ 1 + K + E,/N,

b U \ b I
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Figure 9. Optimum Asymmetry Parameter vs E^/NQ for Rate 1/2
Trellis Coded QPSK in the Presence of Rician Fading

for the Rician channel and

VN0

(54)

for the Rayleigh channel.

Depending on the shape of the bit error probability vs E, /N_ curve,

one can often deduce some important practical conclusions by examining the

asymptotic behavior of the curve. Since for the Rayleigh case (Figure 8), the

error probability performance curves are essentially linear over a wide range

of practical SNRs, one can approximately apply the asymptotic (large E^/Ng)

result over this domain. In particular, for large E /N , (49), (50), (52),

and (54), respectively, become
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P. < r (synnnetric) (491)~

(optimum asymmetry - no fading) (50')

p ^ ^ (optimum asymmetry - fading) (521)
D

and

(uncoded) (54')

Thus, for example, comparing (49* ) with (541), we see that the effect of

coding is to change the rate of descent of the error probability vs. E /N_

performance from an inverse linear to an inverse square law behavior. If the

QPSK constellation is now designed according to the optimum asymmetry for no

fading, the performance is worse than that of the symmetric constellation by a

factor of (1 + Sin 3)/(/2 in 3) or 1.3 dB. On the other hand, if the

constellation is designed with the optimum asymmetry determined in the

presence of fading, then, relative to the symmetric design, the performance

is improved by a factor of /2 or 1.5 dB. From Figure 8, we see that these

asymptotic results are almost achieved at an error rate of 10

B. NO CHANNEL STATE INFORMATION

Recalling (29b), we see that the transfer function T(D,I) of the

pair-state transition diagram for the case of no channel state information is
- _ r\ • _

obtained by replacing D , this time by D . = D D in the branch

label gains of (37a) where again fl = 4, 4/(l + <x), or 4qc/(l + a) as appro-

priate. Unfortunately, for the Rician distribution, the factor D cannot
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be evaluated in closed form. It can, however, be expressed as a single

integral with finite limits as follows:

DHA*H = e~K[l - — n(9) exp [n
2(9)] erfc n(9) d9]

n(9) = cos 9 (55)
fl + K

This integral is easily evaluated using Gauss-Chebyshev techniques, i.e.,

r N

n(9) exp [n
2(9)] erfc n(9) d9 = J^ n(9fc) exp [n

2(9fc)] erfc n(9fc

k=l
(56)

where 9fc = (2k - l)ir/2N. ' = • ' '

For the Rayleigh case, we can obtain a closed form result for this factor

since, for K = 0, n(9) becomes independent of 9. Thus,

exp \R
2N,

erfc XB (57)

Evaluating T(D,I) of (37a) using (55) and performing the differentiation

required in (35) gives the upper bound

P h < m i n min
X>0 a

(l -

(58)
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where

-K
'i =

/ir

(̂9) exp (nf(9)) erfc d6

- /K cos 9 (59)

and 0.; i = 1, 2, 3 are defined in (45). For the Rayleigh case one merely

replaces £. and r\.(Q) of (59) by

. A 1 - /ir n- exp (n«) erfc n-

. A

(60)

and performs the same minimizations required in (58).

Figures 10 and 11 illustrate the analogous results to .Figures 7 and 8 for

the case where no channel state information is available.* Clearly, the lack

of channel state information produces a noticeable degradation in system

performance. To quantitatively assess this additional degradation (at least

for the Rayleigh channel), we now derive asymptotic results analogous to

(49'), (50'), and (52') for the no channel state information case. In

particular, we use the asymptotic (large argument) expansion for erfc x, i.e.,

c ~ exp (-x )erfc x = — v—^ - -
/ir x

ri 1 -2 ,[1 -- x ] (61)

in which case (57) simplifies to

D4XBp ~

2[XB(Eb /2NQ)]1
(62)

*For simplicity of presentation, we have chosen not to illustrate the results
for the values of optimum asymmetry determined from the no fading analysis
since we have already made the point that asymmetry should be optimized in
the fading environment.
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Figure 10. Bit Error Probability Performance vs Ê /Ng for Rate 1/2
Trellis Coded QPSK in the Presence of Rician Fading;
2 States, K = 10; No Channel State Information

Using the appropriate values of B in (62), the branch gains of Figure 6 become

a = exp (4X2E, /N.)

b = exp (63)

c =
/2aXÊ X

exp
1 + a
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Substituting (63) into the transfer function of (37a) and performing the

differentiation required in (35) gives the approximate upper bound on P
b

(valid for large E /N )

/4(1 + 2<x) ,2= ... \. exp I —— :—'- \ E, /N- I< mm v \ 1 + a b O/

x < 1 -
-2

(64)
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Performing the minimization over X required in (64) (actually we minimize

only the numerator since the denominator has little effect on this operation)

gives

opt 2

which when substituted in (64) yields

(65)

Finally, the desired asymptotic results are

9e2P, < - - (symmetric)

2Eb/NQ - !ln3
2

- - I - - (optimum asymmetry - no fading) (67)
Eb/NQ -

2
P, < (optimum asymmetry - fading)

- 2
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SECTION VII

SIMULATION RESULTS

In this section, we describe and present the results of a software

simulation of the system block diagram of Figure 2. For the application at

hand, the development of a simulation has a manyfold purpose. First, it can

be used to "verify" the theoretical results obtained in the previous section

keeping in mind that the simulation is indicative of the exact system

performance whereas the theoretical bit error rate expressions are upper

bounds. Second, when the number of states in the trellis diagram becomes

large (e.g., 16), determining the state transition diagram and its associated

transfer function is a tedious task; in such cases, simulation is the more

expedient approach. Finally, system degradation due to the finite size of

interleaving and decoder buffer imposed by the practical constraint on the

allowable total delay is analytically intractable, particularly when coupled

with that caused by the "noisy" carrier demodulation reference produced by the

pilot tone extractor. Hence, to predict true system performance corresponding

to the real world environment, one must again turn to simulation. In the next

paragraph, we expand upon the last of these issues.

The block interleaver of Figure 2 can be regarded as a buffer with d rows

which represent the depth of interleaving and s columns which represent the

span of interleaving. Thus, the size of the interleaver (in symbols) is

d x s. Data is written into the buffer in successive rows and read out of the

buffer (the order in which it is transmitted over the channel) in columns. At

the receiver, the block deinterleaver performs the reverse operation, i.e.,

the received soft quantized symbols are written into the buffer in successive

columns and read out in rows. In practice, the interleaving depth should be

chosen on the order of the maximum fade depth anticipated which, for the

fading mobile satellite channel under investigation, depends on the doppler

frequency or, equivalently, the vehicle speed. The smaller the doppler

frequency, the longer the fade duration and vice versa. The interleaving span

should be chosen on the order of the decoder buffer size. When this is done,

the performance degradation (relative to that for the analytically tractable
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assumption of infinite interleaving depth and buffer size) will be inversely

proportional to the product of interleaving size and doppler frequency.

On the other hand, when pilot tone(s) are used for coherent demodulation

(as suggested in Figure 2), performance will degrade directly proportional to

doppler frequency. The reason for this is that the bandpass filter(s) used in

the pilot tone extractor to isolate the pilot tone(s) from the modulation must

have bandwidth sufficiently wide to include the doppler shift. Thus, the

larger the doppler, the wider the bandwidth of the filter(s) and hence the

"noisier" the extracted demodulation reference. Assuming infinite

interleaving and decoder buffer size, one can use the same analytical approach

as previously discussed to derive upper bounds on the bit error probability in

the presence of the noisy carrier reference. In particular, we first find the

probability density function (p.d.f.) of the phase error associated with the

demodulation reference signal which itself depends on the envelope of the

fading sample. Next, the bit energy-to-noise ratio in the branch label gains

(see Figure 6 for example) should be degraded by the cosine of the phase

error, averaged over the phase error p.d.f., and then, as before, over the

fading envelope p.d.f. Finally, using the averaged branch label gains in the

transfer function bound T(D,I) gives the desired upper bound on average bit

error rate. Even for the assumption of infinite interleaving and decoder

buffer size, this computation is quite tedious. Thus, a simulation is

preferable.

Example 1; This example is for the "verification" of the analytical

results obtained in the previous section. In particular, the system block

diagram of Figure 2 was simulated for a rate 1/2, 2-state trellis code,

symmetric or optimum asymmetric QPSK modulation, and either a Rician or

Rayleigh fading channel. The interleaving size was chosen equal to 512 QPSK

symbols (or equivalently, 512 input bits) which, for all practical purposes,

approximates infinite interleaving. A doppler frequency of 100 Hz was chosen

which makes the channel rapidly varying enough for the fading to be assumed

independent from symbol to symbol. These two assumptions provide a memoryless

channel as assumed in the analysis. Furthermore, the buffer size was chosen

equal to 32 bits which approximates the assumption of an infinite bit buffer.
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Numerical simulation results for this example are superimposed as dashed

lines on the analytical results of Figures 7 and 8 corresponding respectively

to the cases of Rician and Rayleigh fading with ideal channel state

information. The discrepancy between the solid and dashed curves reflects the

looseness of the upper bounds but the relative behavior of the analytical

curves compares well with that of the simulation results.

Example 2; Here we consider the more practical case of a rate 2/3,

16-state trellis code combined with symmetric BPSK modulation (it was shown in

[5] that, for this case, the additional coding gain produced by the addition

of asymmetry to the modulation is small and thus we have chosen to ignore

it.) Although, with much computational effort and the assumption of infinite

interleaving and buffer size, this system can be analyzed by the approach

taken in the previous section, our interest here lies in computing the

performance with limited interleaving and decoder buffer size as follows.

At the present time, this system is a candidate for NASA's Mobile

Satellite Experiment (MSAT-X) project [12] whose objective it is to transmit

4800-9600 bps of digitally encoded speech over a 5-kHz RF channel with a bit
_3

error rate of 10 . To satisfy the previously mentioned constraint on total

allowable .delay, the interleaving size, interleaving depth, and decoder buffer

size have been optimized at this bit error rate to achieve the minimum bit

signal-to-noise ratio. For the specified delay constraint (60 ms), the size

of the block interleaver and deinterleaver have been chosen equal to 128 BPSK

symbols (or 256 input bits). With the above chosen interleaving size, the

interleaving depth has been optimized by computer simulation and found to be

equal to 16 symbols. Thus, the interleaving span is 128/16 = 8 symbols over

the range of doppler frequencies from 20 Hz to 100 Hz (vehicle speeds of

15 mph to 75 mph at UHF). Note, however, that for MSAT-X channels operating

at low doppler frequencies such as 20 Hz, we can indeed have fade durations

much longer than 16 symbols. In this.case, an interleaving size of 128

symbols is not sufficient and, as we shall see shortly, a significant

performance penalty occurs. Finally, with the above delay constraint imposed,

the buffer size was optimized through simulation and found to be 32 symbols

(or 64 bits).

34



Figures 12 and 13 illustrate the results of the simulation for perfect

carrier and time synchronization and no intersyrabol interferences (ISI). In

particular, Figure 12 assumes a fixed doppler frequency of 100 Hz,' a fixed

Rician parameter K = 10, and various interleaving and channel state

information options. Also shown as a reference point is the performance of

uncoded QPSK (same bandwidth as rate 2/3 trellis coded 8-PSK) at the chosen

error rate of 10 . Figure 13 shows the effect of doppler frequency on

system performance for the case of ideal channel state information and the

same interleaving parameters as in Figure 12.

Table 1 summarizes the above results by tabulating the required £,/NO at

a bit error rate of 10 for each of the cases and also for Rician fading

parameters of 5 and 7 dfi. From these numerical results, one can assess the

<
0£.
Qi
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-1

| SIMULATION POINTS

I I

• RICIAN K = 10 dB

• DOPPLER FREQUENCY = 100 Hz

• INTERLEAVE = 128 SYMBOLS

• DECODER BUFFER = 32 SYMBOLS

• PERFECT SYNC (PHASE, TIME)

• NO ISI

• CSI = CHANNEL STATE INFORMATION

/

UNLUUtU
QPSK

10 11 12

BITSNR

Figure 12. Performance of 2/3, 16 State Code Over Fading Channel
With/Without CSI With/Without Interleaving
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Figure 13. Performance of 2/3, 16 State Trellis Coded 8-PSK Modulation
(TCM) Over Rician Fading Channel With CSI and Interleaving

coding gain (reduction in required Eh/N0 relative to uncoded QPSK)

achieved in each case. For example, without interleaving and channel state

information, transmitting 2/3 coded 8-PSK over the K = 10 Rician channel

produces a coding gain of 1.6 dB. When 128 symbol interleaving is added, the

coding gain is increased to 3.1 dB. If, in addition to interleaving, we

provide ideal channel state information, another 0.5 dB coding gain is

achieved which brings the total coding gain to 3.6 dB in this particular

environment. As is obvious from Figure 12, this coding gain would be greater

at lower bit error rates. When the doppler is decreased from 100 Hz to 20 Hz,

Figure 13 and Table 1 show a reduction in coding gain of 1 dB due to the

limitation on the size of the interleaver.
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Table 1. Summary of Results

Type of
Modulation

QPSK

TCM

TCM

TCM

TCM

QPSK

TCM

TCM

QPSK

TCM

TCM

*Decoder

Fading
K, dB

10

10

10

10

10

7

7

7

5

5

5

buffer size

Block
Doppler Interleave
K, dB 128 Symbols

100

100

100

100

20

100

100

20

100

100

20

= 32 symbols.

No

No

Yes

Yes

Yes

No

Yes

Yes

No

Yes

Yes

Channe 1
State

Information
(CSI)

No

No

No

Yes

Yes

No

Yes

Yes

No

Yes

Yes

Required Bit
SNR, dB at
BER = 10~3

9.6

8.6

6.6

6.0

7.0

12.0

7.0

8.5

15.0

7.8

10.5

As previously mentioned, all of the results in Figures 12 and 13 and

Table 1 are for the case of perfect carrier synchronization. Using a dual

tone calibration technique (DTCT) [13] wherein two tones of equal power are

inserted symmetrically at the edges of the data spectrum for the purpose of

coherent demodulation, we have found by simulation that the noisy carrier

reference produced by the appropriate pilot tone extractor [13] produces about

a 2- to 3-dB degradation in performance depending on the value of the Rician

parameter K. This is caused by the fact that the bandwidth of the pilot tone

bandpass filters has to be chosen wide enough to accommodate the maximum

doppler of 100 Hz and the total power of the two pilots is 7 dB below that of

the data (this ratio has been shown to be optimum). Simulation results with

the DTCT technique are shown in Figure 14 for Rayleigh and various Rician
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channels under the assumption of ideal channel state information, 128 symbol

interleaving, and a doppler frequency of 20 Hz (worst case for our applica-

tion). Note that in this simulation, the bandwidth of the pilot bandpass

filters was chosen to accommodate the 100-Hz doppler as would be the case in

the actual hardware design.
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