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SECTION I

NEAR FIELD TO FAR FIELD TRANSFORMATIONS
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1.0 Introduction

1.1 Background

Near field measurements to determine far field patterns of

antennas are felt to be an effective alternative to far

1 2 3field range measurements. ' '

FIGURE 1

FAR FIELD ANTENNA PATTERNS FROM

NEAR FIELD MEASUREMENTS

P&GE NOT FiLMEO - 3- .BUM



This is especially true for microwave antennas and most

especially for phased array antennas. Near field measure-

ments allow measurements to be made indoors. An indoor

range provides the all-weather capability to enable tests

to be performed in a controlled environment. In addition,

large-antenna logistics and mounting problems are simpli-

fied by near field measurement systems. These systems are

felt to be time and cost effective, with accuracy compar-

able to that of far field ranges. The requirements for a

more complicated and expensive measurement system with

more expensive probe calibration are not felt by pro-

ponents to be serious disadvantages.

1.2 Project Objectives

As a part of this contract, jjthe feasibility ,. of acoustic

verification of microwave near field to far field trans-

formation algorithms using the Phased Array. Sonic Simulation

System was studied. Existing electromagnetic near field

measurement techniques and transformation algorithms

(equations) were investigated. ' ' ' It was analytically

r̂determined that acoustic verification is valid.1 We— we^a-l-d

— rrke~to— expl-i-eitl-y point out that although—far— f±e-ld

pa-fe-te-r-n-s— f-rom_ne.a r_f ± el-d— pat t e r n s--f0-r~~a co us-te-i-e—a-r r ay s
/- -7

a-r-e— vartird — ' --- ("aTra~in"~faTrt~-maY— hav-e^bB^^^

o'f— near— ; f-ield̂ te--f-aT~fl"e±d̂ traTLs"forn̂ irî Trs")"T̂ wh-a±— we— â ?e
N-

=t-aJJijjig_abo-urt"he-re~rs (acoustic simulation of electromagnetic
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PAGE BOF POOR QUALmr ;s,
near field to far fie-ld transformations ̂ -—tOne merely needs

to separately simulate acoustically the transmission of the

two orthogonal polarization components of the EM wave and
<

then superimpose the results to get the analytical descrip-

tion of the total field.) — •

The acoustic 'simulation of electromagnetic near field to

far field transformation is verified for the "modal

- 1 4 9
expansion" method. ' ' In the modal expansion method,

data from antenna near field measurements are converted

to a summation^ or spectrum of modes corresponding to wave
<̂

numbers in the measurement coordinate systenu}

field at all points in

front_gf_-a—plane—aperture—of "any"ap~e'rTtare~~dl's'tri'but-ion

may__b e—r-e g a-rde d— as—a-r-i-s*ing—fr om"̂ ffi"~a"ggreg'a"t e—o £—p-l-a n e

o"f the wa.ves"™as a"Tunc'tiprT bf"~th"e'rr~d±rect-ion-

of_tr.av-e-l

of—looking— a t~ thre~~same™thing, —and— this--: ts— the— ph-i-l<^sopical

approac.h— taken— in—the-fver-i-f icat ion method \ijse4— in— %h-i-s-

reporti^lis that all the far field pattern information is

contained in the near field and thus is contained in

measurements made in the near field. Fourier transformation

of those measurements preserves the far field information

is a spectral form that is then readily extractablej_]



1.3 Near Field/Far Field Definitions

Before presenting the details of the mathematical verifi-

cation, it is important to define what we mean by near
Q

field and far field. It is commonly accepted that the

far field is that region which is at a distance from the

antenna greater than

where D is the largest dimension of the antenna and A is

the wavelength. The near field is the near radiating

field and is the region between the far field and the

near reactive field. The near field is considered by

many to begin at a distance from the antenna greater

than

X/2TT.

However this defines the point where the reactive

near field equals the radiating near field for a small

dipole. Suffice to say that for most antennas, that

point is usually less than a few wavelengths from the

antenna. Thus near field measurements are usually made

within a few wavelengths from the antenna. Strictly

speaking, there is nothing in the verfication proof to

be developed below that restricts the measurement plane

to any region or distance.



2.0 Near Field to Far Field Transformation - Mathematical

Verification

2.1 Wave Equation Basis

Consider the well known wave equation governing electro

magnetic radiation in a source-free region and given in

terms of the time-varying electric field vector, E:

V2E =

,2 .

E, (2)

where V is the Laplacian operator. For a monochromatic

(ie. , single frequency) field,

E = Real {Eejwt} (3)

where the "hat" denotes the phasor. Let the coordinate

systems of interest be defined by Figure 2. Substitution

Aperture Plane

FIGURE 2

COORDINATES DIAGRAM
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of (3) into (2) then yields

? 2"
V E = -yeu> E. (4)

2Let us express E and V in rectangular coordinates:

E = E (x,y,z)

a2

'* 2 ' 2 ' 2 *3x 3v 03

The propagation velocity, c, is given by

/ ye

Since

c = f\,

where f is the frequency, the wave equation as described

by (4) can be rewritten as

?~ 2~
V^E = -k^E (5)

where k is the propagation constant (wave number) expressed

by:

k = 2-FT/A.

Let us now take a two-dimensional Fourier transform with

respect to the x and y dimensions of the wave equation.

Taking such a Fourier transform of both sides of (5) yields

-8-



DC
cx -jk y

dx}e * dy

• DD-
-jk x -jk y

X dx}e dy (6)

where k a,nd k can be thought of as spatial frequencies,

Using the rectangular coordinates' expression for the

2
Laplacian operator, V , (6) becomes

{f [-̂ -5- E ( x , y , z ) ] e x dx}e y dy
_oo J-oo avz

°° 00 2 " ~3k..y ~Jk x
- E ( x , y , z ) ] e y dy)e x dx

f°° f00

MJ _oo J _o

fOO ,00 -2 /s

[—j E ( x , y , z ) ] e
J _ooJ-oo 37^

- j ( k x + k y)
dxdy

E ( x , y , z ) e
-J (k x + k y)

y dxdy. (7)
— OO' —OO

Let the double-integral term on the right side of the

equal sign in (7) be defined as the phasor/vector field,
s>>.

B: .

-j(k x + k y)
B(kx,ky,z) = | | E(x,y,z)e

x y dxdy. (8)
— CO' —00

Note therefore that the third term to the left of the

equal sign in (7) then becomes described by (9):

-9-



00 f°° p.2 ^ - j (k x + k y)
P-2 E ( x , y , z ) ] e x y

_ooJ -oo 9 2
dxdy

9 2 (°° r« * -j (k X + k y)
= ••2-7 E( .x ,y ,z )e K 2r dxdy

B(k ,
3z2 - x' y'''

( 9 )

Before examining the first and second terms to the left

of the equal sign in (7), let us look at the Fourier

transform of differentials. . If the Fourier transform

of a function, f(t), is given by

(10)

then f(t) is given by the inverse Fourier transform

f ( t ) = ~ (11)

Therefore &{ f(t)} is obtained as a direct consequence
dtn

of taking the n ' th derivative of f(t) with respect to t in

(11) followed by application of the rule given by (10) :

,n

dtn
f ( t ) } = ( t )} .

Thus in the first term of (7) we get

-jk x
dx

x
E (x,y,z)e x dx.
— ~

-10-



After taking the Fourier transform with respect to y

of this result and using (8), the first term of (7)

becomes

-jk x . -jk y
•J V -* TT-*

E_(x ,y , z ) ] e dx}e y dy
_oo -co

-ooJ _

E ( x , y , z ) e
-j (kxx + kyy)

dxdy

k/B(kx,ky,z). (12)

In a like manner, for the second term in (7), we have

• GO T1-*-*

L<L
oo 2 ^ -J

E(x,y,z)]e y dy}e
-jk x

dx
oo -co

(13)

Substituting the results given by (9), (12), and (13)

into (7) gives us the Fourier transformed wave equation
s\

in terms of B(k ,k ,z):— x y

-kx
2§ -ky

2B +
3z2 -

B = -k B.

Rearranging terms gives:

B-(k ,k ,z) = -k B (k ,k~ x y z •* y

where

(14)

(15)

-11-



, 2 A . 2 .2 ,2k = k - k - kz z y

Equation (15) has a solution given by

B (kx,ky,z) = A (kx/ky)e
 z .

(16)

(17)

(Proof is by substitution, which can almost be seen by

inspection.) (Note that:

/s /\

A (kx,k ) = B (kx,k , 0).)

Since B (k ,k ,z) as given by (8) is seen to be a two-— x y

dimensional Fourier transform of E with respect to x

and y, then the uniqueness property of Fourier transform

pairs means that E(x,y,z) is given by the inverse Fourier

transform:

1
E(x,y,z) = (yb
"̂~ — ooJ —oo

B (k ,k ,z)e
^̂  ft- y

*

j (k x + k y)
X y dk dk . (18)

Using the wave equation solution given in terms of B

expressed by (17), (18) becomes:

r ^k7
z-, 3(k x+k v)

[A(k ,kr)e
 z ]e y d k d k . (19a)- x • x4 IT * — <x>J —oo

The result given by (19a) can be expressed in compact

vector notation as:

E(r) = * fT A (k ,k )ete * £ dk dk
47T -ooj-oo- X Y X Y

(19b)

-12-



where k = k a + k a + k a ,— x—x y—y z—z

£= xax + yay 4- zaz/ ^ .

and a , a , a are unit direction vectors.—x —y —z

2.2 Physical Concepts/Terminology

Let us now look at the physical significance of the terms

in the expression for the electric field given by (19b):

E_(r) is the electric field, expressed as a vector

intensity, defined by r_, the magnitude and direction

of that point from origin of the coordinate system.

/\ • i"ik * rA(k ,k )e — — is an expression for a plane wave.— x y — ̂ —
/̂

A (k ,k ) is a plane wave spectrum. This arises from_ x y - - ; -
/\

the fact that the form of (17b) shows that E is the
/\ /N

inverse Fourier transform of A. Therefore A is ,the
^

Fourier transform (and therefore the spectrum) of E:

A(k ,k
-

E(x,y,z)e D- ' - dxdy.

A
_ 00 ' — .00

"i k * IT: )ej— — dk dk is a superposition

(sum) of plane waves of every "mode" k , k .

yi.

The field E(£) is therefore expressed as a "modal expansion"

(a "plane wave expansion") by (19b.). This equation shows

-13-



that the field may be regarded as being made up of a

superposition of plane waves.

2.3 Propagating/Evanescent Plane Waves

From (19a) and (,19b) we use the relationship

ik • r j (kxx + kvy)n jkzZ
A(kx.ky)e^ ^ = [A(kx,ky)e

 X y ]e

We see that the exponential term in z can be expressed as

= e-Yz

where Y is the propagation constant and where from (16)

we have

/ T 2 2 ' 2k = /k - k - k . . (20)

In general, Y is composed of real and imaginary parts,

the attenuation and phase constants, respectively:

-jkz = Y = a + j3, (21)

where a and 3 are real numbers. In (16) then, when

2 2 2k z + k ^ > k ,x y '

k is imaginary. This means that k can be represented asz • z

kz = ia'

and therefore

-14-



e
 z = e ~

 az
f for k imaginary.

Thus we see that those .waves for whick k is imaginary
Z

will "evanesce" (attenuate rapidly to zero in a direction

toward the far field)., When

9 2 ?
l c + V c < l c
x + y k '

k is real and can be represented (choosing the minus value
Z

for the square root radical) as

= -e.

Therefore in this case,

jk z
e z = e

-i 6zThe term e J is merely a phase term. Thus those waves

for which k is real will propagate (will exist at infinite

values of z, the far field).

Thus from (19b) we see that the electric field is made up

of a superposition of propagating and evanescent plane

waves.

2.4 Near Field Measurements

In a plane parallel to and located at a distance, z ,

from the aperture plane, the electric field, E as

represented by (19a)/ is given by

-15-



1 r f°° r~ J k Z Z On J ( k x X + k v y )

E ( x , y , z ) = A, [A(kx ,k )e °] e y

4lT ' —ooJ —oo •*

Therefore the uniqueness of Fourier transform pairs

dictates that:

-j (k x + k y)
A(k .k )e•• x y E(x,y,z )e~~

X y dxdy. (22)

Thus the plane wave spectrum, A, can be calculated (using
/\

(22)) from measurements of the electric field, E(x,y,z ),

made in that plane:

A(kx,ky)= e
-^kzzo

.00 fOO ^

E ( x , y ,
J _ooJ —oo

-j(k x + k y)
z )e Y dxdy. (23)

Equation (23) is valid irrespective of the magnitude of z .
y*v

Thus A can be determined from measurements made at a distance,

z , which puts that plane in the near field of the antenna
s\

(see Figure 3). Once we have calculated A from such near

x, y plane
= aperture plane

(can be arbitrarily located
with respect to antenna)

Near field measurement plane
(parallel to aperture plane)

FIGURE 3

ORIENTATION OF MEASUREMENT PLANE
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field measurements, we can then determine the electric
/\

field, E, for any r(x,y,z) in Equation (19b). This is,
/\

we can determine E anywhere by substitution of the result
s\

of the calculation of A from (23) into (19b):

E ( x , y , z ) = —^
4 IT J —o°J —o°

9eJ- ' ' dkxdky (19b)

"Anywhere", of course, includes the far field which is

what we're especially interested in here.

/\

The electric field, E(x,y,z), in the far field (the "far
ŝ .

field" pattern) can be evaluated by evaluating A(k ,k )x y

in (19b) at particular values of k and k . The method

of "stationary phase" can be used to derive the result.

We will use that method below. But first, let us derive

some useful relationships,

2.5 Field Relationships

/\

The electric field, E, and its corresponding plane wave
/\

spectrum, A, can be expressed vectorially in rectangular

coordinates in terms of the unit direction vectors and

directional phasor components to have (19b) yield:

^ ^ A /"*

E ( x , y , z ) = a E ( x , y , z ) + a E ( x , y , z ) + a E ( x , y , z )
Y Y

_ xOO *OO ^v ^\.

= —- [a_xAx(x,y,z) + a A ( x , y , z )
4lT •< — ooJ —oo

—z z
. .n jk • r( x , y , z ) j e j - -

-17-



Therefore we have the triad

E x ( x , y , z ) =
4TT ^ — ooJ —oo

E ( x , y , z ) = —?
y 4ir

E z ( x , y , z ) =

(24a )

k- ' - dkxdky (24b)

• r (24c)

In a source-free region (which is the case with our near

field measurements):

/*!

V • E = 0

\̂ £\ r\

where V = a -5— + a -5— + a -5—.—x dx —9 —z3z

Therefore in rectangular coordinates we have

(x,y,z). 3E (x,y,z) 9E (x,y,z)
= 0 (25)

Substituting into (25) for the components of E_ in terms
/\

of those for A as given by (24) yields

4TT J — oo' —oo

kyy
]dk dkJ x y

+ TT
ATT J — ooJ —oo -«

4TT'

,k

j (kxx + k y + k z)
: * J dk dkx Y

-i- [e^^ + V + k z Z ) ] d k x d k y = 0 , ( 2 6 )
— OO' —00

-18-



which, upon performing the partial diffenentiations, becomes

4TT' —col — oo

[jk A (k ,k ) + jk A (k ,k )LJ x x x y J y y x' y

j (kvx + k y + k z)
s X y dkxdk = 0 (27)

Cancelling out the j's in (27) and defining the resulting

^
expression as f(x,y,z) gives us

f(x,y,z) =
4 7T J —oo J —oo

[k • A (k .k 1"
x' y'

x + k-y)-
dk dk = 0.x y (28)

Because of the uniqueness of Fourier transform pairs,

-j(k x + k y)jk z
k • A(kx,ky)e

 z f(x,y,z)e y dxdy. (29)
— OOJ —CO

But from (28),

f(x,y,z) = 0

Therefore

jk z
k • A(kx,k )e = 0 for all z.

jk z

(30)

z
But e " is in general not equal to zero for all z.

Therefore in order for (30) to be true for any z, we have

the result that in a source-free region

k • A • = 0. (31)

-19-



This means that

kA +kA + k A =0xx y y z z
(32)

from which we get

/\ -. >N /\

A = - ^ [k A + k A 1z k L z x y yj
J -*

(33)

where k_ = A2 - k.,2 - k 2

and where (using (19))

A =x
E e -

— 00 J —00

~ j k z
= e

— ooJ —oo

E ( x , y , z )e
•**•

- j (k vx + k y)
dxdy (34a )

Ay = J J Eye
J J —ooJ —oo •*

-jk • r dxdy

= e
z

E (x ,y , z )e
— ooJ — oo •*

wy dxdy (34b)

The key result is that since, from (33), A is a function
Z

^ /\

of A and A , measurement is only required of the x and y
/N /\

components of E to get A. Stated in more general terms,
/N

only two measurements of E_, each taken at different

orientations of the measurement antenna, are required to
/N.

obtain all of the components of A.

-20-



The vector fields, A and E, can also be expressed in

spherical coordinates as

+ aQA9 + a (35a)

and

E = arEr + aQEe + a (35b)

where a,., aQ, a,, are the unit direction vectors. In the—r —y —(p .

far field of an antenna the radial component of the electric
/\

field, E , is negligible compared to the other components.

Thus in the far field

E = a0Ea + a,E,.—6 0 —9 (p
(36)

2.6 Far Field Solution Using Method of Stationary Phase

/̂

The far field solution for the electric field, E, in (19b)

is obtained below after R. Collin using the method of

"Stationary Phase".

The geometry of the situtation is depicted by the coor-

dinates diagram in Figure 2. In rectangular coordinates,

= xa_x za-z' (37)

It is easy to show from Figure 2 that the x,y,z components

of r are given in terms of the spherical coordinates, r,

6, and <}> as

-21-



x = r sin 0 cos 4>

y = r sin 9 sin <J>

z = r cos Q

(38a)

(38b)

(38c)

Since

k = ka + k a + k a ,— x—x y—y z—z

then the "phase" term k • r in (19b) becomes

= (k sin 6 cos <J> + k sin 6 sin 4>. + k cos 0)r (39)x z

/ 2 2 2where k =/k -k -k . Using the Euler identity,

"ik * rwe can also express the term ej— — in (19b) as

e-3— — = cos (k • r_) + j sin(k • r) .

The "phase" term k • r_ is in general composed of real and

imaginary parts, since k , in (39), can be real or imaginary
Z

as seen from (20). Thus letting k • r be described by

jk • r = -y'r = -(a1 + j6')r,

\
where a' and B1 are real numbers (attenuation and phase

constants, respectively), we then get

e
jk- '. £ = e~

a're~j3'r

= e r(cosB'r + j sin3'r). (40)

-22-



When r is very large, we see from (40) that the real and

imaginary components of e^— * — oscillate very rapidly

between equal positive and negative values except for

certain values of k and k for which k • r doesn't

change much for changes in k and k . For those values

of k and k the first order change in k • £ is zero
/N

for small changes in k and k . Conversely A(kx,k )

in (19b) is a slowly varying function in k and k (as

compared with k • r being a rapidly varying function in k
— X

and k ). Thus the contribution to the value of the integrals

•^ "I k * r
over all k and k of A multiplied by ej— — comes

/\
essentially only from the values of A determined by the k

"~™ ' j\,

and k which make the "phase", k • r, "stationary"

(constant). The "phase" is stationary when

9k = 0 (41)

Using the value for k * r from (39),

3k • r
7-j— (k sin 6 cos <J> + k sin 8 sinok x y

+ A2.- k 2 - k 2 cos 9)r = 0

kxcos Q
(sin 0 cos <j> - —r ) = 0 .

-23-



Therefore

k sin 0 cos <j>
£t

cos 6 (42)

Likewise, 3k * r/8k yields

k sin 0 sin <}>z

cos 9 (43)

But

2 2 2 2k = k - k - kKz K x y ' . . . . .

which upon substitution of the values of k and k into

(42) and (43) gives

2 _ 2 _ , 2 sin2
kz " k z 2cos 6

which yields

k = k cos 6 . (44)

Combining the results of (.44) with (42) and (43) yields

k , k , k , which we will define as those value ofxo y0
 zo

k , k , k for which k • r is stationary, namely:

k = k cos 9

k = k sin 9 cos <j>
o

k = k sin e sin d>

(45a)

(45b)

(45c)

-24-



(Note from (45a) that k = k is real and therefore
Z zo

a = 0 in (21). Therefore we have non-evanescence.) The

phase k_ • r_ can be expanded in a Taylor series about k
xo

and k :y~

k • r = k ' r
k ,k 3k

8k
Ak + —57-x 3k

k ,k
xo y0

Ak

k ,k
xo

k ' r

3k

8

Ak + ± g-x 2 2
k ,k ky

Ak 2y
k ,k
xo 3

3k Ak k + . . . .
x y

k /k.

(46)

where

Ak = k - k
X X X .

and

Ak = k - k .y -y y^
But (41) tells us that

3k • r 3k • r

k ,]
x

9k
'0 -TO J o

and (39) and (45) give us

= 0,

-25-



k • r = (k sin 6 cos <j> + k sin 6 sin
k ,k

xo

+ /k2 - k 2 - k 2 cos 6)r
xo yo

= (k sin20 cos2t}> + k sin20 sin2<|> + k cos 0)r

= kr

Therefore, (46) becomes:

k • r = kr + (aAk 2 + bAk Ak + cAk 2) (47)
~~ T— x x y • z

where

a = h
32k ' r • .

b _^ •
9kv

32k • r
3k 3k ' c

x y

2k - r

' 3k 2 '

all evaluated at k = k and k = k
o ^

Therefore we have in (19b) that

E(r) = E(x/y/z) -i=-~* A(kx,ky)e^ ' £ dkxdky

A(k ,k )e
j (kr + aAk 2 + bAk Ak + cAk 2)

X Y y
••

-oo~ X
0

dkxdky

_ /s • ,

^A(k ,k )e^kr
2 -

1 x ' y
4TT O -^

ej(au
2
 + buv + cu

2)dudy (48)

— COJ —OO

where u = Ak and v = Ak . It can be shown that the double

integral of the exponential term in (48) evaluates to
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2TT

b - 4ac

. 2-rr .
^ r~kz (49)

When r is very large, we are in the far field (subject

to (1)). In the far field then, we have (from (48) and

(49)):

ikr
k A(k ,k ]z — x y
O 0*0

(50)

with k ,k ,k given by- (45). Using (23) we can express
X V Zo -'o o

/s.

A in (50) in an explicit manner to give the far field

in terms of the near field:

E(r) = .j
j.kz cose
e ° cose

E(x,y,z -jk sin 6 (x COS sin

—CO J —.00

dxdy (51)

where, from (37) and (38),

r = a r sin 0 cos <}> + a sin 6 sin <J> + a r cos— —x —Y r —z

2.7 Probe Compensation

Although (51) describes the far field precisely in terms

of the near field, in a practical sense it does not

describe the far field in terms of near field me a s urements.

The reason of course is that any measurement of the near

field, plane wave or otherwise, is altered by the measure-
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nient probe characteristics. So the near field in a plane,
/\

represented by E(x,y,z ) in (51), would have to be

obtained by deconvolution from actual near field measure-

ments . Alternately, the far field can be obtained directly

in a form that uses the near field measurements, but in

conjunction with a description of the probe antenna pattern

such that compensation is made for the probe characteristics

Such is the form given in References 3 and 12 and derived

below. (However the derivation here is different than

that in Reference 3 where the Lorentz reciprocity theorem

is used instead.)

Consider the geometry of the antenna and measurement system

shown in Figure 4. For the moment, let the measurement

ANTENNA

x=xo-x',y=yo+y', Z=ZQ-Z'

PROBE

x'.y'.z1 = 0,0,0

x,y plane = antenna aperture plane x',y' plane = measurement plane
= probe aperture plane

FIGURE 4

GEOMETRICAL RELATIONSHIP OF ANTENNA AND MEASUREMENT PROBE
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system be an "infinitesimal" probe located at the coor-

dinates x ,y z in the x,y,z coordinate system (0,0,0

in the x1 , y1, z1 system.) Let the probe's measurement

characteristic be described by the vector/phasor term
/\ /N

C = cdxdy, where

/\ /\ /\ /s \̂

c = c(x,v,z) = c, (x,y,z) a + c-(x,y,z) a + c-, (x,y , z) a
•— — j. — x 4 — y J —

(52)
When the probe is oriented so that it "points" in a

direction perpendicular to the antenna aperture plane,
/\ /"̂

we have C1 = c'dx'dy', where

c1 (x1 ,y' ,z') = tx1 ,y' ,z')ax, + c2(x' ,y' ,z')a ,

+c3(x',y',z
I)azl (53)

But it can be shown from Figure 4 that the unit direction

vectors and the differentials dx' , dy1 in the x1 , y', z1

coordinate system are related to those in the x,y,z system

as follows:

a ' = a-y -y

dx1 = -dx

dy1 = dy
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Therefore a voltage received by the "infitesimal" probe

can be represented as

= [-VWzo)ci(0'°'0)

Ey ( xo' yo'Zo ) C2 (° '° ' 0 )

> V

" E 2 (x o ,y o , z o )c 3 (0 ,0 ,0) ]dxdy

VXo'yo'zo}

( 0 , 0 , 0 ) a -

- (-^(0,0,0) ax

( 0 , 0 , 0 ) a ] dxdy

Ey ( xo'yo'zo )

+ c 2 ( O f O , 0 ) . a ,+ c 3 ( 0 , 0 , 0 ) a z , ] ( -dx ' )dy '

= EU0 /y0 /zo) - [-£' ( 0 , 0 , 0 ) ] dx 'dy ' . (54)

Equation (54) becomes

= E ( x , y , z ) • [ - c c ( x ' , y ' , z ' ) J dx'dy1

X'=y'=z'=0 (55)

where, from Figure 5,

x = XQ - x
1 , y = yQ + y

1 , z = ZQ - z
1 . (55)

Thus from (55) and (56) we get

- dv(xo,yo,zo)
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= E(x - x1 , y + y1 , z - z.1) • [-c1 (x1 ,y' ,z')]

Let a probe with an aperture area, Q, be now placed about

the point 0,0,0 in the x',y' plane with the probe aperture

parallel to the x,y plane, as shown in Figure 5. Let the.

Q, probe aperture, parallel
to x - y plane

Vyo,zo

ANTENNA

FIGURE 5

RELATIONSHIP OF PROBE APERTURE TO ANTENNA

probe aperture be filled with an infinite number of

infinitesimal probe antennas which are described by (57).

Let us further assume that each of the infinitesimal probe

antennas responds equally to the same field (ie.,

uniform illumination taper for the probe aperture). Then
s\

from (57) the probe's response to the field E_ is

V(xo'yo'zo) = I dv

E (x -x',y +y', z -z1) • [-c ' (x ' ,y ' , z ' )]dx':dy

0(0,0,0) z'=0

= I f E(XQ - x', yQ + y
1, ZQ)'« [-c'(x'fy',o)]dx'dy» (58)

a
If the probe aperture is not uniformly illuminated, then
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v(xo'yo'zo) = '' y '' zo)

a

• [-C1 (x',y',o)f (x',y')]dx'dy' (59)

where f(x',y') is the illumination taper. In (59), let
^

the term £ be defined such that

',y') = -c(x',y',o)f(x',y>). (60)

Thus we see that 2 is proportional to the aperture field

distribution of the probe. Now the illumination taper,

f, is zero outside Q . Therefore (59) can be expressed

as

- x', y + y', Z)

• g(x',y')dx'dy1. (61)

Let the probe aperture not be restricted to the location

about x ,y . Let it be free to move about in the measure-

ment plane at z = z . Therefore in general, the measure-

ment probe response in the measurement plane is

* f°° r°° /s ' *
v ( x , y , z ) = E ( x - x ' , y + y1, z ) ' ^ ( x ' , y ' ) dx 'dy ' . ( 6 2 )

J —ooJ —oo

Let us examine the nature of the integrations performed

in (62). To that end, let a variable, w, be the result
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of the convolution of two other variables, u and v, such

that

00

W(t) = U(t - T)v(T)dT.
J _00

Therefore the Fourier transform of w,̂ (w}, is given by

On the other hand let w be the result of the correlation

of u and v such that

W(T) = [ u(t + i)v(t)dt.
— CO

Therefore,

W(T)= u(t)v(t - i)dt

,00

u(t)v[-(T - t)]dt
J —00

so that the Fourier transform of w is

where 9 is the complex conjugate of 9 such that

3f*{f (t) } = F*(jw) = F(-jw).

Therefore the two-dimensional Fourier transform of the
y\

voltage, v(x,y,z ), measured by the probe in the near
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field, where v is expressed by (62) , can be expressed in

terms of the two-dimensional Fourier transforms of E and

SL as

- j (k x + k y)y \F
v ( x , y , z o ) e y dxdy

— oo' — oo

,00 ,00 ^

E(x,y,
J _ooJ —oo

- j ( k x + k y)
z )e y dxdy

f f /\

2(x ' -3
J m^ CO J — OO

-j(k X + k V)

dxdy

= [A(kx ,k )e'
3k^z,

(63)

where the bracketed term is from (22) . The term G is

equivalent to the far field radiation pattern of the

probe. This is because the far field radiation pattern

of an antenna results from the Fourier transform of

the aperture field distribution which here is proper-
/v

tional to g.

Multiplying both sides of (63) by the term

. e
jkr

2Trr ~z

and evaluating the resulting expression at the modes given

by (45):
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k = k = k sin 6 cosx X

k = k = k si.n 9 sin
y y1 * o

k = k = k cos 9.
z zo

yields

.e
jkr

[j5-— k A k ,k )eLJ 2irr z — x ' yo o -^

jk zJ z oo -i

.e
jkr

o J o

x + k y)

Z-'_J_I(X'y/Zc.)e dxdy.(64)

Upon substituting the result of (50) into (64) we get

E(r) • G(k , -k )
o ^o

v(x,y/zo)e
_oo -co

Vy)
dxdy,
(65)

It is helpful to express this result in terms of spherical

coordinates:

E(r) = Er(r,0,<J>)ar
far field

But the radial component of an electric field in the

far field of an antenna is, for practical purposes, zero

Therefore,
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Er(r,e,cj>) = 0 .

The shape of the other components of the electric field,
/\ xs.

E • and E, are independent of the distance, r, to the
o <J>

antenna (by definition of the far field), Thus without

loss in generality we can write

E(r)
far field

= Ee(0,4>)ae + £̂ (0,4)) a^. (66)

Likewise for G in spherical coordinates:

G(k ,-k )
xo yo

= G(k sin 0 cos <|>, - k sin 0 sin

= G(k sin 0 cos (-0), k sin 0 sin (-<j)))'.

We see from Figure 5 that

,« = -4,, e1 = 0. (67)

Therefore
/v ^

G(k ,-k ) = G(k sin 0' cos <f>' , k sin 0' sin 4>'). (68)
o o

s\

The far field radiation pattern, G, can then be rewritten

as GO1,*!*1) which can be expanded in spherical coordinates

as

GO1,*1') = G t e 1 , * 1 ) ' + GO ',4>' - J a '

Gr(0',d)')ar
1. (69)
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Since the radial component of the electric field trans-

mitted by an antenna is effectively zero in the far

field, by reciprocity the radial component of an antenna's

far field receiving pattern is zero. Therefore in (69),

Gr(Q',4>') = 0. (70)

Adding this to the fact that from Figure 4

(.71)ae' ~ ~aef a<f>' ~

Equation (69) , with the use of (67) , becomes

G = -Ge<6,-*)ae.+

Therefore the expression in (65) can be evaluated in

terms of the angles 6 and <J> to give us the relationship

between the far field pattern of an antenna and the far

field radiation pattern of a measurement probe. The

relationship is given in terms of the spatial Fourier

transform of the voltage measured by the probe in the

antenna's near field and the vector components of E_ and G:

^ s\ ^ ' /^

~Eft(6,d>)G~(8, — <f>) + E , (6 , <p) G , (9 , -<{>)

.ke

6 \ " / *r * A * 'Q)

jkr -jkz cos 6

2-rrr cos
-co ,00

J _ooJ _c

sin 9(X ^ COS Sin 9) dxdy. (72)
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The probe measurement will in practice be a set of discrete

samples. The double integration in (72) then becomes a

double summation discrete approximation which can be

efficiently evaluated using the Fast Fourier Transform.

Equation (72) expresses the far field radiation pattern

of the antenna's electric field in terms of the two
/s. /\ '. . /\

orthogonal field components, Efi, and E,. The terms GQ
/**•

and G(j) are the two known (orthogonal) components of the

far field radiation of the probe. They are expressed in

the direction (.6, -<|>) from the probe to the phase center

of the antenna (which is opposite to the direction (6,<|>)

from the antenna to the probe.) Thus we have one (linear)

equation and two unknowns. Therefore a second, linearly

independent equation is needed to solve for the two
s\ /s

unknowns (Eg and E,). A rotation of the probe, which

thereby changes the polarization axis (axes), provides

the needed second equation. The second equation has the

form

- EQ(e,<J))GRe(0,-<f>)

kejkr -jkz cos 9
e COS

— 00^ —CO

vR(x,y,zo)e^
k sin 9(x cos.* + ? sin *>dxdy (73)

where the subscript, R, refers to quantities resulting

from the probe rotation.
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Therefore for each 6, <J> combination we have two independent
y*-. So

equations for the two unknowns, £„ and E :

- EQG0 + E.G. = result of measurement #166 4> <j>

aG^o + EaG^., = result of measurement #2.
o RO b R<j>

These two equations immediately above are solvable if

the determinant

V =

.A. /N

GR6GR(J)

= GeGR4>

(The determinant will be zero for the case where the probe

is circularly polarized because such a probe will obviously

give no new information upon rotation.)

2.8 Other Modal Expansions

Our focus in the report has been the plane wave modal

expansion - antenna patterns from measurements made over

a planar surface. Far field antenna patterns can also
9

be obtained from measurements made over cylindrical

and spherical surfaces (Figure 6). These surfaces

arise as a natural consequence of the type of probe

scanning employed, as does the planar. The cylindrical

results from vertical scanning of the probe together

with rotation is azimuth of the antenna under test.
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1-4-
CYLINDRICAL-WAVE MODAL EXPANSION

SPHERICAL-WAVE MODAL EXPANSION

FIGURE 6

OTHER MODAL EXPANSION MEASUREMENT SURFACES
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Spherical is employed by fixing the probe in space and

rotating the antenna in azimuth and elevation. This

results in simpler probe calibration. These scanning

surfaces naturally give rise respectively to cylindrical-

wave and spherical-wave modal expansions. The Fast

Fourier Transform can still be used for the cylindrical-

wave modal expansion, however it cannot be used for the

spherical-wave . The spherical-wave modal expansion is

computationally the most complicated.

3.0 Acoustic Waves

Let us now direct our attention to acoustic waves.

Consider the acoustic wave equation for the instantaneous

pressure increment, p:

*9 p

ca'at
2

where V is again the Laplacian, and c is the velocity ofa

sound in air (for the sonic simulator). For a "mono-

chromatic" (i.e., single tone) field,

p = Real {pejwt}

and therefore,

(74a)

= -k'p (74b)
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where

_0)_ _ 27T
K ~ c ~ A

a a

and X is the wavelength in air for a given radian frequency,
3.

uj = 2Trf. In rectangular coordinates,

p - p(x,y,z),

and, of course,

2 _
v ~

_
2 " 2 2 '

3y 3z

Taking the two-dimensional Fourier transform of the wave

equation (74) with respect to x and y yields:

r°° f°° 2" "^ (kxx + kvy)
V p(x,y,z)e y dxdy

J _coJ — oo

= -k*B(kx,ky,z) (75)

where

B(kx,ky,z) =
-j(k x + k v)

p(x,y,z)e Y dxdy. (76)
— OO' —CO

Note the similarity between (75), (76) and (7), (8). We

see that the development here is identical to that of the
S\ A.

electromagnetic case except that vectors such as E, B,
/\

and A are replaced respectively with scalars such as
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p, B, and A. Thus we obviously obtain the results below

for the acoustic case. In the far field, then,

ikr
A(k ,k ]

!o xo *o

where

-jk zJ z o 00

(77)

- j (k x + k y)

A(k ,k v )=e
X
o "o _oo _oo

and where

k = k sin 6 cos
xo

k = k sin 9 sin
vy

p(x,y,z )e dxdy(78)

(79a)

k = / k2 - k 2 - k 2 = k cos 9. (79b)

Probe compensation then yields

k z

° °a(kx ,-k )
O yo

A(kx ,k )e
0 * 0

(•«> ,00
v(x ,y , z o )

J — <x>J — oo

-j (k x + k y)-j x y
dxdy. ( 8 0 )

Multiplying both sides of (80) by the term

Jkr. e-
2-rrr z

and then rearranging terms gives
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jkr
p ( r ) G ( k x ,-k ) = j

o -*o

— <x>J -»oo
v(.x,y,zo)e

-j (.kx x + ky y)

dxdy(81)

which then becomes

~ , jkr -jkz cos 6
p(0,<j>)G(e,-<J>) = j o e ° cos

v ( x , y , z )e-ik s in 6(x c o s < t ) + ^ s in ( ) ) ) dxdy. (82)
— CO-1 —00

Note that (82) is identical to .(72) with the exception of
s\ s\ /\ /\

course that p and G are scalars instead of vectors E and G.

If we have chosen our coordinate system such that the z

axis was parallel to one of the axes of polarization of the

antenna instead of perpendicular as in Figures 2 and 3,

we would get an equation in EQGQ and EQGQ similar to (72)H O b o

and expressed in the resultant newly defined 6 and <j> .

However now the electric field in any plane where <j> is

constant would be due only to that one particular polari-

zation. The electric field perpendicular to that plane

would be due only to the other orthogonal polarization

component. This means that for linear polarization in a

direction parallel to the. new z axis, E would be zero

in our new equation that is equivalent to (72). Since

any electromagnetic wave can be decomposed into two

orthogonal linear polarizations, the polarization component
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perpendicular to the first would result in an E, -
XV

only component (Eg = 0) in our new equation equivalent
r> A

to (72). Thus our newly defined E ' and E are

separable by polarization. Therefore acoustic simulation

of electromagnetic waves .can be performed wherein the

new 6 represents one polarization and the new (J> the other,
Si

The sonically obtained voltage, v, in (82) simulates the
/N

electromagnetically obtained voltage, v, in our new

equation equivalent to (72). (The simulation would be

actually performed as two separate simulations, one for

each polarization. The results of the two simulations

would then be orthogonally superimposed to obtain the

final result.)

4.0 Conclusions

(.1) We see that near field to far field transformations

are valid to obtain far field antenna information from

near field measurements.

(2) Acoustic simulation of electromagnetic near field

to far field transformations is valid.

*
(3) Polarization is easily accommodated acoustically

in the simulation of electromagnetic waves (including

near field to far field transformations.)

*except for certain types of reflections external to the antenna,
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SECTION II

MULTIPLE BEAM FORMING AND STEERING
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1.0 Introduction

1.1 Background

Simulation software has been developed for the Retro-

directive Phase Control Sonic Simulator to form and steer

14up to five sonic beams simultaneously and independently

Two methods of beamforming and steering were investigated.

One was retrodirective phase control and the other was

a mathematically synthesized open loop phase control.

1.2 Beamforming with Sonic Simulator

Beamforming requires that the proper array amplitude and

phase tapers be generated to form the beam(s) at the

desired focal point(s). These tapers dictate the amplitude

and phase of each array transmitting element's output.

Beamforming can be though of as a two-step process:

Step #1. For each beam, determine for each transmitting

element or group of elements the difference

in two propagation phase delays. One phase

delay is that between the beam focal point

and an array reference point (near the center

of the array.) The other delay is that between

the beam focal point and the transmitting element

-49- WttJ^ _WTEHT10NAUI BUNK
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or group of transmitting elements. This

process step can he called "phase tuning".

Retrodirectiye Phase Control - In this mode,

the Sonic Simulator's transmitting elements

are grouped together four-each in subarrays.

The propagation phase delay difference in

the Sonic Simulator system is measured directly

as the phase difference between the pilot beam

signal as received at the reference receiver

on the array and as received at the center

of each subarray. The focal point of the beam

subsequently transmitted by the array is

determined by the focal point of the pilot

beam source.

Mathematically Synthesized Open Loop Phase

Control - The phase taper is mathematically

synthesized in this mode. The propagation phase

delay difference is computed from the geo-

metric difference in the path lengths, in

wavelengths, to the beam focal point from the

center of the array and from each transmitting

element. It is easy to show that if, relative

to the center of the array, the coordinates

of the beam focal point are desired to be at

(X,Y,Z), and if those of a transmitting element
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are at (x,y), then the propagation phase delay

difference is

/ X2 - x)2 + (Y-y)2 + Z2 -r X • 360°,

where X is the wavelength.

Step #2. Determine the phase and amplitude (or power)

of the output of each array transmitting

element. The multiple beam forming method

used with the Sonic Simulator enables all

transmitting elements to contribute to all

beams. The phase taper and amplitude taper

required to form each beam separately are

first determined. Then the resulting phase

taper and amplitude taper required to trans-

mit all beams simultaneously are obtained by

superposition — the phasor (vector) sum at

each transmitting element of the phase and

amplitude of its output which would be required

to form each beam singly. This procedure is

mechanized in the Sonic Simulator system for

beams of equal power and shape by calculating

each transmitting element's output phase and

power (which is proportional to the square of

its amplitude) according to Equations (58) and

(59) and Appendix D...in. Reference 14:
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A4> = -tan

N

-1 n=l
N

n=l

sinA<{> an

cosA<i>an

= c t | F ( r )
N

N
r Vi. L
n=l

sinA4»
an

where

Acj> = output phase of signal at transmitting

element,

N = number of beams.

A<|> - the phases measured in Step #1 above,
an

P = output power of signal at transmitting
- N

element.

aJF(r)| = power taper as a function of radial

distance, r, from center of array.

(Although the above phase and power equations

were developed for the method of closed loop

phase control , they are also valid for

retrodirective and mathematical open loop

phase control.)

The amplitude (power) taper used in the experiments run

with the simulator is a 10 dB four-step approximation
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to a gaussian curve. The step sizes are 2.5 dB. This

is the amount by which the simulator's array is designed

to vary the transmitting element's output power levels.

The program listing for the software used in the Sonic

Simulator, including that for multiple beam forming, is

given in 3.0 of Section II, The operation of the soft-

ware is given in Reference 16.

2.0 Experimental Results

In the final analysis, the demonstration and evaluation

of retrodirective and mathematically synthesized open

loop phase control techniques for multiple simultaneous

beam generation with a phased array antenna is proven

by the actual generation of those beams. This is easily

done using the Retrodirective Sonic Simulator to

generate the beams and then making experimental inves-

tigations with the Beam/Pattern Monitor and Display

System. The resulting multibeam data that is taken

with the monitor can then be used to evaluate each

technique against standard antenna performance criteria

and to evaluate each technique against the other to

determine their relative performance.

Figures 7 and 8 show far field patterns of multiple

beams transmitted by the simulator array. The beams

were focused in a plane 2.5 meters from the array.
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TRIPLE-BEAM FAR FIELD PATTERNS -- RETRODIRECTIVE PHASE CONTROL
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("Left" and "right" in the figures are as viewed from

the array.) The patterns are horizontal cuts made

through the center of the beams in the focal plane.

Each multibeam consists of three equal-power 10 dB

truncated-gaussian amplitude taper beams. The top two

beams were formed on centers about 1 m. apart and the

bottom beam's center is about 0.8 m from the top two.

The beams in Figure 7 were formed using retrodirective

phase control and those in Figure 8 using mathematical

open loop.

Although the sidelobes of the beams are higher than

would be expected in free space, they are quite good

and are to be expected for two reasons. For the sake

of convenience, the measurements were made in a semi-

anechpic environment. Secondly, the three beams in

each multibeam were formed within several beamwidths

of each other. The sidelobes of each individual beam

are still of sufficient amplitude within that distance

that at locations of phase reinforcement from two or

more of the beams the resulting amplitude level can be

much higher than that of a single sidelobe by itself.

The mathematically formed beams are seen to be more

sharply defined than the retrodirective ones with about

3 dB higher amplitude and overall lower sidelobes.

This is because for the sake of convenience the retro-

directive beams were formed very close to the array
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making it difficult to accurately illuminate the array

with the retrodirective pilot signal. On the other

hand, the mathematically formed beams were not as

accurately pointed. A mathematically formed beam

cannot track a receiver unless it has accurate infor-

mation about the receiver location from another source.

3.0 Source Code Listing - Simulation Software

The following is the program listing, in BASIC, of

the simulation software for the Retrodirective

Sonic Simulator.
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SECTION III

RECOMMENDATIONS FOR ADDITIONAL AREAS OF WORK
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We recommend the following as additional areas of work

to be performed by the contractor as part of future efforts

1) Design and fabricate a scanner hardware and soft^

ware control, data acquisition, and processing

system to provide antenna patterns from measure-

ment data output by the Beam/Pattern Monitor

and Display System. A host computer, terminal,

monitor, and printer would be supplied by the

contractor as part of the system.

2) Using the system developed in 1) above , develop

a software system to generate far field antenna

patterns from near fie^d measurements made with

the Beam/Pattern Monitor and Display System.

3) Provide maintenance and systems engineering

support to NASA on the Sonic Simulator and Beam/

Pattern Monitor and Display Systems.

4) Assist NASA in defining and investigating

additonal Space Station antenna study areas.

The effort could include but not be limited to

multibeam phased array beamforming phase control

using open loop, retrodirective, and/or inter-

f eromteric means . Such studies could also

involve the use of the Sonic Simulator and

Beam/Pattern Monitor Systems.
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APPENDIX

ENVIRONMENTAL EFFECTS ON SONIC SIMULATOR MEASUREMENTS
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A.I EFFECT OF TEMPERATURE ON SONIC SIMULATOR EXPERIMENTS

The velocity of sound varies with temperature. Error

can be introduced into near field measurements unless

either the ambient temperature is held constant or

else the frequency of operation is varied correspondingly

with temperature to keep the wavelength constant.

(The parameter of interest is phase - constant phase.)

Therefore the sonic simulator is designed to vary its

frequency output as a function of ambient temperature

to maintain constant wavelength.

The equation governing the relationship between the

velocity of sound at any temperature is given by

v = v / 1 + t/273 (A-l)

where t is in °C, and v is the velocity at :0°C. The

wavelength, X, is related to the velocity, v, and

frequency of sound, f, by the relationship

(A-2)

From the above two expressions we obtain the fact that

at a fixed frequency, the wavelength changes about 0.2%

for every 1C change in temperatures

*Handbook of Chemistry and Physics, 23rd Edition, p. 1884
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For most far field measurements and for all of those

beam characteristics measured as a part of previous

contracts with the sonic simulator, that particular

magnitude change in wavelength has negligible effects.

For example, with an array of fixed dimensions, beam-

width is proportional to wavelength. Thus, say, for

a 10°C rise in temperature, there is only about a 2%

increase in wavelength and hence the effect on measured

beamwidth is negligible. Thus temperature effects on

wavelength appear to have negligible consequences for

far field measurements—those that normally are taken

only of amplitude in the focal plane, a plane of

constant phase. However, to determine far field pat-

terns from near field measurements, phase must be

preserved accurately. During the time it takes to

make a complete scan of the near field, the phase error

must be held to a fraction of a wavelength. This means

that the change in wavelength due to temperature changes

that occur within a complete scan of the sound field

must be kept small. For example, consider measurements

made in a plane parallel to the sonic array when the

array is on the order of 30 to 60 cm. away from the

plane. A measurement point which for instance is 60 cm.

or so from transducers on the array is on the order of

%
7 wavelengths away from thos:e transducers (IX = 8.6 cm.

at 4kHz at room temperature.) For a 10 C change in

temperature, we get a change of:
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10 x 0.2% x 7X = 14% x X = 50° change in phase.

Error can thus be introduced into near field measure-

ments unless either the ambient temperature is held

constant or else the frequency is varied correspondingly

with temperature to keep the wavelength constant.

Refer again to Equations (A-l) and (A-2). If frequency,

f, is varied according to the relationship

f = f/I + t/273, (A-3)

then X will be constant and equal to v /f . Selecting

f such that f = 4kHz at 25°C, and realizing that (A-3)
o i

is closely approximated by the linear expansion

f = f (1 + •=!—
o 546

(A-4)

we see that if frequency is linearly compensated for

temperature changes according to the expression in (A-4),

then wavelength is kept constant. The sonic simulator

circuitry is designed to vary its output frequency in a

linear fashion over a temperature range of approximately

25°C (from about 10°C to 38°C).

A.2 EFFECTS OF HUMIDITY AND BAROMETRIC PRESSURE

The change in wavelength due to changes in humidity and

barometric pressure is miniscule compared to changes due

to temperature. This is because the velocity of sound
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in air is such a weak function of those two variables,

especially compared to temperature.
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