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SECTION I

NEAR FIELD TO FAR FIELD  TRANSFORMATIONS
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1.0 Introduction
1.1 Background

Near field measurements ‘to determine far field patterns of

antennas are felt to be an effective alternative to far

field range measureme’nts.l’z’3
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FIGURE 1

FAR FIELD ANTENNA PATTERNS FROM

NEAR FIELD MEASUREMENTS
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This is especially true for microwave antennas and most
especially for phased array antennas. Near field measure-
ments éllow measurements to be made indoors. An indoor
range provides the all-weather capability to enable tests
to be perfbrmed ih a controlled environment. In addition,
large-antenna logistics and mounting problems are simpli-
fied by near field measurement systems. These systems are
felt to be time and cost effective, with accuracy compar-
able to that of far field ranges. The requirements for a
more complicated and expensive measurement system with
more expenéive prébe-calibration are not felt by pro-

ponents to be serious disadvantages.

Project Objectives

~—

As a part of this contract,L}he feasibility, of acoustic
verification of micréwave near field to far field trans-
formation algorithms using the Phased Array.Sonic Simulation
System was studieél Existing electromagnetic near field
measurement techniques and transformation.algorithms
(equations) were investigatedf$7%7%74ﬁmlt was analytically
détermined that acoustic Verificatidn is wvalid.) We—weuld
—Itke—~to—explieitly point .out that although—far—field
patterns—from-near_ field-patterns—fer-acoustic—arrays

a&e«vatid“g*l'Tﬁﬁa“iﬁ“fﬁttfmay«havembeen the QQ;LLQ&t.hse

of-near—field-—to—far—~field~transfoimations), what-we-—are

N~
-talking about—here—is|acoustic simulation of electromagnetic
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near field to far field transformationsé£:+0ne merely needs
to separately simulate  acoustically the transmission of the
two orthogonal polarization componehts of thé EM wave and

then superimpose thg\results-to get the analytical descrip-

tion of the total field.¥

The acoustic simulation of electromagnetic near field to
far fieldvtransfprmation is verified for the "modal -

expansion" ﬁethodki"’

In the modal expansion method,
data from antenna near. field measurements are -converted
to a summation'or spectrum of modes corresponding to wave

numbers in the measurement coordinate system.r~"Wifh"aM\

reg;angularwceerdinafe“sy§f5ﬁ7°the field at all points 1in

front of a _plane-aperture—-of—anyapertiré distribution

may -be—regarded—as—arising—from—an aggrégate~of—pilane

~waves—traveling~ifivarious directions+—The—amplitude.

and phaseé of thé waves as a function of thetr—direction.
giwtnave¢«gOnStituteswanmangularmspectrumwiwaAnethex.way
of—-looking—at—the~same—thing,-and--this.-is—the—-philesopical

approach_taken_in.-the-|verification method|used—in—this-
- S =

repe@tigis thatall the far field pattern informétion is
contained in the near field and thus is.contained in
measurements méde in the near field. Fourier transformation
of those measgrémeﬁts preserves the.far field informatidn'
is a spectral form that is then re;dily:extractab1€:] |
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Near Field/Faxr Field Definitions

Before presenting the details of the mathematical verifi-=
cation, it is important to define what we mean by near:
field and far field. It is commonly accept’ed8 that the
far field is that region which is at a distance from the

antenna greater than

2
2D
5 (1)

where D is the largest dimension of the antenna and X is
the wavelength, The near field is the near radiating
field and is the region between the far field and the
near reactive field. The near field is considered by .
many to begin at a distance from the antenna greater
than

A/2m.

Howeverl0 this defines the point where the reactive

near field equals the radiating near field for a small
dipole. Suffice to say that for most antennas, that
point is usually less than a few wavelengths from the
antenna. Thus near field measurements are ﬁsually made
within a few wavelengths from the antenna. Strictly
speaking, there is“nofhing in the verfication prbof to

be developed below that restricts the measurement plane

to any region or distance.




Near Field to Far éield Transformation - Mathematical

Verification
Wave Equation Basis

Consider -the well known wave equation goverhing electro-

magnetic radiation 'in a source-free region and given ‘in

terms of the time-varying electric field vector, E:

o 2 :
v2E = ue. 25 E, (2)
- ot
where V2 is the Laplacian operator., For a monochromatic

(ie., single fréquency) field,

A

E = Real {gejwt} : , (3)

where the "hat" denotes the phasor. Let the coordinate

.systems of interest be definéd by Figure 2. Substitution

z
A

Aperture Plane
FIGURE 2

COORDINATES DIAGRAM
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of (3) into (2) then yields

~

V2§ = —uewzg. (4)

~

Let us express E and V2 in rectangular coordinates:

Ea)

E = E (XIY'Z)

c = 2.
vV ue
Since
c = fA,

where f is the frequency, the wave equation as described

by (4) can be rewritten as

v2E = -k°E (5)

where k is the propagation constant (wave number) expressed

by:

k = 2n/Xx.

Let us now take a two-dimensional Fourier transform with
respect to the x and y dimensions of the wave equation.

Taking such a Fourier transform of both sides of (5) yields




PN T ~ikex o -dkoy
[ {[ [VZE(X,Y,Z)]e X axle . Y ay

@ N -jk_x -jk_y
=.f {f [-sz(x,y,z)]e * axle Y ay (6)

- QO

where kx and ky can  be thought of as spatial frequencies.
Using the rectangular coordinates' expression for the

Laplacian operatof; V2, (6) becomes -

2 =

© g0 2 A -jk_x.  ~jk_.y
J. {f '[3—— E(x,y,2z)]e- * dxte Y ay
-0 -0 33X

O AP T -3k )y -3k _x
[ '{[ [Eff E(x,y,z)]e Y ayle =~ ¥ ax
o0 [o o) 2 ~ . "'J(k X + k Y)
¥ J f [3_5 E(x,y,z)]e = © Y' axdy
00/ w00 az ) .

© o . -j(k.x + k y) .
-sz I E(x,y,z)e X y dxdy. . (7)

- 00

Let the double-integral term on the right side of the

equal sign in (7) be defined as the phasor/vector field,

B:

ne

E(x,y,z)e . Y" axdy. (8)

~ . o w0 A "j (kxx + k y)
g(kx,ky,Z) f_wj_m

Note therefore that the third term to the left of the

equal sign in (7). then becomes described by (9):




© o 2 —](k x + k. y)
I [ [——— E(X y,Zﬂ YY" axdy
—-00J 0o az
2 @ SN "‘j (k x + k Y)
9z —/ moo .

N
= — B(k ,k ,2). 9
52— x'y ) (9)

Before examining the first and second texms to the left
of the equal sign in (7), let us look at the Fourier
transform of differentials. If the Fourier transform

of a function, £(t), is given by

F{f(t)} = J f(t)e—jwtdt =F (jw) , - (10)

then f(t) is given by the inverse Fourier transform

f(t) =% l{F(Jw)} éa J F(jw)ejwtdw. (11)
- 00
t
Therefore 9{——5 f(t)} is obtained as a direct consequence
dt '

of taking the n'th derivative of f(t) with respect to t in
(11) followed by application of the rule given by (10):

n .
#d— £(0)) = GuFGw) = Gu) £},
at -

Thus in the  first term of (7) we get

-jk_x

[ o

= (jkx) f E (x,v,2)e = dx.

-10-




After taking the Fourier transform with respect to y

of this result and.using (8), the first term of (7)

becomes
= e 02 A -jkx . =ik y
f {f [3_7 E(x,y,z)]e X axle Y ay
-0’ = x|
2 hed © A "j (kxx + k y)
- ar? [ [ Bey,ae Y avay
2/\
= -kX E(kx,ky,z). ‘ : (12)

In a like manner, for the second term in (7), we have:

© L 2 . . -3k.y ~-jk_x
J {I [2—5 E(x,y,z)]e Y ayle T ax
_oo. - 00 ay . .
= - kx_%B(x_,k_,2) | (13)
. = X' yl 3

Y
Substituting the results given by (9), (12), and (13)

into (7) gives us the Fourier transformed wave equation

in terms of E(kX’ky’z):

2

=k 2B -k 23'+ 3——-8 = —sz; : (14)
X= ¥ T 352~ - ' .
Rearranging terms gives: -
32 Sk ki) = k2B (k.,k ,2) (15)
-5—7 =ty T TRz = Nk Ty!
z : :
where

-11-




Equation (15) has a solution given by

~ ~ jkzz

E (kxlkylz_) = _Z_\_ (kx'ky)e : . (17)
(Proof is by substitution, which can almost be seen by
inspection.) (Note that:

A (kok) =B (k kg, 0).)

Since B (kx,ky,z) as given by (8) is seen to be a two-

dimensional Fourier transform of L with respect to x
and y, then the uniqueness property of Fourier transform
| pairs means that E(x,y,2z) is given by the inverse Fourier

transform: .

o]

~ : 2
E(x,y,2) = (55) f

-00

o A 3 (kyx + ky)
f_mg (kyrkyr2)e dk,dk . (18)

Using the wave equation solution given in terms of B

‘expressed by (17}, (18) becomes:

N 1 © o jkzz:l j(kxx4-kyy)
E z) = —= A(k_,k. e dk_dk . (19a)
T__(ler ) 411'2 4(_00[_00[_ x' y)e. Xy

The result given by (19a) can be expressed in compact
vector notation as:

~ . s k . r
. A (k.,k )edf * L gk ak
4TT2 _mJ_m.— ( x! y)e Xy

-12-




|~
i

k.a +%ka + k.a_,
.Yy 2=z

r==xa +ya + za

—X -z, o -

and a_, a,s a, are unit direction vectors.

2.2 Physical Concepts/Terminology

Let us now look at the physical significancé of the terms

in the expression for the electric field'given by (19b):

® E(r) is the electric field, expressed as a vector
intensity, defined by r, the magnitude and direction

of that point from origin of the coordinate system.

[ é(kx,ky)eJE "L is an expression for a plane wave.

~

[ .é(kx,ky) is a planejwavé spectrum. This arises from

the fact that the form of (17b) shows that E is the
A

inverse Fourier transform of A. Therefore A is .the

A

Fourier transform '(and therefore the,spectrum) of E:

é(kxyky) J—wf E(x,y,2z)e - ’Qxdy.

. 00 . J_}S x . | . o
o I—OJ'— wé(kxlky)e dkxdky is a superposition
(sum) of plane waves of every "mode" kx’ Kk

The field E(E) is therefore expressed as a "modal expansion"

(a "plane wave expansion") by (19b.). This equation shows

-13-




that the field may be regarded as being made up of a

superposition of plane waves.
Propagating/Evanescent Plane Waves

From (19a) and (19b) we use the relationship
é(kx.ky)ejl‘- cx_ [gﬁ(kx,ky)ej‘k"x ¥ kyy)]ejkzz.

We see that the exponential texm in z can be expressed as -

jkzz

-YZ
e =eY

where Y is the propagation constant and where from (16)

we have

k =/k% -k 2 -k 2. | . (20)

In general, Y is composed of real and imaginary parts,

the attenuation and phase constants, respectively:

-3k, = Y = a + 38, (21)

where o and 8 are real numbers. 1In (16) then, when

kz is imaginary. This'means that kz can be represented as
k, = ja,

2

and therefore

-14-




e % = T 9%, for k, imaginary.

Thus we see.that those waves for whick k, is imaginary
will "evanesce" (attenuate rapidly to zero in a direction

toward the far field). When

kz is real and can be represented (choosing the minus value

for the square root radical) as

Therefore in this case,

jk_z -jgz
e = e .

The term e—JBZ is mefely a phase term. Thus those waves
for which kz is real will Erdgagate (will exist at infinite

values of z, the far field).

Thus from (19b) we see that the electric field is made up
of a superposition of propagating and. evanescent plane

waves.
Near Field Measurements

In a plane parallel to and located at a distance, z_,

from the aperture plane, the electric field, E as

represented by (19a), is given by

-15~-



R © ~ jk 4 j(k X+k Y)

1 z° 0 X Yy
E(x,y,zo) = 2;7 f_wqu[é(kx,ky)e ]e dkxdky.
Therefore the uniqueness of Fourier transform pairs
dictates that:
é(kx,ky)e 202 f- f E(x,y,zo)e X Y dxdy. (22)

- 0O

Thus the plane wave spectrum, A, can be calculated (using
(22)) from measurements of the electric field, g(x,y,zo),

made in that plane:

-jk_z 0 o0 -J(k_x + k_y)
ZOJ f E(x,y,2.)e X Y' axdy. (23)

- 00

é(kx,ky)= e

Equation (23) is valid irrespective of the magnitude of z
Thus A can be determined from measurements made at a distance,
2, which puts that plane in the near field of the antenna

(see Figure 3). Once we have calculated A from such near

.
/<;j///////i////
] 7
,/”//// : ,,fgj"//’// j:::)
e N
, R Y
y///////J g :::>

r;//,

Near field measurement plane
(parallel to aperture plane)

/f];%‘jy
X, ¥ plane

= aperture plane

(can be arbitrarily located
with respect to antenna)

FIGURE 3

ORIENTATION OF MEASUREMENT PLANE

-16-



2.5

field measurements, we can then determine the electric
field, E, for any r(x,y,z) in Equation (19b). This is,

we can determine E anywhere by substitution of the result

of the calculation of A from (23) into (19b):

~ _ [ I N j}_(_‘E
E(x,y,z) = f_mf_wé(kx,ky)e dkxdky. (19b)

47
"Anywhere", of course, includes the far field which is

what we're especially interested in here.

The electric field, é(x,y,z),~in the far field (the "far
field" pattern) can be evaluated by evaluating é(kx,ky)
in (19b) atvparticular values of kx and ky. The method
of "stationary phase"7 can be used to derive the result.
We will use that method below. But first, let us derive

some useful relationships.

Field Relationships

The electric field, E, and its corresponding plane wave

~

spectrum, A, can be expressed vectorially in rectangular
coordinates in terms of the unit direction vectors and

directional phasor componenté to have (19b) yield:

E(x,y,2) = gXEX(x,_y,g) + gyEy(x,y,z) + gzgz(x,y,Z)
l x (2 ~ ~
= —_— ; -+ A 4 Z)
ar2 I_J_m[EXAX(X'Y‘Z) 2 Ay (XY

A jk - r
+ ngz(x,y,z)]e dkxdky

-17-




Therefore we have the triad

IR

il

x oQ
1 - jk -
—5 f—wj_mAx(kx,ky)e dkxdky (24a)

E _(x,y,2)
X 4m

[0} o
1 - v jk * r

— A (k_,k )eld = dk dk_ (24b
4 f_w( y X'y Xy )

- 00

]

Ey(x,y,'z)

Il
|-
————
| 8
8
S—
8
>
N
w
“
=
M
0]
.
I~
In

Ez(x,y,z) dkxdky (24c)

In a source-free region (which is the case with our near

field measurements):
V.-E=0

where V = a s + g =— + a_=—.
=X 00X 9z

Therefore in rectangular coordinates we have

aEx(x,y,z)A vagy(X'YrZ)‘ aEz(XIYIZ)

% + 5y + =0 (25)

~

Substituting into (25) for the components of E in terms

of those for A as given by (24) yields

L N jlk.x + k. y + k_z)
1 3 . X y z
—= f_mf A_(k ’ky) =— [e ]dkxdky

o o A jkx + k.y + k_z2)
: - 9 X y z
+ —= 5 f J_OOAY (kx,ky)-é-; [e_

B R A ‘ 3
) j f Az(kx'ky)§E

41T 007 o= 00

-18-
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-

which, upon performing the partial diffenentiations, becomes

o]

@ ~ ) N
1 . .
pee I

~ j(kxx + kyy + kzz)
+ jszz(kx(ky)]e dk dk, = 0 (27)
Cancelling out the j's in (27) and defining the resulting

expression as f(x,y,z) gives us

1 [ [} ’ N jkzZ
k A (k. _,k)e
2 I-J_w[— C A (ke 7]

f(XIYIZ) =

j(kxx + k. y)
e Y" gk dx = 0. (28)
Xy

Because of the uniqueness of Fourier transform pairs,

~ jkzz © 0 . —j(kxx + k_vy)
k - Alkyk )e = f f £(x,y,2)e Y" dxdy. (29)
But from (28),
f(XIYIZ) =0
Therefore
~ . jkzz .
k - é(kx,ky)e = 0 for all =z. (30)

jk _z
But e 2 is in general not equal to zero for all z.

Therefore in order for (30) to be true for any z, we have

the result that in a source-free région.

1> >
1]
o

k- (31)

-19-



This means that

kA + kA +kA =0 (32)
X 'x Y Y zZ z

from which we get

A : : l ~ ‘ ~
A, = - [kAa + kyAy] (33)

where k =;/L2 -k 2 k 2
2 X y

and where ‘(using (19)):

>

J f Exe_JE T Eaxdy

A -
X - 00
-jk_z LN -j(k.x + k_y)
=e z o f f E (x,vy,2 )e X b4 dxdy (34a)
~ N el -jk r
A = E e = dxd
y f_wf_w ¥ Y
-jk_z o e 4 -j(k x + k_y)
=e 2 Of -f E (x,y,z )e X Y" gxdy  (34b)
—ood m0 ¥ ©

~

The key result is that since, from (33), AZ is a function

of AX and A, measurement is only required of the x and y

components of E to get A. Stated in more general terms, o 1
only two-measurements of E, each taken at different
orientations of the measurement antenna, are required to

~

obtain all of the components of A.

-20-




The vector fields, A and E, can also be expressed in

spherical coordinates as

é = Ergr + iege + §¢£¢ : (35a)
and

E = aE, + agE + 2k, ~ (35)
where apr gy §¢,,are the unit di;ection vectors. vIn the

far field of an antenna the radial component of the electric
field, Er,‘is negligible compared to the other components.

Thus in the far field

>
ne

a,E, + a, E . (36)

Far Field Solution Using Method of Stationary. Phase

The far field solution for the electric field, E, in (19b)
is obtained below.after R. Co}.linll using .the method of

"Stationary Phase".

The geometry of the situtation is depicted by the coor-

dinates diagrém in Figure 2. In rectangular coordinates,

r=xa +ya, + za,. | B X

* It is easy to show from Figure 2 that. the x,y,z. components

of r are given in terms of the spherical coordinates, r,

6, and ¢ as

-21-



X =r sin 9 cos ¢ (38a)

y = r sin § sin ¢ (38b)

Zz = r cos § ' (38c¢c)
Since

k= ket kyéy * kz—a‘—z’.

then the "phase" term k * r in (19b) becomes

k °r kxx + kyy + kzz

(kxsin 8 cos ¢ + kysin ® sin ¢ + kzcds 8)Yr (39)

where kz =/ k2 - kx2 - kyz. "Using the Euler identity,

we can also express the term eJE T L in (19b) as

ek T I cos(k * r) + j sin(k * r).

The "phase" term k * r is in general composed of real and
imaginary parts, since_kz, in (39), can be real or imaginary

as seen from (20). Thus'letting k - r be described by

jk *r= -Y'r = -(a' + jB')r,

where o' and B' are real numbers (attenuation and phase

constants, respectively), we then get

Y, . -._l_'l:
eIk T Lo g0 F TR

= e“a|r(coselr + j sinBlr). (40)

-22-




When r is verxry large, we‘see from (40) that the real and

N

imaginary components. of eJE * L oscillate very rapidly

between equal positive and negative values except for
certain values of k  and ky.for which k - r doesn't

change much for changes in ko and ky. For those values

of k. and ky the first order change in k -+ r is zero

for small changeé in k  and ky. Conversely é(kx,ky)

in (l9b) is a Slole_varying function in kx and.ky (as
compared with k ,-£ being a rapidly varying function in kX

and ky). Thus the contribution to the value of the integrals

over all k, and ky of é multiplied by X I omes

essentially only from the wvalues of é determined by the kX

and ky which make‘the "phase", k * r, "stationary"

(constant). The "phase" is stationary when

ok * r dk * r

K = 3% = 0 (41)
X

Y
Using the value for k' + r from (39),

3k - r 3

oK. = 3k
X

(kx sin 6 cos ¢ + ky sin 6 sin ¢
X

2 2 2 _
+ »/k .- kx - ky cos O)r = 0.

k. COs @
(sin § cos ¢ —»——E————J =0.
Y4

-23-




Therefore

k,sin 6 cos ¢

kg = . cos © : (42)

Likewise, ¢k - E/Bky yields

kzsin'G sin ¢ : .
ky - cos § : (43)

But

which upon substitution: of the values of kx and ky into
(42) and (43) gives
. L. 2
k2=x>-x28n 8

z z 2
cos

which yields

kz = k cos 0. (44)

Combining the results of (44) with (42) and (43) yields

k , k , k , which we will define as those value of
X yo_ Z, _

Koo ky’ k, for which k - r is stationary, namely:

kz = k cos 9 (45a)
o _

kX- = k sin 0§ cas ¢ (45b)
o -

k. =k sin g sin ¢ (45c)

Yo _

-24-




(Note from (45a) that kz = kz is real and therefore

o)
o = 0 in (21). Therefore we have non-evanescence.)

phase k - r can be expanded in a Taylor series about kX

and k
Yq
8& r BE r
k r = k r + Ak + Ak
- = = ~ |k Lk ka X Bky y
X Yo k. ,k X,k
X ‘X
o o) fo) o
2 2
3k °r 2 18 k r 2
+ % Ak T+ = Ak
9k 2 X 2 X 2 y
X k ,k Yy k .,k
X Yo X Y,
———r— . e . 4
oo | Bk Ky Y (46)
k. ,k
X
o) o)
where
Akx 4 kX - k
%o
and
ak 2k -k .
Yy Y Yo
But (41) tells us that
% -z %k *
—_— = |- . =0
ok k. ,k - 9k k ",k S
X XO YO Y XO yo

and (39) and (45) give us
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k-« = (kx sin 8 cos ¢ + k sin 6 sin ¢
k. ,k o Yo

+/k2 - kx 2 . k 2 cos 8)rx
) Yo

(k’sinze cosz¢ + k sin26 sin2¢ + k cosze)r
= kr

Therefore, (46) becomes:

N 2 2 -
k © = kr+ (abk,” + bAk Ak, + cik,®) (47)
where
%k xr 3%k v x % + ¢
a=% ;7 b ' —, C = X4 '
akx2 kaaky ak 2

all evaluated at kx.= kxo and ky = kyo.

Therefore we have in (19b) that

o0 =]
ki —=007 =0
| . 2 2
1 (2 (® j(kr + aAkX + bAkXAk + cbAk_ °)
= ——EJ J é(kx ke . * Y Y dk_dk
4m=7 o0 - o Yo

X

. . © o L2 2
—lf Ak, .k )ejkr [. j ej(au '+ buv + cu )dudv (48)
4m o Yo =) =

where u =_Akx and v = Aky. it can .be Shown that the double

integral of the exponential term . in (48) evaluates to
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2T =3 2y . - (49)

— X z
v b2’- dac ©

When r is very large, we are in the far field (subject

to (1)). In the far field then, we have (from (48) and
(49)) :
~ ejkr ~
E(£)= 3 PR kZ é(kx ,ky ) . (50)
o} o] o :

with kx ,ky ,kz given by- (45). Using (23) we can express
o O (o]

A

A in (50) in an explicit manner to give the far field

in terms of the near field:

kejkr ijOCOSG

L cosb

E(g)‘. =3

_f [. E(X'y'zo)'e-jk sin 6(x cos ¢ + y sin ¢)dxdy (51)

where, from (37) and (38),

r=apr sin ® cos ¢ + gysin 6 sin ¢ + a r cos 6.

Probe Compensation

Although (51) describes the far field precisely in terms

of the near field, in a practical sense it does not

deScribe the far field in terms of near field measurements.
The reason of course is that any measurement of the near

field, plane wave or otherwise, ‘is' altered by the measure-
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ment probe characteristics. 8o the néar field in a plane,
represented by é(x,y,zo) in (51), would have to be

obtained by deconvolﬁtion from actual near field measure-
ments. Alternately, the far field can be obtained directly
in a form that uses the near field measurements, but in
conjunctibn with a description of the probe antenna pattern
such that compehsation is made for thé probe charaéteristics.
Such is the form given in:Referehces 3 and 12 and derived
below. (HoWever the derivation ‘here is differént than

that in Reference 3 where the Lorentz reciprocity theorem

is used instead.)

Consider the geometry of thebantenna and measurement system

shown in Figure 4. For the moment, let the measurement

ANTENNA-—\\\
X,¥,z = 0,0,0 x=x°-x ,y=yo+y » 22,2
X,y plane = antenna aperture plane ' : x',y' plane = measurement plane
: : = probe aperture plane

FIGURE 4

- GEOMETRICAL RELATIONSHIP OF ANTENNA AND MEASUREMENT PROBE
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system be an "infinitesimal" probe located at the coor-

dinates xo,yozo in the x,v,2z coorxdinate system (0,0,0

in the x', y', 2z' system.) Let the probe's measurement

characteristic be described by the vector/phasor term

Cc = cdxdy, where
c = c(x,y,z) = cl(x,y,z) a, + cz(x,y,z),§y+-c3(x,y,z)gz.

(52)
When the probe is oriented so that it "points" in a

direction perpendicular to the antenna aperture plane,

~ A

we have C' = c'dx'dy', where
c' (X'IY'IZ') =cl(x',,_y'iz')gx,-+c2(xi,$}',;')gy-,
+tcyx',y',2)a, - (53)

But it can be shown from Figure 4 that the unit direction
vectors énd the differentials dx', dy' in the x',.y', z'
coordinate system are related to those in the X,y,z system

as follows:

AL - -a
a ' =
-Y 4
' = —g
—Z -2
dx' = -dx
dy' = dy
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Therefore a voltage received by the "infitesimal" probe
can be represented as

~N

dv(x_ .,y r2,) = [—Ex(xo,yo,zo)cl(0,0,0)

~ -~

+ Ey(xolyolzo)cz(ololo)
- Ez(xo,yo,zo)c3(0,0;0)]dxdy

= [Ex(xofyo’zo) 8% + Ey(xo'yo'?o) Ey

+ Ez(xo'yo'zo)éz] ) {—cl(0,0,0)-gx

~

+ cz(o,o,O) a, - c4(0,0,0) 32] dxdy 

v[Ex(xo.yOLZo)_Ex B (XY izy) Sy
+ EZ(XOIYOIZO)Ez]v. {01(0'0'0) '

~

+ 02(0(010)§y|+ c3(OIOIQ) EZ‘] (‘de)dy.
= E(x_,y_ r2.) * [-c'(0,0,0)] ax'ay', (54)

Equation (54) becomes

av(x_,y_ r2,) = E(x,y,2) - [-e"(x',y',2")] dax'dy' : .
© "o : X'=y'=2"'=0 (55)

where, from Figure 5,

X =x =-x',yv=y_+y',z=12_ = 2", (56)

(o} O

Thus from (55)'and (56) we get

~

: dv(xo,yo,zo)
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= E(Xo_xll yo+y|’ zo_z") . [_El(xl,yl,zl)]

dx'dy"

| x'=y'=2'=0 (57)

Let a probe with an aperture area, @, be now placed about
the point 0,0,0 in the x',y' plane with the probe aperture

parallel to the x,y plane, as shown in Figure 5. Let the.

-, probe aperture, parallel
-~ to x - y plane

X Z
0Y0,%

ANTENNA

FIGURE 5

RELATIONSHIP OF PROBE APERTURE TO ANTENNA

probe aperture be filled with an infinite number of
'infinitesimal probe ‘antennas which are.described by (57).
Let us further assume that each of tne infinitesimal probe
antennas responds equally to the same field (ie.,

uniform illumination taper for the probe aperture). Then

~

from (57) the probe's response to the field E is
~ é A
Vxxo,yo,zo) = J dv

=-J J.E_(XO“X',yo+y', z,-2') " [—C'(x'IY',Z')]dﬁidy

a(o,0,0) 2'=0

- ) t e Tt 1 ' ' '

J{ I _E_(Xo X'y Y, T Y ZO) [C (x 'Y rO)]dX dy (58)
a

If the probe aperture is not uniformly illuminated, then

\
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- [~e'(x',y',0) £(x",y")]dx'dy" (59)

where f(x',y‘) is the illumination taper. In (59), let

the term g be defined such that

glx',y") & —cix',y', 0 E(x',y").  (60)

~

Thus we see that g is proportional to the aperture field
distribution of the probe. Now the illumination taper,
f, is zero outside d . Therefore (59) can be expressed

as

- glx',y')dx'dy". | (61)

Let the probe aperture not be restricted to the location
about_xo,yo. Let it be free to move about in the measure-
ment plane at z = zo;' Therefore in general, the measure-

ment probe response in the measurement plane is
- O)
“= 00

V(X'Y,Zo) = f [ E(x-x', y+y', z_) g(xi,yF)dx‘dy'.(GZ)

Let us examine the nature of the integrations performed

in (62). To that end, let a variable, w, be the result
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of the convolution of two other variables, u and v, such

that
w(t) = f u(t - t)v(t)dr.
Therefore the Fourier transform of w,#{w}, is given by

F{w} = g{ulF{vl}.

On the other hand let w be the result of the correlation

of u and v such that

w(Tt) = f u(t + t)v(t)dt.

Therefore,

w (1) f a(t)v(t - 1)dt

f u(t)v[-(t - t)]dat

- 00

so that the Fourier transform of w is

Flw(t)} = Flu(}pFv(-1)}

F{u(t)} g*{v(t)}

*
where ¥ 1is the complex conjugate of # such that
* * y 3 *
g {£(t)} = F (jw) = F(-jw).

Therefore the two-dimensional Fourier transform of the

voltage, v(x,y,zo), measured. by the probe in the near
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field, where v is expressed by (62), can be expressed in

~

terms of the two-dimensional Fouriexr transforms of E and

g as
o o L -3 (k% + koY)
[ J v(x,y,zo)e Y dxdy
LN -j(k_x + k_vy)
= [ f g(x,y,zo)e X 4 “dxdy
© o -j(kxx + k.y).
. f { g(x, -yle dxdy
- 00J =00 .
~ jkzzo ~
= [Atk, ke 1 sl k) | (63)
where the bracketed term is from (22). The term G is

equivalent to the far field radiation pattern of the
probe. This is because the far field radiation pattern
of an antenna results from the Fourier transform of

the aperture field distribution which here is propor-

tional to g.

Multiplying both sides of (63) by the term

ejkr

J 27T vkz

and evaluating the resulting expression at the modes given

by (45):
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k sin § cos ¢

k sin 6 sin ¢

= k cos §
ejkr A . szozo ~
[3555¢ %k, Alk, sk, e ° ] « Gk, ,~k )
o o Yo o Yo
-j(k_ % +k
.eJkr R | ! *o ' YOY) -
= ]ff?; kzof_mf—z(x,y,zo)e : dxdy. (64)

Upon substituting the result of (50) into (64) we get

- ‘ _4 + ‘
]kZOZO © 00 . J (kxOX kyoy)
e ,j J V(x,y,zo)e T dxdy.
— . (65)

It is helpful to express this result in terms of spherical

coordinates:

E (x) = E_(r,8,¢)a_ +E (r,94¢)§6
far field

+ §¢(r,9,§)§

But the radial component of an electric field in the

5

far field of an antenna is, for practical purposes, zero.

Therefore,
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E_(r,8,4) = 0.

The shape of the othexr components of the electric field,
Ee-and.E¢

antenna (by definition of the far field). Thus without

are independent of the distance, x, to the

loss in generality we can write

¢

E(r) = Eq(0,0)a, + E .

far field

Likewise for G 'in spherical coordinates:

G(k sin 6 cos ¢, — k sin 6 sin ¢)

g(k_sin 8. cos (-¢), k sin 6 sin (-¢)f.

We see from Figure 5 ‘that
' = -¢, 6' = 6. _ ‘ (67)

Therefore

Gk, , -k, ) =Gk sin ' cos ¢', k sin ' sin ¢'), (68)
o (o) :

The far field radiation pattern, G, can then. be rewritten
as G(0',¢') which can be expanded in spherical coordinates
as ‘ »

' 1y = - t 1 1 - v LI 1

~

+G.(6',0a, " (69)
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Since the radial component of the electric field trans-
mitted by an antenna is effectively zero in the far

field, by reciprocity the radial component of an antenna's
far field receiving pattern is zero. ‘Therefore in (69),
G.(8',0") = 0. - (70)

Adding this to the fact that from Figure 4

ag' = -ag, ayr = ayr. (71)

Equation (69), with the use of (67), becomes

G = -Gy (6,-0)a, + G, (6,~0)

¢ %6 -

Thefefore the e#pression in'(65) can be.e§aluéted in
terms of the.anglés 6 and ¢-td give us_;he relationéhip
'betWeen‘the‘faf field patterncﬂﬂan antenné aﬁd‘the far
field radiation péttern-of a measurement p:obe.‘lihe 
relationship is given in terms ofﬁthe spatialiFourier

transform of the voltage measured by the probe in the

~ ~

antenna's near field and the vector components of E and G:

~E¢ (6,4)Gy (6,-9) + E, (8,0)G, (6,~0)

¢ ¢

jkr -jkz cos © | © oo
'59——— e © cos @ J. J

~

v(x(y,zoie—Jk sin 6(x.cos ¢ + y sin e)dxdy.(72)_
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The probe measurement will in practice be a set of discrete
samples. The double integration in (72) then becomes a
double summation discrete approximation which can be

efficiently evaluated using the Fast Fourier Transform.

Equation (72) expresses the far field radiation pattern
of the antenna's electric field in terms of the two

A

orthogonal figld components, Ee, and §¢. The termsaa6 |
and é¢ are the two known (orthogonal)'components of the
far field radiation of the probe. They are expressed in
the direction (6, -¢) from the. probe to the phase;center
of the antenna (which is opposite to the direction (8,¢)
frdm the antenna to the probe-).AThus:we have one (linear)
eqﬁation and two unknowns. Therefore a second, linearly
independent eqﬁation is needed to solve for the two
unknowns (ﬁe and §¢). A rotation of the probe, which
.thereby changes the polérization axis (axes), provides

the needed second equation. The second equation has the

form

- Ee(el¢)GRe(Ol—¢) + E¢(9'¢)GR6(6’_¢)

_ .ke]kr -jkzocos ] © 00,
= J737¢ R cos 0

-00

o -jk sin 8(x cos ¢ + y sin ¢)

'VR(x,y,zo)e' dxdy (73)

where the subscript, R, refers to quantities resulting

from the probe rotation.
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Therefore for each 6, ¢ combination we have two independent

~

equations for the two unknowns,'Ee and E¢:

~ E;G, + E,G, = result of measurement #1

G., + E,G,, = result -of measurement #2.

These two equations immediately above are solvable if

the determinant

(23}

Ge ¢ A A ) A A
v = = GgGpy = G4Gpe 7 O

Sro®R¢ |

(The determinant will be zero for the case where the probe
is circularly polarized because such a probe will obviously

give'no new information upon rotation.)
Other Modal Expansions

our focus in the report has been the plane wave modal

expansion - antenna patterns from measurements made over
a planar surface. Far field antenna patterﬁs can also

be obtained from measurements made over cylindrical9
and spherical surfaces1 (Figure 6). These surfaces
arise as a natural consequence of the type 6f probe
scanning employed, as does the planér. The cylindriéal

results from vertical scanning of the probe together

with rotation is azimuth of the antenna under test.
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CYLINDRICAL-WAVE MODAL EXPANSION

SPHERICAL-WAVE MODAL EXPANSION

FIGURE 6

OTHER MODAL EXPANSION MEASUREMENT SURFACES
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3.0

Spherical is employed by fixing the probe in space and
rotating the antenna in azimuth and elevation. This
results in.simpler probe.calibration. These scanning
surfaces ﬁaturally give rise respectively to cylindrical-
wave and spherical-wave modal expansions. The Fast
Fourier Transform can still be uéed for the cylindrical-
wave modal expansion, however it cannot be used for the
spherical—wavel. The spherical-wave modal expansion is

computationally the most complicated.
Acoustic Waves

Let us now direct our attention. to acoustic waves.
Consider the acoustic wave equation for the  instantaneous

pressure increment, p:

~where V2 is again the Laplacian, and c, is the velocity of

sound in air (for the sonic simulator). For a "mono-

chromatic” (i.e., single tone) field,
p = Real {pejwt}

and therefore,

2A

. |
Vp=-(2) p - : (74a)
a |
= -x%p ‘ (74b)
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where

w

k = — =
C

a a

2m

A

and Aa is the wavelength in air for a given radian frequency,
w = 2mf. In rectangular coordinates,

p = p(X]YIZ)r

and, of course,:

Taking the two-dimensional Fourier transform of the wave
equation (74) with respect to x and y yields:
J .f VZP(XIYIZ)e x Y dxdy

20 .

where

-j(kxx + kyy)

B(kx,ky,z) dxdy. (76)

f f p(x,y,z)e
Note the similarity between (75), (76) and (7), (8). We
see that the develbpment here is identical to that of the"

electromagnetic case.eXcept that vectors such as3§, B,

and A are replaced respectively with scalars such as
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~ ~

p, B, and A. Thus we obviously'obtain the results below

for the acoustic case. In the far field, then,

~ ejkr ~
p(r) = =557 kzoA(kXo,kyo-) (77)
where
-3 ‘ -3 + k
: ¥, 2o 3y, X+ Ky ¥)
Ak, ,k._)=e f f p({x,vy,z )e dxdy (78)
x 'y o}
o o —007 w00
and where
kx = k sin 6 cos ¢ (79a)
o ,
k = k sin 0 sin ¢
Yo
k =/ k2 -k 2-k %=k cos 8. . (79b)
z X Yy

o (o} (o]

.Probe compensation then yields

jk_ z
~ P [0 7N
Ak, ke 9 Gk, =k _ )
' (o] yO (o] yo
LR N J(kx X + ky y)
_ J f v(x,y,z.)e ° ©  dxdy. (80)

Multiplying both sides of (80) by the term

jkr
3 Se K
2Tr zo

and then rearranging terms gives
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~ ~ .ejkr Tz 0
P(E)G(kx I_ky ) =7 2T\'r e kZ
o Q . o
LN . —j(kxox * kYOY)
. f »J vix,y,z )e dxdy (81)

which then becomes

jkr -jkz cos 9
ke : ° cos 6

P(6,$)G(0,-0) = J5—

V(x,y.zo)e_

- 00

. Jw fw ~ -jk sin 8(x cos ¢ + y sin <b)-dxdy.(82)

Néte that (82) is identical to .(72) with the exception of
course that‘g and é are 3calars instead of VectorsAé and'é.
"If we have chosen our coordinate system’éuch that the z
axis was parallel to one of the axes of pblarization of the
antenna insﬁead ofvperpendicular as in Figures 2 and 3,

. gCg and E4Gg similar to (72)

and expressed in the resultant newly defined 6 and ¢l.

we would get an equation in E

However now the electric field'in any plane where ¢ is
constant would be due only to fhat_one particular polari-
zation. The electric field perpendicular to thét plane
would be. due oniy to the other orthogonal polarization
component. This means that for linear polarizétion in a
direction pafallel to the new 2z axis, E woﬁld>be Zero

¢

in our new equation that is equivalent to (72). Since

any electromagnetic wave can be decomposed into two

orthogonal linear polarizations, the polarization component
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perpendicular to the first would result in an E¢ -

only component (Ee = 0) in our new equation equivalent

to (72). Thus our newly defined Ee'and §¢ are

separable by polarization. Therefore acoustic simulation
of eléctromagnetic waves can be performed wherein the

new 6 represents one polarization and the new ¢ the other.
The sonically obtained'voltage; ;, in (82) simulates the
electromagnetically obtained voltage,ﬁs, in our new
equation equivalent to (72). (The simuiation would be
actually performed as two separate simulations, one for
‘each polarization. The reéults of the two simulations

would then be orthogonally superimposed to obtain the-

final result.)
4.0 Conclusions

(1) We see that near field to far field transformations
are valid to obtain'far'field antenna information from

near field measurements.

(2) Acoustic simulation of electromagnetic near field

to far field transformations is wvalid.

’ . *
(3)  Polarization is easily accommodated acousticallyl

in the simulation of electromagnetic waves (including

near field to far field transformations.)

*except for certain types of reflections external to the antenna.
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SECTION II

MULTIPLE BEAM FORMING AND STEERING
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1.0 Introduction
1.1 Background

Simulation software has been developed for the Retro-

directive Phase Control Sonic Simulator to form and steer
up to five sonic beams simultaneously and independehtlyl4.
Two methods of beamforming and steering were investigated.

One was retrodifective phase control and the other was

a mathematically synthesized open loop phase control.
1.2 Beamforming with Sonic Simulator

Beamforming requires that the proper array amplitude and
phase tapers be generated to form the beam(s) at the
desired focal point(s). These tapers dictate the amplitude
and phase of each array transmitting element's output. |

Beamforming can be though of as a two-step process:

Step #l1l. For each beam, determine for each transmitting
element or group of elemehts the difference
in two propagation phase delays. One phase
delay is that between the beam focal point
and an array reference éointninear the center
of the array.) The ofher*delay is that bétween

the beam focal point and the transmitting element
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or group of transmitting elements. This

process step can he called “phase tuning".

Retrodirective Phase Control - In this mode,

the Sonic Simulator's transmitting elements

are grogped together four-each in subarrays.
The propagation phase delay difference in

the Sonic Simulator system is measured directly
‘as the phase difference between the pilot beam
'signal as received at the referencé receiver

on the array and as received at the center

of each subarray. The focal point of the beam
subsequently transmitted by the array is
determined by the focal point of the pilot

beam source.

Mathematically Synthesized Open Loop Phase

Control - The phase taper is mathematically
synthesized'in'this mode. The propagation'phase
delay difference is computed'from the geo-
metric difference in the path lengths, in
wavelengths, to the beam focal point from the
center of the array and from each transmitting
element.‘ It is easy to show that if, relative
'tp the centér of the array, the coordinates
;f_the beam focal point are desired to be at

(X,Y,2), and if those of a transmittiﬁg element
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Step #2.

are at (x,y), then the propagation phase delay

difference is

/x2 vt 22 = x - 02wy 2422 3600,

where A is the wavelength.

Determine the phase and amplitude (or power)

of the output of each array transmitting

element. The multiple beam forming method

used with the Sonic Simulator enables all
transmitting‘elementsAto contribute té all
beams. 'The phase taper and amplitude taper
required to form each beam separately are
firét.détermihéd;. Then the resulting phase
taper and'amplitude.téper required to tréns—
mit all beams simultaneously are obtained by

superposition é— the phasor (vector) sum at

- each transmitting element of the phase and

amplitude of its output which would be required

to form each beam singly. This procedure is
mechanized ih the Sonic Simulator system for
beams of equal power and shapenby calculating
each transmitting element's output phase and

power (which is proportional to the scuare of

its amplitude) according to Equations (58) and

(59) and Appendix D..in.Reference 14:
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_ -1 n=1
A¢c = —tan ? _
cosA¢
n=1 ~an
2., X 2
P = o|F(x) |“[( ] coshd_ ) +
ot an
N n=1
N 2
('] sinh¢_)°].
n=1
where
A$c = output phase of signal at transmitting
element.,
N = number of beams.
A¢an = the phases measured in Step #1 above.
PT = output power of signal at transmitting
: N
element.
a]F(r)12 = power taper as a function of radial

distance, r, from center of array.

(Although the above phase and power equations
- were developed for the method of closed loop
phase:coﬁtrolls, they are also valid for

- retrodirective and mathematical open loop

phase contxol.)

The amplitude (power) taper used in the experiments run

with the simulator is a 10 dB four-step approximation

-
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to a gaussian curve. The step sizes are 2.5 dB. This
is the amount by which the simulator's array is designed

to vary the transmitting element's output power ‘levels.

The program listing for the software used in the Sonic
Simulator, including that for multiple beam forming, is
given in 3.0 of Section II. The operation of the soft-

ware is given in Reference 16.
Experimental Results

In the final.analysis, the demonstration and evaluation
of retrodirective and mathematically synthesized open
loop phase control techniques for multiple simultaneous
beam generation with a phased array antenna is proven
by the actual generation of those beams. This .is easily
done using the Retrodirective Sonic Simulator.to
generate the beams and then making experimental inves-
tiéations with the Beam/Pattern Monitor and Display
System. The resulting multibeam data that is taken
with the monitor can then be used to evaluate each
technique against standard antenna performance criteria
and to evaluate each technique against the other to

determine their relative performance.

Figures 7 and 8 show far field patterns of multiple
beams transmitted by the simulator array. The beams

were focused in a plane 2.5 meters from the array.
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TRIPLE-BEAM FAR FIELD PATTERNS -- RETRODIRECTIVE PHASE CONTROL
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("Left" and "right" in the figures are as viewed from
the array.) The patterns are horizontal cuts made
through the center of the beams in the focal plane.
Each_multibeam consists of three equal-power 10 dB
truncated-gaussian amplitude taper beams. The top two
beams were formed on centers about 1 m.‘apart and the
bottom beam's center is about 0.8 m from the top two.
The beams in Figure 7 were formed using retrodirective
phase control and those in Figure 8 using mathematical

open loop.

Although the-éidelobes of the beams are higher»thanA
would be expeéted in free space, they are quité good
and are to be expected for two reasons. For thefgake.
of convenience, thé measurements were made in a‘semi—
anechoic environment. Secondly, the three beams in
each multibeam were formed within several beamwidths
of each other. The sidelobes of each individual beam
are still of sufficient amplitude within that distance
that at locations of phase reinforcement from two of
more of the beams the resulting amplitude level can be

much higher than that of a single sidelobe by itself.

The mathematically formed beams are seen to be more
sharply defined than the retrodirective ones with about
3 dB higher amplitude and overall lower sidelobes.

This is because for the sake of convenience the retro-

directive beams were formed very close to the array
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making it difficult to accurately illuminate the array
with the retfodirective pilot signal.' On the other
hand, the mathematically formed beams were not as
accurately pointed. - A mathematically. formed beam
cannot track a receiver unless it has accurate infor-

mation about the receiver location from another source.
Source Code Listing - Simulation Software

The following is the program listing, in BASIC, of
the simulation softWare for the Retrodirective

Sonic Simulator.
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SECTION III

RECOMMENDATIONS FOR ADDITIONAL AREAS OF WORK
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We recommend the following as additional areas of work

to be performed by the contractor as part of future efforts:

1) Design and fabricate a scanner hardware and soft-
ware control, data acquisition, and processing
system to provide antenna patterns from measure-
ment data output by the Beam/Pattern Mbnitor
and Display System.‘ A host computer, terminal,
monitor, and printer would be supplied by the
4contractor~as part of the.system. |

2) Using the system developed in 1) above, develop
a software system to generate far field antenna
-patterns from near field measureméntsvmade with
the Beam/Pattern Mbnitox and Display Systeh.

3) .Provide maintenénce and systems'engineering
support t6 NASA on the Sonic Simulator and Beam/
Pattern Monitor and Display Systems.

4) Assist NASA in defining and investigating
additonal Space_Station antenna study areas.

The effort could include but not be limited to
'multibeam'phased array beamforming phase control
using open loop, retrodirective, and/or ihter-
feromteric meané. .Such‘stgdies could alsQ
involve the use of the Sonic Simulatd; and

. Beam/Pattern Monitor Systems.
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APPENDIX

ENVIRONMENTAL EFFECTS ON SONIC SIMULATOR MEASUREMENTS




A.1 EFFECT OF TEMPERATURE ON SONIC SIMULATOR EXPERIMENTS

The velocity 6f sound varies with temperature. Error

can be introduced into near field’measureménts unléss
either the ambient.témperatufe*is held constan£ or

else the frequenéy of‘operatipn is varied correspondingly

with temperature to keep the. wavelength constant.

(The parameter gﬁfinterest is phase - constant phase.)
Therefore the sonic simulator is designed to vary its . -
frequency output as a function of ambient temperature

to maintain constant wavelength.

The equation governing the relationship between the

velocity of sound at any'temperature is given by

Y

v Vo v 1 + t/273 ‘ - (A-1)

where t is in °c, and v, is the velocity at 0°C. The-
wavelength, A, is related to the velocity, v, and

' frequency of sound, £, by the relationship:
= 2 -
A= T | (A-2)
From the above two expressions we obtain the fact that

.at a'fixed'frequency, thexwaveiength changes about 0.2%

for évery 1°¢ change in temperature::

SAv/v
At

L]

1.1 _
5 * 353 = 0.0018..

*Handbook of Chemistry and Physics, 23rd Edition, p. 1884.
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For most far field measurements and for all of those
beam characteristics measured as a part of previous
contracts with the sonic simulator,thatparticulat
magnitude change in wavelength has negligible effects.
For example, with an array of fixed dimensions, beam-
width is proportional to wavelength. Thus,isay,'for

a lOOC rise in temperature, there_is.only aboﬁt a 2%
incfease in wavelength and hence the effect on measured
beamwidth is negligible. Thus temperature‘effects on
wa§elength appear to have'negligible'Consequénces for
far field measurements-choSethat-nermally are taken -
only of amplitudeiin the focal plane, a plane of |
constant phase. However, toldetermine far field pat;
terns from near field_measurements, phase must be
preserved accurately. During the time it takes to
make a complete scan of .the near field, the phase error
must be held to a fraction of a wavelength. This means
that the change in wavelenqth due to temperature changes
that occur within a complete scan of the sound field
must be kept small. For example, consider measurements
made in a plane parallel to the sonic array when the
atray iszon_the-qrder of 30 to 60 cm. away from the
plane. A~measurement point whieh for instance is 60 cm.
dr so from.transducers on.the,array-is on the order of
7 wavelengths away froﬁ those transducers (1A'g 8.6'cm;
at 4kHz at room temperature.) For-a 10°c change'in

temperature, we get a change of:
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10 x 0.2% x 7A = 14% x A = 50° change in phase.

Errox can thus be intfodﬁced into near field measure-
ments unless either the ambient temperature is held
constant or else the frequency is varied correspondingly

with temperature to keep the wavelength constant.

Refer again to Equations (A-1) and (A-2). If frequency,

f, is varied according to the relationship

£= £ /T + t/273, - (A-3)

then A will be constant and equal to vo/fo. Selecting
fO such that f = 4kHz at 25°C, and realizing that (A-3)

is closely approximated by the linear expansion

t

gzg) . (A-4)

£f=£f (1 +
- O

we.see that if frequency is linearly compensated for
temperature chgngeslaccording‘to the expression in (a-4),
then wavelength is kept constant. The sonic simulator

circuitry is designed to vary its output frequency in a
linear fashion over a temperatﬂre range of approximately

25°C (from about 10°C to 38°C).
EFFECTS OF HUMIDITY AND BAROMETRIC PRESSURE

The change in wavelength due to changes in humidity and
barometric pressure is miniscule compared to changes due

to temperature. This is because the velocity of sound
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in air is such a weak function of those two variables,

especially compared to temperature.

-76-






