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ABSTRACT

A test stand has been set up to measure the current fluctuation noise properties of

B- and M-type dispenser cathodes in a typical TWT gun structure. Noise techniques

were used to determine the work function distribution on the cathode surfaces. We find

significant differences between the B and M types and significant changes in the work

function distribution during activation and life. In turn, knowledge of the expected

work function can be used to accurately determine the cathode-operating temperature in

a TWT structure. Noise measurements also demonstrate more sensitivity to space

charge effects than the Miram method. Full automation of the measurements and com-

putations is now required to speed up data acquisition and reduction.

The complete set of equations for the space charge limited diode were programmed

so that given four of the five measurable variables (J, J0) T, d, and V) the fifth could be

computed. Using this program, we estimated that an rms fluctuation in the diode spac-

ing d in the frequency range of 145 Hz about 20 kHz of only about 10"6 A would account

for the observed noise in a space charge limited diode with 1 mm spacing.
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I BACKGROUND

Since the inception of microwave beam tubes there has been a clear need to con-

duct cathode diagnostics while the tube is still located in the communication system in

which it is being operated.1 * If it is known that the cathode is approaching the end of

its useful life or approaching failure for any other reason, then the tube could be

replaced at a convenient time rather than waiting for failure on line. This is especially

true for traveling wave tubes (TWT's) used for satellite communications. Under such

circumstances, the only measurement that can be made on the gun is the emission

current as a function of voltage and heater power; even the cathode temperature cannot

be observed directly.

To obtain a better understanding of the sensitivity of the cathode toward space

charge effects, the complete set of equations for space charge limited operation were pro-

grammed in a computer. As a result, given four of the five measurable parameters (J,

J0, T, d, and V), the fifth could be computed. The theory used in this analyses is dis-

cussed in the appendix.

The work described in this report covers the initial phase of exploring the use of

current fluctuation noise for TWT cathode diagnostics, particularly for barium dispenser

cathodes designated B and M types.2»3 In principle, the following parameters should be

capable of being estimated from noise measurements.

• Work function distribution - from the variation of F2 with the current.

• Cathode temperature - from the space charge reduction of the shot noise (F2).

• Barium surface coverage (and hence the barium supply rate) - from the low fre-
quency (flicker) noise spectrum.

The key tasks for this phase of the program were:

• Design, assemble and operate a test stand suitable for taking measurements on
a range of TWT diode or triode gun structures.

'References listed at end of report.



Detect and process the low-through high-frequency noise signals from B- and
M-type cathodes operating in the above test stand.

Provide preliminary analysis of the noise measurements to see how effectively
the important cathode properties can be ascertained as a function of lifetime.



n EXPERIMENTAL METHOD

A. Gun Structures

The TWT guns used in this study were conventional TWT structures with B- and

M-type cathodes. The gun structure was manufactured by MEC-Teledyne and desig-

nated type 68670. Figure 1 is a cross-sectional view of the gun. The B cathode consists

of a tungsten matrix of 80% density impregnated with a 5:3:2 mole ratio of BaO, CaO,

A12O3. M-type cathodes were the same but with the emitting surface coated with

osmium-ruthinium layers. The cathodes had an area of 4.56 x lO^cm2.

A total of 6 different cathodes were tested during this program (4 B, 2 M). The

first two (B-type) were used to establish operation parameters and determine a suitable

measurement technique.

B. Vacuum Apparatus

The initial arrangement consisted of single gun element placed in an ion-pumped

system (Figure 2). Feed-throughs were provided for all the grid elements. The system

also included an electrostatic quadrupole deflector and phosphor screen to optimize the

focusing characteristics. The quadrupole was used to deflect the beam and reduce the

power density on the phosphor. The axis of the gun structure was situated so that the

temperature could be monitored by an optical pyrometer through a vacuum viewing

window.

In this configuration, the cathode temperature could be monitored while establish-

ing optimum focusing parameters for the gun on the phosphor. However, although the

quadrupole deflector was introduced to help reduce the power density on the phosphor,

it still proved too high, and a spot was burned on the screen. It was then not possible to

take any significant noise measurements under these conditions.

The gun was also operated under a pseudo diode configuration. Here all electrodes

were tied to a common line. The lens elements thus acted as the anode. Under these
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conditions, it was possible to operate the cathode up to 1 A/cm2 without overheating the

lenses. This configuration was used to establish the current noise measuring instrumen-

tation which is discussed in the following section II-C.

A second structure was assembled to operate the cathode and gun using the focus-

ing parameters established in the first system. The gun was placed in a turbo-molecular

pumped system. A high power anode was used in this scheme so that the system could

operate under normal electrostatic focusing conditions. Figure 3 is a schematic of this

apparatus. An electrode with a small aperture was placed in the anode so that the

cathode temperatures could be viewed with an optical pyrometer through the window.

The electrode was held at a retarding potential to prevent loss of electrons. The operat-

ing pressure in the system was < 5 x 10~9 as measured with an ionization gauge.

A third vacuum system was assembled to life test four (2 B-type, 2 M-type) gun

structures in parallel. In this system, it was only possible to operate in the pseudo diode

configuration. Again temperatures could be monitored with an optical pyrometer. The

system was pumped with an ion pump. All measurements were conducted at pressures

less than 1CT8 torr.

C. Measurement Technique

To take the noise measurements, all the accelerating and control electrodes of the

gun were tied together so that the system behaved as a pseudo diode. Figure 4 shows a

typical current-temperature characteristic for fully space charge limited operation of a

B-type cathode. The maximum current that could be drawn without overheating the

anode structure was 5 mA corresponding to 1 A/cm2 with 130 volts applied. Figure 5 is

a schematic of the electronic instrumentation used. Caution was exercised in selecting

the instrumentation so as to minimize the introduction of any further noise. All the

instrumentation was powered through an isolation transformer to reduce line voltage

fluctuations. The heater power was obtained from a highly stabilized dc supply (H.P.

6227B) to avoid effects due to fluctuating magnetic fields or changes in line voltage. The

anode supply (Fluke 415B) was Voltage stabilized to 1 part in 10s. The diode current

was measured with a digital ammeter (Keithly 177) to 5 significant figures. The current

fluctuation noise was measured by passing the fluctuation through a 25 /*F capacitor and

across a 10 kil precision thin-film resistor. A high impedance JFET (Burr-Brown OP A-
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102) low noise wide band operational amplifier fed the signal into an H.P. 3582 spectrum

analyzer. An average spectrum is obtained by multiple scanning of the frequency from

0 - 2 5 kHz, or 15 - 25 kHz for the shot noise region. The spectrum is stored by the

instrument and can be displayed or plotted out. Figure 6 is a typical noise plot.

The square of the output from the spectrum analyzer is proportional to the rms

current fluctuation, and since the bandwidth of the analyzer filter is known, it can be

easily calibrated from the well-known shot noise equation. We used the rectangular

bandpass filter so that f

<i2>SHOT =

where Af is the bandwidth.

In estimating the cathode temperature from the optical pyrometer reading, we note

that the window's transmission coefficient is constant in the region of interest. Since the

cathode was too small to drill a black body hole in its surface, we used a spectral emis-

sivity correction previously measured for B cathodes by Brodie.4 We believe that the

absolute error from this procedure does not exceed ± 5 K.

There are five measurable interrelated parameters, namely:

applied voltage V (volts)

cathode emission density J (amps cm"2)

cathode temperature T (Kelvin)

current fluctuation noise <i2(f)> (amps2)

frequency and bandwidth of

noise measurement f, Af (Hz)

In general,

<i2(f)> = A.W (J, V, T, f) Af

10



B T Y P E CATHuDt V-500

PAGE- !S
OF POOR QUALFTY

a) full noise spectrur.

B2 V=10 IHR

frequency (KHz)

b) shot noise region

Figure 6 Typical noise plots from spectrum analyzer

11



where A is the cathode area and W is the noise intensity distribution function in units of

f coul2 )
cm2sec

Our instrumentation yields <i2(f)> versus f (the noise spectrum) at fixed values of the

other parameters. The experimental procedure depends on the particular type of infor-

mation we are seeking. We note that V and J can be measured to a high precision,

<i2(f)> can be measured to a fair degree of precision ( 2 - 3 significant figures) depend-

ing on the length of averaging time, and T can be measured within 10 K (3 significant

figures).

Two cathodes of each type (B and M) were studied. They were designated Bl, B2,

Ml, and M2. The principal noise measurement procedure was to fix the gun (diode) vol-

tage at a specific value, usually 40 V, 100 V, or 130 V; the emission current was then

held at a fixed value between zero and the fully space charge limited value (determined

by the heater power). The temperature of the cathode was measured using an optical

pyrometer. The noise spectrum was then measured over a frequency range from 15 kHz

to 25 kHz using a 145 Hz bandwidth.

D. Data Reduction Techniques

The interrelation between the available variable parameters (V,J) and the fluctuat-

ing current noise <i > allows two different perspectives of the noise characteristics, i.e.,

<i2> vs. V and <i2> vs. J. We chose to examine the noise distribution (W) as a func-

tion of current at certain fixed voltages as this enabled us to analyze the data more con-

veniently.

A typical plot of the noise intensity distribution function, W, is shown in terms of

W' versus J at 20 KHz in Figure 7; where W' has not been corrected for the signal

gain in the instrumentation (i.e., W a W). It consists of three regions: (1) where the W

versus J plot is linear indicating that all the current being drawn is temperature limited

(TL), (2) where space charge is partially limiting the current and lowering the noise, and

(3) where the diode is completely space charge limited (SCL) and only slightly affected

by increasing the temperature. As a practical matter, we found that the range of region

3, between the lowest temperature for complete space charge limitation and the max-

imum temperature we could heat the cathode without burning out the heater (1200 K -

12
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1400 K), was too small for meaningful measurements.

To analyze the partially space charge limited region, we assume that the cathode

consists of patches ot different work function, each behaving as its own simple diode.

While this is obviously not exactly true as the patch becomes space charge limited, the

Pierce correcting electrodes at the gun, the short cathode to anode distance, and the

existence of current flow in adjacent patches all contribute to making this assumption

substantially correct and consistent for measurements at the same voltage. We note

that Tonnerre, et al.^ use the same assumption in obtaining the work function distribu-

tion from the current voltage characteristics alone, in a situation where perhaps it is less

justified since the effective d of a gun can vary with applied voltage due to movements

of the equ {potentials with partial space charge limitation. We further assume that the

space charge limited current density and the noise space charge reduction factor (F2) for

each patch are the same as the final values achieved for the whole diode (J0 and F0
2).

Hence if g = fraction of the surface that is space charge limited at a given current value,

then the current density flowing through the diode can be expressed as

J = gJ0 + (1 - g).̂  (1)

Similarly, the noise distribution function at a fixed current can be expressed in terms of

the space charge reduction factor as

W = eF2J = er0
2gJ0 + e(l - g)^ (2)

Combining (1) and (2), we find that the fraction of the surface that is space charge lim-

ited is given by

g j (i - r2) (= -

If J is changed to J + AJ by increasing the cathode temperature by AT, then F

changes to F2 + A(F2) and

14



= AJ(I - r2) - JA(r)2

J0(i - r0
2)

where the term on the order of A2 is negligible. Now Richardson's equation states that

for a surface of work function <f>

= 120.4T2exp --t. ~J0 (5)f- JL 1
I K1 J

which is the emission at zero field, for the region just passing from TL to SCL as the

temperature is changed by AT.

Differentiating equation 5 with respect to T, we obtain

= ± AT + 2kAT ~ ± AT, (6)

where the k term is several orders of magnitude smaller. We define f(^) as the fraction

of surface with work function between <j> and <f> +

Ag = f(*)A* (7)

Then combining equations 4, 6, and 7, we obtain

- F2) - JA(F2)
(8)

From the W versus J plot, using equation 8 we can obtain a plot of f(^) versus <f> using

the following procedure. For each point measure T, J, F2, and compute 4> from equation

5. Between points, obtain AJ and AT. At complete space charge limitation measure

J0 and F0
2. We can then use equation 8 to compute f(^) as a function of <j>. During this

first phase of the noise studies program, these computations were carried out by hand.

15



m RESULTS AND DISCUSSION

The work function distribution of B- and M-type cathodes has been investigated

and expressed in terms of the work function. The overall accuracy of the measured

work functions by this technique is ± .01 eV and is only limited by the precision with

which the temperature can be measured. However, the resolution within a particular

distribution profile is significantly higher. Cathode aging effects were examined in three

ways: work function distribution (f(^) vs. $}, current noise distribution (<i2> vs. J),

and Miram curves^ (J/J0 vs. T). Our work function distributions are compared with

those obtained by previous workers.

The measurements taken under normal electrostatic focusing conditions as in the

operational TWT were found to be very erratic and unreproducible. This was attributed

to induced vibrations in the vacuum column and gun by the turbo molecular pump used.

Time did not allow remounting of this system on an ion pump. For this reason, all

measurements discussed were taken in the pseudo diode configuration.

A. B-Type Cathode

Two B-type cathodes have been examined (designated Bl and B2). The two

cathodes were tested early in life (Bl after 15 minutes of operation at T = 1440 K, and

B2 after 1 hour operation at T = 1385K). The cathodes were then subjected to an

accelerated life conditioning at T = 1400 K, V = 130 V, J approx 1 A/cm2 (Bl for 600

hours, B2 for 130 hours) and then tested. The goal of these measurements was to

observe the cathodes during their period of greatest surface activity (highest Ba evapora-

tion rate) and measure the work function changes. Table 1 outlines the contribution of

the major work function peaks for different applied voltages.

The agreement in observed work function peaks between different voltages for a

given cathode age is very good. At this point, one must also note the significant

differences in observed f(^) for different voltages. We believe these differences illustrate

that our measurement technique is more or less sensitive to different work functions and

work function patch sizes depending on the applied voltage. This can be understood by

16



Table 1

MAJOR WORK FUNCTION CONTRIBUTIONS FOR B CATHODES

Gun

Bl

B2

Age
(hours)

0.25

1

130

Voltage

40

100

130

40

100

130

40

100

130

*

1.97

1.99

1.97

f(4>)

4.15

6.53

5.03

*

2.03

2.03

2.01

2.03

f(4>)

12.5

4.20

6.23

*

2.07

2.08

2.07

2.07

2.06

2.06

f(*>

26.0

9.48

10.70

14.81

8.81

14.0

*

2.12

2.11

2.12

2.12

2.13

f(*)

28.0

11.36

10.52

5.46

7.10

17



recalling that the system is not a perfect plane parallel diode. Changes in voltage affect

the position of the space charge minimum in front of the cathode, hence affecting the

neighboring contributions and effective patch size of our ensemble of emitting diodes on

the surface. Thus, it seems possible to tune the sensitivity to examine the specific work

functions by changing the applied voltage. Figures 8 and 9 are work function distribu-

tion plots at specific voltages taken before and after aging.

The results for Bl are only available after initial activation. The data taken after

long-term aging were taken incorrectly, and we did not have time to repeat them. The

overall work function envelope is similar to that measured by Tonnerre et al.^ and Jan-

sen et al.' The effective work function average is 2.06 eV.

Remarkably, the noise technique shows much higher resolution in the work func-

tion distribution than the earlier techniques. Thus we are able to show different work

function contributions not previously observed. However, these results, although high in

work function distribution resolution, still represent a convolution of all the work func-

tion patches on the cathode. A deconvolution of these work functions might be possible

through the voltage sensitivity tuning discussed earlier.

In addition to obtaining the work function distribution of the cathode, the noise

technique can be useful for establishing optimum operating conditions. Figure 10 is a

plot of the current noise distribution as a function of the total current density for Bl

after the initial activation. The three expected regions are clearly observable (i.e. tem-

perature limited, partial space charge limited, and fully space charge limited). In con-

trast with the corresponding Miram curves for the same data Figure 11, these measure-

ments demonstrate the onset of space charge effects at a much lower cathode tempera-

ture. For example, for V = 100 volts, the onset of the temperature limited-space charge

limited knee in the Miram plot corresponds to T = 1255 K and J = 580 mA/cm2. On

the other hand, the noise distribution illustrates the onset of space charge effects at T =

1200 K and J = 329 mA/cm2. In addition, the Miram curve illustrates a premature

temperature for fully space charge limited current (i.e. T = 1280 K and J = 680

mA/cm2). The noise measurement does not demonstrate fully space charge limited

operation until T = 1363 K and J = 707 mA/cm2. The difference in the space charge

noise reduction factors, F2, for the two space charge limited currents is not as significant

with F2 = .025 and F2 = .015 respectively for fully space charge limited operation.

Thus, the noise measurement technique proves more sensitive than the Miram method

18
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for detecting the onset of space charge effects.

The work function distribution for B2 (Figure 9) is significantly broader and shal-

lower than that observed for Bl (Figure 8) but has the same effective work function

average (<j> ~ 2.06 eV). However, the overall widths of work function envelopes are

approximately equal.

Early in life, cathode B2, in contrast to Bl, exhibits two very significantly different

work function peaks at <f> = 2.06 eV and <f> — 2.13 eV. The Miram plots, however, do

not illustrate the source of this difference. These work function contribution differences

are most likely due to differences in the activity of the cathode surface.

Aging of the cathode at T = 1400 K for 130 hours changed the work function dis-

tribution. The contribution from the peak at 4> — 2.13 eV was significantly reduced.

On the other hand, there was a significant increase in emission from a peak at <j> = 1.97

eV. This lower work function contribution did not exist at early life in either Bl or B2.

The reason for these work function changes is probably due to an initial low activity of

the pore endings containing the barium compounds (<f> = 2.12 eV) and subsequent

activation of the same pore endings after aging leads to a lower work function (<f> ~ 1.97

eV). As can be seen by the remaining smaller contribution at <f> — 2.12 eV, activation of

the pore endings is not complete. The intermediate contribution from work function of

^ ~ 2.065 eV corresponds to the remaining tungsten surface activated by Ba and BaO.

It is interesting to note that, visually, the current noise plots for the cathode do

not appear to be very different before and after activation. There is a slight change in

the curvature of the initial introduction to the space charge limited current region and a

slight change in the slope of <i2> vs. J during the transition to fully space charge lim-

ited operation; however, when analyzed, the differences seem to be of major importance.

As with Bl, the current noise distribution for B2 illustrates the onset of of space

charge limited current occuring at a lower temperature and fully space charge limited

current at a higher temperature than the corresponding Miram curves. However, the

corresponding Miram curves do illustrate some changes after cathode aging.

23



B. M-Type Cathodes

Two M-type cathodes have been examined (designated Ml and M2). As with the

B-type cathodes, these cathodes were tested early in life (Ml after 1 hour at T = 1420 K

and M2 after 30 minutes at T = 1405 K). The cathodes were then subjected to an

accelerated life conditioning of T = 1400 K (Ml for 150 hours and M2 for 190 hours at

V = 130 V, J ~ 1 mA/cm2). Table 2 lists the contributions of the observed major work

function peaks at different applied voltages.

The work function distributions for Ml and M2 are shown in Figures 12 and 13

respectively. It is important to note at this point that the temperature measured with

the optical pyrometer could not be corrected for brightness as in the case of the B

cathodes because the emissivity of this surface was not available. These uncorrected

temperatures lead to displacements in the work function values (so as to indicate slightly

lower values than the true values).

At early life, the agreement in work function contribution for each cathode at both

voltages is very good. The overall envelopes of the work function are also very similar

and have an average of <f> — 2.075 eV. This value is higher than would be expected for a

M-type cathode. The reason for this, at present, is not well understood and might be

due to a low activity of the cathode early in life.

After aging, there does exist a shift toward lower work function contributions. Ml

clearly exhibits two distinct contributions at <f> = 1.97 eV and 2.04 eV. M2, on the

other hand, although it exhibits a reduction in average work function to 4> — 2.065 eV,

does not show the two work function states. It appears that after aging, M2 has its sur-

face modified to a state similar to the initial state of Ml. The reason for this is not clear

and could be due to poisoning of the cathode surface. It is unfortunate that time did

not allow for measurements at more extended cathode aging.
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Table 2

MAJOR WORK FUNCTION CONTRIBUTIONS FOR M CATHODES

Gun

Ml

M2

Age
(hours)

1

150

.5

190

Voltage

100

130

100

130

40

100

40

100

*

2.00

2.00

1.97

1.96

2.01

2.01

f(4>>.

6.62

2.80

6.15

10.00

6.35

5.37

<fr

2.03

2.03

2.04

2.02

f«>)

13.20

6.24

14.40

14.20

*

2.06

2.06

2.06

2.08

2.06

2.07

f(4>).

12.60

18.55

8.42

8.80

20.25

14.69

*

2.08

2.08

2.09

2.10

2.11

f(4>)

11.74

20.60

16.60

15.88

8.10
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OF POOR

Ml V=100 IHR
(T) K

1144 1199 1253 1306 1360 1414

Ml V=100 150HR

(T) K

1144 1199 1253 1306 1360 1414

2 U.8 S »••

S,« J.8
8.5. 1.9 18 1.J 17 J.J 7.4 2.5

0

Ml V=130 IHR
(T) K

1163 1218 1273 1327 1382 1437
J8.8

Ml V=130 150HR
(T) K

1163 1218 1273 1327 1382 1437

JS.8

18.6

1.1 J.f 7.8 X4 I.J

Figure 12 Ml cathode work function distribution
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M2 V=40 .SHR
(T) K

1075 1127 1179 1230 1280 1331

M2 V=<40 190HR

(I) K

1075 1127 1179 1230 1280 1331

1.1 1.6 1.1 XI X3 X4 IS

M2 V=100 190HR
(T) K

1144 1199 1253 1306 1360 UU

l.» 1.1 1.9 1.1 XI X* 1.* 1.1

M2 V=100 .SHR
(T) K

1144 1199 1253 1306 1360 1414

11.1

!.• l.t 1.1 XI XJ X« X5

Figure 13 M2 cathode work function distribution
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IV CONCLUSIONS

The technical objectives of this first phase of the project to explore the use of noise

measurements to diagnose the condition of the cathode in an operating TWT were sub-

stantially accomplished. Two test stands were designed, built, and operated for handling

TWT gun structures and which provided for the detection, recording, and analysis of the

cathode noise signals, and for independently measuring the cathode temperature. Four

barium dispenser cathodes (two type B and two type M) were analyzed by this tech-

nique.

The observed work function distribution of B-type cathodes were comparable to

those observed by other workers and had an average ^ — 2.06 eV. The higher resolu-

tion obtained by this technique due to noise reduction of small patches illustrated many

different contributions not previously observed. Aging effects were observed from the

reduction in contribution at <f> ~ 2.13 eV and the emergence of a contribution at <f> ~

1.97 eV. This is attributed to the activation of Ba pores in the W matrix. This tech-

nique also illustrated space charge effects over a broader temperature range than the

Miram type curves.

The M-type cathodes also demonstrated a plurality of work functions not previ-

ously observed. These were centered about (f> ~ 2.075 eV. This value is higher than

expected for M-type cathodes and might be due to poisoning. Aging did demonstrate a

reduction is average work function. Ml unexpectedly exhibited both a high and low

work function contributions after aging at, <j> ~ 1.97 eV and 4> — 2.04 eV.

This technique also demonstrated a voltage-dependent sensitivity to work function

contribution. Lower anode voltages appear to be more sensitive to higher work function,

and higher voltages more sensitive to the lower. Thus, it might be possible to use this

voltage dependence to observe the presence of different contributions.

The computer automation of this technique would greatly enhance the resolution

observed in the work function distribution. This would allow much more data to be

taken to obtain a statistical base of work function distributions which could be used to

compare with other cathodes and in cathode fabrication. In turn, these work function
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distributions could be used to determine accurate cathode operating temperatures in

TWT structures.

Noise measurements also demonstrated a higher sensitivity to space charge effects

than the Miram method. Therefore, it is also possible to use this technique for establish-

ing the optimum cathode operating conditions for TWT structures.
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APPENDIX

The Theory of the Space Charge Limited Thermionic Diode

by: I. Brodie

3/13/85

A. Introduction

One of the more remarkable physical phenomena is the reduction in current

fluctuation noise that occurs in a thermionic diode during the transition from the

temperature-limited to the space charge-limited modes of operation.^ Remarkable

because random fluctuations, due to an initial Poisson distribution in the emission of

discrete quanta of charge (electrons), are substantially reduced by subsequent correlation

between the motion of electrons induced by space charge in their journey from cathode

to anode.

In general, the mean square current fluctuation in a planar diode at frequency f in

range Af is given by

<i 2 ( f )>=A.W(J ,V a ( T,f )Af (1)

where A is the a cathode area, W is the noise intensity distribution function, J is the

current density passing through the diode when a potential difference of + Va is applied,

the cathode being held at temperature T K.

Figure 7 shows how W varies with the current density for a planar diode held at

three different voltages. The cathode was a barium dispenser cathode^ and the measure-

ments^ were made at f = 20 kHz Af = 145 Hz. The current density was varied by

varying the cathode temperature. It will be seen that at low currents where J is tem-

perature limited, W is proportional to J; however, as the cathode temperature is

increased beyond a certain point, the current density does not increase substantially

above a value determined by the space charge limit at the applied voltage, and in this

region W decreases by about two orders of magnitude. In the temperature limited range
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at this frequency, the current fluctuations, termed the shot noise, are due to the discrete

nature of the electron and the fact that they are randomly emitted from the surface of

the cathode. The presence of the space charge minimum in front of the cathode in the

space charge limited case produces some correlation between the arrival of electrons at

the anode thereby reducing the current fluctuation noise. In the temperature limited

mode, it may be shown* that with a rectangular bandpass filter, W = eJ, and in the

space charge limited mode, the space charge reduction factor, termed F2, is defined by

W = F2 eJ.

A number of attempts have been made to predict theoretically the value of the

space charge reduction factor.8>10 The simplest theory, based on taking in account the

velocity distribution of the electrons, predicts values of F2 many orders of magnitude

smaller than the values actually observed and has lead to sophisticated refinements^ in

attempts to resolve this discrepancy. The work reported here grew out of a need to pro-

gram a computer to solve the space charge limited flow equations taking into account

the velocity distribution of the emitted electrons corresponding to a cathode temperature

T K. Although the equations are well known, 12 without the aid of a computer, they are

extremely cumbersome to use. However, with the computer program we were able to

verify, as shown in Section B below, that in practical situations the simple theory

predicts F2 — 10~9 compared with measured values of F2 ~ 10~2. At the same time, the

theory demonstrated that the current density was extremely sensitive to the diode spac-

ing d. This led to the investigation of the effect of thermal length fluctuations on the

diode spacing d reported here.

B. Space Charge Limited Currents

Consider a planar cathode at temperature T spaced distance d from a planar

anode. With zero electric field at the cathode surface, the cathode is capable of emitting

J0(T) A/cm2. In the space charge limited region, a voltage 4- Va applied to the anode

only allows the diode to pass a current density of J amps/cm2 (J< J0) due to the

existence of a potential minimum of value -Vm that is formed in the plane distant xm

from the cathode.

If the electrons are emitted from the cathode with a Maxwell-Bolzmann distribu-

tion then
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where e is the electronic charge and k is Bolzmann's constant.

Defining

where V is the potential at a plane distant x from the cathode, and

u=0 (eu - 1 ± eWfu1/2) 2(u/7r)1/2)

where £ = £"*" between the anode and potential minimum, i.e., for x > xm, £

between the cathode and potential minimum, i.e. for x < xm, and

ul/2

(2)

_ _ _ ^ 4 1/2( ( }~~
k3/4 e 1/2

where m is the electron mass and €0 is the permittivity of empty space;

Langmuirl2 has shown

erf f u1/2) = -L f e-z2 dz = error function of (u1/2). (6)
^ ' V.7T o

Thus at the cathode, from equation (3) and (4) and putting

A = ^"". 4 —41 = 9.18642 x 10s MKS units
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we have

** / „« i/a (7)

and from equation (2),

eVm"i In T / T fS^

At the anode we have

f»
'4jl/2f J _ y \ _ f du /g^J Va *m; — i — - x 1/2-.1/2 VyJ

and

eV eV eVc v a . c v m C ¥ a I T / T

" " ' lnJ/J°kT 1

Solving for ^a in terms of the measurable variables Va, T, J, J0, and d, gives

feV.

where

f ( W
f1(u)= eu-H-euerf(u1 /2)-2 -

L l*J J

33.

f2(u)du (11)

(12)



.1/2-11/2r r ii/2r
f2(u)= e u - l -e u erf(u 1 / 2 ) + 2 -

L I'J J

To shorten the integration time, we used the formula^

erf x = 1 - att + a^t2 + a3t
3 + a4t

4 + ast
5 e~x2 + e(x),

where t = - , | e(x) | < 1.5 x 1(T7, p = .32759 11, a! = .25482 9592,

aa = -.28449 6736, a3 = 1.42141 3741, a4 = -1.45315 2027, and a5 = 1.06140 5429.

Given four of the five measurable variables (J, J0, T, d and Va) the computer was

programmed to adjust the fifth until both sides of equation (11) differed by less than 1

part in 10s.

By making a small change in J0, the corresponding change in J (with T, d, and Va

I 9J Î .
<9J0 J

Now

Hence

The mean square fluctuation on J0 in frequency range f to f + Af due to shot noise is

given by

<AJ0
2>av = 2eJ0Af, and on J by, <AJ2>av = T22eJAf (by definition of T2)
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Hence

( *T ^2

r*2eJAf = 2±_

or

For the diode of Figure 7, using

Va = 100 V, J0 = 106 A/m2' J = 7700 A/m2' T = 1300 K, we compute

d = 5.7 x lO^m and — = 1.7 x 10"5 leading to F2 = 3.75 x 10~9.
3J0

The problem with the theoretical approach in arriving at equation (13) is that it

does not take into account the time it takes for a change in J0 to be reflected in a

change in J. This is because the basic theory gives the value of J only after dynamic

equilibrium has been reached. If the time constant to reach equilibrium is TO, then the

above theory will be valid only for frequencies f « —-. A rough measure of TO may be
To

obtained by estimating the transit time from the cathode to the potential minimum for

an average electron that contributes to the total current J. Then TO — where va is

the average velocity of electrons that can cross the potential minimum. Now

hence
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Vm can be obtained from equation (7) and xm from equation (6) using the computer pro-

gram. For the example cited above, we obtained

-Vm = 0.31 volts, xm = 6.1 x 10-%, giving TO ~< 2.6xlO~u seconds

Thus we would expect equation (13) to be valid for frequencies up to about 10 GHz,

unless a detailed consideration of electron trajectories shows the rough estimate of TO

given above to be seriously in error. Since the experimental measure of F2 (Figure 7) was

made at only 20 kHz, it seems unlikely that transit time effects could be involved in this

example. It thus appears likely that there is some other noise generating mechanism that

dominates before full space charge suppression of the shot noise is attained.

In this regard it was noted that the sensitivity of J to changes in d can be very

high. In general, the mean square fluctuation in J due to this effect is given by

<AJ2>a v=[|L]2<Ad2>a v (15)

1 0 J I
—— I can be obtained from the computer program,
d d j

However to obtain an approximate value we note that for xm « d, J is proportional to
_1_
d2

hence

(16)

Comparing values obtained on the computer program with that of equation (16) has

shown that this simplification is justified for most practical cases. Thus, if d is fluctuat-

ing with a mean square displacement <Ad2>av
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then

<AJ2>av = -^- <Ad2>av = T22eJAf by definition of F2 (17)

Hence

For the B cathode used to obtain Figure 7, we were able to estimate d = 5.7 x lO^m

from the space charge limited current (J = 7700 A/m2) with an applied potential of 100

volts, the cathode held at 1300 K, and assuming J0 — 105 A/m2 (10 A/cm2). Using this

value of d, Af = 145 Hz, F2 = 2.2 x 10'2, and J = 7700 A/m2. We obtain from equa-

tion (18)

«Ad2>av)RMS = 3.2 x IV* A

It seems reasonable that such a small displacement might be due to thermal fluctuations

in length of the cathode modulating the diode spacing d. This possibility is discussed in

Section C below.

C. Thermal Elastic Fluctuations in the Length of a Rod

The mean square amplitude of an elastic wave of frequency f, in a

body at temperature T K consisting of N atoms of mass m, arranged in a lattice is given

mN

where p = density and V = volume.
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The incremental number of such energy bearing waves modes of longitudinal vibra-

tions in the frequency range f to f + Af is given

where S = surface area, L = sum of the three dimensions of the region under considera-

tion. c = velocity of sound in the medium = A / — , E = Young's modulus.
V P

For a rod the mean square displacement of the end planes over the frequency range

f to f + Af is

<Ad2>av = £ <a2(f)> = AN <a2(f)> for Af « f (21)
f

Hence using (19) and (20),

The cathode and support structure used for obtaining the data of Figure 7 were of

rather complex shape; however, for the purposes of calculation, it may be approximated

to a cylinder of length 1 = 1.37 x lO^m and radius r = 3.81 x lO^m giving

L = 2.13 x 10-3m, S = 4.19 x lO^m2- V = 6.25 x 10-10m3'

Additional values for the cathode of Figure 7 (MKS units) are T =^ 1300 K (in space

charge limited range), c =s* 5.4 x 103 m/sec (drawn tungsten),^ f = 2.0 x 104 Hz, k =

1.4 x 10'23 joule/K, Af = 145 Hz, p ^ 1.5 x 104kg/m3 (80% that of tungsten to simu-

late the material of the dispenser cathode), JSCL = 7700 A/m2 with Va = 100 volts, d

= 5.7 x lO^m (computed).
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Putting the appropriate values into equation (23), we obtain

(<Ad2>av)RMS = 3.08 x 10-5A

in remarkable agreement with the value of 3.2 x lO^A obtained by assuming that the

measured current fluctuation in the space charge limited mode were due to fluctuations

in the diode spacing (equation 18).

If we combine equations (18) and (22), we obtain

2 JkT ( 8 , S , L *p2 _

I c2 cvf

The variation of F2 with the other parameters predicted by equation (23) may be experi-

mentally verified. We note that equation (23) predicts:

1. That T2 is independent of Af.

2. At high frequencies,

p 2 _ 4JkT

i.e. rh
2 is independent of frequency and cathode shape.

3. At low frequencies,

p2^ JkTL
' ~" 2d2ep7T2f2Vc

i.e., r^ has a 1/f2 variation at fixed J and T.

4. The changeover from high to low frequency range occurs when

(25)
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5. For a given diode at any fixed frequency, F2 is proportional to JT.

The data of Figure 10 verifies F2 is proportional to J at constant T. Additional

data is required to verify the other predictions.
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