
Final Report

SOFTWARE DEVELOPMENT TO SUPPORT
SENSOR CONTROL OF ROBOT ARC WELDING

16 April 1985 to 8 May 1986

Contract No. NAS8-36460

ENGINEERING CENTER FOR
AUTOMATED

MANUFACTURING TECHNOLOGY
(N A S A - 1 7 8 8 6 5) S O F T W A R E D E V E L O P M E N T T O N 8 6 - 2 8 4 3 4

S U P P O R T S E N S O E C C N 1 E C I O F E C E C 1 A E C W E L D I N G
Final R e p o r t , 16 Apr . 1985 - £ May 1986
(Clemson U n i v .) 173 p HC A C 8 / M F A01 Unclas

CSCL 13H G3/37 43502

CLEl-ISOlSr
XJlSTI-iTERSIT-y

College of Engineering
Clemson, South Carolina 29631

CAM-TR-86-120

Final Report

SOFTWARE DEVELOPMENT TO SUPPORT
SENSOR CONTROL OF ROBOT ARC WELDING

16 April 1985 to 8 May 1986

Contract No. NAS8-36460

Prepared for:
George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

8 May 1986

By
Fred R. Sias, Jr.

Department of Electrical and Computer Engineering
via

Engineering Center for Automated Manufacturing Technology
CLEMSON UNIVERSITY

Clemson, South Carolina 29634-0915

Contents

SOFTWARE DEVELOPMENT TO SUPPORT SENSOR CONTROL OF ROBOT ARC WELDING

Abstract 3

1.0 Introduction 4
2.0 Ob j ec tives . 5

2.1 Objectives 5
2.2 Approach 5

3.0 Software Description 7
3.1 Introduction 7
3.2 Software Overview 8
3.3 Software Description 8

4.0 Description of MINC-23 Interface 15
4.1 MING Interface Modules 15
4.2 The MINC-Robot Interface 15

5.0 Description of Robot Interface 18
5.1 GYRO 750 Hardware Interface 18
5.2 Parallel Interface Handshaking Protocol 18
5.3 Message Protocol 19
5.4 Message Types 20

6.0 Robot Welding Monitor 25
6.1 Overview 25
6.2 Problem statement 26
6.3 Approach 26

7.0 Seam-tracking Monitor 27
7.1 Overview 27
7.2 Problem Statement 27
7.3 Proposed Approach 27

8.0 Conversion to RSX-11M 29
8.1 Objective 29
8.2 Features and Limitations of RT-11 29
8.3 The RSX-11M Operating System 29
8.4 Assessment of Operating Systems 31
8.5 Conversion of CYR02 32

9.0 Conclusions and Recommendations 33
9.1 Conclusions 33
9.2 Recommendations 33

APPENDIX 34
A. CYR02 Operating Manual 35
B. Description of External Device Interface Messages 42
C. CYR02 Software Flow Diagrams 55
C. CYR02 Program Listings 78

ABSTRACT

SOFTWARE DEVELOPMENT TO SUPPORT SENSOR CONTROL OF ROBOT ARC WELDING

Robots are usually used to perform high-volume, repetitive manufacturing
tasks. The application of robots in space technology is more associated
with low-volume, high-quality-oriented manufacturing. The primary motiva-
tion for this effort is to raise the quality and consistancy of certain Gas
Tungsten Arc Welds (GTAW) on the Space Shuttle Main Engine (SSME) that are
too complex geometrically for conventional automation and are currently
done by hand.

Robot welding minimizes the human variability introduced by manual welding
methods and improves the overall quality control. In addition, automatic
welding of complex shapes can be improved by the use of a positioner table
that permits a coordinated movement of the part in relation to the welding
torch. Such "coordinated" motion between a robot and a two-axis positioner
table is complicated to program and the current on-line methods are
awkward. The application of robots in low-volume applications requires
improvement in the methods for creating robot control programs.

The use of seam-tracking methods reduces the accuracy with which the seam
track must be specified. Instead of using the "teach-and-store" method, it
is now possible to create a program automatically from dimensions derived
from original Computer Aided Design (CAD) files. A minor mis-allignment of
the welding torch due to path approximations derived from design files or
metal movement during the weld will be compensated for by the seam-tracking
system.

This report documents the development of software for a Digital Equipment
Corporation MINC-23 Laboratory Computer to provide functions of a "workcell
host" computer for SSME robotic welding. Routines were written to transfer
robot programs between the MINC and an Advanced Robotics Cyro 750 welding
robot. Other routines provide advanced program editing features while
additional software allows communication with a remote CAD system. Access
to special robot functions were provided to allow advanced control of weld
seam tracking and process control for future development programs.

1.0 INTRODUCTION

Robots are usually used to perform high-volume repetitive manufacturing
tasks. The application of robots in space technology is more associated
with low-volume, high-quality oriented manufacturing. Robot welding with
automatic seam tracking minimizes the human variability introduced by
manual welding methods and improves the overall quality control. However,
the application of robots in low-volume applications requires improvement
in the methods for creating robot control programs.

Normally robot programs are created in a "teach pendant" mode whereby the
robot is manually moved through a sequence of movements. Each successive
movement is "programmed" by storing the coordinates of the endpoint of the
movement along with move velocity and other parameters that may be required
to execute a particular manufacturing task. The results of a numerical
control step programmed by the "teach" process is converted in the CYRO 750
into a program step in a numerical control "language" similar to standard
machine tool languages such as MRP. A number of subprograms can be
sequenced together to comprise a complete robot task.

In the case of the CYRO 750 robot attached to the MINC-23, the overall
robot task is to perform welds on the space shuttle main engine (SSME).
The welding tasks on the SSME consist of a large number of small complex
welds that are currently performed manually due to the complexity of the
welds. Replacing the manual welds with robot welds is not a simple task.
The conventional robot programming task described above is called "on-

line" programming. The robot itself must be dedicated to the programming
task which would be particularly time consuming due to the complexity of
the weld paths. Weld-path programming will generally take more time than
the actual welding process. In addition, automatic welding of complex
shapes requires the use of a positioner table that permits a coordinated
movement of the part in relation to the welding torch. For example, in
welding a cylindrical part it will be necessary to rotate the part rather
than simply track the weld so that the weld puddle will remain in a proper
orientation relative to gravitational forces on the puddle. Such
"coordinated" motion between a robot and a two-axis positioner table is
complicated to program at best and the current on-line methods are awkward.

The use of seam-tracking methods reduces the accuracy with which the seam
track must be specified. Instead of using the "teach-and-store" method
described above, it is now possible to create a program automatically from
dimensions derived from original computer based design (CAD) files. A
specified mis-alignment of the welding torch due to path approximations
derived from design files or metal movement during the weld will be compen-
sated for by the seam-tracking system.

The development of N/C programs for the CYRO 750 robot is further compli-
cated by the fact that the dimensional information is contained in files on
a separate Computer Aided Design (CAD) system and the process of converting
design files to a robot program is much too complicated to be handled by
the small on-line MINC-23 computer attached to the robot. Communication
links between two or more computers are necessary and extensive software
for automated program creation must be developed.

2.0 OBJECTIVES

2.1 OBJECTIVES

Based on the discussion presented in the Introduction, it is possible to
present the overall problem as follows: How to produce programs for wel-
ding robots while minimizing interference with research or production
operations.

The objectives of this research are twofold. First, a number of software
modules have been written to facilitate the creation of Numerical Control
programs for the Advanced Robotics Cyro 750 Robot. Included are routines
for transferring N/C programs back and forth between the Robot and the
MINC-23 computer for storage and retrieval on MINC diskettes. In addition,
software has been developed to aid in the off-line programming and editing
of N/C programs.

The second area of research are studies designed to aid in planning future
applications of the MINC computer. Application areas include communication
with a Computer Aided Design (CAD) system so that dimensional information
can be passed to the MINC to facilitate automatic development of N/C pro-
grams. In addition, further discussions are directed at defining the
problems that must be solved to use the MINC computer to record offsets
transmitted by the Ohio State seam-tracking system system to facilitate
better tracking on multipass welds.

2.2 APPROACH

CAD files containing the SSME dimensional information are generated on a
Computer Aided Design (CAD) system. It is anticipated that that the
conversion of CAD files to N/C robot control programs will be carried out
on an intermediate computer such as VAX systems now installed at MSFC. The
final link to the MINC-23 or some other computer on-line with the robot can
be handled by transferring the N/C programs on floppy diskettes, or over
high speed or low speed data communication links. The N/C programs are
expected to finally be stored on a computer attached on-line to the robot
since the robot is limited to in-memory storage of only nine programs. In
a production environment it will be necessary to transfer new programs to
the robot as segments of the welding tasks are completed. It is
anticipated that the software that is the main subject of this report will
continue to be used for that application either on the MINC-23 or a
successor digital computer. Figure 2.1 illustrates the overall
configuration.

WELD
PARAMETERS

KINEMATIC
MODEL

OF ROBOT

CAD PART
DATABASE

PROGRAM
GENERATION

COMMAND
GENERATION

PROGRAM
INTERPRETATION

DATA BASE
MANAGEMENT

SYSTEM

COMMUNICATION/
LINK l/l

MING

WORK-CELL HOST

COMPUTER

SEAM TRACKING
SYSTEM

ROBOT REAL
WORLD

Figure 2.1 Work Cell Host-Robot Configuration.

6

3.0 SOFTWARE DESCRIPTION

3.1 INTRODUCTION

The software system for MINC-robot communication is called CYR02. It is a
set of routines designed to permit off-line Numerical Control program
storage and development on the MING computer. A previous software system
called CYR01 was primarily a checkout system designed to demonstrate that
communication could be established between the MING computer and the GYRO
750 robot. The CYR02 system will serve as a basis for developing the
functions of a "workcell host computer."

The robot can be programmed in the teach mode described previously or
directly from the robot console by typing steps using the CYROVISION
numerical control language. The following lines represent an example of a
CYROVISION N/C program:

N200VA50WA200/ ;Start Welding
N210G4F3/ ;Wait-Arc Stabilize
N220G42C1/ ;Turn Cyrovision On
N230XA23.45YA12.98/ ;Move Robot
N240G43/ ;Turn Cyrovision Off
N260VAOWAO/ ;Stop Welding
N300M02/ ;Program End

The above program is comprised simply of strings of text stored as ASCII
codes. These are interpreted by the robot controller. The comments are
added for clarity and would not appear on the robot control console. When
displayed each line of the actual N/C program line is terminated by a
"slash". For display purposes the slash replaces an ASCII code for
"carriage return" that is actually used to terminate the text string in
robot computer memory. The text strings can be manipulated by the standard
Digital Equipment Corporation screen editor if the code is modified
slightly. Each line of text in the robot is terminated with a carriage
return and the editor expects to find each line terminated by a carriage-
return code followed by a line-feed code.

To permit off-line development and modification of N/C programs for the
robot, it was decided to store program on diskette in a form suitable for
manipulation by the standard RT-11 screen editor. All programs are
transmitted back and forth between the robot and MING computer in the
formats specified by the External Device interface specifications provide
by Advanced Robotics. However, before storage on MING diskettes, the
numerical control programs are modified by the addition of a line-feed code
following each carriage-return code.

3.2 SOFTWARE OVERVIEW

CYR02 is a menu-driven, modular software system that allows the user to
create, edit, merge, file on diskette, and transfer N/C control programs
back and forth between the MING computer and the GYRO 750 robot. Also
included are utility routines than can be called from the same menu to
examine the directory of programs on the diskette, display a directory from
the first two lines of programs in the robot, resequence statement numbers

of an N/C control program, transmit messages to the robot console, list
robot operating parameters, display current robot position coordinates, and
run a robot N/C program from the MING console. Only the number
corresponding to the desired menu selection and a carriage return need to
be typed to execute any given menu function. A menu operation can also be
chosen by typing a mnemonic that consists of the letters capitalized in
each menu selection. Most of the code is written in FORTRAN to simplify
transportation of the system to another computer.

Routines that interact directly with the MING digital-input and digital-
output interfaces are written in PDP-11 assembly language. SEND and RECEVE
(spelled as shown) are two assembler routines that transmit or receive
complete arrays of data that are manipulated by calling FORTRAN routines.
The two subroutines called SNDBYT and GETBYT could be referred to as device
handlers since they handle the actual input and output and take care of the
appropriate "handshaking" protocol described in section 5.2 of this report.
SEND and RECEVE transmit complete arrays of data and receive or return
appropriate single-byte acknowledge messages.

The assembler routines are the only message-handling subroutines that
directly affect or are affected by the interface hardware. At the present
time, polling techniques are used to synchronize input/output operations
with handshaking flags. The system could be converted to an interrupt-
driven environment by merely altering the assembler routines.

Most of the rest of the CYR02 software package consist of a set of FORTRAN
subroutines that prepare or accept various messages that are moved into or
out of a 257 word integer array that is, in turn, processed by subroutines
SEND and RECEVE that handle the actual I/O as described above.

3.3 SOFTWARE DESCRIPTION

The mainline program of the CYR02 package goes by the same name. This
routine first initializes the communications linkage and then displays a
menu of available selections that correspond to each of the functions that
are available in the system. The main menu is shown in Figure 3.1.

Any menu function can be selected by typing either the number or the
capitalized letters followed by a carriage return. At that point control
is transferred to a subroutine that takes over control and handles the
particular function selected. Further interaction with the operator is
under control of the selected subroutine and may involve futher operator
interaction at the CRT keyboard. Control is returned to the main menu when
the selected function is completed.

Briefly each of the menu selections function as follows: The REINIT selec-
tion establishes a communications link between the robot and external
computer. SAVE transfers a program from the robot to a diskette file on
the MING computer. LOAD transfers a program from diskette to the robot.
RUN allows any program currently loaded in the robot to be selected by
program number. The DIR selection allows the operator to display or print
the first two lines of all programs currently loaded into the robot. This
constitutes a directory if the first two lines of each program are comments

8

GYRO 750 EXTERNAL DEVICE INTERFACE MENU:
1. REINITlalize system (Reset Robot)
2. SAVE robot program to diskette
3. LOAD program from diskette
4. RUN a program
5. DIRectory of programs in robot
6. (DDIR) Diskette DIRectory
7. SHOW a program in the robot
8. LIST a program from diskette
9. EDIT a program on diskette
10. RESequence a program on diskette
11. POSITion of the robot
12. PARAMeters from the robot
13. MESSAGE to the robot console
14. PARK and ignore all messages from robot
15. TRANSfer robot programs from VAX
"E" EXIT to operating system

SELECT>

Figure 3.1. External Device Main Menu

containing program identification. DDIR permits the diskette directory to
be displayed or printed. SHOW and LIST display or print programs stored
respectively in the robot or on diskette. EDIT transfers control to the
RT-11 operating system so that the standard system Editor can be used to
create or modify programs. The RES selection resequences the program line
numbers of a NC program that has been altered by repeated editing or by the
combination of one or more programs. TRANS also returns the operator to
the main operating system so that a transfer program can be used to move
programs from a CAD computer system to the MING.

The above menu selections provide the main software features required for
off-line program development and modification; however, several additional
options are provide since the capability exists in the robot communication
package. POSIT and PARAM both request and display robot status data on the
MING console. PARK is a "do nothing" routine that merely discontinues
communication between the robot and the MING while acknowledging any
spurious messages from the robot so that error codes are not produced by
the robot operating system. The following sections describe each selection
in greater detail.

3.4 Subroutine INIT; This subroutine must be executed before any other
function is selected. It is automatically invoked whenever the CYR02
software is executed; however, it may be executed from the main menu should
robot communications require resynchronization. Following selection of the
this function, RESET on the robot teach pendant should be pressed, followed
by a wait of two seconds before pressing ENTER or carriage return to return
to the main menu.

This subroutine is designed to established communication between the robot
and the MING computer. When the robot is RESET the control software in the
GYRO 750 requests device identification and status from any device attached
to the external device interface. This subroutine starts by calling sub-
routine DOUT to clear the parallel output communication register in the
MING computer. (Actually, all bits of the output register are set HIGH due
to characteristics of the interface.) Then the subroutine calls the RECEVE
subroutine and waits for a message from the robot. The MING will wait
indefinitly for the robot to transmit a message. When the device identifi-
cation/status message is received from the robot, the INIT subroutine will
respond that the MING is operational. This is done by sending a type code
129, followed by codes that indicate that the device type is a computer,
the device identification is "MNC", that status is operational, and a
message for display on the robot console is "MING OK - CYR02 V2.2".

Several messages may be seen on the CRT display reflecting different possi-
ble conditions. For example, if no message is ever transmitted by the
robot the MING display will indicate that it is waiting and that enter must
be pressed to continue. Other error messages will indicate if the message
from the robot was incorrectly received. Next the MING will try to trans-
mit a reply to the robot up to five times. Finally, the INIT routine will
continue to read additional messages and ignore them as there appear to be
undocumented additional messages transmitted by the robot following a
reset.

10

3.ĵ Subroutine SAVE; This routine accepts a program number to be saved on
the diskettes from the MING terminal. The program also asks for a six
character name under which the program will be stored. Then a request is
transmitted to the robot and the computer receives and files the program
returned by the robot. The program is filed using the name typed on the
keyboard with the suffix ".CYR" appended to it.

For safety, the program also asks if it.should overwrite a program with the
same name already stored on the diskette. Many possible error messages are
contained in the program should any of a number of error conditions are
detected during the transfer. The program is a duplicate of the ASCII code
contained in the robot.

3^6 Subroutine REQTS; This subroutine is a brief routine that merely sets
up an array with the codes appropriate for requesting that one of the
programs in robot memory, identified by number, should be transmitted to
the external device. It then calls subroutine SEND that handles the actual
message transmission.

3_._7. Subroutine LOAD; This routine allows the user to select a particular
N/C control program to be loaded from the MING diskette to the robot. Then
the program is transmitted to the robot with appropriate handshaking.

The routine requests the name of the diskette file containing the program
to be loaded. Only the first six letters need be typed on the keyboard
since the routine assumes the ".CYR" extension which was appended when the
program was stored. Then a message on the MING CRT display requests the
number between 1 and 9 that the N/C control program will be referenced by
once it is stored in robot memory. Appropriate error messages are also
displayed whenever necessary.

3.8 Subroutine DISKSV; This routine is called by SAVE and handles the
actual storage of blocks of data on the MING diskettes. It merely keeps
track of the number of blocks of data transmitted to it by SAVE and fills
the last block with NULLS if the block is not completely filled with data.
DISKSV locates all of the line-feed characters that serve as program line
delimiters and precedes each one with a carriage return. Only the actual
program is saved to diskette so that the file will be compatible with the
standard RT-11 system editor.

3^9 Subroutine DISKRD; The DISKRD subroutine is just the reverse of the
DISKSV subroutine. DISKRD retrieves any N/C control program stored on
diskette and strips out the carriage return characters. Then it counts the
number of characters in the program and prepares a "header" array that
contains the size of the program, the total number of 252 character blocks
that will be transmitted, and the actual number of characters stored in the
final block of the program if it is not completely filled. Appropriate
error messages are displayed if any detected errors occur.

3̂ 10 Subroutine RUN; This routine is used to start any program stored in
the robot N/C program memory. It merely accepts a program number from the
MING console keyboard and transmits a message to start that program in the
robot. The RUN subroutine has no control over the program in robot memory
as these must have been previously loaded from the robot program cartridges

11

or by using the LOAD menu selection on the MING. The subroutine displays
an appropriate prompt message on the MING CRT prior to accepting a program
number from the keyboard. The actual message transmitted by this routine
is. a "set program mode" message. It must be transmitted while the robot is
in a "no activity state", otherwise the message will be ignored.

Following transmission of the RUN message, this routine remains in a state
whereby it can receive and acknowledge messages from the robot. Undocu-
mented messages appear to be transmitted by the robot and error conditions
will occur if the messages are not acknowledged by the MING. The RUN
subroutine will continue to accept messages and ignore them until a key is
pressed to return to the main menu.

Subroutine DIRECT; This routine is used to determine which programs
stored in the robot program memory. This is done by requesting that

all programs should be transmitted to the MING from the robot. The DIRECT
subroutine then displays a directory that consists of the first two lines
of each routine stored in program memory. The first two lines of every N/C
control program should contain a program title and other identification
information such as discriptive data, dates, and the programmer's name.

3.12 Subroutine DISPLA; The DISPLA subroutine accepts a program number to
be displayed from the MING terminal and then sends a request to the robot.
The requested program is received and displayed on the MING console CRT or
printed on the printer attached to the MING. Selection of output device is
under operator control.

Program data received from the robot is formatted as strings of ASCII code
alphanumerics terminated by a line-feed code after each program statement.
To display a program consistant with the format displayed on the robot
console, the line feed is displayed as a right slash (/) followed by a
carriage return and line feed that proceeds following program statements.

3.13 Subroutine DDIR; The DDIR subroutine name stands for "Diskette
Directory."Selecting this menu option causes the diskette directory to be
displayed on the MING CRT or printed in the same format that one finds when
the system command "DIR" is typed when no program is executing and the RT-
11 system prompt is displayed. The only reason for including this option
in the menu is to permit the operator to view the directory without exiting
CYR02 and returning to the operating system.

This routine is basically a direct read of the directory block on the
diskette followed by some computations that are necessary to directly
access the compact directory information from a FORTRAN program.

3.14 Subroutine LIST; Subroutine LIST is another convenience program to
permit listing of any N/C control program stored on diskette with the
program name extension ".CYR" without returning to the operating system.
To obtain a program listing consistant with robot console displays, the
listing routine places a right slash (/) at the end of each program line
before the normal carriage return followed by a line feed. The program can
be listed on either the MING console CRT or the printer.

12

3.15 Subroutine RESEQ: This subroutine is used to resequence any N/C
control program stored on the MING diskette. It searches for the "N"
followed by a number at the beginning of each line of the program and
replaces the current line number with a new sequence number separated by 10
from the proceeding line number. This menu option is used whenever
programs have been modified extensively and unused line numbers no longer
are available between existing lines to insert new program lines. Since
program line numbers are merely used for programmer convenience, this
routine simply replaces all the existing numbers with a new sequence
starting at 100 and counting by 10's. The subroutine calls another subrou-
tine INSRT that keeps track of the count and converts the line numbers into
appropriate ASCII codes.

3.16 Subroutine INSRT; This subroutine is called only by the resequencing
subroutine RESEQ. This routine's sole purpose is to keep track of the line
number count by tens and convert the line number to a sequence of ASCII
codes.

3.17 Subroutine MESAGE; The MESAGE subroutine is spelled this way to keep
the mnemonic name within the six character name limit. This routine
accepts a message from the computer keyboard and transmits it to the robot
for display on the robot console display. Appropriate prompt and error
messages are generated when necessary.

3.18 Subroutine POSIT; The POSITion subroutine transmits a request for
robot positions to the robot with a single byte message set to zero (0).
The zero indicates that only one byte per request is desired. The routine
then waits for a response from the robot which should include the type code
4 followed by 18 bytes of binary data that convey the current robot posi-
tion. Each position consists of two sequential bytes: the low-order byte
first followed by the high-order byte. The nine coordinates correspond to
x, y, and z coordinates in inches, the A and C axis angle in degrees, and
each of two positioner x and y axes in degrees.

3.19 Subroutine PARS; This routine requests the current robot parameters
and then displays them on the MING console CRT. It sets up and transmits
the request message, receives the returned data, and scales the data before
displaying it. Parameters displayed are torch feed rate in inches per
minute, wire feed rate in inches per minute, weld level in percent, and
AVC/ACC setpoint level in percent. Also the presence of left, right or no
oscillation is displayed. The parameters are transmitted once in response
to each request.

3.20 Subroutine EDITOR; The EDIT menu selection merely returns control to
the operating system so that the operator can use the RT-11 system editor
to develop or modify a N/C control program. We could find no way to call
this system program without exiting the CYR02 software system. Since the
RT-11 system editor is a very sophisticated and convenient full-screen
editor with which most programmers would be familiar, it was decided to use
this editor rather than writing a different editor that could be embedded
within the CYR02 package and called directly from the main menu.

Selection of the EDIT option presents a message explaining that control
will return to the operating system if desired. Selection of this option

13

stops the CYR02 system and control returns to RT-11. The RT-11 prompt will
appear and the operator should type EDIT <filename.CYR>. The six character
filename is some program that exists on the file diskette and the ".CYR"
suffix must be appended to the name. If no such file exists the system
will ask if you wish to create a new file by that name. The appropriate
editor commands should be consulted in the RT-11 system documentation.

Since editing or N/C program creation using the MING computer will usually
be an off-line operation, the user will generally not be operating the
CYR02 system. Programs created using the RT-11 editor will be in the
proper form for use on the robot if the standard syntax is used. The right
slash (/) should not be placed in the program file as this is not actually
present in N/C control programs. Merely end each program line with a
carriage return and the other CYR02 routines will provide proper conversion
for display and transmission to the robot. The specific file format used
in CYR02 was selected for compatibility with the RT-11 editor.

When an operator wishes to return to an on-line mode, CYR02 must be
requested from the RT-11 system prompt and the system INITialized and the
robot reset.

3.21 Subroutine PARK; The GYRO 750 robot appears to transmit messages at
various times when an external device is on-line. The content of these
messages is not apparent from the documentation provided by Advanced
Robotics. The problem that occurs is that the robot expects a one byte
acknowledgement whenever it transmits a message and the absence of such an
acknowledgement causes robot control system to stop and display a timeout
error message. The current CYR02 software package is a polled system and
is not equipped to handle messages except when specifically in a routine
that is programmed to accept messages. To overcome this problem when the
CYR02 system is on-line, PARK is an option that places the MING computer in
a mode to accept and acknowledge each message but then ignore the content.

The CYR02 communication handlers could be rewritten to function in an
interrupt mode to overcome this problem, however, this option has not been
implemented since it is not currently clear whether the current hardware
will be replaced by another system.
3.22 Subroutine INTER; Control is transferred to this subroutine in
response to menu selection TRANS. Like the EDIT selection, this routine
merely displays a message and transfers control to the RT-11 operating
system so that software for communication with the Intergraph CAD system
can be activated.

14

4.0 DESCRIPTION OF MING-23 INTERFACE

4.1 MINC INTERFACE MODULES

Digital communications with the MINC-23 computer is relatively straight
forward. It is accomplished using standard MINC digital input modules
referred to as MNCDI's and MINC digital output modules known as MNCDO's. Up
to a maximum of eight of either type may be incorporated into a system.
The system referred to as the "External Computer" for the Advanced Robotics
system, includes two MNCDI's and two MNCDO's. Each MNCDO or MNCDI includes
16 output and 16 input lines, respectively, plus connections for strobe and
reply logic signals. Figure 4.1 shows the connector blocks for the MINC
digital input and output modules along with notes that identify the logic
signals that may be used to synchronize communication with various
peripheral devices.

4.2 THE MING-ROBOT INTERFACE

The communication link between the MINC computer and the Advanced Robotics
External Device Interface is shown in Figure 4.2. The MNCDO's and MNCDI's
were determined to be suitable for communication with the robot rather than
installing an additional Digital Equipment Corporation DRV11 module which
would perform essentially the same function. A second pair of digital
interface modules is available to perform additional communication duties
such as relaying data back and forth between the MINC and an Ohio State
University welding seam-tracking system that will be attached to the same
robot.

The interface shown in Figure 4.2 includes some features that should be
described. Although the MNCDO and MNCDI modules include logic signals for
handshaking, it was determined that these inputs and outputs were designed
for short-duration pulse signals rather than logic levels that remain set
until answered or cleared under program control. Based on the Advanced
Robotics External Device Specification,m it was decided to use the circuit
shown in Figure 4.2 rather than attempt to use the pulse handshaking sig-
nals which could be of such a short duration that proper synchronization
between the robot and MINC would not be possible.

The interface connections shown in Figure 4.2 utilize the high-order two
bits of the digital input and digital output modules for handshaking.
Since only 8-bit bytes are transferred back and forth between the two
devices, the high-order 8 bits of both the input and output modules are
unused for data transfer and may be used for handshaking purposes.

The software described elsewhere was designed to function in a simple
polling mode; however, the MNCDI and MNCDO modules make provision for
hardware interrupts. An interrupt signal may be obtained either from the
pulse logic handshaking inputs or from the high-order two bits on the MINC
digital input module. This choice is controlled using software to appro-
priately set a hardware control/status register in the interface module.

15

MNCOI Digital Input

USER GROUND -

STROM INPUT ACCEPTS SIGNAL
(1 »SMIN1 FROM EXTERNAL
APPARATUS WtfeN PARALLEL DATA
WORD IS READY FOR TRANSFER

CAUTION: Input IM<« to STROBE
or DATA itrmimli mull not ticMd
•16or«20V.

USER GROUND-

C)

EXT VOLT
log* mi

PGM OUT
016
ou
Ot3
012
OH
010
000
DOS

«5VREF
logic fnd

REPLY
STROBE

007
006
DOS
004
003
002
001
000

logkgnd

^\

14

n
22
ii
N
19
18
17
16
IS
14

13
11
11

10
9
8
7
6
S
4

3
2
1

•M

4

—

4

INPUT FOR EXTERNAL VOLTAGE
IOO V MAX) TO INCREASE REPLY
EXCURSION RANGE
SPECIAL PURPOSE TERMINAL
(SEE TEXT)

INPUT LINES 8 TO IS

•5 V SOURCE f OR EXTERNAL
DEVICES (62mA MAX!

REPLY OUTPUT (PRODUCES 1 «S
NEGATIVE GOING PULSE TO INFORM
EXTERNAL APPARATUS THAT
PARALLEL DATA TRANSFER HAS
BEEN ACCOMPLISHED)

INPUT LINES 0 TO 7

MNCDO Digital Output Unit

USER GROUND -

REPLY INPUT RECEIVES DATA
ACCEPTED SIGNAL (1 »S MINI •
FROM EXTERNAL INSTRUMENT

LINES 0-16:
SET-LOW STATE
CLEAN - HIGH STATE

EXT VOLT 24
uxrgnd 21

H8 STR8 22
015 21
014 20
013 18
012 18
Oil 17
010 16
O00 IS
DOS 14

»S» rri 13
taficfnd 12
. MLY 11

L> STRB 10
007 6
008 8
DOS 7
DM 6
001 S
002 4
001 3
000 2

UMT(KJ 1

p| .

EXTERNAL VOLTAGE INPUT
1*30 V MAXIMUM. AT 100 MAI

~
GENERATES "DATA READY"
SIGNAL FOR EXTERNAL PARALLEL
TRANSFER INSTRUMENTS

OUTPUT LINES 6 TO IS
' (HIGH BYTE)

»S V REFERENCE SOURCE
-1- FOR EXTERNAL DEVICES

162 mA MAXIMUM!

«̂ M
FOR REAL-11 USER. FUNCTIONALLY
IDENTICAL TO H6 STRB

^ OUTPUT LINES 0 TO 7
(LOW 8YTEI

USER GROUND

CAUTION: Input toMfc to UPLY
1 Lr̂ -""""""̂ (•rm<<uliiiuf<notucM»-16or»20V.

Figure 4.1 MING Digital Input and Digital Output Units

16

OF POOR

ROBOT DRV-11

GC
CO

I DROUT BUF \ P
2
DC

O
cc
CO
o

CD
O
LLJ

DRIN BUF

OUTO

MNCDI

INO

MNCDO

CXT VOLT 24
UMTV* 23

HI STM 22
01S 21
OI4 20

. 013 It
Oil II
OU 17
010 !•
001 I*

14
13
12
ii

Lisrra 10
on
001
00*
O04
003
002
001
ooa

OOt
*fcral

Figure 4.2 The MING - ROBOT Parallel Communications Link.

17

5.0 DESCRIPTION OF ROBOT INTERFACE

5.1 GYRO 750 HARDWARE INTERFACE

Communication with the Advanced Robotics Cyro 750 robot is provided by the
addition of a special feature to the basic robot control computer. This
interface included both hardware and software and is called the External
Device Interface.

The hardware specification provided by the vendor is shown diagramatically
in Figure 5.1. Actual communication with an external device is provided by
the DRV-11 Parallel Interface Module with the logic signal definitions
shown in Figure 5.2. The pin connections and the connector attached to the
Cyro 750 is shown in Figure 5.3.

5.2 PARALLEL INTERFACE HANDSHAKING PROTOCOL

The handshaking protocol defined by Advanced Robotics is as follows:

Output from Robot -

1. Write data to port.
2. Set CSR1 (Indicates data ready.)
3. Wait for REQA to be set. (Indicates that external device

has accepted data.) If not set in 2000 milliseconds, then
exit to error recovery.

4. Clear CSR1.
5. Wait for REQA to be cleared. If not cleared in 500 milli-

seconds, then exit to error recovery.

Input to Robot -

The REQB signal line (from the external device) is used to
generate an interrupt to indicate that information is available
on the port.

1. If REQB is not set, then exit to error recovery.
2. Read data from port.
3. Set CSRO. (Indicates that data has been read.)
4. Wait for REQB to be cleared. If not cleared in 500 milli-

seconds, then exit to error recovery.
5. Clear CSRO.

The exit to error recovery comments in the above protocol cause program
control to return to the mainline program where different consequences will
occur depending on the source of the error. In some cases the robot
software may attempt to re-transmit a message and in other cases an error
message may be displayed indicating that the external device is not ready
to communicate with the robot. Table 5.1 shows the various error messages
that can be generated.

18

TABLE 5.1
ERROR MESSAGES

ERROR OCTAL MESSAGE

200 1000 LENERR - Length on input = 0 or 255 error
201 1001 LRCERR - LRC error on input - after 8 retries
202 1002 TBBERR - Time between bytes on input too long
203 1003 THSBER - Time for handshake too long - REQB to go low
204 1004 THSAHE - Time for handshake on output too long -

REQA to go high
205 1005 THSALE - Time for handshake on output too long -

REQA to go low
206 1006 ADQERR - Free list queue full
207 1007 TYPERR - Type code not understood
208 1008 SMGERR - Send message error - not accepted after

eight retries
209 1011 FQEERR - Free list queue empty
20A 1012 PARERR - Parity error
20B 1013 DVSERR - Device not operational

5.3 MESSAGE PROTOCOL

Messages to and from the robot are transmitted as variable length sequences
of 8-bit bytes. The entire message, along with several control bytes, is
transmitted in a single burst. An acknowledge message is-expected from the
receiving device when the entire message has been received. Handshaking,
as described in the previous section, is used to synchronize the transfer
of individual bytes of data. A 100 millisecond timeout is established for
the initial handshaking response from the receiver and a 1 millisecond
timeout is established as .the limiting waiting period for a handshaking
signal between bytes of data. The following message protocol is quoted
from the Advanced Robotics External Device Specification:

"Length - a byte of information is transmitted by the sender indica-
ting the length of the type code and data portion of the message. The
length of a message can range from 1 to 254 bytes.

"Sequence Number - a byte identifying each message. This number will
be used to reference a particular message, for example, an error
message may reference this number to indicate which error caused a
message.

"Type Code - a byte indicating the type of message that is being
transmitted. This message is used to define the format of the data
following, and is application dependent.

"Data - 0 to 253 bytes of information that are application dependent.
The number of data bytes plus the type code byte defines the length of
the message.

19

IILongitudinal Redundancy Check - a byte transmitted by the sender to
verify that the type code and data were correctly received. This is a
software computed check, and is unrelated to any hardware checks that
may be performed. The LRC will be computed by exclusive or-ing the
length with 'FF', then using the result to exclusive or with the type
code, then using the result to exclusive or with each byte of data.

"The message will be complete when a byte is transmitted by the recei-
ver to acknowledge the correct or incorrect receipt of the message
from the sender. If the LRC computed by the receiver matches the LRC
sent by the sender, then the message was received correctly."

5.4 MESSAGE TYPES

Six message types are supported by the Advanced Robotics External Device
Interface. These are described in detail in the APPENDIX. Data is trans-
mitted in 8-bit bytes, however, some data represents 16-bit binary inte-
gers, while other data represents ASCII coded text messages. Where data
represents a distance, the 16-bit integer is scaled to represent 1/128
inch (.0078) per bit. Angular information is scaled to represent 1/10
degree per bit. The message types specified in the Advanced Robotics
External Device Specification (27 April 1984) are as follows:

"Messages from the robot to all devices

- Request Device Identification/Status - Type Code 1
- Program Status Mode - Type Code 2
- Welding Status Mode - Type Code 3
- Robot Positions - Type Code 4
- Special Message to Device - Type Code 5
- Error - Type Code 6
- Robot Sytem Parameters - Type Code 7
- Device Modes - Type Code 8

"Messages from Robot to Sensor Devices

- Sensor Set-up Parameters - Type Code 33
- Sensor Table Parameters - Type Code 34
- Sensor Position Definition - Type Code 35
- Sensor Diagnostic - Type Code 36
- Sensor Calibration - Type Code 37
- Search for seam - Type Code 38

"Messages from Robot to Computer Devices

- Load Program from Computer Acknowledge - Type Code 65
- Save Program to Computer Acknowledge - Type Code 66
- Save Program to Computer - Type Code 67

20

'Messages from all Devices to the Robot

- Device Identification/Status - Type Code 129
- Set Program Mode - Type Code 130
- Set Welding Mode - Type Code 131
- Request Robot Positions - Type Code 132
- Special Message from Device - Type Code 133
- Error - Type Code 134
- Jog - Type Code 135
- Move Robot - Type Code 136
- Request Robot System Parameters - Type Code 138

"Messages from Sensor Device to Robot

- Override Data - Type Code 161
- In Position Command - Type Code 162

"Messages from Computer Devices to Robot

- Request Save Program to Computer - Type Code 193
- Request Load Program from Computer - Type Code 194
- Load Program from Computer - Type Code 195"

21

INTERFACE
ENABLE/DISABLE

SWITCH

ON FRONT PANEL

ROBOT CONTROLLER
(11723 SYSTEM)

DRV-11 PARALLEL
INTERFACE

i r ON CONNECTOR PANEL

CONNECTOR

Figure 5.1 External Device Interface Hardware Structure.

22

DRV-11

cc O
CO UJ
o cc

O

cc
CO
o

DROUT BUF - J1
J1- J1- J2-
DD LL K

CO
O
UJ
cc

J2-
S DRINBUF-J2

OUTO INO

Figure 5.2 DRV-11 Parallel Interface.

23

PARALLEL INTERFACE
ORIGINAL PAGE rs
OF POOR QUALITY

Pin/ Signal

2 IN07
4 IN06
6 IN05
8 IN04
10 IN03
12 IN02
14 IN01
16 INOO
18 NEW DATA READY
20 DATA TRANS
22 CSR1
24 CSRO
28. REQ B
30 REQ A
34 OUT07
36 OUT06
38 OUT05
40 OUT04
42 OUT03
44 OITT02
46 OUT01
48 OUTGO
49 COMMON REFERENCE
50 COMMON REFERENCE

xn tm .IK .a* M .m

1J< 015)

Connector at Control Cabinet- AMP /208475-1

Mating Connector- AMP #208474-1

Figure 5.3 Parallel Interface Connector

24

6.0 ROBOT WELDING MONITOR

6.1 OVERVIEW

An important factor related to Improvement of weld quality Is the ability
of a welder to monitor the robot welding operation. Information to be
monitored can come from three sources: (1) parameters and control informa-
tion available from the robot control computer; (2) data available from the
vision seam-tracking computer; and (3) data available from other sensors
that may be included in the overall welding system.

The software supplied for this contract provides an initial capability to
display parameters and position data from the robot control computer. The
position of the robot and robot control parameters may be requested by menu
selection from the MING computer console. This program responds only when
the data is requested by an operator, however, a more elaborate welding
monitor could be written. This software could be expanded to request the
data at regular time intervals and provide the operator a continually
updated display subject to the limitations of the robot control software to
respond to requests.

Offsets and other control information provided by the Ohio State seam
tracking machine vision system is not available for display on the MING
computer. This is due to the fact that there is only a single external-
device interface on the robot control computer. Either the vision system
or the MING computer can be attached to the robot. Both cannot be attached
at one time. The next section of this report will consider possible future
enhancements that will allow connection to the vision system through the
MING computer in such a way that offsets and other data passing between the
robot and the vision system can be displayed on the MING console.

Finally, other sensors could provide useful information relative to the
progress and status of a weld. These additional devices could be attached
to the MING computer to provide additional data for a status display.
Additional interface modules are currently attached to the MING computer
that could be used to provide communication links with other devices such
as Penetration Sensors currently being developed by the Rocketdyne Division
of Rockwell International. Documentation provided by Rocketdyne shows an
IEEE 488 interface that is presumably to communicate with a weld cell host
computer. Also additional interface logic cards could be attached to the
PDP-11/23 bus in the MING computer to provide further communication
capability.

Quite a broad range of capabilities are possible, however, there are
practical constraints and limitations. For instance, the current software
package exceeds the memory size of the MING system and must be loaded a
segment at a time using overlays. Monitoring several devices at a time
would require several interrupt-driven handlers to be in memory. The
current operating system is essentially a single-job monitor, therefore,
the various communication tasks would have to be integrated into a single
job. Such an expanded system, communicating with several devices, would
severely tax the current hardware and is the main reason that a change to a
larger computer using a multi-tasking operating system is considered
elsewhere in this report.

25

6.2 PROBLEM STATEMENT

The problem statement based on the above discussion can be stated as
follows: How to provide operator welding process displays suitable for
monitoring welding operations and status that can be expanded to include
data from the robot, the seam-tracking vision system, and other potential
sensors; while solving the constraints of limited memory and a single-job
operating system on the current MINC-23 computer system.

6.3 APPROACH

If NASA were to specify the data that should be included on an enhanced
process display, the present software could be expanded to a certain extent
(limited by the single-job operating system) to provide a regularly updated
video display on the CRT attached to the MING computer. Merely providing
repeated displays of the data that can currently be requested from the
robot is relatively simple. However, if more than one source of informa-
tion is anticipated in the future, the current software should be converted
to a new system with interrupt-driven handlers rather than the current
polling-type communications link. Using the MING computer, some additional
features could be included; however, limited memory, the lack of high-speed
mass storage disks, and a multi-tasking operating system constrain the
additional features that could be added. In addition, each change in the
system would require repeated changes to the single-job software, since
each additional task would have to be incorporated as part of a single
steadily growing program. On the other hand, continually expanding re-
quirements could be readily developed if a larger computer and the RSX-11M
operating system were selected for implementation as discussed elsewhere in
this report.

26

7.0 SEAM-TRACKING MONITOR

7.1 OVERVIEW

The previous section of this report mentioned the need to monitor the
visual seam-tracking system to provide better process displays. Other
factors, however, make it desirable to monitor the seam-tracking system and
record offset or correction commands that are transmitted to the robot to
correct the tool position while welding a seam. It is anticipated that
some welds controlled by the seam-tracking vision system will be multi-
pass. That is, the vision system will provide corrections to the torch
position during an initial penetration welding pass. Following the initial
pass, one or more fill passes will be required on thick material to
complete the weld. The additional fill passes will follow the path of the
original corrected penetration pass with perhaps some additional offsets to
build the fill material. If the original corrections provided by the
vision sensor were stored on the external computer (currently the MING),
torch positions during subsequent passes could be simply calculated rather
than having the seam-tracking sensor re-track the seam. The offsets to
correctly position the fill metal would then be applied to the stored first
pass. It is suggested that multi-pass welds would be improved by storing
the path of the penetration pass rather than following the seam with the
vision system on each pass.

7.2 PROBLEM STATEMENT

This particular problem can be stated as follows: How to develop a system
to permit multipass welds to use the coordinates of the initial penetration
pass for controlling subsequent fill passes; while at the same time meeting
the constraints of a single external device interface on the GYRO 750
robot.

7.3 PROPOSED APPROACH

Based on the constraint of a single external device interface on the robot,
the only approach that will allow both the seam-tracking system and the
external computer to be attached to the robot together would be for the
vision system to pass control information back and forth through the exter-
nal computer. Fast interrupt handlers would simply accept data from the
vision system and immediately pass it to the robot. However, in addition
to transmitting offset data to the robot, the intermediate computer would
copy the same data into arrays that could then be written to mass storage
for later use in recalculating the seam coordinates for subsequent passes.
The exact method of determining the seam coordinates is unknown at present,
but possibilities are suggested.

An initial idea would be to merely have the robot repeat the original NC
program and transmit the stored offsets when appropriate. The possible
problem with this approach is the necessity of knowing which segment of the
program is being processed when the stored offsets are to be transmitted to
the robot. Perhaps the offsets could be time-tagged or somehow related to
NC program segments. It is unclear whether the external computer could
obtain coordinate information from the robot during the pass at the same
time torch correction offsets are being transmitted from the vision system.

27

It is anticipated that appreciable experimental work would be required to
determine whether such a system would work.

It is not likely that the presently configured CYR02 software package could
serve as a basis for a communications link between the vision system and
the external device interface on the robot. While the current communica-
tions subroutines could serve as models, the handlers for passing data back
and forth through the external computer would have to be rewritten. It is
anticipated that the MINC-23 computer could be used to test the necessary
concepts, however, it probably will be inadequate for a final design. In
particular, limited memory, the absence of fast mass storage, and the
single-job operating system could be insurmountable obstacles to developing
a satisfactory system.

It is recommended that experimental work be initiated to further define the
requirements and constraints relative to storage of coordinates or offsets
suitable for controlling multi-pass welds.

28

8.0 CONVERSION TO RSX-ll/M

8.1 OBJECTIVE

The objective of the study reported in this section is to investigate the
advantages, and disadvantages of converting the CYR02 system from the cur-
rent operation under the RT-11 operating system to a new configuration
under the RSX-ll/M real-time operating system.

8.2 FEATURES AND LIMITATIONS OF RT-11

Currently CYR02 is executed on a MING-23 general-purpose digital computer
under the control of the RT-11 operating system. RT-11 is primarily a
small, single-user, real-time operating system designed to function effi-
ciently on small PDP-11 computers. It is designed for interactive program
development and dedicated on-line computer operations. The single-job
version of RT-11 permits either interactive program development or execu-
tion of an online real-time program; however, both operations cannot be
carried out at the same time. The RT-11SJ operating system was licensed by
the vendor and is currently in use on the MINC-23 at MSFC.

A second version of the RT-11 operating is available that functions in a
background/foreground mode. The background/foreground monitor permits
program development or other low-priority tasks to execute in the back-
ground partition of the system while high-priority foreground tasks operate
in a foreground partition. A real-time foreground task may be executed and
will have priority access to system resources. The background task will
execute whenever the foreground task is not busy.

The resident monitor (RMON) portion of the background/foreground system is
twice as large as the RMON component of the single-job system therefore
limitations will be placed on the size of programs that can be executed in
both background and foreground partitions. The background/foreground oper-
ating system is also able to swap segments of the system between main
memory and disk backup when suitable disks are available. The MINC-23 has
only relatively slow diskette mass storage that would probably be unsuit-
able for real-time tasks sharing a processor with program development
background tasks.

RT-11 is a small efficient real-time operating system that is suitable for
operating environments where only a single real-time task must be executed
and where program development can take place either at other times or in
the low-priority background partition. Interrupt driven processes may be
written to provide very fast real-time responses.

8.3 THE RSX-ll/M OPERATING SYSTEM

RSX-ll/M is the primary real-time operating system for the PDP-11. Quoting
the software manual: "It supports multi-tasking, dynamic memory management,
multiple programming languages, interactive program development and a wide
range of equipment interfaces." RSX-ll/M is capable of controlling a
number of real-time processes concurrently.

29

RSX-ll/M is a multi-user system. A Monitor Console Routine (MCR) can
provide services to a number of terminal users simultaneously while at the
same time controlling several real-time tasks. RSX-ll/M is the operating
system of choice for DEC PDP-11 computers where it is necessary to maintain
real-time operations concurrently with software development by several
programmers. The real-time response is fast, however, it is slower than
the response of a dedicated single-task, event-driven system using an
operating system such as RT-11. RSX-11M runs on any PDP-11 processor
except the LSI-11, however, "at least 24K of memory is required for concur-
rent applications execution and program development." RSX-11M is not
designed to function in minimum configuration computer systems.

The following material quoted liberally from an PDP-11 Software Manual
provides an overview of the capabilities of RSX-11M:

The RSX-11 family of operating systems is designed to provide a
resource-sharing environment ideal for multiple real-time activities.
The basic facilities that the RSX-11 family provides for handling
multiple requests for services while maintaining real-time response to
each request are:

> multiprogramming
> priority scheduling
> contingency exits
> power-fail shutdown and auto-restart

In addition, RSX-11M provides:

> disk-based operation
> checkpointing
> optional dynamic memory allocation

The basic unit of work which these operating system facilities service
is called the task. A task consists of one or more programs written in
a source language such as MACRO ASSEMBLER or FORTRAN, assembled or
compiled into an object format, and then built into a task image by the
linker utility called the Task Builder. In addition to the normal
linkage functions of combining object modules or creating overlays, the
Task Builder sets up the basic task attributes that determine the
task's resource requirements and relationship to other tasks in the
system. The significant task attributes that affect a task's operation
in a real-time multiprograming environment are:

> Partition - the section of memory where the task will reside
when it executes.

> Priority - the task's relationship to other tasks competing for
system resources.

> Checkpointability - the task's ability to be swapped out of
memory when it is not executing to make room for a task of
higher priority that is ready to run.

30

Once a task is built, it can be installed in the system and executed.
Task installation simply registers a task's attributes with the system.
The task is not in memory, nor is it in competition for system
resources. An installed task can be put in active competition for
system resources by the operator or by another active task in the
system.

When an installed task is activated, the system will allocate necessary
resources, bring the task into memory for execution, and place it in
competition with other active tasks. Task installation is the basis
for efficient task operation. An installed task uses very little
memory resource; yet, when the task is needed to service a real-time
event, it can be introduced into the system quickly since its basic
parameters are already known to the system.

Tasks can also share code and data among themselves through the common
partition facility. A common partition is made accessible to the
system and to tasks by installing the common partition and the tasks
which intend to use it.

The above paragraphs are a text-book description of the features that must
be present in a multi-tasking, real-time operating system. RSX-11 is in
wide use at NASA and many persons are available to support such a system if
CYR02 is required to operate in a multi-tasking environment.

8.4 ASSESSMENT OF OPERATING SYSTEMS

The selection of an operating system depends on two key elements: the
available computer hardware and the anticipated operating environment.
Hardware may constrain the choice of operating system. On the other hand,
the operating environment may determine the features required of the opera-
ting system which, in turn, determine the hardware requirements.

The MINC-23 was originally acquired to support a rather simple interaction
with the GYRO 750 robot. It is perfectly feasible to continue to use the
present system with the RT-11 operating system to support off-line storage
and modification of NC programs for the robot. The required features are
available in the CYR02 software package. However, longer range objectives
associated with robot-controlled welding suggest a more complex environment
in the future.

The following tasks are anticipated in the use of robots for welding on the
space shuttle main engine:

> Continuation of the current task of storing, modifying, and loading
numerical control programs for the GYRO 750.

> Recording of computer-vision seam offsets required for multi-pass
welds.

> Down loading of initial weld-seam path coordinates from off-line
computer aided design (CAD) systems.

> Continued development of software to support the GYRO 750.

31

The present MINC-23 with the RT-11SJ operating system can handle any one of
the above tasks. However, it is anticipated that project growth will
require that software development continue concurrently with execution of
real-time programs. It would be desirable for a computer to monitor and
record seam-following corrections generated by the computer-vision system
while concurrently maintaining communications with the GYRO 750 robot as
well as downloading seam dimensional information from an off-line CAD
system. As projects grow it can usually be anticipated that additional
demands will be placed on the computer system.

From this discussion it can be seen that the question of computer operating
system is determined simply by the number of concurrent demands that will
be placed on the computer. Continuation with RT-11 is to require that
future computer operations will be in the single-task environment. If a
multi-task environment is anticipated, an early conversion to the RSX-11
operating system would be prudent. Such a conversion would require the use
of a larger disk-based computer system to support RSX-11M.

8.5 CONVERSION OF CYR02

The CYR02 software is primarily written in FORTRAN with several small
assembly language subroutines that handle the actual communications proto-
col for transmitting data between the MINC-23 and the CYRO 750. Conversion
at this time would merely require that the assembly language routines be
rewritten to interface with RSX-11M and the new hardware. These assembly
language communications routines were specifically written as independent
modules to permit easy conversion to another system. The more extensive
FORTRAN modules would simply be re-compiled to execute on the new system.
The operator interface with the CYR02 software would remain unchanged.

32

9.0 CONCLUSIONS AND RECOMMENDATIONS

9.1 CONCLUSIONS

Communications has been established between the CYRO 750 Robot and the
Digital Equipment Corporation MINC-23 computer using the digital input-
output modules that are part of the MINC-23 system. The interface on the
robot is the standard external device interface provided by the
manufacturer.

A menu driven set of software routines known as CYR02 has been written that
permit the offline creation, storage, and modification of Numerical Control
programs for the CYRO 750 robot. In addition, certain robot operational
features that can be controlled or accessed by way of the external device
interface have been implemented.

It would be desirable to expand the CYR02 system to function as a workcell
host to handle additional tasks such as serving as a robot-welding monitor
and a seam-tracking system monitor.

It will be difficult to expand the MINC-23 system to function as a
multitasking work-cell host due to the limitations of the single-job RT-11
operating system.

Some limited additional capability could be developed using the MINC-23 if
the CYR02 communication routines were converted to interrupt-driven
handlers.

9.2 RECOMMENDATIONS

1. Convert CYR02 to operate under control of a multitasking executive
such as RT-ll/M. Then develop the expanded role as work-cell host by
creating additional tasks.

2. If recommendation 1 cannot be implemented, some additional
expansion of CYRO2 can be achieved by rewriting the communication
handlers to be interrupt driven. NOTE: This approach has serious
limitations due to the RT-11 monitor.

3. Expand CYR02 to include a robot welding monitor.

4. Add a seam-tracking monitor by routing seam-tracking offsets from
the Ohio State system through the MINC-23. This route of expansion is
limited using the MINC-23 since high-speed mass storage is not
available on the system.

5. Include communication with a penetration monitor that can provide
additional control capabilities.

33

APPENDIX

A. CYR02 OPERATING MANUAL

B. DESCRIPTION OF EXTERNAL DEVICE
INTERFACE MESSAGES

C. GYRO2 PROGRAM FLOW DIAGRAMS

D. CYR02 SOFTWARE LISTINGS

34

Department of Electrical and Computer Engineering

CLEMSON UNIVERSITY

Clemson, South Carolina 29634-0915

CYR02 OPERATING MANUAL

8 May 1986

Fred R. Sias, Jr.

Prepared for:
George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

35

1.0 INTRODUCTION

CYR02 is a sofware package designed to execute on a MINC-23
computer manufactured by Digital Equipment Corporation. The
MINC-23 is to be attached to the External Device Interface of an
Advanced Robotics CYRO 750 robot to provide a capability for
off-line manipulation of numerical control programs. This
software is a complete revision of CYR01 which was a simple set of
routines written merely to check out the communications interface
to the robot.

CYR02 provides the capability for initilizing the communications
link, limited control over the robot, as well as provision for
saving, editing, loading and executing numberical-control
programs. The various software features will be discussed in the
next section.

The features of CYR02 are all controlled from a single main
routine with provision for expansion as other capabilities are
desired. A main menu allows the user to select any program
feature and the menu table can easily be expanded to introduce new
features.

2.0 CYR02 EXECUTION

The CYR02 software system is executed by the following sequence of
operations:

a. Connect the MING computer to the CYRO 750 EXTERNAL DEVICE
INTERFACE using the cable provided. Since there is only one one
interface plug on the robot, it may be necessary to disconnect the
Ohio State vision system. The two systems can not operate
simultaneously without additional hardware modifications.

b. Turn on the robot and load the appropriate system
software from a cassette.

c. Turn the communications interface switch on the robot to
the "on" position so that the external interface communications
link can be established.

d. Place an RT-11 operating system diskette in the left-hand
drive which is known as drive DYO. Place the CYR02 system
diskette in the right-hand drive which is referred to as DY1. The
operating system is automatically booted when the MINC computer is
turned on. The system is initialized and a message will request
the current date and time. In addition to the CYR02 system, drive
DY1 will also be used to store all numerical control programs.

e. Execute CYR02 by typing RUN CYR02<cr>, where the "<cr>"
indicates that you should press a carriage return or newline key.

36

£. When the prompt appears, initialize the system by pressing
"reset" on the robot pendant. Then press <cr> return to the
main menu. A message should appear on the robot console to
indicate that initialization is complete and communication
has been established between the MINC-23 and the
robot.

g. The main control menu should appear on the screen as
follows:

GYRO 750 EXTERNAL DEVICE INTERFACE MENU:

1. REINITialize system (Reset Robot)
2. SAVE robot program to diskette.
3. LOAD program from diskette.
4. RUN a program.
5. DIRectory of programs in robot.
6. (DDIR) Diskette directory.
7. SHOW a program in the robot.
8. LIST a program from diskette.
9. EDIT a program on diskette.
10. RESequence a program on diskette.
11. POSITion of the robot.
12. PARAMeters from the robot.
13. MESSage to the robot.
14. PARK and ignore all messages from robot.
15. TRANSfer robot programs from VAX.
"E" EXIT to operating system.

SELECT>

Any item in the menu may be selected either by typing the number
or by typing the mnemonic printed in capital letters.

h. Select any desired option from the main menu. The effect
of each routine will be described in the next section.

3.0 SOFTWARE DESCRIPTION

Fourteen options are provided that may be selected from the main
menu that is used to control the execution of CYR02. Each of the
menu selections basically calls a subroutine that provides the
desired capability. All of the subroutines are written in
FORTRAN; however, the subroutines may call four assembly-language
subroutines that handle the actual communication functions of the
software package. The assembly-language routines are the only
part of the system that are machine dependant, consequently, the
package could easily be transported to another hardware
configuration.

The following paragraphs describe the function of each of the main
menu selections.

37

3.1 REINITialize

This selection is called once each time it is necessary to
establish communication between the MINC-23 and the Advanced
Robotics CYRO 750. Press "reset" on the robot pendant after the
REINIT option has been selected. Wait two seconds and press <cr>.
Should the robot display an error message associated with the
External Device Interface, selecting REINIT and again reseting the
robot should clear the error.

Note: Option 14, PARK, has been installed to prevent most errors.
See the description of that routine.

3.2 SAVE

The SAVE option is designed to permit the operator to save on
diskette any of the 9 numerical control programs that may be
currently loaded into the robot memory. The program will ask for
the program by number and will also ask the operator for a name
under which to file the program on diskette. Up to an eight
character name may be selected and the program will append the
file suffix ".CYR" when the selected program is transferred to
diskette. The operator responses required should be evident from
the prompts displayed on the terminal.

3.3 LOAD

The LOAD option is the inverse of the save option. One merely
responds to the prompts to select a numerical control program
stored on the right-hand diskette drive on the MINC-23. The DDIR
option (No. 6) allows one to examine the directory of the diskette
to select a program which of course should have a file name that
indicates the purpose of the program.

3.4 RUN

The RUN option allows an operator at the MINC-23 console to
initiate the execution of any program that is currently loaded
into the robot. The desired program is merely selected by number
by responding to the prompt on the display. It is not possible
for the MINC-23 system to keep track of various programs that may
be created in the robot or loaded from various sources such as
cassette or diskette. Therefore, the operator is responsible for
knowing the application of each program. Option DIR (No. 5) may
be used to determine which programs are currently in robot memory
as described below.

3.5 DIR

The robot directory option may be selected to determine which
numerical control programs are currently stored in the robot
memory. This option merely displays the first two lines of each
program in robot memory; therefore, each numerical control program
should start with two comment lines that contain information

38

describing the purpose of the program and the name of the person
who created the program. It is probably desirable to also include
the date the program was created somewhere on the first two
comment lines.

3.6 DDIR

The diskette directory option is used to display the directory of
any diskette installed in the right-hand drive of the MINC-23
computer. The format is exactly the same as the directory
displayed when requested from the operating system prompt. The
date that the program was filed is also displayed.

3.7 SHOW

The SHOW option allows one to examine any of the nine numerical
control programs currently stored in robot memory. It is selected
by number in response to a prompt so the DIR option should be
selected first to determine the proper program. The SHOW option
also permits the operator to choose to display the program on the
CRT or output to the printer for hard copy.

3.8 LIST

The LIST option is analagous to the SHOW option except that
programs stored on the diskette may be displayed on the CRT or
printed. A prompt will ask for the file name so it is necessary
for the operator to know the file name or to obtain the proper
name using the DDIR option.

3.9 EDIT

The EDIT option does not invoke a stand-alone editor but instead
merely returns the operator to the RT-11 operating system prompt.
After receiving that prompt the operator should type "EDIT <File
name> where the file name is any of the names that can be observed
on the diskette directory with a suffix ".CYR". When using the
system editor the suffix .CYR must be included in the file name.
Any numerical control program on the diskette may be edited as
long as the standard nc program syntax is correct. The slash
("/") found at the end of numerical control programs displayed on
the CRT should not be included in programs created with the editor
as the slash is not actually part of the program file.

Since use of the RT-11 system editor requires the operator to
leave the CYR02 system, one must issue the "RUN CYR02" command at
the operating system prompt to return to the CYR02 main menu. It
is not necessary to REINITialize the system if the robot has not
tried to send External Device Interface messages to the MINC-23
while the editor was in use. Since the robot does send
undocumented messages it is possible for the robot to try to send
a message and then display an error code when the CYR02 does not
respond. Should this condition ever occur, merely REINITialize
the system by selecting option No. 1.

39

3.10 RESequence

This option allows the line numbers of a numerical control program
to be resequenced by tens. In other words, the program numbers
originally used will be replaced by lines numbered with the
sequence 0010, 0020, 0030, etc. This option is useful when the
numbering sequence has been modified by repeated edits and it is
necessary to add a line between existing consecutively numbered
lines. Memory size limits programs to about 8000 characters.

3.11 POSITion

This option merely displays all robot coordinates at the time the
request is made. Only one set of coordinates is displayed
although the robot may send additional data. If moving the robot
should complete any programmed sequence of actions before
returning to the menu.

3.12 PARAMeters

The PARAM option displays the current values of several operating
parameters on the robot. Included are torch feed rate, wire feed
rate, percent weld level, AVC/ACC setpoint level, and oscillation
status.

3.13 MESSAGE

The MESSAGE option allows one to type a message at the MINC-23
console keyboard that will be displayed at the robot console
display. The prompts are self explanitory. A sequence number is
requested and sent to the robot but we know of no value for this
number. Any number is acceptable.

3.14 PARK

The PARK option permits the MINC-23 to receive and acknowledge any
messages from the robot. However, the messages are simply
ignored. This option is provided as an alternative to taking the
MINC-23 offline so that error conditions will not occur when the
robot is being used but is not under the control of the MINC-23.

We believe there are undocumented messages that are transmitted to
the external computer that will cause an error condition in the
robot if the handshaking on the communication link is not
completed. This routine merely provides the appropriate
handshaking signals but does nothing with the message. The option
is necessary since the MINC-23 must continuously be ready to
accept a message to prevent error conditions in the robot. An
interrupt driven system would not have this problem but the
current software package uses a polling method of establishing the
communications link.

40

3.15 TRANSfer

The TRANSfer option does not execute a program under the control
of the CYR02 system. Instead, this option merely returns control
to the operating, system where software written by Intergraph
personnel may be used for file transfer. This selection was added
to CYR02 by Intergraph personnel and is essentially a slight
modification of the software used in the EDIT option.

3.16 EXIT

The EXIT option merely allow the operator to return to the RT-11
operating system when CYR02 is no longer required.

41

APPENDIX B

DESCRIPTION OF EXTERNAL DEVICE INTERFACE MESSAGES

This appendix contains a description of the messages that may be
transmitted between the Advanced Robotics CYRO 750 Robot and external
computer devices. Messages for communicating between the robot and
external sensor devices have not been included. This appendix provides the
basis for all of the software described in this report. The following
material is a direct quotation from a document dated April 27, 1984, by
Advanced Robotics1 personnel:

MESSAGE TYPES

There are six message types supported by the external device
interface. Distances and angle measurements are referred to in
many of the messages in these different message types. For
consistancy, the following scale factors will be used when
referring to distances and angles:

Distances: 1/128 inch (0.0078) per bit
Angles: 1/10 degree per bit

MESSAGE CONTENTS - ROBOT TO ALL DEVICES

1. Request Device Identification/Status - is a message sent
at reset time requesting the device identification and hardware
status of the device. The result of the request will be a Device
Identification/Status message from the device, indicating the
existance, software and hardware version numbers, and the status
of the hardware that can be determined by the device.

Coding - Type Code = 1

2. Program Status Mode - indicates to the device that
the specified N/C program has been started or stopped.

Coding - Type Code = 2
Status (one byte):

Program Started = 1
Program Stopped = 2

Program Number (one byte - 1 to 9)

42

3. Welding Status Mode - indicates to the device that
welding has been started or stopped by the N/C program.

Coding - Type Code = 3
Status (one byte):

Welding Started = 1
Welding Stopped = 2

4. Robot Positions - indicates to the device what the
current robot positions are.

Coding - Type Code = 4
X axis position - inches (two bytes, low byte,

then high byte transmitted)
Y axis position - inches (as above)
Z axis position - inches (as above)
A axis position - degrees (two bytes, low byte,

then high byte transmitted)
C axis position - degrees (as above)
X axis position - C positioner - degrees (as

above)
Y axis position - C positioner - degrees (as

above)
X axis position - D positioner - degrees (as

above)
Y axis position - D positioner - degrees (as

above)

5. Special Message to Device - is a message that will pass
ASCII data that is placed in a corresponding N/C command to the
device. This message is envisioned to allow special features of
some devices to be enabled without the need to change robot
software. It may also be used to send information messages from
the N/C program to the device. There is a corresponding message
from the device to the robot that will display on the operator's
terminal.

Coding - Type Code 5
Variable number of ASCII bytes (up to 253) to be

interpreted by the device for special
function operation.

6. Error - is a message indicating that an error has
occurred in the robot control, and what that error is. The device
will be required to make a decision based on the error as to the
proper course of action to take.

Coding - Type Code 6
Error Number - to be defined as needed

43

7. Robot System Parameters - is a message indicating tha a
robot system parameter has changed. Some of the system parameters
will be torch, feedrate, welding level, wirefeed speed, and left
and right oscillations.

Coding - Type Code 7
Torch Feedrate - inches per minute (two bytes, low

byte then high byte transmitted)
Uirefeed Feedrate - as above
Weld Level - percent of power supply output (two

bytes, low byte, then high byte transmitted -
one bit equals 0.1 percent)

AVC/ACC - Setpoint Level - weld level setpoint as
defined in the N/C program for Automated
Voltage Control and Automatic Current Control
(two bytes, low byte, then high byte
transmitted - one bit equals 0.1 percent)

Oscillation - indicates that a left or right
oscillation has occurred (one byte):
None = 0
Left Oscillation = 1
Right Oscillation = 2

8 Device Modes - is a message telling the device whether the
messages being received by the robot will be executed or not.
For example, this will tell a sensor when it should start sending
override data, or a host computer that a safety switch has been
released, and that it has control of the robot.

Coding - Type Code 8
Device Type (one byte):

Sensor Device = i
Computer Device = 2

Device Identification - three characters as
defined in the Device Identification/Status
message.

Device Status (one byte):
Device On =1
Device Off = 2

44

MESSAGE CONTENTS - ROBOT TO COMPUTER DEVICE

1. Load Program from Computer Acknowledge - a reply message
from the robot to indicate whether the robot is ready to load a
program from the computer or not. The robot will accept a program
from the computer device only when it is in a no activity state
and a keyswitch on the robot controller is in the device enable
position. The no activity state is when no program is running or
no mode is being executed. The robot goes into a no activity mode
after a hald, a stop program, or the program finishes. It will
remain in this mode until the operator initiates a function from
the pendant, or a program is remotely started. This message is
also used while loading a program from the computer device as an
acknowledge between program blocks.

Coding - Type Code 65
Acknowledge (one byte):

Not ready to load = 0 (try again later)
Ready to Load = 1

Program Number - one byte (1 - 9). This is the
program number sent in the Request to Load
Program message, and is used for verification
purposes.

2 Save Program to Computer Acknowledge - a reply message
from the robot to indicate whether the robot is ready to save a
program to the computer or not. The robot will send a program to
th computer device only when it is in a no activity state. The
is, when no program is running or no mode is being executed. The
robot goes into a no activity mode after a halt, a stop program,
or the program finishes. It will remain in this mode until the
operator initiates a function from the pendant, or a program is
remotely started.

Coding - Type Code 66
Acknowledge (one byte):

Not Ready to Save = 0
Ready to Save = 1

Program Number - one byte (1 - 9). This is the
program number sent in the Request to Save
Program message, and is used for verification
purposes.

Program Size - two bytes, low byte send first
indicating the lenght of the program (number
of bytes) about to be sent to the computer.

3 Save Program to Computer - is a message to the computer
device that contains the N/C program requested. This message is
transmitted the same as other messages with the addition of a
block number in the data portion of the message. The length of
the N/C program is sent to the computer device in the acknowledge
message, and the save program message may be sent multiple times
to save the entire program. Between blocks, the robot will expect

45

a request to save program message, indicating that the robot is to
send the next block of the program.

Coding - Type Code 67
Block Number - a byte starting with zero,

incremented by one for each segment until the
complete program has been sent to the
computer.

N/C Program - variable number of data bytes.

MESSAGE CONTENTS - ALL DEVICES TO ROBOT

1 Device Identification/Status - is a message sent as a
response to a Request Device Identification/Status. This message
will indicate existance, software and hardware version numbers,
and the status of the hardware that can be determined by the
device.

Coding - Type Code = 129
Device Type (one byte):

Sensor Device = 1
Computer Device = 2
Both = 3

Device Identification - three bytes (ASCII
characters) that identify the device. These
characters will be used in the N/C program
to reference this device.

System Status (one byte):
Not Operational = 0
Operational = 1

Variable number of ASCII characters defining the
program version level and other information.
This information is printed on the operators
terminal.

2 Set Program Mode - indicates to the robot that an N/C
program of the specified number is to be started or stopped. This
message will be executed only if the keyswitch for the device is
in the enable position and the robot is in a no activity mode. If
a program is running and the program start message is received,
then it will be ignored. If the robot is in a no activity state
and the program stop message is received, it will be ignored. The
program stop message will place the robot in the no activity state
if the keyswitch is enabled.

Coding - Type Code 130
Status (one byte):

Program Start = 1
Program Stop = 2

Program Number (one byte - 1 to 9)

46

3 Set Welding Mode - indicates to the robot that welding is
to be enabled or disabled. This function is identical to pushing
the torch enable on the robot control pendant, however, it is
controlled by an external device. In each weld, the welding will
be enabled if the torch enable on the robot control pendant is
pushed until a Disable Welding message is received by the robot.
If a Disable Welding message is received, then an Enable Welding
message, and the robot is still in the welding portion of the N/C
program, then the arc will be re-established.

Coding - Type Code = 131
Status (one byte):

Enable Welding = 1
Disable Welding = 2

4 Request Robot Positions - indicates to the robot that the
current robot positions are to be sent to the device. This
command can initiate the transfer of robot positions at a periodic
rate of up to 10 Hertz or only when requested.

Coding - Type Code 132
Rate (one byte) - 0 to 10 times per second. A

rate of 0 will indicate to robot to only send
current robot positions once, until requested
again.

5 Special Message to Robot - is a message that will pass
ASCII data to the robot and onto the operator's terminal. This
message is envisioned to allow special messages of some devices to
be transferred to the operator's terminal without the need to
change the robot software. There is a corresponding message from
the robot to the device that will allow enabling of special
features in the device.

Coding - Type Code = 133
Variable number of ASCII bytes (up to 253) to be

displayed on the operator's terminal.

6 Error - is a message indicating that an error has
occurred in the device and what the error is. The device will be
required to make a decision based on the error as to the proper
course of action to take.

Coding - Type Code 134
Error Number - one byte (defined as needed)
Error Messages - variable number of ASCII bytes defining the

error. This message will be sent to the operator's
terminal.

7 Jog - is a message that initiates a jog function of the
robot manipulator axes. Once initiated, the axes will continue to
move at the specified rate until a Stop Jog command is received.

47

This command can only be executed if the robot is in a no activity
state. That is, when no program is running or no mode is being
executed. The robot goes into a no activity mode after a halt, a
stop program, or the program finishess. It will remain in this
mode until the operator initiates a function from the pendant, or
a program is remotely started. Note that there are some special
N/C commands that place the robot in a special no activity mode
(Ml and M3). When these commands execute, a halt is executed. In
order to proceed, the operator must push the RUN button on the
robot control pendant, or the external device must send a Set
Program Mode - Program Start Message.

Coding - Type Code 135
X axis rate - one byte 0 - 100 percent (one bit

equals one percent)
Y axis rate - as above
Z axis rate - as above
A axis rate - as above
C axis rate - as above

8 Stop Jog - is a message that will stop the jog
motion of the robot manipulator as specified.

No = 0
Yes = 1

Coding - Type Code 136
All axes - (One byte)
X axis
Y axis
Z axis
A axis
C axis

9 Move Robot - is a message telling the robot to move to an
absolute position in the robot coordinate system. Due to the
overhead for communications, the frequency at which this command
can be sent is unknown. This message, just as the jog message,
must be sent when the robot is in a no activity state.

Coding - Type Code 137
X axis position - inches (two bytes, low byte,

then high byte transmitted)
Y axis position - as above
Z axis position - as above
A axis position - as above
C axis position - as above

10 Request Robot System Parameters - indicates to the robot
that the current robot system parameters are to be sent to the
device. The robot will resspond with a Robot System Parameters
message (Type code 7)

Coding - Type Code 138

48

MESSAGE CONTENTS - COMPUTER DEVICES TO ROBOT

1 Request Save Program to Computer - is a message requesting
that the robot save the specified program to the computer device.
The robot will respond with a Save Program to Computer Acknowledge
message indicating whether the robot is ready to send the program
to the computer and if so, what the program size is in bytes. The
robot will then send the program to the computer a message at a
time. The computer must respond between save program messages
with this request message to indicate that it is ready for the
next program block. (Note: The first Save Program to Computer
message containing a block of program data follows immediately
after the Save Program to Computer Acknowledge message without
waiting for another Request Save Program to Computer message.)

Coding - Type Code 193
Program Number - one byte 1 - 9

2 Request Load Program from Computer - is a message
requesting that the robot load the program of specified size and
number from the computer device. The robot will respond with a
Load Program from Computer Acknowledge message indicating whether
the robot is ready to load the program from the computer or not.

Coding - Type Code 194
Program Number - one byte 1-9
Program Size - number of characterss (bytes) in

program (two bytes - low byte first, high
byte second)

3 Load Program from Computer - is a message from the
computer device that contains the N/C program. This message is
transmitted the same as other messages with the addition of a
block number in the data portion of the message. The length of
the N/C program is sent to the robot in the Request Load Program
from Computer message, and the load Program message may be sent
multiple times to load the entire program. Between blocks, the
robot will respond with a load program from computer acknowledge
message to indicate that the next block is to be sent.

Coding - Type Code 195
Block Number - a byte starting with zero,

incremented by one for each segment until the
complete program has been sent to the
computer.

N/C Program - variable number of data bytes

49

APPENDIX C

PROGRAM FLOW DIAGRAMS

50

CYRO2)

I
INITIALIZE SYSTEM

1
DISPLAY MENU

SELECT:

REINIT
SAVE
LOAD
RUN
DIRECTORY
DISKETTE DIR.
SHOW ROBOT PROG.
LIST DISK PROG.
EDITOR
RESEQUENCE
ROBOT POSITION
PARAMETERS
MESSAGE
PARK
INTERGRAPH
EXIT

NO

51

(INIT)

CLEAR OUTPUT REG.

WAIT FOR MESSG.

SETUP MESSAGE

TRANSMIT TO ROBOT

ACKNOWLEDGED

PRINT GIVEUPMSG

(RETURN J

52

NO

CONTINUE TO ACCEPT
UNDOCUMENTED MSGS.

INIT. COMPLETE
MESSAGE

RETURN

YES O
PRINT
ERROR

MESSAGES

53

NO

SAVE)

i
ACCEPT PROG. NO.

TO STORE

ACCEPT FILENAME

CURRENT

FILENAME ?

OVERWRITE MESSG.

TRANSMIT REQUEST
TO SAVE MESSAGE

RECEIVE PROGRAM AND
AND FILE ON DISKETTE

SUCCESSFUL FILE
MESSAGE

ACKNOWLEDGEMENT
?

RETURN)

55

©
PRINT ERROR
MESSAGES

RETURN TO POINT
TO RETRY

56

(LOAD

NO

ACCEPT PROG. NAME
TO BE LOADED.

ACCEPT NO. TO BE
ASSIGNED IN ROBOT.

RETRIEVE FILE AND
DETERMINE SIZE.

TRANSMIT REQUEST-
TO-LOAD TO ROBOT. *

READY TO LOAD
9

READ DISK FILE
INTO ARRAY.

TRANSMIT DATA BLOCKS

LOAD ACKNOWLEDGE

PRINT SUCCESSFUL
LOAD MESSAGE.

(RETURN 3

57

* Error checking on all
communications.

REQTS)

HOUSEKEEPING

SET UP REQUEST -TO-SEND
CODE IN TRANSMISSION

ARRAY.

SET UP PROGRAM NO.

CALL SEND *
AND TRANSMIT ARRAY

RETURN)

NOTE: All messages transmitted between the robot and
external computer involve handshaking and ext-
ensive error checking. For simplification, this is
not shown in most flow diagrams.

58

RUN

ACCEPT PROG. NO.
FROM KEYBOARD

SET UP MESSAGE

SEND IT

YES

RECEIVE
ACKNOWLEDGEMENT

YES

NO

DISPLAY CRT MESS'G.
TO OPERATOR

I
RECEIVE

ACKNOWLEDGEMENT AND
IGNORE OTHER MESS'GS

(RETURN)

PRINT
ERROR MESSAGES

59

DIRECT

TRANSMIT
REQUEST TO SAVE *

RECEIVE
ACKNOWLEDGE *

IF NOT FIRST BLOCK
TRANSMIT REQ. TO SAVE *

RECEIVE BLOCK *

DISPLAY FIRST TWO
LINES OF PROGRAM

* Error checkin on all
communications.

DDIR)

HOUSEKEEPING

SELECT PRINTER OR
CRT OUTPUT

DIRECT ACCESS *
DIRECTORY BLOCK

DECODE DIRECTORY
DATA

PRINT DISKETTE
DIRECTORY AND

FILE DATES

RETURN)

Displays error messages if
errors occur during access.

61

NO

DISPLA

I
ACCEPT PROGRAM

NO. TO DISPLAY

I
CRT OR PRINTER?

I
TRANSMIT REQUEST

TO SAVE *

RECEIVE ACKNOWLEDGE *

I
DISPLAY PROGRAM NO.

1
RECEIVE BLOCKS OF DATA *

OUTPUT BLOCK OF DATA

I
CHANGE CR'S TO T

END OF
PROGRAM ?

* Error checking on all
communications.

(L'ST)

INPUT FILE NAME

SELECT PRINTER
OR CRT OUTPUT

CONVERT TO RAD50

GET CHANNEL AND
OPEN FILE *

DISPLAY PROG. NAME

READ TO END OF FILE

CLOSE & FREE CHAN.

CALC. PROG. LENGTH

DISPLAY OR PRINT
PROGRAM

i
RETURN Displays error messages

if file not found.

63

EDITOR

DISPLAYS MESSAGE

(RETURN J

RETURN
TO THE OPERATING

SYSTEM ?

EXITS TO OPERATING
SYSTEM TO USE
SYSTEM EDITOR

C STOP)

RESEQ

REQUEST FILE NAME

INPUT FILE NAME

1
CONVERT TO RAD50

GET CHANNEL AND
OPEN FILE

i
READ PROG TO ARRAY

CLOSE FILE AND
FREE CHANNEL

CALL INSRT AND
RENUMBER LINES

I
REWRITE TO DISKETTE

RETURN

65

INSRT)

INCREMENT LINE
NUMBER COUNT

CONVERT LINE NO.
TO ASCII INTEGERS

REPLACE OLD LINE
NO. WITH NEW NO.

RETURN

66

POSIT

I
BUILDS POSITION

REQUEST FILE

I
TRANSMIT REQUEST

FOR DATA

I
RECEIVE TABLE
UNSCALED DATA

SCALE COORDINATE DATA
AND FORMAT
FOR DISPLAY

DISPLAY POSITION DATA

RETURN

67

PARS)

BUILDS
REQUEST FILE

TRANSMIT REQUEST
FOR PARAMETERS

RECEIVE TABLE
OF PARAMETERS

SCALE PARAMETERS

DISPLAY PARAMETERS

RETURN)

68

MESAGE)

DISPLAY MESSAGE
REQUEST

INPUT MESSAGE

CALCULATE
MESSAGE LENGTH

BUILD MESSAGE
ARRAY

TRANSMIT TO ROBOT

DISPLAY ERROR
MESSAGES

69

PARK)

DISPLAY CRT MESSAGE

CALLS RECEVE TO
ACCEPT MESSAGE FROM

ROBOT

ERROR
PARAMETER SET

TO ONE ? NO

70

INTER

DISPLAYS MESSAGE

RETURN
TO THE OPERATING

SYSTEM ?

EXITS TO OPERATING
SYSTEM TO USE

COMMUNICATION PROG'S.

RETURN) STOP

71

SEND)

SET UP ARRAY
LENGTH COUNTER

CALCULATE
CHECKSUM

PLACE CHECKSUM
IN ARRAY

GET A BYTE FROM
ARRAY AND

CALL SNDBYT

ARRAY

SENT?

WAIT FOR ACK BYTE

CHECKSUM
ERROR RET. ERROR PARAM

TIMEOUT
ERROR

9

RET. TIMEOUT PARAM.

f RETURN J

YES

SET TIMEOUT PARAM.

RETURN

HOUSEKEEPING

REC. MESSG. LENGTH

UPDATE CHECKSUM

I
REC. SEQ. NUMBER

UPDATE CHECKSUM

d>
73

RECEIVE BYTE

STORE IN ARRAY

UPDATE CHECKSUM

END

OF DATA ?

RECEIVE CHECKSUM

AGREE Wl
CALCULATED
CHECKSUM

SET CHECKSUM ERROR
PARAMETER

FOR CALLING PROGRAM

TRANSMIT CHECKSUM
ERROR CODE TO ROBOT

TRANSMIT CONFIRMATION
MSG.REC'D TO ROBOT

RETURN)

74

(SNDBYT)

HOUSEKEEPING

LATCH DATA IN
OUTPUT REGISTER

SET REQB
TO INDICATED THAT

DATA IS READY

INITIALIZE TWO-BYTE
TIMEOUT COUNTER

CHECK FOR HANDSHAKING

CLEAR REQB
DATA READY FLAG

ACKNOWLEDGED
9

CLEAN UP STACKCLEAN UP STACK

MOVE THE RETURN
ADDRESS FORWARD
BY TWO WORDS

ERROR
RETURN

NORMAL
RETURN

75

READ A BYTE
AND SAVE ON STACK

I
SETREQATO

INDICATE BYTE REC'D

POP DATA INTO RO

RETURN)

76

POUT)

I
HOUSEKEEPING

PUT DATA IN RO

MASK DATA

COMPLEMENT DATA

LATCH DATA TO
INITIALIZE OUTPUT
REGISTER

(RETURN)

77

APPENDIX D

CYRO2 PROGRAM LISTINGS

78

FORTRAN IV V02*5-2 Thu OS-M3y-86 13J12M2 PAGE 001

C!Mtm*****M*****************JMr;M̂
C

0001
MODULE NAME:

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

PURPOSE:

INPUT:

PROCESSING:

OUTPUT:

CALLED BY;

CALLS TO:

SPECIAL INTt

MAIN
ADVA

THIS
CALL

1.
2.
3.
4,
5.
6,
7,
8,
9.
10.
11.
12.
13.
14 >

•E1

THIS

INIT
RESE
DOUT

:RFAC

REVISION HISTORY
DATE
5-18-84
5-31-85
6-02-85
7-05-85
7-11-85
9-6-85
1-10-86
5-07-86

!

F

]
Fl

PROGRAM CYR02

E PROGRAM FOR COMMUNICATING WITH
ADVANCED ROBOTICS EXTERNAL DEVICE INTERFACE OPTION,

USER INTERACTION FROM MINC KEYBOARD,

THIS PROGRAM MERELY CHECKS FOR INPUT ERRORS AND
CALLS SELECTED SUBROUTINES THAT HANDLE ALL PROCESSING,

DISPLAYS CYRO 750 EXTERNAL DEVICE INTERFACE TEST MENU;

REINITialize System. (Reset Robot!)
SAVE robot program to diskette
LOAD program from diskette
RUN s program
DIReetora of programs in robot
(DDIR) Diskette Directory
SHOW s program on robot
LIST 3 program on diskette
EDIT 3 program
RESesuence s program on diskette
POSITion of Robot
PARAMeters from Robot
MESSage to Robot Console
PARK and ignore all messages from Robot.

15. TRANSFER robot program for vax
EXIT to the operating system

IS THE MAINLINE PROGRAM.

»SAVE?LOADjRUNfDIRECT?DISPLA,DDIR,LIST»
RESEQrPQSITfPARS»EDITOR»INTERfXCQM (or TESTER)f

REQUIREMENTS? COMMUNICATION SUBROUTINES CALLED
THAT USE THE MINC DIGIAL INPUT/OUTPUT
MODULES.

(REVISE THIS NARRATIVE IF NECESSARY)
PROGRAMMER

FRED R. SIAS» JR.
FRED R. SIASf JR.

FRS
S JKM FINISHED

=====CONTACT/ACTION/REMARKS=
(803J656-3375/SYSTEM DESIGN
(803)656-3375/NEW NARRATION
DELETED IN-POSITION
DEBUGGING!

FRS
FRS

DAVID STILES
SET

CHANGED TO CYR02
ADDED 'PARK'
INTERGRAPH 3-2100: VAX FILE TRANSFER

UP AUTO INITIALIZE ON ENTRY

79

FORTRAN IV V02.5-2 Thu OS-May-86 13,'12:i2 PAGE 002

c
c
c

0002
0003
0004

C
0005
0006
0007
0008
0009

C
C
C

0010
0011

C
0012
0013 100

DECLARATIONS

REAU8 INPUT
INTEGER*2 IDATA(257>*
REAL X

RT» WT

BYTE ARRAY(5000)»BPDATA<520)
INTEGER*2 IARRAY(2500)*IPDATA(260)
COMMON /INOUT/ ARRAY*BPDATA
EQUIVALENCE (ARRAY? IARRAY)
EQUIVALENCE (BPDATA* IPDATA)

INITIALIZATION

WT=7
RT=5

WRITE (WT»100)
FORMAT('l'»/////»

1
1
2
3
3
4
5
6
6 ' TO CONTINUE

MINC-23
CYRO 75'

ECE Dl
CLEMSON

PRESS RETURI

CYR02 - V2.2'*//*
MINC-23 COMMUNICATIONS SOFTWARE FOR'*/*

750 EXTERNAL DEVICE INTERFACE'>//,
F, R, SIASf JR*',//f

T. - CLEMSON UNIVERSITY'>/*
SOUTH CAROLINA 2?634-0915',/,
(803) 656-3375'»//»
6 MAY 1986'i//////////,

0014
0015 110

C
C
C

0016
C
C
C

0017 300
C

0018
0019 310

READ (RT»110) X
FORMAT(G6,0)

AUTO INITIALIZE CALLUP ON PROGRAM ENTRY

CALL INIT

MAIN SELECTION MENU

CONTINUE

WRITE (WTfSlO)
FORMAT('!'»/////»

1 ' CYRO 750 EXTERNAL DEVICE INTERFACE MENU:'»//»
2

3
4
5
6
7
7
8
9
1

1, REINITislise system (Reset Robot!)'»/>
2, SAVE robot program to diskette'»/f
3, LOAD pro5r.3m from diskette and verify'?/*
4, RUN a r>ro3r3m'»/»
5^ DIRectory of proSrsms in robot'»/»
6. (DDIR) Diskette Directory'»/»
7, SHOW 3 pro2r3nt in the robot' */»
8f LIST s pro^rsm from diskette'>/»
9, EDIT s program on diskette'*/*
10. RESeouence 3 proSrsm on diskette'»/f

80

FORTRAN IV V02.5-2

7
8
9
1
2
3
4

11.
12,
13,
14,
15,

Thu 08-M3y-86 13112:12 PAGE 003

POSITion of the robot'>/»
PARAMeters.frora the robot'»/»
MESSAGE to the robot',/,
PARK and ignore all messages from robot'»/»
TRANSfer robot program from VAX'»/»

•E' EXIT to operating system'»////»
SELECT>'»$)

81

FORTRAN IV V02.5-2 Thu OB-Msy-86 12112112 PAGE 004

C
C
C

0020
0021 400

C
0022
0024
0026
0028
0030
0032
0034
0036
0038
0040
0042
0044
0046
0048
0050
0052
0054
0056
0058
0060
0062
0064
0066
0068
0070
0072
0074
0076
0078
0080
0082
0084

ACCEPT SELECTION AND BRANCH TO APPROPRIATE SUBROUTINE

READ <RT,400) INPUT
FORNAT(AS)

IF (INPUT,EQ,'
IF (INPUT,EQ.
IF (INPUT.EQ,'
IF (INPUT,EQ.
IF (INPUT.EQ,
IF (INPUT.EQ.
IF (INPUT,EQ,
IF (INPUT,EQ,
IF (INPUT,EQ.
IF (INPUT,EQ.
IF (INPUT,EQ.
IF (INPUT,EQ.
IF (INPUT.EQ.
IF (INPUT.EQ.
IF (INPUT.EQ,'
IF (INPUT.EQ.
IF (INPUT.EQ,'
IF (INPUT,EQ,
IF (INPUT.EQ,
IF (INPUT.EQ.
IF (INPUT.EQ.
IF (INPUT.EQ,
IF (INPUT.EQ,
IF (INPUT.EQ.
IF (INPUT.EQ,
IF (INPUT,EQ,
IF (INPUT,EQ,
IF (INPUT,EQ,
IF (INPUT,EQ.
IF (INPUT,EQ,
IF (INPUT,EQ,'
IF (INPUT,EQ,

1') CALL INIT
REINIT') CALL INIT
2')
SAVE
3')
LOAD'
4')
'RUN')

CALL SAVE
) CALL SAVE
CALL LOAD
) CALL LOAD
CALL RUN
CALL RUN

5') CALL DIRECT
'DIR') CALL DIRECT
7') CALL DISPLA
'SHOW') CALL DISPLA
6') CALL DDIR
DDIR') CALL DDIR
8') CALL LIST
LIST') CALL LIST
9') CALL EDITOR
EDIT') CALL EDITOR
10') CALL RESEQ
RES') CALL RESEQ
11') CALL POSIT
'POSIT') CALL POSIT
12') CALL PARS
'13') CALL MESAGE
MESSAGE') CALL MESAGE
'PARK') CALL PARK
14') CALL PARK
'PARAM') CALL PARS
15') CALL INTER
TRANS') CALL INTER
E') STOP-
EXIT') STOP

0086

OOS7

GOTO 300

END

82

FORTRAN IV Storage MSP for Program Unit CYR02

Local Variables* .PSECT SDATAj Size = 001022 (265. words)

Name Tape Offset Name
INPUT R*8 001002 RT
X R*4 001016

Type •Offset Name
1*2 001012 WT

Tape Offset
1*2 001014

COMMON Block /INOUT /i Size = 012620 (2760, words)

Name Tape
ARRAY L*l
IPDATA 1*2

Offset Name Type
000000 Eov BPDATA L*l
011610 Ectv

Offset Name Tape
011610 EQV IARRAY 1*2

Offset
000000 EQV

Local and COMMON Arrays!

Name Type Section Offset -Size- Dimensions
ARRAY L*l
BPDATA L*l
IARRAY 1*2
IDATA 1*2
IPDATA 1*2

INOUT 000000 011610 (2500.) (5000)
INOUT 011610 001010 (260.) (520)
INOUT 000000 011610 (2500.) (2500)
*DATA 000000 001002 (257.) (257)
INOUT 011610 001010 (260.) (260)

Subroutines* Functions? Statement and Processor-Defined Functions?

Nsme Tape
DDIR R*4
INTER 1*2
PARS R*4

Name Tape
DIRECT R*4
LIST 1*2
POSIT R*4

Name Tape
DISPLA R*4
LOAD 1*2
RESEQ R*4

Name Tape Name
EDITOR R*4 INIT
MESAGE 1*2 PARK
RUN R*4 SAVE

Tape
1*2
R*4
R*4

83

FORTRAN IV V02.5-2 Thu 08-M3y-86 13113:31 PAGE 001

0001

c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

MODULE NAME:
SUBROUTINE INIT

PURPOSE:
SUCCESSFUL COMPLETION OF THIS SUBROUTINE ESTABLISHES THAT
COMMUNICATION PROTOCOLS ARE WORKING PROPERLY,

INPUT:
THIS SUBROUTINE IS REQUESTED FROM THE MINC CONSOLE
PRIOR TO RESETTING THE ROBOT, RESET ROBOT* WAIT TWO
SECONDS AND THEN PRESS ENTER TO RETURN TO MENU.

PROCESSING:

WHEN THE ROBOT IS RESET IT WILL REQUEST A DEVICE IDENT/STATUS
FROM THE MINC COMPUTER,
TYPE CODE = 1

THIS SUBROUTINE WILL RESPOND THAT THE MINC IS OPERATIONAL
AND WILL TRANSMIT THE APPROPRIATE CODES.

OUTPUT:
CODES TRANSMITTED TO ROBOT?

TYPE CODE = 129
DEVICE TYPE (1 BYTE) = 2 (MEANS THAT COMPUTER DEVICE)
DEVICE IDENT, (3 ASCII BYTES) = 'MNC1

= 1 (MEANS OPERATIONAL)
- CYR01 VI,0"

SYSTEM STATUS
ASCII MESSG =

(1 BYTE)
1MINC OK

CALLED BY: CYR02

CALLS TO? DOUT>SEND,RECEVE

THIS SUBROUTINE WILL CALL DOUT TO CLEAR OUTPUT REGISTER,
THEN IT CALLS THE RECEVE SUBROUTINE TO WAIT
FOR THE INITIAL MESSAGE FROM THE ROBOT,
THE MINC WILL WAIT INDEFINITLY FOR THE ROBOT TO RESPOND.
TO QUIT WAITING HIT ANY KEY ON THE MINC
CONSOLE AND THE PROGRAM WILL RETURN TO THE MAIN MENU,
SEND SUBROUTINE CALLED TO TRANSMIT MESSAGE TO ROBOT CONSOLE,

SPECIAL INTERFACE REQUIREMENTS? MINC DIGITAL I/O MODULES
CYRO 750 EXTERNAL DEVICE
INTERFACE OPTION

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRAMMER =====CONTACT/ACTION/REMARKS=====
7-25-84 FRED R. SIAS» JR. (803J-656-3375/DESIGN 8 PROGRAMMED
5-31-85 FRED R, SIASf JR, (803)-656-3375/NEW NARRATION

84

FORTRAN IV V02.5-2 Thu 08-M3S-86 13:13:31 PAGE 002

0002
0003

C
0004
0005

C
C
C

0006
0007

C
0008

C
0009 10

C
0010
0011 50

INTEGER*2 IBATA<257)»RT,WT
BYTE INPUT

RT=5
WT=7

FIRST OUTPUT 000000 TO CLEAR DIGITAL OUTPUT REGISTER

IUNIT=0
IMASK='000000

CALL DOUT<IUNIT*IMASK»IERR*IMASK>

CONTINUE

WRITE <UTi50>
FORMATC1'*/////*' Press RESET on ROBOT* then wait two seconds*'?
1 »/»' then press RETURN key on MINC to return to menu,'*
2 ////////////»' PRESS RETURN> '**)

0012

0013

0015

0017

0019

0020

0021
0022

0023

0024

C

C

C
C

C
C

C
C

C
C

C

C
C
C
199
C

200

C

C

_____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ _rcCT CTDCT MCCCAftr

CALL RECEVE(IERROR* ILEN* ICSUM* IBATA)

TIME OUT ERROR
IF (lERROR.EQ.l) GOTO 199.

CHECKSUM ERROR IF IERROR = 2
IF (IERROR. ECK2) GOTO 2000

ILLEGAL ERROR COBE IF GREATER THAN 2
IF (IERROR. GE, 3) GOTO 3000

GOTO 5100

HERE IF TIMES OUT AT ANY TIME

CONTINUE

WRITE (WT>200)
FORMAT*//*' '*/*' NO INITIALIZATION MESSAGE FROM ROBOT'*/*
1 ' PRESS 'RETURN' TO CONTINUE> '»$)
REAB (RT»5230) INPUT

RETURN

85

FORTRAN IV V02.5-2 Thu 08-Msy-86 13:i3J31 PAGE 003

0025 2000
0026

C
0027 2010

0028
0029
0031

C
C

0032 3000
C

0033
0034 3010

0035
0036

C
0037 5100

C
C
C

0038

0039

0040
0041
0042

0043

0044
0045
0046
0047
0048
0049
0050
0051
0052
0053

0054
0055
0056

C
C

C
C
C

C
C

C
C

HERE TO PROCESS CHECKSUM ERROR
CONTINUE
WRITE (WT»2010)

FORMAT<//»' '»/»' CHECKSUM DOES NOT COMPUTE!'»/»
1 ' TRY AGAIN? (Y OR N)> '»$>
READ (RT»5230) INPUT
IF (INPUT.EQ.'Y') GOTO 10
RETURN

HERE TO PROCESS ILLEGAL ERROR CODE AND RETURN TO MENU
CONTINUE

WRITE (WT»3010)
FORMAT(//»' '»/,' RECEIVED AN ILLEGAL ERROR CODE FROM RECEVE'j

1 ' SUBROUTINE.'*/r
2 ' PRESS 'RETURN1 TO CONTINUE> '?$)
READ (RT»5230) INPUT
RETURN

CONTINUE
HERE TO PROCESS ACCEPTABLE REQUEST

RETURN STATUS/IDENTIFICATION INFO TO ROBOT

IDATA(3)=129

DEVICE TYPE = 1 I.E. THIS IS A COMPUTER
IDATA(4)=1

DEVICE IDENTIFICATION = 'MNC'

IDATA(5)=77
IDATA(6)=78
IDATA(7)=67

SYSTEM STATUS IS OPERATIONAL
IDATA(8)=1

SEND MESSAGE "MINC OK - CYR02 V2.21

IDATA(9)=77
IDATA(10)=73
IDATA(11)=78
IDATA(12)=67
IDATA(13)=32
IDATA(14)=79
IDATA(15)=75
IDATA(16)=32
IDATA(17)=45
IDATA(18)=32
CYR02
IDATA(19)=67
IDATA(20)=89
IDATA(21)=82

86

FORTRAN IV V02.5-2 Thu 08-M3H-B6 13:i3J31 PAGE 004

0057
0058
0059

C
0060
0061
0062
0063

C
0064

C
0065

C
C
C

0066
C

0067
C

0068
C

0070 5200
C

0071
0072 5210

C
0073
0074 5220
0075
0076 5230
0077

C
0078 5500

IDATA(22)=79
IDATA(23)=50
IDATA(24)=32
V2.2
IDATA(25)=86
IDATA(26)=50
IDATA(27)=46
IDATA(28)=50

IDATA(1)=26

ILEN=28

WILL TRY TO SEND FIVE TIMES

DO 5200 I=l>5

CALL SEND(IERROR>ILEN,IDATA)

IF (IERROR.EQ.O) GOTO 5500

CONTINUE

WRITE (WT»521Q)
FORMAT(/A' '»/»' MINC GAVE UP AFTER 5 TRIES TO SEND!',/)

WRITE (WTf5220)
FORMAT(/f' PUSH 'RETURN1 TO CONTINUE> '»$)
READ (RT»5230) INPUT
FORMAT(A4)
RETURN

CONTINUE

0079

0080

0082

0084

0086

0087

0088

C
C

C
C

C
C

C
c-

6ET SECOND MESSAGE

CALL RECEVE(IERROR»ILEN»ICSUM»IDATA)

TIME OUT ERROR
IF (IERROR.EQ.1) GOTO 199

CHECKSUM ERROR IF IERROR = 2
IF (IERROR,EG.2) GOTO 2000

ILLEGAL ERROR CODE IF GREATER THAN 2
IF (IERROR.GE.3) GOTO 3000

C
C

DO 7000 I=l>25

CALL RECEVE(IERROR»ILEN»ICSUM»IDATA)

TIMEOUT ERROR
IF (IERROR,Ed.1) GOTO 6000

-KEEP READING MESSAGES

87

FORTRAN IV

C

V02.5-2 Thu 08-M3a-86 13:13531 PAGE 005

0090

0092

C
C

0094 7000
C
C
C
C

0095
0096 5510

0097
C

0098
C

0099 6000
C

0100
0101 6010

0102

0103
0104

CHECKSUM ERROR IF IERROR = 2
IF (IERROR.EQ,2) 60TO 2000

ILLEGAL ERROR CODE IF GREATER THAN 2
IF (IERROR.GE.3) GOTO 3000

CONTINUE

HERE IF INITIALIZATION COMPLETE AND OK
WRITE (UT,5510)
FORMAT(//,' '»/»' INITIALIZATION COMPLETE AND OKI',/,
1 ' PRESS 'RETURN1 TO CONTINUE> ',$)
READ (RT,5230) INPUT

RETURN

CONTINUE

WRITE <WT»6010)
FORMAT(//f' ',/,' INITIALIZATION COMPLETE AND QK\'t/>
1 ' NO MORE MESSAGES FROM ROBOTS/*
1 ' PRESS 'RETURN' TO CONTINUE> '»$)
READ (RTf5230) INPUT

RETURN
END

88

FORTRAN IV Storage Map for Program Unit INIT

Locsl Variables? .PSECT $DATA» Size = 001026 (267. words)

Name Type Offset
I 1*2 001024
IERROR 1*2 001016
INPUT L*l 001006
WT 1*2 001004

Locsl and COMMON Arrays?

Name Type Offset
ICSUM 1*2 001022
ILEN 1*2 001020
IUNIT 1*2 001010

Name Type Offset
IERR 1*2 001014
IMASK 1*2 001012
RT 1*2 001002

Name Type
IPATA 1*2

Section Offset Size Dimensions
SDATA 000000 001002 (257.) (257)

Subroutines? Functions? Statement and Processor-Defined Functions!

Name Type Name TapeName Type
DOUT R*4

Name Tape Name
RECEVE R*4 SEND

Type
R*4

89

FORTRAN IV V02.5-2 Thu 08-May-86 13:i5JOO PAGE 001

0001
MODULE NAME:

SUBROUTINE SAVE

PURPOSE:

C
c

C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
cmmmmmmmmmmmmmmMmmmmmmmm*********

THIS ROUTINE ACCEPTS A PROGRAM NUMBER TO BE SAVED FROM THE TERMINAL?
THEN A REQUEST IS TRANSMITTED TO THE ROBOT AND THE COMPUTER
RECEIVES AND FILES THE PROGRAM RETURNED TO IT,

INPUT:

PROGRAM REQUESTS ROBOT PROGRAM NUMBER FROM USER AT MINC CRT.
THEN REQUEST A SIX CHARACTER FILE NAME TO BE USED WHEN FILING
ON DISKETTE ON MINC,

PROCESSING:

HANDSHAKING:
Computer transmits Type Code 193 - REQUEST TO SAVE

PROGRAM TO COMPUTER,
The computer waits for Tape Code 66 - SAVE PROGRAM

TO COMPUTER ACKNOWLEDGE,
The robot then transmits the first block of data

(block 0) after a brief pause,
Then computer accepts and files a seauenee of blocks

usins Type Code 193 to indicate when
it is ready for each block,

Each block of data transmitted to the robot has a header
containing the Tape Code 67 followed by
s seauential block number and the actual
N/C program data.

OUTPUT:
WRITES PROGRAM ON MINC DKJ
FROM MINC KEYBOARD. ',CYR§

CALLED BYI CYR02

DISKETTE USING NAME ACCEPTED
SUFFIX ADDED BY THIS ROUTINE,

CALLS TO: REQTSfIGETC>ICLOSE,IFREECfIRAD50»SCOPYfRECEVE,
INSERT»DISKSV

SPECIAL INTERFACE REQUIREMENTS: USES MINC DIGITAL I/O MODULE

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRAMMER =====CONTACT/ACTION/REMARKS=====
6-28-84 FRED R, SIAS» JR, (803)656-3375/SYSTEM DESIGN/PROGRAMMED

FRED R. SIAS» JR, (803)656-3375/REVISED NARRATION
R, SIAS» JR. (803)656-3375/CHANGED TO FILENAMES
KEITH MCELVEEN (803)656-3375/REVISED NARRATION

6-01-84
6-01-84

7-22-85
FRED

J,

90

FORTRAN IV

0002
0003
0004

0005
0006
0007

0008
0009

0010

0011
0012

0013
0014

0015
0017

0019
0020
0021

0022
0023
0024

0026

0027

0028
0029
0031
0032
0034
0035
0037
0038
0039
0040
0041

0043
0044
0046
0047

C

C

C

C
10
C

100

110
C

C
114

115
C

119

C

C
C
C

C

120

130

C

V02.5-2 Thu 08-M3y-86 13:15:00 PAGE 002

INTEGER*2 NUMBER* IDATA(257) »RT>WT »FILNO»HEADER<3)
BYTE LERRORiINPUTiFILNAMdS) »NAMFIL(7)
REAL*8 FILE

CALL SCOPYCDY1 CYRSFILNAM)
DATA FILNAM(13) /OO/
DATA NAMFIL(7) /OO/

UT = 7
RT=5

CONTINUE

WRITE (WTflOO)
FORMAT<///>' Input NUMBER of Program in robot to be caved,'?

1 ,/,' To EXITf press RETURNS '»*)
READ (RTrllO) NUMBER
FORMAT (12)

IF(NUMBER.EG.O) RETURN
IF(NUMBER.LT>1,OR.NUMBER.GT,9) GOTO 400

CONTINUE
WRITE (WT,115)
FORMAT(/A' Type NAME of Program to be saved on diskette?- '»$)

READ <RT»119> (NAMFILd) » 1 = 1 >6)
FORMAT(6A1)
IF (NAMFILd), EQ,' ') RETURN

CALL INSERT(NAMFIL»FILNAM,4»6)

NOU CHECK TO SEE IF FILE EXISTS

CALL IRAD50<12fFILNAM»FILE)

ICHAN=IGETC()
IF (ICHAN.LT.O) STOP 'NO CHANNEL"
IERROR=IFETCH(FILE)
IF (IERROR.NE.O) STOP 'BAD FETCH'
IERROR=LOOKUP(ICHAN»FILE)
IF (TERROR. EQ, -2) GOTO 150
WRITE (WTfl20)
FORMATC File already exists! OVERWRITE IT? (Y or N» '»$)
READ (RT»130) INPUT
FORMAT(Al)
IF (INPUT, EQ.'Y') GOTO 150

CALL ICLOSE(ICHAN»IERROR)
IF(IERROR.LT.O) STOP 'ERROR CLOSING CHANNEL'
CALL IFREEC(ICHAN)
GOTO 114

91

FORTRAN IV

0048 150
C

0049
0050
0052

C
0053 160

C
C
C

0054
C

0055
0057
0059

C
C
C

0061 200
C

0062
C

0063
0065
0067

C
0069
0070
0071
0072

V02.5-2 Thu 08-Msy-86 13J15:00

CONTINUE

CALL ICLOSEUCHANrlERROR)
IF(IERROR.LT.O) STOP 'ERROR CLOSING CHANNEL'
CALL IFREEC(ICHAN)

CONTINUE

NOW TRANSMIT A 'REQUEST TO SAVE1 TO ROBOT

CALL REQTS(NUMBER»IERROR)

IF (IERROR.EQ.1) GOTO 2100
IF (IERROR.EQ.2) GOTO 2200
IF (IERROR.GE.3) GOTO 2300

NOW WAIT FOR SAVE ACKNOWLEDGE - TYPE CODE 66

CONTINUE

CALL RECEVE(IERROR»ILEN»ICSUMfIDATA)

IF (IERROR.EQ.1) GOTO 3100
IF (IERROR.EQ.2) GOTO 3200
IF (IERROR.GE.3) GOTO 3300

ITYPE=IDATA<3>
IACK=IDATA(4)
IPNUH=IDATA(5)
ISIZE=IDATA<6)+256*IDATA<7)

PAGE 003

92

FORTRAN IV V02.5-2 Thu 08-M3a-86 13J15JOO PAGE 004

0073

0075

0077
0079

0081

0082
0083
0084

0086
0087
0088

0089

0090

0092

0093
0095
0097

0099

0100

0101
0103
0105

0107
0108
0110
0111

c
c
c

c

c
c
c

c

c
c
c

c

c
c
c

c

c

c

c

c
240
c
c
c

c

c

c
c

WRONG MESSAGE TYPE RECEIVED

IF (ITYPE.NE.66) GOTO 1100

IF UPNUM.NE, NUMBER) GOTO 1200

NOT READY TO RECEIVE CODE = 0

IF (IACK.EQ.O) GOTO 1300
IF (IACK.GE.2) GOTO 1000

IBLKCT=0

SENDS BLOCK NUMBER AND 252 BYTES OF DATA IN EACH BLOCK

ITOTBK=ISIZE/252
IREH=ISIZE-ITOTBK*252
IF (IREM.NE.O) ITOTBK=ITOTBKM

HEADER<1)=ITOTBK
HEADER(2)=IREM
HEADER(3)=ISIZE

NOW OPEN FILE

, — _ f. jj_k LUUr

DO 300 I=1»ITOTBK

IF (I.EQ.l) GOTO 240

CALL REQTS(NUMBER»IERROR)

IF (IERROR.EQ.1) GOTO 2100
IF (IERROR.EQ.2) GOTO 2200
IF (IERROR.GE.3) GOTO 2300

CONTINUE

STARTS RECEIVING PROGRAM HERE

CALL RECEVEUERROR>ILEN,ICSUMfIDATA)

IF (IERROR.EQ.1) GOTO 3100
IF (IERROR.EQ.2) GOTO 3200
IF (IERROR.GE.3) GOTO 3300

ITYPE=IDATA(3)
IF (ITYPE.NE.67) GOTO 1100
IBLOCK=IDATA(4)
IF (IBLOCK.NE.IBLKCT) GOTO 4100

PUT ARRAY ON DISK.

93

FORTRAN IV

C
0113
0114

C
0116

C
0117 300

C

P — — — .

C
0118

C
0119 400
0120 402
0121

C
0122 499
0123
0124 500

0125
0126

V02.5-2 Thu 08-H3y-86 PAGE 005

CALL DISKSV(FILNAM»HEADER*IDATA»LERROR>
IF (LERRQR.EQ.'TRUE') GOTO 910

IBLKCT=IBLKCT-H

CONTINUE

•END OF FILE LOOP

GOTO 499

WRITE (WT»402)
FORMAT*//*' ONLY PROGRAM NUMBERS 1-9 ACCEPTABLE,')
GOTO 10

CONTINUE
WRITE (WTfSOO) IPNUM
FORMAT<//»' PROGRAM NO.',14*' SUCCESSFULLY RECEIVED AND FILED'*/»
1 ' PRESS 'RETURN" TO GOT MAIN MENU.> '»$)
READ <RT*904) INPUT
RETURN

94

FORTRAN IV V02.5-2 Thu 08-M3H-86 13:15500 PAGE 006

C—
C
C
C

0127 900
0128
0129 902

0130
0131

0132

0133
0134
0135

0136
0137
0138

0139
0140
0141

0142
0143
0144

0145
0146

0147
0148

904
C

C
910
912

C
1000
1002

C
1100
1102

C
1200
1202

C
1300
1302

ALL OF THE VARIOUS ERROR MESSAGES FOLLOW?

CONTINUE
WRITE (WT*902)
FORMAT*//*' FATAL ERROR! FILE WILL BE DELETED.'»/*
1 ' PRESS 'RETURN1 TO GOTO MAIN MENU,> '»*)
READ <RT»904) INPUT
FORMAT(I4)

RETURN

WRITE <WT*912)
FORMAT*//*' ERROR RECEIVED FROM SUBROUTINE DISKSV)
GOTO 900

WRITE <WT»1002)
FORMAT*//*' ILLEGAL ACKNOWLEDGE CODE RECEIVED?')
GOTO 900

WRITE <WT*1102>
FORMAT <//*' WRONG MESSAGE TYPE RECEIVED!')
GOTO 900

WRITE (WT*1202)
FORMAT*//!' WRONG PROGRAM NUMBER RETURNED BY ROBOT!')
GOTO 900

WRITE <WT»1302)
FORMAT*//*' ROBOT NOT READY TO RECEIVE.'*

1 ' TYPE 'RETURN' TO TRY 'AGAIN> '»*)
READ (RT*904) INPUT
GOTO 160

0149 2100 WRITE <WT*2102)
0150 2102 FORMAT*//*' TIME OUT ERROR WHILE WAITING FOR',/*

1 ' ACKNOWLEDGE FROM ROBOT.')
0151 GOTO 900

C
0152 2200 WRITE (WT»2202)
0153 2202 FORMAT*//*' LRC ERROR MESSAGE RETURNED AFTER TRANSMISSION.')
0154 GOTO 900

C
0155 2300 WRITE *WT>2302) IERROR
0156 2302 FORMAT*//*' ILLEGAL ACKNOWLEDGE CODE'*14*' RECEIVED'*

1 ' AFTER TRANSMISSION TO ROBOT.')
0157 3100 WRITE <WT*3102)
0158 3102 FORMAT*//*' FIVE SECOND TIMEOUT OCCURED DURING RECEIVE.')
0159 GOTO 900

C
0160 3200 WRITE (WT»3202)
0161 3202 FORMAT*//*' CHECKSUM ERROR CALCULATION PRODUCED ERRORS

1 ' DURING RECEIVE.')

95

FORTRAN IV V02.5-2 Thu 08-M3H-86 13515JOO PAGE 007

0162 GOTO 900
C

0163 3300 WRITE (WTr3302) IERROR
0164 3302 FORMAT<//,' ILLEGAL ERROR CQDE'rI4r' RETURNED FROM',

1 ' RECEIVE SUBROUTINE.')
0165 GOTO 900

C
0166 4100 WRITE (WT»4102) IBLOCK»IBLKCT
0167 4102 FORNAT<//f' BLOCK COUNT TRANSMITTED CfI4f')'»

1 ' DOES NOT MATCH EXPECTED BLOCK C»I4f'>.')
0168 GOTO 900

C
0169 END

96

FORTRAN IV Storage Map for Program Unit SAVE

Local Variables* .PSECT $DATA> Size = 001114 < 294. words)

Name
FILE
IACK
ICHAN
ILEN
IREH
ITYPE
RT

Type
R*8
1*2
1*2
1*2
1*2
1*2
1*2

Offset
001052
001076
001064
001070
001110
001074
001042

Name
FILNO
IBLKCT
ICSUM
INPUT
ISIZE
LERROR
WT

Tape
1*2
1*2
1*2
L*l
1*2
L*l
1*2

Offset
001046
001104
001072
001051
001102
001050
001044

Name
I
IBLOCK
IERROR
IPNUM
ITOTBK
NUMBER

Tape
1*2
1*2
1*2
1*2
1*2
1*2

Offset
001062
001112
001066
001100
001106
001040

Local and COMMON Arrays:

Name Type Section Offset -Size-
FILNA/1 L*l $DATA 001010 000017
HEADER 1*2 *BATA 001002 000006
IDATA 1*2 $DATA 000000 001002
NAMFIL L*l *DATA 001027 000007

8.
3.:

257,
4.;

Dimensions
(15)
(3)
(257)
(7)

Subroutines? Functions* Statement and Processor-Defined Functions!

Name Type
DISKSV R*4
INSERT 1*2
SCOPY R*4

Name Tape
ICLOSE 1*2
IRAD50 1*2

Name Type
IFETCH 1*2
LOOKUP 1*2

Name Type
IFREEC 1*2
RECEVE R*4

Name Tape
IGETC 1*2
REQTS R*4

97

FORTRAN IV V02.5-2 Thu 08-Msy-86 13J16J47 PAGE 001

C-
C

c
c
c
c

c

c

c

c

c

c

c

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010
0011

SUBROUTINE REQTS(NUMBER»ERROR)

INTEGER*2 IDATA(257>,NUMBER»ERROR

SEND REQUEST TO SAVE PROGRAM CNUMBERD TO ROBOT

LENGTH OF MESSAGE
IDATA(1)=2
SEQUENCE NO, SET TO ZERO
IDATA(2)=0
SET TYPE CODE
IDATA(3)=193
SEND PROGRAM NUMBER
IDATA<4)=NUMBER

ILEN=4

CALL SEND(IERRORfILEN»IDATA)

ERROR=IERROR

RETURN
END

98

FORTRAN IV Storage MSP for Program Unit REQTS

Local Variables* .PSECT *DATA» Size = 001012 (261. words)

Name Type Offset
IERROR 1*2 001010

Name Tape Offset
ILEN 1*2 001006

Name Type Offset
ERROR 1*2 8 000002
NUMBER 1*2 0 000000

Local and COMMON Arrays:

Name Type Section Offset Size Dimensions
IDATA 1*2 fDATA 000004 001002 (257.) (257)

Subroutines* Functions? Statement and Processor-Defined Functions}

Name Type Name Type Name Type Name Type Name Tape
SEND R*4

99

FORTRAN IV V02.5-2 Thu 08-Maa-86 13517J15 PAGE 001

0001

c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

MODULE NAME:
SUBROUTINE LOAD

PURPOSE:

THIS ROUTINE ALLOWS THE USER TO SELECT A PARTICULAR PROGRAM
TO BE LOADED FROM THE MINC DISKETTE TO THE ROBOT,
THEN THE PROGRAM IS TRANSMITTED TO THE ROBOT WITH
APPROPRIATE HANDSHAKING,

INPUT:

PROGRAM REQUESTS THE NAME OF THE DISKETTE FILE CONTAINING
THE PROGRAM TO BE LOADED, PROGRAM ASSUMES '.CYR1 FILENAME

EXTENSION, THEN IT REQUESTS THE NUMBER
BETWEEN 1 AND 9 BY WHICH THE PROGRAM WILL BE REFERENCED
IN THE ROBOT,

PROCESSING:

HANDSHAKING: •
Computer transmits Tape Code 194 - REQUEST TO LOAD

PROGRAM FROM COMPUTER,
The computer waits for Tape Code 65 - LOAD PROGRAM

FROM COMPUTER ACKNOWLEDGE,
When computer is reada to transmit the program it

transmits a block of code proceeded
by Tape Code 195.

Thentthe robot accepts and files a seauence of blocks
usinsf Tape Code 65» LOAD PROGRAM FROM
COMPUTER ACKNOWLEDGE* to indicate when
it is ready for each block,

OUTPUT: LOADS PROGRAM FROM MINC COMPUTER TO ROBOT MEMORY,

CALLED BY5 CYR02

CALLS TO: DISKRD»SEND» RECEVE*INSERT* SCOPY

SPECIAL INTERFACE REQUIREMENTS: USES MINC DIGITAL I/O MODULES,

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRAMMER =====CONTACT/ACTION/REMARKS===

7-13-84 FRED R, SIAS» JR. (803)-656-3375/DESIGN AND PROGRAM
6-03-85 FRED R. SIAS* JR. (803)-656-3375/REV, NARRATION 8 PROG,

7-23-85 J, KEITH MCELVEEN (803)656-3375/REVISED PROGRAM
9-6-85 FRS ADDITIONAL DEBUGGING

100

FORTRAN IV

C
0002
0003
0004
0005

C
0006
0007
0008

C
0009
0010

C
0011 10

C
0012
0013 100

0014
0015 105

C
0016

C
0018
0019 110
0020
0021 115

C
0022

C
0024

C
0025 120

C
C
C

0026
0027 118

C

V02.5-2 Thu OS-May-86 13;17?15 PAGE 002

0028

0029
0030
0031

0033
0034
0035
0036
0037

C
C
C

INTEGER*2 NUMBER.IDATA(257)»HEADER(3)»RT»HT,LSIZE»HSIZE
INTEGER*2 ILENfIBLOCKfIERROR
LOGICAL*! LERROR
BYTE INPUT, FILNAMU5), NA«FIL(7>

CALL SCOPYCDY1 CYR'»FILNAM)
DATA FILNAMU3) /OO/
DATA NAMFIL(7) /OO/

WT=7 o
RT=5

CONTINUE

WRITE (WT»100)
FORMAT (///,' Input FILE NAME of program to be loaded,'»
1 /,' To EXIT» press RETURNS 'r$)

READ (RT»105) (NAMFILU)»1 = 1 »6)
FORMAT(6A1)

IF <NAMFIL(1).EG.' ') RETURN

WRITE (MT»110)
FORMAT(///»' Input NUMBER program will have in ROBOT.> '»*>
READ (RT>115) NUMBER
FORMAT(I2)

IF(NUMBER.LT,1.0R.NUMBER,GT.9) GOTO 400

CALL INSERT(NAMFILfFILNAMf4f6)

CONTINUE

FIRST RETRIEVE FILE AND GET HEADER SO KNOW PROGRAM SIZE

WRITE (WT»118) <FILNAM(I)jI=l»14)
FORMAT(//»' NOW OPENING '»14A1»/)

PASS A ZERO TO. INDICATE ONLY WANT HEADER
HEADER(3)=0

LERROR='FALSE'
CALL DISKRD(FILNAM>HEADER»IDATA»IBLOCK,LERROR)
IF (LERROR,EGK 'TRUE') GOTO 910

NOW CALCULATE HSIZE AND LSIZE

ISIZE=HEADER(3)
ITOTBK=HEADER(1)
IREM=HEADER(2)
HSIZE=ISIZE/256
LSIZE=ISIZE-HSIZE*256

101

FORTRAN IV V02.5-I Thu 08-M3a-86 13517:15 PAGE 003

0038
0039
0040
0041
0042
0043
0044

0045
0046

0047

0048
0050
0052

0054

0055

0056
0058
0060

0062
0063
0064

0065

0067

0069
0071

C
C
C

C

200
C

C

C

C

C
C
C
C
C210
C

C

C

C
C
C

C

C
C
C

C
C
C
C
C

NOW TRANSMIT A 'REQUEST TO LOAD1 TO ROBOT

IDATA(1)=4
IDATA(2)=0
IDATA(3)=194
IDATA(4)=NUMBER
IDATA(5)=LSIZE
IDATA(6)=HSIZE
ILEN=6

WRITE <WT»200)
FORNAK/i' '»/»' TRANSMIT REQUEST TO LOAD CODE 194,',/)

CALL SEND<IERROR»ILEN»IDATA>

IF (IERROR.EQ.1) GOTO 2100
IF (IERROR.EQ.2) GOTO 2200
IF < IERROR.GE.3) GOTO 2300

— ___— _______ _________________ TDAUCMTT t flOD *

DO 300 IBLKCT=1»ITOTBK

NOW WAIT FOR LOAD ACKNOWLEDGE - TYPE CODE 65

WRITE (WT»210)
FORMAT(/»' ',/>' .RECEIVE LOAD ACKNOWLEDGE TYPE CODE 65,'»/>

CALL RECEVE(IERROR* ILEN» ICSUM» IDATA)

IF (IERROR.EQ.1) GOTO 3100
IF (IERROR.EQ.2) GOTO 3200
IF (IERROR.GE.3) GOTO 3300

ITYF'E=IDATA(3)
IACK=IDATA(4)
IPNUM=IDATA(5)

WRONG MESSAGE TYPE RECEIVED

IF (ITYPE.NE.65) GOTO 1100

IF (IPNUM.NE. NUMBER) GOTO 1200

NOT READY TO LOAD CODE = 0

IF (IACK.EQ.O) GOTO 1300
IF (IACK.GE.2) GOTO 1000

FOUND IACK=1

REACH THIS POINT IF READY TO START SENDING PROGRAM TO ROBOT

102

FORTRAN IV

C
C
C
C
C
C
C

0073
0074

0075

0077
0078

C
C
C

0079
0080 240

C
0081

C
0082
0084
0086

C
0088 300

C—
C

V02.5-2 Thu 08-M3a-86 13117:15 PAGE 004

SENDS BLOCK NUMBER AND 252 BYTES OF DATA IN EACH BLOCK

STARTS SENDING REST OF PROGRAM HERE
CALLS DISKRD WITH IBLOCK SET EQUAL TO EXPECTED BLOCK
AND CHECKS EACH READ BLOCK AGAINST BLOCK COUNT AFTER
RETURNING FROM SUBROUTINE DISKRD

IBLOCK=IBLKCT-1
CALL BISKRIKFILNAM*HEADER,IDATA»IBLOCK»LERROR)

IF (IBLOCK,NE,IDATA(4)) GOTO 4100

SET TYPE CODE TO 195

IDATA(3)=195
ILEN=IDATA<l)t2

WRITE <WT>240) IBLOCK
FORMATC ',/,' SENDING BLOCK '»I4»' OF PROGRAM,')

CALL SENDUERROR»ILEN»IDATA)

IF (IERROR.EQ.1) GOTO 2100
IF (IERROR.EQ.2) GOTO 2200
IF (IERROR.GE.3) GOTO 2300

CONTINUE
-END LOOP

C
C
C
C210
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

NOW WAIT FOR LOAD ACKNOWLEDGE - TYPE CODE 65

WRITE (WT»210>
FORMAT</»' ',/,' RECEIVE LOAD ACKNOWLEDGE TYPE CODE 65.'i/>

CALL RECEVE(IERROR»ILEN»ICSUM»IDATA)

IF (IERROR.EQ.1) GOTO 3100
IF (IERROR.EQ.2) GOTO 3200
IF (IERROR,GE,3) GOTO 3300

ITYPE=IDATA(3)
IACK=IDATA(4)
IPNUM=IDATA(5)

WRONG MESSAGE TYPE RECEIVED

IF <ITYPE.NE,65) GOTO 1100 ^

IF (IPNUM.NE.NUMBER) GOTO 1200

NOT READY TO LOAD CODE = 0

IF (IACK.EQ.O) GOTO 1300

103

FORTRAN IV V02.5-2 Thu 08-M3a-86 13:17115

IF (IACK.GE.2) GOTO 1000

FOUND IACK=1

PAGE 005

C
C
C
M

C
0089 WRITE (UTi310) <NAMFIL(I)»I=1»6)»NUMBER
0090 310

0091
0092

C
0093 400
0094 402
0095

C

1 ' NO, '»I3jA' PRESS 'RETURN1 TO GOTO HAIN MENU.> '»$)
READ (RTf904) INPUT
RETURN

WRITE (WT>402)
FORMAT(//>' ONLY PROGRAM NUMBERS 1-9 ACCEPTABLE.')
GOTO 10

104

FORTRAN IV V02.5-2 Thu 08-May-86 13J17J15 PAGE 006

C—
C
C
C

0096 900
0097
0098 902

0099
0100

0101

0102
0103
0104
0105

0106
0107
0108

0109
0110
0111

0112
0113
0114

0115
0116

0117
0118

904
C

C
910

912

1000
1002

C
1100
1102

C
1200
1202

C
1300
1302

ALL OF THE VARIOUS ERROR MESSAGES FOLLOW:

CONTINUE
WRITE (WT»902>
FORMAT<//»' FATAL ERROR!'»/»
1 ' PRESS RETURN TO GOTO MAIN MENU> '»*)
READ (RT.904) INPUT
FORMAT(I4)

RETURN

CONTINUE
WRITE (WTi912)
FORMATC '»//»' ERROR RECEIVED FROM SUBROUTINE DISKRD')
GOTO 10

WRITE <WT»1002>
FORMAT<//»' ILLEGAL ACKNOWLEDGE CODE RECEIVED*')
GOTO 900

WRITE <WT»1102)
FORMAT <//»' WRONG MESSAGE TYPE RECEIVED!')
GOTO 900

WRITE <WT»1202)
FORMAT<//F' WRONG PROGRAM NUMBER RETURNED BY ROBOT!')
GOTO 900

WRITE (WT»1302)
FORMAT(//f' ROBOT NOT READY TO LOAD PROGRAM.'»
1 ' TYPE 'RETURN1 TO TRY AGAIN> '*$>
READ <RT»904> INPUT
GOTO 120

0119 2100 WRITE <WT»2102)
0120 2102 FOR«AT(//»' TIME OUT ERROR WHILE WAITING FOR SEND'»/»

1 ' ACKNOWLEDGE FROM ROBOT.')
0121 GOTO 900

0122 2200
0123 2202
0124

C
0125 2300
0126 2302

0127 3100
0128 3102
0129

C
0130 3200
0131 3202

WRITE (WT,2202)
FORMAT(//»' LRC ERROR MESSAGE RETURNED AFTER TRANSMISSION.')
GOTO 900

WRITE (WT»2302) IERROR
FORMAT<//,' ILLEGAL ACKNOWLEDGE CODE'rI4r/ RECEIVED',

1 ' AFTER TRANSMISSION TO ROBOT.')
WRITE <WT»3102)
FORMAT(//»' FIVE SECOND TIMEOUT OCCURED DURING RECEIVE.')
GOTO 900

WRITE (WT»3202)
FORMAT(//»' CHECKSUM ERROR CALCULATION PRODUCED ERROR'. '

105

FORTRAN IV V02.5-2 Thu 08-Msa-86 13J17J15

1 ' DURING RECEIVE.')

PAGE 007

0132 GOTO 900

0133 3300 WRITE <WT»3302) IERROR
0134 3302 FORMAT<//,' ILLEGAL ERROR CODE'fI4»' RETURNED FROM',

1 ' RECEIVE SUBROUTINE.')
0135 GOTO 900

C
0136 4100 WRITE (WT»4102)
0137 4102 FORMAT<//»' BLOCK NUMBER AND BLOCK COUNT DO NOT MATCH.')
0138 GOTO 900

C
0139 END

106

FORTRAN IV Storage Map for Program Unit LOAD

Local Variables* .PSECT *DATA» Size = 001110 < 292, words)

Name
HSIZE
IBLKCT
TERROR
IPNUM
ITOTBK
LSIZE
WT

Type
1*2
1*2
1*2
1*2
1*2
1*2
1*2

Offset
001054
001076
001062
001106
001072
001052
001050

Name
I
IBLOCK
ILEN
IREM
ITYPE
NUMBER

Type
1*2
1*2
1*2
1*2
1*2
1*2

Offset
001066
001060
001056
001074
001102
001044

Name
IACK
ICSUM
INPUT
ISIZE
LERROR
RT

Type
1*2
1*2
L*l
1*2
L*l
1*2

Offset
001104
001100
001065
001070
001064
001046

Local and COMMON Arrays:

Name Type
FILNAM L*l
HEADER 1*2
IDATA 1*2
NAMFIL L*l

Section Offset
$DATA 001010
$DATA 001002
*DATA 000000
$DATA 001027

31

000017 (
000006 (
001002 (
000007 (

£g

8.)
3.)

257.)
4.)

1.11 men
(15)
(3)
(257)
(7)

Subroutines* Functions* Statement and Processor-Defined Functions!

Name Type
DISKRD R*4

Name Type
INSERT 1*2

Name Type
RECEVE R*4

Name Type
SCOPY R*4

Name Type
SEND R*4

107

FORTRAN IV V02.5-2 Thu 08-Hsy-86 13:i9J06 PAGE 001

0001

c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

MODULE NAME:
SUBROUTINE DISKSV(NAMFIL»HEADER*IDATA»LERROR)

PURPOSE: TO SAVE SUCCESSIVE BLOCKS OF ROBOT PROGRAM ON DISKETTE

INPUT: is PASSED HEADER AND SUCCESSIVE BLOCKS OF DATA

PROCESSING: KEEPS TRACK OF NUMBER OF BLOCKS OF DATA

OUTPUT: WRITES HEADER ON DISKETTE ONE TIME FILLOWED BY THE
SUCCESSIVE BLOCKS OF PROGRAM DATA,

CALLED BY: SAVE

CALLS TO: NONE

SPECIAL INTERFACE REQUIREMENTS: NONE

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRAMMER =====CONTACT/ACTION/REMARKS='
6-20-85 FRED R. SIAS» JR. (803)656-33757 NARRATION
7-02-85 FRS NULLED ARRAY AFTER DATA

7-23-85 J. KEITH MCELVEEN <B03)656-3375/RF.VISED PROGRAM

108

FORTRAN IV V02.5-2 Thu 08-M3a-86 13:19506 PAGE 002

0002
0003
0004
0005
0006

0007

0008

0009
0010

0011

0012
0013

0014

0015
0016
0017

0018

0019
0020
0021

C

C

C

C

C

C

C
C
C

10
C
C
C

C
C
C

LOGICAL*! LERROR
BYTE CR,NAMFIL(15),ARRAY(5000)fBPDATA(520>
INTEGER*2 IARRAY<2500) , IPDATA<260> , ITOTBK
INTEGER*2 HEADER (3) t IDATA (260) ,LASTBK, IREM» ISIZE,IBLOCK,RT,WT
REAL*8 FILEjFILEl

DATA FILE1 /12RDY1PROGRMCYR/

COMMON /INOUT/ ARRAY, BPDATA

EQUIVALENCE (ARRAY* IARRAY)
EQUIVALENCE (BPDATA, IPDATA)

DATA CR /'015/

WT=7
RT=5

IERROR=IRAD50(12,NAMFIL,FILE>

TAKE BLOCK OF DATA AND PUT IN LOCAL ARRAY

HO 10, 1=1,256
IPDATA(I)=IDATA(I)
CONTINUE

NOW DECIDE WHAT TO DO

IBLOCK=IDATA(4>

HERE TO GET HEADER AND FIRST BLOCK OF DATA

ITOTBK=HEADER(1)
IREM =HEADER(2)
ISIZE =HEADER(3)

0022
C

0023
C
C
C

0025
C
C
C

0027 200
C
C
C

0028
C

0029
0031

LASTBK=ITOTBK-1

IF (IBLOCK.EQ.O) INDEX=1

FIRST BLOCK SAME AS LAST

IFUBLDCK.EQ.LASTBK) GOTO 300

PUT THIS BLOCK IN BIG ARRAY

CONTINUE

USE THIS FOR FULL BLOCKS OF DATA

DO 299, 1=5,256

IF (IPDATA(I).EQ,'012) ARRAY(INDEX)=CR
IF (IPDATA(I).EQ,'012) INDEX=INDEXfl

109

FORTRAN IV V02.5-2 Thu OB-M3a-86 13:19106 PAGE 003

0033
0034

C
0035 299

C
C
C

0036
C

0038
C

0039 300
C
C
C

0040
C

0041
0043

C
0045
0046

C
0047 399

C
0048 400

C
C
C

0049
0050
0051
0052
0053

C
C

0054 450 CONTINUE

ARRAY<INDEX)=BPDATA<1*2-1)
INDEX=INDF.X+1

CONTINUE

RETURN IF NOT LAST BLOCK OF DATA

IF (IBLQCK.NE.LASTBK) RETURN

GOTO 400

CONTINUE

USE THIS FOR LAST BLOCK OF DATA

DO 399» I=5iIREM+4

IF (IPDATA(I).EQ.t012) ARRAY(INDEX)=CR
IF <IPDATA(I).EQ,I012) INDEX=INDEX-H

ARRAY(INDEX)=BPDATA<1*2-1)
INDEX=INDEX-H

CONTINUE

CONTINUE

ADD NULLS TO END OF BLOCK OF ARRAY

ILAST=INDEX-1
IADD=MOD(ILAST»512)
I E N D = I N D E X H A D D
DO 450» I=INDEX»IEND
ARRAY(I)=0

110

FORTRAN IV

0055

0056
0057

0059
0060
0061
0063

0065

0066
0067

L,

C

470
C

C
C
C

C
480
C

riLt HLL. in HK

CONTINUE

ICHAN=IGETC()
IF(ICHAN.LT.O) STOP 'NO CHANNEL AVAILABLE'

CREATE OUTPUT FILE

IBLK=0
IERROR=IENTER(ICHAN»FILE>0)
IF (IERROR.EQ.-2) GOTO 1040
IF (IERROR.LT.O) STOP 'ENTER FAILURE'

CONTINUE
-

IEND=IEND/2
NWORDS=IWRITW(IEND»IARRAY»IBLK»ICHAN)

0068

0070
0071
0073

0074

0075
0076

0077

0078
0079

0080
0081
0082
0083

0084
0085
0086
0087

0088
0089

C
C
C
C

C
500
C
C
C

C
C
C
1000
C
1002

C
1020

1022

C
1030

1032

C
1040

IF (NWORDS.LT.O) STOP 'ERROR WRITING TO DISKETTE'

IBLK=IBLKH
IF(IBLK.NE.LASTBK) GOTO 480

CALL ICLOSE<ICHAN»IERROR)
IF(IERROR.LT.O) STOP 'ERROR CLOSING CHANNEL'
CALL IFREEC(ICHAN)

CONTINUE

NORMAL EXIT HERE

LERROR='FALSE'
RETURN

ERROR MESSAGES AND ERROR RETURN

CONTINUE
WRITE (WT»1002) NAMFIL
FORMAT(//»' ERROR OPENING FILE '»14A1)
GOTO 1100

CONTINUE
WRITE <WT,1022> NAMFIL
FORMAT(//»' ERROR WRITING DATA TO FILE S14A1)
GOTO 1100

CONTINUE
WRITE (WT»1032) NAMFIL
FORMAT(//»' ERROR CLOSING FILE S14A1)
GOTO 1100

CONTINUE
CALL ICLOSE(ICHAN)

111

FORTRAN TV V02.5-2 Thu 08-M3a-86 13119:06 PAGE 005

0090 CALL IFREEC(ICHAN)
0091 WRITE (UTfl042>
0092 1042 FORMATC ',//,' ERROR! DK.'DISKETTE FULL .'')

C
C ERROR RETURN
C

0093 1100 CONTINUE
C

0094 LERROR='TRUE'
0095 RETURN
0096 END

112

FORTRAN IV Storage Map for Program Unit DISKSV

Local Variables^ .PSECT *DATA» Size = 000112 (37. words)

Name Type
FILE R*8
IADD 1*2
ICHAN 1*2
ILAST 1*2
ISIZE 1*2
LERROR L*l @
WT 1*2

COMMON Block /INOUT /, Size = 012620 (2760. words)

Name Type
CR L*l
I 1*2
IBLOCK 1*2
IERROR 1*2
IREM 1*2
LASTBK 1*2
RT 1*2

Offset
000020
000064
000044
000062
000040
000036
000046

Offset
000052
000072
000076
000070
000042
000006
000050

Name
FILE1
IBLK
IEND
INDEX
ITOTBK
NUORDS

Type
R*8
1*2
1*2
1*2
1*2
1*2

Offset
000010
000100
000074
000066
000034
000102

Name Type
ARRAY L*l
IPDATA 1*2

Offset Name Type
000000 EQV BPDATA L*l
011610 EQV

Offset Name Type
011610 EQV IARRAY 1*2

Local and COMMON Arrays:

name i yp
ARRAY L*l
BPDATA L*l
HEADER 1*2
IARRAY 1*2
IDATA 1*2
IPDATA 1*2
NAMFIL L*l

e sec^ior
INOUT
INOUT

0 SDATA
INOUT

0 $DATA
INOUT

<? *DATA

1 UTTSet

000000
011610
000002
000000
000004
011610
000000

3]

011610 «
001010 <
000006 '
011610 (
001010 <
001010 (
000017 i

.ze
f 2500.)
: 260.)
(3.)
[2500.)
f 260.)
: 260.)
[8.)

Dimensions
(5000)
(520)
(3)
(2500)
(260)
(260)
(15)

Offset
000000 EQV

Subroutines? Functions* Statement and Processor-Defined Functions?

Name Type
ICLOSE 1*2
IWRITW 1*2

Name Type
IENTER 1*2
MOD 1*2

Name Type
IFREEC 1*2

Name
I6ETC

Type
1*2

Name Tape
IRAD50 1*2

113

FORTRAN IV V02.5-2 Thu 08-H3a-86 13520J26 PAGE 001

0001

c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

MODULE NAME:
SUBROUTINE DISKRD(NAMFIL?HEADER»IDATA»IBLOCK»LERROR)

PURPOSE: TO READ SUCCESSIVE BLOCKS OF PROGRAM FROM DISKETTE

INPUT: READS HEADER AND SUCCESSIVE BLOCKS OF DATA
FROM DISKETTE

PROCESSING: KEEPS TRACK OF NUMBER OF BLOCKS OF DATA

OUTPUT: PASSES PROGRAM BACK TO CALLING ROUTINE IN ARRAY
IDATA

CALLED BYJ LOAD

CALLS TO: NONE

SPECIAL INTERFACE REQUIREMENTS: NONE

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRAMMER =====CONTACT/ACTION/REMARKS=====
6-24-85 FRED R. SIAS» JR, (803J656-3375/ NARRATION/PROGRAM
7-05-85 FRS FINISHED DEBUGGING

7-23-85 J, KEITH MCELVEEN (803)656-3375/REVISED PROGRAM
9-6-85 FRS FIXED ARRAY INDEXES/ LOST DATA

114

FORTRAN IV V02.5-; Thu 08-Msy-86 13520:26 PAGE 002

0002
0003
0004
0005
0006

0007

0008
0009

0010
0011

-
0012

0014
0015

0016
0017
0019
0020
0022
0023
0025

0027
0028

0029

0030
0031
0033
0035
0036
0037
0038
0039
0040
0041

0042
0043

C

C

C

C
C
C

C

C
C
C

C

C
130
C
C _,

135

140
C
_ _ _ _

C
C
C

LOGICAL*! LERROR
BYTE NAMFIL< 15)> ARRAY (5000),BPDATA< 520)»IBU
INTEGER*2 I ARRAY (2500)i IPBATAC 260)
INTEGER*2 HEADER(3) » IDATA(257) »LASTBK»IREM»
REAL*8 FILE

COMMON /INOUT/ ARRAYiBPDATA

EQUIVALENCE (ARRAY* IARRAY)
EQUIVALENCE (BPBATA. IPDATA)

UT=7
RT=5

60 DOWN TO 350 IF NOT CALL FOR HEADER

IF <HEADER(3).NE,0) GOTO 350

CALL IRAD50(12»NAMFIL»FILE)
IFLAG=HEADER<3)

OPEN FILE AND READ

ICHAN=IGETC()
IF (ICHAN.LT.O) STOP 'NO CHANNEL AVAILABLE'
IERROR=IFETCH(FILE)
IF (IERROR.NE.O) STOP 'BAD FETCH'
IERROR=LOOKUP(ICHAN»FILE)
IF (IERROR.EQ.-2) GOTO 1040
IF (IERROR.LT.O) STOP 'BAD LOOKUP'

IBLOCK=0
INDEX=1

CONTINUE

PCAn TiATA

IERROR=IREADM(256fIBUFF»IBLOCK»ICHAN)
IF (IERROR,LT,-1) STOP 'BAD READ'
IF (IERROR.EQ.-1) GOTO 140
DO 135» I=l»512
ARRAY(INDEX)=IBUFF(I)
INDEX=INDEX+1
CONTINUE
IBLOCK=IBLOCK+1
GOTO 130
CONTINUE

CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)

DELETE CR'S IN ARRAY

0044 J=l

115

FORTRAN IV

0045
0046
0048
0049
0051
0052 190
0053 200

C

V02.5-2 Thu 08-M3y-86 13:20526 PAGE 003

DO 190f I=lf5000
IF (ARRAY(I).EQ,'015) GOTO 190
ARRAY(J)=ARRAY(I)
IF (ARRAY(I).EQ,0) GOTO 200
J=JH
CONTINUE
CONTINUE

116

FORTRAN IV

0054
0055
0056
0057
0059

0060
0061
0062

0063
0065

0067

0068

0070
0071
0072
0073
0074
0075
0076

0077
0078
0079
0080
0081
0082
0083

0084

0085
0086

C

C

C
C
C250
C
C
C260
C

C
C
C

C
C
C
350
C

C
C
C

390

C
400

490
C
500
C
C
C

V02.5-2 Thu 08-M3a-86 13:20226 PAGE

ISIZE=J-1
ITOTBK=ISIZE/252
IREM=ISIZE-ITOTBK*252
IF (IREM.NE.O) ITOTBK=ITOTBK-H
LASTBK=ITOTBK-1
___ _ _ _ _ _ _ _ _ _ _ _____________ ___________n T ARMnCTTPC

WRITE (WT»250) ISIZE , IREM, ITOTBK
FORMATC ISIZE= ',16,' IREM= ',16,' ITOTBK= ',16)

WRITE (WT»260) (ARRAY(I) i HI , ISIZE)
FORMATC ',6C ',14))

HEADER(1)=ITOTBK
HEADER(2)=IREM
HEADER(3)=ISIZE

RETURN WITH JUST HEADER INFORMATION

IF (IFLAG.EQ.O) INDEX=1
IF (IFLAG.EQ.O) RETURN

HERE IF MOVING BLOCKS OF DATA

CONTINUE

IF (IBLOCK.EQ.LASTBK) GOTO 400

THIS FOOLISHNESS NEEDED SINCE CAN'T EQUIVALENCE PARAMETER-

DO 390, 1=5,256
BPDATA(1*2-1)=ARRAY< INDEX)
IDATA(I)=IPDATA(I)
INDEX=INDEXn
K=I
CONTINUE
GOTO 500

CONTINUE
DO 490, I=5,IREM+4
BPDATA(1*2-1)=ARRAY(INDEX)
IDATA(I)=IPDATA(I)
INDEX=INDEX+1
K=I
CONTINUE

CONTINUE

NORMAL EXIT HERE

IDATA(4)=IBLOCK
IDATA(l)=K-2

117

FORTRAN IV

C
0087
0088

V02.5-2 Thu 08-M3a-86 13:20526

LERROR='FALSE'
RETURN

PAGE 005

118

FORTRAN IV

0089

0090
0091

0092
0093
0094
0095

0096
0097
0098
0099

0100
0101
0102
0103

0104
0105
0106
0107
0108

0109

0110
0111
0112

C
C
1000
C
1002

C
1010

1012

C
1020

1022

C
1030

1032

C
1040

1042
C
C
1100
C

V02.5-2 Thu 08-Msa-86 13120:26

ERROR MESSAGES AND ERROR RETURN

PAGE 006

CONTINUE
WRITE (WT»1002) NAMFIL
FORMATS '»/»' ERROR OPENING FILE ',14A1»/,' DOES IT EXIST?')
GOTO 1100

CONTINUE
WRITE <WT»1012) NAMFIL
FORMATC '»/,' ERROR READING HEADER FROM FILE ',14A1)
GOTO 1100

CONTINUE
WRITE (WT»1022) NAMFIL
FORMATC '»/i' ERROR READING DATA FROM FILE '»14A1)
GOTO 1100

CONTINUE
WRITE <WT»1032) NAMFIL
FORMATC ',/,' ERROR CLOSING FILE S14A1)
GOTO 1100

CONTINUE
CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)
WRITE (WT,1042)
FORMATC '»/»' FILE NOT FOUND. TRY AGAIN,')

ERROR RETURN
CONTINUE

LERROR='TRUE'
RETURN
END

119

FORTRAN IV Storage Map for Program Unit DISKRD

Local Variables* .PSECT *DATA> Size = 001076 (287, words)

Name Tape
FILE R*8
ICHAN 1*2
INDEX 1*2
ITOTBK 1*2
LASTBK 1*2
WT 1*2

Offset
001040
001052
001056
001064
001026
001036

Name Type
I 1*2
IERROR 1*2
IREM 1*2
J 1*2
LERROR L*l @

Offset Name Tape Offset
001060 IBLOCK 1*2 (? 000006
001054 IFLA6 1*2 001050
001030 ISIZE 1*2 001032
001062 K 1*2 001066
000010 RT 1*2 001034

COMMON Block /INOUT /, Size = 012620 (2760, words)

Naae Tape
ARRAY L*l
IPflATA 1*2

Offset Name Tape
000000 EGV BPDATA L*l
011610 EQV

Offset Name Tape
011610 EQV IARRAY 1*2

Offset
000000 EQV

Local and COMMON Arrays!

Size Dimensions
011610 (2500.) (5000)
001010 (260.) (520)
000006 < 3.) (3)
011610 (2500.) (2500)
001000 (256.) (512)
001002 (257.) (257)
001010 (260.) (260)
000017 (8.) (15)

Subroutines? Functions* Statement and Processor-Defined Functions;

Name Type
ARRAY L*l
BPDATA L*l
HEADER 1*2
IARRAY 1*2
IBUFF L*l
IDATA 1*2
IPDATA 1*2
NAMFIL L*l

Section Offset
INOUT 000000
INOUT 011610

0 $DATA 000002
INOUT 000000
$DATA 000012

1? $DATA 000004
INOUT 011610

0 SDATA 000000

Name Tape
ICLOSE 1*2
IREADW 1*2

Name Tape
IFETCH 1*2
LOOKUP 1*2

Name Tape
IFREEC 1*2

Name Tape
IGETC 1*2

Name Tape
IRAD50 1*2

120

FORTRAN IV V02.5-2 Thu 08-M3a-86 13J21J51 PAGE 001

0001

c
c

c
c
c
C
C
C
C
C
C
C
C
c
c
c
c
C
C
C
C
c
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

MODULE NAME:
SUBROUTINE RUN

PURPOSE:

THIS ROUTINE IS USED TO START ANY PROGRAM STORED IN THE ROBOT.
THE PROGRAM IS SELECTED BY NUMBER WHICH IS REQUESTED BY
THIS PROGRAM AND PASSED TO THE ROBOT AS PART OF THE MESSAGE,

THE LOAD PROGRAM IN THE MINC MAY BE USED TO TRANSFER A PROGRAM
FROM THE MINC DISC TO THE ROBOT MEMORY PRIOR TO STARTING THE
PROGRAM USING THIS RUN ROUTINE,

INPUT:

PROCESSING:

ACCEPTS PROGRAM NUMBER FROM MINC KEYBOARD,

SETS UP MESSAGE AND CONTROLS COMMUNICATION,
AFTER TRANSMIT AND ACKNOWLEDGE WILL SIT IN LOOP AND
RECEIVE MESSAGES INDEFINITELY. KEYPRESS TO EXIT.

OUTPUT:

SUBROUTINE DISPLAYS APPROPRIATE PROMPT MESSAGE PRIOR
TO ACCEPTING A PROGRAM NUMBER FROM KEYBOARD. THE ACTUAL
MESSAGE TRANSMITTED IS THE "SET PROGRAM MODE' MESSAGE.
MUST BE TRANSMITTED WHILE ROBOT IS IN 'NO-ACTIVITY STATE',
THE PROGRAM TO BE RUN MUST ALREADY BE STORED IN THE ROBOT
CONTROLLER MEMORY.

MESSAGE TYPE CODE = 130

THE KEYSWITCH ON THE ROBOT MUST BE ENABLED.

CALLED BY: CYR02

CALLS TO: SEND,RECEVE

SPECIAL INTERFACE REQUIREMENTS:

REVISION HISTORY

MINC DIGITAL I/O MODULES

(REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRAMMER =====CONTACT/ACTlON/REMARKS=====
7-10-84 FRED R. SIAS» JR. <803>-656-3375/SYSTEM DESIGN/PROGRAM
10-26-84 FRED R. SIAS, JR. /SIGNIFICANT PROGRAM REVISION
6-4-85 FRED R, SIAS» JR. /REVISED NARRATION
8-10-85 J, KEITH MCELVEEN /REVISED RECEIVE LOOP

121

FORTRAN IV

C
0002
0003

C
0004
0005

C
0006 10
0007
0008 100

0009
0010 110

C
0011
0013

V02.5-2 Thu 08-M3y-86 13521:51 PAGE 002

C
C

0015

0016

0017

0018

0019

0020

0021

0022
0024
0026

C
C-

INTEGER*2 WT?RT,IDATA<257)>INDATA
INTEGER*2 ILENfTERROR

UT = 7
RT = 5

CONTINUE
URITE (WTflOO)
FORMAT<//,' Input NUMBER of robot program to RUN.',
1 ,/,' To EXIT, press RETURN,> ',*>
READ <RT,110,ERR = 10) INPATA
FORMAT(H)

IFdNDATA.EG.O) RETURN
IF (INDATA.LT.l.OR.INDATA.GT,9) GOTO 400

LENGTH OF MESSAGE TO TRANSMIT
IDATA(l) = 3
SET SEQUENCE NUMBER TO 0
IDATA(2) =0
SET TYPE CODE TO 130
IDATA<3) = 130
SET PROGRAM STATUS TO 'RUN'
IDATA(4) =1
TRANSMIT PROGRAM NUMBER
IDATA(5> = INDATA

ILEN = 5

CALL SEND (IERROR»ILEN,IDATA)

IF (IERROR.EQ.1) GOTO 1000
IF (IERROR.EQ.2) GOTO 2000
IF UERROR.GT.2) GOTO 3000

-GET MESSAGE
0028

C
0029
0031
0033

C
C
C

0035
0036 1070

CALL RECEVE(IERRORflLENflCSUMflDATA)

IF <IERROR.EQ.l) GOTO 1000
IF (IERROR.EQ.2) GOTO 2000
IF (IERROR.GT.2) GOTO 3000

-KEEP READING MESSAGES

0037

0038

WRITE <WT»1070> INDATA
FORMAT(//»' PROGRAM NO.'»I2f' HAS BEEN STARTED'*

1 ' IN ROBOT.'r/»
2 ' Sastem will ignore sna messages during program run,'»/>
3 ' AFTER RUN» PRESS ANY KEY TO RETURN TO MENU,> '»$)

DO 7000 1=1,2500

CALL RECEVE(IERROR,ILEN,ICSUM,IDATA)

122

FORTRAN IV V02.5-2 Thu 08-Msa-86 13521:51 PAGE 003

0039 IF (lERROR.EG.l) GOTO 6000
0041 IF <IERROR,EQ,2) GOTO 2000
0043 IF <IERROR,GT,2) GOTO 3000

C
0045 7000 CONTINUE

C
0046 TYPE *»' RECEIVED 2500 MESSAGES* CONTINUING'

C
C WILL EXIT ABOVE LOOP IF TIMEOUT OCCURS OR IF RECEIVES
C 2500 MESSAGES.
C

0047 6000 CONTINUE
C

0048 RETURN
C
P _ » __ _ _.*.__«__....__...._._..__«.,____.__«_ — «..«. __*.»__ _._«.. _«._._______.

C
0049 400 WRITE<UT»402>
0050 402 FORMAT*//*' ONLY PROGRAM NUMBERS 1-9 ACCEPTABLE,')
0051 GOTO 10

C
0052 1000 CONTINUE
0053 WRITE(WT»1010)
0054 1010 FORMAT*//*' FIVE SECOND TIMEOUT OCCURRED DURING RECEIVE,')
0055 GOTO 999

C
0056 2000 CONTINUE
0057 WRITE(WT*2010)
0058 2010 FORMAT*//*' CHECKSUM ERROR CALCULATION PRODUCED ERROR'*

1 ' DURING RECEIVE,')
0059 GOTO 999

C
0060 3000 CONTINUE
0061 URITE(WT»3010) IERROR
0062 3010 FORMAT<//»' ILLEGAL ERROR CODE'*14*' RETURNED FROM'*

1 ' RECEIVE SUBROUTINE.')
C

0063 999 CONTINUE
0064 WRITE(WT*9999)
0065 9999 FORMAT(//>' PRESS 'RETURN' TO GOTO MAIN MENU,> '»*>
0066 READ (RT»9998) INPUT
0067 9998 FORMAT <A4)

C
0068 RETURN
0069 END

123

FORTRAN IV Storage MSP for Program Unit RUN

Local Variables* .PSECT *DATA» Size = 001022 (265, words)

Name Type Offset
I 1*2 001016
ILEN 1*2 001010
RT 1*2 001004

Local and COMMON Arrays:

Name Type Offset
ICSUM 1*2 001014
INBATA 1*2 001006
MT 1*2 001002

Name Type Offset
TERROR 1*2 001012
INPUT 1*2 001020

Name Tape
IDATA 1*2

Section Offset Size Dimensions
$DATA 000000 001002 (257.) (257)

Subroutines? Functions* Statement and Processor-Defined Functions!

Name Type Name Type Name Type Name Type Name Type
RECEVE R*4 SEND R*4

124

FORTRAN IV V02.5-2 Thu OS-Msa-86 13:22557 PAGE 001

0001

c
c MODULE NAME:

SUBROUTINE DIRECT
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
-
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
pI/

c
c
c
c

PURPOSE:

ROUTINE ACCEPTS DIR COMMAND FROM TERMINAL*
THEN A REQUEST IS TRANSMITTED TO THE ROBOT AND THE COMPUTER
RECEIVES AND

FIRST TWO

INPUT: NONE

PROCESSIHG:

HANDSHAKING:

DISPLAYS THE PROGRAM NUMBER AND THE
LINES OF EACH PROGRAM ON THE MINC CRT.

Computer transmits Type Code 193 - REQUEST TO SAVE

The computer
PROGRAM TO COMPUTER,

waits for Tape Code 66 - SAVE PROGRAM
TO COMPUTER ACKNOWLEDGE,

6-4-85 ACCORDING TO RUSS VIRES ROBOT NO LONGER WAITS
FOR FIRST TYPE CODE 193 - NOT IN CURRENT DOCUMENTATION -
RATHER TWO MESSAGES FOLLOW IN SEQUENCE SEPARATED BY A
BRIEF PAUSE,

Then computer

Each block of

SECOND MESSAGE IS FIRST BLOCK OF DATA,

accepts a seauence of blocks
using Tape Code 193 to indicate when
it is ready for each block.

data transmitted to the robot has a header
containing the Type Code 67 followed by
a seauential block number and the actual
N/C program data.

OUTPUT: DISPLAYS APPROPRIATE PROMPTS ON MINC CRT AND THEN
DISPLAYS THE PROGRAM NUMBER AND THE FIRST TWO LINES

OF EACH PROGRAM ON THE MINC CRT,

CALLED BY: CYR02

CALLS TO: REQTS

SPECIAL INTERFACE

REVISION HISTORY
nATCt'H i C

5-27-85 FRED R.
6-04-85 FRED R.
6-10-85 FRED R.

» RECEVE

REQUIREMENTS: USES MINC DIGITAL i/o MODULES

(REVISE THIS NARRATIVE IF NECESSARY)
PPnftPAMMCD — — — — — rflMTAPT/APTTnM/prMABIr'Cr MJUnHnntK — — — — -LuiYI HO 1 /HL 1 iU/Y/ hcnHhlvi)

SIAS» JR. (803)-656-3375/SYSTEM DESIGN/PROGRAM
SIAS, JR. /REVISED NARRATION
SIAS» JR. /REVISED LOGIC

125

FORTRAN IV

0002
0003
0004

0005
0006
0007

0008
0009
0010

0011

0012

0013

0014

0015
0017
0019

0021

0022

0023
0025
0027

0029
0030
0031
0032

0033

0035

0037
0039

C

C
C
C

C

C
10
C

C
120
C
C
C

C

C
C
C
200
C

C

C

C
C
C

C

C
C
C

V02.5-2 Thu 08-M3y-86 13:22:57

INTEGER*2 NUMBER. RTr WT»FILNO,OUTDV
BYTE INPUT
LOGICAL*! LERROR

INCLUDE 'COMMON, FOR' —.NOT LEGAL IN THIS F

INTEGER*2 IDATA(258)
BYTE PROG(1024)»BUFFER(80)
COMMON IDATA,PROGjBUFFER

MT=7
RT=5
OUTDV=7

CONTINUE

DO 4QO» NUMBER=1>9

CONTINUE

NOW TRANSMIT A 'REQUEST TO SAVE' TO ROBOT

CALL REQTS(NUMBERflERROR)

IF (IERROR.EQ.1) GOTO 2100
IF (IERROR.EQ.2) GOTO 2200
IF (IERROR.GE.3) GOTO 2300

NOW WAIT FOR SAVE ACKNOWLEDGE - TYPE CODE 66

CONTINUE

CALL RECEVE(IERROR»ILEN,ICSUM»IDATA)

IF UERROR.EG.l) GOTO 3100
IF <IERROR,EQ,2) GOTO 3200
IF (IERROR,GE,3) GOTO 3300

ITYPE=IDATA(3)
IACK=IDATA(4>
IPNIJM=IDATA<5)
ISIZE=IDATA(6)+256*IDATA(7>

WRONG MESSAGE TYPE RECEIVED

IF (ITYPE.NE.66) GOTO 1100

IF (IPNUM.NE, NUMBER) GOTO 1200

NOT READY TO RECEIVE CODE = 0

IF (IACK.EQ.O) GOTO 1300
IF (IACK.GE.2) GOTO 1000

PAGE 002

126

FORTRAN IV

C
0041
0042 203

C
0043

C
C
C

0044
0045
0046

C
C
C
C
C

C
C
C

C

C

0048

0049

0051

0052
0054
0056

0058 240
C
C
C

0059
C

0060
0062
0064

C
0066
0067
0069
0070

C
C
C

0072
C

0074
C

0075
C

0076
0078 205
0079

V02.5-2 Thu 08-M3a-86 13J22J57 PAGE 003

URITE(WT,203> NUMBER
FORMATC Program No. '»I2>' '»$)

IBLKCT=0

RECEIVES BLOCK NUMBER AND 252 BYTES OF DATA IN EACH BLOCK

ITOTBK=ISIZE/252
IREM=ISIZE-ITOTBK*252
IF (IREM.NE.O) ITOTBK=ITOTBK-H

LOOP TO RECEIVE AND PUT IN ARRAY FOLLOWS:

DO 300 I=1»ITOTBK

SKIP REQUEST TO SEND FOR FIRST BLOCK OF DATA

IF (I.EQ.l) GOTO 240

CALL REQTS(NUMBERflERROR)

IF (TERROR.EQ.l) GOTO 2100
IF (IERROR.EQ.2) GOTO 2200
IF (IERROR.GE.3) GOTO 2300

CONTINUE

STARTS RECEIVING PROGRAM HERE

CALL RECEVE(IERROR»ILEN»ICSUM»IBATA)

IF (IERROR.EQ.1) GOTO 3100
IF (IERROR.EQ.2) GOTO 3200
IF (IERROR.GE.3) GOTO 3300

ITYPE=IDATA(3)
IF (ITYPE.NE.67) GOTO 1100
IBLOCK=IDATA(4)
IF (IBLOCK.NE.IBLKCT) GOTO 4100

DISPLAY ARRAY ON CRT

IF (IBLKCT.NE.O) GOTO 260

ICRS=1

DO 250 K=5»ILEN+2

IF(IDATA(K).EQ.'012) WRITE (OUTDV»205)
FORMATC-f'»'/')
IF(IDATA(K).EQ.'012) ICRS=ICRS+1

127

FORTRAN IV

C
0081
0083

C
0085
0087 220

C
0088 250

C
0089 260

C
0090

C
C
C

0091 300
C

0092 400
C

0093
0094 500
0095

C
0096

C

V02.5-2 Thu 08-M3a-86 13522:57 PAGE 004

IF(IDATA(K>.EQ.O> GOTO 260
IF(ICRS,EQ.2> GOTO 260

IF(IDATA(K).NE.'012) URITE (OUTDV»220) IDATA(K)

CONTINUE

CONTINUE

IBLKCT=IBLKCTil

END OF FILE TRANSFER LOOP

CONTINUE

CONTINUE

WRITE <WT,500)
FORMAT(/»' PRESS 'RETURN1 TO GOTO MAIN MENU,> ',*>
READ (RTi904) INPUT

RETURN

128

FORTRAN IV

0097
0098
0099
0100
0101
0102

0103
0104
0105

0106
0107
0108

0109
0110
0111

0112
0113

0114
0115

C
C
900

992

904

C
1000
1002

C
1100
1102

C
1200
1202

C
1300
1302

V02.5-2 Thu 08-Msa-86 13:22557 PAGE 005

ALL OF THE VARIOUS ERROR MESSAGES FOLLOW:

CONTINUE
WRITE (WT»992)
FORMAT(//»' PRESS RETURN TO GOTO MAIN MENU> '»*)
READ <RT»904) INPUT
FORMAT(I4)
RETURN

WRITE <WT»1002)
FORMAT(//»' ILLEGAL ACKNOWLEDGE CODE RECEIVED.')
GOTO 900

WRITE (WT.1102)
FORMAT </A' WRONG MESSAGE TYPE RECEIVED!')
GOTO 900

WRITE (WTfl202)
FORMAT(/A' WRONG PROGRAM NUMBER RETURNED BY ROBOT!')
GOTO 900

WRITE <WT»1302)
FQRMAT<//»' ROBOT NOT READY TO RECEIVE.'.

1 ' TYPE 'RETURN' TO TRY AGAIN> '»$)
READ (RT.904) INPUT
GOTO 120

0116 2100 WRITE <WT»2102)
0117 2102 FORMAT(//»' TIME OUT ERROR WHILE WAITING FOR'»/S

1 ' ACKNOWLEDGE FROM ROBOT.')
0118 GOTO 900

C
0119 2200 WRITE <WT»2202>
0120 2202 FORMAT<//»' LRC ERROR MESSAGE RETURNED AFTER TRANSMISSION.')
0121 GOTO 900

C
0122 2300 WRITE (WT»2302) IERROR
0123 2302 FORMAT(//r' ILLEGAL ACKNOWLEDGE CODE',I4»' RECEIVED'*

1 ' AFTER TRANSMISSION TO ROBOT,')
0124 3100 WRITE (WT»3102)
0125 3102 FORMAT<//,' FIVE SECOND TIMEOUT OCCURED DURING RECEIVE.')
0126 GOTO 900

C
0127 3200 WRITE (WT»3202)
0128 3202 FORMAT(//f' CHECKSUM ERROR CALCULATION PRODUCED ERROR'>

1 ' DURING RECEIVE.')
0129 GOTO 900

C
0130 3300 WRITE (WT»3302) IERROR
0131 3302 FORMAT(//,' ILLEGAL ERROR CODE'rI4f' RETURNED FROM'*

1 ' RECEIVE SUBROUTINE.')
0132 GOTO 900

C
0133 4100 WRITE (WT»4102) IBLOCK»IBLKCT

129

FORTRAN IV V02.5-2 Thu 08-Msy-86 13:22:57 PAGE 006

0134 4102 FORMAK/A' BLOCK COUNT TRANSMITTED C»I4»')'»
1 ' DOES NOT MATCH EXPECTED BLOCK <'»I4f'),')

0135 GOTO 900
C

0136 END

130

FORTRAN IV Storage Map for Program Unit DIRECT

Locsl Variables* .PSECT $DATA» Size = 000056 (23. words)

Name
FILNQ
IBLKCT
ICSUM
INPUT
ISIZE
K
OUTDV

Type
1*2
1*2
1*2
L*l
1*2
1*2
1*2

Offset
000012
000036
000024
000016
000034
000052
000014

Name
I
IBLOCK
IERROR
IPNUM
ITOTBK
LERROR
RT

Tape
1*2
1*2
1*2
1*2
1*2
L*l
1*2

Offset
000044
000046
000020
000032
000040
000017
000006

Name
IACK
ICRS
ILEN
IREM
ITYPE
NUMBER
WT

Type
1*2
1*2
1*2
1*2
1*2
1*2
1*2

Offset
000030
000050
000022
000042
000026
000004
000010

COMMON Block /

Name Type Offset
IDATA 1*2 000000

/, Size = 003124 (810. words)

Name Type Offset
PROG L*l 001004

Name Type Offset
BUFFER L*l 003004

Local and COMMON Arrays!

Name Type Section Offset Size Dimensions
BUFFER L*l .$*$$. 003004 000120 (40.) (80)
IDATA 1*2 .m$, 000000 001004 (258.) (258)
FROG L*l ,$m, 001004 002000 (512.) (1024)

Subroutines? Functions? Statement and Processor-Defined Functions?

Name Type Name Type Name Type Name Type Name Type

RECEVE R*4 REQTS R*4

131

FORTRAN IV V02.5-2 Thu 08-Msa-86 13524:38 PAGE 001

0001

C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

MODULE NAME:
SUBROUTINE DISPLA

PURPOSE:

ROUTINE ACCEPTS PROGRAM NUMBER TO BE DISPLAYED FROM TERMINAL*
THEN A REQUEST IS TRANSMITTED TO THE ROBOT AND THE COMPUTER
RECEIVES AND DISPLAYS THE PROGRAM RETURNED TO IT,

INPUT:

PROCESSING:

ACCEPTS PROGRAM NUMBER FROM MINC KEYBOARD,

HANDSHAKING:
Computer transmits Tape Code 193 - REQUEST TO SAVE

PROGRAM TO COMPUTER.
The computer waits for Tape Code 66 - SAVE PROGRAM

TO COMPUTER ACKNOWLEDGE.

6-4-85 ACCORDING TO RUSS VIRES ROBOT NO LONGER WAITS
FOR FIRST TYPE CODE 193 - NOT IN CURRENT DOCUMENTATION -
RATHER TWO MESSAGES FOLLOW IN SEQUENCE SEPARATED BY A
BRIEF PAUSE. SECOND MESSAGE IS FIRST BLOCK OF DATA,

Then computer accepts s seauence of blocks
usina Tape Code 193 to indicate when
it is reada for each block.

Each block of data transmitted to the robot has 3 header
containing the Tape Code 67 followed ba
a seouential block number and the actual
N/C prosfram data.

OUTPUT: DISPLAYS APPROPRIATE PROMPTS ON MINC CRT AND THEN
DISPLAYS SELECTED ROBOT PROGRAM ON MINC CRT OR PRINTER.

CALLED BY: CYR02

C
e
c
c
c-
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
cmmmmmmmmmmmmmmmmmmmmmmm********

CALLS TO! REQTS» RECEVE

SPECIAL INTERFACE REQUIREMENTS: USES MINC DIGITAL i/o MODULES

REVISION
DATE

5-27-85
6-04-85
6-10-85

HISTORY

FRED R.
FRED R,
FRED R,

SIAS.
SIAS»
SIAS»

JR.
JR,
JR.

(R'EVISE THIS NARRATIVE IF NECESSARY)
=====CONTACT/ACTION/REMARKS=====

<803)-656-3375/SYSTEM DESIGN/PROGRAM
/REVISED NARRATION
/REVISED LOGIC

132

FORTRAN IV

0002
0003
0004

0005
0006
0007

0008
0009
0010

0011

0012
0013

0014
0015

0016
0018

0020
0021
0022
0023
0024

0026

0027

0028
0030
0032

0034

0035

0036
0038
0040

0042
0043

C

C
C
C

C

C
10
C

100

110
C

C

112

113

C
120
C
C
C

C

C
C
C
200
C

C

C

V02.5-2 Thu 08-M3y-86 13124:38 PAGE

INTEGER*2 NUMBER »RT»HT»FILNO» OUTDV
BYTE INPUT
LOGICAL*! LERROR

INCLUDE 'COMMON, FOR' —-NOT LEGAL IN THIS FORTRAN

INTEGER*2 IDATA(258)
BYTE PROG(1024)»BUFFER(80)
COMMON IDATAfPROG»BUFFER

WT=7
RT=5
OUTDV=7

CONTINUE

WRITE (WT»100)
FORMAT<///»' Input NUMBER of Program to be displayed,'*
1 /»' To EXIT? press RETURN, > '>$)
READ (RT»110) NUMBER
FORMAT(I2)

IF (NUMBER. EQ,0> RETURN
IF(NUMBER,LT,1,OR,NUMBER,GT.9> GOTO 400

WRITE <WT>112>
FORMAT(//»' Do you want output on printer? (Y or N» '»$)
READ <RT»113) INPUT
FORMAT(Al)
IF (INPUT, EQ.'Y') OUTDV=6

CONTINUE

NOW TRANSMIT A "REQUEST TO SAVE1 TO ROBOT

CALL REQTS(NUMBER»IERROR)

IF (IERROR.EQ.1) GOTO 2100
IF (IERROR.EQ.2) GOTO 2200
IF (IERROR.GE.3) GOTO 2300

NOW WAIT FOR SAVE ACKNOWLEDGE - TYPE CODE 66

CONTINUE

CALL RECEVE(lERRORf ILEN» ICSUM > IDATA)
,

IF (IERROR.EQ.1) GOTO 3100
IF (IERROR,EQ,2> GOTO 3200
IF (IERROR.GE.3) GOTO 3300

ITYPE=IDATA(3)
IACK=IDATA(4)

133

FORTRAN IV V02.5-2 Thu 08-M3S-86 13{24!38 PAGE 003

0044
0045

0046

0048

0050
0052

0054
0055

0056

0057
0058
0059

C
C
C

C
C
C

0061

0062

0064

0065
0067
0069

0071

0072

0073
0075
0077

0079
0080
0082

202
C

C
C
C

C
C
C
C
C

C
C
C

C
240
C
C
C

IPNUM=IDATA<5)
ISIZE=IDATA(6)+256*IDATA<7)

WRONG MESSAGE TYPE RECEIVED

IF UTYPE.NE.66) GOTO 1100

IF UPNUM.NE.NUMBER) GOTO 1200

NOT READY TO RECEIVE CODE = 0

IF (IACK,EQ,0) GOTO 1300
IF (IACK.GE.2) GOTO 1000

WRITE <OUTDV,202> NUMBER
FORMATC Robot proSrsm No. '»I4f//>

IBLKCT=0

RECEIVES BLOCK NUMBER AND 252 BYTES OF DATA IN EACH BLOCK

ITOTBK=ISIZE/252
IREM=ISIZE-ITOTBK*252
IF (IREM.NE.O) ITOTBK=ITOTBKI1

LOOP TO RECEIVE AND PUT IN ARRAY FOLLOWS:

DO 300 I=1»ITOTBK

SKIP REQUEST TO SEND FOR FIRST BLOCK OF DATA

IF (I.EQ.l) GOTO 240

CALL REQTS(NUMBERjIERROR)

IF (IERROR.EQ.1) GOTO 2100
IF (IERROR.EQ.2) GOTO 2200
IF (IERROR,GE,3) GOTO 2300

CONTINUE

STARTS'RECEIVING PROGRAM HERE

CALL RECEVE(IERROR»ILEN»ICSUM»IDATA)

IF (IERROR.EQ.1) GOTO 3100
IF (IERROR.EQ.2) GOTO 3200
IF (IERROR.GE.3) GOTO 3300

ITYPE=IDATA(3)
IF (ITYPE.NE.67) GOTO 1100
IBLOCK=IDATA(4)

134

FORTRAN IY

0083
C
C
C

0085
C

0086
0088 205

C
0089
0091 212
0092

C
0094
0096 220

C
0097 250

C
0098 260

C
0099

C
C
C

0100 300
C

0101
0102 310
0103

C
0105

V02.5-2 Thu 08-H3a-86 13:24:38

IF (IBLOCK.NE.IBLKCT) GOTO 4100

DISPLAY ARRAY ON CRT OR PRINTER

DO 250 K=5»ILENI2

IF(IDATA(K).EQ.'012) WRITE (OUTDV»205)
FORMATC + 'f'/')

IF(IDATA(K),EQ,'012) WRITE <OUTDV»212)
FORHATC ')
IF(IBATA(K),EQ,0) GOTO 260

IF(IDATA(K),NE,'012) WRITE <OUTDV,220) IDATA(K)
FORt1AT('t'fAlt$)

CONTINUE

CONTINUE

IBLKCT=IBLKCm

END OF FILE TRANSFER LOOP

CONTINUE

WRITE (OUTDV»310)
FORMATC ',/)
IF (OUTDV.EQ.6) CLOSE (UNIT=6)

GOTO 499

PAGE 004

135

FORTRAN IV V02.5-2 Thu 08-M3y-86 13:24:38 PAGE 005

0106
0107
0108

0109
0110
0111
0112
0113

0114

0115

0116
0117
0118

0119
0120
0121

0122
0123
0124

0125
0126
0127

0128
0129

0130
0131

0132
0133

0134

0135
0136
0137

0138
0139

0140
0141

C
C
C
400
402

C
499

500

C
900
C

C

904

C
1000
1002

C
1100
1102

C
1200
1202

C
1300
1302

C
2100
2102

C
2200
2202

C
2300
2302

3100
3102

ALL OF THE VARIOUS ERROR MESSAGES FOLLOW:

WRITE <WT»402>
FORMAT<//>' ONLY PROGRAM NUMBERS 1-9 ACCEPTABLE,')
GOTO 10

CONTINUE, »
WRITE (WTfSOO)
FORMAT<//»' PRESS 'RETURN1 TO GOTO MAIN MENU,> '?$)
READ (RT»904) INPUT
RETURN

CONTINUE

RETURN

READ (RTf904) INPUT
FORMAT(Al)
RETURN

WRITE <WT,1002) '
FORMAT<//»' ILLEGAL ACKNOWLEDGE CODE RECEIVED?')
GOTO 900

WRITE (WT»1102)
FORMAT <//»' WRONG MESSAGE TYPE RECEIVED!')
GOTO 900

WRITE (WT>1202)
FORMAT(//i' WRONG PROGRAM NUMBER RETURNED BY ROBOT!')
GOTO 900

WRITE (WT»1302)
FORMAT(//»' ROBOT NOT READY TO RECEIVE,'.

1 ' TYPE 'RETURN' TO TRY AGAIN> ',*)
READ (RT»904) INPUT
GOTO 120

WRITE (WT»2102)
FORMAT*//,' TIME OUT ERROR WHILE WAITING FOR'i/»
1 ' ACKNOWLEDGE FROM ROBOT,')
GOTO 900

WRITE <WT»2202)
FORMAT*//,' LRC ERROR MESSAGE RETURNED AFTER TRANSMISSION,')
GOTO 900

WRITE <WT,2302) IERROR
FORMAT*//,' ILLEGAL ACKNOWLEDGE CODE'»I4>' RECEIVED',

1 ' AFTER TRANSMISSION TO ROBOT,')
WRITE (WT»3102)
FORMAT(//»' FIVE SECOND TIMEOUT OCCURED DURING RECEIVE,')

136

FORTRAN IV

0142

V02.5-2 Thu 08-«3y-86 13124138 PAGE 006

GOTO 900

0143 3200 WRITE <WT»3202)
0144 3202 FORMAT<//»' CHECKSUM ERROR CALCULATION PRODUCED ERRORS

1 ' DURING RECEIVE,')
0145 GOTO 900

C
0146 3300 WRITE (WT»3302> IERROR
0147 3302 FORMAT(//»' ILLEGAL ERROR CODE'»I4f' RETURNED FROM'*

1 ' RECEIVE SUBROUTINE.')
0148 GOTO 900

C
0149 4100 WRITE <WT>4102) IPLOCK»IBLKCT
0150 4102 FORMAT*//*' BLOCK COUNT TRANSMITTED (/fI4» /) /t

1 ' DOES NOT MATCH EXPECTED BLOCK ('»I4»'),')
0151 GOTO 900

C
0152 END

137

FORTRAN IV Storage Map for Program Unit DISPLA

Local Variables* .PSECT fDATAf Size = 000054 (22, words)

Name
FILNO
IBLKCT
TERROR
IPNUM
ITOTBK
LERROR
RT

Tape
1*2
1*2
1*2
1*2
1*2
L*l
1*2

. Offset
000012
000036
000020
000032
000040
000017
000006

Name
I
IBLOCK
ILEN
IREM
ITYPE
NUMBER
WT

Tape
1*2
1*2
1*2
1*2
1*2
1*2
1*2

Offset
000044
000046
000022
000042
000026
000004
000010

Name
JACK
ICSUM
INPUT
ISIZE
K
OUTBV

Tape
1*2
1*2
L*l
1*2
1*2
1*2

Offset
000030
000024
000016
000034
000050
000014

COMMON Block / /» Size = 003124 (810. words)

Name Tape Offset Name

IDATA 1*2 000000 PROG

Local and COMMON ArraasJ

Tape Offset

Ul 001004

Name Tape Offset

BUFFER L*l 003004

Name Tape
BUFFER L*l
IDATA 1*2
PROG L*l

Section Offset
,$$$$.
,m*.

Size Dimensions
003004 000120 (40,) (80)
000000 001004 (258.) (258)
001004 002000 (512.) (1024)

Subroutines? Functions! Statement and Processor-Defined Functions?

Name Tape
RECEVE R*4

Name
REQTS

Tape
R*4

Name Tape Name Tape Name Tape

138

FORTRAN IV V02.5-2 Thu 08-M3S-86 13:26517 PAGE 001

0001

c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

MODULE NAME:

PURPOSE:

INPUT:

PROCESSING:

OUTPUT:

CALLED BY:

CALLS TO:

SPECIAL INTEI

MISCELLANIOU:

REVISION HIS
DATE
6-25-85 J

7-08-85
7-22-85

SUBROUTINE DDIR

ROUTINE TO DISPLAY THE DIRECTORY OF FILES LOCATED
ON THE DK: DISKETTE,

NONE

READS AND DECODES DIRECTORY INFORMATION,
DOES NOT AFFECT DISKETTE DIRECTORY,

DISPLAYS DK: DISKETTE DIRECTORY ON MINC CRT
OR PRINTER.

CYR02

IGETC,LOOKUP,IREADW>ICLOSEjIFR£EC»R50ASCjCLOSE

RFACE REQUIREMENTS: NONE

s REQUIREMENTS: DISKETTE ON WHICH DDIR is ATTEMPTED
MUST HAVE HAD A SQUEEZE OPERATION
AT LEAST ONCE SINCE ITS CREATION,

TORY (REVISE THIS NARRATIVE IF NECESSARY)
PROGRAMMER =====CONTACT/ACTION/REMARKS=====

J. KEITH MCELVEEN /SOFTWARE DESIGN AND PROGRAMMED
JKM /NARRATION
JKM /REVISED NARRATION AND PROGRAM

cmmmmmmmmmmmmmmmmmmmmmmmtmm*

139

FORTRAN IV V02.5-2 Thu 08-Msy-86 13:26,'17 PAGE 002

0002
0003
0004

0005
0006

C
C
C

C
C
C
C

0007
0008

C
C
C

0009
0010
0011

0012
0013
0014

0015
0016
0017
0018
0019

0021
0022

0024

C

112

113

C
C
C

C
C
C

C
C
C
C
C
C
C
C

INTEGER*2 DBLK<4) »RT»WT, ITEMPf IDAY» IYEAR, IMNTH»CNT»B3
INTEGER*2 IDATA < 2048) f BUFFER rBUFFH 16) »BUFF2< 16)
INTEGER*2 INPUT

CREATE RAD50 FILE DESCRIPTOR FOR LOOKUP COMMAND

DATA DBLK /3RDK1»3R »3R »3R /
DATA IBLK /6/

CREATE MONTH 3-LETTER DISPLAY TABLE TO BE INDEXED BY
IMNTH,

INTEGER MNTH<13,3)
DATA MNTH /'060i ' 112» ' 106i '115> ' lOlf ' 115i '112» §112»
1

'060 r* 141 > '1451* 141 r1 160 f1 141 »' 1651*165?

1157»'145»i060»1156»l142»t162>i162»>171>1'156jt154f
1147»i160>t164f
1166»'143/

ASSIGN TERMINAL UNIT NUMBER

«T=7
RT=5
OUTDIV=7

K=l
LL=1
NS=0

WRITE<WT,112)
FORMAT(//r' DO YOU WANT OUTPUT ON PRINTER? (Y or N)> '>
READ(RT»113) INPUT
FORMAT(A2)
IFdNPUT.EQ.'Y') OUTDIV=6

OBTAIN CHANNEL NUMBER

ICHAN=IGETC()
IF (ICHAN.LT.O) GOTO 1060

LOOKUP DEVICE AT BLOCK 6

IF (LOOKUP(ICHAN»DBLK),LT,0) GOTO 1050

READ (WITH WAIT OPTION) 2048 CHARACTERS STARTING
AT BLOCK 6
*m*m**MAKE LARGER THAN 2048 IF USING LARGE STORAGE

DEVICE, WILL NEED TO INCREASE IDATA DIMENSION
TO NEW SIZE AND CHANGE , . . IREADW(2048, , , .
TO NEW SIZE, *****************

GOTO 100 IF END OF FILE ENCOUNTERED

140

FORTRAN IV

0026
0027
0029

0031
0032

C
C

C
C
C

V02.5-2 Thu 08-rt3y-86 13:26:17

GOTO 200 IF ERROR

ICODE=IREADU(2048»IBATA»IBLK»ICHAN)
IF (ICOOE.EQ.-l) GOTO 100
IF (ICODE.LT.-l) GOTO 200

CLOSE AND FREE CHANNEL

CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)

PAGE 003

141

FORTRAN IV V02.5-2 Thu 08-Msa-86 13526517 PAGE 004

C
C
C

0033
C
C
C
C
C
C

0034 10
0036
0038
0040

C
C
C

0042
0043

C
C
C
C
C

0044 20
0045
0046
0047 30

0048
0049

0050
0051
0052
0053
0054
0056
0057

C
C
C

C
C
C

SET NUMBER OF HIGHEST SEGMENT=NHS

NHS=IDATA(3)

SEARCH FOR STATUS WORDS:
•002000 PERMANENT FILE
•102000 PERMANENT PROTECTED FILE
•004000 END OF SEGMENT

IF<IDATA<K),EQ.'002000) GOTO 20
IFdDATA(K),EG,'102000) GOTO 20
IF(IDATA(K).EQ.'004000) NS=NSil
IF(IDATA(K),EQ,'004000,AND,NHS.EQ.NS) GOTO 999

IF NOT A STATUS WORD INCREMENT K AND TRY AGAIN

K=K+1
GOTO 10

PUT NEXT THREE WORDS (l*2=FILENAMEf3RD=EXTENSION-
IN RAD50 FORMAT) INTO TEMPORARY
ARRAY AND CALL CONVERSION (SYSTEM) SUBROUTINE

CONTINUE
DO 30 L=l»3
BUFFKL) = IDATA(K-fL)
CONTINUE

BUFF1<4)=0
CALL R50ASC(10fBUFFl»BUFF2)

DECODE DATE WORD

K=K+6
IMNTH=MOD(IDATA(K)>16384)
IMNTH=IMNTH/1024
IYEAR=MOB(IDATA(K)»16)
IF(IYEAR.NE.O) IYEAR=IYEAR+72
IDAY=MOD(IDATA(K)»1024)
IDAY=IDAY/32

OUTPUT (FILENAME.EXT LENGTH DATE) TO OUTPUT DEVICE

142

FORTRAN IV

0058

0060 300
C

0061

V02.5-2 Thu 08-Msy-86 13526 J 17 PAGE 005

0063

0064
0066
0067
0068
0070

0071

0072

0074

0075
0076
0077
0078
0079

0080
0081
0082
0083
0084

0085
0086
0087
0088

0089
0090
0091
0092

0093

301
C

310

C
999
C

C
100
110

200
210
C
1000
1010

1020

C
1050

1052

C
1060

1062

C

IF (OUTDIV.EQ.6) URITE(OUTDIVf300)(BUFF2(I),1=1»5)»IDATA(K-2)
1 IDAY»(MNTH(IMNTH+l»J)»J=lf3)»IYEAR
FORMAT<'+'i5Xi3A2»'.'i2A2f2XiI4i2X»I2»'-'i3Ali/-/iI2i5X»$)

IF (OUTDIV.EQ.7) WRITE(OUTDIV»301)(BUFF2(I),1=1,5)»IDATA(K-2>
1 IDAYf (MNTH(IMNTH-flfJ),J=l»3)»IYEAR
FORHAT<'$'»5Xi3A2i'.'i2A2F2X»I4f2XiI2i'-'i3Alf'-'»I2f5Xi«)

IF(LL.EQ.2) WRITE(OUTBIV,310)
FORMATC/')
LL=LL+1
IF(LL.EQ.3) LL=1
GOTO 10

CONTINUE

IF (OUTDIV.EG.6) CLOSE(UNIT=6)

GOTO 1000

WRITE(WT,110)
FORMAT(//»' END OF FILE ON READ')
GOTO 1000
WRITE(WT»210)
FORMAT(/A' ERROR ON READ')

WRITE (WT>1010>
FORMAT<//>' TO CONTINUE PRESS RETURN> ',$)
READ (RTfl020) INPUT
FORMAT(A2)
RETURN

CONTINUE
WRITE (WT»1052)
FORMAT(/»' BAD LOOKUP ERROR')
GOTO 1000

CONTINUE
WRITE (WT»1062)
FORMAT(/»' CANNOT ALLOCATE CHANNEL ERROR')
GOTO 1000

END

143

FORTRAN IV Storage MSP for Program Unit DDIR

Local Variables* .PSECT $DATAf Size = 010332 (2157, words)

Name
BUFFER
I
ICODE
INPUT
J
LL
OUTDIV

Type
1*2
1*2
1*2
1*2
1*2
1*2
R*4

Offset
010256
010304
010276
010260
010306
010270
010262

Name
B3
IBLK
IDAY
ITEMP
K
NHS
RT

Type
1*2
1*2
1*2
1*2
1*2
1*2
1*2

Offset
010254
010226
010244
010242
010266
010300
010236

Name
CNT
ICHAN
IMNTH
IYEAR
L
NS
WT

Type
1*2
1*2
1*2
1*2
1*2
1*2
1*2

Offset
010252
010274
010250
010246
010302
010272
010240

Local and COMMON Arrays:

Name Type
BUFFI 1*2
BUFF2 1*2
DBLK 1*2
IDATA 1*2
MNTH 1*2

Subroutines? Functions* Statement and Processor-Defined Functions?

oectiur

*DATA
$DATA
$DATA
*DATA
fDATA

1 UT T Set

010010
010050
000000
000010
010110

""**""""O J

000040 i
000040 <
000010 '
010000 1
000116 '

ize
f 16.)
: 16.)
(4.)
: 2048.)
(39.)

(16)
(16)
(4)
(2048)

Name Type
ICLOSE 1*2
MOD 1*2

Name Type
IFREEC 1*2
R50ASC R*4

Name Type
IGETC 1*2

Name Type
IREADM 1*2

Name Type
LOOKUP 1*2

144

FORTRAN V02.5-2 Thu 08-Msy-86 13527:37 PAGE 001

0001

cmtmmmmmmmmmmmmmmmmmmmmmm****.***
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

MODULE NAME:
SUBROUTINE LIST

PURPOSE:

INPUT:

PROCESSING;

OUTPUT:

ROUTINE TO LIST ANY SELECTED PROGRAM STORED
ON THE DK: DISKETTE

ACCEPTS PROGRAM NAME FROM MINC KEYBOARD AND
THEN LOADS SELECTED PROGRAM INTO ARRAY IN MEMORY,

REQUIRES FORMATTING AND PLACING V AT END
OF EACH LINE TO GIVE SAME APPEARANCE AS
ROBOT CONSOLE DISPLAY,

DISPLAYS PROGRAM ON MINC CRT OR PRINTER.

CALLED BY? CYR02

CALLS TO,' DISKRD»SCOPY»INSERT»IRAD50fIGETCfIFETCH»LOOKUP»
ICLQSEflFREECflREADU,CLOSE

SPECIAL INTERFACE REQUIREMENTS: NONE

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRAMMER =====CONTACT/ACTION/REMARKS=====

6-29-85 FRED R, SIAS» JR, (803)-656-3375/DESIGN X PROGRAM
7-22-85 J, KEITH MCELVEF.N <803)656-3375/REVISED PROGRAM/NARR

cmmmmmmmmmmmmmmmmmmmmmm***********

145

FORTRAN IV

0002
0003
0004
0005

0006

0007
0008
0009

0010
0011

0012

0013

0014
0015

0016
0017

0018

0020
0021
0022
0023
0024

0026

0027

0028

0029
0030
0032
0033
0035
0036
0038

0040
0041

C

C

C

C

C
10
C

C

100

C

105
C

C

107

108

C
120
C

C

C

C
C
C

C

170

V02.5-2 Thu OS-Maa-86 13J27J37 PAGE

INTEGER*2 OUTPV
BYTE INPUTi FILNAM(15)» NAMFIL<7)> ARRAY<5000) , IBUFF<512)
LOGICAL*! LERROR
REAL*8 FILE

COMMON /INOUT/ ARRAYfBPDATA

CALL SCOPYCDY1 CYR'iFILNAM)
DATA FILNAMU3) /OO/
DATA NAMFIL<7) /OO/

WT=7
RT=5

CONTINUE

OUTDV=7

WRITE (WTrlOO)
FORMAT <///,' Input FILE NAME of program to list.'*/,
1 ' To EXIT* press RETURN> .' »*)

READ (RT»105) (NAMFIL(I) > 1=1 >6)
FORMAT(iAl)

IF (NAMFIL(l).EQ,' ') RETURN

WRITE <WT»107>
FORMAT(//»' Do you want output on printer? <Y or N)> '»*)
READ (RTflOS) INPUT
FORMAT (Al)
IF (INPUT, EQ.'Y') OUTDV=6

CONTINUE

CALL INSERT(NAMFIL»FlLNAM,4f6>

CALL IRAD50(12jFILNAM,FILE)

OPEN FILE AND READ

ICHAN=IGETC()
IF (ICHANfLT.O) STOP 'NO CHANNEL AVAILABLE'
IERROR=IFETCH(FILE)
IF (IERROR.NE.O) STOP 'BAD FETCH'
IERROR=LOOKUP(ICHANfFIl.E)
IF (IERROR.EQ.-2) GOTO 450
IF (IERROR,LT.O,ANB,IERROR,NE,-2) STOP 'BAD LOOKUP'

WRITE <OUTDV,170) (FILNAM(I) > 1=1 » 12)
FORMAT* ' Diskette program name: 'f!2Al»//)

146

FORTRAN IV V02.5-2 Thu 08-Hsa-86 13J27.37 PAGE 003

0042
0043

0044

0045
0046
0048
0050
0051
0052
0053
0054
0055
0056

0057
0058

0059
0060
0062
0063
0064

0065

0066
0068

0069
0070

0071

0072

0074
0075
0076
0077

0078
0079
0080
0081
0083
0084
0085
0086
0087

C
130
C

135

140

C
C
C

150
160

C

C

182
C

189
C
200
C

C

500

510
C

450

455

IBLOCK=0
INDEX=1

CONTINUE

__ _ _ _ _ __ ____ _ ———DC An FIATA

IERROR=IREADW(256»IBUFF»IBLOCK»ICHAN)
IF <IERROR.LT,-1) STOP 'BAD READ'
IF (IERROR.EQ.-1) GOTO 140
DO 135* I=l»512
ARRAY<INDEX)=IBUFF(I)
INDEX=INDEX-H
CONTINUE
IBLOCK=IBLOCK-H
GOTO 130
CONTINUE

CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)

f

GET PROGRAM-LENGTH

DO 150» 1=1 » 5000
IF (ARRAY(I).EQ.O) GOTO 160
CONTINUE
CONTINUE
ISI2E=I-1

DO 200» I=1»ISIZE

IF (ARRAY<I).EQ,'015) WRITE (OUTDV»182)
FORMAT('i'»'/',*)

WRITE (OUTDy»189) ARRAY(I)
FORHATC + 'jAl**)

CONTINUE

IF (OUTDV.EQ.6) CLOSE (UNIT=6)

WRITE (WT»500)
FORHAT<//»' PRESS 'RETURN' TO CONTINUE> ',$)
READ (RT»510) INPUT
FORMAT (Al)

RETURN
CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)
IF (OUTDIV.EQ.6) CLOSE(UNIT=6)
WRITE (WT»455)
FORhfAT(//f' FILE NOT FOUND, PRESS 'RETURN' TO TRY AGAIN> '»$)
READ(RTfSlO) INPUT
GOTO 10
END

147

FORTRAN IV Storage Map for Program Unit LIST

Local Variables* .PSECT $DATA» Size = 001144 (306, words)

Name Type Offset
FILE R*8 001044
ICHAN 1*2 001066
INPUT L*l 001042
OUTDIV R*4 001100
WT R*4 001054

Name
I
IERROR 1*2
ISIZE 1*2
OUTDV 1*2

Tape Offset
1*2 001064

001070
001076
001040

Name Tape Offset
IBLOCK 1*2 001072
INDEX 1*2 001074
LERROR L*l 001043
RT R*4 001060

COMMON Block /INOUT /> Size = 011614 < 2502. words)

Name Tape
ARRAY L*l

Offset
000000

Name Tape
BPDATA R*4

Offset
011610

Name Tape Offset

Local and COMMON ArraasJ

Name Ti
ARRAY L*l
FILNAM L*l
IBUFF L*l
NAMFIL L*l

Subroutines* Functions* Statement and Processor-Defined Functions?

aectior
INOUT
*DATA
*DATA
*DATA

\ urisei size L'lraens
000000 011610 (2500.) (5000)
000000 000017 < 8.) <15)
000026 001000 (256.) (512)
000017 000007 (4.) (7)

Name Tape
ICLOSE 1*2
IRAD50 1*2

Name Tape
IFETCH 1*2
IREADW 1*2

Name Tape
IFREEC 1*2
LOOKUP 1*2

Name Tape
IGETC 1*2
SCOPY R*4

Name Tape
INSERT 1*2

148

FORTRAN IV V02.5-2 Thu 08-Msy-86 13J28M4 PAGE 001

0001

C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

MODULE NAME:

PURPOSE:

INPUT:

PROCESSING:

SUBROUTINE RESEQ

THIS SUBROUTINE ACCEPTS THE NAME OF A ROBOT
PROGRAM STORED ON DISKETTE AND THEN RENUMBERS THE
COMMAND LINES SO THAT THE PROGRAM STARTS WITH TWO
COMMENT LINES FOLLOWED BY PROGRAM LINE NUMBERS
IN STEPS OF TEN.

ACCEPTS PROGRAM FILE NAME FROM THE MINC KEYBOARD
AND THEN READS THAT PROGRAM FROM THE DISKETTE.

PROGRAM ASSUMES '.CYR1 FILENAME EXTENSION.

OUTPUT: REWRITES THE RESEQUENCED PROGRAM TO DISKETTE.

CALLED BY: CYR02

CALLS TO: INSRTfIRAD50fSCOPYiINSERT,IGETC»IFETCH»LOOKUP>
IREADW»ICLOSE»IWRITW

SPECIAL INTERFACE REQUIREMENTS: NONE

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRAMMER =====CONTACT/ACTION/REMARKS=====
7-20-85 J, KEITH MCELVEEN (803><S56-3375/SYSTEM DESIGN/PROGRAM

7-22-85 JKM (803)656-3375/REVISED NARRATION
5-07-86 FRS INCREASED ARRAY SIZE

149

FORTRAN IV

0002

0003
0004
0005

0006
0007
0008

0009
0010

0011

0012
0013

0014
0015

0016

0018

0019

0020

0021
0022

0023
0024
0026
0027
0029
0030
0032

0034
0035

0036

0037
0038
0040
0042

C

C

C

C
10
C

100

C

105
C

C
120
C

C

C

170
C
C
C

C

C
130
C
r

V02.5-2 Thu 08-M3y-86 13:28:44 PAGE

BYTE INPUT»FILNAM<15>»NAMFIL(7)»ARRAY(8000)j
1 IBUFF(512),ARRAY1(8000)
LOGICAL*! LERROR
REAL*8 FILE
COMMON/INSRT/I»J»K»L»ARRAYlf ARRAY* LNUM

CALL SCOPYCDY1 CYR'jFILNAM)
DATA FILNAM<13) /OO/
DATA NAMFIL(7) /OO/

WT=7
RT=5

CONTINUE

WRITE (WTilOO)
FORMAT (///»' Input FILE NAME of prosSrsm to RESEQUENCE,',
1 A' To EXIT, press RETURN> ',*>

READ (RT.105) (NAMFIL(I) F 1=1 >6>
FORMAT(6A1)

IF (NAMFIL(l).EQ,' ') RETURN

CONTINUE

CALL INSERT<NAMFIL>FILNAMj4»6)

CALL IRAD50(12iFILNAM»FILE)

WRITE (WT»170) (FILNAM(I)fI=l»12)
FORJ1ATC Diskette program ns/ne: 'j!2Al»//)

OPEN FILE AND READ

ICHAN=IGETC()
IF (ICHAN.LT.O) STOP 'NO CHANNEL AVAILABLE'
IERROR=IFETCH(FILE)
IF (IERROR.NE.O) STOP 'BAD FETCH'
IERROR=LOOKUP(ICHAN»FILE)
IF (IERROR.EQ.-2) GOTO 450
IF (IERROR.LT,O.ANO,IERROR,NE,-2> STOP 'BAD LOOKUP'

IBLOCK=0
INDEX=1

CONTINUE

_ — _ — — — - — — — — — — _ — — — — C'CAH nATA

IERROR=IREADW(256rIBUFF>IBLOCKfICHAN)
IF (IERROR.LT.-1) STOP 'BAD READ'
IF (IERROR.EG.-1) GOTO 140
DO 135» 1=1,512

150

F O R T R A N I V V02.5-2 Thu 08-May-86 13:28M4 PAGE 003

0043
0044

0045

0047
0048
0049
0050

0051
0052

0053
0054
0055

0056
0057
0059
0060
0061

0062

0063
0064
0065

0067
0069
0070
0071
0072
0073
0074
0075

0076
0077

0078
0079

C

C
135

140

C

C
C
C

C
C
C

C
C
700

C

710

800
r **inU***J

C
C

C
C
C

ARRAY(INDEX)=IBUFF(I)
INDEX=INDEX-H

IF (INDEX, GE. 8000) GOTO 2000

CONTINUE
IBLOCK=IBLOCK+1
GOTO 130
CONTINUE

CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)

1 = 1
J=l
LNUM=0

CHECK FOR N ON FIRST LINE OF PROGRAM

L=0
IF<ARRAY(1).NE,'116) GOTO 900
CALL INSRT
J=J+5
I=H-K-1

SET FIRST TIME INDICATOR(L) TO 1

L=l

BEGIN LOOP TO FIND 'LF' FOLLOWED BY 'N'
J=J+1
I = Itl
IF(ARRAY(I),EQ.O) GOTO 800

IFCARRAYm.EQ.'O^.AND.ARRAYd-m.EG.'m) GOTO 710
ARRAY1(J)=ARRAY(I)
GOTO 700

CALL INSRT
J=J+5
I=HK-1
GOTO 700
CONTINUE

k**>*******************#**************7MAYOjt^**'p**v***'r*^^'r****TTT*T****^Jr*T****/nH I DO

PUT ZERO AT END OF ARRAY
ARRAY(J)=0
ARRAY <J-H)=0

CALCULATED NUMBER OF WORDS TO OUTPUT

J=J-1
JJ=J/2+l

OUTPUT TO DISK

151

FORTRAN IV V02..5-2 Thu 08-M3a-86 13:28J44 PAGE 004

0080
0081
0083
0084
0086
0087

0089

0090
0091

0092
0093 900
0094 910

0095
0096
0097
0098
0099
0100

0101
0102
0103
0104
0105
0106
0107

0108

0109
0110
0111
0112

0113

0114

ICHAN=IGETC()
IF (ICHAN.LT.O) STOP 'NO CHANNEL AVAILABLE'
IERROR=IFETCH(FILE)
IF (IERROR.NE.O) STOP ' BAD FETCH'
IERROR=LOOKUP(ICHAN»FILE>
IF (IERROR.LT.O) STOP ' BAD LOOKUP'

I£RROR=IWRITW(JJ»ARRAY1»0,ICHAN>

C
920

930

904

C
450

455

460

C
2000
C
C
C

2010

CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)

GOTO 920
URITE<UT,910)
FORMAT(//»' FIRST CHARACTER IN FILE TO BE RESEQUENCED
1 IS NOT AN 'N',',/,' CHECK FILE LISTING,')

CONTINUE
WRITE(WT»930)
FORHAT(//,' Press RETURN to continue> 'r$)
READ (RT,904) INPUT
FORMATCI4)
RETURN

CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)
WRITE(WT,455>
FORMAT(//»' FILE NOT FOUND. PRESS 'RETURN' TO CONTINUE> '»$)
READ(RT,460) INPUT
FORMAT(Al)
GOTO 10

CONTINUE

PROGRAM TOO LARGE ERROR HANDLING

CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)
WRITE(WT»2010> NAMFIL
FORMATC ',/,' PROGRAM 'f!4Al»' TOO LARGE TO RESEQUENCE',//,
1 ' PRESS 'RETURN' TO CONTINUE> ',*)
READ <RT,460) INPUT

END

152

FORTRAN IV Storage MSP for Program Unit RESEG

Local Variables* .PSECT $DATA» Size = 001141 (305. words)

Name
FILE
IERROR
JJ
WT

Type
R*8
1*2
1*2
R*4

Offset
001036
001060
001066
001046

Name
IBLOCK
INDEX
LERROR

Type
1*2
1*2
L*l

Offset
001062
001064
001035

Name
ICHAN
INPUT
RT

Type
1*2
L*l
R*4

Offset
001056
001034
001052

•

COMMON Block /INSRT /» Size = 037212 (8005, words)

Nsroe Type Offset
I 1*2 000000
L 1*2 000006
LNUM 1*2 037210

Name Type Offset
J 1*2 000002
ARRAY1 L*l 000010

Name Type Offset
K 1*2 000004
ARRAY L*l 017510

Local and COMMON Arrays?

Name Tape
ARRAY L*l
ARRAY1 L*l
FILNAM L*l
IBUFF L*l
NAMFIL L*l

Section Offset
INSRT 017510
INSRT 000010
$DATA
*DATA
fDATA

000000
000026
000017

Size Dimensions
017500 (4000.) (8000)
017500 < 4000.) (8000)
000017 (8.) (15)
001000 (256.) (512)
000007 (4.) (7)

Subroutines* Functions.' Statement and Processor-Defined Functions!

Name Type
ICLOSE 1*2
INSRT 1*2
SCOPY R*4

Name Type
IFETCH 1*2
IRAD50 1*2

Name Type
IFREEC 1*2
IREADW 1*2

Name Type
IGETC 1*2
IMRITU 1*2

Name Type
INSERT 1*2
LOOKUP 1*2

153

FORTRAN IV V02.5-2 Thu OB-Msy-86 13529:55 PAGE 001

0001

C

C

0002
0003

0004

0005

0006
0007
0009
0011

0012

0013 800
0014
0016
0017
0018

C
0019
0020
0021
0022

C
0023
0024

cmmmmmmmmmmmmmmmmmmmmmmmm
c
c MODULE NAME:
c

SUBROUTINE INSRT
C
C
C
C
C
C
C
C
c
c
c
c
cmmwmmmmmmmmmmmmmmmmm*********
c

COMMON/INSRT/I»J»K»L»ARRAY1»ARRAY»LNUM
BYTE ARRAY1(8000)»ARRAY(8000)>IASC(10)

TO INSERT NEW RESEQUENCED LINE NUMBERS

CALLED BY? RESEQ

CALLS TO? NONE

REVISION HISTORY:

DATE
7-22-85 J. KEITH MCELVEEN ROUTINE WRITTEN

DATA IASC /1060»>061»'062>f063»<064j'065ji066»i067»
1 '070f'071/

LNUM=LNUMH

ARRAY1(J)=ARRAY(I)
IF(L.EQ.O) J=0
IF(L.EO.O) 1=0
ARRAY1(JM)=ARRAY(H1)

K=l

K=KH
IF(ARRAY(HK),GE,i060,AND.ARRAY(I+K),LE,'071) GOTO 800
I1=INT(LNUM/100.)
I2=-1*I1*10+ INT(LNUM/10.)
I3=-l*(11*100+ 12*10)-fLNUM

ARRAY1(J+2) =
ARRAYl(J+3)=IASC(I2-m

ARRAY1(JI5)='060

RETURN
END

154

FORTRAN IV Storage MSP for Program Unit INSRT

Local Variables^ .PSECT $PATA/ Size = 000031 (13. words)

Name Type Offset
II 1*2 000012

Name Tape Offset
12 1*2 000014

Nane Tape Offset
13 1*2 000016

COMMON Block /INSRT /» Size = 037212 (8005. words)

Name Tape Offset
J 1*2 000002
ARRAY1 L*l 000010

Name Tape Offset
K 1*2 000004
ARRAY L*l 017510

Name Tape Offset
I 1*2 000000
L 1*2 000006
LNUM 1*2 037210

Local and COMMON Arraast

Name Type Section Offset Size Dimensions
ARRAY L*l INSRT 017510 017500 (4000.) (8000)
ARRAY1 L*l INSRT 000010 017500 (4000.) (8000)
IASC L*l $DATA 000000 000012 (5.) (10)

Subroutines* Functions? Statement and Processor-Defined Functions!

Name Tape Name Tape Name Tape Name Tape Name Tape
INT 1*2

155

FORTRAN IV V02,5-2 Thu 08-M3y-86 13530:23 PAGE 001

0001

cmmmmmmmmmmmmmmmmmmmmmmm********
c

MODULE NAME:
SUBROUTINE MESAGE

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c

PURPOSE:

THIS
AND

INPUT:

ROUTINE ACCEPTS A MESSAGE FROM COMPUTER KEYBOARD
TRANSMITS TO ROBOT FOR DISPLAY ON CONSOLE

ACCEPTS MESSAGE FROM MINC KEYBOARD,

PROCESSING: SETS UP MESSAGE IN ARRAY AND HANDLES

OUTPUT:

HANDSHAKING AND TRANSMISSION OF MESSAGE,

TRANSMITS MESSAGE TO ROBOT UHFRE IT IS
DISPLAYED ON ROBOT CONSOLE,

CALLED BY.* CYR02

CALLS TO

SPECIAL

REVISION
n ATCI'M 1 t

6-24-84
6-04-85

J GETLIN* SEND

INTERFACE REQUIREMENTS.* USES MINC DIGITAL I/O MODULES,

HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DOnTDAMMCD — — — — — f*n)JTAf*T/ArkTTnkl/OCMADfc'C — — — — —rKUuKAflnch LUN 1 flL I /HL ilUN/htnflhrib

FRED R. SIASf JR. <803>-656-3375/SYSTEM DESIGN/PROGRAM
FRED R, SIASr JR. /REVISED NARRATION

156

FORTRAN IV

C
0002
0003
0004

C
0005

V02.5-2 Thu 08-«3y-86 13 ,'30122 PAGE 002

C

C

C
C

0006
0007

0008

0009

0010

0011

0012
0013
0014
0015 100
0016

C
0017

C
0018
0020 110
0021
0023 120
0024
0025 130
0026
0027 140

C
0028
0029

BYTE STRING<254)
INT£GER*2 IDATA(257),RT»WT» INPUT
LOGICAL*! PROKTU6)

DATA PROMT /'I'»'N'i '?','U'»'!', ' '»'M'r
1 'E'»'S'f'S'/'A'f'G'»'E'»'J'f' '
RT=5
HT=7

IDATA(2)=1

IDATA(3)=133

CALL GTLIN<STRING>PROMT)

LENGTH=LENCSTRING)

ILEN=LENGTH+3
DO 100 I=4»ILEN
IDATA(I)=STRING(I-3)
CONTINUE
IDATA(1)=LENGTH-H

CALL SEND(IERRORfILEN>IDATA)

IF (IERROR.EQ.2) WRITE (WTfliO)
FORMAT(//f' CHECKSUM ERROR, DATA MAY BE WRONG,')
IF (lERROR.EG.l) WRITE (MTil20)
FORMAT(//f' TIMEOUT ERROR. ROBOT DID NOT RESPOND,')
WRITE <WT»130)
FORMAT(/,' TYPE 'RETURN1 TO CONTINUE)- ',*)
READ (RT»140) INPUT
FORMAT(I4)

RETURN
END

157

FORTRAN IV Storage Map for ProsSram Unit MESAGE

Local Variables* .PSECT IDATAr Size = 001442 (401. words)

Name Type Offset
I 1*2 001436
INPUT 1*2 001430
UT 1*2 001426

Local and COMMON Arrays?

Name Tape Offset Name
IERROR 1*2 001440 ILEN
LENGTH 1*2 001432 RT

Type Offset
1*2 001434
1*2 001424

Name Type
IDATA 1*2
PROMT L*l
STRING L*l

Section Offset Size Dimensions
$DATA 000376 001002 (257.) (257)
SDATA 001400 000020 (8.) (16)
$DATA 000000 000376 (127.) (254)

Subroutines* Functions? Statement and Processor-Defined Functions;

Name Type Nsme TypeName
GTLIN

Type
R*4

Name
LEN

Type
1*2

Name
SEND

Type
R*4

158

FORTRAN IV V02.5-2 Thu 08-M3y-86 13-J 31 ,'07 PAGE 001

C
c MODULE NAME:

0001 SUBROUTINE POSIT
C
c PURPOSE:
c
C THIS ROUTINE REQUESTS THE CURRENT ROBOT POSITION AND
C AND DISPLAYS ON MINC CRT.
C
c INPUT: NONE
c
c PROCESSING:
c
C THE ROUTINE TRANSMITS A REQUEST FOR ROBOT POSITIONS
C (TYPE CODE 132) WITH THE SINGLE BYTE MESSAGE ZERO (0) THAT
C INDICATES THAT ONLY ONE RESPONSE PER REQUEST IS DESIRED,
C THEN THE ROUTINE WAITS FOR A RESPONSE FROM THE ROBOT WHICH
C SHOULD INCLUDE THE TYPE CODE 4 FOLLOWED BY EIGHTEEN (1.8)
C BYTES OF BINARY DATA THAT CONVEY NINE CURRENT ROBOT POSITIONS*
C EACH POSITION CONSISTS OF TWO SEQUENTIAL BYTES? LOW-ORDER
C BYTE FIRST FOLLOWED BY THE HIGH-ORDER BYTE,
C
c OUTPUT: DISPLAYS CURRENT ROBOT POSITION
c
C CALLED BY5 CYR02
c
c CALLS TO:
c
C SEND (IERROR»ILEN»IDATA>
C
C RECEVE(IERROR»ILENjICSUM»IBATA)
C
C SPECIAL INTERFACE REQUIREMENTS: USES MINC DIGITAL I/O MODULES.
C
C REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
C DATE PROGRAMMER ==«=CONTACT/ACTION/RENARKS=====
C 6-26-84 FRED R, SIAS> JR, (803)-656-3375/SYSTEH DESIGN
C 10-29-84 FRED R, SIAS» JR. /REV. POSITION INTEGER TO REAL
C 6-4-85 FRED R. SIAS* JR. /REVISED NARRATION
C

159

FORTRAN IV V02.5-2 Thu 03-Msy-86 13:31507 ' PAGE 002

0002
0003
0004
0005

0006
0007

0008

0009

0010

0011

0012
0013

C

C
C

C
C

C
C

C
C

C
C

BYTE STRING(254)>INPUT
REAU4 IXDATA.IYDATAflZDATArlCXPOSflCYPOSjIDXPOSjIDYPOSrDATA
INTEGER*2 IDATA(257)
LOGICAL*! PROMT(16)

RT=5
WT=7

LENGTH OF MESSAGE
IDATAU)=2

SETS SEQUENCE NO, TO ZERO
IDATA(2)=0

SETS TYPE CODE
IDATA(3) = .t32

SETS RATE TO ONCE PER REQUEST
IDATA(4)=0

NO OF BYTES TO TRANSMIT IN SEND
ILEN=4

'CALL SEND<IERROR»ILEN»IDATA)

0014

0016
0017

00.18

0019

2
C
5
C
C
C

0020
0022 10

C
C
C12
C
C
C
C

0023
0025 15

C
0026
0027
0028

C
0029
0030 100

IF <IERROR,EQ,0) GOTO 5

WRITE <WT»2) IERROR
FORMATC ERROR CODE'»I4f' RECEIVED FROM SUBR. SEND,')

CONTINUE

NOW WAIT FOR MESSAGE TO COME BACK WITH INFO

CALL RECEVE(IERROR»ILEN>ICSUM>IDATA)

IF (IERROR,EQ,2) WRITE (WTrlO)
FORMATC CHECKSUM ERROR, DATA MAY BE WRONG!')

WRITE (HT»12)
FORMATC PRESS RETURN TO CONTINUE> '»*)
READ (RTi210) INPUT

SHOULD BE MESSAGE TYPE CODE 4

IF (IDATA(3),NE,4) WRITE (WT»15) IDATA(3)
FORMATC ILLEGAL TYPE CODE '»I2f' RECEIVED')

IXDATA=IDATA(5)
DATA=IDATA(4)
IXDATA=(IXDATA*256,+DATA)/64,

WRITE (WTflOO) IXDATA
FORMATC X-axis Position is '»F6,2f' inches,')

160

FORTRAN IV V02.5-2 Thu 08-«3y-86 13:31107 PAGE 003

0031
0032
0033
0034

0035
0036
0037
0038

0039
0040
0041
0042

0043
0044
0045
0046

0047
0048
0049
0050

0051
0052
0053
0054

0055
0056
0057
0058

0059
0060
0061
0062

0063
0064
0065
0066
0067
0068

110
C

120
C

130
C

140
C
C

150
C

160
C
C

170
C

180
C

200

210

IYDATA=IDATA(7)
IYDATA=(IYDATA*256-HDATA<6))/64.
WRITE (WTfllO) IYDATA
FORMAT*' Y-sxis position is '>F6.2j' inches,')

IZDATA=IDATA(9)
I Z B A T A = (I Z D A T A * 2 5 6 H D A T A < 8)) / 6 4 .
W R I T E < W T f l 2 0) I Z D A T A
F O R M A T C Z-sxis posi t ion i s ' f F 6 . 2 r ' i nches . ')

I C X P O S = I D A T A (1 1)
I C X P O S = (I C X P O S * 2 5 6 - H D A T A U O)) / 1 0 .
WRITE <WT,130) ICXPOS
FORMATC A-exis is '»F6,2>' decrees.')

ICYPOS=IDATA(13)
I C Y P O S = < I C Y P O S * 2 5 6 - H D A T A (1 2) > / 1 0 ,
W R I T E (W T » 1 4 0) ICYPOS
F O R M A T C C-axis i s ' » F 6 . 2 i ' d e c r e e s , ')

IDXPOS=IDATA(15)
I D X P O S = (I D X P O S * 2 5 6 H D A T A < 1 4 » / 1 0 .
W R I T E (U T r l S O) IDXPOS
FORMATC C pos i t ioner* X-sxis is ' f F 6 . 2 r ' decrees , ')

I D Y P O S = I D A T A (1 7)
I D Y P O S = (I D Y P O S * 2 5 6 + I D A T A (1 6)) / 1 0 »
WRITE (WT»160) IDYPOS
FORMATC C positioner? Y-sxis is 'fF6,2r' decrees,')

IDXPOS=IDATA(19)
IDXPOS=(IDXPOS*256tIDATA(18))/10,
WRITE (WT»170) IDXPOS
FORMATC D positioner? X-sxis is '»F6,2>' degrees.')

IDYPOS=IDATA(21)
IDYPOS=(IDYPOS*256IIDATA(20))/10.
WRITE (WT,180) IDYPOS
FORMATC D positioner? Y-sxis is '»F6.2r' decrees*')

WRITE (WT»200)
FORMAT(//?' CARRIAGE RETURN TO CONTINUF> '»*)
READ (RTr210) INPUT
FORMAT(I4)
RETURN
END

161

FORTRAN IV Storage MSP for ProSrarfi Unit POSIT •

Local Variables* .PSECT $DATA? Size = 001534 (430, words)

Name Tape Offset
DATA R*4 001456
ICYPOS R*4 001442
IERROR 1*2 001474
IXDATA R*4 001422
RT R*4 001462

Name Type Offset
ICSUM 1*2 001476
IDXPOS R*4 001446
ILEN 1*2 001472
IYDATA R*4 001426
WT R*4 001466

Local and COMMON Arrays?

Name Type
IDATA 1*2
PROMT L*l
STRING L*l

Section Offset
$DATA
*DATA
$DATA

000376
001400
000000

Name Type Offset
ICXPOS R*4 001436
IDYPOS R*4 001452
INPUT L*l
IZDATA R*4

Size
001002 (257.)
000020 (8.)
000376 (127.)

Dimensions
(257)
(16)
(254)

001420
001432

Subroutines? Functions? Statement and Processor-Defined Functions;

Name Tape Name Tape
RECEVE R*4 SEND R*4

Name Type Name Type Name

162

FORTRAN IV V02.5-2 Thu 08-Mss-86 13J32MO PAGE 001

C
c MODULE NAME:

0001 SUBROUTINE PARS
C
c PURPOSE:
c
C THIS ROUTINE REQUESTS THE CURRENT ROBOT PARAMETERS AND
C AND DISPLAYS THEM ON MINC CRT,
C
C
c INPUT: NONE
c
c PROCESSING: SETS UP REQUEST MESSAGE AND TRANSMITS,
C SCALES DATA RETURNED AND FORMATS,
C
c OUTPUT: DISPLAYS PARAMETERS ON THE MINC CRT,
c
C CALLED BY: CYROl
c
C CALLS TO: SEND* RECEVE
C
C SPECIAL INTERFACE REQUIREMENTS: USES MINC DIGITAL I/O MODULES,
C
C REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
C DATE PROGRAMMER ' ==«=CONTACT/ACTION/REMARKS = ====
C 6-27-84 FRED R. SIAS» JR. <803>-656-3375/DESIGN AND PROGRAM
C 6-04-85 FRED R. SIAS> JR, /REVISED NARRATION
C

163

FORTRAN IV

0002
0003
0004
0005

0006
0007

0008

0009

0010

0011

0012
0013

0014

0015
0017

0018
0020

0021
0022
0023
0024
0025
0026
0027
0028
0029
0030

0031
0032

0033
0034
0035

C

C

C
C

C
C

C

C

C

C
C
C

C

10
C
C
C
C

15
C

101

100

110
C

C

120
C

• V02.5-2 Thu 08-M3a-86 13J32510 PAGE 002

BYTE STRIN6(254)
INTEGERS IDATA(257)
REAL*4 IXDATA»IYDATA>IZDATA>ICXPOS
LOGICAL*! PROMTU6)

RT=5
UT=7

SETS SEQUENCE NO, TO ZERO
IDATA(2)=0

REQUEST CODE FOR SYSTEM PARAMETERS
IDATA(3)=138

IDATA(1)=2

IDATA(4)=0

ILEN=4
CALL SEND(IERRORflLENflDATA)

NOW WAIT FOR MESSAGE TO COME BACK WITH INFO

CALL RECEVE(IERROR»ILEN»ICSUM»IDATA)

IF (IERROR.EQ.2) WRITE (HTilO)
FORMAT ('CHECKSUM ERROR. DATA MAY BE WRONG!')

SHOULD BE MESSAGE TYPE CODE 7

IF <IDATA(3),NE,7) WRITE (WT.15) IDATAC3)
FORMATC ILLEGAL TYPE CODE ',I2»' RECEIVED')

IXDATA=IDATA(5)
IXDATA=(IXDATA*256HDATA(4))/64,
WRITE (WT»101)
FORMAT (4HO***f//>
WRITE (WTjlOO) IXDATA
FORMATC Torch feed rste is '»F6.2i' inches per minute f . ')
IYDATA=IDATA(7)
IYDATA=(IYDATA*256IIDATA(6))/64,
WRITE (WTfllO) IYDATA
FORMATC Wire feed rate is 'iF6.2»' inches per minute,')

IZDATA=IDATA(9)
IZDATA=IZDATA*256+IDATA(8)
ONE BIT EQUALS .1 PERCENT
IZDATA=IZDATA/10,
WRITE (WT»120) IZDATA
FORMATC Weld level is '»F6.2>' Percent,')

0036 I C X P O S = I D A T A (1 1)

164

FORTRAN IV

0037
C

0038
0039
0040 130

C
0041
0043
0045
0047

C
0049 140
0050 150
0051 160
0052 170

C
0053
0054 200
0055
0056 210
0057
0058

V02.5-2 Thu 08-Msy-86 13:32510 PAGE 003

ICXPQS=ICXPOS*256iIDATAUO)
ONE BIT EQUALS ,1 PERCENT
ICXPOS=ICXPOS/10,
WRITE (WT..130) ICXPOS
FORMATC AVC/ACC Setpoint Level 'iF6,2»' percent,')

IF (IDATA(12),EQ,0) WRITE <UT»140)
IF (IDATA(12).EQ,1) WRITE <WT»150)
IF (IDATA(12),EQ,2) WRITE (WTil60)
IF <IDATA(12),GT.2) WRITE (WTrl70) IDATA(12)

FORMATC No Oscillation has occured.')
FORMATC Left Oscillstion hss•occured.')
FORMATC Riaht Oscillstion has occured,')
FORMATC ILLEGAL OSCILLATION CODE 'iI8»' RECEIVED,')

WRITE (WT?200)
FORMAT<//>' CARRIAGE RETURN TO CONTINUE> '»$>
READ (RT»210) INPUT
FORMAT(I4)
RETURN
END

165

FORTRAN IV Storage MSP for Program Unit PARS

Local Variables* .PSECT $DATA» Size = 001522 (425, words)

Name
ICSUM
ILEN
IYDATA
WT

Type
1*2
1*2
R*4
R*4

Offset
001454
001450
001424
001444

Name
ICXPOS
INPUT
IZDATA

Type
R*4
1*2
R*4

Offset
001434
001456
001430

Name
IERROR
IXDATA
RT

Type
1*2
R#4
R*4

Offset
001452
001420
001440

Local and COMMON Arrays:

Name Type
IDATA 1*2
PROMT L*l
STRING L*l

Section Offset Size Dimensions
$DATA 000376 001002 (257.) (257)
fDATA 001400 000020 < 8.) (16)
$DATA 000000 000376 (127.) (254)

Subroutines* Functions» Statement and Processor-Defined Functions?

Name Type Name Type Name Type Name Type Nsme Type
RECEVE R*4 SEND R*4

166

FORTRAN IV V02.5-2 Thu 08-Has-86 13J33JOO PAGE 001

0001

c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

MODULE NAME:

PURPOSE:

INPUT:

SUBROUTINE EDITOR

TO EDIT NUMERICAL CONTROL PROGRAMS ON DISKETTE

FILES FROM DISKETTE AND EDITING COMMANDS FROM CRT

PROCESSING: THIS ROUTINE MERELY TRANSFERS CONTROL TO THE OPERATING
SYSTEM SO THAT THE SYSTEM EDITOR MAY BE USED TO
MODIFY FILES. WHEN EDITING IS COMPLETE CYR02 MUST
AGAIN BE CALL FROM THE SYSTEM PROMPT,

OUTPUT: FILES RETURNED TO DISKETTE

CALLED BYJ CYR02

CALLS TO: RETURNS TO RT-11

SPECIAL INTERFACE REQUIREMENTS! NONE

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRAMMER =====CONTACT/ACTION/REMARKS====

ll-JUL-85 FRED R. SIAS» JR. (8035-656-3375/NARRATION
3-SEP-85 FRED R. SIAS; JR. MERELY RETURNS TO SYSTEM FOR EDITOR

0002 INTEGER RT?WT

0003 INTEGER*2 INPUT
C

0004 WT=7
0005 RT=5

C
0006 WRITE (WT»100)
0007 100 FORMAT(' This call merely returns you to the operating sastero'?/?

1 ' from which you may call the standard editor. After editing'?/?
2 ' your numerical control program? again execute CYR02 to'»
3 ' continue.'?//?
4 ' DO YOU WISH TO EXIT TO THE OPERATING SYSTEM? (Y OR N)> '?*)

0008
0009 200

C
0010
0012
0013

READ (RT?200) INPUT
FORMAT(A2)

IF (INPUT.EQ.'Y') STOP
RETURN
END

167

FORTRAN IV Storage MSP for Program Unit EDITOR

Local Variables* .PSECT $DATA» Size = 000006 (3. words)

Name Tape Offset Name
INPUT 1*2 000004 RT

Tape Offset Name
1*2 000000 WT

Type Offset
1*2 000002

168

FORTRAN IV V02.5-2 Thu 08-M3y-86 PAGE 001

0001

c**«tt********M**mn**M̂
c
c MODULE NAME:

SUBROUTINE PARK

0002

0003

0004
0005

C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c

c
c
r**u**

c

c

c

PURPOSE:

INPUT:

PROCESSING

OUTPUT;

CALLED BY:

CALLS TO:

MENU SELECTION TO 'PARK' THE PROGRAM WHERE
IT WILL IGNORE ALL SPURIOUS MESSAGES FROM ROBOT.

ANY KEY PRESS TO EXIT ENDLESS LOOP,

: EXECUTES RECEVE CONTINUOUSLY IN AN ENDLESS LOOP,
HANDLES ALL COMMUNICATIONS HANDSHAKING,
EXITS WHEN ANY KEY PRESSED,

MESSAGES TO CRT,

CYR02

RECEVE

SPECIAL INTERFACE REQUIREMENTS? NONE

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
n A T c r»Rnr*CiAUkerro —__.._ r*nuTAr»T/ A n T T n xi / 1> cr u A c> k' o — — — — .
Un I C

9-6-85

*************££$4lf.£f $.$.£$£$

INTEGER RT

INTEGERK2

WT=7
RT=5

ri\uur\Mniic.n — — — — i*un i ni* i / nil i 4un/ i\t.iini\i\&—:
FRED R, SIASf JR. (803)-656-3375/PROGRAMMED

#̂ it̂ #4##lk4t**4)k****l!̂ !klk̂ #It!kX̂ #J#̂ 1(̂ t#̂ ^̂ I|(!tX#!)!i!#l!̂ #'̂ ^̂ ^̂ 1t1ti

»WT

INPUT

WRITE <WT,1005)
'»/»' Program is now 'Parked1 in an endless loop'?/?
that will ignore 3.11 messages from Robot.'?//?
PRESS ANY KEY TO RETURN TO MENU.> '»*)

0006
0007 1005 FORMAT(

1
2

C
0008 2000 CONTINUE
0009 CALL RECEVEdERRORjILENjICSUM^IDATA)
0010 IF (IERROR.EQ.1) GOTO 9000
0012 GOTO 2000

C
0013 9000 CONTINUE
0014 RETURN
0015 END

169

FORTRAN IV Storage MSP for Program Unit PARK

Local Variables* .PSECT $DATA» Size = 000016 (7, words)

Name Type Offset
ICSUM 1*2 000012
ILEN 1*2 000010
WT 1*2 000002

Name Type Offset
IDATA 1*2 000014
INPUT 1*2 000004

Name Type Offset
IERROR 1*2 000006
RT 1*2 000000

Subroutines? Functions? Statement and Processor-Defined FunctionsJ

Name Tape Name Type Name Type Name Type Name Type
RECEVE R*4

170

FORTRAN IV V02.5-2 Thu Q8-Msy-86 13J33555 PAGE 001

0001

0002

0003

C
C

C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

MODULE NAME:
SUBROUTINE INTER

PURPOSE: THIS MODULE HANDLES COMMUNICATIONS BETWEEN THE
MINC AND THE INTERGRAPH SYSTEM,
THE MAIN PURPOSE IS TO DOWN LOAD ROBOT N/C PROGRAMS
THAT HAVE BEEN CREATED ON THE INTERGRAPH SYSTEM
AND STORE THEM ON THE MINC DISKETTE,

INPUT: INTERACTIVE CONTROL FROM THE KEYBOARD^ AND
PROGRAM DOWNLOADING FROM INTERGRAPH, INCLUDING
HANDSHAKING.

PROCESSING: PROGRAM VERIFICATION,

OUTPUT:

CALLED BY: CYR02

STORES DOWNLOADED PROGRAM ON DKJDISKETTE,

CALLS TO: RETURNS TO RT-11

SPECIAL INTERFACE REQUIREMENTS? SERIAL COMMUNICATIONS PORT,

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRAMMER =====CONTACT/ACTION/REMARKS====

5-31-85. FRED R, SIAS» JR. (803)-656-3375/SYSTEM DESIGN
1-10-86 DAIVD A. STILES FINSHED SUBROUTINE RETURNS TO RT-11

INTEGER RT»WT

INTEGER*2 INPUT .

0004
0005

0006
0007

0008
0009

0010
0012
0013

C

100

C

200
C

WT=7
RT=5

WRITE (WTjlOO)
FORMAT(' This call merely returns you to the operating system'?/?
1 ' from which you rasa run vtcom.rel to do the downloading of'?/?
2 ' your numerical control program* azsin execute CYR02 to'r
3 ' continue ,'»//?
4 ' DO YOU WISH TO EXIT TO THE OPERATING SYSTEM? (Y OR N)> '»$)

READ (RTf200) INPUT
FORMAT(A2)

IF (INPUT, EQ.'Y') STOP
RETURN
END

171

FORTRAN IV StoraSe Map for Program Unit INTER

Local Variables* .PSECT $DATA» Size = 000006 < 3, words)

Name Type Offset Name
INPUT 1*2 000004 RT

Type Offset Name
1*2 000000 WT

Type Offset
1*2 000002

172

