Final Report

SOFTWARE DEVELOPMENT TO SUPPORT
SENSOR CONTROL OF ROBOT ARC WELDING

16 April 1985 to 8 May 1986

Contract No. NAS8-36460

(NASA-178865) SCFTWARE DEVELCEMENT TO
SUPPORT SENSOR CCNIRCL OF KCEBCT AEKC WELDING
Final Keport, 16 2pr. 1985 - € May 1986
{(Clemson Univ.,) 173 ¢ HC AC8/MF A01
CSCEl W3R G3/37

N86-28434

Unclas
43502

CAM-TR-86-120

Final Report

SOFTWARE DEVELOPMENT TO SUPPORT
SENSOR CONTROL OF ROBOT ARC WELDING

16 April 1985 to 8 May 1986

Contract No. NAS8-36460

, Prepared for:
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

8 May 1986

By
Fred R. Sias, Jr.

Department of Electrical and Computer Engineering
via
Engineering Center for Automated Manufacturing Technology
CLEMSON UNIVERSITY
Clemson, South Carolina 29634-0915

DR
L]
oo

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Contents

SOFTWARE DEVELOPMENT TO SUPPORT SENSOR CONTROL OF ROBOT ARC WELDING

Abstract...o.ooo0.....‘0.0.0.Qlo..c.ll.o'.o..-'OOOOCO0.00.l..oooon

Introductioneeccescscocsoscssscsosssnscsesssosrosscosssccsscssssssssssvesos
ObjectivesS.ceecesscecassorscsnssccssnccesssssscccassscscsaansvonsas
2.1 ObjectiveS:esecsssccsccssscocssssccssssosssscssscsssssssone
2.2 ADPro8Ch.ccsccscccsscsovoscssssssssssnsssscsssssssscssos
Software DescriptioDiceeccseecoscscesscscccssssossssssssessssssssne
3.1 IntroductioDeeecescocosesscessssssosssscscsssssscssssssns
3.2 Software Overviewicecceceeesssccesessssssesssscsassasases
3.3 Software DescriptioN..ccesessccccccscsoscssssssscsssccss
Description of MINC-23 Interfac€ecessceescssscescosssossssscncssaa
4,1 MINC Interface ModuleS.cescsssccccsosscoscssscsacssssscnsns
4.2 The MINC-Robot Interface.icosesssocccsccccscenscesccsccnsss
Description of Robot Interface.esccescsscscsccsssccsssasssscssssnsns
5.1 CYRO 750 Hardware Interfac@.seeescscsssssccsscsccscccsas
5.2 Parallel Interface Handshaking Protocol.:cscccscccssccces
5.3 Message ProtocOliiscccecscecscccsessscssassascscscsansaan
S.4 Message TypeS.icecesocssssscscssssorsssssssssssssccsssassce
Robot Welding MonitoTeceeceececesecsosossssssosssossccsssosonsnnce

6.1 overvieWOco...noo.Q.O..n..o...c-.oc'il...o...o..o.ooo..'
602 Problem statement.'lo'l.l.'ol...t..‘...‘...l..o.l..o'.oo
6.3 Approach....o..l..OOO..Q..........0.0.....'.0.0.0..'..-.

Seam-tracking Monitor.eececessececenssssesscsssossscsssscssnssacccns
7.1 OvervieW..ceceoesecseoecscssscsnscscesscosssosssvsssconsscnnsos
7.2 Problem StatemeNt.cescccssecscsssccssessssocssssssasssssse
7.3 Proposed Approach....ccecececsccssccsccsscssssscssssssns
Conversion to RSX=11M.ccecoscococoososcosnsnssssocensrossscncsosase
8.1 Objectiveeeeesssssosesesoscesscscsensesssssssccsassassoas
2 TFeatures and Limitations of RT-11l.ccesceccccccccacsssocse
3 The RSX-11M Operating SySte€Mecessssccscssssssscossssscas
4 Assessment of Operating SyStemS.ceccecsssscsesssesscsssce
5 Conversion of CYROZ2..ceeecesessessesosccccsscsccsnssssssss
sio
1
2

Concl ons and RecommendationNS.ceeccecccscecocncnsscscosonsscsscscse

Conclusions..o....0.0.0....ooooo..'.......o'....o.oo..co

8
8
8.
8.
us
9.
9.

Recommendations.....oocoooo.occoo..l.lno.'.l..l.oo...no.

APPENDIX......l....0.......Il..l....'l.}-....‘....l....‘.i.l...l.......

A. CYRO2 Operating Manual..eeseccceescsoccocsscssccsssoscccss
B. Description of External Device Interface MessageSeecssess
C. CYRO2 Software Flow DiagramS.:sccecescsceccscsescesscscncs
C. CYRO2 Program ListingS..cecescscscecsscscccocsccscsacscons

00O ~N~JULOULU

15
15
15
18
18
18
19
20
25
25
26
26
27
27
27
27
29
29
29
29
31
32
33
33
33

34
35
42
55
78

ABSTRACT
SOFTWARE DEVELOPMENT TO SUPPORT SENSOR CONTROL OF ROBOT ARC WELDING

Robots are usually used to perform high-volume, repetitive manufacturing
tasks. The application of robots in space technology is more associated
with low-volume, high-quality-oriented manufacturing. The primary motiva-
tion for this effort is to raise the quality and comsistancy of certain Gas
Tungsten Arc Welds (GTAW) on the Space Shuttle Main Engine (SSME) that are
too complex geometrically for conventional automation and are currently
done by hand.

Robot welding minimizes the human variability introduced by manual welding
methods and improves the overall quality control. In addition, automatic
welding of complex shapes can be improved by the use of a positioner table
that permits a coordinated movement of the part in relation to the welding
torch. Such "coordinated" motion between a robot and a two-axis positioner
table 1is complicated to program and the current on-line methods are
awkward. The application of robots in low-volume applications requires
improvement in the methods for creating robot control programs.

The wuse of seam-tracking methods reduces the accuracy with which the seam
track must be specified. Instead of using the "teach-and-store" method, it
is now possible to create a program automatically from dimensions derived
from original Computer Aided Design (CAD) files. A minor mis-allignment of
the welding torch due to path approximations derived from design files or
metal movement during the weld will be compensated for by the seam-tracking
system. '

This report documents the development of software for a Digital Equipment
Corporation MINC-23 Laboratory Computer to provide functions of a "workcell
host" computer for SSME robotic welding. Routines were written to transfer
robot programs between the MINC and an Advanced Robotics Cyro 750 welding
robot. Other routines provide advanced program editing features while
additional software allows communication with a remote CAD system. Access
to special robot functions were provided to allow advanced control of weld
seam tracking and process control for future development programs.

1.0 INTRODUCTION

Robots are wusually used to perform high-volume repetitive manufacturing
tasks. The application of robots in space technology is more associated
with low-volume, high-quality oriented manufacturing. Robot welding with
automatic seam tracking minimizes the human variability introduced by
manual welding methods and improves the overall quality control. However,
the application of robots in low-volume applications requires improvement
in the methods for creating robot control programs.

Normally robot programs are created in a "teach pendant" mode whereby the
robot is manually moved through a sequence of movements. [Each successive
movement is "programmed" by storing the coordinates of the endpoint of the
movement along with move velocity and other parameters that may be required
to execute a particular manufacturing task. The results of a numerical
control step programmed by the “teach" process is converted in the CYRO 750
into a program step in a numerical control "language" similar to standard
machine tool languages such as MRP. A number of subprograms can be
sequenced together to comprise a complete robot task.

In the case of the CYRO 750 robot attached to the MINC-23, the overall
robot task is to perform welds on the space shuttle main engine (SSME).
The welding tasks on the SSME consist of a large number of small complex
welds that are currently performed manually due to the complexity of the
welds. Replacing the manual welds with robot welds is not a simple task.
The conventional robot programming task described above is called “on-
line" programming. The robot itself must be dedicated to the programming
task which would be particularly time consuming due to the complexity of
the weld paths. Weld-path programming will generally take more time than
the actual welding process. In addition, automatic welding of complex
shapes requires the use of a positioner table that permits a. coordinated
movement of the part im relation to the welding torch. For example, in
welding a cylindrical part it will be necessary to rotate the part rather
than simply track the weld so that the weld puddle will remain in a proper
orientation relative to gravitational forces on the puddle. Such
"coordinated" motion between a robot and a two-axis positioner table is
complicated to program at best and the current on-line methods are awkward.

The use of seam~-tracking methods reduces the accuracy with which the seam
track must be specified. Instead of using the 'teach-and-store" method
described above, it is now possible to create a program automatically from
dimensions derived from original computer based design (CAD) files. A
specified mis-alignment of the welding torch due to path approximations
derived from design files or metal movement during the weld will be compen-
sated for by the seam-tracking system.

The development of N/C programs for the CYRO 750 robot is further compli-
cated by the fact that the dimensional information is contained in files on
a separate Computer Aided Design (CAD) system and the process of converting
design files to a robot program is much too complicated to be handled by
the small on-line MINC-23 computer attached to the robot. Comnunication
links between two or more computers are necessary and extensive software
for automated program creation must be developed.

4

2.0 OBJECTIVES

2.1 OBJECTIVES

Based on the discussion presented in the Introduction, it is possible to
present the overall problem as follows: How to produce programs for wel-
ding robots while minimizing interference with research or production
operations.

The objectives of this research are twofold. First, a number of software
modules have been written to facilitate the creation of Numerical Control
programs for the Advanced Robotics Cyro 750 Robot. Included are routines
for transferring N/C programs back and forth between the Robot and the
MINC-23 computer for storage and retrieval on MINC diskettes. In additionm,
software has been developed to aid in the off-line programming and editing
of N/C programs.

- The second area of research are studies designed to aid in planning future
applications of the MINC computer. Application areas include communication
with a Computer Aided Design (CAD) system so that dimensional information
can be passed to the MINC to facilitate automatic development of N/C pro-
grams. In addition, further discussions are directed at defining the
problems that must be solved to use the MINC computer to record offsets
transmitted by the Ohio State seam-tracking system system to facilitate
better tracking on multipass welds. '

2.2 APPROACH

CAD files containing the SSME dimensional information are generated on a
Computer Aided Design (CAD) system. It is anticipated that that the
conversion of CAD files to N/C robot control programs will be carried out
on an intermediate computer such as VAX systems now installed at MSFC. The
final link to the MINC-23 or some other computer on-line with the robot can
be handled by transferring the N/C programs on floppy diskettes, or over
high speed or low speed data communication links, The N/C programs are
expected to finally be stored on a computer attached on-line to the robot
since the robot is limited to in-memory storage of only nine programs. In
a production environment it will be necessary to transfer new programs to
the robot as segments of the welding tasks are completed. It is
anticipated that the software that is the main subject of this report will
continue to be wused for that application either on the MINC-23 or a

successor digital computer. Figure 2.1 1{illustrates the overall
configuration.

WELD KINEMATIC CAD PART

~ MODEL AT
PARAMETERS OF ROBOT DATABASE

PROGRAM
GENERATION

GRAPHIC
DISPLAY

COMMAND PROGRAM
GENERATION | INTERPRETATION

DATA BASE <4
MANAGEMENT m
SYSTEM
COMMUNICATION
LINK
MINGC
WORK-CELL HOST SEAM TRACKING
COMPUTER
ROBOT —» REAL
WORLD

Figure 2.1 Work Cell Host-Robot Configuration.
6

- |

3.0 SOFTWARE DESCRIPTION

3.1 INTRODUCTION

The software system for MINC-robot communication is called CYRO2. It is a
set of routines designed to permit off-line Numerical Control program
storage and development on the MINC computer. A previous software system
called CYRO1l was primarily a checkout system designed to demonstrate that
communication could be established between the MINC computer and the CYRO
750 robot. The CYRO2 system will serve as a basis for developing the
functions of a '"workcell host computer."

The robot can be programmed in the teach mode described previously or
directly from the robot console by typing steps using the CYROVISION
numerical control language. The following lines represent an example of a
CYROVISION N/C program:

N200VA50WA200/ ;Start Welding
N210G4F3/ sWait-Arc Stabilize
N220G42C1/ .~ 3Turn Cyrovision On
N230XA23.45YA12.98/ - ;Move Robot
N240G43/ ;Turn Cyrovision Off
N260VAOWAO/ ;Stop Welding
N300MO2/ ;Program End

The above program is comprised simply of strings of text stored as ASCII
codes. These are interpreted by the robot controller. The comments are
added for clarity and would not appear om the robot control console. When
displayed each 1line of the actual N/C program line is terminated by a
"slash". For display purposes the slash replaces an ASCII code for
"carriage return" that is actually used to terminate the text string in
robot computer memory. The text strings can be manipulated by the standard
Digital Equipment Corporation screen editor if the code 1is modified
slightly. Each line of text in the robot is terminated with a carriage
return and the editor expects to find each line terminated by a carriage-
return code followed by a line-feed code.

To permit off-line development and modification of N/C programs for the
robot, it was decided to store program on diskette in a form suitable for
manipulation by the standard RT-11 screen editor. All programs are
transmitted back and forth between the robot and MINC computer in the
formats specified by the External Device interface specifications provide
by Advanced Robotics. However, before storage on MINC diskettes, the
numerical control programs are modified by the addition of a line-feed code
following each carriage-return code.

3.2 SOFTWARE OVERVIEW

CYRO2 1is a menu-driven, modular software system that allows the user to
create, edit, merge, file on diskette, and transfer N/C control programs
back and forth between the MINC computer and the CYRO 750 robot. Also
included are utility routines than can be called from the same menu to
examine the directory of programs on the diskette, display a directory from
the first two lines of programs in the robot, resequence statement numbers

7

of an N/C control program, transmit messages to the robot comsole, 1list
robot operating parameters, display current robot position coordinates, and
run a robot N/C program from the MINC console. Only the number
corresponding to the desired menu selection and a carriage return need to
be typed to execute any given menu function. A menu operation can also be
chosen by typing a mnemonic that consists of the letters capitalized in
each menu selection. Most of the code is written in FORTRAN to simplify
transportation of the system to another computer.

‘Routines that interact directly with the MINC digital-input and .digital-
output interfaces are written in PDP-11 assembly language. SEND and RECEVE
(spelled as shown) are two assembler routines that transmit or receive
complete arrays of data that are manipulated by calling FORTRAN routines.
The two subroutines called SNDBYT and GETBYT could be referred to as device
handlers since they handle the actual input and output and take care of the
appropriate "handshaking" protocol described in section 5.2 of this report.
SEND and RECEVE transmit complete arrays of data and receive or return
appropriate single-byte acknowledge messages.

The assembler routines are the only message-handling subroutines that
directly affect or are affected by the interface hardware. At the present
time, polling techniques are used to synchronize input/output operations
with handshaking flags. The system could be converted to an interrupt-
driven environment by merely altering the assembler routines.

Most of the rest of the CYRO2 software package consist of a set of FORTRAN
subroutines that prepare or accept various messages that are moved into or
out of a 257 word integer array that is, in turn, processed by subroutines
SEND and RECEVE that handle the actual I/0 as described above.

3.3 SOFTWARE DESCRIPTION

The mainline program of the CYRO2 package goes by the same name. This
routine first initializes the communications linkage and then displays a
menu of available selections that correspond to each of the functions that
are available in the system., The main menu is shown in Figure 3.1.

Any menu function can be selected by typing either the number or the
capitalized letters followed by a carriage return. At that point control
is transferred to a subroutine that takes over control and handles the
particular function selected. Further interaction with the operator 1is
under control of the selected subroutine and may involve futher operator
interaction at the CRT keyboard. Control is returned to the main menu when
the selected function is completed.

Briefly each of the menu selections function as follows: The REINIT selec-
tion establishes a communications link between the robot and external
computer. SAVE transfers a program from the robot to a diskette file on
the MINC computer. LOAD transfers a program from diskette to the robot.
RUN allows any program currently loaded in the robot to be selected by
program number. The DIR selection allows the operator to display or primt
the first two lines of all programs currently loaded into the robot. This
constitutes a directory if the first two lines of each program are comments

8

CYRO 750 EXTERNAL DEVICE INTERFACE MENU:
1. REINITialize system (Reset Robot)
2. SAVE robot program to diskette
3. LOAD program from diskette
4. RUN a program
5. DIRectory of programs in robot
6. (DDIR) Diskette DIRectory
7. SHOW a program in the robot
8. LIST a program from diskette
9. EDIT a program on diskette
10. RESequence a program on diskette
11. POSITion of the robot
12. PARAMeters from the robot
13. MESSAGE to the robot console
14. PARK and ignore all messages from robot
15. TRANSfer robot programs from VAX
“"E" EXIT to operating system
SELECT> ' '

Figure 3.1. External Device Main Menu

containing program identification. DDIR permits the diskette directory to
be displayed or printed. SHOW and LIST display or print programs stored
respectively in the robot or on diskette. EDIT transfers control to the
RT-11 operating system so that the standard system Editor can be used to
create or modify programs. The RES selection resequences the program line
numbers of a NC program that has been altered by repeated editing or by the
combination of one or more programs. TRANS also returns the operator to
the main operating system so that a transfer program can be used to move
programs from a CAD computer system to the MINC.

The above menu selections provide the main software features required for
off-line program development and modification; however, several additional
options are provide since the capability exists in the robot communication
package. POSIT and PARAM both request and display robot status data on the
MINC console. PARK is a "do nothing" routine that merely discontinues
communication between the robot and the MINC while acknowledging any
spurious messages from the robot so that error codes are not produced by
the robot operating system. The following sections describe each selection
in greater detail.

3.4 Subroutine INIT: This subroutine must be executed before any other
function 1is selected. It 1is automatically invoked whenever the CYRO2
software is executed; however, it may be executed from the main menu should
robot communications require resynchronization. Following selection of the
this function, RESET on the robot teach pendant should be pressed, followed
by a wait of two seconds before pressing ENTER or carriage return to return
to the main menu.

This subroutine is designed to established communication between the robot
and the MINC computer. When the robot is RESET the control software in the
CYRO 750 requests device identification and status from any device attached
to the external device interface. This subroutine starts by calling sub-
routine DOUT to clear the parallel output communication register in the
MINC computer. (Actually, all bits of the output register are set HIGH due
to characteristics of the interface.) Then the subroutine calls the RECEVE
subroutine and waits for a message from the robot. The MINC will wait
indefinitly for the robot to transmit a message. When the device identifi-
cation/status message is received from the robot, the INIT subroutine will
respond that the MINC is operational. This is done by sending a type code
129, followed by codes that indicate that the device type is a computer,
the device identification is "MNC", that status is operational, and a
message for display on the robot console is "MINC OK - CYRO2 V2.,2".

Several messages may be seen on the CRT display reflecting different possi-
ble conditioms. For example, if no message is ever transmitted by the
robot the MINC display will indicate that it is waiting and that enter must
be pressed to continue. Other error messages will indicate if the message
from the robot was incorrectly received. Next the MINC will try to trans-
mit a reply to the robot up to five times. Finally, the INIT routine will
continue to read additional messages and ignore them as there appear to be
undocumented additional messages transmitted by the robot following a
reset.

10

3.5 Subroutine SAVE: This routine accepts a program number to be saved on
the diskettes from the MINC terminal. The program also asks for a six
character name under which the program will be stored. Then a request is
transmitted to the robot and the computer receives and files the program
returned by the robot. The program is filed using the name typed on the
keyboard with the suffix ".CYR" appended to it.

For safety, the program also asks if it.should overwrite a program with the
same name already stored on the diskette. Many possible error messages are
contained in the program should any of a number of error conditions are
detected during the transfer. The program is a duplicate of the ASCII code
‘contained in the robot. '

3.6 Subroutine REQTS: This subroutine is a brief routine that merely sets
up an array with the codes appropriate for requesting that ome of the
programs 1in robot memory, identified by number, should be transmitted to
the external device. It then calls subroutine SEND that handles the actual
message transmission.

3.7 Subroutine LOAD: This routine allows the user to select a particular
N/C control program to be loaded from the MINC diskette to the robot. Then
the program is transmitted to the robot with appropriate handshaking.

The routine requests the name of the diskette file containing the program
to be loaded. Only the first six letters need be typed on the keyboard
since the routine assumes the ".CYR" extension which was appended when the
program was stored. Then a message on the MINC CRT display requests the
number between 1 and 9 that the N/C control program will be referenced by
once it. is stored in robot memory. Appropriate error messages are also
displayed whenever necessary.

3.8 Subroutine DISKSV: This routine is called by SAVE and handles the
actual storage of blocks of data on the MINC diskettes. It merely keeps
track of the number of blocks of data transmitted to it by SAVE and fills
the last block with NULLS if the block is not completely filled with data.
DISKSV locates all of the line-feed characters that serve as program line
delimiters and precedes each one with a carriage return. Only the actual
program 1is saved to diskette so that the file will be compatible with the
standard RT-11 system editor.

3.9 Subroutine DISKRD: The DISKRD subroutine is just the reverse of the
DISKSV subroutine. DISKRD retrieves any N/C control program stored on
diskette and strips out the carriage return characters. Then it counts the
number of characters in the program and prepares a "header" array that
contains the size of the program, the total number of 252 character blocks
that will be transmitted, and the actual number of characters stored in the
final block of the program if it is not completely filled. Appropriate
error messages are displayed if any detected errors occur.

3.10 Subroutine RUN: This routine is used to start any program stored in
the robot N/C program memory. It merely accepts a program number from the
MINC console keyboard and transmits a message to start that program in the
robot. The RUN subroutine has no control over the program in robot memory
as these must have been previously loaded from the robot program cartridges

11

or by using the LOAD menu selection on the MINC. The subroutine displays
an appropriate prompt message on the MINC CRT prior to accepting a program
number from the keyboard. The actual message transmitted by this routine
is a "set program mode" jmessage. It must be transmitted while the robot is
in a "no activity state", otherwise the message will be ignored.

Following transmission of the RUN message, this routine remains in a state
whereby it can receive and acknowledge messages from the robot. Undocu-
mented messages appear to be transmitted by the robot and error conditions
will occur 1if the messages are not acknowledged by the MINC. The RUN
subroutine will continue to accept messages and ignore them until a key is
pressed to return to the main menu.

3.11 Subroutine DIRECT: This routine is used to determine which programs
are stored in the robot program memory. This is done by requesting that
all programs should be transmitted to the MINC from the robot. The DIRECT
subroutine then displays a directory that consists of the first two lines
of each routine stored in program memory. The first two lines of every N/C
control program should contain a program title and other identification
information such as discriptive data, dates, and the programmer's name.

3.12 Subroutine DISPLA: The DISPLA subroutine accepts a program number to
be displayed from the MINC terminal and then sends a request to the robot.
The requested program is received and displayed on the MINC console CRT or
printed on the printer attached to the MINC. Selection of output device is
under operator comntrol.

Program data received from the robot is formatted as strings of ASCII code
alphanumerics terminated by a line-feed code after each program statement.
To display a program consistant with the format displayed on the robot
console, the 1line feed is displayed as a right slash (/) followed by a
carriage return and line feed that proceeds following program statements.

3.13 Subroutine DDIR: The DDIR subroutine name stands for '"Diskette
Directory." Selecting this menu option causes the diskette directory to be
displayed on the MINC CRT or printed in the same format that one finds when
the system command "DIR" is typed when no program is executing and the RT-
11 system prompt is displayed. The only reason for including this option
in the menu is to permit the operator to view the directory without exiting
CYRO2 and returning to the operating system.

This routine 1is basically a direct read of the directory block on the
diskette followed by some computations that are necessary to directly
access the compact directory information from a FORTRAN program.

3.14 Subroutine LIST: Subroutine LIST is another convenience program to
permit 1listing of any N/C control program stored on diskette with the
program name extension ".CYR" without returning to the operating system.
To obtain a program listing consistant with robot console displays, the
listing routine places a right slash (/) at the end of each program line
before the normal carriage return followed by a line feed. The program can
be listed on either the MINC console CRT or the printer.

12

3.15 Subroutine RESEQ: This subroutine is used to resequence amny N/C
control program stored on the MINC diskette. It searches for the '"N"
followed by a number at the beginning of each line of the program and
replaces the current line number with a new sequence number separated by 10
from the proceeding line number. This menu option is used whenever
programs have been modified extensively and unused line numbers no longer
are available between existing lines to insert new program lines. Since
program line numbers are merely used for programmer convenience, this
routine simply replaces all the existing numbers with a new sequence
starting at 100 and counting by 10's. The subroutine calls another subrou-
tine INSRT that keeps track of the count and converts the line numbers into
appropriate ASCII codes.,

3.16 Subroutine INSRT: This subroutine is called only by the resequencing
subroutine RESEQ. This routine's sole purpose is to keep track of the line

number count by tens and convert the line number to a sequence of ASCII
codes.

3.17 Subroutine MESAGE: The MESAGE subroutine is spelled this way to keep
the mnemonic name within the six character name limit. This routine
accepts a message from the computer keyboard and transmits it to the robot
for display on the robot console display. Appropriate prompt and error
messages are generated when necessary.

3.18 Subroutine POSIT: The POSITion subroutine transmits a request for
robot positions to the robot with a single byte message set to zero (0).
The zero indicates that only one byte per request is desired. The routine
then waits for a response from the robot which should include the type code
4 followed by 18 bytes of binary data that convey the current robot posi-
tion. Each position consists of two sequential bytes: the low-order byte
first followed by the high-order byte. The nine coordinates correspond to
X, Yy, and z coordinates in inches, the A and C axis. angle in degrees, and
each of two positioner x and y axes in degrees.

3.19 Subroutine PARS: This routine requests the current robot parameters
and then displays them on the MINC comnsole CRT. It sets up and transmits
the request message, receives the returned data, and scales the data before
displaying 1it. Parameters displayed are torch feed rate in inches per
minute, wire feed rate in inches per minute, weld level in percent, and
AVC/ACC setpoint level in percent. Also the presence of left, right or no
oscillation is displayed. The parameters are transmitted once in response
to each request.

3.20 Subroutine EDITOR: The EDIT menu selection merely returns control to
the operating system so that the operator can use the RT-11 system editor
to develop or modify a N/C control program. We could find no way to call
this system program without exiting the CYRO2 software system. Since the
RT-11 system editor is a very sophisticated and convenient full-screen
editor with which most programmers would be familiar, it was decided to use
this editor rather than writing a different editor that could be embedded
within the CYRO2 package and called directly from the main menu.

Selection of the EDIT option presents a message explaining that control
will return to the operating system if desired. Selection of this option

13

stops the CYRO2 system and control returns to RT-11. The RT-11 prompt will
appear and the operator should type EDIT <filename.CYR>. The six character
filename is some program that exists on the file diskette and the ".CYR"
suffix must be appended to the name. If no such file exists the system
will ask if you wish to create a new file by that name. The appropriate
editor commands should be consulted in the RT-11 system documentation.

Since editing or N/C program creation using the MINC computer will usually
be an off-line operation, the user will generally not be operating the
CYRO2 system. Programs created using the RT-11 editor will be in the
proper form for use on the robot if the standard syntax is used. The right
slash (/) should not be placed in the program file as this is not actually
present in N/C control programs. Merely end each program line with a
carriage return and the other CYRO2 routines will provide proper conversion
for display and transmission to the robot. The specific file format used
in CYRO2 was selected for compatibility with the RT-11 editor.

When an operator wishes to return to an on-line mode, CYRO2 must be
requested from the RT-11 system prompt and the system INITialized and the
robot reset.

3.21 Subroutine PARK: The CYRO 750 robot appears to transmit messages at
various times when an external device is on-line. The content of these
messages is mnot apparent from the documentation provided by Advanced
Robotics. The problem that occurs is that the robot expects a one byte
" acknowledgement whenever it transmits a message and the absence of such an
acknowledgement causes robot control system to stop and display a timeout
error message. The current CYRO2 software package is a polled system and
is not equipped to handle messages except when specifically in a ‘routine
that is programmed to accept messages. To overcome this problem when the
CYRO2 system is on-line, PARK is an option that places the MINC computer in
a mode to accept and acknowledge each message but then ignore the content.

The CYRO2 communication handlers could be rewritten to function im an
interrupt mode to overcome this problem, however, this option has not been
implemented since it is not currently clear whether the current - hardware
will be replaced by another system.

3.22 Subroutine INTER: Control 1is transferred to this subroutine in
response to menu selection TRANS. Like the EDIT selection, this routine
merely displays a message and transfers control to the RT-11 operating
system so that software for communication with the Intergraph CAD system
can be activated.

14

4.0 DESCRIPTION OF MINC-23 INTERFACE
4.1 MINC INTERFACE MODULES

Digital communications with the MINC-23 computer is relatively straight
forward. It 1is accomplished using standard MINC digital input modules
referred to as MNCDI's and MINC digital output modules known as MNCDO's. Up
to a maximum of eight of either type may be incorporated into a system.
The system referred to as the "External Computer" for the Advanced Robotics
system, includes two MNCDI's and two MNCDO's. Each MNCDO or MNCDI includes
16 output and 16 input lines, respectively, plus connections for strobe and
reply logic signals. Figure 4.1 shows the connector blocks for the MINC
digital input and output modules along with notes that identify the logic
signals that may be used to synchronize communication with various
peripheral devices.

4.2 THE MINC-ROBOT INTERFACE

The communication link between the MINC computer and the Advanced Robotics
External Device Interface is shown in Figure 4.2. The MNCDO's and MNCDI's
were determined to be suitable for communication with the robot rather than
installing an additional Digital Equipment Corporation DRV11l module which
would perform essentially the same function. A second pair of digital
interface modules is available to perform additional communication duties
such as relaying data back and forth between the MINC and an Ohio State
University welding seam-tracking system that will be attached to the same
robot.

The interface shown in Figure 4.2 includes some features that should be
described. Although the MNCDO and MNCDI modules include logic signals for
handshaking, it was determined that these inputs and outputs were designed
for short-duration pulse signals rather than logic levels that remain set
until answered or cleared under program control. Based on the Advanced
Robotics External Device Specification,m it was decided to use the circuit

shown in Figure 4.2 rather than attempt to use the pulse handshaking sig-
nals which could be of such a short duration that proper synchronization
between the robot and MINC would not be possible.

The interface connections shown in Figure 4.2 utilize the high-order two
bits of the digital input and digital output modules for handshaking.
Since only 8-bit bytes are transferred back and forth between the two
devices, the high-order 8 bits of both the input and output modules are
unused for data transfer and may be used for handshaking purposes.

The software described elsewhere was designed to function in a simple
polling mode; however, the MNCDI and MNCDO modules make provision for
hardware interrupts. An interrupt signal may be obtained either from the
pulse logic handshaking inputs or from the high-order two bits on the MINC
digital input module. This choice is controlled using software to appro-
priately set a hardware control/status register in the interface module.

15

MNCD!I Digital inpul

USER GROUND -—

STAROBE INPUT ACCEPTS SIGNAL
11 S MIN) FROM EXTERNAL —_
APPARATUS WHEN PARALLEL DATA
WORD IS READY FOR TRANSFER

CAUTION: Input leveis to STROBE
or DATA terminals must not exceed
16 or ¢20V.

USER GROUNO —

MNCDO Digital Output Unit

USER GROUND —

AEPLY INPUT RECEIVES DATA
ACCEPTED SIGNAL (1 55 MIN) ——
FROM EXTERNAL INSTRUMENT

LINES 0-16:
SET ~ LOW STATE

EXT VOLY
logic gnd
PGM QUT
018

014

1]

012

on

(1]

o0

008

+5V REF
logic gnd
REPLY
STROBE
007

006

0os

004

003

002

001

000
logic gnd

EXT vOLY
\ser gnd
HB STRS
01§

11

o

o2

4
o
iggde

188888888

CLEAR = HIGH STATE

(0 T~

SCSCTsasaoBynyy

-~ WAL vEe O

.

[0 ™~

%
2
2
n
20
"
L]
”
16
18
14
13
12
"

-Nw A MWV B

i

INPUT FOR EXTERNAL VOLTAGE
~— (+30 V MAX) TO INCREASE REPLY
EXCURSION AANGE

~— SPECIAL PURPOSE TEAMINAL
(SEE TEXT

INPUT LINESBTO 1S

+8 V SOURCE FOR EXTERNAL

DEVICES (62 mA MAX)

REPLY QUTPUT (PRODUCES 1 »S

7" NEGATIVE-GOING PULSE TO INFORM
EXTERNAL APPARATUS THAT
PARALLEL DATA TRANSFER HAS
BEEN ACCOMPLISHED)

INPUT LINESO TO?

EXTERNAL VOLTAGE INPUT
(30 V MAXIMUM, AT 100 MA}

— GENERATES “DATA AEADY"”
SIGNAL FOR EXTERNAL PARALLEL
TRANSFER INSTRUMENTS

OUTPUT LINESETO 'S
{HIGH BYTE)

+S vV REFERENCE SOURCE
- FOR EXTEANAL DEVICES
(62 mA MAXIMUM)

e FOR REAL-Y1 USER, FUNCTIONALLY
3 (OENTICAL TO M8 STRS

OUTPUT LINESOTO?

[(Low 8YTE)

== USER GROUNO

CAUTION: 1npwt leweis to RPLY
terminsl must not excesd-16 or +20 V.

Figure 4.1 MINC Digital Input and Digital Output Units

16

ORIGINAL PAGE 1S
OF POOR QUALITY

ROBOT DRV-11

- < g (a¢]
c O C
w0 wi n L
[DROUTBUF | © © O « [DRINBUF |
3 5 —
ouTo 7 INO
MNCDI MNCDO
-6\ —O_\\
EXTVOLY 2¢ €XT VOLT 24
rmowr 7 este 7
o1s. 2 |f— “"2:: :
o1« 20 |wf— 018 20 | emmend
013 19 . 013 19
012 18 | o12 18
o1 on
010 18 010 ¢
oo 1% 0o 18
o008 14 008 14
o5V REF 13 vherwt 13
fowc nd 12 levs e 12
REPLY 11 . Ry 1t
STROBE 10 LBSTRE 10|
o0r 9 0w o
oos 8 boogiigl [N PO |
oos 7 oos 7
D04 6 oo ¢
003 s o s| {
002 oa2
001 3 o0 3
00 2 o 2| J
logcgnd 1 weow |

?

Figure 4.2 The MINC - ROBOT Parallel Communications Link.

17

N~

5.0 DESCRIPTION OF ROBOT INTERFACE

5.1 CYRO 750 HARDWARE INTERFACE

Communication with the Advanced Robotics Cyro 750 robot is provided by the
addition of a special feature to the basic robot control computer. This
interface included both hardware and software and is called the External
Device Interface.

The hardware specification provided by the vendor is shown diagramatically
in Figure 5.1. Actual communication with an external device is provided by
the DRV-11 Parallel Interface Module with the logic signal definitiouns
shown in Figure 5.2. The pin connections and the connector attached to the
Cyro 750 is shown in Figure 5.3.

5.2 PARALLEL INTERFACE HANDSHAKING PROTOCOL
The handshaking protocol defined by Advanced Robotics is as follows:
Output from Robot -

1. Write data to port.

2. Set CSR1 (Indicates data ready.)

3. Wait for REQA to be set. (Indicates that external device
has accepted data.) If not set in 2000 milliseconds, then
exit to error recovery.

4, Clear CSR1.

5. Wait for REQA to be cleared. If not cleared in 500 milli-
seconds, then exit to error recovery.

Input to Robot -

The REQB signal line (from the external device) is used to
generate an interrupt to indicate that information is available
on the port.

1. If REQB is not set, then exit to error recovery.

2. Read data from port.

3. Set CSRO. (Indicates that data has been read.)

4, Wait for REQB to be cleared. If not cleared in 500 milli-
seconds, then exit to error recovery.

5. Clear CSRO.

The exit to error recovery comments in the above protocol cause program
control to return to the mainline program where different consequences will
occur depending on the source of the error. In some cases the robot
software may attempt to re-transmit a message and in other cases an error
message may be displayed indicating that the external device is not ready
to communicate with the robot. Table 5.1 shows the various error messages
that can be generated.

18

TABLE 5.1
ERROR MESSAGES

ERROR OCTAL MESSAGE

200 1000 LENERR - Length on input = 0 or 255 error

201 1001 LRCERR - LRC error on input - after 8 retries

202 1002 TBBERR - Time between bytes on input too long

203 - 1003 THSBER - Time for handshake too long - REQB to go low

204 1004 THSAHE - Time for handshake on output too long -
REQA to go high

205 1005 THSALE - Time for handshake on output too long =~
REQA to go low

206 1006 ADQERR - Free list queue full

207 1007 TYPERR - Type code not understood

208 1008 SMGERR - Send message error - not accepted after
eight retries

209 1011 FQEERR - Free list queue empty

20A 1012 PARERR - Parity error

20B 1013 DVSERR - Device not operational

5.3 MESSAGE PROTOCOL

Messages to and from the robot are transmitted as variable length sequences
of 8-bit bytes. The entire message, along with several control bytes, is
transmitted in a single burst. An acknowledge message is-expected from the
receiving device when the entire message has been received. Handshaking,
as described in the previous section, 1is used to synchronize the transfer
of individual bytes of data. A 100 millisecond timeout is established for
the 4initial handshaking response from the receiver and a 1 millisecond
timeout 1is established as the limiting waiting period for a handshaking
signal between bytes of data, The following message protocol is quoted
from the Advanced Robotics External Device Specification:

"Length - a byte of information is transmitted by the sender indica-
ting the length of the type code and data portion of the message. The
length of a message can range from 1 to 254 bytes.

"Sequence Number - a byte identifying each message. This number will
be used to reference a particular message, for example, an error

message may reference this number to indicate which error caused a
message.

"Type Code - a byte indicating the type of message that 1is being
transmitted. This message is used to define the format of the data
following, and is application dependent.

"Data - 0 to 253 bytes of information that are application dependent.

The number of data bytes plus the type code byte defines the length of
the message.

19

"Longitudinal Redundancy Check - a byte transmitted by the sender to
verify that the type code and data were correctly received. This is a
software computed check, and is unrelated to any hardware checks that
may be performed. The LRC will be computed by exclusive or-ing the
length with 'FF', then using the result to exclusive or with the type
code, then using the result to exclusive or with each byte of data,

"The message will be complete when a byte is transmitted by the recel-
ver to acknowledge the correct or incorrect receipt of the message
from the sender. If the LRC computed by the receiver matches the LRC
sent by the sender, then the message was received correctly.”

5.4 MESSAGE TYPES

Six message types are supported by the Advanced Robotics Externmal Device
Interface. These are described in detail in the APPENDIX. Data is tramns-
mitted in 8-bit bytes, however, some data represents 16-bit binary inte-
gers, while other data represents ASCII coded text messages. Where data
represents a distance, the 16-bit integer is scaled to represent 1/128
inch (.0078) per bit. Angular information is scaled to represent 1/10
degree per Dbit. The message types specified in the Advanced Robotics
- External Device Specification (27 April 1984) are as follows:

"Messages from the robot to all devices

- Request Device Identification/Status - Type Code 1
- Program Status Mode ~ Type Code 2

- Welding Status Mode -~ Type Code 3 -

- Robot Positions - Type Code 4

- Special Message to Device - Type Code 5

- Error - Type Code 6

- Robot Sytem Parameters - Type Code 7

- Device Modes - Type Code 8

"Messages from Robot to Sensor Devices

- Sensor Set-up Parameters - Type Code 33

- Sensor Table Parameters - Type Code 34

- Sensor Position Definition - Type Code 35
- Sensor Diagnostic - Type Code 36

- Sensor Calibration - Type Code 37

- Search for seam - Type Code 38

"Messages from Robot to Computer Devices
- Load Program from Computer Acknowledge - Type Code 65

- Save Program to Computer Acknowledge - Type Code 66
- Save Program to Computer - Type Code 67

20

"Messages from all Devices to the Robot

- Device Identification/Status - Type Code 129

- Set Program Mode - Type Code 130

- Set Welding Mode - Type Code 131

- Request Robot Positions - Type Code 132

- Special Message from Device - Type Code 133

- Error - Type Code 134 -

- Jog - Type Code 135

- Move Robot - Type Code 136

- Request Robot System Parameters - Type Code 138

"Messages from Sensor Device to Robot

- Override Data - Type Code 161
- In Position Command - Type Code 162

"Messages from Computer Devices to Robot
- Request Save Program to Computer - Type Code 193

- Request Load Program from Computer - Type Code 194
- Load Program from Computer - Type Code 195"

21

INTERFACE
ENABLE/DISABLE
SWITCH

ON FRONT PANEL

ROBOT CONTROLLER
(11/23 SYSTEM)

DRV-11 PARALLEL
INTERFACE

ON CONNECTOR PANEL
(' CONNECTOR)

Figure 5.1 External Device Interface Hardware Structure.

22

. < © m
w | n wl
O @ &) o
DROUTBUF-J1 | o5 " # & [DRINBUF-u2
3%
//\\
OUT 0 7 IN o 7

Figure 5.2 DRV-11 Parallel Interface.

23

ORIGINAL PAGE IS

PARALLEL INTERFACE OF POOR QUALITY

Pinf Sigoal

2 INO7

4 INQO6

6 {NOS

8 {NO4

10 INO3

12 {NO2

14 INO1

16 INCO

18 NEW DATA READY o

20 . DATA TRANS J1e 01

gi Cms:; . 212{5 M)
e 1832 7}

§g- ggg 2 | ; L—:.—nmul

34 ouTOo7? DOOOOOO® G- rene)

36 oUTOS PWOOOO® nae)

38 OUTOS =nen

40 OUT04 a4 11 19)

42 ouUTO3 A24(318)

44 ouT02

46 ouTo!1

48 OUT00

49 COMMON REFERENCE
S0 COMMON REFERENCE

Connector at Controil Cabinet- AMP #£208475-1

Mating Connector- AMP #208474-1

Figure 5.3 Parallel Interface Connector

24

6.0 ROBOT WELDING MONITOR
6.1 OVERVIEW

An important factor related to improvement of weld quality is the ability
of a welder to monitor the robot welding operation. Information to be
monitored can come from three sources: (1) parameters and control informa-
tion available from the robot control computer; (2) data available from the
vision seam-tracking computer; and (3) data available from other sensors
that may be included in the overall welding system.

The software supplied for this contract provides an initial capability to
display parameters and position data from the robot control computer. The
position of the robot and robot control parameters may be requested by menu
selection from the MINC computer comnsole. This program responds only when
the data is requested by an operator, however, a more elaborate welding
monitor could be written. This software could be expanded to request the
data at regular time intervals and provide the operator a continually
updated display subject to the limitations of the robot control software to
respond to requests.

Offsets and other control information provided by the Ohio State seam
tracking machine vision system is not available for display on the MINC
computer. This 1is due to the fact that there is only a single external-
device interface on the robot control computer. Either the vision system
or the MINC computer can be attached to the robot. Both cannot be attached
at one time. The next section of this report will comnsider possible future
enhancements that will allow connection to the vision system through the
MINC computer in such a way that offsets and other data passing between the
robot and the vision system can be displayed on the MINC comnsole.

Finally, other sensors could provide useful information relative to the
progress and status of a weld., These additional devices could be attached
to the MINC computer to provide additional data for a status display.
Additional interface modules are currently attached to the MINC computer
that could be used to provide communication links with other devices such
as Penetration Sensors currently being developed by the Rocketdyne Division
of Rockwell International. Documentation provided by Rocketdyne shows an
IEEE 488 interface that is presumably to communicate with a weld cell host
computer. Also additional interface logic cards could be attached to the
PDP-11/23 bus in the MINC computer to provide further communication
capability. '

Quite a ©broad range of capabilities are possible, however, there are
practical constraints and limitations. For instance, the current software
package exceeds the memory size of the MINC system and must be loaded a
segment at a time using overlays. Monitoring several devices at a time
would require several interrupt-driven handlers to be in memory. The
current operating system is essentially a single-job monitor, therefore,
the various communication tasks would have to be integrated into a single
job. Such an expanded system, communicating with several devices, would
severely tax the current hardware and is the main reason that a change to a
larger computer using a multi-tasking operating system 1s considered
elsewhere in this report.

25

6.2 PROBLEM STATEMENT

The problem statement based on the above discussion can be stated as
follows: How to provide operator welding process displays suitable for
monitoring welding operations and status that can be expanded to include
data from the robot, the seam-tracking vision system, and other potential
sensors; while solving the constraints of limited memory and a single-job
operating system on the current MINC-23 computer system.

6.3 APPROACH

If NASA were to specify the data that should be included on an enhanced
process display, the present software could be expanded to a certain extent
(limited by the single-job operating system) to provide a regularly updated
video display on the CRT attached to the MINC computer. Merely providing
repeated displays of the data that can currently be requested from the
robot is relatively simple. However, 1if more than one source of informa-
tion i3 anticipated in the future, the current software should be converted
to & new system with interrupt-driven handlers rather than the current
polling-type communications link. Using the MINC computer, some additional
features could be included; however, limited memory, the lack of high-speed
mass storage disks, and a multi-tasking operating system constrain the
additional features that could be added. In addition, each change in the
system would require repeated changes to the single-job software, since
each additional task would have to be incorporated as part of a single
steadily growing program. On the other hand, continually expanding re-
quirements could be readily developed if a larger computer and the RSX-11M
operating system were selected for implementation as discussed elsewhere in
this report.

26

7.0 SEAM-TRACKING MONITOR
7.1 OVERVIEW

The previous section of this report mentioned the need to monitor the
visual seam-tracking system to provide better process displays. Other
factors, however, make it desirable to monitor the seam~-tracking system and
record offset or correction commands that are transmitted to the robot to
correct the tool position while welding a seam. It is anticipated that
some welds controlled by the seam-tracking vision system will be multi-
pass. That 1is, the vision system will provide corrections to the torch
position during an initial penetration welding pass. Following the initial
pass, one or more fill passes will be required on thick material to
complete the weld. The additional fill passes will follow the path of the
original corrected penetration pass with perhaps some additional offsets to
build the fill material. 1If the original corrections provided by the
vision sensor were stored on the external computer (currently the MINC),
torch positions during subsequent passes could be simply calculated rather
than having the seam-tracking semsor re-track the seam. The offsets to
correctly position the fill metal would then be applied to the stored first
pass. It is suggested that multi-pass welds would be improved by storing
the path of the penetration pass rather thanm following the seam with the
vision system on each pass.

7.2 PROBLEM STATEMENT

This particular problem can be stated as follows: How to develop a system
to permit multipass welds to use the coordinates of the initial penetration
pass for controlling subsequent fill passes; while at the same time meeting
the constraints of a single external device interface on the CYRO 750
robot.

7.3 PROPOSED APPROACH

Based on the constraint of ‘a single external device interface on the robot,
the omnly approach that will allow both the seam-tracking system and the
external computer to be attached to the robot together would be for the
vision system to pass control information back and forth through the exter-
nal computer. Fast interrupt handlers would simply accept data from the
vision system and immediately pass it to the robot. However, 1in addition
to transmitting offset data to the robot, the intermediate computer would
copy the same data into arrays that could then be written to mass storage
for later use in recalculating the seam coordinates for subsequent passes.
The exact method of determining the seam coordinates is unknown at present,
but possibilities are suggested.

An initial idea would be to merely have the robot repeat the original NC
program and transmit the stored offsets when appropriate. The possible
problem with this approach is the necessity of knowing which segment of the
program is being processed when the stored offsets are to be transmitted to
the robot. Perhaps the offsets could be time-tagged or somehow related to
NC program segments. It is unclear whether the external computer could
obtain coordinate information from the robot during the pass at the same
time torch correction offsets are being transmitted from the vision system.

27

It 1is anticipated that appreciable experimental work would be required to
determine whether such a system would work.

It is not likely that the presently configured CYRO2 software package could
serve as a basis for a communications link between the vision system and
the external device interface on the robot. While the current communica-
tions subroutines could serve as models, the handlers for passing data back
and forth through the external computer would have to be rewritten. It is
anticipated that the MINC-23 computer could be used to test the necessary
concepts, however, it probably will be inadequate for a final design. 1In
particular, limited memory, the absence of fast mass storage, and the
single-job operating system could be insurmountable obstacles to developing
a satisfactory system.

It is recommended that experimental work be initiated to further define the

requirements and constraints relative to storage of coordinates or offsets
suitable for controlling multi-pass welds.

28

8.0 CONVERSION TO RSX-11/M
8.1 OBJECTIVE

The objective of the study reported in this section is to investigate the
advantages. and disadvantages of converting the CYRO2 system from the cur-
rent operation under the RT-11 operating system to a new configuration
under the RSX-11/M real-time operating system.

8.2 FEATURES AND LIMITATIONS OF RT-11

Currently CYRO2 is executed on a MINC-23 general-purpose digital computer
under the control of the RT-11 operating system. RT-11 is primarily a
small, single-user, real-time operating system designed to function effi-
ciently on small PDP-11 computers. It is designed for interactive program
development and dedicated on-line computer operations. The single-job
version of RT-11 permits either interactive program development or execu-
tion of an online real-time program; however, both operations cannot be
carried out at the same time. The RT-11SJ operating system was licensed by
the vendor and is currently in use on the MINC-23 at MSFC.

A second version of the RT-11 operating is available that functions in a
background/foreground mode. The background/foreground monitor permits
program development or other low-priority tasks to execute in the back-
ground partition of the system while high-priority foreground tasks operate
in a foreground partition. A real-time foreground task may be executed and
will have priority access to system resources. The background task will
execute whenever the foreground task is not busy.

The resident monitor (RMON) portion of the background/foreground system is
twice as large as the RMON component of the single-job system therefore
limitations will be placed on the size of programs that can be executed in
both background and foreground partitions. The background/foreground oper-
ating system 1s also able to swap segments of the system between main
memory and disk backup when suitable disks are available. The MINC-23 has
only relatively slow diskette mass storage that would probably be unsuit-
able for real-time tasks sharing a processor with program development
background tasks.

RT-11 1is a small efficient real-time operating system that is suitable for
operating environments where only a single real-time task must be executed
and where program development can take place either at other times or imn
the low-priority background partition. Interrupt driven processes may be
written to provide very fast real-time responses.

8.3 THE RSX-11/M OPERATING SYSTEM

RSX-11/M is the primary real-time operating system for the PDP~11. Quoting
the software manual: "It supports multi-tasking, dynamic memory management,
multiple programming languages, interactive program development and a wide
range of equipment interfaces.” RSX-11/M is capable of controlling a
number of real-time processes concurrently.

29

RSX-11/M is a multi-user system. A Monitor Console Routine (MCR) can
provide services to a number of terminal users simultaneously while at the
same time controlling several real-time tasks. RSX-11/M is the operating
system of choice for DEC PDP-11 computers where it is necessary to maintain
real-time operations concurrently with software development by several
programmers. The real-time response is fast, however, it is slower than
the response of a dedicated single-task, event-driven system using an
operating system such as RT-11. RSX-11M runs on any PDP-11 processor
except the LSI-11, however, "at least 24K of memory is required for concur-
rent applications execution and program development.”" RSX-11M is not
designed to function in minimum configuration computer systems.

The following material quoted liberally from an PDP-11 Software Manual
provides an overview of the capabilities of RSX-11M:

The RSX-11 family of operating systems is designed to provide a
resource-sharing environment ideal for multiple real-time activities.
The basic facilities that the RSX-11 family provides for handling
multiple requests for services while maintaining real-time respomnse to
each request are:

> multiprogramming

> priority scheduling

> contingency exits

> power-fail shutdown and auto-restart

In addition, RSX-11M provides:

> disk-based operation
> checkpointing '
> optional dynamic memory allocation

The basic unit of work which these operating system facilities service
is called the task. A task consists of one or more programs written in
a source language such as MACRO ASSEMBLER or FORTRAN, assembled or
compiled into an object format, and then built into a task image by the
linker utility called the Task Builder. In addition to the mnormal
linkage functions of combining object modules or creating overlays, the
Task Builder sets up the basic task attributes that determine the
task's resource requirements and relationship to other tasks in the
system. The significant task attributes that affect a task's operation

in a real-time multiprogrmming environment are: '

> Partition - the section of memory where the task will reside
when it executes,

> Priority - the task's relationship to other tasks competing for
system resources.

> Checkpointability - the task's ability to be swapped out of

memory when it is not executing to make room for a task of
higher priority that is ready to run.

30

Once a task is built, it can be installed in the system and executed.
Task installation simply registers a task's attributes with the system.
The task 1is not in memory, nor is it in competition for system
resources. An installed task can be put in active competition for
system resources by the operator or by another active task in the
system.

When an installed task is activated, the system will allocate necessary
resources, bring the task into memory for execution, and place it in
competition with other active tasks. Task installation is the basis
for efficient task operation. An installed task uses very little
memory resource; yet, when the task is needed to service a real-time
event, it can be introduced into the system quickly since its basic
parameters are already known to the system.

Tasks can also share code and data among themselves through the common
partition facility. A common partition is made accessible to the

system and to tasks by installing the common partition and the tasks
which intend to use it,

The above paragraphs are a text-book description of the features that must
be present in a multi-tasking, real-time operating system. RSX-11 is in
wide use at NASA and many persons are available to support such a system 1if
CYRO2 is required to operate in a multi-tasking environment.

8.4 ASSESSMENT‘OF OPERATING SYSTEMS

The selection of an operating system depends on two key elements: the
available computer hardware and the anticipated operating enviroument.
Hardware may constrain the choice of operating system. On the other hand,
the operating environment may determine the features required of the opera-
ting system which, in turn, determine the hardware requirements.

The MINC-23 was originally acquired to support a rather simple interaction
with the CYRO 750 robot. It is perfectly feasible to continue to use the
present system with the RT-11 operating system to support off-line storage
and modification of NC programs for the robot. The required features are
available in the CYRO2 software package. However, longer range objectives
associated with robot-controlled welding suggest a more complex environment
in the future,

The following tasks are anticipated in the use of robots for welding on the
space shuttle main engine:

> Continuation of the current task of storing, modifying, and loading
numerical control programs for the CYRO 750.

> Recording of computer-vision seam offsets required for multi-pass
welds,

> Down loading of initial weld-seam path coordinates from off-line
computer aided design (CAD) systems.

> Continued development of software to support the CYRO 750.

31

The present MINC-23 with the RT-118J operating system can handle any oume of
the above tasks. However, it is anticipated that project growth will
require that software development continue concurrently with execution of
real-time programs. It would be desirable for a computer to monitor and
record seam-following corrections generated by the computer-vision system
while concurrently maintaining communications with the CYRO 750 robot as
well as downloading seam dimensional information from an off-line CAD
system, As projects grow it can usually be anticipated that additional
demands will be placed on the computer system.

From this discussion it can be seen that the question of computer operating
system is determined simply by the number of concurrent demands that will
be placed on the computer. Continuation with RT-11 is to require that
future computer operations will be in the single-task environment. If a
multi-task environment is anticipated, an early conversion to the RS8X-11
operating system would be prudent. Such a conversion would require the use
of a larger disk-based computer system to support RSX-11M,

8.5 CONVERSION OF CYRO2

The CYRO2 software 1is primarily written in FORTRAN with several small
assembly language subroutines that handle the actual communications proto-
col for transmitting data between the MINC~23 and the CYRO 750. Conversion
at this time would merely require that the assembly language routines be
rewritten to interface with RSX-11M and the new hardware. These assembly
language communications routines were specifically written as independent
modules to permit easy conversion to another system. The more extensive
FORTRAN modules would simply be re-compiled to execute on the new system.
The operator interface with the CYRO2 software would remain unchanged.

32

9.0 CONCLUSIONS AND RECOMMENDATIONS
9.1 CONCLUSIONS

Communications has been established between the CYRO 750 Robot and the
Digital Equipment Corporation MINC-23 computer using the digital input-
output modules that are part of the MINC-23 system. The interface on the
robot is the standard external device interface provided by the
manufacturer.

A menu driven set of software routines known as CYRO2 has been written that
permit the offline creation, storage, and modification of Numerical Control
programs for the CYRO 750 robot. In addition, certain robot operational
features that can be controlled or accessed by way of the external device
interface have been implemented.

It would be desirable to expand the CYRO2 system to function as a workcell
host to handle additional tasks such as serving as a robot-welding monitor
and a seam-tracking system monitor.

It will be difficult to expand the MINC-23 system ‘to function as a
multitasking work-cell host due to the limitations of the single-job RT-11
operating system. '

Some limited additional capability could be developed using the MINC-23 if
the CYRO2 communication routines were converted to interrupt-driven
handlers.

9.2 RECOMMENDATIONS

1. Convert CYRO2 to operate under control of a multitasking executive
such as RT-11/M. Then develop the expanded role as work-cell host by
creating additional tasks.

2. If recommendation 1 cannot be implemented, some additional
expansion of CYRO2 can be achieved by rewriting the communication
handlers to be interrupt driven. NOTE: This approach has serious
limitations due to the RT-11 monitor.

3. Expand CYRO2 to include a robot welding monitor.

4, Add a seam-tracking monitor by routing seam-tracking offsets from
the Ohio State system through the MINC-23. This route of expansion is
limited using the MINC-23 since high-speed mass storage 1is mnot
available on the system.

5. Include communication with a penetration monitor that can provide
additional control capabilities.

33

APPENDIX

CYRO2 OPERATING MANUAL

DESCRIPTION OF EXTERNAL DEVICE
INTERFACE MESSAGES

CYRO2 PRbGRAM FLOW DIAGRAMS

CYRO2 SOFTWARE LISTINGS

34

Department of Electrical and Computer Engineering
CLEMSON UNIVERSITY

Clemson, South Carolina 29634-0915

CYRO2 OPERATING MANUAL

8 May 1986

Fred R, Sias, Jr.

Prepared for:
George C, Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

35

1.0 INTRODUCTION

CYRO2 is a sofware package designed to execute on a MINC-23
computer manufactured by Digital Equipment Corporation. The
MINC-23 1is to be attached to the External Device Interface of an
Advanced Robotics CYRO 750 robot to provide a capability for
off-line manipulation of numerical control programs, This
software is a complete revision of CYRO1l which was a simple set of
routines written merely to check out the communications interface
to the robot.

CYRO2 provides the capability for initilizing the communications
link, limited control over the robot, as well as provision for
saving, editing, loading and executing numberical-control
programs. The various software features will be discussed in the
next section.

The features of CYRO2 are all controlled from a single main
routine with provision for expansion as other capabilities are
desired. A main menu allows the user to select any program
feature and the menu table can easily be expanded to introduce new
featyres.

2.0 CYROZ EXECUTION

The CYRO2 software system is executed by the following sequence of
operations:

a. Connect the MINC computer to the CYRO 750 EXTERNAL DEVICE
INTERFACE using the cable provided. Since there is only one ome
interface plug on the robot, it may be necessary to disconnect the
Ohio State vision system. The two systems can not operate
simultaneously without additional hardware modificationmns.

b. Turn on the robot and load the appropriate system
software from a cassette.

c. Turn the communications interface switch on the robot to
the "on" position so that the external interface communications
link can be established.

d. Place an RT-11 operating system diskette in the left-hand
drive which 1is known as drive DYO. Place the CYRO2 system
diskette in the right-hand drive which is referred to as DYl. The
operating system is automatically booted when the MINC computer is
turned on. The system is initialized and a message will request
the current date and time. 1In addition to the CYR0O2 system, drive
DY1 will also be used to store all numerical control programs.

e. Execute CYRO2 by typing RUN CYRO2<cr>, where the ''<cr>"
indicates that you should press a carriage return or newline key.

36

f. When the prompt appears, initialize the system by pressing
"reset" on the robot pendant. Then press <cr> return to the
main menu. A message should appear on the robot console to
indicate that initialization 1is complete and communication
has been established between the MINC-23 and the
Tobot.

g The main control menu should appear on the screen as
follows:

CYRO 750 EXTERNAL DEVICE INTERFACE MENU:

1. REINITialize system (Reset Robot)
2. SAVE robot program to diskette.
3. LOAD program from diskette.

4, RUN a program.

5. DIRectory of programs in robot.
6. (DDIR) Diskette directory.

7. SHOW a program in the robot.

8. LIST a program from diskette.

9. EDIT a program on diskette.

10. RESequence a program on diskette.
11. POSITion of the robot.

12. PARAMeters from the robot.

13. MESSage to the robot,

14, PARK and ignore all messages from robot.
15. TRANSfer robot programs from VAX.
"E" EXIT to operating system.

SELECT>

Any 1item in the menu may be selected either by typing the number
or by typing the mnemonic printed in capital letters.

h. Select any desired option from the main menu. The effect
of each routine will be described in the next section.

3.0 SOFTWARE DESCRIPTION

Fourteen options are provided that may be selected from the main
menu that is used to control the execution of CYRO2. Each of the
menu selections basically calls a subroutine that provides the
desired capability. All of the subroutines are writtemn in
FORTRAN; however, the subroutines may call four assembly-language
subroutines that handle the actual communication functions of the
software package. The assembly-language routines are the only
part of the system that are machine dependant, comsequently, the
package could easily be transported to another Thardware
configuration.

The following paragraphs describe the function of each of the main
menu selections.,

37

3.1 REINITialize

This selection 1s called once each time it is mnecessary to
establish communication between the MINC-23 and the Advanced
Robotics CYRO 750. Press "reset" on the robot pendant after the
REINIT option has been selected. Wait two seconds and press <cr>.
Should the robot display an error message associated with the
External Device Interface, selecting REINIT and again reseting the
robot should clear the error.

Note: Option 14, PARK, has been installed to prevent most errors.
See the description of that routine.

3.2 SAVE

The SAVE option is designed to permit the operator to save on
diskette any of the 9 numerical control programs that may be
currently loaded into the robot memory. The program will ask for
the program by number and will also ask the operator for a name
under which to file the program on diskette. Up to an eight
character name may be selected and the program will append the
file suffix ".CYR" when the selected program is transferred to
diskette. The operator responses required should be evident from
the prompts displayed on the terminal. ‘

3.3 LOAD

- The LOAD option is the inverse of the save option. One - merely
responds to the prompts to select a numerical control program
stored on the right-hand diskette drive on the MINC-23. The DDIR
option (No. 6) allows one to examine the directory of the diskette
to select a program which of course should have a file name that
indicates the purpose of the program.

3.4 RUN

The RUN option allows an operator at the MINC-23 console to
initiate the execution of any program that is currently loaded
into the robot. The desired program is merely selected by number
by responding to the prompt on the display. It is not possible
for the MINC-23 system to keep track of various programs that may
be created in the robot or loaded from various sources such as
cassette or diskette., Therefore, the operator is responsible for
knowing the application of each program. Option DIR (No. 5) may
be used to determine which programs are currently in robot memory
as described below.

3.5 DIR

The robot directory option may be selected to determine which
numerical control programs are currently stored in the rtobot
memory. This option merely displays the first two lines of each
program in robot memory; therefore, each numerical control program
should start with two comment lines that contain information

38

describing the purpose of the program and the name of the person
who created the program. It is probably desirable to also include
the date the program was created somewhere on the first two
comment lines.,

3.6 DDIR

The diskette directory option is used to display the directory of
any diskette installed in the right-hand drive of the MINC-23-
computer. The format is exactly the same as the directory
displayed when requested from the operating system prompt. The
date that the program was filed is also displayed.

3.7 SHOW

The SHOW option allows one to examine any of the nine numerical
control programs currently stored in robot memory. It is selected
by number in response to a prompt so the DIR option should be
selected first to determine the proper program. The SHOW option
also permits the operator to choose to display the program on the
CRT or output to the printer for hard copy.

3.8 LIST

The LIST option 1is analagous to the SHOW option except that
programs stored on the diskette may be displayed on the CRT or
printed. A prompt will ask for the file name so it is necessary
for the operator to know the file name or to obtain the proper
name using the DDIR option.

3.9 EDIT

The EDIT option does not invoke a stand-alone editor but instead
merely returns the operator to the RT-11 operating system prompt.
After receiving that prompt the operator should type "EDIT <File
name> where the file name is any of the names that can be observed
on the diskette directory with a suffix ".CYR". When wusing the
system editor the suffix .CYR must be included in the file name.
Any numerical control program on the diskette may be edited as
long as the standard nc program syntax is correct. The slash
("/") found at the end of numerical control programs displayed on
the CRT should not be included in programs created with the editor
as the slash is not actually part of the program flle.

Since use of the RT-11 system editor requires the operator to
leave the CYRO2 system, one must issue the "RUN CYRO2" command at
the operating system prompt to return to the CYRO2 main menu. It
is not necessary to REINITialize the system if the robot has not
tried to send External Device Interface messages to the MINC-23
while the editor was in use. Since the robot does send
undocumented messages it is possible for the robot to try to send
a message and then display an error code when the CYRO2 does not
respond. Should this condition ever occur, merely REINITialize
the system by selecting option No. 1.

39

3.10 RESequence

This option allows the line numbers of a numerical control program
to be resequenced by tens. In other words, the program numbers
originally wused will be replaced by 1lines numbered with the
sequence 0010, 0020, 0030, etc. This option is useful when the
numbering sequence has been modified by repeated edits and it {is
necessary to add a line between existing consecutively numbered
lines. Memory size limits programs to about 8000 characters.

3.11 POSITion

This option merely displays all robot coordinates at the time the
request 1is made. Only omne set of coordinates 1is displayed
although the robot may send additional data. If moving the robot
should complete any programmed sequence of actions before
returning to the menu.

3.12 PARAMeters

The PARAM option displays the current values of several operating
parameters on the robot. Included are torch feed rate, wire feed
rate, percent weld level, AVC/ACC setpoint level, and oscillation
status.

3.13 MESSAGE

The MESSAGE option allows one to type a message at the MINC-23
console keyboard that will be displayed at the robot console
display. The prompts are self explanitory. A sequence number is
requested and sent to the robot but we know of no value for this
number. Any number is acceptable.

3.14 PARK

The PARK option permits the MINC-23 to receive and acknowledge any
messages from the robot. However, the messages are simply
ignored. This option is provided as an alternative to taking the
MINC-23 offline so that error conditions will not occur when the
robot is being used but is not under the control of the MINC-23.

We believe there are undocumented messages that are transmitted to
the external computer that will cause an error condition in the
robot 1if the handshaking on the communication 1link is not
completed. This routine merely provides the appropriate
handshaking signals but does nothing with the message. The option
is necessary since the MINC-23 must continuously be ready to
accept a message to prevent error conditions in the robot. An
interrupt driven system would not have this problem but the
current software package uses a polling method of establishing the
communications link.

40

3.15 TRANSfer

The TRANSfer option does not execute a program under the control
of the CYRO2 system. Instead, this option merely returns control
to the operating,K system where software writtem by Intergraph
personnel may be used for file transfer. This selection was added
to CYRO2 by Intergraph personnel and is essentially a slight
modification of the software used in the EDIT option.

3.16 EXIT

The EXIT option merely allow the operator to retﬁrn to the RT-11
operating system when CYRO2 is no longer required.

41

APPENDIX B

DESCRIPTION OF EXTERNAL DEVICE INTERFACE MESSAGES

This appendix contains a description of the messages that may be
transmitted between the Advanced Robotics CYRO 750 Robot and external
computer devices. Messages for communicating between the robot and
external sensor devices have not been included. This appendix provides the
basis for all of the software described in this report. The following
material 1is a direct quotation from a document dated April 27, 1984, by
Advanced Robotics' personnel:

MESSAGE TYPES

There are six message types supported by the external device
interface. Distances and angle measurements are referred to in
many of the messages in these different message types. For
consistancy, the following scale factors will be used when
referring to distances and angles:

Distances: 1/128 inch (0.0078) per bit
Angles: 1/10 degree per bit

MESSAGE CONTENTS - ROBOT TO ALL DEVICES

1. Request Device Identification/Status - is a message sent
at reset time requesting the device identification and hardware
status of the device. The result of the request will be a Device
Identification/Status message from the device, indicating the
existance, software and hardware version numbers, and the status
of the hardware that can be determined by the device.

Coding - Type Code = 1

2. Program Status Mode - indicates to the device that
the specified N/C program has been started or stopped.

Coding - Type Code = 2
Status (one byte):
Program Started = 1
Program Stopped = 2
Program Number (one byte - 1 to 9)

42

3. Welding Status Mode - indicates to the device that
welding has been started or stopped by the N/C program.

Coding - Type Code = 3
Status (one byte):
Welding Started
Welding Stopped

1
2

4. Robot Positions - indicates to the device what the
current robot positions are.

Coding - Type Code = 4

X axis position - inches (two bytes, low byte,
then high byte transmitted)

Y axis position - inches (as above)

Z axis position - inches (as above)

A axis position - degrees (two bytes, low byte,
then high byte transmitted)

C axis position - degrees (as above)

X axis position - C positioner - degrees (as
above)

Y axis position - C positioner - degrees (as
above)

X axis position - D positioner - degrees (as
above)

Y axis position - D- positioner - degrees (as
above) ‘ :

5. Special Message to Device - is a message that will pass
ASCII data that is placed in a corresponding N/C command to the
device. This message is envisioned to allow special features of
some devices to be enabled without the need to change rtobot
software. It may also be used to send information messages from
the N/C program to the device. There is a corresponding message
from the device to the robot that will display on the operator's
terminal.,

Coding - Type Code 5
Variable number of ASCII bytes (up to 253) to be
interpreted by the device for special
function operationm.

6. Error - is a message indicating that an error has
occurred in the robot control, and what that error is. The device
will be required to make a decision based on the error as to the
proper course of action to take.

Coding - Type Code 6
Error Number - to be defined as needed

43

7. Robot System Parameters - is a message indicating tha a
robot system parameter has changed. Some of the system parameters
will be torch, feedrate, welding level, wirefeed speed, and left
and right oscillations., ‘

Coding - Type Code 7

Torch Feedrate - inches per minute (two bytes, low
byte then high byte transmitted)

Wirefeed Feedrate - as above

Weld Level - percent of power supply output (two
bytes, low byte, then high byte transmitted -
one bit equals 0.1 percent)

AVC/ACC -~ Setpoint Level - weld level setpoint as
defined in the N/C program for Automated
Voltage Control and Automatic Current Control
"(two bytes, low byte, then high byte
transmitted - one bit equals 0.1 percent)

Oscillation =~ indicates that a left or right
oscillation has occurred (one byte):

None =0
Left Oscillation =1
Right Oscillation = 2

8 Device Modes - is a message telling the device whether the
messages being received by the robot will be executed or nmnot.
For example, this will tell a sensor when it should start sending
override data, or a host computer that a safety switch has been
released, and that it has control of the robot.

Coding - Type Code 8
Device Type (one byte):
Sensor Device =1
Computer Device = 2
Device Identification - three characters as
defined in the Device Identification/Status

message.

Device Status (one byte):
Device On =1
Device Off =2

44

MESSAGE CONTENTS - ROBOT TO COMPUTER DEVICE

1. Load Program from Computer Acknowledge - a reply message
from the robot to indicate whether the robot is ready to load a
program from the computer or not. The robot will accept a program
from the computer device only when it is in a no activity state
and a keyswitch on the robot controller is in the device enable
position. The no actirity state is when no program is rumning or
no mode is being executed. The robot goes into a no activity mode
after a hald, a stop program, or the program finishes, It will
remain in this mode until the operator initiates a function from
the pendant, or a program is remotely started. This message 1is
also wused while loading a program from the computer device as an
acknowledge between program blocks.

Coding ~ Type Code 65

Acknowledge (one byte):
Not ready to load = 0
Ready to Load =1

Program Number - onme byte (1 - 9). This is the
program number sent in the Request to Load
Program message, and is used for verification

~ purposes.

(try again later)

2 Save Program to Computer Acknowledge - a reply message
from the robot to indicate whether the robot is ready to save a
program to the computer or not. The robot will send a program to
th computer device only when it is in a no activity state. The
is, when no program is running or no mode is being executed. The
robot goes into a no activity mode after a halt, a stop program,
or the program finishes. It will remain in this mode until the
operator initiates a function from the pendant, or a program is
remotely started.

Coding - Type Code 66

Acknowledge (one byte):
Not Ready to Save = 0
Ready to Save =1

Program Number - one byte (1 - 9). This is the
program number sent in the Request to Save
Program message, and is used for verificatiomn
purposes.,

Program Size - two bytes, low byte send first
indicating the lenght of the program (number
of bytes) about to be sent to the computer.

3 Save Program to Computer - is a message to the computer
device that contains the N/C program requested. This message 1is
transmitted the same as other messages with the addition of a
block number in the data portion of the message. The length of
the N/C program is sent to the computer device in the acknowledge
message, and the save program message may be sent multiple times
to save the entire program. Between blocks, the robot will expect

45

a request to save program message, indicating that the robot is to
send the next block of the program.

Coding - Type Code 67
Block Number - a byte starting with zero,
incremented by one for each segment until the

complete program has been sent to the
computer.

N/C Program - variable number of data bytes.

MESSAGE CONTENTS - ALL DEVICES TO ROBOT

1 Device Identification/Status - is a message sent as a
response to a Request Device Identification/Status. This message
will indicate existance, software and hardware version numbers,
and the status of the hardware that can be determined by the
device.

Coding - Type Code = 129

Device Type (one byte):
Sensor Device
Computer Device
Both

Device Identification - three bytes (ASCII
characters) that identify the device. These
characters will be used in the N/C program

) to reference this device.

System Status (one byte):
Not Operational = 0
Operational =1

Variable number of ASCII characters defining the
program version level and other information.
This information is printed on the operators
terminal.

1
2
3

2 Set Program Mode - indicates to the robot that an N/C
program of the specified number i1s to be started or stopped. This
message will be executed only if the keyswitch for the device 1is
in the enable position and the robot is in a no activity mode. 1f
a program is running and the program start message 1is received,
then it will be ignored. If the robot is in a no activity state
and the program stop message is received, it will be ignored. The
program stop message will place the robot in the no activity state
if the keyswitch 1s enabled,

Coding - Type Code 130
Status (one byte):
Program Start 1
Program Stop 2
Program Number (one byte - 1 to 9)

46

3 Set Welding Mode - indicates to the robot that welding is
to be enabled or disabled. This function is identical to pushing
the torch enable on the robot control pendant, however, it is
controlled by an external device. In each weld, the welding will
be enabled if the torch enable on the robot control pendant 1is
pushed until a Disable Welding message is received by the robot.
If a Disable Welding message is received, then an Enable Welding
message, and the robot is still in the welding portion of the N/C
program, then the arc will be re-established.

Coding - Type Code = 131
. Status (one byte):
Enable Welding
Disable Welding

1
2

4 Request Robot Positions - indicates to the robot that the
current robot positions are to be sent to the device. This
command can initiate the transfer of robot positions at a periodic
rate of up to 10 Hertz or only when requested.

Coding - Type Code 132
Rate (one byte) - 0 to 10 times per second. A
rate of O will indicate to robot to only send
current robot positions once, until requested
again.

5 Special Message to Robot - is a message that will pass
ASCII data to the robot and onto the operator's terminal. This
message is envisioned to allow special messages of some devices to
be transferred to the operator's terminal without the need to
change the robot software. There is a corresponding message from
the robot to the device that will allow enabling of special
features in the device.

Coding - Type Code = 133
Variable number of ASCII bytes (up to 253) to be
displayed on the operator's terminal.

6 Error - is a message indicating that an error has
occurred in the device and what the error is. The device will be
required to make a decision based on the error as to the proper
course of action to take.

Coding - Type Code 134

Error Number - one byte (defined as needed)

Error Messages - variable number of ASCII bytes defining the
error. This message will be sent to the operator's
terminal. '

7 Jog - is a message that initiates a jog function of the
robot manipulator axes. Once initiated, the axes will continue to
move at the specified rate until a Stop Jog command is received.

47

This command can only be executed if the robot is in a no activity
state. That 1is, when no program is running or no mode is being
executed, The robot goes into a no activity mode after a halt, a
stop program, or the program finishess. It will remain in this
mode until the operator initiates a function from the pendant, or
a program is remotely started. Note that there are some special
N/C commands that place the robot in a special no activity mode
(M1 and M3). When these commands execute, a halt is executed. 1In
order to proceed, the operator must push the RUN button on the
robot control pendant, or the external device must send a Set
Program Mode - Program Start Message.

Coding - Type Code 135
X axis rate - one byte 0 - 100 percent (omne bit
equals one percent)
Y axis rate - as above
Z axis rate - as above
A axis rate - as above
C axis rate - as above

8 Stop Jog - is a message that will stop the jog
motion of the robot manipulator as specified.

No =0
Yes = 1

Coding - Type Code 136
All axes - (One byte)
axis

axis

axis

axis

axis

0> N g

9 Move Robot - is a message telling the robot to move to an
absolute position in the robot coordinate system, Due to the
overhead for communications, the frequency at which this command
can be sent is unknown. This message, just as the jog message,
must be sent when the robot is in a no activity state.

Coding ~ Type Code 137
X axis position - inches (two bytes, low byte,
then high byte transmitted)
Y axis position - as above
Z axis position - as above
A axis position - as above
C axis position - as above

10 Request Robot System Parameters - indicates to the robot
that the current robot system parameters are to be sent to the
device. The robot will resspond with a Robot System Parameters
message (Type code 7)

Coding - Type Code 138

48

MESSAGE CONTENTS - COMPUTER DEVICES TO ROBOT

1 Request Save Program to Computer - is a message requesting
that the robot save the specified program to the computer device.
The robot will respond with a Save Program to Computer Acknowledge
message indicating whether the robot is ready to send the program
to the computer and if so, what the program size is in bytes. The
robot will then send the program to the computer a message at a
time., The computer must respond between save program messages
with this request message to indicate that it is ready for the
next program block. (Note: The first Save Program to Computer
message containing a block of program data follows immediately
after the Save Program to Computer Acknowledge message without
waiting for another Request Save Program to Computer message.)

Coding - Type Code 193
" Program Number - ome byte 1 - 9

2 Request Load Program from Computer - is a message
requesting that the robot load the program of specified size and
number from the computer device. The robot will respond with a
Load Program from Computer Acknowledge message indicating whether
the robot is ready to load the program from the computer or not.

Coding - Type Code 194
Program Number - one byte 1-9
Program Size - number of characterss (bytes) in
program (two bytes - low byte first, high
byte second)

3 Load Program from Computer - is a message from the
computer device that contains the N/C program. This message 1is
transmitted the same as other messages with the addition of a
block number in the data portion of the message. The length of
the N/C program is sent to the robot in the Request Load Program
from Computer message, and the load Program message may be sent
multiple times to load the entire program. Between blocks, the
robot will respond with a load program from computer acknowledge
message to indicate that the next block is to be sent.

Coding - Type Code 195
Block Number - a byte starting with zero,
incremented by one for each segment until the
complete program has been sent to the
computer.
N/C Program - variable number of data bytes

49

APPENDIX C

PROGRAM FLOW DIAGRAMS

50

INITIALIZE SYSTEM

g

DISPLAY MENU

v

SELECT:

REINIT

SAVE

LOAD

RUN

DIRECTORY
DISKETTE DIR.
SHOW ROBOT PROG.
LIST DISK PROG.
EDITOR
RESEQUENCE
ROBOT POSITION
PARAMETERS
MESSAGE

PARK
INTERGRAPH
EXIT

51

CLEAR OUTPUT REG.

Y

WAIT FOR MESSG.

SETUP MESSAGE

y

TRANSMIT TO ROBOT

ACKNOWLEDGED
NO

5 TRIES ?

NO

PRINT GIVEUP MSG.

52

&

CONTINUE TO ACCEPT
UNDOCUMENTED MSGS.

NO 25

MESSAGES

INIT. COMPLETE
MESSAGE

PRINT
ERROR
MESSAGES

53

ACCEPT PROG. NO.
TO STORE

”l

ACCEPT FILENAME

CURRENT
FILENAME ?

OVERWRITE MESSG.

NO YES

OVERWRITE

54

TRANSMIT REQUEST
TO SAVE MESSAGE

ERROR CODES
?
NO

ACKNOWLEDGEMENT

RECEIVE PROGRAM AND
AND FILE ON DISKETTE

ERROR CODES
?
NO

SUCCESSFUL FILE
MESSAGE

(RETURN)

55

T

PRINT ERROR
MESSAGES

RETURN
\ 4
RETURN TO POINT
TO RETRY

56

(oAb)
v

ACCEPT PROG. NAME
TO BE LOADED.

v

ACCEPT NO. TO BE

ASSIGNED IN ROBOT.

NO

1

RETRIEVE FILE AND
DETERMINE SIZE.

v

TRANSMIT REQUEST-
TO-LOAD TO ROBOT. *

READY TO LOAD

READ DISK FILE
INTO ARRAY.

!

TRANSMIT DATA BLOCKS

LOAD ACK;\IOWLEDGE

PRINT SUCCESSFUL
LOAD MESSAGE.

"(RETURN)

57

* Error checking on all
communications.

HOUSEKEEPING

l

SET UP REQUEST -TO-SEND
CODE IN TRANSMISSION
ARRAY.

l

SET UP PROGRAM NO.

CALL SEND *
AND TRANSMIT ARRAY

* NOTE: All messages transmitted between the robot and
external computer involve handshaking and ext-
ensive error checking. For simplification, this is
not shown in most flow diagrams.

58

RUN

ACCEPT PROG. NO.
FROM KEYBOARD

!

SET UP MESSAGE

-

SENDIT

ANY YES
ERRORS ?

NO

RECEIVE
ACKNOWLEDGEMENT

ANY YES
ERRORS ? »

NO *

| DISPLAY CRT MESS'G. PRINT
TO OPERATOR ERROR MESSAGES

v

RECEIVE
ACKNOWLEDGEMENT AND
IGNORE OTHER MESS'GS

59

TRANSMIT
REQUEST TO SAVE *

!

RECEIVE
ACKNOWLEDGE *

/

IF NOT FIRST BLOCK
TRANSMIT REQ. TO SAVE*

;

RECEIVE BLOCK *

;

DISPLAY FIRST TWO
LINES OF PROGRAM

END OF PROG.
?

* Error checkin on all
communications.

NINE

PROG'S. REC.

RETURN

60

HOUSEKEEPING

L

SELECT PRINTER OR
CRT OUTPUT

l

DIRECT ACCESS *
DIRECTORY BLOCK

l

DECODE DIRECTORY
DATA

l

PRINT DISKETTE
DIRECTORY AND
FILE DATES

61

* Displays error messages if
errors occur during access.

ACCEPT PROGRAM
- NO. TO DISPLAY

!

CRT OR PRINTER ?

!

TRANSMIT REQUEST
TO SAVE *

!

RECEIVE ACKNOWLEDGE *

!

DISPLAY PROGRAM NO.

NO

g

RECEIVE BLOCKS OF DATA *

!

OUTPUT BLOCK OF DATA

!

CHANGE CR'STO """

END OF

PROGRAM ?

RETURN

62

* Error checking on all
communications.

INPUT FILE NAME

v

SELECT PRINTER
OR CRT OUTPUT

v

CONVERT TO RAD50

v

GET CHANNEL AND
OPEN FILE *

v

DISPLAY PROG. NAME

v

READ TO END OF FILE

v

CLOSE & FREE CHAN.

v

CALC. PROG. LENGTH

v

DISPLAY OR PRINT
PROGRAM

RETURN * Displays error messages

63

if file not found.

DISPLAYS MESSAGE

RETURN YES EXITS TO OPERATING
TO THE OPERATING

SYSTEM TO USE
SYSTEM? SYSTEM EDITOR
RETURN STOP

64

REQUEST FILE NAME

'

INPUT FILE NAME

!

CONVERT TO RADS0

2

GET CHANNEL AND
OPENFILE

'

READ PROG TO ARRAY

v

CLOSE FILE AND
FREE CHANNEL

v

CALL INSRT AND
RENUMBER LINES

!

REWRITE TO DISKETTE

65

INCREMENT LINE
NUMBER COUNT

l

CONVERT LINE NO.
TO ASCII INTEGERS

l

REPLACE OLD LINE
NO. WITH NEW NO.

66

BUILDS POSITION
REQUEST FILE

!

TRANSMIT REQUEST
FOR DATA

y

RECEIVE TABLE
UNSCALED DATA

;

SCALE COORDINATE DATA
AND FORMAT
FOR DISPLAY

:

DISPLAY POSITION DATA

-RETURN

67

BUILDS
REQUEST FILE

;

TRANSMIT REQUEST
FOR PARAMETERS

l

RECEIVE TABLE
OF PARAMETERS

l

SCALE PARAMETERS

l |

DISPLAY PARAMETERS

68

DISPLAY MESSAGE
REQUEST

:

INPUT MESSAGE

;

CALCULATE
MESSAGE LENGTH

'

BUILD MESSAGE
ARRAY

;

TRANSMIT TO ROBOT

ANY
ERRORS
?

NO

DISPLAY ERROR
MESSAGES

69

DISPLAY CRT MESSAGE

CALLS RECEVE TO
ACCEPT MESSAGE FROM
ROBOT

ERROR
- PARAMETER SET

TOONE ? NO

70

DISPLAYS MESSAGE

RETURN
TO THE OPERATING
SYSTEM ?

YES

71

EXITS TO OPERATING
SYSTEM TO USE
COMMUNICATION PROG'S.

SET UP ARRAY
LENGTH COUNTER

y

CALCULATE
CHECKSUM

v

PLACE CHECKSUM
IN ARRAY

1

GET A BYTE FROM
ARRAY AND
CALL SNDBYT

WAIT FOR ACKBYTE

CHECKSUM

ERROR
?

TIMEOUT
ERROR

RET. TIMEOUT PARAM.

?

'

RET. ERROR PARAM.

72

YES

NO
KEYBOARD CHAR. ?

SET TIMEOUT PARAM.

2

HOUSEKEEPING

!

REC. MESSG. LENGTH

!

UPDATE CHECKSUM

!

REC. SEQ. NUMBER

!

UPDATE CHECKSUM

73

RECEIVE BYTE

!

STORE IN ARRAY

!

UPDATE CHECKSUM

NO END

OF DATA ?

RECEIVE CHECKSUM

AGREE WI SET CHECKSUM ERROR

CALCULATED PARAMETER

CHECKSUM FOR CALLING PROGRAM
TRANSMIT CONFIRMATION TRANSMIT CHECKSUM
MSG. REC'D TO ROBOT ERROR CODE TO ROBOT

y

74

HOUSEKEEPING

v

LATCH DATA IN
OUTPUT REGISTER

v

SET REQB
TO INDICATED THAT
DATA IS READY

v

INITIALIZE TWO-BYTE
TIMEOUT COUNTER

g

CHECK FOR HANDSHAKING

ACKNOVY,LEDGED

CLEAN UP STACK

75

CLEAR REQB
DATA READY FLAG

CSRO CLEAR
?

YES

CLEAN UP STACK

!

MOVE THE RETURN
ADDRESS FORWARD
BY TWO WORDS

NORMAL
RETURN

NO

READ A BYTE
AND SAVE ON STACK

!

SET REQATO
INDICATE BYTE REC'D

NO CSR1 RESET ?

CLEAR REQA

|

POP DATA INTO RO

76

HOUSEKEEPING

!

PUT DATA IN RO

!

MASK DATA

y

COMPLEMENT DATA

!

LATCH DATATO
INITIALIZE OUTPUT
REGISTER

RETURN

77

APPENDIX D

CYRO2 PROGRAM LISTINGS

78

FORTRAN IV vo2.5-2 Thu 08-Mau-B8B4 132120112 FPAGE 001

0001

(RS S SRS 00 PP P et e oot ebsstotto s tilolPeossoteesstottsssosteseorertostat
C
C MODULE NAME: -

PROGRAM CYRO2

PURFOSE? MAINLINE PROGRAM FOR COMMUNICATING HITH
: ADVANCED ROBOTICS EXTERNAL DEVICE INTERFACE OFTION.,

INFUT? USER INTERACTION FROM MINC KEYROARD,

PROCESSING:! THIS FROGRAM MERELY CHECKS FOR INFUT ERRORS AND
CALLS SELECTED SUBRROUTINES THAT HANDLE ALL FROCESSING.

DUTPUT: DISFLAYS CYRD 750 EXTERNAL DEVICE IMTERFACE TEST MENU!

C

C

C

C

C

C

C

C

C

C

C

c 1. REINITialize Svstem., (Reset Robot!)
C 2. SAVYE robnt program to diskette

c 3, LOAD erodram from diskette

C 4. RUN 3 Progrzm

c 5, DIRectory of prodrams in robot

(M 6. (DRIR) Diskette Directory

C 7, SHOW a =rodgram on robot

C 8, LIST 3 erogrzm on diskette

C 2?2, ERIT 2 prodran

c 10, RESecuence z prosgram on dishette
c 11, PDOSITion of Robot

C 12, PARAMeters from Robot

C 13. MESSadge to Robot Console

c 14, PARK and idnore 2ll messades from Robot.
C 15, TRANSFER robot erodgram for vax
C *E* EXIT to the orerating sustem

C

C

C

C

C

C

C

C

C

CALLED BY: THIS IS THE MAINLINE PROGRAM.

CaLLS TO2 INIT»SAVE,LOAD s RUNsDIRECTDISPLAYDOIR,LISTy
RESEQsPOSIT,PARSSEDITOR: INTERsXCOM (or TESTER)»

pouT. ,
SFECIAL INTERFACE REQUIREMENTS: COMMUNICATIDON SUBROUTINES CALLED
THAT USE THE MINC DIGIAL INFUT/OUTPUT

C MODULES,
C
C REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
C DATE PROGRAMMER =====CONTACT/ACTION/REMARKS=====
c 5-18-84 FRED R. SIAS» JR. (B03)656-3375/SYSTEM DESIGN
C 5-31-83 FRED R. SIASs JR. (803r656-33735/NEW NARRATION
C 6-02-85 FRS DELETED IN-POSITION
c 7-05-85 FRS % JKM FINISHED DERUGGING!
c 7-11-83 FRS CHANGED TO CYRO2
C 9-6-83 FRS ADDED °*PARK®
C 1-10-84 DAVID STILES INTERGRAFH 3-2100% VAX FILE TRANSFER
c 5-07-86 FRS SET UP AUTO INITIALIZE ON ENTRY
c
PRS0 22 e300 0228008830000 8000303308322 8303 830030 ¢03232383383808 23808241

79

-

FORTRAN IV

0002
0003
0004

0003
0006
0007
0008
0009

0010
0011

0012
0013

0014
0015

0016

0017

0018
0019

faw]

moe

100

WO OO0

310

vo2,.5-2 Thu 08-May-86 13112112

"DECLARATIONS

[« - N X R SO P U % B o o

= QO NSNS L

REALXE INPUT
INTEGER%2 IDATA(257)s RTs WT
REAL X

RYTE ARRAY(5000)BPFDATA(S20)
INTEGER¥2 IARRAY(23500)IPDATA(260)
COMMON /INOUT/ ARRAYBFDATA
EQUIVALENCE (ARRAYsIARRAY)
EQUIVALENCE (EFDATAsIFDATA)

INITIALIZATION

RT=5

WRITE (WT»100)
FORMATC 17 9///7/ s

’

D T

~

READ (RT»110) X
FORMAT(556.0)

CYRO2 - V2.,2/+//»
MINC-23 COMMUNICATIONS SOFTWARE FOR’ /s
CYRO 750 EXTERNAL DEVICE IMTERFACE’://»

Fe Ry SIASy JR's//» .

ECE DEFT. - CLEMSON UNIVERSITY »/:

CLEMSONs SOUTH CAROLINA 29634~0915'1/

(803) 656-3375"1//>

& MAY 198674/7/777/7777s

TG CONTINUE FRESS RETURNX:‘$)

AUTO INITIALIZE CALLUF ON FROGRAM ENTRY

CALL INIT
MAIN SELECTION MENU
CONTINUE

WRITE (WT:310)
FORMATC 1 9///7/s

* CYRO 750 EXTERNAL DEVICE INTERFACE MENU:’»//»

D T YT U U R

~

1, REINITialize suystem (Reset Robot!)’s/»

2. SAVE robot Prodram to dishkette’s/»

3. LOAD rrodram from diskette and verifu’y/»
4, RUN a mrodram’»/»

9. DIRectory of eprodrams in robot’r/»

4., (ODIR) Diskette Directory’s/y

7, SHOW 2 rprogram in the robot’s/»

8, LIST a erodram from diskette’»/»

9. EDIT a3 prodram on diskette’»/»

10, RESecuence 2 rrodram on diskette’s/s

80

FORTRAN IV v02,5-2 Thy 08-Mau-86 13112112 PAGE 003

11, PDOSITion of the robot’:/»
12, PARAMeters from the robot‘s/s
13, MESSAGE to the robot’s/»
14, PARK and ignore 31l messades from robot’»/»
1S5, TRANSfer robot eprogram from VAX' /)
) *E* EXIT to orerating sustem’s////>
SELECT>'+8%)

> F3 e 00 N
L N N

81

FORTRAN IV

0020

0021

0022
0024
0026
0028
0030
0032
0034
0036
0038
00490

. 0042

0044
0046
0048
0030
0052
0034
0036
0058
0060
0062
0044
0066
0048
0070
0072
0074
0076
0078
0080
poe2
0084

0086

00E7

c
c
C

400

v02,5-2 Thu 0B-Mau-86 13:12:12 FAGE 004

ACCEFPT SELECTION AND RRANCH TO APPROFRIATE SURROUTINE

READ (RT»400) INPUT
FORNAT(A8)

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

(INFUT.EQ."1’) CALL INIT
(INFUT.EQ. 'REINIT’) CALL INIT
(INPUT.EQ."27) CALL SAVE
(INFUT.EQ.’SAVE’) CALL SAVE
(INFUT.EQ."3’) CALL LOAL
(INPUT.EQ.'LOAD’) CALL LOAD
(INFUT.ER."47) CALL RUN
(INFUT.EQ.'RUN’) CALL RUN
(INFUT.EQ.’5") CALL DIRECT
(INPUT.EQ., 'DIR’) CALL DIRECT
(INPUT,EQ.‘7’) CALL DISFLA
(INPUT.EQ.’SHOW’) CALL DISFLA
(INPUT.EQ.“6”) CALL DDIR
(INFUT.EQ. DDIR’) CALL DDIR
(INFUT.EQ.’8’) CALL LIST
(INPUT.EQ.LIST’) CALL LIST
(INPUT.EQ,"%’) CALL EDITOR
(INPUT.EQ, ‘EDIT’) CALL EDITOR
(INFUT.EQ,“10°) CALL RESEQ
(INPUT.EQ.,“RES’) CALL RESEQ
(INPUT.EQ.’117) CALL POSIT
(INPUT.EQ. “POSIT’) CALL POSIT -
(INFUT.EQ."12’) CALL PARS
(INFUT.EQ.’13’) CALL MESAGE
(INFUT.EQ."MESSAGE’) CALL MESAGE
(INPUT.EQ. 'PARK’) CALL PARK
(INFUT.EQ."147) CALL PARK
(INPUT.EQ.’FPARAM’) CALL PARS
(INFUT.ER, "157) CALL INTER.
(INFUT.EQ. "TRANS’) CALL INTER
(INFUT.EQ.’E’) STOF
(INPUT.EQ.,‘EXIT’) STOP

GOTO 300

END

82

FORTRAN IV

Local Variables:

Name Tyre

INFUT Rx8
X RX4

COMMON Rlock
Ture

L¥1
Ix2

Name

ARRAY
IFDATA

Storade Mar for Prodram Unit CYRO2

265. words)

Local and COMMON Arrays!

Name
ARRAY Lxli
BFDATA Lx1
IARRAY Ix2

IDATA IXx2
IFDATA IX%2

Ture

+PSECT $DATAs Size = 001022 (
.Offset Name Ture "Offset Name Ture
001002 RT I%2 001012 WT Ix2
001014
/INOUT /» Size = Q12620 ¢ 2760, words)
0ffset Name Tyra Offset Name Tyre
000000 Eav BFDATA L¥1 011610 Eav IARRAY IxXx2
0115610 Eav
Section Offset -~--=-- Size--~-- Dimensions
INOUT 000000 011510 (2300.) (5000)
INOUT 011610 001010 (2460,) (520)
INOUT 000000 0114610 (2500,) (2500)
$DATA 000000 001002 (237.) (237)
INOQUT 011410 001010 (260.) (260)

Offset
001014

0ffset
000000

Subroutinesy Functionssy Statement and Processor-Dlefined Functions?

Name Ture
DRIR R%4
INTER Ix2
PARS Rx4

Name Ture Name Ture Name Ture Name
DIRECT Rx%4 DISFLA Rx4 EDITOR R¥%4 INIT
LIST I%2 LOAD I%2 MESAGE I¥%2 PARK"
POSIT Rx4 RESEQ Rx4 RUN Rx4 SAVE

83

Ture
Ix2
R%4
Rk4

Eav

FORTRAN IV vo2,35-2 Thuy 08-May-86 13113131 - FAGE 001

RS2 233323320000 002000200038 0202 330500002 02000000222322230032328229¢22203000¢3%¢
c
- C MOLULE NAME!
0001 SUBROUTINE INIT

FURFOSE
SUCCESSFUL COMFLETION OF THIS SUBROUTINE ESTARLISHES THAT
COMMUNICATION PROTOCOLS ARE WORKING FROPERLY.

INFUT?
THIS SUBROUTINE IS REQUESTED FROM THE MINC CONSOLE
PRIOR TQ RESETTING THE ROBOT., RESET ROEROT, WAIT TWO
SECONDS AND THEN FRESS ENTER TO RETURN TO MENU.

FROCESSING?

WHEN THE ROEOT IS RESET IT WILL REQUEST A DEVICE IDENT/STATUS
FROM THE MINC COMPUTER.
TYPE CODE = 1

THIS SUBROUTINE WILL RESPOND THAT THE MINC IS OFERATIONAL
AND WILL TRANSMIT THE AFPFROFRIATE CORES.,

C

c

C

C

c

c

c

c

C

C

C

c

C

C

c

C

C

c

c

C QUTFUT:

c CODES TRANSMITTED TO ROEOT:

C TYPE CODE = 129

C DEVICE TYPE (1 BYTE) = 2 (MEANS THAT COMPUTER DEVICE)
c DEVICE IDENT. (3 ASCII RYTES) = °*MNC®

C SYSTEM STATUS (1 BYTE) ‘ = 1 (MEANS OFERATIONAL)
C ASCII MESSG = °MNINC OK - CYRO1 V1.0°

C

C CALLED BY! CYRO2

C

C CALLS TO? DOUT» SENLy RECEVE

C .

C
c
c
C
C
C
c
C
C
C
C
C
C
C
c
C
C
C

THIS SUBROUTINE WILL CALL DOUT TO CLEAR OUTFUT REGISTER,
THEN IT CALLS THE RECEVE SUEROUTINE 70O WAIT

FOR THE INITIAL MESSAGE FROM THE ROROT.

THE MINC WILL WATIT INDEFINITLY FOR THE ROBOT TO RESPOND.

TO QUIT WAITING HIT ANY KEY ON THE MINC

CONSOLE AND THE PROGRAM WILL RETURN TO THE MAIN MENU.

SEND' SUBRRQUTINE CALLED TO TRANSMIT MESSAGE TO ROBOT CONSOLE.

SPECIAL INTERFACE REDUIREMENTS: MINC DIGITAL I/D MODULES
CYRO 750 EXTERNAL DEVICE
INTERFACE OPTION

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)

DATE FROGRAMMER =====LONTACT/ACTIDN/RENMARKS=====
7-25-84 FRED R. SIAS» JR, (B03)-4656-3375/DESIGN & PROGRAMMED
5-31-85 FRED R. SIAS: JR. (803)-656~3375/NEW NARRATION

L2002 0202208222838 38 0000000008 ¢80223283 0080032333333 9382333302323¢000022 8280008
84

FORTRAN IV vo2.5-2 Thu 08-Mas-86 13:13:31 PAGE 002

0002 " INTEGER%2 IDATA(257)sRTsHT
0003 RYTE INFUT
c .
0004 RT=5
0005 Wr=7
C .
C FIRST OUTFUT 000000 TO CLEAR DIGITAL OUTPUT REGISTER
c
0006 T IUNIT=0
0007 IMASK="000000
C
0008 CALL DOUTC(IUNIT»IMASK»IERRs»IMASK)
C .
0009 10 CONTINUE
C
0010 WHRITE (WT»50)
0011 50 FORMAT(’1/»/////9’ Press RESET on ROBOT, then wait two secondss’s
1 1/3’ then rress RETURN key on MINC to return to menu,’s
2 777777777777y’ PRESS RETURN: ‘%)
C
et e e L L GET FIRST MESSAGE
C
0012 CALL RECEVE(IERRORyILEN,ICSUMsIDATA)
c
c TIME ODUT ERROR
0013 IF (IERROR.EQ.1) GOTO 199.
I)
C CHECKSUM ERROR IF IERROR = 2
0015 IF (IERROR.EQ.2) GOTO 2000
C
c ILLEGAL ERROR CODE IF GREATER THAN 2
0017 IF (IERROR.GE.3) GOTO 3000
C
C
0019 GOTOD 5100
C
C __
c
C HERE IF TIMES OUT AT ANY TIME
C
0020 199 CONTINUE
c
0021 WRITE (WT»200)
0022 200 FORMAT(//s’ “s/3+’ NO INITIALIZATION MESSAGE FROM ROROT /s
1 / PRESS °"RETURN®" TO CONTINUE> ‘s%)
0023 READ (RTs5230) INPUT
c
0024 RETURN
c

85

FORTRAN IV vo2,5-2 Thu 08-May-86 13:13:31 FAGE 003

c HERE TO PROCESS CHECKSUM ERROR
0025 2000 CONTINUE
0026 WRITE (WT»2010)
c
0027 2010 FORNAT(//»’ ’3/y* CHECKSUM DOES NOT COMPUTE!’s/,
1 * TRY AGAIN? (Y OR N)> “»$)
0028 READ (RT»5230) INPUT
0029 IF (INPUT.EQ.’Y’) GOTO 10
0031 RETURN
c
c HERE TO PROCESS ILLEGAL ERROR CODE ANDN RETURN TO MENU
0032 3000 CONTINUE
c
0033 WRITE (WT»3010)
0034 3010 FORMAT(//»' ‘»/y’ RECEIVED AN ILLEGAL ERROR CODE FROM RECEVE',
1 * SUBROUTINE,'»/»
2 * FRESS *RETURN' TD CONTINUE> /$)
0035 READ (RT»5230) INPUT
0034 RETURN
c
0037 5100 CONTINUE
c HERE TO PROCESS ACCEPTABLE REQUEST
c
c RETURN STATUS/IDENTIFICATION INFO TO ROROT
C B
0038 IDATA(3)=129
c | . . .
c DEVICE TYPE = 1 I.E, THIS IS A COMPUTER
0039 IDATAC4)=1 ‘
c
c DEVICE IDENTIFICATION = °MNC®
c
0040 IDATA(5)=77
0041 IDATA(6)=78
0042 IDATA(7)=67
c
c SYSTEM STATUS IS OPERATIONAL
0043 IDATA(B)=1
c
: c SEND MESSAGE °MINC 0K - CYRO2 V2,2°
0044 IDATA(9)=77
0045 IDATA(10)=73
0046 IDATA(11)=78
0047 IDATA(12)=47
0048 IDATA(13)=32
0049 1DATA(14)=79
0050 INATA(15)=75
0051 IDATA(16)=32
0052 IDATA(17)=45
0053 IDATA(18)=32
c CYRO2
0054 IDATA(19)=67
0055 IDATA(20)=89
0056 IDATA(21)=82

86

FORTRAN IV v02,5-2 Thu 08-Maw-86 13113131 FAGE 004

0057
0058
0059

0040
0061
00462
0063
0064

00635

00566
0067

00568
0070

0071
0072

0073
0074
0075
0076
0077

0078

0079

0080

0082

0084

0086

0087

0088

IDATA(22)=79
IDATA(23)=30
IDATA(24)=32
v2.2

IDATA(25)=86
IDATA(26)=50
IDATA(27) =46

IDATA(28)=50

IDATA(L1)=26

ILEN=28

WILL TRY TO SEND FIVE TIMES
DO 5200 I=1+5

CALL SEND(IERRORsILEN,IDATA)

IFf (IERRDR.EQ.0) GOTO 5500

3200 CONTINUE
c

WRITE (WT.5210)

5210 FORMAT(//»’ ‘+/»’ MINC GAVE UP AFTER 5 TRIES TO SEND!’s/)

WRITE (WT,5220) .

220 FORMAT(/s’ PUSH °"RETURN® TO CONTINUE> 's$%)
READ (RT»3230) INFUT :

230 FORMAT(A4)
RETURN

500 CONTINUE
--------------------------------------- GET SECOND MESSAGE

CALL RECEVE(IERRORs ILENsICSUMsIDATA)

TIME OUT ERROR
IF (IERROR.EQ.1) GOTO 199

CHECKSUM ERROR IF IERROR = 2
IF (IERROR.EQ.,2) GOTO 2000

ILLEGAL ERROR CODE IF GREATER THAN 2
IF (IERROR.GE.3) GOTO 3000

--------------------------------- KEEP READING MESSAGES
DO 7000 I=1,25 |

CALL RECEVE(IERRORsILENsICSUMsIDATA)

TIMEOUT ERROR
IF (IERROR.EQ.1) GOTO 6000

87

FORTRAN 1V -V02,5-2 Thu 0B-Mau-86 13313:31 PAGE 005

c CHECKSUM ERROR IF IERROR = 2
0090 IF (IERROR.EQ.,2) GOTO 2000
C .
C ILLEGAL ERROR CODE IF GREATER THAN 2
0092 IF (IERROR.GE.3) GOTG 3000
C
0094 7000 CONTINUE
C
C __
C A
C HERE IF INITIALIZATION COMFLETE AND OK
0095 WRITE (WT:5510)
0096 3510 FORMAT(//s’ ‘'s/s’ INITIALIZATION COMPLETE AND OK!'s/s
1 " PRESS "RETURN® T0O CONTINUE> ‘%)
0097 READ (RT,5230) INFUT. :
c
0098 RETURN
c
0099 6000 CONTINUE
c
0100 WRITE (WT:46010)
0101 4010 FORMAT(//s’ “‘»/»’ INITIALIZATION COMPLETE AND OK!'s/»
1 ’ NO MORE MESSAGES FROM ROBOT’s/»
1 ’ PRESS "RETURN' TO CONTINUE: ‘%)
0102 READ (RT»35230) INPUT
c
0103 ‘ RETURN.
0104 END
88

FORTRAN 1V
Local Variabl

Name Ture
I Ix2
IERROR Ix2
INPUT Lx1
WY I1x2

Storade Mas for Prodram Unit INIT

essy LFSECT $DATAy Size = 001026 (267, words)

0ffset Name Ture Offset Name Ture
001024 ICSUM I%2 001022 IERR Ix2

001014 ILEN Ix2 001020 IMASK Ix2

001006 IUNIT IX2 001010 RT I%2

001004

Local and COMMON Arraus:

Name Tupe
IDATA Ix%x2

Section Offgset ---—--- Size----- Dimensions
$DATA 000000 001002 (257.,) (257)

0ffset
001014
001012
001002

Suprautinesy Functionsy Statement and Frocessor-DNefined Functions:

Name Ture
nouT R%4

Name Tuere Name Ture Name Ture Name
RECEVE R¥4 SEND Rx4

89

Ture

FORTRAN IV v02.5-2 Thuy 08-Mag-86 13115100 FAGE 001

(1923200002333 300 0233303233333 33 3823033228002 2302 8088330222020 839933582233¢3¢4803¢3¢
c
c MODULE NAME:

0001 SUBROUTINE SAVE

PURFOSE

THIS ROUTINE ACCEFTS A PROGRAM NUMBER TO BE SAVED FRDM THE TERMINAL:
THEN A REQUEST IS TRANSMITTED TO THE ROBOT AND THE COMPUTER
RECEIVES AND FILES THE PROGRAM RETURNED TO IT.

INFUT

PROGRAM REQUESTS ROBOT FROGRAM NUMBER FROM USER AT MINC CRT.
THEN REQUEST A SIX CHARACTER FILE NAME TO BE USED WHEN FILING
ON DISKETTE ON MINC.

FROCESSING?

HANDSHAKING: 4

Comruter transmits Ture Code 193 - REQUEST TO SAVE
PROGRAN TO COMPUTER.

The computer waits for Ture Code 66 - SAVE FROGRAM
TO COMFUTER ACKNOWLEDGE.,

The robot then transmits the first block of data
(block ¢) after 3 brief rause.

Then comrputer accerts and files 3 seauence of blocks
using Ture Code 193 to indicate when
it is ready for each block.

Each block of data transmitted to the robot has 2 header
containing the Tuyre Code 47 followed by
3 seaquential block number and the actual
N/C prodram data,

ouTPUT! .
WRITES PROGRAM ON MINC DK! DISKETTE USING NAME ACCEFTED
FROM MINC KEYBOARD, °,.CYR® SUFFIX ADDED BY THIS ROUTINE,

CALLED BY: CYRO2

CALLS TO¢ REQTS»IGETC)ICLOSEy IFREECs IRADISOsSCOPYyRECEVE s

INSERTsDISKSV

SFECIAL INTERFACE REQUIREMENTS: USES MINC DIGITAL I/D MODULE

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)

DATE FROGRAMMER =====CONTACT/ACTION/REMARKS=====
6~-28-84 FRED R. SIAS: JR. (B031656-3375/5YSTEM DESIGN/FPROGRAMMED
6-01-84 FRED R. SIAS: JR. (803)636-3375/REVISED NARRATION
6-01-84 FREDN R+ SIASy JR. (B03)856-3375/CHANGED TO FILENAMES

7-22-85 J. KEITH MCELVEEN (803)656-3375/REVISED NARRATION

OO0 0000000000000 Nn0oO0nNOONoDOO0Oo0O0CoD OO0 o00Do0nDoO0n0n

1322402220020 00 2000020000022 3 32200000022 822232333 33200000002 ¢20002323 82930200499

90

FORTRAN IV

0002
0003
0004

0005
0006
0007

0008
0009

0010

0011
0012

0013
0014

0015
0017

0019
0020
0021

0022
0023
0024

0024

0027

0028
0029
0031
0032
0034
0035
0037
0038
0039
00490
0041

0043
0044

0046
0047

c

vo2.5-2 Thy 08-Mau-84 13115100 PAGE 002

INTEGERX2 MUMBER>IDATA(257)sRTsWTsFILNOsHEADER(3)
BYTE LERROR»INFUT»FILNAM(1S) sNANFIL(7)
REALXB FILE

CALL SCOPY(’DIv1 CYR'»FILNAM)
DATA FILNAM(13) /00/
DATA NAMFIL(Z7) /00/

COMTINUE

WRITE (WT,100)

FORMAT(///»' Inrut NUMBER of Frodram in robot to be caved.,’:
1 /927 To EXITy Press RETURN.> “+8%)

READ' (RT»110) NUMEER

FORMAT(I2)

IF(NUMBER,EQ.0) RETURN
IF(NUMBER.LT.1.0R,NUMBER.GY.?) GOTO 400

CONTINUE
WRITE (WT,113)
FORMAT(//»’ Ture NAME of Frodram to be saved on diskette: “:%)

READ (RT!119) (NAMFIL(I)sI=1+6)
FORMAT(6A1)
IF (NAMFIL(1).EQ.’ “) RETURN

CALL INSERT(NAMFILsFILNAM»4,4)
NOW CHECK TO SEE IF FILE EXISTS
CALL IRADS0(12sFILNAM,FILE)

ICHAM=IGETC ()

IF (ICHAN.L.T.0) STOF ’'NO CHANNEL~
IERROR=IFETCH(FILE)

IF (IERROR.NE.Q) STQF ‘BAD FETCH’
IERROR=LOOKUF(ICHANSFILE)

. IF (IERROR.EQ.-2) GOTO 1S0

WRITE (WT,120)

FORMAT(’ File already exists! OVERWRITE IT? (Y or N)> “5%)
REAI' (RT»130) INPUT

FORMAT (A1)

IF (INFUT.EQ.’Y’) GOTO 130

CALL ICLOSE(ICHAN»IERROR)

IF(IERROR.LT.0) STOP ‘ERROR CLOSING CHANNEL~’
CALL IFREEC(ICHAN)

GOTO 114

91

FORTRAN IV vo2,5-2 Thu O08-May-86 13315100 FAGE 003

0048 150 CONTINUE

c
0049 CALL ICLOSE(ICHANsIERROR)
0050 IFCIERROR.LT.0) STOP ‘ERROR CLOSING CHANNEL’
0052 CALL IFREEC(ICHAN)
C
0053 140 CONTINUE
C X
c NOW TRANSMIT A "REQUEST TO SAVE®" TD ROROT
c
0054 CALL REQTS(NUMERER» IERROR)
c
0055 IF (IERROR.EQ.1) GOTO 2100
0057 IF (IERROR.EQ@.2) GOTO 2200
0059 : IF (IERROR.GE.3) GOTO 2300
c
C NOW WAIT FOR SAVE ACKNOWLEDGE - TYPE CODE 66
C
0061 200 CONTINUE
C .
0062 CALL RECEVE(IERRORsILEN»ICSUM»IDATA)
c
0063 IF (IERRDR.EQ,1) GOTD 3100
00645 IF (IERROR.EQ.2) GOTO 3200
0067 IF (IERROR.GE.3) GOTO 3300
C .
0069 ITYFE=IDATA(3)
0070 IACK=IDATA(4)
0071 ~ IFNUKM=IDATA(S)
0072 ISIZE=IDATA(&)+254XIDATA(7)

92

FORTRAN IV Vo2.5-2 Thu 08-May-86 13115100 FAGE 004

C
c WRONG MESSAGE TYPE RECEIVED
C .
0073 IF (ITYPE.NE.&6) G6OTO 1100
C
0075 IF (IPNUM.NE.NUMBER) GOTO 1200
C
c NOT READY TO RECEIVE CORE = 0
c
0077 IF (IACK.EQ.0) GOTO 1300
0079 IF (IACK.GE.2) GOTO 1000
c
0081 IBRLRCT=0
C
c SENDS BLOCK NUMBER AND 252 BYTES OF DATA IN EACH RLOCK
c
0082 ITOTRK=ISIZE/252
0083 IREM=ISIZE-ITOTBK%252
0084 IF (IREM.NE.Q) ITOTBK=ITOTEK+1
c
0086 HEADER(1)=ITOTBK
0087 HEADER(2)=IREN
0088 HEADER(J)=ISIZE
C
C NOW OFEN FILE
c
[ommmmmm e S m———— FILE LOOP
c
0089 DO 300 I=1,ITOTBK
c
0090 IF (I.EQ.1) GOTO 240
c A
0092 . CALL REQTS(NUMBER:IERROR)
C
0093 IF (IERROR.EQ.1) GOTO 2100
0093 IF (IERROR.EG.2) GOTO 2200
0097 IF (IERROR.GE.3) GOTO 2300
c
0099 240 CONTINUE
C
C STARTS RECEIVING FROGRAM HERE
c
0100 CALL RECEVE(IERROR,ILEN,ICSUMsIDATA)
c
0101 IF (IERROR.EQ.1) GDTO 3100
0103 If (IERROR.EQ.2) GOTO 3200
0105 IF (IERROR.GE.3) GOTD 3300
C
0107 ITYFE=IDATA(3)
0108 IF (ITYPE.NE.67) GOTO 1100
0110 IBLOCK=IDATA(4)
0111 IF (IBLOCK.NE.IBLKCT) GOTO 4100
C
C FUT ARRAY ON DISK.

93

FORTRAN IV Vo2,5-2 Thu 08-May-86 13115300 FAGE 005

0113 - CALL DISKSV(FILNAM)HEADER, IDATA»LERROR)
0114 IF (LERROR.EQ.‘TRUE’) GOTO 910
o116 IBLKCT=IBLKCT+1
0117 goo CONTINUE

g ------------------------ END OF FILE LDOF
o118 GOTO 499

c

0119 400 WRITE (WT»402)
0120 402 FORMAT(//»’ ONLY FROGRAM NUMBERS 1-9 ACCEFTABLE.")

0121 Goto 10 - . :
c
0122 499 CONTINUE
0123 WRITE (WT,500) IFNUM
0124 500 FORMAT(//.’ PROGRAM NO.’,I4,’ SUCCESSFULLY RECEIVED AND FILED'»/»
1 PRESS °*RETURN® TO GOT MAIN MENU.> ’»$)
0125 READ (RT+904) INFUT
0126 RETURN
c .

- 94

FORTRAN IV Vo2,35-2 Thu 08-Maxs-846 13315100 PAGE 006

(e e e e — e —m e m e — e e me————— - ——————

c

- C ALL OF THE VARIOUS ERROR MESSAGES FOLLOW:

C .
0127 900 CONTINUE
0128 WRITE (WT»902)
0129 902 FORMAT(//s’ FATAL ERROR! FILE WILL BE DELETED.’s/»

1 ’ PRESS "RETURN®" TO GOTO MAIN MENU.> “s$)

0130 READ (RT+904) INFUT
0131 904 FORMAT(I4) '

C
0132 RETURN

C

0133 910 WRITE (WT,%12)
0134 912 FORMAT(//s’ ERROR RECEIVED FROM SUEROUTINE DISKSV')
0135 GOTO 900

0136 1000 WRITE (WT»1002)
0137 1002 FORMAT(//»’ ILLEGAL ACKNOWLEDGE CODE RECEIVED,»')
0138 - GOTO 900

0139 1100 UWRITE (WT»1102)
0140 1102 FORMAT (//+’ WRONG MESSAGE TYPE RECEIVED!")

0141 G070 900

0142 1200 MWRITE (WT»1202)
0143 1202 FORMAT(//»’ WRONG FROGRAM NUMBER RETURNED BY ROEOT!’)
0144 G0TO 900

0145 1300 WRITE (WT»1302)
0146 1302 FORMAT(//:’ ROBOT NOT READY TO RECEIVE.’»
1 * TYPE "RETURN' TO TRY ‘AGAIN> ‘»$)
0147 READ (RTs%04) INPUT '
0148 GOTO 140

0149 2100 WRITE (WT»2102)
0150 2102 FORMAT(//»‘’ TIME OUT ERROR WHILE WAITING FOR’s/»

1 ’ ACKNOWLEDRGE FROM ROROT.”)
0151 GOTO 900
C.
0152 2200 WRITE (WT,2202)
0153 2202 FORMAT(//s’ LRC ERROR MESSAGE RETURNED AFTER TRANSMISSION.’)
0154 GOTO 900

0155 2300 WRITE (WT+2302) IERROR
0136 2302 FORMAT(//»’ ILLEGAL ACKNOWLEDGE CODE’»I4,’ RECEIVED’,
1 ‘ AFTER TRANSMISSION TO ROROT.")
0157 3100 WRITE (WT,3102)
0158 3102 FORMAT(//»’ FIVE SECOND TIMEOUT OCCURED DURING RECEIVE.’)
01359 GOTO 900

0160 3200 WRITE (WT,»3202) _
0161 3202 FORMAT(//»’ CHECKSUM ERROR CALCULATION PRODUCED ERROR’»
1 * DURING RECEIVE.’)

95

FORTRAN IV vo2,5-2 Thu 08-May-86 13115:00 PAGE 007
0142 GOTQ 900

0163 3300 WRITE (WT»3302) IERROR :

0164 3302 FORMAT(//s’ ILLEGAL ERROR CODE‘rI4y’ RETURNED FROM’,
1 ‘ RECEIVE SUBROUTINE.")

0145 GOTO 900

0146 4100 WRITE (WT,4102) IBLOCKsIBLKCT

0167 4102 FORMAT(//+’ BLOCK COUNT TRANSMITTED (‘+I4+°)',

1 ‘ DOES NOT MATCH EXPECTEDR BLOCK (’+I4y7),7)
0168 GOTO 900

0149 END

96

FORTRAN IV Storade Mar for FProdram Unit SAVE

Local Variablesy PSECT $DATAs Size = Q01114 ¢ 294, words)

Name Ture Offset Name Ture Offset Name Tuyre O0ffset
FILE Rx8 001052 FILND IX2 001044 I Ix2 001042
IACK Ix2 001076 IBLKCT Ix2 001104 IBLOCK I¥2 001112
ICHAN Ix2 001044 ICSUM I%2 001072 IERROR Ix%2 0010646
ILEN 1x2 001070 INPUT Lx1 001051 IPNUM 122 001100
IREM 1%2 001110 ISIZE IxXx2 001102 ITOTBK Ix2 001104
ITYPE IX2 001074 LERROR Lx1i 001050 NUMBER 1Ix2 001040
RT I%2 001042 WT I%2 001044

Local and COMMON Arraus:

Name Ture Section Offset -=-—---~ Size--=-- Dimensions
FILNAM Lx1 $DATA 001010 000017 «(8.) (13)
HEADER Ix2 $0ATA 001002 000006 ¢ 3.) (3)

IDATA Ix2 $IATA 000000 001002 (237.) (237)
NAMFIL Lxi $DATA 001027 000007 (4,) (7}

Subroutinesr Functionsy Statement and Processor-Defined Functions?

Name Ture Name Tyre Name Tyre Name Ture Name Ture
DISKSY R%4 ICLOSE Ix2 IFETCH Ix2 IFREEC Ix2 IGETC Ix2
INSERT 1Ix2 IRADSO Ix2 LOOKUP 1Ix%2 RECEVE R¥4 REQTS R%4
scapy Rx4) :

C- o

FORTRAN IV V02.5-2 Thu 08-Mau-86 13116147 FAGE 001

Cmmmm o o i ———
C
0001 SUBROUTINE REQTS(NUMBERsERROR)
c
0002 INTEGERX2 IDATA(257)sNUHBER:ERROR
c
c SEND REQUEST TO SAVE PROGRAM CNUMBER] TO RORBROT
C
c LENGTH OF MESSAGE
0003 IDATA(L)=2
c SEQUENCE NO. SET TO ZERO
0004 IDATA(2)=0
C SET TYFE CODE
0003 IDATA(3)=193
' c SEND' PROGRAM NUMBER
0006 IDATA(4)=NUNRER
C
0007 ILEN=4
, c .
0008 CALL SEND(IERRORsILENsIDATA)
C
0009 ERROR=IERROR
c .
0010 RETURN
0011 END

98

FORTRAN IV Storade Mar for Prodram Unit REQTS

Local Variablessy .PSECT $DATA» Size = 001012 (261. words)

Name Ture Offset Name Tyre O0Offset Name Ture (Offset
ERROR I%2 @ 000002 IERROR Ix2 001010 ILEN Ix2 001005
NUMBER Ix2 @ 000000

Local and COMMON Arraus:

Name Ture Section Offset ~-=--w- Size--—-- Dimensions
IRATA IXx2 $DATA 000004 001002 (237.) (257)

Subroutiness Functionss Statement and Frocessor-Defined Functions:

Name Ture Name Ture Name Tere Name Ture Name Ture
SEND RXx4

99

FORTRAN IV

0001

v02.5-2 Thuy 08-Mau-86 13117115 FAGE 001

C*##*#*******X****#******X****#*#***X*#*X****#*X**X*******#*X#*#X*i****#******

c
C

C
C
c
C
c
c
c
c
C
c
c
c
C
C
C
c
c
C
C
C
C
C
c
c
c
c
(0
c
C
C
c
C
C
c
c
C
C
c
C
c
C
c
c
c
C
c
C

MODULE NAME:
SUBROUTINE LOAD

FURFOSE?

THIS ROUTINE ALLOWS THE USER TO SELECT A PARTICULAR PROGRAM
TO BE LOADED FROM THE MINC DISKETTE TO THE ROBOT.

THEN THE PROGRAM IS TRANSMITTED TO THE ROEOT WITH
APPROPRIATE HANDSHAKING.

INFUT?

FROGRAM REQUESTS THE NAME OF THE DISKETTE FILE CONTAINING

THE FROGRAM TO BE LOADED., FPROGRAM ASSUMES °*.CYR® FILENAME
EXTENSION., THEN IT REQUESTS THE NUMBER

BETWEEN 1 AND 9 BY WHICH THE PROGRAM WILL BE REFERENCED

IN THE ROBOT.

FROCESSING:

HANDISHAKING: ° :
Comrputer transmits Ture Code 194 - REQUEST TO LOAD
" PROGRAM FROM COMPUTER.

The computer waits for Tupe Code 65 - LOAD PROGRAM
FROM COMFUTER ACKNOWLEDGE,

When comruter is ready to transmit the prodranm it
transmits a block of code eproceeded
by Tuyre Code 195, :

Then, the robot accerts and filec 2 secuence of blocks
using Tyre Code 65y LOAD PROGRAM FROM
COMPUTER ACKNOWLEDGEs to indicate when
it is ready for each block,

QUTFUT? LOADS PROGRAM FROM MINC COMFUTER TO ROBOT MEMORY,
CALLED BY? CYRO2

caLLS TO: DISKRD'» SEND'» RECEVE,INSERT, SCOFY

SPECIAL INTERFACE REQUIREMENTS: USES MINC DIGITAL I/0 MODULES.
REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRAMMER =====CONTACT/ACTION/REMARKS=====

7-11-84 FRED R, SIASy JR. (B03)-656-3375/DESIGN ANI' FROGRAM
6-03-85 FRED R, SIAS, JR. (B03)-656-3375/REV. NARRATION & FROG.
7-23-85 J.» KEITH MCELVEEN (B03)656-3375/REVISED PROGRAN

?-6-85 FRS ADDITIONAL DERUGGING

KEREXKRRRRERRRRRRRRRRR R R R RRRE RO RR KRR KRR KKK XRRR R KKK K

100

FORTRAN IV

0002
0003
0004
0005

0006
0007
0008

0009
0010

0011

0012
0013

0014
0015

0016

0018
0019
0020
0021

0029
0030
0031

0033
0034
0035
0036

0037

C -

N Rw

------ PASS A ZERO TO INDICATE ONLY WANT HEADER

Vv62,5-2 Thuy 08-May-86 13017115 PAGE 002

INTEGERX2 NUMBER» IDATA(257)sHEADER(3)sRTsHWT»LSIZE,HSIZE
INTEGER*2 ILEN,IBLOCKsIERROR

LOGICALX1 LERROR

BYTE INFUT, FILNAM(15), NANFIL(7)

CALL SCOFY(’DY1 CYR’ sFILNAN)
DATA FILNAM(13) /00/
DATA NAMFIL(7) 700/

W=7 . S
RT=5

CONTINUE

WRITE (WT+100)

FORMAT (///+' Input FILE NAME of prodram to be loaded.’»
1 /s’ To EXITs press RETURN.> ‘%)

READ (RT»105) (NAMFIL(I)»I=1,+6)
FORMAT (6A1)

IF (NAMFIL(1).EQ.’ ‘) RETURN
WRITE (WT»110)
FORMAT(///y‘ Ineput NUMBER erodram will have in ROROT.> ‘+$)

READ (RT»113) NUMBER
FORMAT(IZ2)

IF (NUMBER.LT,1.0R.NUMBER.GT.?) GOTO 400

CALL INSERT(NAMFIL,FILNAM:»416)

CONTINUE

FIRST RETRIEVE FILE AND GET HEADER S0 KNOW PROGRAM SIZE

WRITE (WT»118) (FILNAM(I)sI=1s14)
FORMAT(//y’ NOW OPENING ‘+14A1+/)

HEADER(3)=0

LERROR="FALSE"’
CALL DISKRD(FILNAM,HEADER,IDATAsIBLOCK,LERROR)
IF (LERROR.EQ. TRUE’) GOTO 910

NOW CALCULATE HSIZE AND LSIZE

ISIZE=HEADER(3)
ITOTBK=HEADER(1)
IREM=HEADER(2)
HSIZE=ISIZE/256
LSIZE=IBIZE-HSIZE*256

101

FORTRAN IV

0038
0039
0040
0041
0042
0043
0044

0045
00446

0047
0048

0030
0052

0054

0055

0056
0058
0060

0062

0063
0064

0065

0067

0069
0071

c
c
c

28]
[y
O

[or B ow Bl o] OO0

Lo I or B o B 2r B v }

vo2,5-2 Thu 08-Mas-86 13117115 FAGE 003

NOW TRANSMIT A °"REQUEST TO LOAD®* TO ROROT

IDATA(1)=4
IDATA(2)=0
IDATA(3)=194
IDATA(4)=NUMRER
IDATA(S)=LSIZE
IDATA(6)=HSIZE
ILEN=6

WRITE (WT»200)
FORMAT(/»’ ‘»/+’ TRANSMIT REQUEST TO LOAD' CODE 194.°:/)

CALL SEND(IERRORsILENsIDATA)
IF (IERRDR.EQ.1) GOTOD 2100

IF (IERROR.EQ.2) GOTO 2200
IF (IERROR.BE.3} GOTO 2300

-------------------------------- TRANSMIT LOOP: .

DO 300 IBLKCT=1sITOTBK
NOW WAIT FOR LOAD ACKNOWLEDGE - TYPE CODE 65

WRITE (WT,210)
FORMAT(/s’ ‘»/»’ RECEIVE LOAD ACKNOWLEDGE TYPE CODE 65.,°+/)

CALL RECEVE(IERROR,ILEN,ICSUM»IDATA)
IF (IERRDR.EQ.1) GOTD 3100

IF (IERROR.EQ.2) GOTO 3200

IF (IERROR.GE.3) GOTO 3300
ITYPE=IDATA(3)

TACK=IDATA(4)

IPNUM=IDATA(S)

WRONG MESSAGE TYFE RECEIVED

IF (ITYFE.NE.635) GDTO 1100

IF (IFNUM.NE.NUMBER) GOTO 1200
NOT READY TO LOAD COIE = 0

IF (IACK.EQ.0) GOTO 1300
IF (IACK.GE.2) GOTO 1000

FOUND IACK=1

REACH THIS POINT IF READY TO START SENDING FROGRAM TO ROBOT

102

- FORTRAN IV - V02,5-2 Thu 08-Mau-86 13:17115 PAGE 004

C SENDS BILOCK NUMBER AND 252 RYTES OF DATA IN EACH BRLOCK
C
c STARTS SENDING REST OF FROGRAM HERE
C CALLS DISKRD WITH IBLOCK SET EQUAL TO EXFECTED BLOCK
c AND CHECKS EACH READ BLOCK AGAINST BLOCK COUNT AFTER
C RETURNING FROM SURROUTINE DISKRD
C .
0073 IBLOCK=IBLKCT-1
0074 CALL DISKRIN(FILNAMsHEADER,IDATAsIBLOCK,LERROR)
C
0075 IF (IBLOCK.NE.IDATA(4)) GOTO 4100
c
C SET TYPE CODE TO 195
C
0077 IDATA(3) =193
0078 ILEN=IDATA(1)+2
c
0079 WRITE (WT»240) IBLOCK
0080 240 FORMAT(’ ‘»/»’ SENDING BLOCK ‘+I4s’ OF PROGRAM.’)
C
0081 CALL SEND(IERRORyILENsIDATA)
c
0082 : IF (IERROR.EQ.1}) GOTO 2100
0084 IF (IERROR.EQ.2) GOTO 2200
0084 IF (IERROR.GE.3) GOTO 2300
C

0088 300 CONTINUE

-y o " " —— - e . A e TS - T . — - SR ——— A8 = - A - ——

NOW WAIT FOR LOAD ACKNOWLEDGE - TYPFE CODE 45

WRITE (WT,210)
210 FORMAT(/s’ ‘»/»’ RECEIVE LOAD ACKNOWLEDGE TYFE CODE 65.’+/)

CALL RECEVE(IERRORs»ILEN»ICSUMsIDATA)

IF (IERROR.EQ.1) GOTO 3100
IF (IERROR.EQ.2) GOTO 3200
IF (IERROR.GE.Z) GOTO 3300

ITYPE=IDATA(3)
IACK=IDATA(4)
IFNUM=IDATA(S)

WRONG MESSAGE TYPE RECEIVED
IF (ITYPE.NE,65) GOTO 1100 by
IF (IPNUM.NE,NUMBER) GOTO 1200

NOT READY TO LOAD CODE = 0

IF (IACK.EQ.0) GDTOD 1300
103

0089
0090

0091
0092

0093
0094
0095

310

400
402

IV

vo2.5-2 Thu 08-May-86 13117115 FAGE 0035
IF (IACK.GE.2) GOTO 1000

FOUND IACK=1

WRITE (WT:310) (NAMFIL(I):I=1:6)+NUMBER

FORMAT(/s’ ‘+/y’ FILE ‘56A1,»’ SUCCESSFULLY LOADED AS PROG.,
1 ‘ NO. “sI3s/»’ PRESS °"RETURN' TO GOTO MAIN MENU.> ’+%)
READ (RT:904) INPUT

RETURN

WRITE (WT»402)

FORMAT(//»’ ONLY FROGRAM NUMBERS 1-9 ACCEFTARLE.’)
G070 10

104

FORTRAN IV V02.35-2 Thu 0B-May-86 13317115 . FAGE 006

c ———
c
c ALL OF THE VARIOUS ERROR MESSAGES FOLLOW:
c
0096 900 CONTINUE
0097 WRITE (WT,902)
0098 902 FORMAT(//»’ FATAL ERROR!’s/»
1 * PRESS RETURN TO GOTO MAIN MENU> ‘%)
0099 READ (RT»904) INPUT
0100 904 FORMAT(I4)
C
0101 RETURN
C
0102 910 CONTINUE
0103 WRITE (WT.912) .
0104 912 FORMAT(’ ‘»//»’ ERROR RECEIVED FROM SUBROUTINE DISKRD’)
0105 GOTO 10

w
0106 1000 WRITE (WT,1002)
0107 1002 FORMAT(//»’ ILLEGAL ACKNOWLEDGE CODE RECEIVED,’)
0108 ‘ GOTO 900

0109 1100 WRITE (WT,1102) _
0110 1102 FORMAT (//s’ WRONG MESSAGE TYFE RECEIVED!’)
0111 GOTO 900 :

0112 1200 WRITE (WT»1202) A
0113 1202 FORMAT(//»’ WRONG PROGRAM NUMBER RETURNED RY ROEOT!’)
0114 GOTO 900 : '

0115 1300 UWRITE (WT,1302)
0116 1302 FORMAT(//+’ ROBDT NOT READIY TO LOAD PROGRAM.':

1 ‘ TYFE *RETURN®" TO TRY AGAIN> ’:%)
0117 READ (RTs2042 INFUT
0118 G60TO 120

e

0119 2100 WRITE (WT»2102)
0120 2102 FORMAT(//y’ TIME OUT ERROR WHILE WAITING FOR SEND's/»

1 * ACKNOWLEDGE FROM ROROT.")
0121 GOTG 900
C
0122 2200 WRITE (WT,2202)
0123 2202 FORMAT(//»’ LRC ERROR MESSAGE RETURNED AFTER TRANSMISSION.”)

0124 G070 900

0125 2300 WRITE (WT»2302) IERROR
0126 2302 FORMAT(//s’ ILLEGAL ACKNOWLEDGE CODE’sI4,’ RECEIVED’,
1 " AFTER TRANSMISSION TO ROBOT.)
0127 3100 WRITE (WT,3102) .
0128 3102 FORMAT(//s’ FIVE SECOND TIMEOUT OCCURED DURING RECEIVE.’)
0129 OTO 900

0130 3200 WRITE (WT»3202) '
0131 3202 FORMAT(//s’ CHECKSUM ERROR CALCULATION PRODUCED ERROR‘»

105

FORTRAN IV

0132

0133
0134

01335
0136
0137
0138

013%

3300
3302

4100
4102

vVo2.5-2 Thu 08-May-86 13217115 FAGE 007

1 * DURING RECEIVE.’)
GOTO 900

WRITE (WT.3302) IERROR

FORMAT(//s’ ILLEGAL ERROR CODE’sI4s’ RETURNED FROM’,
1 ‘ RECEIVE SUBROUTINE.")

GOTOD 900

WRITE (WT:4102)
FORMAT(//s‘ BLOCK NUMBER AND BLOCK COUNT DO NOT MATCH,’)
GOT0 900

END

106

FORTRAN IV Storade Mar for Prodram Unit LOAD

Local Variabless .FSECT $DATA» Size = 001110 (292. words)

Name Ture Offset Name Ture Offset Name Tyre Offset
HSIZE 1Ix2 001054 I Ix2 001066 IACK Ix2 001104
IBLKCT Ix2 001076 IBLOCK Ix2 001060 ICSUM Ix2 001100
IERROR IX2 0010462 ILEN Ix2 0010354 INPUT Lx1 001045
IPNUKM Ix2 001106 IREHM Ix2 001074 ISIZE 1Ix2 001070
ITOTRK Ix2 001072 ITYPE IX%2 001102 LERROR Lx1 001064
LSIZE Ix%2 001052 NUMBER Ix2 001044 RT Ix2 001044
Wt Ix2 001050

Local and COMMON Arraus:

Name Tupe Section Offset ------ Size----- Dimensions
FILNAM L¥*1 - $DATA 001010 000017 (8. (13) .
HEADER I%2 $DATA 001002 000006 (3,) (3)

IDATA I%2 $DATA 000000 001002 ¢ 237.) (257)
NAMFIL LX¥1 $DATA 001027 000007 ¢« 4,) (7)

Subroutinessy Functions» Statement and Frocessor-Defined Functions!

Name Tyre Name Tyre Name Ture Name Tupe Name 'Tspe
BISKRD Rx%4 INSERT Ix2 RECEVE Rx4 SCOPY R¥4 SEND Rx4

107

FORTRAN IV vo2,5-2 Thu 0B-Mau-86 13:119:06 : PAGE 001

0001

(2303203223822 8222 2R et 28 38082028 200230238323 0033830080282328322828233833%33
g MODULE NANME!

SURROUTINE DISKSV(NAMFIL,HEADER»IDATA»LERROR)
PURFOSE: 7O SAVE SUCCESSIVE BLOCKS OF ROROT PROGRAM ON DISKETTE
INFUT! IS PASSED HEADER AND SUCCESSIVE BLDCKS OF DATA
FROCESSING: KEEFS TRACK OF NUMBER OF BLOCKS OF DATA

QuUTRUT: - WRITES. HEADER ON DISKETTE ONE TIME FILLOWED RY THE
SUCCESSIYE BLOCKS OF PROGRAM DATA.

CALLED BRY:! SAVE

CALLS TO? NONE

SFECIAL INTERFACE REQUIREMENTS! NONE
REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE FROGRAMMER =====CONTACT/ACTION/REMARKS=====
6-20-85 FRED R. SIAS» JR, (B803)656-3375/ NARRATION
7-02-85 FRS NULLED ARRAY AFTER DATA
7-23-85 J. KEITH MCELVEEN (803)656-3375/REVISED PROGRAM

C
C
C
C
c
£
c
c
c
c
¢
C
C
c
c
c
C
C
c
c
c
c
C

LS008 2002008002000 30000230 0220000022 200800 0200 0280000800020 0202000¢20828

108

FORTRAN IV - V02,5-2 Thu 08-May-86 13119106 PAGE 002

0002 LOGICAL*1 LERROR
0003 RYTE CRs/NAMFIL(15)sARRAY(5000) rBPRATA(S20)
0004 INTEGERX2 IARRAY(2500),IPDATA(2560)»ITOTEK
0005 INTEGER%2 HEADER(J) s IDATA(240)sLASTRKy IREMsISIZE»IBLOCK/RTWT
0006 REALX8 FILE,FILE1L)
C
0007 DATA FILELl /12RDYIFROGRMCYR/
c
0008 - COMMON /INOUT/ ARRAYsRPDATA
C
0009 EQUIVALENCE (ARRAYsIARRAY)
0010 EQUIVALENCE (RPDATAsIPDATA)
C
0011 DATA CR /°015/
C
0012 WT=7
0013 RT=3
C
0014 TERROR=IRADSO(12sNAMFILsSFILE)
C
C TAKE BLOCK OF DATA AND PUT. IN LOCAL ARRAY
c
0015 no 10, I=1,256
0016 IPDATACI)=IDATACI)
0017 10 CONTINUE
C
c NOW DECIDE WHAT TO DO
C
" 0018 IBRLOCK=IDATA(4)
- C
iy HERE TO GET HEADER AND FIRST BLOCK DF DATA
C .
0019 ITOTBK=HEADER (1)
0020 IREM =HEADER(2)
0021 ISIZE =HEADER(3)
C
0022 LASTBK=ITOTRK~1
c
0023 IF (IRLOCK.EQ.,O0) INDEX=1
C
c FIRST BLOCK SAME AS LAST
C
0025 IF(IBLOCK.EQ,LASTRK) GOTO 300
c
€ PUT THIS BLOCK IN EIG ARRAY
C
0027 200 CONTINUE
C
C USE THIS FOR FULL BLOCKS OF DATA
C
0028 DO 299, I=5,256
C
0029 IF (IFDATA(I).EQ,."012) ARRAY(INDEX)=CR
0031 IF (IPDATA(I).EQ."012) INDEX=INDEX+1

109

FORTRAN IV V02.5-2 Thuy 0B-Mas-86 13119106 FAGE 003

c
0033 ARRAY (INDEX)=BPDATA(IX2-1)
0034 INDEX=INREX+1
C
0035 299 CONTINUE
c
c RETURN IF NOT LAST BLOCK OF DATA
c
0036 IF (IBLOCK.NE.LASTBK) RETURN
C
0038 GOTO 400
C
0039 300 CONTINUE
C
c USE THIS FOR LAST BLOCK OF DATA
C
0040 DO 399y I=5sIREMt4
c
0041 IF (IFDATA(I).EQ.*012) ARRAY(INDEX)=CR
0043 IF (IPDATACI).EQ."012) INDEX=INDEX+1
C
0045 ARRAY (INDEX)=BFDATA(IX2~1)
0044 INDEX=INDEX+1
C
0047 399 CONTINUE ' «
c
0048 400 CONTINUE
C
c ADDI' NULLS TO END OF BLOCK OF ARRAY
c :
0049 ILAST=INDEX-1
0030 IADD=MOD(ILAST,512)
0051 IEND=INDEX+IADD
00352 [0 4350+ I=INDEXsIEND
0053 ARRAY(I)=0
C
C
0054 450 CONTINUE

110

FORTRAN IV Vo2,35-2 Thu 08-Mau-B86 13119106 PAGE 004

[mmmmmmmmmmmmm e m e mmem e FILE ALL IN ARRAY, READY TO SAVE
c
0055 470 CONTINUE
C
0056 ICHAN=IGETC()
0057 IFCICHAN.LT.0) STOP ‘NO CHANNEL AVAILABLE
C
C CREATE QUTPUT FILE
C
0059 IBLK=0
0040 IERROR=IENTER (1CHAN,FILE,0)
0061 IF (IERROR.EG.-2) GOTO 1040
0063 IF (IERROR,LT.0) STOP ‘ENTER FAILURE’
C
0065 480 CONTINUE
C
0046 IEND=TEND/2
0067 NWORDS=TWRITW(IENDs IARRAY » IBLK» ICHAN)
c
0048 IF (NWORDS.LT.0) STOP ‘ERROR WRITING TO DISKETTE'
c .
c IBLK=IBLK+1
c IF (IRLK,NE,LASTBK) GOTO 480
c
0070 CALL ICLOSE(ICHAN»IERROR)
0071 IF(IERROR.LT.0) STOF “ERROR CLOSING CHANNEL’
0073 CALL IFREEC(ICHAN)
C
0074 500 CONTINUE
c
c NOKMAL EXIT HERE
. ,
0075 LERROR="FALSE
0076 RETURN
C
c ERROR MESSAGES AND ERROR RETURN
C
0077 1000 CONTINUE
C WRITE (WT+1002) NAMFIL
0078 1002 FORMAT(//s’ ERROR OPENING FILE ’»s14A1)
0079 60TO 1100
c
0080 1020 CONTINUE
0081 WRITE (WT91022) NAMFIL
0082 1022 FORMAT(//s’ ERROR WRITING DATA TO FILE ‘,14A1)
0083 6OTO 1100
c
0084 1030 CONTINUE
0085 WRITE (WT+1032) NANFIL
0086 1032 FORMAT(//,' ERROR CLOSING FILE ‘»14A1)
0087 GOTO 1100
C

0088 1040 CONTINUE
0089 CALL ICLOSE(ICHAN)

FORTRAN IV vo2,35-2 Thu 08-Mau-86 13119106 . PAGE 005

0090 CALL IFREEC(ICHAN)
0091 WRITE (WT»1042)
0092 1042 FORMAT(’ “y//2’ ERROR! DK:DISKETTE FULL!")
C
c ERROR RETURN
C
0093 1100 CONTINUE
C
0094 LERROR=‘TRUE"’
0095 RETURN

0096 END

112

FORTRAN 1V

Local Variabless

Name Tyre
CR Lk1
I 1x2
IBLOCK Ix2
IERROR Ix2
IRENM I%x2
LASTBK Ix2
RT Ix2

COMMON

Name Tyre

ARRAY -~ L1
IFDATA IXx2

Block /INOUT

Storade Mar for Frodram Unit DISKSV

+PSECT

Offset
000020
000064
000044
000062
000040
000036
000046

/

0ffset

$DATA,

Name
FILE
IADD
ICHAN
ILAST
ISIZE
LERROR
T

Size =

Name

000000 Eav BFDATA LXx1

011410 Eqv

Local and COMMON Arraus!

Name
. ARRAY Lx1
BPOATA L¥1
HEADER I%2
IARRAY Ix2
IDATA Ix2
IFDATA Ix2
NAMFIL Lx1

Ture

Section
INOUT
INOUT

@ $DATA
INOUT

@ $DATA
INOUT

@ $DATA

0ffset
000000
011410
000002
000000
000004

011610

000000

Size = 000112 «(37+ words)
Ture Offset Name Ture
Rx8 000052 FILE1 Rx8
Ix2 000072 IBLK 1x2
Ix2 0000764 IEND Ix2
Ix2 000070 INDEX Ix2
Ix2 000042 ITOTRK Ix2
Lxl @ 0000064 NWORDS 1x2
I%2 000050
012620 (2760, words)
Ture O0Offset Name Ture
011610 Eav IARRAY IX2
------ Size~---- Dimensions
011610 (2500.,) (5000)
001010 ¢ 280.) (520)
000006 ¢ 3.0 (D)
0114610 (2500.) (2500)
001010 ¢ 2460.) (260)
001010 ¢ 260.) (2460)
000017 « 8.3 (15)

Dffset
000010
000100
000074
000066
000034
000102

0ffset
000000 Eav

Subroutinesy Functionsy Statement and Processor-Defined Functions!

Ture
Ix2
I%2

Name
ICLOSE
IWRITW

Name Ture Name
IENTER Ix2 IFREEC
MOD Ix2

Tere
Ix2

Name
IGETC

113

Type Name

Ix2

IRADSO

Tupe
Ix2

FORTRAN IV vo2,5-2 Thiy 0B-Mau-86 13:20:264 . FAGE 001

(2223022288823 3 080303330000 0320822000000200203282222200922830032222¢20028230%3

c
C MODULE NAME:
0001 SUBRROUTINE DISKRD(NAMFILsHEADER,»IDATA»IBLOCK)LERROR)
PURPOSE! TO READ SUCCESSIVE BLOCKS OF PROGRAM FROM DISKETTE
INPUT? READS HEADER AND SUCCESSIVE BLOCKS OF DATA

FROM DISKETTE
FROCESSING: KEEPS TRACK OF NUMBER OF RLOCKS OF DATA

QUTRUT . FASSES FROGRAM BACK TO CALLING ROUTINE IN ARRAY
IDATA

CALLED BY: LOAD

c
C
C
c
C
c
C
C
c
»
C
C
C
C CALLS TO? NONE
C
C
C
C
€
C
C
c
c
c
C

SPECIAL INTERFACE REQUIREMENTS: NONE

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)

DATE PROGRAMMER =====CONTACT/ACTION/REMARKS=====
6-24-83 FRED R. SIASy JR. (803)656-3375/ NARRATION/PROGRAM
7-05-85 FRS FINISHED DERUGGING

7-23-85 J+. KEITH MCELVEEN (B03)656~3375/REVISED FROGRAM
. 9-6-835 FRS FIXED ARRAY INDEXES/ LOST DATA
1333332322009 8323333722302232300 0802203328233 2320040 3000802003220 3020300030880%¢¢

114

FORTRAN IV

0002
0003
0004
0003
0006

0007

0008
0009

0010
0011

0012

0014
0015

0016
0017
0019
0020
0022
0023
0023

0030
0031
0033
0035
0034
0037
0038
0039
0040
0041

0042
0043

0044

coon

lop o v}

[er o B o

- —— - —— . —— > - —— o ——

vo2.5-2 Thu 08-May-84 13120126 PAGE 002

LOGICAL%*1 LERROR

BYTE NAMFIL(15)sARRAY(5000)sBFDATA(S520),IRUFF(512)

INTEGER%2 IARRAY(2300)s»IPDATA(260)

INTEGER¥2 HEADER(3)sIDATA(257)sLASTBKy IREMyISIZE»IBLOCK»RT»HT
REALX8 FILE

COMMON /INOUT/ ARRAYsBFDATA

EQUIVALENCE (ARRAY» IARRAY)
EQUIVALENCE (BPDATAs IPDATA)

GO DOWN TO 350 IF NOT CALL FOR HEADER

IF (HEADER(3).NE.O0)} GOTO 3350

CALL IRADSO(12sNAMFIL,FILE)
IFLAG=HEARDER(3)

OFEN FILE AND READ

ICHAN=IGETC()

IF (ICHAN.LT.0) STOPF ‘NO CHANNEL AVAILARLE’
IERROR=IFETCH(FILE) ’

IF (IERROR.NE.Q) STOP ‘BRADI! FETCH’
TERROR=LOOKUP (ICHANYFILE)

IF (IERROR.EQ.-2) GOTO 1040

IF (IERROR.LT.0) STOP ‘BAD LOOKUF’

IRLOCK=0
INDEX=1

CONTINUE

------------------ READ DATA -

IERROR=IREADW(256s IRUFFsIBLOCKs ICHAN)
IF (IERROR.LT.-1) STOF ‘BAD READ’

IF (IERROR.EQ.-1) GOTO 140

Do 135s I=1,512

ARRAY (INDEX)=IBUFF(I)

INDEX=INDEX+1

CONTINUE

IBRLOCK=IBLOCK+1

6070 130

CONTINUE

CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)

DELETE CR’S IN ARRAY

J=1
115

FORTRAN IV Vo2.5-2 Thu 08-May-B6 13:20:26 FAGE 003

0045 DO 190s I=1s5000

0044 IF (ARRAY(I).EQ."015) GOTO 190
0048 ARRAY (J)=ARRAY(I)

0049 IF (ARRAY(I).EQ.0) GOTO 200
0051 J=J+1

0052 190 CONTINUE
0053 200 CONTINUE

116

FORTRAN IV

0054
0055
0056
0057
0059

0060
0061
0042

0063
00635

0067

0068

0070
0071
0072
0073
0074
0075
0076

0077
0078
0079
0080
0081
0082
0083

0084

0085
0086

c

QWO O 00

[or BLar B o

390

400

490

300

vo2,5-2 Thu 08-Mau-Bé 13:20:26 _ FAGE 004

1812E=J-1

ITOTBRK=ISIZE/232
IREM=ISIZE-ITOTBK%252

IF (IREMJ.NE.O) ITOTRK=ITOTRK+1
LASTBK=ITOTBK-1

--- DIAGNOSTICS

WRITE (WT,250) ISIZEsIREM,ITOTEK
FORMAT(’ ISIZE= ‘yI4s’ IREM= ’ysI6+’ ITOTBK= ’sI4)

WRITE (WTs260) (ARRAY{(I)»I+1,ISIZE)
FORKMATC(’ ‘+6(’ ‘914))

HEADER(1)=ITOTERK
HEADER(2)=IREMN
HEADER(3)=ISIZE

RETURN WITH JUST HEADER INFORMATION

IF (IFLAG,EQ.0) INDEX=1
IF (IFLAG.E@.0) RETURN

HERE IF MOVING BLOCKS OF DATA

CONTINUE

IF (IBLOCK.EQ.LASTEK) GOTO 400

THIS FOOLISHNESS NEEDED SINCE CAN‘T EQUIVALENCE PARAMETER

DO 390, I=55256
BPDATACIX2-1)=ARRAY (INDEX)
IDATA(I)=IPDATA(I)
INDEX=INDEX+1

K=1 :

CONTINUE

GOTO 500

CONTINUE

DO 490, I=5,IREN+4
BFDATA(IX2-1)=ARRAY (INDEX)
IDATACI)=IFDATAC(I)
INDEX=INDEX+1

K=I

CONTINUE

CONTINUE

NORMAL EXIT HERE

IMATA(4)=1IRLOCK
IDATA(1)=K-2

117

FORTRAN IV v02,5-2 Thu 08-Mau-B86 133120126 PAGE 003
C

0087 LERROR='FALSE"’
0088 RETURN

118

FORTRAN IV

0089

0090
0091

0092
0093

0094
0093

0096
0097
0098
0099

0100
0101
0102
0103

0104
01035

0106
0107

0108

0109

0110
0111
0112

V02,5-2 Thu 0B-Mas-86 13120326 PAGE 006
ERROR MESSAGES AND ERROR RETURN

CONTINUE

WRITE (WT»,1002) NANFIL

FORMAT(’ ‘s/s’ ERROR OFENING FILE ‘»14Al1,/,»’ DOES IT EXIST?’)
GOTO 1100

CONTINUE
WRITE (WTs1012) NAMFIL

FORMAT(’ ’y/y’ ERROR READING HEADER FROM FILE ‘,14A1)
GOTo 1100

CONTINUE

WRITE (WT»1022) NAMFIL

FORMAT(’ ‘y/3’ ERROR READING DATA FROM FILE “s14A1)
GOTO 1100 :

CONTINUE

WRITE (WT,1032) NAMFIL

FORMAT(’ “»/»’ ERROR CLOSING FILE “»r14A1)
GOTO 1100

CONTINUE

CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)
WRITE (WT,1042)

FORMAT(’ ‘9/s’ FILE NOT FOUND. TRY AGAIN.’)

ERROR RETURN

- CONTINUE

LERROR='TRUE"
RETURN
END

119

FORTRAN IV Storade Mar for Prodram Unit DISKRD

Local Variabless PSECT $DATAy Size = 001076 (287, words)

Name Tyre Offset Name Tare O(ffset Name Ture QOffset
FILE R%8 001040 1 Ix2 001060 IBRLOCK IXx2 @ 000004
ICHAN 1Ix2 001052 IERROR Ix2 0010354 IFLAG Ix2 001050
INDEX Ix2 001054 IREN Ix2 001030 ISIZE 1Ix%2 001032
ITOTBK Ix%2 001064 J Ix2 001062 K %2 001046
LASTBK I%2 001026 LERROR LX1 @ 000010 RT Ix2 001034
WT 1%2 0010364

COMMON Block /INDUT /» Size = 012620 (27460, words)

Name Ture Offset “Name Ture Offset Name Tuyre 0Offset
ARRAY Lxi 000000 Eev BFDATA LX1 0114610 Eav IARRAY Ixk2 000000 Eqv
IFDATA IXx2 011610 Eav

Local and COMMON Arraus?

Name Teyre Section Offset ------ Size----- Dimensions
ARRAY Lx1 INOUT 000000 011610 (2500.) (5000)
BFOATA Lx1 INOUT 011610 001010 (280.) (320)
HEADER Ix2 @ $DATA 000002 000006 (3.) (D)
TARRAY Ix2 INOUT 000000 011410 (2500.) (2300)
IBUFF Lx1 $DATA 000012 001000 (236.) (512)
IDATA Ix2 @ $DATA 000004 001002 ¢ 237,) (257)
IFDATA IX2 INOUT 011610 001010 ¢ 260.) (260)

(

NAMFIL Lx1 @ $DATA 000000 000017 8,) (15

Subroutiness Functions» Stzstement and Processor-Defined Functions:

Name Ture Name Ture Name Tupe Name Ture Name Ture
ICLOSE 1Ix2 IFETCH Ix2 IFREEC Ix2 IGETC Ix2 IRADS0 Ix2
IREALIW Ix%x2 LOOKUF Ix2

120

FORTRAN TV v02,5-2 Thuy 0B-Mau-86 13321151 FAGE 001

0001

(2222003223822 000032002 2000003003380 0 003322232208 20232000020803022220233338283%1

c
C MODULE NAME!
SURROGUTINE RUN
C
C PURPQOSE:
c

THIS ROUTINE IS USED TO START ANY PROGRAM STORED IN THE ROROT.
THE PROGRAM IS SELECTED RY NUMBER WHICH IS REQUESTED BRY
THIS FROGRAM AND FASSED TO THE ROBOT AS PART OF THE MESSAGE.

THE LOAD PROGRANM IN THE MINC MAY BE USED TO TRANSFER A PROGRAM
FROM THE MINC DISC TO THE ROBOT MEMORY PRIOR TO STARTING THE
PROGRAM USING THIS RUN ROUTINE,

INFUT? ACCEPTS FROGRAM NUMBER FROM MINC KEYBOARD.

FROCESSING:

SETS UP MESSAGE AND CONTROLS COMMUNICATION.
AFTER TRANSMIT AND ACKNOWLEDGE WILL SIT IN LOOF AND
RECEIVE MESSAGES INDEFINITELY. KEYFRESS TO EXIT.

OUTPUT

SURROUTINE DRISPLAYS AFFROFPRIATE PROMPT MESSAGE FRIOR

TG ACCEFTING A PROGRAM NUMBER FROM KEYROARD. THE ACTUAL
MESSAGE TRANSMITTED IS THE °SET PROGRAM MODE® MESSAGE,

HUST BE TRANSMITTED WHILE RORDT IS IN "NO-ACTIVITY STATE®. -
THE PROGRAM TO BE RUN MUST ALREADY RE STORED IN THE ROBOT
CONTROLLER MEMORY.

MESSAGE TYFPE CORE = 130
THE KEYSWITCH ON THE ROEOT MUST BRE ENABLED.
CALLED BY: CYRO2

CALLS TO! SENDsRECEVE

SFECIAL INTERFACE REQUIREMENTSS MINC DIGITAL I/0 MODULES

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)

DATE PROGRAMMER =====CONTACT/ACTION/REMARKS=====
7-10-84 FRED R. SIASs JR. (B03)~-656-3375/8YSTEM DESIGN/FROGRAM
10-246-84 FRED R+ SIASr JR. /SIGNIFICANT PROGRAM REVISION
6-4-85 FRED R. SIAS, JR. /REVISEDR NARRATION
8-10-835 J. KEITH MCELVEEN /REVISED RECEIVE LGOF

12320022332 202228 0323088220 3323 0823332033 83208 8322003228030 088322308822322883%3%

121

FORTRAN IV voz2,5-2 Thu 08-Maw-86 13121151 FAGE 002

C
0002 INTEGER¥2 WT:RTsIDATA(257)s INDATA
0003 INTEGER*2 ILEN,IERROR
C
0004 Wt = 7
0005 RT = §
’ C
0006 10 CONTINUE
0007 WRITE (UWT,100)

4008 100 FORMAT(//»’ Ineput NUMBER of robot rrodram to RUN.’s
1 /¢’ To EXITsy Press RETURN.> “+%)

0009 READ (RTs110,ERR = 10) INDATA
0010 110 FORMAT(I4)
C .
0011 IFCINDATA.EG.0) RETURN
0013 IF (INDATA.LT.1,0R.INDATA.GT.9) GOTO 400
c
C LENGTH OF MESSAGE TD TRANSMIT
0015 IDATA(L) = 3
C SET SEQUENCE NUMEER TO 0
0016 IDATA(Z) = 0
C SET TYFE CODE TO 130
0017 IDATA(3) = 130
C SET FROGRAN STATUS TO *RUN"
0018 IDATA(4) = i
c TRANSMIT PROGRAM NUMBER
0019 IDATA(S) = INDATA
0020 ILEN = 5
C .
0021 CALL SEND (IERRORsILEN;IDATA)
C .
0022 IF (IERROR.EQ,1) GOTO 1000
0024 IF (IERROR.EQ,2) GOTO 2000
0026 IF (IERROR.GT,2) GOTO 3000
C
[mmmmmm GET MESSAGE
0028 CALL RECEVE(IERRORsILENyICSUMsIDATA)
c
0029 IF (IERROR.EQ.1) GOTD 1000
0031 IF (IERROR.EQ.2) GOTO 2000
0033 IF (IERROR.GT.2) GOTD 3000
c
RS —— SR KEEP READING MESSAGES
C
0035 WRITE (WT+1070) INDATA

0036 1070 FORMAT(//»’ PROGRAM NO.’»I2+’ HAS BREEN STARTED’,

1 7 IN ROROT.’y/>»

2 ’ Qustem will idnore any messades during rrodram run,’s/»
3 * AFTER RUN» FRESS ANY KEY TO RETURN TO MENU.> “+%)

’

0037 o 7000 1=1,2500

0038 CALL RECEVE(IERROR»ILEN,ICSUM>IDATA)
122

FORTRAN IV vo2.5-2 Thuy 08-May-86 13121151 PAGE 003

0039
0041
0043

0045

0046

0047

0048

0049
0050
00351

00352
0033
0054
0055

0036
00357
00358

0059

0060
0061
0042

0063
0064
0065
0066
0067

0048
0069

C
IF (IERROR.EQ.1) GOTOD 4000
IF (IERROR.EQ.2) GOTO 2000
IF (IERROR.GT.2) GOTO 3000
c
7000 CONTINUE
c
TYFE ¥y’ RECEIVED 2500 MESSAGESs CONTINUING'
C
C ———
c
c WILL EXIT ABOVE LOOP IF TIMEOUT OCCURS OR IF RECEIVES
C 2500 MESSAGES.
C
6000 CONTINUE
c
RETURN
c
[e e e e e e e —————————————
C

400 WRITE(WT»402)
402 FORMAT(//»’ ONLY FPROGRAM NUMBERS 1-9 ACCEFTABLE.’)

GOTO 10

C .

1000 CONTINUE
WRITE(WT»1010)

1010 FORMAT(//»’ FIVE SECOND TIMEQOUT OCCURRED DURING RECEIVE.")
GOTO 999

C

2000 CONTINUE
WRITE(WT,2010)

2010 FORMAT(//y’ CHECKSUM ERROR CALCULATION FRODUCED ERROR’:s
1 * DURING RECEIVE.")
GOTo 999

C

3000 CONTINUE
WRITE(WT»3010) IERROR

3010 FORMAT(//s’ ILLEGAL ERROR CORE’sI4s’ RETURNELD FROM’,
1 ‘ RECEIVE SUBROUTINE.’)

999 CONTINUE
WRITECWT9999)

9999 FORMAT(//s’ PRESS °"RETURN® TD GOTO MAIN MENU.> ‘»4)
READ (RT»9998) INFPUT

9998 FORMAT (A4)

RETURN
EMD

123

FORTRAN IV Storade Map for Prodram Unit RUN

Local Variabless .PSECT $DATA» Size = 001022 (2635, words)

Name Tuyre Offset Name Ture Offset Name Ture O0ffset
I Ix2 001014 ICSUM Ix2 001014 IERROR Ix2 001012
ILEN Ix2 001010 INDATA Ix2 001004 INPUT IXx2 001020
RT Ix2 001004 WY Ix2 001002 .

Local and COMMON Arraus? -

Name Ture Section Offset ------ Size----- Dimensions
IDATA IxXx2 $DATA_ 000000 001002 (237.) (257)

Subroutiness Functionss Statement and Processor-Defined Functions:

Name Ture Name Ture Name Tyre Name Ture Name Tyre
RECEVE Rx4 SEND Rx4

124

FORTRAN IV Vo2,5-2 Thu 08-May-B6 13122157 PAGE 001

(92223022023 220 0300322220 0002282300032282223322228320000222300023282¢80080032%3;
c _
c MODULE NAME:

0001 SUBROUTINE DIRECT

PURFOSE:

ROUTINE ACCEPTS DIR COMMAND FROM TERMINAL,
THEN A REQUEST IS TRANSMITTED TO THE ROROT AND THE COMPUTER
RECEIVES AND DISFLAYS THE PROGRAM NUMBER AND THE

FIRST TWO LINES OF EACH FROGRAM ON THE MINC CRT.

INFUT? NONE
FROCESSING!

HANDSHAKING:
Comruter transmits Tyre Code 193 - REQUEST TO SAVE
PROGRAM TO COMFPUTER.
The computer waits for Tyre Code 66 - SAVE FROGRAM
TQ COMPUTER ACKNOWLEDGE.
6-4-85 ACCORDING TO RUSS VIRES ROBOT NO LONGER WAITS
FOR FIRST TYFE CODE 193 - NOT IN CURRENT DOCUMENTATION -
RATHER TY0 MESSAGES FOLLOW IN SEQUENCE SEPARATED BY 4
RRIEF FAUSE., SECOND MESSAGE IS FIRST RLOCK OF DATA.
Then comruter accerts 3 sequence of blocks
' using Ture Code 193 to indicate when
it is ready for each block.,
Each block of data transmitted to the robot has z header
containing the Ture Code 67 followed by
a sequential block number and the actual
N/C rrogram data,

OO0 o000 0oo00

OUTFUT: DISPLAYS APFROFRIATE FROMFTS ON MINC CRT ANDI THEN
DNISPLAYS THE FROGRAM NUMRER AND THE FIRST TWO LINES
OF EACH PROGRAM ON THE MINC CRT.

CALLED BY! CYRO2

SPECIAL INTERFACE REQUIREMENTS: USES MINC DIGITAL I/0 MODULES

C

c

C

C

c

c

C

c

c

C

c CALLS 70! REQTSs RECEVE
c

C

c

c REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)

¥ DATE FROGRAMMER =====CONTACT/ACTION/REMARKS=====
c 5-27-85 FRED R. SIAS, JR. (803)-656-3375/SYSTEXM DESIGN/FROGRAM
c 6-04-85 FRED R. SIAS, JR. /REVISED NARRATION

C 6~10-85 FRED R, SIAS, JR. /REVISED LOGIC

C

C

1222022020000 03330200808 ¢ 2838383328 820000 20080383330 032820322220232222020040033

125

FORTRAN IV

0002
0003
0004

0005
0004
0007

0008

0009
0010

3611

0012

0013

0014

0015
0017
0019

0023
0025
0027

0029
0030

0031
0032

0033

0035

0037
0039

c

[or B ar

oo

Lor]

Vo2,5-2 Thu 08-Maxs-86 13122157

INTEGER¥2 NUMBERyRTyHTsFILNO,OUTDV
RYTE INFUT .

LOGICALX1 LERROR"

INCLUDE ‘COMMON,FOR’ ---NOT LEGAL IN THIS FORTRAN
INTEGERX2 IDATA(258)

BYTE PROG(1024),BUFFER(80)

COMMON IDATAsFROGRUFFER

WT=7

RT=5

oUTEY=7

CONTINUE

DO 400y NUMBER=1,9

CONTINUE

NOW TRANSMIT A *REQUEST TO SAVE® TO ROBOT

CALL REQTS(NUMBERIERRKOR)

IF (IERROR.E@.1) GOTO 2100
IF (IERROR.EG.2) GOTO 2200
IF (IERROR.GE.3) GOTD 2300

NOW WAIT FOR SAVE ACKNOWLEDGE - TYFE CODE 66
CONTINUE

CALL RECEVE(IERRORs ILENsICSUMsIDATA)

IF (IERROR.EQ.1) GOTO 3100

IF (IERROR.EQ.2) GOTOD 3200

IF (IERROR.GE.3) GOTD 3300

ITYPE=IDATA(3)

IACK=IDATA(4)

IPNUM=IDATA(S)
ISIZE=IDATA(6)+236XIDATA(7)

WRONG MESSAGE TYPE RECEIVED

IF (ITYPE.NE.64) GOTO 1100

IF (IPNUM.NE,NUMEBER) GOTO 1200
NOT READY TO RECEIVE CODE = 0

IF (IACK.EQ.0) GOTD 1300
IF (IACK,.GE.2) GOTD 1000

126

FAGE 002

FORTRAN IV V02.95-2 Thu 0B-Mas-86 131223157 : FAGE 003

c
0041 WRITE(WT,203) NUMBER
0042 203 FORMAT(’ Prodram No. “sI2y’ 7'»$)
c
0043 IRLKCT=0
c
c RECEIVES BLOCK NUMBER AND 252 RYTES OF DATA IN EACH BLOCK
c
0044 ITOTBK=ISIZE/252
0045 IREM=ISIZE-ITOTRK%252
0044 IF (IREM.NE.O) ITOTBK=ITOTRK+1
C
C __
C
C LOOF TO RECEIVE AND PUT IN ARRAY FOLLOWS:
c
0048 Do 300 I=1,1TOTBK
c
c SKIP REQUEST TO SEND FOR FIRST BLOCK OF DATA
C
0049 IF (I.EQ.1) GOTO 240
c
0051 CALL REQTS(NUMEER:IERROR)
" C
0052 IF (IERROR.EQ.1) GOTO 2100
00354 IF (IERROR.EQ.2) GOTO 2200
0056 IF. (IERROR.GE.3) GOTO 2300
c
0058 240 CONTINUE
c .
c STARTS RECEIVING PROGRAM HERE
c
0059 CALL RECEVE(IERRORyILEN,ICSUMsIDATA)
c
0060 IF (IERROR.EQ.1) GOTO 3100
0062 IF (IERROR.EB.,2) GOTO 3200
0064 IF (IERROR.GE.3) GOTO 3300
C
0066 ITYPE=IDATA(Z)
0067 IF (ITYPE.NE,67) GOTO 1100
0069 IBLOCK=IDATA(4)
0070 IF (IRLOCK.NE.IBLKCT) GOTO 4100
c
c DISPLAY ARRAY ON CRT
C
0072 IF (IBLKCT.NE.O) GOTOD 260
c
0074 ICRS=1
C
0075 DO 250 K=S5S»ILEN+2
C
0076 IF(IDATACK) LEQ."012) WRITE (OUTDV,203)
0078 205 FORMAT(’+'35'/")
0079 IF(IDATA(K).EQR."012) ICRS=ICRS+1

127

FORTRAN IV vo2.5-2 Thu 08-May-864 13:22:57 PAGE 004

C
0081 IFCIDATACK) .EQ.0) GOTO 260
0083 IFC(ICRS.EQ.2) GOTO 260
c
0085 IFCIDATACK) WNE,*012) WRITE (OUTDV,220) IDATA(K)
0087 220 FORMAT(’+71Al1+s$)
C .
0088 250 CONTINUE
c
0089 260 CONTINUE
c
00%0 IRLKCT=IBLKCT+1
c A
C END OF FILE TRANSFER LOGF
c
0091 300 CONTINUE
c
0092 400 CONTINUE
c
0093 WRITE (WT»500) '
0094 500 FORMAT(/»’ PRESS °"RETURN® TO GOTO MAIN MENU.> ’,$)
0095 READ (RT»904) INPUT
¥
0096 RETURN
C

128

FORTRAN IV

0097
0098
0099
0100
0101
0102

0103
0104
0105

0106

0107 -

0108
0109
0110
0111

0112

0113

0114
0115

0116
0117

0118
0119
0120
0121

0122
0123

0124

0125
0126

0130
0131

0132

0133

»
C
900
992
904

1000
1002

1100
1102

1200
1202

1300
1302

1

1

1

1

voa2.5-2 Thu 08-May-86 13:22:57 PAGE 0095
ALL OF THE VARIDUS ERROR MESSAGES FOLLOW:

CONTINUE

WRITE (WT,992)

FORMAT(//»' PRESS RETURN TO GOTO MAIN MENU> ‘»%)
READ (RT+904) INPUT

FORMAT(I4)

RETURN

WRITE (WT+1002)
FORMAT(//3’ ILLEGAL ACKNOWLEDGE CODE RECEIVED,’)
6OTO 900

WRITE (WT,1102)
FORMAT (//»’ WRONG MESSAGE TYPE RECEIVED!’)
GOTO 900

WRITE (WT.1202)
FORMAT(//s’ WRONG FROGRAM NUMBER RETURNEL BRY ROEOT!’)
GOTO 900

WRITE (WT,1302)
FORMAT(//+’ ROBOT NOT READY TO RECEIVE.’:
* TYPE "RETURN® TO TRY AGAIN> ’»$)
READ (RT»904) INFUT
GOTO 120

WRITE (WT+2102)

FORMAT(//»' TIME OUT ERROR WHILE WAITING FOR’:/,
* ACKNOWLEDGE FROM ROBOT.’)

GOTO 900

WRITE (WT,2202)
FORMAT(//s’ LRC ERROR MESSAGE RETURNED AFTER TRANCMISSION.’)
G070 900

 WRITE (WT»2302) IERROK

FORMAT(//»’ ILLEGAL ACKNOWLEDGE CODE’,I4,’ RECEIVED’
‘ AFTER TRANSMISSION TO ROROT.’) "
WRITE (WT+3102)
FORMAT(//+' FIVE SECOND TIMEOUT OCCURED DIURING RECEIVE.")
GOTO 900

WRITE (WT»3202)

FORMAT(//+’ CHECKSUM ERROR CALCULATION PRODUCED ERROR’»
’ DURING RECEIVE.")

GOTO 900

WRITE (WT»3302) IERROR
FORMAT(//»* ILLEGAL ERROR CODE’sI4s’ RETURNED FROM',

' RECEIVE SUBROUTINE,)
GOTO 900

WRITE (WT,4102) IRLOCK,IBLKCT
129

FORTRAN IV V02,.5-2 Thu 08-May-86 13122137 FAGE 006

0134 4102 FORMAT(//y’ BLOCK COUNT TRANSMITTED (’sI14+7)’s
1 * DOES NOT MATCH EXPECTED BLOCK (’sI45°).7)
0133 GOT0 %00 .

0136 END

130

FORTRAN IV Storade Mar for Frodram Unit DIRECT

Local Variablessy PSECT $DATAs Size = 0000356 (23, words)

Name Ture O0Offset Name Ture Offset Name Ture OQOffset
FILND IXx2 000012 I . Ix2 000044 IACK I%2 000030
IBLKCT Ix2 000036 IBLOCK IxXx2 000044 ICRS Ix2 000050
ICSUM IxXx2 000024 IERROR Ix2 000020 ILEN Ix2 000022
INPUT Lx1 0000164 IPNUN IXx2 000032 IREM I1x2 000042
ISIZE 1Ix%x2 000034 ITOTBK Ix2 000040 ITYPE Ix2 000024
K 1%2 0000352 LERROR Lxi1 000017 NUMBER Ix%2 000004
ouTRV I%2 000014 RT Ix2 000006 WT Ix2 000010
COMMON Block / /y Size = 003124 (810, words)

Name Ture OQOffset - Name Ture (QOffset Name Ture Offset
IDATA IX2 000000 FROG Lx1 001004 BUFFER Lx*x1 003004

Local and COMMON Arraus:

Name Ture Section Offset ---~-~- Size-—---- Dimensions
BUFFER L*1 3688, 003004 000120 (40,) (80)

IDATA I%2 +$3%%, 000000 001004 (258,) (298)

FROG L*1 +$8¢8, 001004 002000 (3512,) (1024

Subroutines: Functionsy Statement and Frocessor-Defined Functions:

Name Ture Name Ture Name Tyre Name Ture Name Ture
RECEVE R¥4 REQTS Rx4 :

131

FORTRAN IV v02,5-2 Thu 0B-Mawy-86 13124:38 FAGE 001

9332220033908 2382 0000228223239 ¢22332 3002280223 002302002320000032822032230093289¢1
c
C MODULE NAME: .

0001 SUBROUTINE DISPLA

FURPOSE!

ROUTINE ACCEFPTS PROGRAM NUMBER TO RE DISPLAYED' FROM TERMINAL:,
THEN A REQUEST IS TRANSMITTED TO THE ROBOT AND THE COMPUTER
RECEIVES AND DISPLAYS THE PROGRAM RETURNED TO IT,

INPUT: ACCEPTS PROGRAM NUMBER FROM MINC KEYBOARD.

PROCESSING:

HANDSHAKING?
Computer transmits Ture Code 193 - REQUEST TO SAVE
FROGRAM TO COMPUTER.
The comruter waits for Ture Code 66 - SAVE FROGRAM
TO COMPUTER ACKMNOWLEDGE.
6-4-85 ACCORDING TO RUSS VIRES ROROT NO LONGER WAITS
FOR FIRST TYPE CODE 193 - NOT IN CURRENT DOCUMENTATION -
RATHER TW0O MESSAGES FOLLOW IN SEQUENCE SEPARATED BY A
BRIEF PAUSE. SECOND MESSAGE IS FIRST BLOCK OF DATA.
Then comruter accerts 8 seauence of blocks
using Ture Code 193 to indicate when
it is ready for each block.
Each block of data transmitted to the robot has z header

OO0 0000000000000 0000 nOn0

c containing the Ture Code 67 followed bu

C 2 seauential block number and the actual

C N/C prodram data,

C

C guTPUT DISFLAYS AFPPROFRIATE FROMFPTS ON MINC CRT AND THEN

C DISPLAYS SELECTEDR ROROT PROGRAM ON MINC CRT 0OR FRINTER.

C

C CALLED BY: CYROD2

c

C CALLS TO! REQTSy RECEVE

C

C SFECIAL INTERFACE REQUIREMENTS: USES MINC DIGITAL I/0 MODULES
c .

c REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)

c DATE PROGRAMMER =====CONTACT/ACTION/REMARKS=====
C 5-27-835 FRED R, SIAS» JR. (B03)~656-3375/SYSTEM DESIGN/FROGRAM
c 46-04-85 FRED R, SIASs JR. /REVISED NARRATION

C 6-10-835 FRED R, SIAS: JR. /REVISED LOGIC

c

B P2 P03 0 2220020800008 8 03¢ 08¢0 30¢ 0082030200838 0382003833383 ¢2382393830804¢1

132

FORTRAN IV vo2,5-2 Thu 08-Mau-86 13124138 FAGE 002

C
0002 INTEGER¥2 NUMBERsRTsMT»FILNO,OUTDV
0003 RYTE INFUT
0004 LOGICALX1 LERROR
C
c INCLUDE ‘COMMON.FOR’ ~---NOT LEGAL IN THIS FORTRAN
C
0005 INTEGERX2 IDATA(258)
0006 BYTE PROG(1024)sBUFFER(80)
0007 COMMON IDATAsFROG,BUFFER
C
0008 WT=7
0009 RT=5
0010 guTDV=7
c
0011 10 CONTINUE
C
0012 WRITE (WT,100)

0013 100 FORMAT(///2’ Input NUMBER of Prodram to be disrlaved.’s
1 /s’ To EXITs» press RETURN. > ’»$)

0014 . READ (RT»110) NUMBER
0015 110 FORMAT(I2)
C
0014 IF (NUMBER.EQ.0) RETURN
0018 IF (NUMBER,LT.1.0R.NUMBER.GT.9) GOTO 400
: L
0020 WRITE (WT,112)

0021 112 FORMAT(//y’ Do uou want outerut on printer? (Y-or N)> “»$)
0022 READ (RT»113) INPUT
0023 113 FORMAT (AL}

0024 IF (INPUT.EG.’Y’) OUTDV=6
C
0026 120 CONTINUE
C :
c NOW TRANSMIT A *REQUEST TO SAVE®" TO ROEOT
c
0027 CALL REQTS(NUMEERsIERROR)
c
0028 IF (IERROR.EQ.1) GOTO 2100
0030 IF (IERROR.EQ.2) GOTO 2200
0032 IF (IERROR.GE.3) GOTO 2300
c
C NOW WAIT FOR SAVE ACKNOWLEDGE - TYFE CORE 66
C
0034 200 CONTINUE
C
0035 CALL RECEVE(IERRORsILENsICSUMsIDATA)
C ’
0036 IF (IERROR.EQ.1) GOTO 3100
0038 IF (IERROR.EQ.2) GOTO 3200
0040 IF (IERROR.GE,3) GOTO 3300
c
0042 ITYPE=IDATA(D)
0043 TACK=IDNATA(4)

133

FORTRAN IV vo2.5-2 Thu 08-Mau-86 13124138 FAGE 003

0044 : IPNUN=IDATA(S)
0045 ISIZE=IDATA(6)+2546XIDATA(7)
C .
c WRONG MESSAGE TYFE RECEIVED
c
0046 IF (ITYPE.NE.46) GOTO 1100
C
0048 IF (IPNUM.NE.NUMBER) GOTO 1200
c
C NOT READY TO RECEIVE CODE = 0
c
0050 IF (IACK.EQ.0) GOTO 1300 °
0052 IF (IACK.GE,.2) GOTO 1000
c
0054 WRITE (OUTDV,202) NUMRER
0055 202 FORMAT(’ Robot srodram No. ‘+14+//)
C
0056 IBLKCT=0
C
» RECEIVES BRLOCK NUMBER AND 252 BYTES OF DATA IN EACH RLOCK
C
0057 ITOTRK=ISIZE/252
0058 IREM=ISIZE-ITOTBK*¥252
0059 IF (IREMJ.NE.O) ITOTRK=ITOTBK+1
c
C __
C . .
C LOOF TO RECEIVE AND PUT IN ARRAY FOLLOWS!
C
0061 DO 300 I=1,ITOTEK
C .
C SKIF REQUEST TO SEND FOR FIRST BLOCK OF DATA
c ' :
0062 IF (I.EQ.1) GOTO 240
C
0044 CALL REQTS(NUMRER»IERROR)
c
0065 IF (IERROR,EQ.1) GOTO 2100
0067 IF (IERROR.EQ.,2) GOTO 2200
0069 IF (IERROR.GE.3) GOTO 2300
c ,
0071 240 CONTINUE
C
C STARTS RECEIVING FROGRAM HERE
c
0072 CALL RECEVE(IERRORsILENsICSUMsIDATA)
c
0073 IF (IERROR.EQ.1) GOTO 3100
0075 IF (IERROR.EQ.2) GOTO 3200
0077 IF (IERROR.GE.3) GOTO 3300
c
0079 ITYPE=IDATA(3)
0080 IF (ITYPE.NE.67) GOTO 1100
0082 IRLOCK=IDATA(4)

134

FORTRAN IV Vo2,5-2 Thu 08-Mau-86 13124138 PAGE 004

0083 IF (IRLOCK.NE,IBRLKCT) GOTO 4100
C
c DISPLAY ARRAY ON CRT OR PRINTER
C
0085 DO 250 K=S»ILEN+2
c
00864 IFCIDATA(K) JEQ,'012) WRITE (OUTDV,205)
0088 205 FORMAT('+’s/’)
c
0089 IF(IDATA(K) .EQ.*012) WRITE (OUTDV,212)
0091 212 FORMAT(’)
0092 IFCIDATACK) JEQ,0) GOTO 260
c _
0094 IFCINATACK) WNE.*012) WRITE (QOUTDV,220) IDATA(K)
0096 220 FORMAT(’+’1A11$)
C
0097 250 CONTINUE
c
0098 260 CONTINUE
c
0099 IBLKCT=IRLKCT+1
c
[» END OF FILE TRANSFER LOOFP
c
0100 300 CONTINUE
C
0101 WRITE (DUTDV»310)
0102 310 FORMAT(’ ‘9/)
0103 IF (QUTDV,EQ.4) CLOSE (UNIT=4)
c
0105 GOTO 499

135

PAGE 0095

- ———— - —— - " ——— " ——— o ——— L = A T G0 W = — " —————

C ALL OF THE VARIOUS ERROR MESSAGES FOLLOW!?

0106 400 WRITE (WT»402)
0107 402 FORMAT(//»' ONLY FROGRAM NUMBERS 1-%9 ACCEFTABLE.’)

0108 G0T0 10
C
0109 499 CONTINUE. .
0110 WRITE (WTs500)
0111 500 FORMAT(//y’ FRESS °RETURN® TO GOTO MAIN MENU.> “»$)
0112 READ (RT»204) INPUT
0113 RETURN
C
0114 900 CONTINUE
c
0115 RETURN
»
0116 READ (RT»904) INFUT
0117 904 FORMAT(AL)
o118 RETURN
c

0119 1000 WRITE (WT»1002)
0120 1002 FORMAT(//s’ ILLEGAL ACKNOWLEDGE CODE RECEIVED)’)
0121 60TO 900

0122 1100 WRITE (WT»1102) :
0123 1102 FORMAT (//»’ UWRONG MESSAGE TYPE RECEIVED!’)
0124 GOTO 900

0125 1200 WRITE (WT»1202)
0126 1202 FORMAT(//»’ UWRONG FROGRAM NUMEBER RETURNED BY ROBOT!’)
0127 GOTO 900 :

0128 1300 WRITE (WT»1302)
0129 1302 FORMAT(//+’ ROBOT NQOT READY TO RECEIVE.’.
1 * TYPE *RETURN® TO TRY AGAIN> ‘%)
0130 READ (RT»904) INPUT
0131 GOTO 120

0132 2100 WRITE (WT»2102)

0133 2102 FORMAT(//»’ TIME OUT ERROR WHILE WAITING FOR’s/:
1 ’ ACKNOWLEDGE FROM ROBOT.”)

0134 GOTO 900

0135 2200 WRITE (WT,2202) .
0136 2202 FORMAT(//»’ LRC ERROR MESSAGE RETURNED AFTER TRANSMISSION.’)
0137 GOTO %00

0138 2300 WRITE (WT»2302) IERROR
0139 2302 FORMAT(//y»‘’ ILLEGAL ACKNOWLEDGE CODE’,I4,’ RECEIVED’,
1 * AFTER TRANSMISSION TO ROROT.)
0140 3100 WRITE (WTs3102)
0141 3102 FORMAT(//»’ FIVE SECOND TIMEOUT OCCURED DURING RECEIVE.’)

136

FORTRAN IV vo2,5-2 Thu 08-May-84 13124138 PAGE 006
0142 GOTO 900

0143 3200 WRITE (WT,3202)

0144 3202 FORMAT(//»’ CHECKSUM ERROR CALCULATION FRODUCED ERROR’,
1 * DURING RECEIVE,’)

0145 GOTO 900

0146 3300 WRITE (WT»3302) IERROR
0147 3302 FORMAT(//s’ ILLEGAL ERROR CODE’sI4sy’ RETURNED FROM'»

1 * RECEIVE SUBROUTINE.")
0148 GOTG 900

c

0149 4100 WRITE (WT:4102) IRLOCKsIBLKCT
0150 4102 FORMAT(//»' BLOCK COUNT TRANSMITTER (‘sI4»")7s

1 ’ DOES NOT MATCH EXPECTED BLOCK (’»I4s57).7)
0151 GOTO 900

0152 END

137

FORTRAN IV Storade Mar for Prodram Unit DISPLA

Local Variabless .PSECT $DATAy Size = 000054 (22, words)

Name Tyre . 0ffset Name Ture Offset Name Ture
FILNO Ix2 000012 I Ix2 000044 IACK Ix2

IBLKCT 1x2 000036 IRLOCK Ix2 000046 ICSUK 1x2

IERROR Ix2 000020 ILEN Ix2 000022 INPUT Lx1

IPNUM Ix2 000032 IREN Ix2 000042 ISIZE 1Ix2

ITOTRK IX%2 000040 ITYPE 1I%2 000024 K Ix2

LERROR Lx¥1 000017 NUMBER Ix%2 000004 ouTDV IX2

RT Ix2 000006 Wur Ix2 000010

COMMON Block / /vy Size = 003124 (810, words)

Name Ture Offset Name Ture Offset Name Tyre
IDATA I%2 000000 FROG L¥1 001004 BUFFER LX1

Local and COMMON Arraus:

Name Tere Section Offset -—-----—- Size---—- Dimensions
RUFFER Lk1 5688, 003004 000120 (40,) (80)

IDATA Ix2 .$$%%, 000000 001004 (258.) (258)

PROG Lx1 +$8%¢, 001004 002000 ¢ 512,) (1024)

0ffset
000030
000024
000016
000034
000030
000014

Offset
003004

Subroutinessy Functionssy Statement 3nd Frocessor-Defined Functions!

Name Ture Name Tyre Name Tare Name Ture Name
RECEVE R%4 REQTS RXx4

138

Ture

FORTRAN IV vo2,5-2 Thuy 0B-¥au-86 131243117 PAGE 001

(PP 3PP 222020030220 0200 838800229233 28220002200008332229082233232222208¢02%31

C
C MODULE NAME?
0001 SUBROUTINE DDIR
c
C PURPOSE! ROUTINE TO DISFLAY THE DIRECTORY OF FILES LOCATED
C ON THE DK: DISKETTE.
c
C INFUT? NONE
C
C PROCESSING? READS AND DECODES DIRECTORY INFORMATION.
c DOES NOT AFFECT DISKETTE DIRECTORY.
C :
C QuTRUT! BISFLAYS DK: DISKETTE DIRECTORY ON MINC CRT
c OR FRINTER.
c
C CALLED BY? CYRO2
C
€ CALLS TOD: IGETC,LDOKUP, IREADW, ICLOSE IFREEC,RS0ASC,CLOSE
c
c SPECIAL INTERFACE REQUIREMENTS? - NONE
C
c MISCELLANIOUS REQUIREMENTS: DISKETTE ON WHICH DDIR IS ATTEMPTED
C MUST HAVE HAD A SQUEEZE OFERATION
c AT LEAST ONCE SINCE ITS CREATION.
C
c ~REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
C DATE FROGRAMNMER =====CONTACT/ACTION/REMARKS=====
c 6-25-85 J+ KEITH MCELVEEN /SOFTWARE DESIGN AND PROGRAMMED
c 7-08-85 JKH /NARRATION
c 7-22-85 JKM /REVISED NARRATION AND FROGRAM
c
2000000222000 00000008000 00832302208 0232220200000 0080033032 00002238200042;

139

FORTRAN IV ve2,5-2 Thu 08-May-86 13126117 FAGE 002

C A
0002 INTEGER¥2 DELK(4)sRTsWT»ITEMFIDAY»IYEAR IMNTHsCNT»R3
0003 INTEGERX2 IDATA{(2048)sRUFFERsBUFF1(18)sRUFF2(16)
0004 INTEGERX2 INPUT
C
C CREATE RADSO FILE DESCRIPTOR FOR LOOKUF COMMAND
c
0005 DATA DELK /3RDKi»3R 1 3R * 3R /
0004 DATA IBRLK /6/
[
C CREATE MONTH 3-LETTER DISPLAY TARLE TO BE INDEXED RY
C IMNTH.
C
0007 INTEGER MNTH(13,3)
0008 DATA MNTH /°0480+°112,°106,"1155°101,"115,°112,°112,
1 101,123,117
1 *116+°104,°0609°141,°145,°141»°140+°141+"°145,"145,
i 16591452143,
1 *157+'1455°0409°1569°1425°162,°162,%1715°156°154,
1 *147,°15601 164,
1 *1665"143/
C
C ASSIGN TERMINAL UNIT NUMBER
C
0009 HWT=7
001¢ RT=5
0011 OUTDIV=7
C
0012 K=1
0013 LL=1
0014 NS=0
C . .
6015 WRITE(WT,112)
0016 112 FORMAT(//y’ DD YOU WANT QUTPUT ON PRINTER? (Y or N)> “+3%)
0017 READ(RTs113) INFUT
0018 113 FODRMAT(A2)
0019 IFCINPUT.EQ.’Y’) OUTDIV=4
C
C OETAIN CHANNEL NUMRER
c
0021 ICHAN=IGETC()
0022 IF (ICHAN.LT.0) GOTO 1060
C
C LOOKUP DEVICE AT ERLOCK &
(
0024 IF (LOOKUP(ICHANsDBLK),LT.0) GOTO 1050
c
C READ (WITH WAIT OFTION) 2048 CHARACTERS STARTING
C AT BLOCK 6
C FXRRKKKXKKMAKE LARGER THAN 2048 IF USING LARGE STORAGE
c DEVICE, WILL NEED TO INCREASE IDATA DIMENSION
c TO NEW SIZE AND CHANGE ...IREADW(2048:s...
c TO NEW SIZE.Xk¥kkkXXRXKXXRKKK
C GOTO 100 IF END' OF FILE ENCOUNTERED

140

FORTRAN IV

0024
0027
0029

0031
0032

c
c

[or M or i o }

Ve2.5-2 Thu 08-fau-86 13826317
GOTO 200 IF ERROR
ICODE=IREADNW (2048, I0ATAy IELKy ICHAN)
IF (ICODE.EQ.-1) GOTO 100
IF (ICODE.LT.-1) GDTD 200
CLOSE AND FREE CHANNEL

CALL ICLOSECICHAN)
CALL IFREEC(ICHAN)

141

PAGE 003

FORTRAN IV v02.5-2 Thu 08-May-B6 13126117 PAGE 004

C
C SET NUMBER OF HIGHEST SEGMENT=NHS o
c
0033 NHS=IDATA(3)
C
C SEARCH FOR STATUS WORDS?
» *002000 PERMANENT FILE
c *102000 FERMANENT PROTECTED FILE
c *004000 END OF SEGMENT
»
0034 10 IF(IDATA(K) .EQ."002000) GOTO 20
0034 IFCIDATA(K) .EQ."102000) GOTO 20
0038 IFCIDATA(K) JER."004000) NS=NS+1
0040 IF(IDATA(K) .EQ."004000.AND.NHS,EQ.NS) GOTO 999
C
C IF NOT A STATUS WORD INCREMENT K AND TRY AGAIN
C
0042 K=K+1
0043 G070 10
c
C FUT NEXT THREE WORDS (1%2=FILENAMEs3RD=EXTENSION-
c IN RAD30 FORMAT) INTO TEMFORARY
C ARRAY ANDIN CALL CONVERSION (SYSTEM) SUBROUTINE
c
0044 20 CONTINUE
00435 po 30 L=1+3
00446 BUFFL{L)=IDATA(K+L)
0047 30 CONTINUE
C
0048 BUFF1(4)=0
0049 CALL RSOASC(10sRUFF1,BUFF2)
C
C DECODE DATE WORD
C
0050 K=K+b
0031 IMNTH=MOD(IDATA(K) »16384)
0052 IMNNTH=IMNTH/1024
0033 IYEAR=MOD(IDATA(K) 916)
0054 IF(IYEAR.NE.0) IYEAR=IYEAR+72
0036 IDAY=MOD(IDATA(K)»1024)
0057 IDAY=IDAY/32
C
C QUTPUT (FILENAME.EXT LENGTH DATE) TO OUTFUT DEVICE
c :

142

FORTRAN IV

0058
0060
0061
0063
0054
0066
0067
0068
0070
0071
0072

0074

0075

0076
0077
0078
0079

- 0080
0081
0082
0083
0084

0085
0086
0087
0088

0089
0090

0091
0092

0093

300

301

310

100
110

200
210

1000
1010

1020

1050

1052

1060

1062

02,5-2 Thu 08-Mau-86 13126017 PAGE 005

IF (QUTDIV.EQ.8) WRITECOUTDIV,300)(BUFF2(I)sI=1,5)sIDATA(K-2),
1 IDAY!(HNTH(IHNTH+11J);J 1,3)sIYEAR _
FORMATC +/29X13A29 "+ 928292X91492XsI29'-"3s3A19"-"912+5Xs %)

IF (OUTDIV.EQ@.7) WRITE(QUTDIV,3O01)(RUFF2(I)sI=1,5)sIDATA(RK-2),
1 IBAY» (MNTHC(IMNTH+1,J) 9 J=1+3) yIYEAR
FORMAT($/3S5X23A29 74" 1282y2Xy 142Xy 12 7= »3A19 "= +12+:5X2$)

IF(LL.EQ.2) WRITE(OUTRIV,y310)
FORMATC(' /")

LL=LL+1

IF(LL.EQ.3) LL=1

GOTO 10

CONTINUE
IF (QUTDIV.EQ.6) CLOSE(UNIT=4)
GOTO 1000

WRITE(WTs110)

FORMAT(//+’ END OF FILE ON READ’)
507D 1000

WRITE(WT,210)

FORMAT{(//+’ ERROR ON READ’)

WRITE (WT»1010)

FORMAT(//»* TO CONTINUE PRESS RETURN> "1$)
READ (RT»1020) INFUT

FORMAT(A2)

RETURN

CONTINUE

WRITE (WT+1052)

FORMAT(/»’ BAL LDOKUP ERROR’)
GOTO 1000

CONTINUE

WRITE (WT,1062)

FORMAT(/»’ CANNOT ALLOCATE CHANNEL ERROR’)
GOTO 1000

END

143

FORTRAN IV Storase Mar for Prodram Unit DDIR

Local Variablesr .PSECT $DATAy Size = 010332 (2157+ words)

Name Ture O0Offset Name Ture Offset Name Ture O0Offset
BUFFER Ix2 010234 R3 Ix2 010254 CNT - Ix2 010252
1 %2 010304 IBLK 1%2 010224 ICHAN 1Ix2 010274
ICODE Ix2 010274 IDAY Ix2 010244 IMNTH IX2 010250
INFUT Ix2 0102640 ITEMP 1IX%2 010242 IYEAR Ix2 010246
J Ix2 010306 K Ix2 010246 L Ix2 010302
LL Ix2 010270 NHS Ix2 010300 NS I1%2 010272
QUTDIV Rx4 010242 RT Ix2 010234 WT Ix2 010240

Local and COMMON Arraus:

Name Type Section Offgset -—-—=w-- Size----- Dimensions
BUFF1 Ix2 $DATA 010010 000040 ¢ 16.) (168)

BUFF2 Ix2 $DATA 010050 000040 (16,) (16)

DRLK Ix2 $DATA 000000 000010 ¢ 4,) (4)

IDATA Ix2 $DATA 000010 010000 (2048,) (2048)
MNTH Ix2 $DATA 010110 000116 ¢ 39.) (13+3)

Subroutiness Functionss, Statement and Frocessor-Defined Functions:

Name Tyre Name Ture Name Type Name Ture Name Ture
ICLOSE 1Ix2 IFREEC Ix2 IGETC I%2 IREADW Ix2 LOOKUP Ix2
Mo Ix2 R50ASC Rx4

144

FORTRAN IV = V02,5-2 Thu 08-Mau-86 13127137 FAGE 001

S22 00 0 P00 PP P et ottt Rttt oot it osst st esssssss ol e essosssssotto ot
c
- C MODULE NAME?
0001 SUBROUTINE LIST

PURPOSE ROUTINE TO LIST ANY SELECTED PROGRAM STORED
ON THE DK: DRISKETTE

INFUT? ACCEFTS PROGRAM NAME FROM MINC KEYBOARD AND
THEN LOARS SELECTED FROGRAM INTO ARRAY IN MEMORY.

PROCESSING: REQUIRES FORMATTING AND FLACING °*/°® AT END

OF EACH LINE TO GIVE SAME AFPEARANCE AS

ROBOT CONSOLE DISPLAY.
OUTFUT! DISFLAYS FPROGRAM ON MINC CRT OR FRINTER.
CALLED BY: CYRD2

CALLS TO: DISKRD SCOPY s INSERTs IRADSOs IGETCs IFETCHsLOOKUF s
ICLOSE, IFREECs IREADW,CLOSE

SPECIAL INTERFACE REQUIREMENTS! NONE
REVISION HISTDRY (REVISE THIS NARRATIVE IF NECESSARY)
DATE PROGRANMER =====CONTACT/ACTION/REMARKS=====
6-29-85 - FRED R. SIAS» JR. (B803)-636-3375/DESIGN & FPROGRAHM
7-22-85 Jo KEITH MCELVEEN (803)656-3375/REVISED FROGRAM/NARR

C
c
C
C
c
c
c
c
C
C
C
C
c
c
c
C
c
c
c
C
c
c
c
C
c

b8 3333303032330 3223333 2000033233322 00 000003002232 302 0333000 e0 0200023000029

145

FORTRAN IV vo2.5-2 Thuy 08-Mau-86 13127137 PAGE 002

0002
0003
0004
0005

0004

0007
0008
0009

0010
0011

0012

0013

0014
0015

0016
0017

gois

0020
0021
0022
0023
0024

0026

0029
0030
0032
0033
0035
0036
0038

0040
0041

C
INTEGERX2 0UTRV
BYTE INPUTy FILNAM(15)s NAMFIL(7)» ARRAY(5000)sIBUFF(512)
LOGICALX1 LERROR
REALX¥8 FILE
C A
COMMON /INOUT/ ARRAYsBFDATA
c
CALL SCOFY('DY1 CYR’ +sFILNAM)
DATA FILNAM(13) /00/
DATA NAMFIL(7) /00/
C
Wi=7
RT=5
c
10 CONTINUE
C
ouUTDV=7
¢

WRITE (WT+100)
100 FORMAT (///+" Input FILE NAME of rrodram to list.’s/,
1 ‘ Ta EXITy» Ppress RETURN> ‘%)

READ (RT+105) (NAMFIL(I)»I=1:6)
105 FORMAT(4A1)

IF (NAMFIL(1).EQ.” “) RETURN

WRITE (WT»107)

107 FORMAT(//y’ Do wou want outrut on printer? (Y or N)> '»%)
READ (RT,108) INPUT

108 FORMAT (A1)
IF (INPUT.EQ,’Y’) 0UTDV=4

C
120 CONTINUE
C
: CALL INSERT(NAMFILsFILNAMs4:6)
C
CALL IRADSO(12,FILNAMSFILE)
c
[t o o e e e e o e o e
C
C OFPEN FILE AND READ
C
ICHAN=IGETC()
IF (ICHAN.LT.0)> STDP ‘NO CHANNEL AVAILABLE’
IERROR=IFETCH(FILE)
IF (IERROR.NE.O) STOF ‘RAD FETCH’
IERROR=LOOKUFP(ICHAN:FILE)
If (IERROR.EQ.-2) GOTOD 450
: IF (IERROR,LT.0,AND.IERROR.NE.-2) STOP ‘BAD LOOKUP’
c

WRITE (OQUTDV»170) (FILNAM(I)sI=1+12)
170 FORMAT(’ Diskette prodgram name?! 'r12481+//)

146

0042
0043

0044

0045
0046
0048
0030
0051
0052
0053
0054
0055
0056

0037
0038

0059
0060
0042
0063
0064

0065

0066
0048

0069
0070

0071
0072

0074
0075
0076
0077

0078
0079
00890
0081
00832
0084
0085
0086
0087

- FORTRAN IV

(o Bl o]

1350
160

vo2.5-2 Thu 08-M3u-86 13127:37

IBLOCK=0
INDEX=1

CONTINUE

------------------ READ DATA

IERROR=IREADW (254 IRUFF» IRLOCKs ICHAN)
IF (IERROR,LT.-1) STOF ’BAD READ’

IF (IERROR.EQ.-1) GOTO 140
Do 135, I=1,512

ARRAY (INDEX)=IBUFF(I)
INDEX=INDEX+1

CONTINUE

IRLOCK=IRLOCK+1

GOTO 130

CONTINUE

- - —— o —— o — - - — - = —

CALL ICLOSECICHAN)
CALL IFREEC(ICHAN)

GET PROGRAM-LENGTH

o 150, I=1,5000

IF (ARRAY(I).EQ.0) GOTO 140
CONTINUE

CONTINUE

ISIZE=I-1

0o 200 I=1,ISIZE

FORMAT(+/57/'+%)

WRITE (DUTDV,18%9) ARRAY(I)
FORMAT('+’+A1+%)

CONTINUE

IF (QUTDV.EQ.&)

WRITE (WT,500)

FORMAT(//+’ FRESS °"RETURN®
READ (RT,»S510) INPUT
FORMAT(AL)

RETURN
CALL ICLOSE(ICHAN)
CALL IFREEC(ICHAN)

CLOSE (UNIT=4)

TO CONTINUEZ:

IF (QUTDIV.EQ.6) CLOSE(UNIT=6)

WRITE (WT+455)

FORMAT(//+‘ FILE NOT FOUND,
READ(RT»310) INPUT

G070 10

END

PRESS

147

IF (ARRAY(I).EQ."015) WRITE (OUTDV,182)

*RETURN"®

“9%)

PAGE 003

TO TRY AGAIN:

“v%)

FORTRAN IV Storade Mar for Prodram Unit LIST

Local Variabless PSECT $DATA, Size = 001144 (306, words)

Name Tupe Offset Name Ture Offset Name Ture Offset
FILE Rx8 001044 I Ix2 001064 TRLOCK Ix2 001072
ICHAN 1Ix2 001046 IERRDR 1Ix2 001070 INDEX Ix2 001074
INPUT Lxi 001042 ISIZE 1%2 001076 LERROR Lx1{ 001043
pUTDIV Rx4 001100 ouTDY IX2 001040 RT " R¥4 001040
WT RX4 001054

COMMON Block /INOUT /» Size = 0114614 (2502. words)

Name Ture Offset ‘Name Ture Offset Name Tuee Offset
ARRAY LX1 000000 BPDATA RX4 011610

Loczl and CONMON Arraus:

Name Ture Section Offset ------ Size----- Dimensions
ARRAY L¥1 INOQUT 000000 0114610 ¢ 2500.) (5000)
FILNAM Lx1 $DATA 000000 000017 (8.) (1)

IBUFF Lx1 $DATA 0000246 001000 (234.) (512)
NAMFIL Lxi $DATA 000017 000007 ¢ 4,) (7)

Subroutiness Functionss Statement and Frocessor-Nefined Functions:

Name Tyre Name Ture Name Tupe Name Ture Name Ture
ICLOSE 1Ix2 IFETCH Ix2 IFREEC Ix2 IGETC I%2 INSERT 1Ix2
IRADSO Ix2 IREADW Ix%x2 LOOKUP 1Ix2 SCaryY R¥4

148

FORTRAN IV v02,5-2 Thu 08-Mau-86 13:28144 PAGE 001

(192238222 30323238288 8000002302322 200 0022230000230 3 0000023033800 0333338¢2825¢4%3:1

c
c MODULE NAME:

0001 SURROUTINE RESEQ
c
c PURPOSE! THIS SUBROUTINE ACCEPTS THE NAME OF A ROBOT
c PROGRAN STORED ON DISKETTE AND THEN RENUMBERS THE
c COMMAND LINES SO THAT THE FROGRAM STARTS WITH TWO
c COMMENT LINES FOLLOWED BY PROGRAM LINE NUMBERS
c IN STEPS OF TEN,
C .
c INPUTS ACCEPTS PROGRAM FILE NAME FROM THE MINC KEYBDARD
c AND THEN READS THAT PROGRAM FROM THE DISKETTE.
c PROGRAN ASSUMES *.CYR® FILENAME EXTENSION.
c
C PROCESSING!
c
c
c OUTPUT! REWRITES THE RESEQUENCED PROGRAM TO DISKETTE.
c
c CALLED BY: CYRD2
c
c CALLS TO: INSRTsIRADSO0,SCOPYsINSERT,IBETC IFETCHsLOOKUF;
c IREADM s ICLOSE s TWRITY
c
C SPECIAL INTERFACE REQUIREMENTS: NONE
c ‘ |
c REVISION HISTORY ~ (REVISE THIS NARRATIVE IF NECESSARY)
c DATE PROGRAMMER ~ =====CONTACT/ACTION/REMARKS=====
C 7-20-85 J, KEITH MCELVEEN (B03)654-3375/SYSTEM DESIGN/PROGRAM
c 7-22-85 JKH (803)456-3375/REVISED NARRATION
C 5-07-86 FRS INCREASED ARRAY SIZE
c - .
CRRRRERRR RO RO OO RO RO XK K

149

FORTRAN IV vo2,5-2 Thuy 08-Mau-846 13128144 PAGE 002

c
0002 BYTE INPUTsFILNAM(15)sNAMFIL(?)sARRAY(8000)s
1 IBUFF(512),ARRAY1(8000)
0003 LOGICALX1 LERROR
0004 REAL¥S FILE
0005 COMMON/INSRT/IsJsKsLsARRAY1yARRAY »LNUM
C
0006 CALL SCOPY(’DY1 CYR’ sFILNAM)
0007 DATA FILNAM(13) 700/
0008 DATA NAMFIL(7) 700/
c
0009 Wi=7
0010 RT=5
C
0011 10 CONTINUE
C
0012 WRITE (WT,100)

0013 100 FORMAT (///3s' Input FILE NAME of rrodram to RESEQUENCE.’,
1 /v’ To EXIT» press RETURN> ‘%)

C
0014 READ (RT+105) (NAMFIL(I)»I=1,4)
0015 105 FORMAT (A1)
C
0014 IF (NAMFIL(1).EQ.’ ‘) RETURN
c
0018 120 CONTINUE
0019 CALL INSERT(NAMFILsFILNAM14:6)
C .
0020 CALL IRADSO(12,FILNAMSFILE)
c
0021 WRITE (WT»170) (FILNAM(I)»I=1+12)
0022 170 FORMAT{’ Dickette mrodram name: ‘»12A1://)
c
C OPEN FILE AND READ
C
0023 ICHAN=IGETC ()
0024 IF (ICHAN.LT.0) STOF °NO CHANNEL AVAILABLE’
0024 IERROR=IFETCH(FILE)
0027 IF (IERRDR.NE.O) STOP ’BALl FETCH’
0029 IERROR=LOOKUP(ICHAN/FILE)
0030 IF (IERROR.EQ.-2) GOTO 450
0032 IF (IERROR.LT.0.AND.IERROR.NE.-2) STOF ‘RAD LOOKUP’
c
0034 IBLOCK=0
0035 INDEX=1
C
0036 130 CONTINUE
c
e bl L C L L L Lt READ DATA
0037 IERROR=IREADW(254,IRUFF» IRLOCKs ICHAN)
0038 IF (IERROR.LT.~1) STOF ‘BAD READ”
0040 IF (IERROR.EQ.~1) GOTO 140
0042 Do 135y I=1,512

150

FORTRAN IV Vv02,5-2 Thu 08-Mag-86 13:28:44 PAGE 003

0043 . ARRAY(INDEX)=IBUFF(I)
0044 INDEX=INDEX+1
c
0045 IF (INDEX.GE.8000) GOTO 2000
€
0047 135 CONTINUE
0048 IBLOCK=IBLOCK+1
0049 GOTO0 130
0050 140 CONTINUE
c _______________________________
0051 CALL ICLOSE(ICHAN)
0052 CALL IFREECC(ICHAN)
C
0053 I=1
0054 J=1
00359 LNUM=0
c
C CHECK FOR N ON FIRST LINE OF FROGRAM
c
0056 L=0
0057 IF(ARRAY(1).NE.*116) GOTO 900
0059 CALL INSRT
0040 J=J45
0061 I=I+K-1
c
c SET FIRST TIME INDICATOR(L) TO 1
c
0062 L=1
C .
C ~ BEGIN LOOP TO FIND ‘LF‘ FOLLOWED BY ‘N’
0063 700 J=J+t1
0064 I=1+1
0065 ’ IF (ARRAY(I).EQ.0) GOTO 800
C
0067 IF(ARRAY(I) . .EQ.,"012,AND,ARRAY(I+1).EQ."116) GOTO 710
0069 ARRAY1(J)=ARRAY(I) "
0070 GOTO 700
0071 710 CALL INSRT
0072 J=J+5
0073 I=I+K-1
0074 GOTD 700
0073 800 CONTINUE
1992303302200 32¢023023¢2202¢220¢000¢002¢82¢ 94 [LRg-1
c
C PUT ZERO AT END OF ARRAY
0076 ARRAY (J)=0
0077 ARRAY(J+1)=0
C
C CALCULATED NUMBER OF WORDS T0 OUTPUT
C
0078 J=J-1
0079 JI=J/72+41 '
P02 0000232220000 0800822030323 320800¢) 1.04:1-)
c QUTFUT TO DISK

151

FORTRAN IV V02.3-2 Thu 08-Mau-86 13128144 PAGE 004

C
0080 ICHAN=IGETC()
0081 IF (ICHAN.LT.0) STOP ‘N0 CHANNEL AVAILABLE’
0083 IERROR=IFETCH(FILE)
0084 IF (IERROR.NE.O) STOP ‘ BAD FETCH’
0086 IERROR=LOOKUF (ICHAN,FILE)
0087 IF (IERROR.LT.0) STOP ° BAD LOOKUP’
c
0089 IERROR=IWRITHW(JJsARRAY1+0s ICHAN)
CREKKERAKEKARKKKKRXKKRKKKRKKKKKEXKKXKXKXKRATHAYBS
0090 CALL ICLOSE(ICHAN)
0091 CALL IFREEC(ICHAN)
c
0092 G070 920

0093 900 WRITE(WT,910) . .
0094 910 FORMAT(//»’ FIRST CHARACTER IN FILE TO BE RESEQUENCED
1 IS NOT AN °N*,’s/»’ CHECK FILE LISTING.,”)

c
0095 920 CONTINUE
0096 WRITE(WT,»930)
0097 930 FORMAT(//»’ Press RETURN to continue> ‘1%)
0098 READ (RT»904) INPUT
0099 904 FORMAT(I4)
0100 RETURN
C
0101 450 CALL ICLOSE(ICHAN)
0102 CALL IFREEC(ICHAN)
0103 WRITE(WT,45%)
0104 455 FORMAT(//»' FILE NOT FOUND. FRESS "RETURN® TO CONTINUE> ‘%)
0105 READ(RT»460) INPUT
0106 4460 FORMAT(AL)
0107 6070 10
c
0108 2000 CONTINUE
c
» FROGRAM TOD LARGE ERROR HANDLING
c
0109 CALL ICLOSE(ICHAN)
0110 CALL IFREEC(ICHAN)
0111 WRITE(WT»2010) NAMFIL
0112 2010 FORMAT(’ *9/+’ PROGRAM ’s14A1s’ TDO LARGE TO RESEQUENCE’,//»
1 * PRESS *RETURN" TO CONTINUE> ‘+$)
0113 READ (RT»460) INPUT
c
0114 END

152

FORTRAN IV Storade Mar for Prodram Unit RESER

Local Variablesy PSECT $DATAy Size

Name Ture Offset Nzme Tyre
FILE Rx8 001034 IBLOCK Ix2

IERROR IxXx2 001060 INDEX Ix2

JJ Ix2 001044 LERROR Lx1

WuT R%x4 001044

COMMON Block /INSRT /» Size = 037212

= 0011

Offse

41 «

t

0010462

00106

4

001035

Name Ture Offset Name Ture Offset

I Ix2 000000 J 1x2 000002

L Ix2 000004 ARRAY1 Lx1 000010
LNUM Ix2 037210

Local and COMMON Arraus:

Name Ture Section Offset --~---- Size~~—-~
ARRAY Lxi INSRT 0173510 017300 (4000.)
ARRAY1 Lxki INSRT 000010 017500 (4000.)
FILNAM LX1 $DATA 000000 000017 (8.)
IRUFF Lxi $DATA 000026 001000 (256,)
NAMFIL Lx1 $DATA 000017 000007 (4,)

305, words)

Name Tyre
ICHAN Ix2
INFUT Lx1
RT Rx4

(BOOS: words)

Name Ture
K Ix2
ARRAY Lx1

Dimensions
(8000)
(8000)
(13)

(512)

(7)

Offset

001056
001034
001052

Offset
000004
017510

Subroutinesy Functionss Statement and Frocessor-Defined Functions?

Name Tyre Name Tyre Name
ICLDSE Ix%2 IFETCH 1Ix2 IFREEC
INSRT %2 IRADSO Ix2 IREADYW
SCOPY R%x4

Tupe
Ix2
Ix2

Name
IGETC
IWRITYW

153

Ture Name

Tyre

I¥2 INSERT 1Ix2
I¥2 LOOKUP Ix2

0001

0002
0003

0004

0003

0006
0007
0009
0011

0012

0013
0014
0016
0017
0018

0019
0020
0021
0022

0023
0024

FORTRAN IV

vo2,5-2 Thu 08-May-86 133129155 PAGE 001

(923232820292 220003 03300220323 35020 322022 000¢0883222800023273323223¢088049%:4

g MODULE NAME!

‘ SUBROUTINE INSRT

g TO INSERT NEW RESEQUENCED LINE NUMBERS

g CALLED RY: RESER

g CALLS TO: NONE

g REVISION HISTORY?

g -DATE :

C 7-22-85 Jo. KEITH MCELVEEN ROUTINE WRITTEN
g****X#*X**X**#X***X******#*X#X**#***X**X*t***********X#X*X**X**X**X**
C

COHHDN/INSRT/IvaKvL:ARRﬁYl;ARRAY:LNUH
BYTE ARRAY1(8000)sARRAY(8000)sIASC(10)

DATA IASC /°060+°061,°062+°0639°0641°05651°0665°067»
1 '070+"071/

LNUM=LNUM+1

ARRAY1{J)=ARRAY(I)
IF(L.EQ.0) J4=0
IF(L.EQ.0) I=0
ARRAY1(J+1)=ARRAY(I+1)

K=1

800 K=K+1
IF(ARRAY(I+K).GE,"060,AND.ARRAY(I+K).LE."071) GOTO 800
I1=INT(LNUN/100.)
I2=-1%I1x10+INT(LNUM/10.)
I3=~1%(I1%1004I2%10)+LNUN

ARRAY1(J+2)=TASC(I1+1)
ARRAY1(J+3)=TASC(I2+1)
ARRAY1(J+4)=TASC(I3+1)
ARRAY1(J+5)="040

RETURN
END

154

FORTRAN IV Storade Mar for Frodram Unit INSRT

Local Variabless PSECT $DATAr Size = 000031 (13, words)

Name Ture O0Offset Name Ture ODOffset ~ Nanme Ture Offset
I1 I1%2 000012 12 Ix2 000014 I3 Ix2 000014

COMMON Block /INSRT /» Size = 037212 (8005. words)

Name Ture O0Offset Name Tupe OQffset Name Ture Offset
I Ix2 000000 J Ix2 000002 K I%2 000004
L Ix2 000006 ARRAY! Lx1 000010 ARRAY Lkt 017510

LNUM Ix2 037210

Local and COMMON Arraus:

Name Type Section Offset ------ Size--~-- Rimensioans
ARRAY L¥1 INSRY 017310 017500 ¢ 4000.) (8000)
ARRAY1 Lx1 INSRT 000010 017500 (4000,) (8000)
IASC Lkl $DATA 000000 000012 (3.) (10)

Subroutines, Functionsy Statement and Frocessor-Defined Functions:

Name Ture Name Ture Name Ture Name Ture Name Tyre
INT Ix2

155

FORTRAN IV v02,5-2 Thu 08-Mau-86 13:30:23 FAGE 001

CRRXRXRAXRRXRERR KKK RRRRR R KRR RRORR KRR XK E XX KRR RX KRR KR
C
C MODULE NAME:

0001 SUBROUTINE MESAGE

PURPOSE?

THIS ROUTINE ACCEFTS A MESSAGE FROM COMPUTER KEYBOARD
AND TRANSMITS TO ROROT FOR DISFLAY ON CONSOLE

INFUT? ACCEPTS MESSAGE FROM MINC KEYBOARD.

PROCESSING: SETS UF MESSAGE IN ARRAY ANIl HANDLES
HANDSHAKING AND TRANSHISSION OF MESSAGE.

c

c

C

c

c

C

c

c

C

C

C . .

c DUTFUT! : TRANSMITS MESSAGE TO RORDT WHERE IT IS

c DISPLAYED ON ROBOT CONSOLE,

C

C CALLED BY: CYRO2

C

c CALLS TO? GETLINs SEND

c : ,

C SPECIAL INTERFACE RERUIREMENTS? USES MINC DIGITAL I/0 MODULEE.
c A

C REVISION HISTORY (REVISE THIS NARRATIVE IF MECESSARY:

c DATE FROGRAMMER =====CONTACT/ACTION/REMARKS===x==
C 4-24-84 FRED R. SIASs JR. (BO3)-656-3375/8YSTEH DESIGN/FROGRAH
C 6-04-83 FRED R, SIAS: JR. /REVISED NARRATION

c
¢

FRRKKKKKKIRELKAKKKERKKKEE KKK KKK KKK KKK KKK KKk ko

156

FORTRAN IV v02.5-2 Thu ¢8-May-8& 13130:23 PFAGE 002

- C
0002 BYTE STRING(254)
0003 INTEGER*2 IDATA(237)sRT+WTsINPUT
0004 LOGICALX1 PROMT(16)
€
0005 DATA FROMT //I7s'N'2'F/U’»'T " 71U
1 "Er 'S /Sy Ay B E e 00/
0006 RT=3
0007 WT=7
C :
0008 IDATA(2)=1
C
0009 IDATA(3)=133
c
c
0010 CALL GTLIN(STRING,PROMT)
C
0011 LENGTH=LEN(STRING)
c
0012 ILEN=LENGTH+3
0013 D0 100 I=4,ILEN
0014 IDATA(I)=STRING(I-3)
0015 100 CONTINUE
0014 IDATACL)=LENGTH+1
C
0017 CALL SEND(IERROR:ILEN,IDATA)
c.
0018 IF (IERROR.EQ.2) WRITE (WT-110)
0020 110 FORMAT(//»’ CHECKSUM ERROR. DATA MAY BE WRONG.’)
0021 IF (IERROR.EQ.1) WRITE (UT»120)

. 0023 120 FORMAT(//»’ TIMEOUT ERROR. ROBOT ['ID NOT RESFOND.”)
0024 WRITE (WT+130)
0025 130 FORMAT(/s’ TYPE "RETURN® TO CONTINUE: ‘s%)

0026 READ (RTs140) INPUT
0027 140 FORMAT(I4)
c
0028 RETURN
0029 END

157

FORTRAN IV Storade Mar for Frodram Unit MESAGE

Local Variablesy PSECT $DATAsy Size = 001442 (401, words)

Name Ture O0Offset Name Ture O0Offset Name Ture 0Offset
I Ix2 001434 IERROR Ix2 001440 ILEN 112 001434
INPUT IX%2 001430 LENGTH Ix2 001432 RT Ix2 001424
WY Ix2 001424

Local and CDMMON Arraus:

Name Tere Section Offset ------ Size----- Dimensions
_ IDATA Ix2 $DATA 000374 001002 (257,) (257)

PROMT Lx1 $DATA 001400 000020 ¢ 8.,) (16)

STRING Lx1 $DATA 000000 Q003726 (127.) (2%54)

Subroutiness Functionsy Statement and Frocessor-Defined Functions:

Name Ture Name Ture Name Ture Name Ture Name Ture
GTLIN R¥4 LEN I%2 SEND Rx4

158

FORTRAN IV

0001

C
C

C
C
C
c
C
C
C
c
C
c
c
C
C
C
C
C
c
C
C
C
c
C
c
c
C
C
c
C
c
c
C
C
c
C
C
C
c
C

Vo2,5-2 Thu 08-Mau-8¢4 13:31:07 FAGE 001

(9922322020020 200002002220 000232 220080 0000¢2000302323 828020200028 ¢020223332383303¢:

MODULE NAME:
SUBROUTINE POSIT

PURFOSE:

THIS ROUTINE REQUESTS THE CURRENT ROEOT FOSITIOM AND
AND DISFLAYS ON MINC CRT.

INPUT? NONE

PROCESSING:
THE ROUTINE TRANSMITS A REQUEST FOR ROROT FDSITIONS
(TYPE CODE 132) WITH THE SINGI.E BYTE MESSAGE ZERO (0) THAT
INDICATES THAT ONLY ONE RESPONSE FER REQUEST IS DESIRELD.
THEN THE ROUTINE WAITS FOR A RESPONSE FROM THE ROROT WHICH
SHOULD INCLUDE THE TYPE CODE 4 FOLLOWED BY EIGHTEEN (18)
BYTES 0OF BRINARY DATA THAT CONVEY NINE CURRENT ROROT FOSITINNE.

EACH FOSITION CONSISTS OF TWD SEQUENTIAL BYTES, LOW-ORDER
BYTE FIRST FOLLOWEDR BY THE HIGH-ORDER ERYTE.

QUTFUT: DISPLAYS CURRENT ROROT FOSITION
CALLED RY: CYRO2
CALLS TO!

SEND (IERRORsILEN»IDATA)

RECEVE(IERRORs ILENs ICSUMs IDATA)

SPECIAL INTERFACE REQUIREMENTS! USES MINC DIGITAL I/0 MODULES.
REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE FROGRAMMER =====[ONTACT/ACTION/REMARKS====x=
6-26-84 FRED R, SIAS: JR. (B03)-4856-3375/8YSTEM DESIGN
10-29-84 FRED R. SIAS:s JR. /REV, FOSITION INTEGER TO REAL
46-4-85 FRED R. SIAS» JR. /REVISED MNARRATION

b33 e Pt PP et e et s e PPttt ottt t e bt R et ettt e e svace e

159

FORTRAN IV vo2,3-2 Thuy 08-May-86 13131107 * PAGE 002

€

0002 RYTE STRING(234)yINFUT

0003 : REALX4 IXDATA*IYDATA+IZDATAsICXFOSsICYPOSsIDXFOSIDYPOSsDATA

0004 INTEGERX2 IDATA(257)

0005 LOGICALX1 FROMT(16)
C

0004 RT=35

0007 Wr=7
c
C LENGTH OF MESSAGE

0008 IDATA(1)=2
c
c SETS SEQUENCE NO, TO ZERO

0009 IPATA(Z)=0
c
c SETS TYFE CQUE

0010 IDATA(I)=132
C
c SETS RATE TO ONCE FER REQUEST

0011 IDATA(4)=0
c
C NO OF BYTES TO TRANSMIT IN SEND

0012 _ ILEN=4

- 0013 CALL SEND(IERROR»ILEMIDATA)
c

0014 IF (IERROR.EQ.0) GOTO S
c .

0016 WRITE (WTs2) IERROR ‘

0017 2 FORMAT(’ ERROR CODE’»Id4,’ RECEIVED FROM SUEE., SEND.’)

0018 5 CONTINUE
C
C NOW WAIT FOR MESSAGE TO COME EACK WITH INFO
c

0019 CALL RECEVE(IERROR,»ILEMNsICSUM,IDATA)
C

0020 IF (IERROR.EG,2) WRITE (WT:10)

0022 10 FORMAT(’ CHECKSUM ERROR., DATA MAY BE WRONG!)
C
C WRITE (WT»12)
ci2 FORMAT(’ FRESS RETURN TO CONTINUE: ’+%)
C READ (RT»210) INFUT
c
C SHOULD BE MESSAGE TYFE CODE 4
c

0023 IF (IDATA(3).NE.4) WRITE (WT,135) IDATA(3)

0025 15 FORMAT(’ ILLEGAL TYPE CODE ‘+1I2s° RECEIVED")
C

0026 IXDATA=IDATA(S)

0027 DATA=IDATA(4)

0028 IXDATA=(IXDATA%2546.+DATA)Y/ 64,
C

0029 WRITE (WT+100) IXDATA

0030 100 FORMAT(’ X-3xis rosition is ‘yF6.,2y’ inches.’)

160

FORTRAN IV vo2,5-2 Thu 08-Mau-86 13131:07 FAGE 003

0031 IYDATA=IDATA(?)

0032 IYDATA=CIYDATAX256+1IDATA(S)) /64,

0033 WRITE (WTs110) IYRATA

0034 110 FORMAT(’ Y-axis position is ‘yFé6.2:° inches.’)
c

0035 IZDATA=IDATA(?)

0034 IZDATA=(IZDATAX256+IDATA(B) /464,

0037 WRITE (WT,120) IZDATA

0038 120 FORMAT(’ Z-axis rosition is "yF&42y7 inches.’)
c

0039 ICXFOS=IDATA(11)

0040 ICXFOS=(ICXFOSX254+IDATA(10)) /10,

0041 WRITE (WT»130) ICXFOS

0042 1320 FORMAT(’ A~zxis is ‘+Fé6.2y’ dedrees.’)

0043 TICYPOS=IDATA(LS)

0044 ICYPOS=(ICYFOSXx255+IDATA(12))/10,

00435 WRITE (WT,140) ICYFOS

0044 140 FORMAT(’ C-axis is “s1F6,2y’ dedgrees,”’)
C
C

0047 IDXPOS=IDATA(1S)

0048 IDXPOS=(IDXFOS¥254+10ATA{14))/10,

0049 WRITE (WT»150) IDXFPOS

0050 150 FORMAT(’ C rositionerr X-3uis is ‘»F6.2y’ dedrees.’)
C

0051 IDYPOS=IDATA(17)

0052 IDYPOS=(IDYFOSX254+IDATA(16)) /10,

0053 WRITE (WT»160) IDYFOS

0054 140 FORMAT(’ C rositionersy Y-axis is ‘sF6.2y‘ dedrees,’)
c
C

0035 CIDXPOS=IDATA(LI?)

0056 IDXPOS=C(IDXFOSX2544IDATA(18))/10,

0057 WRITE (WT,170) IDXPOS

0058 170 FORMAT(’ D rositionerr X-3xis is ‘s1Fé.2y’ desgrees.’)
C

0059 IDYFOS=IDATA(21)

00460 IDYPOS=CIDYPOSX254+IDATA(20))/10,

0041 WRITE (WT»180) IDYPOS

0062 180 FORMAT(’ D positionery Y-axis is ‘»F6.2»' dedrees,’)
c

0043 WRITE (WT»200)

00464 200 FORMAT(//s’ CARRIAGE RETURN TO CONTINUE: “+%)

0065 READ (RTs210) INPUT

0066 210 FORMAT(I4)

0067 RETURN

0068 END

161

FORTRAN IV Storade Mar for Frodram Unit FOSIT .

Local Variablessy PSECT $DATAy Size = 001534 (430, words)

Name Ture Offset Name Ture 0Offset Name Tere O0Offset

DATA R¥4 001436 ICSUM Ix2 001476 ICXFOS R¥4 00143¢&
ICYFDS R¥4 001442 IDXPOS R¥4 001444 IDYFOS R¥4 001452
IERROR IX2 001474 ILEN I¥2 001472 INFUT L¥1 001420
IXDATA Rk4 001422 IYDATA RX¥4 001426 IZDATA R¥4 001432
RT R¥4 001462 Wt Rx4 001466

Local and COMMON Arraus:

Name Tyre Section Offset -~---- Cize-—--—- Iimensions
IDATA Ix2 $DATA 000374 001002 (257.) (257)
PROMT Lxi $DATA 001400 000020 ¢ 8.1 (14)
STRING Lx1 $DATA 000000 0003756 (127.) (234)

Subroutinesr Functionss Statement and Frocescsor-Defined Functions:

Name Ture Name Ture Name Ture Name Ture Name Turpe
RECEVE Rx4 SEND RXx4

162

FORTRAN IV Voz2.5-2 Thu 08-M2u-84 13132110 FAGE 001

0001

CRRRRXRXREXKRERRIIRE I RR KRR XAERRRIEEEIEA XL XL LA IA R
c
C HODULE NAME:
SUBROUTINE FARS
PURFOSE ¢

THIS ROUTINE REQUESTS THE CURRENT ROROT FARAMETERS AND
AND DISFLAYS THEM ON MINC CKRT.
INFUT! NONE

FROCESSING: SETS UF REQUEST MESSAGE AND TRANSMITS.
- SCALES DATA RETURNED AND FORNMATS.

OUTFUT: DISPLAYS FARAMETERS OM THé MINC CRT,

CALLED BY: CYRO1

CALLS TO! SENDy RECEVE

SPECIAL INTERFACE REQUIREMENTS: USES MINC DIGITAL I/D MODULES.
REVISION HISTORY (REVISE THIS NéRRAfIUE IF NECESSARY)
DATE FROGRAMMER © =====CONTACT/ACTION/REMARKE=====

6-27-84 FRED R. SIAS» JR. (B03)-656-3375/NESIGN ANIY FEOGRAN

C
c
C
c
c
C
c
c
c
c
c
C
C
c
C
C
C
C
c
C
c
C
c
c 6-04-85 FRED R, SIASs JR, /REVISED NARRATION
c

C

KXRRKERRRRORRRR RO R RO KRR ORI R R R R OOk O ook

163

FORTRAN IV

0002
0003
0004
0005

0006
0007

0008

0009

0010

0011

0012
0013

0014

0015
0017

0018
0020

0021
0022
0023
0024
0025
0024
0027
0028
0029
0030

0031
0032

0033
0034
0035

0036

c

30

o0

101

100

110

" V02,5-2 Thuy 08-Mas-86 13132110

BYTE STRING(254)

INTEGERX2 IDATA(237)

REALX4 IXDATAsIYDATA»IZDATA,ICXFOS
LOGICALX1 FPROMT(16)

SETS SEQUENCE NO. TO ZERO
IDATA(2)=0

REQUEST CODE FOR SYSTEM FARAMETERS
IDATA(3)=138

IDATA(L)=2
IDATA(4)=0

ILEN=4
CALL SEND(IERROR»ILEM»IDATA)

FAGE 002

NOW WAIT FOR MESSAGE TO COME EBACK WITH INFOQ

CALL RECEVE(IERRORsILEN,ICSUMsIDATA)

IF (IERROR.EQ.2) WRITE (WT,10)

FORMAT(’ CHECKSUM ERROR. DATA MAY BE WRONG!’)

SHOULD BE MESSAGE TYFE CODE 7

IF (IDATA(3).NE.7) WRITE (WT+15) IDATACZ)

FORMAT(’ ILLEGAL TYPE CODE ’,I2,‘’ RECEIVED’)

IXDATA=IDATA(S)
IXDATA=(IXDATAX256+IDATA(4)) /64,
WRITE (WT»101)

FORMAT (4HOXXX,//)

WRITE (WT»100) IXDATA

FORMAT(’ Torch feed rate is ‘sF6.2y7

IYDATA=IDATA(?7)
IYDATA=(IYDATAX256+INATA(S)) /64,
WRITE (WT+110) IYDATA

FORMAT(’ Wire feed rate is “yFE.2y 7

IZDATA=IDATA(?)
IZDATA=IZDATAX2546+IDATA(S)

ONE EIT EQUALS .1 PERCENT
IZDATA=IZNATA/10,

WRITE (WT+120) IZDATA

FORMAT(’ Weld level is "eF&.2 7

ICXPOS=IDATA(11)
164

inches repr minute:.”)

inches rer minute.,’}

rercent.’)

FORTRAN IV

0037

0038
0039
0040

0041
0043
0045
0047

0049
0030
0051
0032

0033
0054
0035
0056
00357
0058

130

Vo2,5-2 Thu 08-Mau-84 13132:10

ICXPOS=ICXPOS%*23548+IDATA(10)

ONE BIT EQUALS .1 FERCENT

ICXPOS=ICXPOS/10,

WRITE (WT»130) ICXPOS

FORMAT(’ AVC/ACC Setroint Level ‘sFé.2:’ rercent.’)

IF (IDATA(12).EQ.0) WRITE (WT»140)
IF (IDATA(12).EQ.1) WRITE (WT»1350)
IF (IDATA(12).EQ.2) WRITE (WT,160)
IF (IDATA(12).GT.2) WRITE (WT»170) IDATA(12)

FORMAT(’ No Oscillation has occured,’)

FORMAT(’ Left Oscillztion hzs occured.’)

FORMAT(’ Right Oscillation has occured.’)

FORMAT(’ ILLEGAL OSCILLATION CORE ‘+I8:7 RECEIVED.)

WRITE (WT»200) :
FORMAT(//s»’ CARRIAGE RETURN TO CONTINUE> '»$%)
READ (RT+210) INFUT

FORMAT(14)

RETURN

END

165

FORTRAN IV Storade Mar for Frodram Unit FARS

Local Varisbless PSECT $DATAy Size = 001522 (423, words)

Name Tyre O0ffset Name Ture 0Offcet Nzme Ture OQOffset,
ICSUM Ix2 001454 ICXPNS Rx%4 001434 IERROR Ix2 001452
ILEN Ix2 001450 INFUT Ix2 0014356 IXDATA R%4 001420
IYDATA R¥4 001424 IZDATA RX4 001430 RT R%4 001440
WY Rx4 001444

Local and COMMON Arraus:

Name Ture Section Offset ——----- Size-~---- limensions
IDATA IXx2 $DATA 000376 001002 (257.) (297)
PROMT Lx1 $DATA 001400 000020 ¢ 8.) (16)
STRING Lx1 $DATA 000000 0003746 (127.) (254)

Subroutiness Functionss» Statement and Frocessor-Defined Functions:

Name Ture Name Tupe Name Ture Name Tupe Name Tyre
RECEVE R%4 SEND Rx4

166

FORTRAN IV

0001

0002
0003

0004
0005

0006
0007

0008
0009

0010
0012
0012

vo2,5-2 Thu 0B-Ma3u-84 13133100 FAGE 001

(12922322002 0000322003028 833000003332 88203 000023223825 2822233 0002280220383 3332 84041

C
C

OO0 OO0 000000

100

B A N

MODULE NAME!
SUBRQUTINE EDITOR

FPURFPOSE T0 EBfT NUMERICAL CONTROL PROGRAMS ON DIBKETTE
INPUT? FILES FROM DISKETTE AND EDITING COMMANDS FROM CRT
PROCESSING: THIS ROUTINE MERELY TRANSFERS CONTROL TO THE OFERATING
SYSTEM SO THAT THE SYSTEM EDITOR MAY BE USED TO
MODIFY FILES. WHEN EDITING IS COMFLETE CYROZ MUEST
AGAIN BE CALL FROM THE SYSTEM FRONPT.
DUTFUT? FILES RETURNED TO DISKETTE
CALLED BY! CYRO2

CALLS TO: RETURNS TO RT-11

SPECIAL INTERFACE REQUIREMENTS! NONE

REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
_ DATE FROGRAMMER =====CONTACT/ACTION/REMARKS====x=
11-JUL-85 FRED R. SIASs JR, : (B03)-4656-3375/MARRATION

3-SEP-85 FRED R. SIAS,» JR. MERELY RETURMS TO SYSTEM FOR EDITOR

BP0 2 2 2002 Pt PPttt et st eo st et sl b ot oo ttecteessittesiss sl

INTEGER RT:WT
INTEGERX2 INPUT

WT
RT

7

5

WRITE (WT»100) . :
FORMAT(’ This c21l1 merely returns you to the orerating zusten’'»/»
Y from which sou may czll the standard editor, After editing’' /vy
‘ your numerical control rrodrams 3d2in execute CYRD2 to'-
‘ continue., y//»
/ D0 YOU WISH TO EXIT TO THE COPERATING SYSTEM? (Y OR N)> 79%)

READ (RT,200) INPUT
FORMAT(A2)

IF (INFUT.EQ.’Y’) STOF

RETURN
END

167

FORTRAN IV Storade Mar for Frodram Unit EDITOR
Local Veriabless .PSECT $DATAs Size = 000006 (3+ words)

Nane Ture Offset Name Ture Offset Name Ture 0Offset
INFUT Ix2 000004 RT Ix2 000000 ur Ix2 000002

168

FORTRAN IV v02,5-2 Thu 08~Mau-B86 13133126 FAGE 001

0001

0002

0003

0004
0005

0006
0007

0008
0009
0010
0012

0013
0014
0015

RSP 00 3220000 0000280220200 0 000ttt Rt oottt itetot s setetssosstsetssestss:
C
C MODULE NANMES

SUBROUTINE PARK

PURFOSE MENU SELECTION TO ‘FARK® THE PROGRAM WHERE
IT WILL IGNORE ALL SFURIOUS MESSAGES FROM ROROT.

INFUT ANY KEY PRESS TO EXJT EMBLESS LOOF.
PROCESSING: EXECUTES RECEVE CONTINUQUSLY IN AN ENDLESS LOOF.
HANDLES ALL COMMUNICATIONS HANDSHAKING.
EXITS WHEN ANY KEY PRESSED.
QuTPUT? MESSAGES TO CRT.
CALLED RY! CYRO2

CALLS TO3 RECEVE

SPECIAL INTERFACE REQUIREMENTS! NONE
REVISION HISTORY (REVISE THIS NARRATIVE IF NECESSARY)
DATE FROGRAMMER =====CONTACT/ACTION/REHARKS=====

?-6-85 ' FRED R, SIAS, JR. (B03)-656-3375/FROGRAMKED

XX*X#*#*X****X#X*X*X*###*##X**K#XK***K***X*X#***X*X#X**#X#X****X*******X&####

OGO 0000000000000 00

INTEGER RTsWT

€

INTEGERX2 INFPUT
c

WT=7

RT=5
C

. WRITE (WT,1003)
1005 FORMAT(’ ‘y/y’ Frodram is now "Farked"' in an endless loor’s/»
: that will ignore a3ll messages from Robat.'s//»
2 PRESS ANY KEY TO RETURN TO MENU.> “+%)

-

2000 CONTINUE
CALL RECEVE(IERROR,ILEN,ICSUM,IDATA)
IF (IERROR.EG.1) GOTO 2000

: GOTD 2000

C

92000 CONTINUE
RETURN
END

169

FORTRAN IV Storade Mar for Program Unit FARK

Local Variablesy PSECT $DATAy Size = 000016 ¢ 7+ words)

Name Ture Offset Name Tuyre O0Offset Name Ture (Offset
ICSUM Ix2 000012 IDATA IX%2 000014 IERROR Ix2 000005
ILEN Ix2 000010 INFUT Ix2 000004 RT Ix2 000000
T Ix2 000002

Subroutinesy Functionss Statement 2nd Processor-Nefined Functions!

Name Ture Name Ture Name Ture Name Ture Name Type
RECEVE Rx4

170

FORTRAN IV Vo2.5-2 Thu 08-Ma=-86 13133155 FAGE 001

0001

0002
0003

0004
0003

0006
0007

0008
0009

0010
0012
0013

(3220233322230 22020 8023020803 033328230220200000 830283 232¢203283222000 000350229321
c
c MODULE NAME:

SUBROUTINE INTER

PURPOSE ! THIS MODULE HANDLES COMMUNICATIONS BETWEEN THE
MINC AND THE INTERGRAFH SYSTEMN.
THE MAIN PURPOSE IS TO DOWN LOAD ROBOT N/C FROGRAMS
THAT HAYE BEEN CREATED ON THE INTERGRAFH SYSTEM
AND' STORE THEM ON THE MINC DISKETTE.

INFUT? INTERACTIVE COMTROL FROM THE KEYEOARD, AND
PROGRAM DOWNLOADING FROM INTERGRAFH, INCLULING
HANDSHAKING .

PROCESSING: FROGRAM VERIFICATION,.

CUTFUT? STDRES DOWNLOADED FROGRAM ON DKIDISKETTE.

CALLED BY: CYRO2

CALLS TO! RETURNS 70 RT-11

SPECIAL INTERFACE REQUIREMENTS! . SERIAL COMMUNICATIONS FORT.
REVISION HISTORY (REVISE THIS NARRATIVE IF NECEESARY)

DATE FROGRAMMER =====CONTACT/ACTION/REMARKS=====
9-31-85. FRED R. SIAS» JR. (B0Z)-456-3375/8SYSTEM DESIGN

1-10-86 DAIVD A. STILES FINSHED SURROUTINE RETURNS T8O RT-11

#***X******X*X***#X**#**#**X****#******#*X***#***X*******X*****X*****X***X**X

OO0 00000 MO0 OO0

INTEGER RTsHWT

c
INTEGERX2 INFUT
c
WT=7
RT=5
c

URITE (WT+100)
100 FORMAT(’ This call merelw returns zwou to the orerating custem’s/:
‘ from which wou m3y run vtcom.rel to do the downloadind of :/»
* gour numerical control programs adzin execute CYRD2 to’.»
‘ continue.,’s//>»
’ DO YOU WISH TO EXIT TD THE OFERATING SYSTEM? (Y DR N)> '»$)

B NS I

READ (RT,200) INFUT
200 FORMAT(A2)

[

IF (INPUT.EQ,’Y’) STOF

RETURN :
END

171

FORTRAN IV Storade Mar for Frodgram Unit INTER

Local Variabless PSECT $DATAy Size = 000006 (3. words)

Name Ture O0Offset Name Tuere (ffset Nzme Ture
I%2

INFUT Ix2 000004 RT I¥2 000000 W

172

Offset
000002

