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STRUCTURAL ANALYSIS OF TURBINE BLADES USING UNIFIED CONSTITUTIVE MODELS 

SYNOPSIS Th is  paper assesses t h e  u t i l i t y  o f  advanced c o n s t i t u t i v e  models and s t r u c t u r a l  ana lys is  
methods i n  p r e d i c t i n g  t h e  c y c l i c  l i f e  o f  an a i r -cooled t u r b i n e  blade. F i v e  s t r u c t u r a l  ana lys is  
methods were exerc ised i n  c a l c u l a t i n g  t h e  c y c l i c  s t r e s s - s t r a i n  response a t  t h e  a i r f o i l  c r i t i c a l  l oc -  
a t ion .  The methods s tud ied  were a c y c l i c  e l a s t i c  f i n i te -e lement  analys is ,  non l inear  f i n i te -e lement  
analyses based on c l a s s i c a l  i n e l a s t i c  models and t h e  u n i f i e d  models o f  Bodner and Walker, and a sim- 
p l i f i e d  i n e l a s t i c  procedure. These analyses were compared i n  terms o f  c m p u t i n q  t imes and of pre-  
d i c t e d  crack i n i t i a t i o n  l i v e s  us ing  t h e  Stra inranqe P a r t i t i o n i n q  method. 

1 INTRODUCTION 

Hot  sec t ion  components o f  gas t u r b i n e  engines 
are sub jec t  t o  severe thermomechanical loads 
dur ing  each miss ion cyc le.  I n e l a s t i c  deforma- 
t i o n  can be induced i n  l o c a l i z e d  reg ions  lead-  
i n g  t o  eventual  f a t i g u e  cracking. Assessment 
o f  d u r a b i l i t y  requ i res  reasonably accurate c a l -  
c u l a t i o n  o f  t h e  s t r u c t u r a l  response a t  t h e  c r i t -  
i c a l  l o c a t i o n  f o r  crack i n i t i a t i o n .  

I n  r e c e n t  years, non l inear  f i n i te -e lement  
computer codes have become a v a i l a b l e  f o r  ca lcu-  
l a t i n g  i n e l a s t i c  s t r u c t u r a l  response under 
c y c l i c  loading. The p l a s t i c i t y  computations i n  
these codes have been based on c l a s s i c a l  i nc re -  
mental theory  us ing  a hardening r u l e  t o  d e f i n e  
t h e  mot ion o f  t h e  y i e l d  sur face under cyc l ing ,  
a y i e l d  c r i t e r i o n  and a f l o w  r u l e .  General ly  t h e  
von Mises y i e l d  c r i t e r i o n  and t h e  n o r m a l i t y  f l o w  
r u l e  are used. Creep analyses a re  based on a 
separate c o n s t i t u t i v e  model t h a t  i s  n o t  d i r e c t l y  
coupled t o  t h e  p l a s t i c i t y  model . However, ana- 
l y t i c a l  s tud ies  o f  h o t  s e c t i o n  components such 
as t u r b i n e  blades (1) and combustor l i n e r s  ( 2 )  
have demonstrated t h a t  e x i s t i n g  non l inear  
f i n i te -e lement  computer codes based on c l a s s i c a l  
methods do n o t  always p r e d i c t  t h e  c y c l i c  
response o f  t h e  s t r u c t u r e  accura te ly  because of  
t h e  lack  o f  i n t e r a c t i o n  between t h e  p l a s t i c i t y  
and creep deformat ion response. 

Under t h e  Hot Sect ion Technology P r o j e c t  
(HOST), t h e  NASA Lewis Research Center has been 
sponsoring t h e  development o f  u n i f i e d  c o n s t i  tu -  
t i v e  m a t e r i a l  models and t h e i r  implementation 
i n  non l inear  f i n i te -e lement  computer codes f o r  

. t h e  s t r u c t u r a l  ana lys is  o f  h o t  s e c t i o n  compo- 
nents (3-6). The u n i f i e d  c o n s t i t u t i v e  t h e o r i e s  
a re  designed t o  encompass a l l  time-dependent 
and time-independent aspects o f  i n e l a s t i c i t y  
i n c l u d i n g  p l a s t i c i t y ,  creep, s t r e s s  r e l a x a t i o n ,  
and creep recovery. These t h e o r i e s  avoid t h e  
n o n i n t e r a c t i v e  sumnation o f  i n e l a s t i c  s t r a i n  
i n t o  p l a s t i c  and creep components and most o f  
them avoid s p e c i f y i n g  y i e l d  sur faces t o  p a r t i -  
t i o n  s t r e s s  space i n t o  e l a s t i c  and e l a s t i c -  
p l a s t i c  regions.  I n  e l i m i n a t i n g  these o v e r l y  
s i m p l i f i e d  assumptions o f  t h e  c l a s s i c a l  theory, 

u n i f i e d  models can more r e a l i s t i c a l l y  represen t  
t h e  behavior  o f  m a t e r i a l s  under c y c l i c  load ing  
c o n d i t i o n s  and h i g h  temperature environments. 

A major problem w i t h  nonl inear ,  f i n i t e -  
element computer codes i s  t h a t  they  a r e  gener- 
a l l y  t o o  c o s t l y  i n  computing t imes and resources 
t o  use i n  t h e  e a r l y  design stages f o r  engine h o t  
s e c t i o n  components. A program has been underway 
a t  Lewis t o  develop s i m p l i f i e d  and more econom- 
i c a l  procedures f o r  per forming non l inear  s t ruc -  
t u r a l  analyses. A s i m p l i f i e d  i n e l a s t i c  ana lys is  
method developed a t  Lewis i s  based on t h e  
assumption t h a t  t h e  i n e l a s t i c  reg ions  i n  t h e  
s t r u c t u r e  a r e  l o c a l  and constra ined b y  t h e  sur- 
rounding e l a s t i c  mate r ia l .  T h i s  i m p l i e s  t h a t  
t h e  t o t a l  s t r a i n  h i s t o r y  can be de f ined  b y  
e l a s t i c  analyses and can use e l a s t i c  f i n i t e  
element s o l u t i o n s  o r  l o c a l  s t r a i n  measurements 
as i n p u t  (7,E). Neuber-type c o r r e c t i o n s  have 
been incorporated i n  t h e  method t o  account f o r  
s t r a i n  r e d i s t r i b u t i o n  under app l ied  mechanical 
loading.  T h i s  procedure was implemented i n  a 
computer program t o  p r e d i c t  t h e  s t r e s s - s t r a i n  
h i s t o r y  a t  t h e  f a t i g u e  crack i n i t i a t i o n  l o c a t i o n  
o f  a thermomechanical ly cyc led  s t r u c t u r e  f rom 
e l a s t i c  i n p u t  data. C lass ica l  p l a s t i c i t y  models 
and creep c o n s t i t u t i v e  equations were incorpo-  
r a t e d  i n t o  t h e  procedure. Th is  s i m p l i f i e d  
i n e l a s t i c  ana lys is  has been exerc ised on a wide 
v a r i e t y  o f  problems i n c l u d i n g  m u l t i a x i a l  load- 
ings, nonisothermal condi t ions,  d i f f e r e n t  mate- 
r i a l s  and c o n s t i t u t i v e  models, and dwe l l  t imes 
a t  va r ious  p o i n t s  i n  t h e  cycles. Comparisons 
o f  t h e  r e s u l t s  o f  t h e  s i m p l i f i e d  analyses w i t h  
non l inear  f i n i te -e lement  s o l u t i o n s  f o r  these 
problems have shown reasonably good agreement. 

Over 30 methods f o r  p r e d i c t i n g  low-cycle 
f a t i g u e  l i f e  have been i d e n t i f i e d  i n  a recen t  
rev iew a r t i c l e  b y  H a l f o r d  (9) .  These methods 
d i f f e r  somewhat i n  t h e  s t r u c t u r a l  ana lys is  
parameters used f o r  l i f e  p red ic t ion .  Basic  
S t r u c t u r a l l m a t e r i a l  response in fo rmat ion  
r e q u i r e d  by va r ious  l i f e  p r e d i c t i o n  methods 
inc ludes  t h e  t o t a l  and i n e l a s t i c  s t r a i n  ranges. 
i n e l a s t i c  s t r a i n  ra te ,  p r o p o r t i o n  o f  t ime- 
dependent and t ime-i ndependent i n e l a s t i c  
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deformation, peak tens i l e  and mean stresses, 
and cycle frequency. 

The purpose o f  t h i s  study was t o  evaluate 
several s t ruc tura l  analysis methods o f  d i f f e r e n t  
leve ls  o f  sophist icat ion w i th  regard t o  t h e i r  
e f f e c t  on the l i f e  pred ic t ion  o f  a hot sect ion 
component. Analyt ical  methods selected f o r  
evaluation were (1) an e las t i c  f inite-element 
analysis, (2) a nonlinear f inite-element anal- 
ys i s  based on c lass ica l  theory, (3 )  nonlinear 
f inite-element analysis based on un i f i ed  theo- 
r i e s  and (4)  the simp1 i f  i ed  nonlinear procedure. 
The two un i f i ed  theories which were considered 
were those o f  Bodner and Walker (5,6). The 
evaluat ion po in ts  up the basic requirement o f  
c y c l i c  cons t i t u t i ve  models; t o  provide w i t h  
su f f i c ien t  accuracy, through t rac tab le  struc- 
t u r a l  analysis schemes, the per t inent  input t o  
1 i f e  pred ic t ion  methods. 

The s t ruc ture  under consideration was an 
a i r f o i l  o f  a generic air-cooled turb ine blade 
being studied f o r  use i n  the high pressure stage 
turb ine o f  a comnercial a i r c r a f t  engine. This 
a i r f o i l  was u t i l i z e d  f o r  a demonstration o f  a 
f inite-element analysis incorporating a Walker 
un i f i ed  model by P ra t t  and Whitney (6), under 
contract  t o  NASA as pa r t  o f  the HOST Program. 
A t yp i ca l  mission representative o f  advanced 
engines was used f o r  the heat t rans fer  and 
s t ruc tura l  analyses. Several c y c l i c  s t ruc tu ra l  
analyses o f  t h i s  a i r f o i l  problem were performed 
a t  Lewis on a CRAY-XMP computer using the MARC 
nonlinear f inite-element computer code (10). 
These analyses were conducted w i th  the un i f i ed  
cons t i t u t i ve  models o f  Bodner and Walker, as 
we l l  as w i t h  c lass ica l  i ne las t i c  methods. A 
s imp l i f i ed  i ne las t i c  analysis f o r  the  c r i t i c a l  
locat ion  was also performed a t  Lewis. Compari- 
sons were made o f  CPU (Central Processor Un i t )  
times and o f  calculated crack i n i t i a t i o n  l i v e s  
f o r  the  d i f f e r e n t  s t ruc tura l  analysis methods 
using the Total  S t ra in  version o f  the Strain- 
range Pa r t i t i on ing  (TS-SRP) l i f e  pred ic t ion  
method (11). 

2 ANALYTICAL PROCEDURE 

2.1 Problem descr ipt ion 

The turb ine blade under study i s  a P r a t t  and 
Whitney generic design f o r  use i n  the  high- 
pressure stage turbine o f  a comnercial a i r c ra f t  
engine. The a i r f o i l  i s  about 6 cm i n  span, 
2.5 cm i n  chord width and has a tip-to-hub 
radius r a t i o  o f  1.15. Mater ia l  propert ies f o r  
a cast  nickel-base superalloy, 81900 + Hf (5). 
were assumed f o r  the analyses. 

The three-dimensional f inite-element model 
created by P r a t t  and Whitney f o r  the  MARC anal- 
yses o f  the tu rb ine blade a i r f o i l  i s  shown i n  
Fig. 1. A t o t a l  o f  173 s o l i d  elements w i t h  
418 nodes and 1086 unsuppressed degrees o f  free- 
dom was used t o  model the  a i r f o i l  shel l .  This 
model included 24 twenty-node elements around 
the expected h igh s t r a i n  region o f  the leading 
edge and 149 eight-node elements f o r  the 
remainder o f  the  a i r f o i l .  Displacements were 
t i e d  a t  the interfaces o f  the two types o f  
elements t o  prevent separation around midside 
nodes. Boundary condit ions were applied t o  
constrain a l l  nodes a t  the base o f  the model t o  

l i e  on the base plane o f  the a i r f o i l .  Addi- 
t i o n a l  boundary condi t ions were applied t o  
prevent r i g i d  body motion. 

Figure 2 i l l u s t r a t e s  the f l i g h t  mission 
o r i g i n a l l y  selected by P ra t t  and Whitney and 
used f o r  these analyses. This type o f  cycle i s  
representat ive o f  a t ransat lan t ic  f l i g h t  f o r  an 
advanced comnercial a i r c ra f t  engine. High tran- 
s i e n t  thermal stresses and i ne las t i c  s t ra ins  are 
induced dur ing the engine takeoff, cl imb and 
descent par ts  o f  the cycle. Creep occurs during 
the maximum takeoff, cl imb aad cruise steady- 
s t a t e  hold times. On shutdown a t  the end o f  
each cycle, a uniform a i r f o i l  temperature o f  
429 'C and a ro ta t i ona l  speed o f  200 rpm were 
assumed. 

Metal temperatures were calculated from MARC 
t rans ient  and steady-state three-dimensional 
heat t rans fer  analyses. The input f o r  these 
heat t rans fer  analyses are propr ietary P ra t t  and 
Whitney information. The calculated metal- 
temperature, cycle-time p ro f i l es  f o r  the midspan 
leading. edge, t r a i l i n g  edge and cold spot loca- 
t i ons  are shown i n  Fig. 3. Figure 4 shows the 
temperature d i s t r i b u t i o n  a t  the maximum takeoff  
cond i t ion  where the highest temperatures 
occurred. 

2.2 F i n i t e  element analysis - Classical 
i n e l a s t i c  theory 

The MARC code was also used t o  perform the 
s t ruc tura l ,  as we l l  as heat t ransfer,  analyses 
f o r  the  a i r f o i l .  Temperature-dependent cyc l i c  
stress-strain and creep propert ies f o r  
81900 + Hf a l l o y  were used f o r  the analysis. 
P l a s t i c i t y  calculat ions were based on a kine- 
mat ic hardening r u l e  and the von Mises y i e l d  
c r i t e r i on ,  wh i le  creep was determined from a 
power law model i n  conjunction w i th  a time 
hardening ru le .  

The mission cycle was subdivided i n t o  81 
load-time increments. Structural  analyses were 
performed fo r  2 complete f l i g h t  cycles. Plas- 
t i c i t y  analyses were performed f o r  the t ransient 
par ts  o f  the  cycle and creep analyses during the 
steady-state maximum takeoff, maximum climb and 
c ru i se  hold times. 

2.3 F i n i t e  element analysis - Unif ied 
i n e l a s t i c  theory 

Most un i f i ed  models can be described by a set 
o f  cons t i t u t i ve  equations tha t  have the basic 
form 

Equation (1) i s  a f low law r e l a t i n q  the  
ine las  i c  s t r a i n  r a t e  and the stresses where 2 
and are dev ia tor ic  stress and i ne las t i c  
s t r a i n  r a t e  tensors. The tensor in terna l  va r i -  
able, 2, defines the kinematic o r  d i rec t iona l  
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hardening ( t h e  Bauschinger e f fec t )  and i s  f r e -  
quen t l y  r e f e r r e d  t o  as a back st ress.  K i s  a 
s c a l a r  i n t e r n a l  va r iab le ,  commonly c a l l e d  a drag 
s t ress ,  which de f ines  t h e  i s o t r o p i c  hardening. 
Temperature e f f e c t s  on t h e  i n e l a s t i c  s t r a i n  r a t e  
a re  g e n e r a l l y  taken i n t o  account by cons ider ing  
some o f  t h e  m a t e r i a l  constants o f  t h e  c o n s t i t u -  
t i v e  model t o  be temperature dependent. 
Equations ( 2 )  and ( 3 )  a re  evo lu t ionary  equations 
descr ib ing  t h e  growth laws f o r  t h e  i n t e r n a l  
va r iab les .  Most evo lu t ionary  equations f o r  t h e  
back stress-drag s t r e s s  t ype  o f  model i n c l u d e  
b o t h  hardenin and recovery terms where h l  
and h2 a r e  ?unctions descr ib ing  t h e  hardening, 
d i s  a dynamic recovery funct ion,  and r l  and 
r, are  s t a t i c  thermal recovery func t ions .  
~ { m o s t  a l l  back stress-drag t r e s s  models use f t h e  i n e l a s t i c  s t r a i n  ra te ,  Q ,  as t h e  harden- 
i n g  c r i t e r i o n .  About a dozen u n i f i e d  t h e o r i e s  
which have been proposed i n  t h e  l i t e r a t u r e  were 
considered i n  t h e  HOST program. D i f fe rences  
among t h e  models occurred p r i m a r i l y  i n  t h e  
func t iona l  r e l a t i o n s h i p s  used i n  t h e  c o n s t i t u -  
t i v e  equations. 

The major except ion t o  t h e  bas ic  form o f  
Eqs. (1) t o  (3 )  i s  t h e  Bodner model. The f l o w  
law f o r  t h i s  model i s  o f  t h e  fo rm 

where D and n a re  m a t e r i a l  constants w i t h  D 
represen t ing  t h e  l i m i t i n g  s t r a i n  r a t e  i n  shear 
and J2  = 1/2&;3. 

A major d i f fe rence  between Eqs. (1)  and (4 )  
i s  t h a t  t h e  back s t r e s s  models assume t h e  
d i r e c t i o n  o f  t h e  i n e l a s t i c  s t r a i n  r a t e  vec to r  t o  
be c o i n c i d e n t  w i t h  t h e  d i r e c t i o n  o f  (2 - Q) 
whereas t h e  Bodner model assumes i t  t o  be coin-  
c i d e n t  w i t h  d i r e c t i o n  o f  &. 

I s o t r o p i c  and d i r e c t i o n a l  hardening a re  d i s -  
t i ngu ished  b y  a p a r t i t i o n i n g  of t h e  i n t e r n a l  
v a r i a b l e  Z i n t o  components ZI and ZD 
r a t h e r  than  b y  a back s t ress .  

The e v o l u t i o n a r y  equat ions f o r  t h e  i n t e r n a l  
v a r i a b l e  a r e  o f  t h e  fo rm 

The constant  Z1 i n  Eq. (6)  i s  t h e  satu- 
r a t i o n  va lue  o f  ZI. C y c l i c  hardening o r  s o f t -  
en ing  i s  c o n t r o l l e d  b y  t h e  Z component and 
depends on whether t h e  i n i t i a l  va lue o f  Z i s  
l e s s  than  o r  g rea te r  than  Z1. Another d i i f e r e n c e  
between t h e  evo lu t ionary  equations f o r  t h e  Bodner 
model and t h e  back stress-drag s t r e s s  t y p e  o f  
model i s  t h a t  t h e  former uses t h e  p l a s t i c  work 
r a t e ,  Wp, as t h e  measure o f  hardening r a t h e r  
than  t h e  magnitude o f  t h e  i n e l a s t i c  s t r a i n  ra te .  
There a r e  e s s e n t i a l l y  n i n e  m a t e r i a l  constants 
t o  be determined f o r  t h e  Bodner model, o f  which 
o n l y  t h r e e  have been found t o  be temperature- 
dependent f o r  most m a t e r i a l s  s tudied.  

Because o f  i t s  s i m p l i c i t y  compared t o  the  
more common back s t ress  models, t h e  Bodner morlel 
was selected f o r  more d e t a i l e d  study and dcvel- 
opment under NASA con t rac tua l  e f f o r t s .  Of the 
back stress-drag s t r e s s  t ype  o f  theory, t h e  
Walker model has undergone t h e  most developerent 
f o r  f i n i te -e lement  analysis. The Walker model 
has 14 temperatwe-dependent mate r ia l  constants 
t o  be exper imenta l ly  determined. 

I n  t h e  course of t h e  NASA con t rac t  s tudies,  
Bodner and Walker incorporated add i t i ona l  terms 
i n  t h e i r  models t o  account f o r  c y c l i c  hardeninq 
dur ing  nonproport ional  loading. As t h e  measure 
of  nonproport ional  i ty ,  Bodner used the  angle 
between t h e  s t r e s s  and s t ress  r a t e  d i r e c t i o n s  
w h i l e  Walker used t h e  angle between the  s t r a i n  
and s t r a i n  r a t e  d i rec t ions .  Walker a lso  rev ised 
h i s  model t o  use an exponential law i n  place of 
t h e  prev ious power law f o r  t h e  func t iona l  form o C  

t h e  term, f (q) , i n  tq.  (1) .  

Under a NASA sponsored e f f o r t  w i t h  Southwest 
Research I n s t i t u t e  and P r a t t  and Whitney A i r -  
c r a f t ,  t h e  u n i f i e d  c o n s t i t u t i v e  theor ies  o f  
Bodner and Walker were evaluated and f u r t h e r  
developed t o  model t h e  high-temperature c y c l i c  
behavior o f  B1900 + Hf  a l l o y .  A d e t a i l e d  d is-  
cussion o f  these u n i f i e d  c o n s t i t u t i v e  models, as 
w e l l  as t h e  m a t e r i a l  constants f o r  both models, 
a r e  presented i n  t h e  con t rac to r ' s  annual s tatus 
r e p o r t s  (5,6). The models were implemented i n t o  
t h e  MARC code through a user subroutine, YYPELA. 
The model c o n s t i t u t i v e  equations were in teora ted  
u s i n g  an e x p l i c i t  Euler  technique and a se l f -  
adapt ive s o l u t i o n  scheme. 

2.4 S i m p l i f i e d  ana lys is  - Classical  i n e l a s t i c  
t h e o r y  

The bas ic  assumption o f  t h e  simp1 i f  i e d  pro- 
cedure i s  t h a t  t h e  m a t e r i a l  c y c l i c  response can 
be ca lcu la ted  us ing  t h e  t o t a l  s t r a i n  h i s t o r y  
obta ined f rom e l a s t i c  analyses. C lass ica l  
incremental  p l a s t i c i t y  methods i n v o l v i n g  a 
y i e l d  c r i t e r i o n  and a hardening r u l e  are used 
t o  charac te r i ze  t h e  mater ia l .  As i n  t h e  YARE 
f in i te-e lement  analyses, a b i l i n e a r  kinematic 
hardening r u l e  was used t o  represent t h e  ef fect  
o f  c y c l i n g  on t h e  y i e l d  condi t ion.  Since t h e  
s imp1 i f  i e d  procedure i s  one-dimensional and the 
r e s u l t s  have t o  be r e l a t e d  t o  u n i a x i a l  fa t igue  
data, t h e  e l a s t i c a l l y - c a l c u l a t e d  s t r a i n s  used. 
as i n p u t  a re  c o r r e l a t e d  i n  terms o f  von Mises 
e f f e c t i v e  s t ra ins .  To compute c y c l i c  s t ress-  
s t r a i n  loops, t h e  i n p u t  e f f e c t i v e  s t r a i n s  are 
assigned s igns on t h e  basis  o f  t h e  dominant 
p r i n c i p a l  s t ra ins .  

Only e l a s t i c  f in i te-e lement  analyses f o r  
key p o i n t s  i n  t h e  c y c l e  were required; these 
were f o r  t h r e e  peak s t r a i n  condi t ions (s tar tup,  
maximum t a k e o f f  and shutdown). The e l a s t i c  
s o l u t i o n s  f o r  t h e  c r i t i c a l  l o c a t i o n  were then 
l i n e a r l y  subdiv ided i n t o  a f u r t h e r  60 increments 
t o  de f ine  t h e  s t ress -s t ra in  cycle. These incre-  
ments a re  analyzed sequen t ia l l y  t o  ob ta in  the 
cumulat ive p l a s t i c  and creep s t r a i n s  and t o  
t r a c k  t h e  y i e l d  surface. Creep computations are 
performed f o r  increments i n v o l v i n g  dwel l  times 
us ing  t h e  creep c h a r a c t e r i s t i c s  incorporated In 
t h e  code. For  t h e  a i r f o i l  problem, t h e  creep 
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e f fec ts  were determined on the basis o f  a com- 
b inat ion  o f  stress re laxat ion  and creep s t r a i n  
accumulation. 

A FORTRAN I V  computer program (ANSYMP) was 
created t o  automatically implement the  s impl i -  
f i ed  i ne las t i c  procedure. A descr ipt ion of the 
calculat ional  scheme i s  presented i n  previous 
papers (7.8) on the development o f  t h i s  method. 

3. DISCUSSION OF RESULTS 

The e n t i r e  discussion o f  the s t ruc tura l  and 
l i f e  analyses resu l t s  f o r  the a i r f o i l  presented 
herein w i l l  be based on the c r i t i c a l  locat ion  
a t  the  leading edge a t  midspan which was the 
hot spot as shown i n  Fig. 4. This locat ion  
contained the element and Gaussian in tegra t ion  
po in t  which exhibi ted the largest t o t a l  s t r a i n  
change during a mission cycle. 

The calculated stress-strain hysteresis 
loops a t  the c r i t i c a l  locat ion  f o r  the f i r s t  two 
mission cycles are shown i n  Figs. 5 and 6 f o r  
MARC finite-element analyses using c lass ica l  
Creep-plast ic i ty models and the Walker model, 
respectively, and i n  Fig. 7 f o r  the  s imp l i f i ed  
analysis. Figures 5 t o  7 are p lo t t ed  i n  terms 
o f  von Mises e f f ec t i ve  stress and s t r a i n  w i t h  a 
s ign c r i t e r i o n  based on the sign o f  the  dominant 
normal stress. Comparison o f  Figs. 5 and 6 
shows that  the  maximum compressive s t ra in ,  which 
occurs a t  t he  hot  end o f  the  cycle, was about 
the  same f o r  the  creep-plast ic i ty and Walker 
model f inite-element analyses. This r e s u l t  i s  
t o  be expected since the problem was l a rge l y  
thermally dr iven and indicates t h a t  the thermal 
s t r a i n  calculat ions were consistent between the 
two methods from startup a t  room temperature t o  
maximum takeoff. However, the reason f o r  the  
differences shown i n  Figs. 5 and 6 f o r  the  peak 
s t ra ins  dur ing the co ld  pa r t  o f  the  cycle i n  
descending t o  shutdown have not been resolved 
as yet .  These di f ferences r e s u l t  i n  a smaller 
cyc l i c  s t r a i n  range f o r  the un i f i ed  analysis 
than f o r  t he  c lass ica l  c reep-p las t ic i ty  analysis. 
The maximum compressive s t r a i n  shown i n  Fig. 7 
f o r  the s imp l i f i ed  analysis was somewhat smaller 
than f o r  t he  f inite-element analyses because the  
maximum compressive s t r a i n  d i d  not  qu i t e  occur 
a t  maximum takeoff. Therefore the  select ion of 
the  maximum takeof f  condi t ion as one o f  the  
mission po in ts  f o r  an e l a s t i c  f inite-element 
analysis resu l ted  i n  a s l i g h t  t runcat ion i n  the  
calculated peak s t r a i n  and s t r a i n  range.. I n  
a l l  cases, t he  i ne las t i c  s t r a i n  e f f ec t s  on the 
stress-strain hysteresis loops a f t e r  the f i r s t  
cyc le  were small. The stress-strain response 
had essent ia l l y  s tab i l i zed  by the end o f  the 
second cycle. 

A t  the t ime o f  wr i t ing ,  the  analysis using 
the Bodner model had on ly  been car r ied  out t o  
t he  end o f  t he  f i r s t  cycle. Computational 
i n s t a b i l i t y  problems were encountered during the  
steady-state ho ld  times. Figure 8 shows a com- 
parison o f  t he  rad ia l  stress-strain hysteresis 
loops calculated by the Bodner and Walker models 
for  the  f i r s t  cycle. The stress-strain response 
predicted by t h e  two un i f i ed  models was s im i l a r  
except near t he  t ens i l e  peak o f  t he  cycle. I t  
i s  believed t h a t  the reversal  i n  the  Bodner 
stress-strain loop between -1100 and -1400 
micros t ra in  dur ing unloading was an a r t i f a c t  

due t o  computational i n s t a b i l i t y  and does not 
represent r e a l  mater ia l  behavior. Without t h i s  
anomaly, the  predicted c y c l i c  responses from 
t h e  two u n i f i e d  models would have been very 
close. 

The r e s u l t s  from these s t ruc tu ra l  analyses 
(e las t ic ,  elastic-plastic-creep, Walker un i f i ed  
and s imp l i f i ed )  are sumnarized i n  Table 1 i n  
terms o f  the  t o t a l  s t r a i n  range and mean stress 
f o r  the second cycle. CPU (Central Processor 
Un i t )  times f o r  2 complete ana ly t ica l  cycles 
(except f o r  the e l a s t i c  cycle) are ind ica ted i n  
the  f i r s t  column. The CPU time f o r  the  s impl i -  
f i e d  analysis, inc lud ing 81 sec t o  perform the 
e l a s t i c  f inite-element analyses f o r  the  startup, 
maximum takeof f  and shutdown condi t ions and 
1 sec f o r  the actual s imp l i f i ed  procedure, was 
50 times fas te r  than f o r  the MARC c lass i ca l  
f in i te-element analysis. The MARC analysis 
using the Walker model was somewhat more econom- 
i c a l  i n  CPU time than w i th  the  creep-plast ic i ty 
models. For the  f i r s t  ana ly t ica l  cycle, the 
Bodner model used about the same CPU time as 
t he  c lass ica l  models. 

Also presented i n  Table I are predicted 
c y c l i c  l i v e s  t o  crack i n i t i a t i o n  using the  
TS-SRP method. These pred ic t ions  were based on 
unpublished NASA data f o r  out-of-phase bithermal 
behavior o f  81900 + Hf a l l o y  a t  maximum and 
minimum temperatures o f  871 and 483 'c, respec- 
t i v e l y .  Comparison o f  the calculated s t r a i n  
ranges and l i v e s  shown i n  Table I f o r  the  d i f -  
ferent s t ruc tura l  analysis methods demonstrate 
the  s e n s i t i v i t y  o f  l i f e  pred ic t ion  t o  the con- 
s t i t u t i v e  models and ana ly t ica l  methodologies 
employed. I n  the present case, the  lowest 
c y c l i c  l i f e  pred ic t ion  was obtained using the 
c lass i ca l  nonlinear f inite-element analysis and 
the  largest using the Walker un i f i ed  model. I t  
i s  probable t h a t  the s imp l i f i ed  procedure would 
have given the most conservative l i f e  pred ic t ion  
i f  the maximum compressive s t r a i n  used f o r  the  
i npu t  t o t a l  s t r a i n  h i s t o r y  had been more accu- 
r a t e l y  defined. 

4 SUMMARY OF RESULTS 

Th is  paper evaluates t he  u t i l i t y  o f  advanced 
cons t i t u t i ve  models and s t ruc tu ra l  analysis 
methods i n  pred ic t ing  the  c y c l i c  l i f e  o f  an 
air-cooled tu rb ine  blade for a gas tu rb ine  a i r -  
c r a f t  engine. St ruc tura l  a n ~ l y s i s  methods o f  
d i f f e r e n t  l eve l s  o f  soph is t ica t ion  were exer- 
c ised i n  obtaining the  c y c l i c  stress-strain 
response a t  the c r i t i c a l  a i r f o i l  location. 
Calculated s t r a i n  ranges and mean stresses from 
the stress-strain cycles were used i n  p red i c t i ng  
crack i n i t i a t i o n  l i v e s  using the TS-SRP l i f e  
pred ic t ion  method. The major r e s u l t s  o f  t h i s  
study were as fo l lows: 

1. Both t he  s t r a i n  range and predicted l i f e  
were sens i t i ve  t o  the  type of cons t i t u t i ve  model 
used. However, the  maximum compressive s t r a i n  
a t  the hot end o f  the  cyc le  was not  s i g n i f i -  
can t l y  af fected by the  cons t i t u t i ve  model, which 
was t o  be expected since t h i s  was a l a rge l y  
thermal ly dr iven problem. The di f ferences shown 
i n  the  calculated s t r a i n  ranges between the 
Walker and c lass ica l  models were mainly due t o  
di f ferences i n  the  peak s t ra ins  computed a t  the 
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c o l d  end o f  cyc le.  The reason f o r  these d i f f e r -  
ences i n  t h e  peak s t r a i n s  have n o t  been reso lved  
as ye t .  

2. The s t r e s s - s t r a i n  reponses c a l c u l a t e d  
us ing  t h e  Bodner and Walker u n i f i e d  models were 
v e r y  s i m i l a r .  Computational i n s t a b i l i t i e s  were 
encountered w i t h  t h e  Bodner model d u r i n g  t h e  
steady-state h o l d  times, i n d i c a t i n g  t h a t  
improvements a re  requ i red  i n  t h e  i n t e g r a t i o n  
procedure. 

3. Due t o  t h e  d i f f e r e n c e s  i n  t h e  c a l c u l a t e d  
s t r a i n  ranges, t h e  lowest  c y c l i c  l i f e  was pre- 
d i c t e d  us ing  t h e  c r e e p - p l a s t i c i t y  models i n  t h e  
non l inear  f i n i te -e lement  ana lys is  and t h e  
h ighes t  u s i n g  t h e  Walker u n i f i e d  model. I t  i s  
probable t h a t  t h e  s i m p l i f i e d  procedure would 
have g iven t h e  most conservat ive l i f e  p r e d i c t i o n  
i f  t h e  i n p u t  t o t a l  s t r a i n  peak a t  t h e  h o t  end 
o f  t h e  c y c l e  had been more accura te ly  defined. 

4. The s i m p l i f i e d  procedure, i n c l u d i n g  t h e  
computing t imes  f o r  t h e  i n i t i a l  e l a s t i c  f i n i t e -  
element analyses, was about 53 t imes f a s t e r  than  
t h e  c y c l i c  f i n i te -e lement  analyses and about 
4000 t imes f a s t e r  f o r  j u s t  t h e  c y c l i c  i n e l a s t i c  
computations. The CPU t ime f o r  t h e  MARC f i n i t e -  
element analyses was somewhat l e s s  us ing  t h e  
Walker u n i f i e d  model than  t h e  c l a s s i c a l  creep- 
p l a s t i c i t y  models. P r e l i m i n a r y  a n a l y t i c a l  
r e s u l t s  u s i n g  t h e  Bodner model i n d i c a t e  t h a t  i t  
would use about t h e  same CPU t ime as t h e  creep- 
p l a s t i c i t y  f in i te-e lement  analys is .  

5  REFERENCES 

1. McKnight, R.L., Laflen, J.H., and Spamer, 
G.T., Turb ine Blade T i p  D u r a b i l i t y  
Analys is .  NASA CR-165268, 1981. 

2. Moreno, V., Combustor L i n e r  D u r a b i l i t y  
Analysis. NASA CR-165250, 1981. 

Ramaswamy, V.G.. Van Stone, R.H., Dame, 
L.T.. and Laf len.  J.H.. C o n s t i t u t i v e  
Modeiing f o r  isotropic *Materi a l s .  NASA 
CR-17485, 1984. 

Ramaswamy, V.G., Van Stone, R.H., Dame, 
L.T., and Laf len,  J.H., C o n s t i t u t i v e  
Modeling f o r  I s o t r o p i c  Mate r ia l s .  NASA 
CR-175004, 1985. 

Lindholm, U.S., Chan, K.S., Bodner, S.R., 
Weber, R.M., Walker, K.P., and Cassenti ,  
B.N., C o n s t i t u t i v e  Modeling f o r  I s o t r o p i c  
Mate r ia l s .  NASA CR-174718, 1984. 

Lindholm, U.S., Chan, K.S., Bodner, S.R., 
Weber, R.M., Walker, K.P., and Cassenti ,  
B.N., C o n s t i t u t i v e  Modeling f o r  I s o t r o p i c  
Mater i  a1 s. NASA CR-174980, 1985. 

Kaufman, A., Development o f  a S i m p l i f i e d  
Procedure f o r  C y c l i c  S t r u c t u r a l  Analys is .  
NASA TP-2243, 1984. 

Kaufman, A., and Hwang, S.Y., Local S t r a i n  
R e d i s t r i b u t i o n  Cor rec t ions  f o r  S i m p l i f i e d  
I n e l a s t i c  Ana lvs is  Procedure Based on an 
E l a s t i c   ini it el element Analys is .  NASA 
TP-2421, 1985. 

Halford, G.R., Low-Cycle Thermal Fat igue.  
NASA TM-87225, 1986. 

MARC General Purpose F i n i t e  Element 
Program. Vol. A: User In fo rmat ion  Manual; 
Vol. B: MARC Element L ib ra ry ;  Vol. C: 
Program Input ;  Vo1.D: User Subroutines and 
Speci a1 Routines. MARC Ana lys is  Research 
Corporation, Pa lo  A l to ,  CA, 1985. 

Saltsman, J.F., and Hal ford,  G.R., An 
Update o f  t h e  To ta l -S t ra in  Vers ion o f  SRP. 
NASA TP-2499, 1985. 





TABLE 1 .  - SUMMARY OF STRUCTURAL 
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FIGURE 1. - AIRFOIL FINITE- 
ELMENT MODEL. 



TAKEOFF 
CLIMB 

-I CRUISE 
W > 
'3 
PC 
W 

Q 

IDLE 

0 
TIME, MIN 

FIGURE 2.  - MISSION CYCLE USED FOR ANALYSIS. 

LEAD I NG EDGE, MI DSPAN --- TRAIL1 NG EDGE. MIDSPAN 
COLD SPOT, MIDSPAN 

ELAPSED TIME, MIN 

FIGURE 3. - AIRFOIL TEMPERATURE CYCLE. 



FIGURE 4 .  - AIRFOIL TEMPER 
TAKEOFF. 

ATURE D I S T R I B U T I  

721 
ON AT MAX 

r 
:I MUM 

-400 
-4000 -3000 -2000 -1000 0 

TOTAL M I  CROSTRAI N 

FIGURE 5. - MARC FINITE-ELEMENT ANALYSIS STRESS-STRAIN 
CYCLE USING CLASSICAL CREEP-PLASTICITY MODELS. 



-400 0 
-4000 -3000 -2000 -1000 0 

TOTAL MICROSTRAIN 

FIGURE 6. - MARC FINITE-ELEMENT ANALYSIS STRESS-STRAIN 
CYCLE USING WALKER UNIFIED MODEL. 

TOTAL MICROSTRAIN 

FIGURE 7. - SIMPLIFIED ANALYSIS STRESS-STRAIN CYCLE. 



,0° I- - WALKER --- BODNER 

-500 
-4000 -3000 -2000 - 1000 0 

RADIAL MI CROSTRA I N 

FIGURE 8. - COMPARISON OF STRESS-STRAIN CYCLES 
USING BODNER AND WALKER MODELS. 



 o or sale by the National Technical Information Service, Springfield, Virginia 22161 

1. Report No. 

NASA TM-88807 
2. Government Accession No. 3. Recipient's Catalog No. 

4. Title and Subtitle 

Structural Analysis of Turbine   lades Using 
Unified Constitutive Models 

7. Author@) 

A. Kaufman, M. Tong, J.F. Saltsman, and G.R. Halford 

9. Performing Organization Name and Address 

, 4<+ National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 44135 C$$'l 

12. Sponsoring Agency Name and Address 
. 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

15. Supplementary Notes 

5. Report Date 

6. Performing Organization Code 

533-04-1 1 
8. Performing Organization Report No. 

E-3155 

10. Work Unit No. 

;I. Contract or Grant No. 

13. Type of Report and Period Covered 

Technical Memorandum 

14. Sponsoring Agency Code 

Prepared for the International Conference on Computers in Engine Technology, 
sponsored by the Institution of Mechanical Engineers, Cambridge, England, 
March 24-27, 1987. 

16. Abstract 

This paper assesses the utility of advanced constitutive models and structural 
analysis methods in predicting the cyclic life of an air-cooled turbine blade. 
Five structural analysis methods were exercised in calculating the cyclic stress- 
strain response at the airfoil critical location. The methods studied were a 
cyclic elastic finite-element analysis, nonlinear finite-element analyses based 
on classical inelastic models and the unified models of Bodner and Walker, and a 
simplified inelastic procedure. These analyses were compared in terms of comput- 
ing times and of predicted crack initiation lives using the Strainrange 
Partitioning method. 

17. Key Words (Suggested by Author@)) 

Hot section technology 
Nonlinear structural technology 
Constitutive models 

18. Distribution Statement 

Unclassified - unlimited 
STAR Category 39 

19. Security Classif. (of this report) 

Unclassified 
20. Security Classif. (of this page) 

Unclassified 
21. No. of pages 22. Price* 



1. Report No. 

NASA TM-88809 

10. Work Unit No. 1 

Structural Analysis of Turbine  lades Using 
Unified Cons%ltutfve Models 

7. Author@) 

A. Kaufman, M. Tong, J.F. Saltsman, and G.R. Halford 

2. Government Accession No. 

6. Performing Organization Code 

533-04-1 1 
8. Performing Organization Report No. 

E-3155 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

3. Recipient's Catalog No. 

4. Title and Subtitle 

9. Performing Organization Name and Address 

National Aeronautics and Space Administration ,, ,I,(?' Lewis Research Center 
Cleveland, Ohio 44135 

12. Sponsoring Agency Name and Address 
, 

14. Sponsoring Agency Code r 

5. Report Dtste 

11. Contract or Grant NO. 

13. Type of Report and Period Covered 

Technical Memorandum 

I 
15. Supplementary Notes 

Prepared for the International Conference on Computers in Engine Technology, 
sponsored by the Institution of Mechanical Engineers, Cambridge, England, 
March 24-27, 1987. 

16. Abstract 

j This paper assesses the utility of advanced constitutive models and structural 
analysis methods in predicting the cyclic life of an air-cooled turbine blade. 
Five structural analysis methods were exercised in calculating the cyclic stress- 
strain response at the airfoil critical location. The methods studied were a 
cyclic elastic finite-element analysis, nonlinear finite-element analyses based 
on classical inelastic models and the unified models of Bodner and Walker, and a 
simplified inelastic procedure. These analyses were compared in terms of comput- 
ing times and of predicted crack initiation lives using the Strainrange 
Parti tioning method. 

17. Key Words (Suggested by Author@)) 118. Distribution Statement 

Hot section technology 
Nonlinear structural technology 
.Constitutive models 

Unclassified - unlimited 
STAR Category 39 

 or sale by the National Technical Information Service, Springfield, Virginia 22161 

19. Security Classif. (of this report) 

Unclassified 
20. Security Classif. (of this page) 

Unclassified 
21. No. of pages 22. Price" 



National Aeronautics and 
Space Administration 

Lewis Research Center 
Cleveland. Ohlo 44135 

Official Business 
Penalty for Private Use $300 

SECOND CLASS MAIL 

ADDRESS CORRECTION REQUESTED 

Postage and Fees Paid 
National Aeronautics and 
Space Administration 
NASA-45 1 




