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SUMMARY

The major activities of the past six-month period were as follows:

• Preparation of a paper entitled, Simulation and Analysis of a Geopotential
Research Mission. The paper is given in Appendix A and will be submitted
for journal publication.

• Preparation of magnetic tapes containing the data created for the GRM
simulation. The format of the tape is given in Appendix B.

• Initial preparation for follow-on studies.

On May 8, 1986, tapes containing the simulated data were delivered to Frank Lerch (GSFC) and
Carl Wagner (NGS). On May 15, a tape was mailed to Dr. S. Boze (Applied Sciences Analytics).

A paper entitled, Simulation of a Geopotential Research Mission (GRM), will be presented at the
COSPAR meeting in Toulouse, France, on July 4, 1986.
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ABSTRACT

A computer simulation has been performed for a Geopotential Research Mission (GRM) to

enable study of the gravitational sensitivity of the range-rate measurement between two satellites and

to provide a set of simulated measurements to assist in the evaluation of techniques developed for

the determination of the gravity field. The simulation, identified as SGRM 8511, was conducted

with two satellites in near circular, frozen orbits at 160 km altitude and separated by 300 km. High

precision numerical integration of the polar orbits was used with a gravitational field complete to

degree and order 180 coefficients and to degree 300 in orders 0 to 10. The set of simulated data for a

mission duration of about 32 days was generated on a Cray X-MP computer. The characteristics of

the simulation and the nature of the results are described in this report.

INTRODUCTION

The determination of the earth's gravity field by the Geopotential Research Mission (GRM) will

be achieved using two satellites moving in essentially coincident orbit planes but separated by 100 to

600 km. Precise measurements of the range-rate between the two polar inclination satellites would

provide a data set from which the gravity information would be extracted. With a range-rate meas-

urement precision of one micron per second or better and an orbit altitude of 160 km, it is expected

that the data set would provide resolutions of at least 1-2 mgal in gravity anomalies, 5-10 cm in

geoid height, and 100 km spatially [Taylor et al., 1984]. Applications of this mission to geophysics,

geodesy and oceanography are discussed by the National Research Council [1979] and Keating et
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al, [1986].

For the desired resolution, it is essential that the gravity field be recovered to a high degree and

order in the spherical harmonic representation or other representations. However, use of the range-

rate data in the procedures commonly used in satellite geodesy for gravity field determinations (e.g.,

Lerch et al., 1985) would result in the need to solve very large systems of equations. For example, a

degree and order 180 (or 180x180) field would require the inversion of a full, symmetric matrix of

dimension exceeding 32,000. The computational effort associated with such an inversion would be

significant, even for current supercomputers. Although supercomputers are expected to be available

by 1990 with physical memory storage exceeding 1 billion 64-bit words, thereby enabling storage of

a complete 32000x32000 matrix in main memory, the computational problems associated with such

an inversion are still significant.

Alternate procedures have been proposed to circumvent the need for inversion of a very large

matrix. These procedures include those proposed by Colombo [1984], Kaula [1983], Wagner

[1983], and others. While these procedures are promising, none have been tested on a set of simu-

lated data derived from the solution of dynamically consistent equations of motion.

The goal of the investigation described in this report was the creation of a set of simulated

range-rate data that could be used for studies of techniques applicable to recovery of the gravity field

from GRM range-rate data. The simulation model, the supporting studies of the computational accu-

racy, and the characteristics of the resulting simulated data are discussed in the following sections.

GRM DESCRIPTION

The 160 km altitude proposed for the GRM results in significant forces acting on each spacecraft

due to atmospheric resistance. Past experience has demonstrated difficulty in adequately modeling

this force, however, its signature is very similar to that produced by various gravitational

coefficients. As a consequence, it is essential that the force be directly removed or measured. The



GRM uses a "drag-free" concept, as described by Taylor et al. [1984] and Keating et al., [1986], to

effectively remove the effects of all nongravitational forces, including solar and earth radiation pres-

sure as well as atmospheric forces.

The range-rate system of the GRM operates at 91 GHz and 42 GHz to enable removal of the

ionospheric effects on the measurement. To meet the mission objectives, it is expected that the rela-

tive velocity variations must be measured to an accuracy of 2.5 microns per second every four

seconds. Furthermore, it is anticipated that the range between the two spacecraft would be adjusted

between 150 and 550 km during the six-month mission duration launched from the shuttle orbiter.

The 2600-2800 kg spacecraft would be tracked by the Defense Mapping Agency TRANET doppler

system.

The GRM measurement is sensitive to gravitational effects produced by a variety of sources,

including temporal variations. Compared to higher altitude satellites at typical geodetic altitude of

1000 km, the influence of solid earth and ocean tide effects will be enhanced, however, the direct

luni-solar gravitational effects will be diminished. '

SIMULATION DESCRIPTION

A complete simulation of the GRM is desirable to enable the testing of techniques for determin-

ing the gravity field from the range-rate signal in a realistic environment. However, the wide range

of forces and kinematical effects noted in the preceding section that should be included in the simu-

lation will complicate the studies directed toward the technique tests.

In order to enhance the primary gravitational signal and offer the recovery techniques a set of

simulated data that is not complicated by signals from other sources, it was concluded that the initial

simulation should exhibit only the primary features of the actual GRM. As a consequence, the tem-

poral variations in the gravity field and direct luni-solar forces were not included. It was also

assumed that the spacecraft moved in an .environment free of nongravitational forces; however,



specific modeling of the thrusting associated with the drag compensation mechanism was not

included. Furthermore, the effects of precession, nutation, polar motion and UT1 variations were not

included. The specific model characteristics for the simulation are shown in Table 1.

Since the specific orbit characteristics for GRM have not been selected, the adopted orbits

resulted from discussions within the International Association of Geodesy Special Study Group 2.83,

chaired by Dr. R. Rummel, Delft University. Although the planned mission would use different

separation distances over a mission duration of six months, a simulation of shorter duration with a

single average separation of 300 km was regarded as appropriate for initial technique validation.

The specific orbit selection was made to enable a repeating ground track over the mission duration

with an equatorial separation between the tracks that is commensurate with the desired resolution of

the gravity field.

The preceding considerations resulted in the orbit characteristics given in Table 1, namely a

simulation duration of 32 sidereal days consisting of 525 revolutions of each satellite. Furthermore,

the adopted orbit has the characteristic that the next 525 revolutions would nearly repeat the

groundtrack of the simulated 525 revolutions. In addition, the adopted orbits are "frozen" with peri-

gee at 90 degrees as described by Cook [1966]. The specific initial conditions for each satellite are

given in Table 2.

TECHNIQUES

The primary technique used for the creation of the simulated data was numerical integration of

the equations of motion. Extensive studies performed on the characteristics of numerical integration

by Lundberg [1985], as well as additional supporting studies for the GRM simulation, have demon-

strated that truncation error resulting from the adopted numerical integration order and step size

would not introduce significant short-period, gravity-like signals in the simulated data, at least for a

36x36 field with an integration period of 32 days. It was not possible to perform the evaluation for



TABLE 1. GRM SIMULATION MODEL

Force Model

Gravitational

GM = 3.986013 x!014mV2

ae= 6378155m

Static: Rapp [private communication, 1985] gravity coefficients complete to
180x180 plus order 0 to 10 coefficients to degree 300

Temporal: None

Luni-Solar: None

Nongravitational

Drag: None

Radiation Pressure: None

(Note: It is assumed that the drag compensation mechanism removes all
nongravitational forces.)

Kinematic Models

Earth Orientation

Angular velocity: Constant (7.29211585531 * 10~5 rad/sec)

Initial Greenwich mean sidereal time: 1.74731127 radians = 100.1135613°
t

Polar motion: None

Precession/nutation: None

Orbits
Altitude: 160km
Inclination: 90 degrees
Eccentricity: 0.00114
Perigee: 90 degrees
Satellite separation: 300 km
Groundtrack repeat period: 32 sidereal days (closure <10 km)
Duration: 32 sidereal days (2,757,250.8 s)

the full gravity field of the simulation; however, one-day studies were performed and are described

in the next section. Future studies will be conducted to further investigate this aspect, although it is

not expected to produce a significant signal.

To further aid in the control of numerical integration accuracy, the formulation of the differential

equations of motion used an Encke-type formulation in which a reference orbit was adopted and the



TABLE 2. INITIAL CONDITIONS FOR SIMULATION*

( r=0)

Trailing Satellite:

x=0.0

Lead Satellite:

x=0.0
y =-150000.0
z =6514763.771449
j=0.0
y =-7817.14687496
z =-179.5130619235

Separation distance = 300000.000017

y = 150000.0
z =6514766.990461
i=0.0
y= -7817.14687496
z =179.5130619235

The initial conditions were provided by Dr. O. Colombo, EG&G Washing-
ton Analytical Services. Units are meters for position and meters per
second for velocity. The origin of the coordinate system coincides with
the earth's center of mass and the coordinate system is nonrotating.

differential equations describe departures from the reference. Studies by Lundberg [1985] demon-

strated that high numerical accuracy could be achieved for long-term integrations without

rectification. In particular, the equations of motion of either satellite are

r =
GMT . T

(1)

where r is the geocentric position vector of the satellite expressed in a nonrotating coordinate sys-

tem, GM is the gravitational parameter of the earth, and / is the perturbing force derived from the

gradient of the gravitational potential. The Encke procedure uses a reference orbit, 7*, such that

r = r* + e (2)

where e is referred to as the Encke-vector representing the satellite displacement from the reference

orbit and described in terms of a nonrotating coordinate system. It follows that

-s (3)
l/~ r "j

where J is the perturbing force on the two-body motion of the reference orbit. The advantage of this

formulation is that by properly choosing the reference orbit the Encke-vector would remain much
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smaller than r (e.g., <1%), thereby resulting in more significant digits in the computation than Eq.

(1). The numerical integration parameters used for the simulation are given in Table 3.

TABLE 3. GRM SIMULATION INTEGRATION PARAMETERS

Solution Method

Encke formulation [Lundberg, 1985]

Class 2, fixed-mesh, multistep algorithm [Lundberg, 1981]

Step Size: 5 seconds

Order: 10

The accuracy of the numerical integration is dependent on the step size and order of the integra-

tor as well as the numerical properties of the computation of the perturbing force, /. The spherical

harmonics formulation was adopted for the computation of the gravitational force because of its

well-understood influence on the motion of a satellite (e.g., Kaula, 1966). The adopted formulation

of spherical harmonics was derived by Pines [1973], a formulation with the advantage of retaining a

close relationship with the spherical harmonic formulation while eliminating the singularities that

exist at the poles with spherical coordinates. Because of the polar orbits used for the mission, the

elimination of the singularities was essential. The modified Legendre functions in Pines formulation

are computed by recursions in normalized form, hence the normalized spherical harmonic

coefficients are used directly. Numerical experiments have been performed with possible recursions

by computing the functions to degree and order 300 in 14 decimal digit precision and comparing

with 28-digit results. The specific recursion algorithm adopted for the simulation is a column-wise

formulation that has demonstrated excellent stability and numerical properties [Lundberg and

Schutz, 1986]. The Pines formulation code has been further validated by comparison with indepen-

dent code using the traditional formulation.

In summary, numerical integration was used to obtain the set of simulated data. Each satellite



was treated independently in the process, and the simulated range and range-rate between the satel-

lites were computed from the positions and velocities of the respective satellites. Each satellite's

equations of motion were formulated in an Encke-type representation to foster high-accuracy results.

PRELIMINARY RESULTS

Computational experiments were performed in 1983 to provide data from which an estimate of

the computer time required for a GRM simulation could be made. This experiment consisted of

measurements of the computer time required for the numerical evaluation of a degree and order 180

(180x180) spherical harmonic gravity field. This early evaluation suggested that, while the formula-

tion could be readily adapted to the vectorization environments of modern supercomputers, the time

required for a complete simulation would be 10-30 hours; however, the time required on other main-

frames would be 1000 hours or more. Further details on these studies with a variety of computers

are given by Schutz [1986].

Preliminary simulation results for initial test and evaluation purposes were computed using a

one-day interval of time. These results were obtained using a Cray X-MP/48 and an Amdahl 1200.

The results from the two machines agreed to 13 decimal digits at the end of the integration period.

The execution of the same code required 1634 seconds on the Amdahl 1200 and 1575 seconds on the

Cray X-MP using a single processor. Furthermore, the Fortran compilers of both machines automat-

ically vectorized the same loops in the code and both identified the recursive algorithms used in the

computation of the modified Legendre functions as an area requiring special treatment for vectoriza-

tion.

The one-day preliminary results were compared with an integration performed using the simula-

tion gravity field but truncated at degree and order 36. The initial conditions in Table 2 were used,

and the computations with the 36x36 field were performed using a Cyber 170/750. The Cray X-MP

result with the Table 1 model was used to compute the instantaneous range and range-rate between
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the satellites, from which the range and range-rate computed from the 36x36 field was subtracted.

The instantaneous range vector, p, is computed as

p = 7L - 7T (4)

and the range is p = [p • p]'A, where TT is the position vector of the trailing satellite and TL refers to

the leading satellite. The instantaneous range-rate, p, is

The resulting differences, or residuals, in range (Ap) and range-rate (Ap) computed with the respec-

tive ephemerides are shown in Figures 1 through 3. The range and range-rate residuals for the first

day are shown in Figures 1 and 2. The range-rate residuals are shown in Figure 3 for the first 10,000

seconds to enhance the illustration of small amplitude signals that exist in the simulated data.

Various experiments were performed to further vectorize the code in order to reduce the execu-

tion time. Of particular importance were the implementation of procedures for vectorizing the recur-

sive computation of the Legendre functions, achieved by computing all the elements parallel to the

diagonal in a vector operation. Experiments showed that this procedure reduced the execution time

required for the overall gravity computation by more than a factor of two. In the following discus-

sions on the final results, this vectorized computation of the Legendre functions by recursions was

used.

In addition to the computational speed, the precision of various machines is of importance.

Computational precision is dependent on the number of bits allocated to storage of the floating point

mantissa and on the central processor design which includes hardware rounding operations. The

mantissa bit allocation for the Amdahl 1200 is 56 bits and the Cray X-MP is 48 bits. Although the

roundoff error of the Amdahl 1200 is about 10~15 and about 10~14 on the Cray X-MP, effective

hardware accuracy guards are provided on the Cray computer to assist in the control of roundoff



error. Experiments by the authors on various problems, including unstable dynamical systems that

exhibit significant response to roundoff error, has shown these guards to be effective. Such accuracy

guards were invoked in all computations using the Cray X-MP described in this report.

SIMULATION RESULTS

The simulation results for the full 32-day period were performed using a Cray X-MP/216 com-

puter with a time grant from Cray Research, Incorporated (CRI). The machine was located at the

CRI Mendota Heights, Minnesota, facility and the computations were performed in November 1985

using a block of dedicated machine time. A subsequent verification test was performed on the Cray

X-MP/24 installed at the University of Texas System Center for High Performance Computing in

March 1986. The central processor time required on the Mendota Heights machine was 6 hours 28

minutes. Furthermore, comparison with the earlier results illustrates that the vectorization of the

Legendre recursion substantially influenced the overall computation time. Other analyses have

shown that the gravity force evaluation consumed more than 90% of the computation time.

The accuracy associated with the integration step size of 5 seconds was evaluated by comparison

with an integration performed with a 2.5-second step size. However, the integration was performed

for one day since the full 32-day computation was estimated to require about 13 hours for a step size

of 2.5 seconds. The difference between the range and range-rate computed with the different step

sizes are shown in Figures 4 and 5.

The effect of step size on the range between the two satellites is illustrated in Figure 4. Over the

one day interval, the effect is less than ten microns. More importantly, the periodic effect has an

amplitude of about 3 microns at a frequency of one cycle per orbital revolution. Similarly, the step

size influence on range-rate is shown in Figure 5 with a peak of less than 0.3 microns per second, but

with a root mean square of less than 0.1 microns per second and no evidence of a linear trend in the

differences. Consequently, it can be tentatively concluded that the 5-second step size does not
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adversely influence the results at a level exceeding the anticipated measurement precision.

Nevertheless, plans are being made to completely verify this conclusion through computations for

the entire 32 days.

The state vectors of each satellite after 32 sidereal days are given in Table 4 for the nearest

integration node point, which differs from the exact 32 sidereal day time by 0.8 seconds. Com-

parison with Table 2 shows that the ;y -components have the largest difference, about 5400 m for the

lead satellite and 2300 m for the trailing satellite. Extrapolating the position forward in time to

account for the 0.8-second effect results in a smaller difference for the lead satellite but a larger one

for the trailing satellite. In either case, a closure to less than 10 km appears to have been achieved.

TABLE 4. FINAL CONDITIONS FOR SIMULATION

(Time = 2757250.0 seconds)

Lead Satellite: Trailing Satellite:

x = -25.5702759 x = 28.7872855
y =-144635.9583872 y = 152283.2962437
z=651517.4216461
x =-1.4053666402
y =-7817.7289670476
7 =-173.1909583647

z=6514295.7534658
x =-1.4535883592
y =-7817.5867963785
z = 182.1378972218

Separation distance = 296919.342351

Units are meters for position and meters per second for velocity.

The time histories of the instantaneous range and range-rate for the complete 32-day simulation

period are shown in Figures 6 and 7. The range illustrated in Figure 6 exhibits a short period (orbital

period) with an amplitude of 450 m. Long period effects are evident also, due possibly to reso-

nances, as well as indications that the satellites begin a linear drift at about 16 days. The range-rate

in Figure 7 exhibits essentially a zero mean with a short period amplitude of about 0.8 m s"1.

Since one of the primary purposes of the GRM is to measure the gravity field, it is reasonable to

expect that the field available at GRM launch for data analysis will be in error. Based on the planned
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TRANET tracking system, these ground-based data would be used to determine an orbit that fit the

data in accordance with some criteria, such as least squares. To simulate this process, the ephem-

erides generated on the Cray X-MP with the Table 1 model were used as "observations" to an esti-

mation process that determined epoch position and velocity of the respective satellites. In this esti-

mation process, however, the reference gravity field differed from the Table 1 field.

Two reference fields have been used in the investigation. In the first case, the influence of high

degree and order coefficients was investigated by truncating the Table 1 field at degree and order 36.

Consequently, this case used the "true" coefficients for the 36x36 portion of the field, but mismo-

deled all coefficients of degree and order greater than 36 by effectively setting those coefficients to

zero. In the second case, the reference field was GEM-10B [Lerch et al., 1981] which results in a

mismodeling of all coefficients, including zero values for coefficients of degree and order exceeding

36. In both cases, the initial position and velocity vectors (six parameters) and a constant along-

track force parameter were estimated. The latter parameter was used to remove any inherent numeri-

cal integration differences, however, the estimated quantity was small and approaching the level of

computational precision indicating close compatibility between the full model integration and the

reference model integration.

The ephemerides resulting from the estimation using the truncated (36x36) Table 1 reference

field were compared to the full model (Table 1) ephemerides. The position differences over 32 days

result in position residuals with an overall RMS of 949 m for the leading satellite and 904 m for the

trailing satellite. These differences for the leading satellite, resolved into radial, along-track and

cross-track components, are shown in Figures 8, 9 and 10, respectively. Similar characteristics are

exhibited by the trailing satellite. The longest period variation in the along-track component is con-

jectured to be associated with the odd-degree zonal harmonics, while the approximately six-day

period is believed to be due to resonant coefficients. Experiments with the second case, the GEM-
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10B field, show position residuals with an RMS of 950 m for the leading satellite and 907 m for the

trailing satellite, as illustrated in Figures 11, 12 and 13. Because of the general similarity between

these two cases, it is apparent that the coefficients of degree and order greater than 36 have

significant orbit perturbation influence on the low altitude GRM. This behavior will have some bear-

ing on the orbit determination accuracy requirement of 300 m [Keating et al., 1986].

Range and range-rate residuals were computed using the Cray ephemerides resulting from the

integration with the Table 1 model and the GEM-10B ephemerides fit to the Cray result. The range

residuals are given in Figure 14, and the range-rate residuals are in Figure 15. Since the linear trend

apparent in Figure 6 has either been removed or diminished, it can be concluded that the drift is pri-

marily the result of the adopted orbit characteristics and the low degree and order coefficients. In

general, a rich spectrum of frequencies appears to exist in Figures 14 and 15 that will provide a use-

ful basis for further analysis, especially in the application of techniques designed to recover the grav-

ity field from such data.

RECOMMENDATIONS

This report has described the results of the first simulation of a GRM with emphasis on the gravi-

tational aspects. The simulation model has been chosen to enhance the gravitational signal for the

testing and validation of gravity recovery techniques. The results of the simulation are available for

further analysis on a high density (6250 cpi) magnetic tape.

Based on the results described in this report, several recommendations for future study can be

made as follows:

• The orbit determination accuracy will be significantly influenced by a priori errors in the gravity

field, including coefficients exceeding degree and order 36; consequently techniques should be

investigated that reduce the influence of the resulting orbit errors on the GRM gravity field

recovery. .
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• A more realistic simulation of the TRANET tracking distribution should be investigated directed

toward the influence on the range-rate residuals.

• Examination of alternate tracking systems, such as satellite-borne Global Positioning System

receivers should be performed.

• Implementation of more realistic force models, especially tide models, and kinematic models,

especially those describing the orientation of the earth in space.

• Simulation of outer satellite drag and creation of a set of range and range-rate simulated data that

include thrusts associated with a drag compensation mechanism.

• Investigation of the influence of time-varying features in the ocean surface on the range and

range-rate.

• Further investigation of the numerical precision associated with the simulation.

• Examination of the influence of satellite separation and altitude.

Efforts to investigate these GRM aspects are in progress.
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Figure 1. Range residual (full model minus 36x36 model) for one day (plotted every 45 seconds)
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Figure 2. Range-rate residual (full model minus 36x36 model) for one day (plotted every 45
seconds)
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Figure 3. Range-rate residual (full model minus 36x36 model) for 10,000 seconds (plotted every 5
seconds)
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Figure 4. Range residuals, 5-second minus 2.5-second step sizes, full model for one day
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Figure 5. Range-rate residuals, 5-second minus 2.5-second step sizes, full model for one day
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Figure 6. Range history for Table 1 model
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Figure 7. Range-rate history for Table 1 model



o
o

0.00 3.00 6.00 9.00 12.00 15.00 18.00
TIME (DAYS)

21.00 24.00 27.00 30. 00 33.00

Figure 8. Radial ephemeris differences for lead satellite (36x36 Table 1 model minus full model)
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Figure 9. Along-track ephemeris differences for lead satellite (36x36 Table 1 model minus full
model)
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Figure 10. Cross-track ephemeris differences for lead satellite (36x36 Table 1 model minus full
model)
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Figure 11. Radial ephemeris differences for lead satellite (GEM-1 OB minus Table 1 model)



o
o

0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00
TIME (DAYS)

24.00 27.00 30. 00 33.00

Figure 12. Along-track ephemeris differences for lead satellite (GEM-10B minus Table 1 model)
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Figure 13. Cross-track ephemeris differences for lead satellite (GEM- 10B minus Table 1 model)
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Figure 14. Range residual (Table 1 model minus GEM-1 OB ephemeris)
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Figure 15. Range-rate residual (Table 1 model minus GEM-1 OB ephemeris)
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DISTRIBUTION FORMAT



Center for Space Research
The University of Texas at Austin

May 2, 1986

GRM SIMULATION: SGRM8511

Distribution Format

Characters per record: 80
Records per block: 300
Characters per block: 24000
Character set: either ASCII or EBCDIC (as noted on label)
Density: 6250 cpi

There are three files on the tape:

File #1: Contains the time, range, and range-rate from the GRM simulation using the OSU322
gravity (180x180 and orders 0 to 10 for degrees 181 to 300). Also contains the
ephemerides for a reference orbit fit to the GRM simulation using the modified GEM-
10B geopotential.

File #2: OSU322 gravity file.

File #3: GEM-10B gravity file, with modified GM and ae

The formats for reading files 2 and 3 are at the beginning for each file. The format and data content
for the first file is as follows:

Data at each time point:

t[ time tag in seconds from the start of the ephemeris at t = 0.

p£- observed range between the two satellites (noiseless)

p,- observed range-rate between the two satellites (noiseless)

r\i * measurement noise parameter

71 ** position vector of the lead satellite for the 36x36 reference orbit

v~! ** velocity vector of the lead satellite for the 36x36 reference orbit

r'2 ** position vector of the trailing satellite for the 36x36 reference orbit

v"2 ** velocity vector of the trailing satellite for the 36x36 reference orbit

* The measurement noise parameter ranges from -5.0 to +5.0 and has a Gaussian distribution.
Scaling this quantity by the standard error of the measurement precision enables noise to be
added to the observations. For example, to create a range-rate observation with noise, p/,
Pi = pi + GT\i, where a might be 0.000001 ms"1.



** These data are expressed in an earth-fixed, rotating coordinate system. The position and velocity
vectors were transformed from the nonrotating, inertial coordinate system of integration to the
earth-fixed system using the same transformation matrix, i.e.,

fi = [R]rlt

Vi = [R]v{i

where 7/t and v}. are the position and velocity vectors in inertial coordinates and [/?] is the
transformation matrix between the nonrotating, inertial system and the earth-fixed, rotating
system.

Three records (card images) are used to display the data at each time point; the card images and
formats are:

Record No. k /,- p,- p,- rj/ x\ yi
F9.1 F18.10 F14.ll F7.4 F16.7 F16.7

Record No. k+l z\ Xi yi zj x2

F16.7 F16.10 F16.10 F16.10 F16.7

Record No. k +2 yi z2 x2 yi z^
F16.7 F16.7 F16.10 F16.10 F16.10

The ground tracks of the satellites nearly repeat after 32 sidereal days (2757250.8 sec); the data
stored on the magnetic tape span 32 mean solar days (2764800 sec).




