
NASA TECHNICAL MEMORANDUM NASA TM-88428

EVOLUTION OF A METEORITE CRATER AS A PROCESS
OF RANDOM DISPLACEMENTS

I. T. Zotkin, A. I. Dabizha

,' (NASA-TM-88428) EVOLUTION OF A METEORITE N86-26561
j CRATER AS & PROCESS OF RANDOM DISPLACEMENTS
(National Aeronautics and Space

: AdministratioE) 18 p HC. A02/BF fl01 CSCL< 08G Unclas
G3/46 43341

Translation of "Evolyutsiya meteoritnogo kratera kak protsess
sluchaynykh peremeshcheniy," IN: Meteoritika, Akademiya Nauk
SSSR, No. 40, 1982, pp. 82-90, &82 -47142) (UDC 551.311)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 JUNE, 1986



STANDARD TITLE PAGE

1.

4.

7.

9.

12.

Report No. 2. Government Accession No.

NASA TM-88428

Title and Subtitle

EVOLUTION OF A METEORITE CRATER AS A
PROCESS OF RANDOM DISPLACEMENTS

Author(s)

Zotkin, I. T. and Dabizha, A. I.

Performing Organization Name and Address

The Corporate Word
1102 Arrott Building
Pittsburgh, PA 15222

Sponsoring Agency Nome and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

3.

5.

6.

8.

10.

11.

13.

14.

Recipient's Cotolog No.

Report Dote

June 1986
Performing Organizotion Code

Performing Organization Report No.

Work Unit No.

Contract or Grant No.

NASW-4006

Type of Report and Period Covered

Translation

Sponsoring Agency Code

15. Supplementary Notes

Translation of "Evolyutsiya meteoritnogo kratera kak protsess
sluchaynykh peremeshcheniy,'' IN: Meteoritika,Akademiya Nauk SSSR,

• No. 40, 1982, pp. 82-90, (A82-47142) (UDC 551.311)

16. Abstroct

An. examination of the ages and sizes of 114 terrestrial impact
craters shows that their aging kinetics can be described by the
diffusion laws. The macrodiffusion coefficient which determines
random displacements of mineral masses on the earth has a mean
value of 0.02 sq m/year. The amount of matter in a crater that
contains information about the impact event decreases with
time according to the 1/T law. The basic characteristic parameter
of a crater is its initial area, inasmuch as sufficiently large
craters are nearly surficial formations. The relaxation time of
a crater is proportional to its initial area.

17. Key Words (selected by Author(s))

19. Security Clossif. (of this report)

Unclassified

18. Distribution Statement

Unlimited.

20. Security Clossif. (of this poge)

Unclassified

21- No. of Page*

18

22. Pric.' :-.

2

NASA-HQ

L-'~i ̂  I'• -^-^- ^^^^*^wSEK~ G?3u- "i"i «*r'i «• '•••^i^j^ i?"'?B?' "^" IJ' **-"••!"•* **^u * "ir ~"*«



EVOLUTION OF A METEOR CRATER AS A PROCESS

OF RANDOM DISPLACEMENTS

I. T. Zotkin, A. I. Dabizha

The V. I. Vernadskiy Institute for Geochemistry and

Analytical Chemistry of the USSR Academy of Sciences

Information on crater age and dimensions plays an /82*

important role in the study of terrestrial metorite craters (as

is the case with any geological object). Unfortunately, reliable

evaluations of absolute age are available for only a small number

of actual craters (Table 1). However, even this little

information allows us to establish certain parameters.

For example, an analysis of the distribution of cosmogenic

structures on the Earth's surface according to age T and

dimensions D [Fedynskiy et al., 1978; Zotkin et al., 1978] makes

it possible to state that the ratio T/D2 or its inverse ratio

plays a substantial role in the study of these objects'

evolution. In particular, the virtual absence of craters for

which T/D2 > 100 years x m~2 indicates that the lifetime, or

the true relaxation time, Te , of craters as geological objects

on the Earth's surface is determined by the value of D2, i.e.

area S (Figure 1). From research [Fedynskiy et al., 1978], we

know that

7V-50S. (1)

where Te is expressed in years and S in m2.

*Numbers in the margin indicate pagination in the foreign text.



TABLE 1

RELATIONSHIP OF METEORITE CRATER AGE AND SIZE

/83

Kparep, wecro

1

I flpflblMrtbl, CCCP

Havitand, USA
Dalgaranga, Australia

fl CMXOT3-AnMHb, CCCP

Dogubayazid, Turkey
^ Co6oneBCKMM, CCCP

Campo del Cielo, Argen-
tina

10 MnyMerca. CCCP

Wabar, Saudi Arabia
U Kaanvi, CCCP

Henbury, Australia
Odessa, USA
Boxhole. Australia
Aouelloul, Mauritania
Monturaqui, Chile
Temimichat, Mauritania
Wolf Creek, Australia
Wipfelsfurt, West Ger-
many
Darwin crater, Australia
Pretoria Salt Pan, South
Africa
Barringer, USA
Hummeln, Sweden

I"! Ta6yH-Xapa-O6o, MOH-
roriMH
Tremorgio, Swiss Alps
Liverpool, Australia
Talemzane, Algeria

13 3anaAHan. CCCP

Lonar, India

Tenoumer, Mauritania
Roter Kamm, South
West Africa

|«f lUyH3K, CCCP

Holleford. Canada
Kelly West, Australia

1' POTMMCTpOBCXaH. CCCP

lit 3eneHbiS Tan, CCCP
West Hawk, Canada

B.P. structure. Libya
Sreinheim, Germany

»") TyceBCKMii. CCCP
Poplar Bay, Canada
New Quebec, Canada
Jeptha Knob. USA

2
D. KM

2

0,002
0,011
0,021
0,026
0.035
0,05

0,07

0,08

0,09
0,11

0,15
0,17
0,18
0.25
0,48
0,50
0,85
0,85

1,0

1,1

1,2
1.2
1,3

1,4
1,6
1,75
1,75

1.8

1.9
2,4

2.5
2.5
2.5
2.7

2.5
2.7

2,8
3.0

3.0
3.0
3.2
3.2

3 **MeTOA
T Hccne-' rOA • Aoea-

HMfl

3 4

20 n
1000 r
25000 r
32 n
56 H
200-250 r

3.95 103 r

6,03 • 103 y

(6,4 i 2,5) • 103 T

2,66- 103 y

(4,2 ± 1,9) • 103 T
22 -10s r

50-10 3 H
(3,25 ± 0,5) -10' T
1-10' r
(2-51-10' r
(100-110) • 103 r
14,8-10' r

(0,74 ± 0,04) • 10' T

1,0-10* H

30-103 r
(500 ± 100) -10' r

30 • 10« r

( 20-50) -103 r
(150*701-10' r

1,0-10' r
(169 ± 5) • 10' p

50 • 103 T

(2.5 i 0,5) - 10' r
< 70 • 10* r

12- 10' r
(550 150) -10' r

550- 10' r
(95-106) • 10' p

(100-135) • 10' r
(100 ±50) -10' r

< 1 20 - 1 0' r
(14.8 i 0,7) • 10' r

<65-10 ' r
(100i50)-106 r
1 1 0 * r

350-10' r

6 fc

/ i flMTeparypa

5 6

6,37 KauiKaw, ArtMee. 1961
10,52 Robertson, 1978
72,21 Barringer. 1967
0,06 1>eceHKOB, 1947 l̂
0.05 Sander. 1972
0,10—0,12 XpHHHHa, MeaMOB. 20

1977
1.02 Cassidy, Renard. 1973

1.02 Cepe6pnHbiM, HyMHuMr,
1976

1,01 Storzer, Wagner. 1977
0,28 Cepe6poHbiM, nyHMMHr,

1976
0,24 Storzer, Wagner. 1977
0,97 Barringer, 1967
1,97 To we 22
66,46 Storzer, Wagner, 1977,
5,53 Engelhardt, 1974
10,19 Fudali. Cassidy, 1974
0,18 Hodge. 1970
26.72 Classen, 1977

0,94 Storzer, Wagner, 1977
1,05 Classen, 1977

0,03 WyMBMKep, 1968 Z>3
442 Carstens, 1975
22.61 UlKepnH, 1976 i't

0,01-0,03 Bachtiger, 1977
74,64 Guppy et al., 1971
0,42 Classen. 1977
70.30 Baribrep, Pn6eHKO. ^*

1977
0.02 Frederiksson et al..

1973
0.88 French et al., 1970
15,48 Waddington, Dence,

1975
2.45 3>enbflMaH M np.. 1979 '
112,1 Dence. 1965
112.1 Tonkin. 1973
16,60 Baribrep, Pfl6eHKO. 2$

1977
65,02 To we 2ft.
17,47 Robertson, Griewe.

1975
16.25 French et al.. 1974
2.09 Engelhardt, 1974. Stor-

zer et al., 1971
9,20 Macaw-rue M AP.. 1978 1
14,15 Trueman. 1976
0.12 Dence, 1965
43.54 Classen. 1977
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Skeleton, Canada

Flynn Creek. USA
Kofels. Austria
He Rouleau, Canada
Gow Lake, Canada
MMUJMHB Topa. CCCP
Brent. Canada
Knpflna. CCCP
MnbMHUbl, CCCP

Mien, Sweden

KypcKan, CCCP
Crooked Creek, USA
Pilot, Canada
Saaksjarvi. Finland
MMsapaw, CCCP
>KaMaHLUMH, CCCP
Decaturville. USA
Kentland, USA
Serpent Mound. USA
Wetumpka. USA
Middlesboro, USA
EeeHMMMe-CaanaTMH.
CCCP
Elbow, Canada

BanpHMCKao, CCCP
Lac La Moinerier.
Canada
Lac Couture, Canada
Wanapitei, Canada

Deep Bay, Canada
Redwing Greek, USA
Bosumtwi, Ghana
Eagle Butte, Canada

KapnHHcxaH. CCCP
Oasis, Libya
floroMCKan. CCCP

Serra da Cannghale,
Brazil
Nicolson. Canada
Sierra Madera, USA
Steen River, Canada

Wells Greek. USA
HHMC-HPBH. CCCP
Lappajarvi, Finland
OSonoHCKan, CCCP

'OnbfbirbiTrbiH. CCCP
Dellen. Sweden "
KanywcKaH. CCCP
Stopfenheim, Germany
Mistastin, Canada

2

3.5

3.8
4.0
4,0
4,0
4,0
4,0
4.0

4,5

5,0

5.0
5.0
5.0
5.0
5,0
5.2

6,0
6.0
6,4

6.5
7.0
8.0

8.0

8.0
8.0

8,0
8.5

9,0
9,0
10
10

10
11,5

12

12

12,5

13.0

13,5

14,0

15
14,0

15

15

15
15
18
20

1- 3 I~T r^
• ' 600 • 1 0"

(360 t 201 • 10"
(8,9 i 2.9) - 10 '?
< 300 • 10'
1 50 • 1 0'
350 • 10"
(414 i 20) • 10"
(440-500) 10'
(395-400) • 10*

1 20 • 1 0"
(92 i 6) • 10'
< 200 1 0'
(320 i 80) • 10"
(300 .'. 150) • 10"
< 3 3 0 - 10"
(SOO • 80) • 10"
(1,07 i 0,05) • 10''
(500 i 50) • 10'
<450 • 10'
270 • 10"
< 70 • 1 0"
< 500 • 1 0'
< 6 5 - 1 0 '

(70-80) • 10"

(130-195) • 10'
(380-410) • 10"

(410-430) • 10"
(37 i 21 -10"

_

(100 i 50) • 10"
200 • 10"
(1,04 i 0,11) • 10"
(30-40) • 10'

< 25 10'
(29,4 • 0.5) • 10'
(120 .'. 15) - 10"

< 300 '• 10'

(300 i 150) • 10'
(150 t 70) • 10'
(95 : 7) • 1C"

1 00 • 10'
!720-730)'- 10'
1.8 • 10°
•: 150- 10'

•

(5i 2) • 10"
235- 10'
(400-430) • 10'
M4.8 i 0.7) • 10"
(38 i 4) • 10*
(39.6 ' 4.46) • 10'

4

r

r

T

r
r

r

P
r

r

P
T

r

r
r

P
r

T

r
r
r
r

r
r

r

r

P

P

P

r
r
T

r

r
T

r

r

r

r

P

r

P
P
r

P .
P •
P
r

P
T

I 5 1~~r~ "" 1

62,39

31.76
0,001?
23.89 -
11,94

' 27.87
32.96
35,03
24,85

6.11

4,69

10,19
16,31
15.29
16,82
25.48
0,05

17,69
15.92
8,40

2.11

13.00
1,29

1,39-1,59

2,59-3,88
7,56

8,0
0,65

1.57

3,15

0,013
0,38

0,3?

0,28

1,06

2.65

2.45

1.13

0.66

0,65

4,08

7,93

0,84

0,02

1.33

2.26

0.06

0.12

6

Wndclington, Dence.
1975

Roddy, 1968
Storzer, Wagner, 1977
Caty et al., 1975
Thomas, 1977 '' ,
MacaiiTMC M ni'., 1978 21
Hartung et al.. 1971

MacaiiTMC M nP-. 1978 2,7
BanbTep, PuSeHKO, 25
1977

Bottomley et al., 1977
Storzer. Wagner, 1977

MacaiiTMC n nP-, 1978 37
Engelhardt, 1974
To we i^
Bottomley et al.. 1977
MacaiiTMC n nP-. 1978 37
Storzer, Wagner, 1977

Engelhardt. 1974
BonAyMH, 1968 H 2
To we 22.
Neathery et al.. 1975
Engelhardt, 1974
MacaiiTMC M np., 1978 37

Robertson, Grieve,
1975

MacaiiTMC M np., 1978 ^7
Bottomley et al., 1978

To we 7,1*

Robertson, Grieve,
1975

To we ZZ
Robertson, 1978
Storzer, Wagner, 1977
Robertson, Grieve.
1975

MacaiiTMC M nP-. 1978 2, *
Storzer, Wagner, 1977
BepcTeHHMKoe, 1976. *^*

ycTH. coo6m.
Dietz, French, 1973

Engelhardt. 1974
Engelhardt. 1974
Robertson, Grieve.
1975

Stearns et al.. 1968
MacaiiTMC M nP-. 1978 *•
Lehtinen. 1976
BanbTep, Pn6fiHKO.'i*
1977

Typos M np., 1978 *^t'
Bottomley et at., 1977
MacaiiTMC M nP-. 1978 2>1
Storzer et al.. 1971
Mak et al.. 1976 ^
Storzer. Wagner, 1977
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/ n» BaMAapauKMM, CCCP

|
Hanghton Dome, Canada

1
Gosses Bluff, Australia
Clearwater East, Canada
Rochechonart, France

Ries, Germany
Strangways, Australia
St. Martin, Canada

U"* KawBHCKan, CCCP
•(% BanrbiujCKan, CCCP

1 Manson, USA
Slate Island. Canada

i Carswell, Canada
1

Clearwater West, Canada
Charlevoix, Canada

La Malbaie. Canada
Araguainha Dome, Brazil
Siljan, Sweden

M^ KapcxMvi, CCCP

Richat, Mauritania
50 ria6biHKbip, CCCP

Manicouagan. Canada
Si nynew-KaryHb. CCCP
ylTlonMraii, CCCP

Sudbury, Canada

Vredefort, South Afr ica
Michigan basin?

2 | 3

20 57 106

95 10'
20 15-10"

22 (133 ±3) -10"
22 (287 ± 3 ) - 10'
23 (150 t 10) • 106

(198 ± 25) • 10'
24 (14,7 i 0,4) • 10'
24 (150 * 70) 10"
24 (225*401-10"

25 < 65- 10'
25 (96-105) • 106

30 (150 .' 70) • 106

30 < 350 • 10"
30 (485 i 50) • 106

35 (287 * 43) • 10"
35 (360i25) -10"

35 (365-4601-10''
40 < 250 • 10"
45 365 • 10"
50 57 10"

95 10"
50' < 300 • 1 0'
60 (150-300) • 106

70 (200 ± 30) • 106

80 . (183 i 3) -10"
100 33,9 106

100 (1,84 ± 0,15) • 10*

140 (1,97 i 0,1) • 10*
--100 2 ,4 -10"

4

P
r
r

P
T

P

I

T

r

P

r

P
r
r
r

r

P

r
r

P
p
r
r

r

T

P

P

P

P

r

5

0,18

0.05

0,35
0,76
0,36
0,48
0,03
0,33
0,50

0.13
0.19
0.21
0,50
0.69

0.30
0.37

0,38
0,20
0,23
0,03
0.05
0,15
0,05-0. 1 1

0,05
0.03
0,004
0,23

0.13
<0,31

S* r i p M M e H a H n e : r — rpeKOBbiM, p — pannonorn.HecKMM. y — yrnepoflHuii, r

6

MacnoB. 1977 &
To we
Robertson. Grieve,
1975
Milton etal.. 1972
Storzer, Wagner, 1977
Kraut, Becker, 1975
Storzer, Wagner, 1977
To we 2Z.
Guppy, Brett, 1971
Robertson, Grieve,
1975
MacaiiTMc M up., 1978 VI
To we Zt
Engelhardt,'1974
Halls, Grieve. 1976
Robertson, Grieve,
1975
Storzer. Wagner, 1977
Robertson, Grieve,
1975
Robertson, 1968
Dietz, French, 1973
Bottomley et al., 1977
MacnoB, 1977 S3
To we 21
Short, Bunch, 1968
Banbrep, Typos, 1977,
yciH. coo6w. £^
Storzer, Wagnei, 1977
MacafiTnc M np., 1978 "i~l
To we 1/1.
Robertson, Grieve,
1975
Manton. 1965
Hartung, 1978

- reonort-mecKiiki n-Ha-
6nionanocb naaeHwe. M — weron Hen3BecT6H.
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KEY: 1 - Crater, location; 2 - D, km; 3 - T, yr; 4 - Research

method; 5 - T/S, yr/m2; 6 - Reference. 7 - Yardymly, USSR;

8 - Sikhote-Alin', USSR; 9 - Sobolevskiy, USSR; 10 - Ilumetsa,

USSR; 11 - Kaali, USSR; 12 - Tabun-Khara-Obo, Mongolia;

13 - Zapadnaya, USSR; 14 - Shunak, USSR; 15 - Rotmistrovskaya;

16 - Zelenyy Gay, USSR; 17 - Gusevskiy, USSR; 18 - Kashkay,

Aliyev, 1961; 19 - Fesenkov, 1947; 20 - Khryanina, Ivanov, 1977;

21 - Serebryanyy, Punning, 1976; 22 - Ditto; 23 - Shumaker, 1968;

24 - Shkerin, 1976; 25 - Val'ter, Ryabenko, 1977; 26 - Fel'dman,

et al., 1979; 27 - Masaytis et al., 1978; 28 - Mishina Gora,

USSR; 29 - Kyardla, USSR; 30 - Il'intsy, USSR; 31 - Kurskaya,
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USSR; 32 - Mizaray, USSR; 33 - Zhamanshin, USSR; 34 - Beyenchime-

Saalatin, USSR; 35 - Vapryayskaya, USSR; 36 - Karlinskaya, USSR;

37 - Logoyskaya, USSR; 38 - Yanis-Yarvi, USSR; 39 - Obolonskaya,

USSR; 40 - El'gygytgyn, USSR; 41 - Kaluzhskaya, USSR;

42 - Boldyin; 43 - Veretennikov, 1976, oral communication;

44 - Gurov et al., 1978; 45 - Mak et al., 1976;

46 - Baydaratskiy, USSR, 47 - Kamenskaya, USSR;

48 - Baltyshskaya, USSR; 49 -.Karskiy, USSR; 50 - Labynkyr, USSR;

51 - Puzhek-Katun', USSR; 53 - Maslov, 1977; 54 - Val'ter, Gurov,

oral communication; 55 - NOTE: t - trek; p - radiological; y -

carbon; r - geological; n - drop observed; H - method unknown.

TABLE 2

NUMBER OF MELTS IN A CRATER

I

5

.fr

Kparep

Mistastin
West Clearwater
BonTblUjCKHM

Manicouagan
Ho™

2 S, KM*

I

3 V, KM>

I 1

110 8
230

'310
710

7900

" flMTeparypa

Grieve et al.. 1977
24 ~J To we
19
80

1700

% BanbTep, Pn6eHKO, 1977
Dence et al., 1977

^ MacaMTMC, 1979, VCTH coo6tu.

KEY: 1 - Crater; 2 - S, km2; 3 - V, km2; 4 - Reference;

5 - Boltyshskiy, 6 - Popigay; 7 - Ditto; 8 - Val'ter, Ryabenko,

1977' 9 - Masaytis, 1979, oral communication.

So as not to exclude totally destroyed cosmogenic structures

-- astroblemes — from the study, this work defines a crater as

any geological-geophysical phenomenon which indicates that an

impact meteor explosion took place at its location and from which

we can evaluate the scale and time of the event. Under

terrestrial conditions this approach is possible. The lifetime,

or relaxation time Te, is the time during which crater

characteristics reach a certain level of geological noise, i.e.,



the property gradient between the crater and its surrounding

environment disappears. Noise is understood as interference

considered characteristic by modern methods of meteorite crater

detection. Such a general approach must use more than crater

morphology as a characteristic. A terrestrial meteorite crater

— or impact event — is a set of characteristics —

morphological, geological-geochemical, geophysical [Dabizha,

Zotkin, 1979]. Some of them disappear relatively quickly

(relief, for example), while others remain virtually unchanged

over the lifetime of the planet (fusion or high-baric minerals).

Naturally, to evaluate the scale of the event, other information

must be taken into account.

The study of the evolution of terrestrial craters according

to changes in morphology is complicated by the fact that initial

forms greatly depend on size. Small craters are deep, while

large craters are flat and morphologically complex.

As with lunar craters, morphological classifications can be

set up for terrestrial craters, but their relationship to

evolution will probably be more complex, because lunar processes

are more uniform. Thus, the Shunak or El'gygytgyn craters can be

classified as relatively fresh, young objects; Hies belongs to

the intermediate class, and Deep Bay or Yanis-Yarvi are old

craters from which morphological features have been virtually

erased. Morphological methods provide a wealth of information on

lunar craters because a crater's relief is better preserved on

the Moon and its evolution is slower. Therefore, morphology is

the most available characteristic for lunar objects at present.

We can assume that area S is the basic energy characteristic

of an impact crater. This is clear if we remember that fairly

large craters are relatively flat objects. The majority of

quantitative features and characteristics are somehow related to

8
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Fig. 1. Distribution of impact-explosive cosmogenic structures

as a functin of their age and area.

1 - Meteorite craters on Earth; 2 - Lunar objects.

crater size: area determines how well a crater can be discerned

on aerial or space photographs; the basic gravimetric /86

characteristic — defect mass — is not proportional either to

size D or basic volume D3, but to meteorite crater area D2

[Dabizha, 1978]; the quantity of impact-altered matter preserving

information on the impact event is also proportional to crater

area.

The quantity of melted rock is an indicative example of the

above (Table 2). Unfortunately, information on melt volume is

currently available for only a few large craters.

In summary, we can conclude that the intensity of information

on a crater (signal intensity) will be proportional to D2, or



crater area

/ ~S~02. (2)

Craters disappear from the planet's surface due to

innumerable random reasons. The majority of observable craters

are strongly altered and changed. These changes depend on many

circumstances, above all on the geological and tectonic

conditions in the region where the cosmic body fell, the state of

the planet's upper layers (core, viscous layer and their power

ratio, as well as the presence of an atmosphere), and crater age

and size [Dabizha et al., 1977]. Naturally, these factors

determine the course of evolution not only for meteorite craters,

but for geological objects of different origins. Crater

evolution is one of the manifestations of the geological form of

the movement of material, which has a definite specifcs [Kedrov,

1958; Bondarchuk, 1970]. As with physical and chemical forms of

movement, which often become apparant through random wandering or

diffusion, the geological form of motion (the evolution of a

meteor crater) can be represented as the random displacement of

the mineral masses making up the crater. Diffusion (random

displacement of substances) can be postulated from equation (1),

which indicates that the relaxation time of a geological

disturbance is proportional to its linear dimensions squared.

According to the solution of the diffusion equation, /87

the concentration of substances surrounding a diffusing two-

dimensional object are expressed as:

where r is the distance from the center; k is the diffusion

factor; and Io is the initial concentration, if we consider the

crater as a whole and ignore its structural details, i.e.

10



consider it a homogenous, compact geological disturbance

(formally point-like). It gives not only the quantity of

impact-altered substances, but all information on the crater.

Knowing I is of practical interest not over great distances, but

in a small region, near the center of the crater, where r is

small. Then

/(r) =

In other words, the traits of a crater are inversely proportional

to time and the diffusion factor (macrodiffusion).

Earlier it was stated that immediately following crater

formation Io is proportional to So. Afterwards, intensity is

inversely proportional to kt over time. It is important to

remember that what changes is not the structure's dimensions, but

the intensity of the anomaly; in other words - the intensity of

the geological disturbance. On the other hand, crater diameter

(with the exception of the smallest craters located on slopes) is

the most stable and convenient of all traits and parameters.

Crater dimensions reconstructed now are, in effect, the initial

dimensions of these objects, i.e. Do.

The ratio of crater area S, or D2 , to crater age T, i.e.

S/T, is a parameter which characterizes the object's level of

preservation, or how pronounced it is. Grieve and Robertson

[1979] propose a similar parameter (preservation index), but

chose the ratio of diameter D to age T. A certain correlation

can be seen between this parameter and the level of preservation,

which is qualitatively evaluated (in degrees) according to the

crater's visible morphology and ejections [Grieve, Robertson,

1979] (Fig. 2).
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Fig. 2. Accumulated (integral) distribution of the number of

meteorite craters in terms of adjusted age T/S (lower left) and

in terms of the index for their condition S/T (upper right).

KEY: 1 - m2x yr-1; 2 - yr x m~ 1 ;

It is convenient to consider the inverse of T/S, or T/D2,

the adjusted, or normalized age of a meteor crater (see Table 1),

which makes it possible to study impact structures with different

dimensions in a single time scale and a single genetic order,

while he numerical value of this parameter determines the

crater's place on the evolutionary scale, all other conditions

being equal. For example, the Popigay crater has a diameter of

100 km, is 30 million years old, and its T/S ratio is equal to

0.004(years x nr2); in the above sense it is much younger and

better preserved that the Sikhote-Alinskiy craters with

dimensions of a few meters, which are only a little over 30 years

old (T/S=40). Younger and better preserved craters will tend

toward the upper boundary of the 1/50 <_ T/S <. 50 area in Fig. 1,

and the older craters, toward the lower boundary.

A similar approach permits quantitative study of the

evolutionary morphological order of lunar craters, proposed by K.

P. Florenskiy et al. [Florenskiy et al., 1971; Florenskiy,

Taborko, 1972; Basilevsky, 1976]. The level of crater diffusion,

conditionally determined by the diffusion process, gives an

independent evaluation of age by using the abovementioned /88

authors' "intersection method." Unfortunately, as Table 3 shows,

12



there is not enough data on the absolute age of lunar craters to

derive the quantitative parameters involved in the random

dispacement process.

TABLE 3

DIMENSIONS AND AGE OF CERTAIN LUNAR CRATERS AND SEAS

V Kpaiep t, Paawep. KM

S 5ea HaaaaHMR 2 - 1 C T 3

Bullet Crater . 1.- 10"*
£ 6 63 xasaaHMR 1,5 • 10"J

1.5 -10-'
2 -10 -

Plum 3 • 10-
Van Serg Crater 9-10"
Spur Crater 9-10"
Head 1-10"
Shorty 1,1 -10''
Surveyor 2 • 10~'
Cone 3.4 -10' '
South Ray 6.5-10-'
Camelot 7,3 • 10''
North Ray 9.5 -10''
Tycho 1 1 0
Copernicus 1 25
Mare Crisium 516
Mare Tranquillitatis 650
Mare Oriehtale 960
Mare Imbrium 1100

3 °°3»P*eT; «» n««P«vp-

0.1 Yokoyamaet al., 1975
1 ,2 ± 0,2 To we &
0,3 ± 0.2
0,75 Basilevsky, 1976
0.4 i 0.2 • Yokovama et al., 1975
30 i 10 Basilevsky, 1976
1,6 ± 0,5 Yokoyama et al., 1975
2,6 Storzer et al., 1973
40 Basilevsky, 1976
10 Tome 6
240
26
2
85
50
100 Neucum, Kbnig. 1976
850 To we
> 3270 Schaef fer et al., 1 978
> 3700 To >KB
3840 Chao, 1977
3900 To we (4

KEY: 1 - Crater; 2 - Size, km; 3 - Age, million yr; 4 -

Reference; 5 - Unnamed; 6 - Ditto.

A study [Fedynskiy et al., 1978] on the relationship between

the number of known craters and their dimensions and age

indicated that the probability of a crater being discovered, P,

is proportional to S/T. Using the information given in the

present article, we can define the physical meaning of this value

more precisely: it is the information content, the distinctness

of a crater as a geological object I living over time. More

13



s t r ic t ly speaking:

P " SO/KT. (5)

where So is the crater's initial area and k is the

macrodiffusion factor. Obviously, k varies significantly for

different regions of earth and for different features making up

information content. Variations in k, obviously, leads to the

expansion, the broadening [or erosion] of the area a crater

occupies in space (S,T). A increase in k shortens a crater's

life, while a decrease in k prolongs it.

The distribution of the number of craters according to T/S

(see Fig. 2) provides us with definite conclusions on the average

value and variations of factor k. It follows from expression (5)

that T/S is proportional to k if, as a rough estimate, we assume

that the probability of all currently known craters being

discovered is approximately equal. The distribution function

(see Fig- 2) shows that T/S centers around a value of iil.4

year/m2 and has a spread of about two orders of magnitude.

Thus, a study of the ages and dimensions of 114 meteor

craters on earth showed that the kinetics of their aging and,

consequently, the evolution of the crater population, can be

described with diffusion laws. Here craters should be considered

as a certain geological disturbance on a planet's surface caused

by a meteor impact and exhibiting a series of different traits.

The macrodiffusion factor, which defines the random displacement

of mineral masses over the Earth, is around 2 x 10~2 m2/year

on the average. The basic distinctive energy characteristic -of a

crater is its initial area So.

The authors wish to thank K. P. Florenskiy, A. T. Basilevsky,

and B. A. Ivanov for discussing the work, and V. M. Liskin for

helping write the article.
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