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SYMBOLS

d.,d(-) desired output of transversal filter
ij

e( •) equation error in transversal filter

Fa,Fi adaptation coefficients

G(•) transfer function of controller

G(-) estimate of G(-)

i( •) system input

i,j,k index symbols

M( •) transfer function of open-loop model
*

N number of weights in transversal filter

n(-) process noise

P(-) transfer function of plant
*N

P(-) estimate of P(-)
*• • A.

Pc(0 copy of P(-)

p = d/dt differential operator

P information vector

R information matrix

s Laplace operator

t time

T£ real-time length of transversal filter

TR(-) transfer function of closed-loop model

tr trace

v ( • ) measurement noise

w weight vector in the transversal filter
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w^ ith. component in w

x(-) input to transversal filter

YF,y.,y(-) output of transversal filter

z(-) actual plant output

z (•) measured-plant output

AT time increment

e(-) control system error

X eigenvalue

w natural frequency

u adaptation gain factor

v gradient vector

a. rms value of input

a rms value of noisen

T., convergence time constant in terms of iterationsit

T actual convergence time

C damping coefficient

IV



SUMMARY

This paper addresses the design of closed-loop adaptive control systems based
on nonparametric identification. Implementation is by self-adjusting Least Mean
Square (LMS) transversal filters. The design concept is Model Reference Adaptive
Control (MRAC). Major issues are to preserve the linearity of the error equation of
each LMS filter, and to prevent estimation bias that is due to process or measure-
ment noise, thus providing necessary conditions for the convergence and stability of
the control system. The controlled element is assumed to be asymptotically stable
and minimum phase. Because of the nonparametric Finite Impulse Response (FIR)
estimates provided by the LMS filters, a priori information on the plant model is
needed only in broad terms.

The "Indirect Method," involving explicit plant identification, and the "Direct
Method," in which the controller is directly computed, are compared in the light of
filter and system constraints. Following a survey of control system configurations
and filter design considerations, system implementation is shown here in Single
Input Single Output (SISO) format which is readily extendable to multivariable
forms. In extensive computer simulation studies the controlled element is repre-
sented by a second-order system with widely varying damping, natural frequency, and
relative degree. Excellent convergence and robustness are demonstrated by the step
response of the adapted system which deviates from the reference model by only a few
percent under wide parameter variations of the controlled element. Controller FIR
estimates and convergence time-histories support the validity of the concept.

INTRODUCTION

The principal approaches to the design of adaptive control systems require
a priori knowledge of the order and relative degree of the controlled system. More
specifically, to ensure convergence and stability, the transfer function of the
error equation in the adaptive algorithm must be positive-real (refs. 1 and 2).
Underlying the realization of an adaptive controller is parametric system identifi-
cation. This may take the form of the "Indirect Method" (ref. 3), in which the
unknown parameters of the plant are explicitly identified. Their estimates are used
in the computation and adjustment of the controller parameters so as to meet the
requirements of a suitable performance criterion. Alternatively, in the "Direct
Method," the controller-plant system output is compared to that of a reference
model. Their difference drives the adaptive algorithm which adjusts the control-
ler. In either method, the plant is modeled by a finite-dimensional differential



equation. A substantial advantage of finite- dimensional modeling is the relatively
fast cpnvergence. of the adaptive algorithm. A major disadvantage is that the con-
troller design is complex and its performance strongly depends on the validity of
the assumed form of the plant model (ref. 1). A major issue in the design of para-
metric adaptive controllers is the need to prevent parameter estimation bias caused
by process or measurement noise. •'.

An alternative approach to the design of adaptive control systems investigated
in this paper is by nonparametric identification in the time domain. The controlled
element is assumed to be linear, asymptotically stable, and minimum phase. Non-
parametric, time-domain identification can be implemented by self-adjusting
transversal filters (ref. 4). These filters consist of the weighted sums of:

linearly independent time functions derived from the system input. Of particular
importance is the tapped delay line (ref. 4), which is a natural form in digital
realizations. The weight vector constitutes a discrete approximation of the identi-
fied system in the form of a discrete Finite Impulse Response (FIR). Filters of
this type, known as Least Mean Squares (LMS) filters, have been widely studied in
the past two decades and have found extensive potential applications, in particular,
in adaptive noise cancellation and in signal processing (ref. -5). More recently,
lattice filters, which have superior convergence properties (ref. 6), are receiving
increasing attention in signal processing and in noise cancellation.

Recently, the application of self-adjusting filters in control systems has been
extensively studied in noise canceling (ref. 7), in parasitic mode suppression
(ref. 8), and in adaptive control (refs. 9 and 10). The main.advantage of this
approach is that no precise assumptions on the form and order of the controlled
plant are necessary. Distributed systems and lumped parameter systems are equally
treated. The adaptive controller is implemented by a single algorithm which is
applicable to dynamical systems with widely varying parameters and forms. A major
issue is that to ensure convergence and provide stability, the implementation of the
adaptation process, referred to herein as system configuration, must ensure the
necessary conditions of linearity between the error and the weight vector in each
individual filter arid must permit realizable implementations of the adaptation
process.

Another issue in the choice of the system configuration is the presence of
process or measurement noise which may cause biased parameter estimates (ref. 10).
Consequently, nonparametric adaptive-control system concepts in this class have
resulted in essentially open-loop configurations (refs. 9 and,10). These configura-
tions have the advantage of adaptively converging to a specified dynamic response
which is dictated by a reference model while avoiding the constraints of design to
stability as encountered in feedback structures. However, the crucial problem of
process-noise suppression apparently has not been resolved in these open-loop design
concepts.

It is the purpose of this study to apply the concept of nonparametric time-
domain identification in the design of closed-loop adaptive control systems. It
addresses design and implementation issues as outlined in the following sections.
The first section is a brief outline of the problem statement. In the second



—section.,-a^number^of -system_configunations._are_sur.veyed^and _candidate._designs_are
pointed out in view of system and filter constraints. In the third section, LMS
filter design is discussed in view of convergence time and closed-loop design cri-
teria in relation to the number of weights and tap spacings. In the fourth section,
system implementation is discussed for single-input-single-output (SISO) adaptive
systems. It is indicated that in applications with substantial additive noise the
indirect method, i.e., explicit plant identification is preferable. In applications
with insignificant noise, the direct method is superior. In the fifth section, the
performance of indirect and direct adaptive controllers is studied by means of
computer simulations. A second-order plant serves as benchmark example. The
results indicate excellent convergence to the reference model under wide variations
of plant parameters and relative degree. Appendix A summarizes the principal prop-
erties of LMS filters. Appendix B addresses the effects of process and measurement
noise in identification and adaptation.

The principal finding of this study is that nonparametric closed-loop adaptive
control is feasible. In particular, the response of the adapted system demonstrates
only minute deviations from the response of the specified reference model even when
the damping coefficient of the second-order plant is varied from 10~3 to 1 and the
relative degree is varied from one to two. Regarding the second-order example as a
model of any of a number of modes in dynamical systems, the results indicate, among
others, the potential of the method in adaptively suppressing parasitic oscillations
caused by unmodeled modes, and to achieve highly robust control which is shaped to a
specified desired form of response. The relatively low rate of convergence of the
LMS filter applied in this study is of minor significance in space structures or in
robotics applications. The issue of persistent excitation does not conflict with
the normal operation in such applications. This excitation, which is applied only
during conditioning or training periods, is removed during normal operation.

The results obtained encourage the extension of this study to multivariable and
nonminimum phase systems and to the implementation of lattice filters for poten-
tially faster convergence of the controller.

STATEMENT OF THE PROBLEM

The realization of a nonparametric adaptive control system based on LMS-type
self-adjusting filters hinges on the fulfillment of a number of assumptions and
conditions. These are first briefly stated here and are later discussed in further
detail.

Assumptions

The following assumptions are made: (1) The plant is a linear, continuous-
time, asymptotically stable, minimum-phase, lumped-parameter, or distributed-time
varying system (2) persistent excitation is provided either by the system input or



by artificial wide-band identification signals; and (3) plant parameters may vary
slowly in comparison with typical adaptation time constants, or they are piecewise
constant.

Linearity of the Error Equation -"•'• :

As indicated in appendix A, the gradient algorithm underlying the operation, of
the1 LMS self-adjusting filter is determined by the error equation, as given in
appendix A, in discrete form, where d., is the desired1 output and1 where y*; Is; the-
actual filter output, w is the weight vector.

= dj - yj = dj - xjwj (r)

Since the error equation is linear in w,, one has

a e.3w j = x
w=w. -JJ

which is independent of w ..
J

It is readily verified that this is: a necessary condition for the convergence
and stability of each self-adjusting filter in the system. Therefore,, the incorpo-
ration of self-adjusting filters in the control system should: not violate: the linear
relationship in equation (I). This can easily occur in closed-loop' feedback,
configurations. .

Filter Truncation Error

The controlled, plant is assumed to be continuous-time,, minimum* phase and;

asymptotically stable. Its impulse response is therefore Infinite Impulse- Response
(IIR). In accordance with equation (A17) the error eu:,, given by

N
ei = di - £ wuix(J - k + D (.30)1 J k=.i J

»i

incorporates a residual truncation error. Consequently the gradient V in equa-
tion (A4) and the weight increment in. equation (A6) cannot vanish. Thus, under all
operating conditions the filter must have the necessary real-time length to ensure;
that the truncation error will not cause excessive' noise in the weight vector w.,.,

J

On the other hand, if the plant has lightly damped oscillatory modes,, the
number of weights N, must be sufficiently in excess of the lower limit set by the
sampling theorem. Good fidelity of tracking d. thus provided prevents; an
excessive error component in e^ which can increase parameter noise resulting in:
degraded performance.



Unbiasedness._Qf the Plant .Identification

A major issue in the realization of an adaptive control system often is
unbiased identification of the plant in the presence of process or measurement
noise. Noise components in closed-loop systems can give rise to circulating residu-
als which result in biased plant estimates. The controller that is determined from
a biased plant model may perform poorly and may even cause instability.

Global Convergence and Stability of the Controller

The nonparametric modeling of the plant does not lend itself to formal expres-
sions defining conditions for convergence and stability of the control system as is
the case in parametric modeling. Therefore, if the necessary convergence conditions
of each filter in the system are fulfilled, global convergence and stability of the
complete control systems must still be assured by appropriate controller logic and
by using the familiar convergence properties of LMS self-adjusting filters.

In view of the foregoing, it is the purpose of this study to investigate the
feasibility and properties of an adaptive controller concept which is based on LMS-
type self-adjusting filters which essentially meet all the indicated requirements,
namely: (1) provision of closed-loop feedback control without violating the proper
form of individual filters, i.e., linearity of the error equation; (2) filter design
that ensures a sufficiently small truncation error and, when appropriate, provides
sufficient fidelity so as to reproduce high-frequency modes; (3) provision of an
identification algorithm which yields a unique and an unbiased estimate of the plant
dynamics; and (4) design of the adaptive controller algorithm so as to meet the
requirements of global convergence and stability.

SURVEY OF CONTROL SYSTEM CONFIGURATIONS

In this section candidate control systems configurations are discussed in view
of the requirements in the problem statement section. The general approach is Model
Reference Adaptive Control (MRAC). Various candidate configurations are first
examined for the linearity of the error equation in w, for biasedness caused by

™ **

process or by measurement noise and the realizability of the gradient V in accor-
dance with equation (A4). Both open-loop and closed-loop configurations are dis-
cussed. The differential operator p = d/dt is used in the continuous-time system
formulation. Finally, the configurations which essentially meet the foregoing
requirements are selected.

Open-Loop MRAC

An apparently straightforward open-loop MRAC configuration is shown in
figure 1.



M(p) is a linear reference model, P(p) is the controlled plant, and G(p) is an
adaptive controller structured as an LMS transversal filter formulated here, for
brevity, in continuous -time. The plant output is z(t) and n(t) is output-referred
additive noise. The adaptation process is to adjust G(p) so that G(p)P(p) * M(p).
In accordance with appendix A, G(p) is formulated as the weighted sum

N
G(P) = L gi(P)wffi (1»>

1=1 X g

where g^p) is the required set of linear operators which generate a set of
linearly independent functions from the input i(t). The error e(t) = r(t) - z(t)
is

r N 1
M(p) - P(p) £ gi<P>w, i U

L 1=1 gj
e( t ) = M ( p ) - P (p ) g i < P > w , i (t) - n ( t ) (5)

e(t) is measurable and it fulfills the necessary condition of linearity in
A *T*

w = [w.., w . . ., WM] . Furthermore, in
appendix A, n(t) is absent in the operator

A *T*

w = [w., Wp, . . ., WN] . Furthermore, in the realization of V, in accordance with

= -P(p)g.(p)i(t) (i = 1,N) (6)

2
This implies unbiasedness since e3e/3w. would not involve n (t) terms. However,
equation (6) implies, that to generate the N right-hand side partial derivatives,
every component g^(p)i(t) must individually be first filtered by the unknown
P(p). Observing figure 1 this is evidently not realizable and the algorithm cannot
be implemented.

An alternative configuration of open loop MRAC as described in reference 10 is
shown in figure 2. The order of P(p) and the adjustable controller G(p) is
reversed and an exact copy GQ(p) = G(p) precedes P(p), thus acting as the con-
troller. The error e(t) = r(t) - y(t) is

e(t) = [M(P) - G(p)P(p)]G(p)i(t) - G(p)n(t) (7)
A

which is nonlinear in G(p). Thus, in the implementation of the gradient 7, we now
have

3e 3e 3G(p) ., . ,Rv
3Wg. = 3G(p) 3Wg.

 l(t) (8)

In view of equation (4),



and

= [M(p) - G(p)P(p)]i(t) - P(p)G(p)i(t) - n(t) (10)

From equations (8)-(10), 3e/3w . can be written as

TTp- = [M(p) - G(p)P(p)]g (p)i(t) - P(p)G(p)g.(p)i(t) - gi(p)n(t) (11)
gi

The following observations apply to equation (11):

1. It is the second term which represents the desired signal, i.e., the actual
output of the filter g^p), i = 1,N, which is essential in the computation of the

>\ -̂

gradient v. It is realizable since P(p) actually precedes G(p).

2. The first term is directly related to e(t) and vanishes if e(t) * 0.

3. The third term incorporates a noise term caused by n(t).

4. The partial derivative 3e/3w . is a function of G(p), and thus of w.
2

5. The product e3e/3w . incorporates terms with n (t).

Consequently, the configuration shown in figure 2, though providing a realizable
3e/3w ., would yield biased values for G(p) and since 3e/3w . is a function of
w , convergence and stability of the algorithm is not assured.
o

The foregoing obstacles result from this attempt to estimate G(p) directly
from P(p) and to simultaneously implement adaptive control in the presence of
additive noise n(t).

These obstacles can be avoided by introducing explicit plant identification as

an intermediate step. As shown in figure 3, the model P(p) thus identified, is
used to compute G(p) which controls the plant P(p) (ref. 11).

Figure 3(a) represents the plant identification. Figure 3(b) represents the
controller computation: i(t) is the plant input and u(t) is an optional excitation
signal, preferably white noise. The LMS filter assigned to plant identification is
formulated by

' N
P(P) = E P



The error e (t) is

e (t) = z(t) - y(t) = [P(p) - P(p)]i(t) + n(t)
P

= P(p)i(t) - JC P1(p)wpi i(t) + n(t) (13)

Thus, since

3en(t)
-r6 = -p.(p)i(t) (14)

pi

is free of additive noise and independent of w , the identification algorithm
fulfills the necessary conditions for global convergence, stability, and unbiased-
ness. Furthermore, equation (14) is realizable.

For figure 3(b) we have

er(t) = [M(p) - G(p)Pn(p)]u(t) (15)
u C

where P (p) is a copy of P(p). In view of equation (4),
C ™

•aer(t)
-^— = -gi(p)Pc(p)u(t) (16)

The plant identification given by P(p) contains noise components w in the~ p . *
parameter vector w which are reflected in P (p). Thus, the estimate P (p) can
be expressed as

P (p) = P(p) + P (P) (17)
C C

where P (p) is the random fluctuation of P (p) resulting from the parametric
C C

noise w contributing noise components w u(t). These noise components are modu-

lative, and do not cause estimation bias. Therefore, the right-hand side in equa-
tion (16) fulfills the necessary conditions for global convergence, stability, and
unbiasedness. Thus, G(p) converges to the desired solution

G(p) - (18)
PC(P)

where G(p) is copied to Gc(p) which acts as the actual controller at the plant
input, as shown in figure 3(a).



Finallyr the plant output- - z(t)_is. given_by.:...

z(t) = G (p)P(P)i(t) + n(t)c

n(t) * M(p)i(t) + n(t) (19)

The configuration shown in figure 3, therefore, provides a stable unbiased adaptive
controller which implements the dynamic response of a desired model M(p). This
kind of open-loop control could, in principle, be applied when process or measure-
ment noise is negligibly small. Of the three classical objectives of control
systems, i.e., response shaping, reduction of sensitivity to plant parameter varia-
tions and noise suppression, it meets only the first two. Moreover, from equa-
tion (19) it is evident that the parametric noise in Pc(p) is directly reflected
in z(t). Consequently, this open-loop configuration cannot be considered as a
complete solution to the adaptive control problem.

Closed-Loop Configurations

From the previous paragraph, explicit plant identification appears to be essen-
tial in the implementation of adaptive control. Process noise suppression must be
provided by negative feedback. An obvious closed-loop configuration would be of the
form shown in figure 4, which can be considered as an extension of figure 3. Since
closed-loop systems are considered, process noise n(t) and measurement noise v(t)
are introduced separately. It is easily verified that

°( n(t) (20)G(p)P(p) - 1 + cp)P(p)

t"(t)»v(t)l0(p)P(p)

where

i(t) system input

z(t) physical plant output

zm(t) measured plant output

n(t) process noise referred to the output

v(t) measurement noise



Thus, with respect to the actual output z(t), v(t) is equivalent to the input
i(t). However, with respect to the measured output zm(t)» v(t) is equivalent to
the process noise n(t).

It is readily verified that

In equation (22), it is only the input signal i(t) which is common to P(p), and
A

to P(p), thus providing the required persistent excitation for plant identifica-
tion. Neither n(t) nor v(t) are valid identification signals. Equation (22),

yv

which is the error equation of the closed-loop systems, is linear in P(p).
However, the partial derivative

contains the additive noise n(t) + v(t) so that the gradient 7 = e3e/3P(p)
2 ~ ""contains terms with [n(t) + v(t)] causing a bias in P(p).. Thus, direct plant

identification in a noisy closed loop results in a biased plant estimate and yields
a biased controller.

Moreover, observation of equation (22) discloses that the signal
e(t) = [G(p)/[1 + G(p)P(p) ]i(t) in general does not provide an efficient identi-
fication signal. Since G(p)P(p) » 1 is required in the useful frequency region,
it follows that e(t) does not efficiently excite the modes of P(p). Consequently,

a relatively slow convergence of the weights w in P(p) cannot be avoided. Thus,
the straightforward approach of closed-loop identification as embodied in figure 4
is bound to yield slow and biased plant parameter estimation. In the sequel it is
shown how this problem is overcome in conjunction with the adaptive control process.

An alternative approach would be to identify the closed-loop system T(p) and
to compute the plant P(p) from this identified model. The concept of this config-
uration is shown in figure 5.

The closed-loop transfer function is

T(D) __ G(p)P(p)
Up; - 1 + G(p)P(p)

the error equation, in view of equations (21) and (24) is

10



e(t) = [T(p) - T(p)]i(t) ->- ̂ p p ) tn(t) + v(b)] (25)

Denoting
N

T(p) = £ t.(p)wT.
1=1 l l

we have

(26)

TSince Be/aw™, is noise-free and independent of w , the necessary conditions for

unbiased convergence of T(p) * T(p) are fulfilled.
A A

From a copy T (p) of T(p) it is possible to obtain the estimate [G(p)P(p)]~
by the inverse operation

T (p)
[G(p)P(p)r = - ̂ - (27)

1 - Tc(p)

A

Besides being extremely sensitive to uncertainties in T(p), the estimated term
[G(p)P(p)]~ obviously does not provide a realizable solution for G(p).

The Indirect Method
A A

It remains to obtain an unbiased estimate P(p) from T(p). A method to accom-
plish this is described in figure 6.

A A

In the closed-loop control system (fig. 6(a)) excited by i(t), T.(p) and Tp(p)
provide the estimates of

rn\(P) -

_

1 - 1 + Gjp)P(D)

(29)

The signal r(t) = Gc(p)i(t) is noise-free, and the errors e^(t) and e2(t) are
given by

11



6 l( t ) = T/p) - £ tn<PK |r( t )
' L i=1 UJ

[ N I
rP (p) - £ tP . (P)wT r ( t )

i = 1 2i]

'.(SO,)

The noise terms that are due to n(t) and v(t) in equations (30) and (3D -are disre-
garded here since they do not cause biased estimates. It follows that

= -tu(p)r(t) 020

= -t2.(p)r(t)
ae_(t)

2i

are noise-free and independent of wT1 and WTO, respectively.. Therefore, esti-
** ^ ~ 1 I "• 1 C,

mates T (.p) and T (p) are unbiased and globally convergent and stable. The esti-
*\ \ ~ *£ ^ . *

mates T..(p) and T^(p) are copied to T.. (p) and T? (p), respectively,, as :shown in

figure 6(b).. The estimate P(p) is obtained as follows: T. (p) serves as .the
reference model. The error

e3(t) = [P(p)T2c(p) - T1(j(p)]u(t) (34.)

converges in the mean to zero so that

P(p)T2c(p) - Tlc(p) .(35)

implying that

T (p)
P(p) = ̂  - (36)

Since T. (p) * T,.(p) and T? (p) ->• Tp(p), it follows from equations (36), (28), and
(29) that

-K Gn(p)P(p)]
P(P) * = P(P) (37)

This two-stage identification process is interesting in that variations in G c (p ) ,

in particular if they are slow, are only weakly reflected in the estimate 'P(p),.

12



-For Gc(p)- = constant, the algorithm--that-is_determined .by equation (34) will, in
general, converge relatively slowly. The reason for this is that the signal s(t)

exciting P(p) in figure 6(b) is given by

s(t) = T2c(p)u(t) . 1 , G(
1p)P(p) u<fc> (38)

In particular, if Gc(p)P(p) » 1, the spectrum of s(t) has zeros in the vicinity
of the poles of P(p). Therefore, s(t) has only minute power in the required fre-
quency range and therefore does not provide sufficient excitation. The resulting
slow convergence is a disadvantage in real-time applications as needed in adaptive
control. This deficiency is equivalent to the one discussed in conjunction with
e(t) in figure 4.

The problem is inherently overcome by the implementation of loop (c) in
figure 6. Let M(p) be the reference model of the open-loop transfer function
designed for the desired closed-loop response Tp(p). G(p) is structured as a
transversal filter

N
G(p) = £ gi(p)wgi

The error e4(t) is

eu(t) = [M(p) - PcG(p)]u(t) (39)

and

3e,.(t)
-~ = -g.(p)P(p)u(t) (40)

gi X C

which is noise-free and independent of w . Thus global convergence for (c) is
assured and

P" (p)G(p) - M(p) (41)
C

GQ(p) is a copy of G(p). Therefore, in the actual control system (a) one has

P(p)Gc(p) = M(p) (42)

It follows that (c) provides the required controller adaptation algorithm.
Moreover, with the implementation of (c), s(t) in equation (6), defined in equa-
tion (38) is modified to

13



s(t) - u(t) (43)

In equation (43) the plant zeros previously mentioned are canceled. Thus, the
A

convergence of P (p)G(p) to M(p) in equation (41) accelerates the convergence of•% c
P(p) which, in turn, further accelerates the convergence of G(p). This self-
reinforcing process is in effect under the assumption that P(p)Gc(p) is suffi-
ciently close to M(p) to assure the stability of the control system. To justify
this assumption two requirements have to be fulfilled: (1) variations in P(p) are
sufficiently slow with respect to the adaptation time constants of .loops (b) and (c)
in figure 6, and (2) an appropriate initialization procedure is required in order to
ensure proper convergence on start-up of the system.

The foregoing leads to the conclusion that efficient closed-loop plant identi-
fication for real-time performance is, in principle, inseparable from the adaptation
problem. Subject to the assumptions made, the implementation shown in figure 6 is a
valid configuration. In the sequel it will be referred to as configuration 1.

FILTER DESIGN CONSIDERATIONS

As shown in the section on Survey of Control-System Configurations, for the
indirect method the crucial element in the implementation of adaptive'Control is the
accurate identification of the plant. This section addresses the essential design
considerations in the realization of adaptive filters that are suitable for real-
time plant identification as required in adaptive control. The principal factors
involved are time of convergence, number of weights, misadjustment, FIR truncation
error, and effective bandwidth.

Normalization

Observing equation (A3) in appendix A, it is obvious that the eigenvalues of
TR, X., Xp, . . . , XM are given by E[x.x.], i.e., they are quadratic functions of

the input x(t). Thus, speed of convergence is fundamentally very sensitive to the
input power level. More specifically, the average exponential convergence time-
constant T., in terms of the number of iterations defined in equation (A15) is

T -Tit * 4ptrR
i

equation (44) underlines that the representative time-constant for a given fixed
gain is inversely proportional to the total incident input power given by R
(ref. 5).

14



----- Since, in control- systems, R-- may vary widely-,- it is desirable to make- -T....
independent of R. This can be achieved by normalization. Observing the permitted
upper bound on y in equation (A14), we determine it by

where F >. 1 is a constant coefficient. Substituting equation (45) into equa-
tion (44), we have

NF
Tifc = 5-

Thus, T. is determined by the design parameter F. Equation (45) is easily imple-
mented in the on-line algorithm from the components x.., x» , . . ., x , trR can
be computed on line by

N
trR. = £ xf . (47)

J. 1=1 J

This independence of T on input power plays an essential role in the realization
of the adaptive control algorithm discussed later.

Misadjustment and Additive Noise

The requirement F _> 1 dictates the theoretical lower bound with regard to the
stability of the LMS algorithm. The actual lower bound, however, is determined by
the parameter noise that is due to the misadjustment M as defined in equa-
tion (A18), appendix A. Thus, for a given acceptable misadjustment M, F is deter-
mined by

F > (48)

For example, if the permitted misadjustment is M = 0.05, then F ̂  20. The upper
bound of F is dictated by the convergence time-constant T.. given in equa-
tion (46). In this work we define T = 4r to assure convergence within -2% of
the asymptotic value of the estimate. Thus, T = NF. For a given acceptable value
of T , we therefore have F < T /N. Consequently, the choice of F is bounded by

TC/N > F > 1/M (49)

Clearly, equation (49) implies that the lower bound of T isc
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T > N/M ,'(-50.)

Thus, for example^ if N-= 50, M = 0.05, TQ > 1000 (iterations). In addition to ;M,
the effect of additive process or measurement noise must be considered. ;With '
and v(t) present, the error is

Accordingly, the gradient would include the noise component

7, = -2(n + v,)x. ",(52)

The corresponding parameter noise -component is

w = 2p(n + v )x = ̂ r-z (n + v.)x ,(53)
-j j j -J tcrw j j -j

i
Equation (49) indicates that the actual lower bound of F may .be greater

than 1/M., eventually causing a corresponding increase in T . Thus, the actual
increase of F above 1/M must be determined by a priori estimates of expected
noise levels in the system. The principal effect of normalizing the LMS algorithm
by equation (A9) is that for a given F, both T and w. are made invariant to
input power variations. This property is crucial in assuring convergence of the
control system.

Principal Filter Parameters

The principal design parameters are

W the number of weights w^, i = 1,N

Tf the total real time length of the filter delay line

AT the tap spacing" between x^,

Some ground rules, especially applicable to filtering and signal processing are
given in reference 5. They relate Tf and AT to signal band .width .and frequency
resolution.

In the control oriented identification problem discussed here, somewhat differ-
ent ground rules are needed. The impulse response for asymptotically stable plants
is broadly characterized by exponentially decaying time -functions. Therefore, the
FIR nature of the finite length delay line involves a truncation error, which, if
excessive, prevents proper convergence of the parameter vector w. To ensure a
sufficiently small truncation error, the following design rule will be adopted:
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-Let— -Re(Amin-)- be the -real part- of-~the smallest expected eigenvalue of P.(.p) ______ Choos-
ing Tf > 4[Re(Xmin) ]~ ensures that the truncation error is less than 2%. The
next design consideration is the tap spacing AT. Its upper bound is dictated by
the input signal bandwidth as determined by the sampling theorem, i.e.

Thus, the smallest number of taps N is given by

N =Tf/AT + 1 (55)

Since normally N » 1, in the sequel N is approximated by N = T~/AT. Control
systems design considerations generally impose further requirements for AT. Let
ID be the cut-off frequency of the plant P(p). In accordance with control systems
P
design practice for stability and robustness, the model P(p) must reproduce the
output frequency components of P(p) out to approximately
the tap spacing must meet the condition

10u . This implies that

2 (56)

For example, assuming a simple first-order plant P(s)
Re(Xmin) = u implying Tf > 4/o> . Thus

u> /(s + o> ) ,

AT
(57)

The significance of equation (56) is that AT determines the tap density at the
leading edge of the FIR which represents the required high-frequency response of the
plant.

As a second example, applying the same design rule to a lightly damped second-
order system

P(s) = uiJY(s2 + 2oy;ps + o?)

yields Re(Xmin) = o> c . Thus, for example, c =0.1,

40
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To ensure good fidelity of the FIR provided by the filter, we examine the number of
weights per cycle n in the IIR. The period is T = 2Tr/u> and the number of :.:

cycles nc within Tf is

P P P P

In accordance with equation (58), n = N/n = (40/c n)(ire 12} - 20, which is ''
adequate.

It should be noted that for the mere estimation of to and t, , the sampling

theorem would not require more than n = 2. However, the fidelity of the FIR would
be poor with the result of sustaining a substantial error e, and, possibly, exces-
sive parameter noise w. (see appendix A). The foregoing is illustrated in figure 7

~J p
for Tf = 6 sec and P(s) = 25/(s + 1s + 25), i.e., u = 5. t = 0.1,
T = 2TT/U) = 1.256 sec; thus nQ = 6/1.256 = 4.77. Figure 7(a) illustrates the

computed IIR. Figure 7(c) shows the estimated FIR for an arbitrary N = 40 result-
ing in n = 40/4.77 = 8.38 indicating poor fidelity. Figure 7(b) shows the esti-
mated FIR for an arbitrary N = 120 for which n = 25.14, indicating good fidelity
and complying , with the design value n = 20.

In general the plant may have a number of modes. Denoting

Re Umax) ' ., ,
A = Re(Xmin) (60)

In accordance with equation (57), the required number of weights N would be

N = — A (61)
TV

It follows that the need for N in excess of 100 can be easily encountered. If the
expected IIR of P(s) is of aperiodic nature, the problem of an excessive N can be
remedied by nonuniform spacing. The highest tap density is assigned to the neigh-
borhood of the leading edge, gradually spreading out toward the trailing edge. A
simple form of implementation can be, for example, by subdividing T^ into four
sections and using a tap sequence such as 1, 2, 3, 4. This would yield the relation

Tf = 1 ( 1 + 2 + 3 + 4) = 2.5N AT

or

275 H (62)
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Thus, a-considerable -saving-in weights can be obtained.without compromising filter
fidelity.

The actual time of convergence T (sec) is determined by equation (49), i.e.,
d AT. Thus, T = T AT. Subs

have for a uniformly spaced filter
T and AT. Thus, T = T AT. Substituting the appropriate values for T and AT, we

Tf
T = NF - = FT (63)

or for a nonuniformly spaced filter as given in equation (62).

T = 0.4FTf (64)

Thus, the real convergence time is determined by the product of the filter length
Tf and the coefficient F irrespective of the number of weights N.

SYSTEM IMPLEMENTATION

In this section the integration of the reference model TR(p) and the LMS-
filter-based adaptive controller is described. The issue of bounds on the level of
control activity is not addressed here. These are regarded as part of the design of
the reference model. Here, TR(p) having a satisfactory dynamic response is chosen
for the purpose of illustration. An example of a second-order plant P(p) is chosen
to provide explicit solutions for the controller. These choices of P(p) and TR(p)
also serve in the simulation examples presented in the section on Computer Simula-
tion Tests. Three system configurations are discussed and are described in
figures 8-10, in which, for the sake of simplicity, noise is represented by n(t)
alone.

The open-loop reference model M(p) is determined from the specified closed-
loop system TR(p) relating the input i(t) to the output z(t). The relationship
between M(p) and TR(p) in transfer function format being

T l _ ̂  M( S ) / fr- \

R = 1 + M(s) '"->)

Two requirements must be met:

lim T0(s) = 1 (66)

lim M(s) = constant (67)
s*0

19



The first is the standard specification in closed loop control. The second assures
the boundedness of loop (c) in figure 6. In view of equation (65), equations (66)
and (67) are not compatible unless integral-control is introduced in series with:the
plant P(p). Thus, equation (65) is modified to

, . M(S)/S M(S) : :,,ox
Vs' = 1 + M(s)/s = s + M(s) \W)

The solution for M(s) is

sT (s)
M(s) = . T (. (69)i - IRIS;

We introduce the following example

TR(s) -̂  f- (70)
s-3 + 6.5s + 9s + 10

so that

M(s) = -= , (71)
s + 6.5s + 9f. >•

Assume that the plant.is

P(s) = -^ - - (72)
s + 2 3 + 2 5

Then, in accordance with equation (42), the controller should converge to

G(s) = = 0.4
s + 6.5s + 9

In view of the conclusions on identifiability of closed-loop systems in the section
on Survey of Control-System Configuration, and the basic Indirect Method shown in
figure 6, the design of the adaptive control system is shown in figure 8. The
control system (a) starts with the "switches" in position 1 which is the system
initialization state. The system incorporates an integrator in series with P(p).

GQ is an arbitrary constant coefficient. The transfer functions z(s)/Goi(s)
and eTsJ/GUs) are '
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GQ

Go

A ss

T.(s) and Tp(s) are their respective estimates provided by LMS filters, adjusted
by e^(t) and eP(t), respectively. In state 1, the system operates in an open-loop

' ^ /V A

mode. The input i(t) is shaped by M(s), and conditions T..(s) and T?(s) to their
desired forms given in equations (74) and (75) which exist in the subsequent con-
verged closed loop of state 2. This design concept will be referred to in the
sequel as configuration 1. The spectrum of s(t) indicated in figure 8(b), in view
of equation (43) does not have notches in the neighborhood of the modes of P(p),

A

and therefore it can provide persistent excitation for the identification P(p).
The convergence in the mean to zero of e-j(t) in equation (34) yields the relation

T («\ M(s)]K
I2c(s)

/s /\

The last expression indicates that imperfections in T.. (s) and T2 (s) such as

incomplete convergence tend to cancel so that P(s) converges to P(s) more rapidly
/s **

than does T.(s) to T^s) or T2(s) to T2(s). This effect is demonstrated in
simulated results not included in this paper.

A A

With P(s) •*• P(s), the copy P (s) in (C) conditions G(s) so thatc

G(s)Pc(s) - M(s) (77)

By using a suitable measure of the error e^(t) normalized to u(t), convergence of
equation (77) can be established and the control system switches to the closed-loop
operational state 2. The abrupt jump from GQ to Gc(p) causes a sudden change in

the statistics of the input signal. However, if T (p) and T (p) have sufficiently
converged, only minor transients are induced in e^(t) and e2(t), and consequently

the estimate P(s) shows only a minor transient perturbation.

Henceforth, in state 2, the estimation of T^s) and T2(s) proceeds on the
basis of the open-loop transfer function GQ(s)P(s) which is approximately equal
to M(s), Thus continuing estimates of P(s) are obtained by

T. (s) {P(s)/[1 + G (s)P(s)]K
- 1c

TI
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The example of G(s) in equation (73) serves to underline a significant point with
regard to the potential precision obtainable from the G(s) filter. In the forego-
ing it is tacitly. assumed that all the filter lengths Tf in figure 8 are equal.
In accordance with the section of Filter Design Control, T^ is initially determined

by [ReXmin]" ;pf P(s), specifically Tf = 5[Re(\min)]~ • In the foregoing exam-
ple in which o> c =1, T^ = 5/1 = 5 sec. However, in equation (73), Re[Xmin] = 2;
thus, the convergence of the impulse response of G(s) is complete within .:
TG = 5/2 =2.5 sec. If the filter consists, e.g., of N = 50 weights, the number
of weights actually assigned to represent G(s) would be 50 • TG/T~. Considering
the initial spike of the IR of a form such as in equation (72), the number of
weights actually assigned to G(s) may not provide the required fidelity. This may
become a severe limitation if the desired bandwidth of TR(s) and the resulting

 :,
M(s) is too high.

An alternative approach to the Indirect Method described above is described in
figure 9. In essence it is in the class of the Indirect Method MRAC based on the
closed-loop reference model TR(s) = M(s)/[s + M(s)], although P(s) is not explic-
itly identified and the controller is directly determined by TR(s). With the
control system (a) in position 1 the transfer function

(79)

is estimated. M(s) is. a priori determined from M(s) = sTR(s)/[1 - TR(s)] as
before. Simultaneously, (b) implements

T1cG(s) - TR(s) (80)

or, explicitly

r p(s) T
[s + M(s)J

The last expression approximates the required relationship P(s)G(s) -»• M(s) as
provided by explicit plant identification shown in figure 6.

When G(s) is sufficiently close to M(s)/P(s), the system switches to state 2
and henceforth operates in the mode of a closed-loop MRAC. The implementation is
considerably simpler than the explicit form of figure 8 since only two adaptation
loops driven by e^(t) and e2(t) are required. This design concept will be referred
to as configuration 2.

In applications where the additive noise n(t) is small a further simplifica-
tion of the system is permitted. Its block diagram is shown in figure 10. The
closed-loop reference model TR(s) is connected to the control system input at
point I. The controller G(s) is directly Identified from the signals at points II
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-and 1 1 -I-.— In -the- -initialization phase .__!.,_ _the. system_.is_driy_en__via_ja__fixe_d__arbi_trary
gain G . The transfer function from point I to II is

The reference model, with points I and III as its input and output, respectively, is

- M(s) —T —s + M(s)

The error e(t) drives the LMS algorithm of the controller G(s) to enforce the
convergence

P(s) r, . M(s)
s + M(s) G(S) * s + M(s)

This implies G(s) * M(s)/P(s), as required. The system switches to state 2 when a
suitable measure of e(t) is sufficiently small. The feedforward and feedback
copies GC(S) of G(s) are connected so that the actual control loop is closed. The
closed-loop transfer function is

- rro • Vs'

The design concept shown in figure 10 will be referred to in the sequel as configur
ation 3. The advantage of this method, besides its simplicity, is that no direct
plant identification is involved. The significance is that only fixed and normally
well-damped modes of the model M(s) are involved, and the otherwise stringent
requirements of high LMS filter fidelity often needed in the exploit identification
of lightly damped plant modes are avoided. In practice, G(p) denoted by equa-
tion (2) and Gc(p) denoted by equation (5) can be combined as a single filter.

COMPUTER SIMULATION TESTS

Outline

It is the purpose of the simulation tests described in this section to experi-
mentally validate the design concepts of configurations 1, 2, and 3 as described in
the section on Computer Simulation Tests. The principal issues are (1) the conver-
gence processes of the parameter vectors w in plant or in controller identifica-

tion; (2) the effects of parameter noise w and additive noise n; (3) the
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precision with which the adapting system converges to the desired reference model
TR(s); and (4) the suppression of lightly damped modes.

In the actual modeling, a principal issue has been to limit the number of
varying parameters to the bare minimum without substantially sacrificing insights.
To that end, the following steps were taken:

1. The reference model TR(s) given in equation (70) :

T (s) =
s + 6.5s + 9s + 10

< ':: . •:

was used in all the simulation tests.

2. In all the tests the excitation signal was white noise except for one case
in which a band-limited excitation signal was applied for the purpose of comparison.

3. The principal filter parameters in all cases were chosen as N = 60,
AT = 0.1 sec.

4. In all cases the plant, reference models, and various system and noise
filters were modeled in continuous time. Fourth-order Runge-Kut.ta integration was
used and integration step size was dT = 0.02 see.

5. In all cases t the model of the plant was of the form

•(u/a)(s+au)
p(S) =

The natural frequency was set to u> = 5 sec in all cases with the exception of

one in which w was set to u =25 sec" . The damping coefficient c was

varied between 0.001 and 1. By varying a, the location of the numerator zero was
changed without affecting the DC gain of P(s). For 1/o - 0, the relative degree
of P(s) is 2. For 1/a > 0 the relative degree is 1. For c = 1 and a ~ 1,

P(s) reduces to a first-order lag P(s) = o> /(s + u> ). Thus, by varying the two

parameters a and i, , a wide variation in plant dynamics and relative degree is
covered. !

For the sake of brevity, only the principal results of the simulation test are
presented. These are (1) computed IIR of the plant or controller; (2) estimated FIR
of the plant or controller; (3) convergence history of weights of the controller;
and (U) step response of the reference model TR(s) along with the step response of
the adapted closed-loop system.



In two_cases_ a .complete set_ofsimul_atipn results is given. They include in
addition to the above, the time-history of the reference model, the controller, and
the closed-loop system outputs.

Typically, simulation runs spanned over 3000 or 4000 iterations. As seen from
the time-histories, these were by far in excess of the actual number of iterations
needed for conditioning and adaptation.

Simulation Procedure

All simulation runs started with initial conditions set at zero for both the
weight vectors w and the state variables of the dynamical system. In each run the
first half was dedicated to the conditioning of the controller and the second half
to the convergence of the adaptive control system. At the end of each run, the
final value of the weight vector was written to file as "frozen weights" constitut-
ing the adapted controller.

In a second test run, which provides the step response of the adapted closed-
loop control system, the frozen weights were read into the program.

Nomenclature in Simulation Plots

Simulation results are grouped under configurations 1, 2, and 3. For easy
identification of variables and parameters, reference should be made to figures 8,
9, and 10, respectively, in which each self-adjusting filter is indicated by a
slanting arrow and each filter is designated by a number (1) to (9) in accordance
with the appropriate configuration. The output of each self-adjusting filter is
marked by YF1, YF2, etc. The weights of each filter are indexed accordingly, e.g.,
w1(J), w2(J), etc., and they represent the appropriate FIR forms plotted in continu-
ous line format. Time histories of weights are shown for a few selected weights.
For example, w2(5), w2(10), and w2(30) describe the 5th, 10th, and 30th weight as a
function of time. In the step responses of TR(s) and the adapted system, zs is
the adapted closed-loop system step response and zm is the step response of
TR(s).

Simulation Results

The principal parameters and data of the simulation presented here are listed
in table I. The oi and an symbols are the rms values of i(t) and n(t), respec-
tively. Unless otherwise specified, they are white noise. The adaptation gain
factors, F, in the identification loops and controller adjustment loops described in
configurations 1 and 2 are represented by Fi and Fa (figs. 8 and 9). In configura-
tion 3 (fig. 10) only one value of F is appropriate. The values of F.^ and Fa
are relatively small so that substantial parameter noise is present. The choice
of F^ = 6, Fa = 8 is a compromise between precision of the estimates and
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convergence time. Note that the choice AT = 0.1 sec scales all FIR estimates by
1/10 (see appendix A). •

Figure 11 (a), (compare to fig. 12(a)) demonstrates good precision in the esti-
mate of P(s)/[s + M(s)]; figure 11(b) shows a noisier estimate of P(s) and
figure 11(c), a still'noisier estimate of the controller G(s). This is to be
expected since the three-stage estimation process of figure 8 causes cumulative -
weight noise in figures 11(a)-11(e). In spite of this weight noise, the adapted,
system step response zs shown in figure 11(f) compares well with zm. -:•••••

Figure 12 describes the adaptation process including additive output noise with,
a noise-to-signal ratio of 0.05. To smooth the parameter noise, F^ and Fa were -
increased to 20 and the number of iterations was doubled. Figures 12(a) and 12(.b)
show unbiased, though somewhat noisy, estimates of P(s)/[s •»• M(s)]. Figure 1'2(c)
shows the convergence history of w in G(s). Figure 12(e) demonstrates similarity
to the computed IIP in figure 12(d). However, because of limited fidelity the
initial spikes are attenuated. The step response of the adapted system, shown in.
figure 12(c), though unbiased, is somewhat distorted. However, if n(t) represents'
measurement noise, the example value of 0.05 for noise-to-signal ratio is quite'
high. Realistic noise-to-signal ratios are an order of magnitude smaller..

Figure 13(b) demonstrates an excellent estimate of P(s)/[s +• M(s)] (compare
with fig. 13(a)). Figure 13(c) demonstrates a smooth transition1 from the training
phase to the closed-loop adaptation phase which occurred at t =* 40 see.
Figure 13(d) demonstrates relatively rapid convergence of the controller G(s').
Figure 13(e) shows that the controller estimate is noisy, yet the adapted closed-
loop step response shown in figure 13(f) is quite close to that of the reference"
model.. ' ,,

Figure 14 demonstrates similar performance for the extreme base of a = T, or
reduction to a first-order lag. . :-

j.

Figure 15(b), compared, to fig. 15(a), demonstrates a good estimate of G"('s')'
even though i(t) is band-limited to approximately 4 rad/sec. Figure 15(c) shows
the actual time of convergence of the controller weights. Figure 15(d) demonstrates'1

an excellent fit of the controller output YF2 and the reference model output XL
(refer to fig. 10). Figure 15(e) describes the adapting plant output Z. The first
30 sec of the training phase show a relatively undamped response.since the system is
open loop. The last 30 sec, representing the actual adaptation phase, show the"
expected smoothed response. Figure 15(f) demonstrates an excellent fit between the
step response of the adapted system and the reference model. Since only a one-stage
estimation process is involved, the effect of parameter noise is quite small..

Figure 16 demonstrates similar behavior for a very lightly damped system. The
estimated FIR of G(s) in figure I6(b) is close to the corresponding IIR shown in
figure I6(a). However, the limited filter fidelity attenuates the initial positive
and negative spikes. The convergence process shown in figures I6(c), I6(d),
and I6(e) demonstrates rapid conditioning and smooth transition to the adaptation
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--phase-occurring_at t__=__30_ sec._and_Jthe__gradual _.suppressi.on_̂ f _ these modes in ^
last 30 sec. Figure I6(f) again shows excellent adapted step response.

Figure 17 shows a similar performance to that shown in figure 16 except that
the damping was higher and the relative degree was 1.

Figures I8(a) and I8(b) demonstrate that the same LMS filter operates effi-
ciently for to = 25 rad/sec. It demonstrates a good estimate of G(s) and excel-

lent adapted closed-loop step response.

Figures 19(a) and 19(b) demonstrate excellent FIR estimation of G(s) even for
a system with the extremely small damping factor c = 0.001. Again, figure 19(c)
demonstrates good adapted-step response.

Figure 20 demonstrates the effect of additive noise on configuration 3. The
FIR estimate of G(s) as shown in figure 20(a) is clearly biased (compare with
fig. 12(b)). Figure 20(b), accordingly, shows a deteriorated adapted-step response.

The results demonstrate the following:

1. Configuration 1, though providing an unbiased controller estimate, is
relatively noisy due to the three-stage identification process.

2. Configuration 2 provides a less noisy and unbiased controller estimate and
represents a suitable design for a wide variety of applications with process and
measurement noise.

3. Configuration 3 is the most precise and is suitable in a variety of appli-
cations with insignificant process noise.

4. The adaptive controller performs well under a wide variation of plant
parameter variations.

5. Transition from training phase to adaptation phase is smooth provided a
sufficient number of training iterations is provided.

CONCLUSIONS

The investigation presented in this paper leads to the conclusion that nonpara-
metric adaptive control, implemented by LMS transversal filters, is feasible. In
applications where process or measurement noise is insignificant in comparison with
the excitation signal, configuration 3 is superior. Since only a one-stage con-
troller estimation process is involved, the weight noise is small and excellent
convergence to the reference model is achieved. Because of the integral control, DC
offsets do not cause bias in the controller. Furthermore, since no explicit plant
identification is involved, the design of the single self-adjusting filter is pri-
marily determined by the fixed eigenvalues of the reference model. Variations in
the plant eigenvalues are reflected only as variations in controller zeros which do
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not. affect the filter quality in the sense of truncation error or fidelity. Large;
variations in: plant zeros,, however,, can affect filter quality/. -.c>.-

In; applications; with appreciable process noise,; configuration; 2' is; preferable-
since; noise-induced; bias: is; prevented by the two-stage: identification process... .The;
resulting; penalty,:-of additional; weight noise can; be: traded off against; convergence:-
time by decreasing; the adaptation coefficient. 1/E. In numerous applications; .where:
parameter variations are slow, or plecewise constant, the increased; convergence :time
can' be: tolerated:'-and! considered' as> part of the training or- conditioning: period1 .̂•••:
Residual weight: noise; is- largely suppressed by the closed-loop control system: as
evidenced by the real-time simulations: described. The effective suppression', of"
Lightly, damped modes demonstrated, points to promising applications in; controlling:
unmodeled': high-frequency modes and fine:-tuning adaptive, systems.. The: nonparametri.G
nature of the; FIR identification indicates- that the method', is; equally applicable to;
lumped parameter- or distributed: systems-.
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-APPENDIX. .A~

PRINCIPLE OF OPERATION OF THE LMS FILTER

The basic structure of the transversal LMS filter is shown in figure A1 (for
greater detail see references 4 and 5). With the sampler at its input x(t), it
represents a discrete implementation.

The real-time stationary input signal x(t) is sampled and operated on
by a set of linear operators, f1, f2, . . ., fN, which generate the vector

Tx. = [x.., x_., . . ., XN.] at the discrete time-instances that are indexed by

j. The components of x. are assumed to constitute a linearly independent set. On
T A ™*J T1

weighting x, by w = [w., w2, . . ., WM] and combining the weighted component

T 2 2functions, the output y. = x.w is generated. The squared error e. = (d. - y.)
J J J J J

determines the quadratic criterion function, where d, is the desired output. The
global convergence and stability properties of the basic LMS algorithm are best
understood by taking the expectation E[e,]. Thus,

E[e^] = E[d^] - 2E[d x^lw + wTE[x x^]w
J J J J J J

°] - 2PTw -i- wTRw (A1)

where

P = E[djX ] = E (A2)

R = = E

ij ij Nj

Y Y
NjXNJ

(A3)

Equation (A1) is a quadratic form in the parameter space {w}. We seek to minimize
E[e ] and apply a gradient, or steepest-descent algorithm. The ensemble averaged

gradient is

29



V = a[E(e*)]/3W
w=w

J 3E(e )/3wN

= -2P 2Rw (A4)

Setting V = 0, the solution for w is w*;
J

w* = R"1P (A5)

The index j is dropped since V. = 0 implies the asymptotic value of w.. the
steepest-descent algorithm is

where p is a constant coefficient. Explicitly,

Aw = -y[-2P + 2Rw ] = -2jjRw + 2yP

Equation (A?) is a linear difference vector equation.

(A6)

<A7)

Since R is a real symmetric and a nonnegative definite matrix, all its eigen-
values have nonnegative real parts and Aw. constitutes a globally asymptotically
stable process which converges to the optimum Wiener solution uniquely defined by
equation (A5) provided that the gain y is sufficiently small.

The real-time implementation of the LMS algorithm is accomplished by directly
minimizing e ., through

J

3 2 (A8)

which is shown to be realizable through the relation

3_ 2
3w 61

3e
= 2e

w=w.
J

j 3W w=w.
J

(A9)

Since

is a linear error equation in w.,
J

Ti. - x .w.
j -J-J

(A 10)
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3e

3W
= -x. (A11)

where e^ and x, are both realizable variables (fig. A1), and the instantaneous

gradient V. in equation (A9) is realizable. Thus, the necessary conditions for
implementing the LMS algorithm are (1) realizability of the input derived vector
x,, and (2) realizability of 3e./3w. and its independence of w, thus assuring

the linearity of equation (A10).

From equations (A6), (A9), and (A11) we have

w. . = w, - yV . = w. + 2ye.x, (A12)
-J+1 -J -J -J J-J

To ensure stable convergence of equation (A12), the step sizes yV. must be chosen

so that they are sufficiently small. It can be shown (ref. 5) that the sufficient
condition is

0 < y < 1/Xmax (A13)

where Xmax is the largest eigenvalue of the covariance matrix R. Xmax is diffi-
cult to estimate; therefore, equation (A13) is replaced by

0 < y < 1/trR (A14)

Since trR > Xmax, equation (A14) is more conservative than equation (A13) thus
ensuring stability. The advantage of equation (A14) is that trR can be estimated
on line and used to determine y.

The process of convergence of the LMS filter follows, on the average, an expo-
nential law. It can be shown (ref. 5) to have an equivalent time-constant

Tifc « N/4ytrR (A15)

where T. is measured in the number of steps j, and N is the number of
weights. Specifically, if fk (k = 1, . . ., N - 1) is fk = A for k and A is
a pure time-delay one has

x. . = x.Ak"1 = x(j - k + 1) (A16)KJ J

and

N N
y, = £ yk1 = £ "k1*(J -

k + 1> <A1?>J k=1 J k=1 J
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The components xky, k = 1 ,N are obtained from a tapped delay line'. Thus', ::

the LMS; filter assumes the explicit form of a convolution of w? and x in whiefo
A ' ' • ' T "' ~ - : • -

w = [w., W, .. . ., w,.] represents the discrete finite impulse, response: CFIR) "of1' 2' * " '' N
the filter. An additional factor which is involved' in the choice: of y; is the; .
misadjustment M; (ref. 5). It defines the excess parameter noise in: w over the
asymptotic Wiener solution. M is shown to be related to y and R by :....

, \ M = ytrR

Thus, for a given power level, subject to stable operation,, M is proportional
y. In accordance with equation (A14), we choose

y = T/FtrR

where F >_ 1 ensures stability. Combining equations (A18> and- (AT90

M = 1/F (A2a)<

Thus, besides ensuring stability, the misadjustment can be determined through1 the
design parameter F.

The roles, of the input x(t) and the output d(t) are' decided' by the1 specific;
application and the position of the- filter in a system.

Tb' facilitate the description and analysis based' on- LMS-type1 self-adjusting
filters, each- individual filter will be represented in simplified format as- indi-
cated, e.g..,. in figure A2, where the role of the filter is to provide, an estimate
^ t

P' of a plant P. ;

It should, be noted that the estimated values wk* are proportional to- AT,,
i.e., the actual time increment between successive components x\,*r xfk+rM' Design'

considerations dictate the actual length Tf of the tapped delay line-, T^ = N AT.

Thus, for given ,Tf and AT, N = Tf/AT. The values of xk*; are given by the
input. Assume, for simplicity, x^j = C = constant and that wk are all equal for
a- given duration T = Tf. Therefore,,

N w-fc
Yt = C E

 w
k =

 CMw
k =

 GT
f 7?fj, k=1 K. K i ai

Since y^ is independently dictated by y. -»• d., w,/AT must be constant. Thus;,, in
actual computer implementations of the LMS estimation process, the numerical values
of w^. are proportional to AT.
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APPENDIX B

EQUIVALENCE OF PROCESS AND MEASUREMENT NOISE IN PARAMETER ESTIMATION

Figure 4 describes a plant P(p) in a closed loop, G represents the feedfor-
ward and feedback gains; n(t) and v(t) represent process and measurement noise,

* A.

respectively. P(p) is an adjustable model of P(p). The error e(t) adjusts P(p)
by means of a gradient algorithm. We consider the effect of n(t) and v(t) on the
identification process.

It is easily verified that actual output z(t) is given by

z(t) = , GP^LN [i(t) - v(t)] + , , \ol^ n(t)

* 1+GP(P) ["(t)^v(t)] (B2)

Thus, with respect to z(t), v(t) is equivalent to an input i(t) while n(t) is
suppressed by the loop gain. With respect to zm(t)» v(t) and n(t) are equivalent
output disturbances.

It is also easily verified that

e(t) = 1 + gp(p) [P(p) - P(p)]i(t) + ] [n(t) + v(t)] (B3)

It follows from equation (B3) that neither n(t) nor v(t) provides persistent exci-
tation for the parameter estimation process since they are not common to P(p) and

P(p) as is i(t).

The second term, because of n(t) + v(t), causes biased estimates of P(p).
This is readily seen from the generic expression

P(p) = -k -^— e2 = -2k e -1̂ — (B4)
3P(p) 3P(p)

From equation (B3) it is obvious that the product e3e/3P is proportional to
[n(t) + v(t)]^ which causes the biased estimate.
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i(t)0
r(t)

Figure 1.- Open-loop, model reference adaptive control (Improper configuration)
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yf(t)

Figure 2.- Open-loop;model reference adaptive control (proper configuration)
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(b)

(a) Plant identification,

(b) Controller computation'..

Figure 3.- Open-loop model reference adaptive control with; explicit: p>lant
identification.
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Figure 4.- Plant identification in a closed-loop system with process and
measurement noise.
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i(t)

Figure 5.- Closed-loop system identification with process and measurement noise,



(c)

(a) .Intermediate identification of T^(p) and

(b) Identification of P(p).

(c) Computation of G(p).

Figure 6.- Two-stage explicit plant identification and MRAC controller
computation — the indirect method.
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(a) Intermediate identification of T^p) and T2 (p).

(b) Identification of P(p).

(c) Computation of G(p).

Figure 8.- Implementation of MRAC, the indirect method; configuration 1
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u(t)0-
(b)

T1c<P>

(3f

G(p)
YF2

(2) e2(t) -•

XL

(a) Intermediate identification of

(b) Computation of G(p).

Figure 9.- Implementation of MRAC, the indirect method; configuration 2,



Figure 10.- Implementation of MRAC, the direct method; configuration 3.
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(c) Convergence history of the weights of P(s).
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Figure 11.- Configuration 1, P(s) = 25/(s2 + 2s + 25)
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(d) Estimated FIR of controller G(s).

(e) Convergence history of the weights of G(s).

(f) Step responses of the reference model and the adapted system.

Figure 11.- Concluded.
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(c) Convisrgence history of the weights of G'(s>.

Figure 12.- Configuration 2, P(s) = 25/(s2 + 2s + 25); noise-to-signal ratio- 0.05.

48.



MR OF CONTROLLER G(s)

UJ 0

to *

§1
UJ
C 0

-1 (d)

2 3 4
TIME, sec

ZIG

ESTIMATED FIR OF CONTROLLER G(s)

.3

J2 -2

I .1
UJ
5 o

-.1 (eH

10 20 30 40 50
NUMBER OF WEIGHTS

60

W2

RESPONSE OF M-R AND ADAPTED SYSTEM

1.2

uj 1.0
CO

Z 8
* Ito -O
UJ
oc .4

.2

0 (f)-

2 4 6 8 10 12 14 16 18 20
TIME, sec

Zs — - Zm Ul

(d) Computed IIR of the controller G(s) .

(e) Estimated FIR of the controller G(s) .

(f) Step responses of the reference model and the adapted system.

Figure 12.- Concluded.
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Figure 14.- Concluded.
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Figure 17.- Configuration 3, P(s) = 5(s + 5)/(s2 + 2s
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(f) Step responses of the reference model and the adapted system.

Figure 17.- Concluded.
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Figure 18.- Configuration 3, P(s) = 625/(s2 + 5s + 625).

60



MR PF CONTROLLER G(s)

1.2

ui
g -8
2 .6to
LII ,.
oc -4

.2

0 .(a).

•ZIG

2 3 4
TIME, sec

ESTIMATED FIR OF CONTROLLER G(s)

CO

.12

.1

.08

2 .06
LU

5 .04

.02

0
10 20 30 40 50 60

NUMBER OF WEIGHTS

•W2

RESPONSES OF M-R AND ADAPTED SYSTEM

CO

1.2

1

.8
O
co -6
tr .4

.2
0 (c).

0 2 4 6 8 10 12 14 16 18 20
TIME, sec

Zs Zm Ul

(a) Computed IIR of controller G(s).

(b) Estimated FIR of controller G(s).

(c) Step responses of the reference model and the adapted system.

Figure 19.- Configuration 3, P(s) = 5(s + 5)/(s2 + 0.01s + 25).
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Figure 20.- Configuration 3, P(s) = 25/(s2 + 2s + 25); noise-to-signal ratio 0.05
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