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In this thesis the optical properties of 11I-V binary and ternary compounds and

GaAs-AlxGai_xAs superlattices are determined by calculating the real and imaginary parts

of the transverse dielectric constant. e(o>) = 6i(o>) + i€2(o»). Emphasis is given to

determining the influence of different material and super lattice (layer thickness and Al

composition) parameters on the values of the index of refraction. T)(OJ) and absorption

coefficient. a(a>).

In order to calculate the optical properties of a material, it is necessary to compute

its electronic band structure. We accomplish this by introducing a partition band structure

approach based on a combination of the k • p and nonlocal pseudopptential techniques. In

this approach the bulk Brillouin zone is partitioned into the F, X. and L regions by

performing k • p expansions about these three symmetry points. The advantages of this

approach are that it is accurate, computationally fast, analytical, and flexible. These last

two properties enable us to incorporate easily into the model additional effects, such as

disorder scattering, which occurs for alloy materials, and excitons. Furthermore, the model

is easily extended to more complex structures, for example, multiple quantum wells and

superlattices. The results for 7)(a») and a(w) of bulk Hl-V compounds compare well with

other one-electron band structure models, and our calculations show that for small

frequencies, the index of refraction is determined mainly by the contributions of the outer

regions of the Brillouin zone.

The effects of alloy scattering are incorporated into the model using a perturbative

CPA approach which only includes the influence of compositional disorder. The results for

the disorder-induced. F point, energy-gap bowings are shown to be nearly comparable to

those calculated using more sophisticated CPA approaches. Furthermore, the calculated
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absorption coefficient of AlxGai_xAs is found to be in good agreement with the experimental

data.

The model is extended to heterostructures by using the envelope-function

approximation. Valence-band mixing and F-region exciton effects are also included in the

model. Our results show that the anisotropy and structure dependence of the refractive

index of superlattices result mainly from the contribution of the T region, while the

contributions of the outer regions of the zone are rather insensitive to the superlattice

structure. The superlatlice index of refraction values is determined to attain maxima at the

various F-region. quantized, transition energies, where for certain structures the difference

between the refractive indices of the superlattice and its corresponding A^Ga^As alloy

can be as large as 2%. Overall, the superlattice results are in good agreement with the

available absorption and refractive index data.
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1. INTRODUCTION

Sophisticated growth techniques, such as Molecular Beam Epitaxy (MBE) and

Metalorganic Chemical Vapor Deposition (MOCVD), have made possible the advent of

artificial semiconductor structures called superlattices or multiple quantum wells (MQWs).

The structures consist of alternating layers of two lattice-matched solids. This layering

adds a periodic potential along the growth axis to the existing periodic lattice potential. As

the thicknesses of the layers decrease to values on the order of a few hundred Angstroms,

quantum size effects, produced by the increasing confinement of the electrons and holes in

the growth direction, become important and modify the properties of the structures from

those of bulk, three-dimensional materials, to those of quasi-two-dimensional structures.

For instance, because of the enhancement of the exciton binding energy in quasi 2-D
A

quantum wells, exciton resonances are clearly visible at room temperature, while in bulk

semiconductors, such as GaAs. the excitons are barely discernible at 300 K. As a second

example, at 300 K bulk GaAs lasers operate in the near infrared (— 1.42 eV). while

AlxGai_xAs-GaAs MQW lasers can be designed to operate in the visible red region (~- 1.83'

eV). i.e.. 400 meV higher than the bulk GaAs value, and have improved lasing

characteristics. ~ In fact, by modifying the composition and thickness of the layers, the
a

electronic and optical properties of superlattices can be modified over a considerable range.

For these reasons. MQWs and superlattices have become technologically important in both

optoelectronics ' and microelectronics.

As a result of the many device applications of superlattices. iheir optical and

electronic properties have been studied extensively both experimentally ' and

o 10 17-28
theoretically. ' ' " The major thrust of this research has focused on properties derived

from electronic transitions originating around a region surrounding the I' symmetry point.

This has occurred for two reasons: devices frequently operate just above the F energy gap,

and theoretical models of the F region usually are straightforward and analytically simple.



An example of the latter is exciton effects which can be described simply within the

Effective-Mass Approximation (EMA) for F region transitions, while for Brillouin zone-

29edge transitions it becomes necessary to implement a many body approach.

Recently, there has been suggested and demonstrated a number of optoelectronic

devices based on the properties of the index of refraction of long period, i.e., > 100 A .

superlattices and multiple quantum wells. ' ~ A few examples of these devices are

superlattice lasers which are monolithically integrated into higher-gap cavities via impurity

diffusion, electro-optic and optical-intensity controlled MQW switches, ' and MQW

phase modulators. As a result, the index of refraction of superlattices and MQWs has

become a technologically important parameter. However, unljke the absorption coefficient

which only excites specific regions of the Brillouin zone, the index of refraction depends on

transitions originating from all points of the Brillouin zone. Although most band structure

models can describe the F region properly, they cannot calculate the index of refraction

because of either analytical ~ ' or computational ' ' difficulties. More

specifically, the tight binding method ~ ' is valid for long-period superlattices. but has

difficulty describing the structure at the edges of the Brillouin zone, " making

questionable optical models in these regions. On the other hand, the pseudopotential

technique ' is excellent for short period, i.e.. a few layers, superlattices. but has

severe computational problems for long-period superlattices on account of the inversion of

very large matrices. Furthermore, because of the complexity of the pseudopotential

technique, many electron effects, such/as alloy scattering, exciton effects and band tailing,

are very difficult to incorporate into these models.

28Consequently, a superlattice band structure model based on a partition

approach was developed for calculating the optical properties of long-period

heterostructure materials. More specifically, the model calculates the real and imaginary

parts of the transverse dielectric constant, e(w) = 6i(o>) + iCiCw). from which all of the

optical properties of materials can be easily determined. Hence, the index of refraction, in



addition to the absorption coefficient, can be computed using this model. Unlike previous

techniques for long-period..superlattices, the computed band structures are accurate at the

zone edges, and the calculations require a comparatively small amount of computation

28time. Furthermore, the effects of alloy scattering and excitons are easily incorporated

into the model.

In this thesis the superlattice band structure model based on the partition method is

presented in detail. The following is a summary of the model. In the partition method the

k-p " and nonlocal pseudopotential techniques are used to partition the Brillouin

zones of the constituent superlattice materials into the F. X. and L regions, and to

determine the bulk energy band and matrix element dispersion relations. Superstructure

effects are incorporated into the model within the envelope-function approximation.

Band-mixing effects are neglected at first, as are superstructure effects for wavevectors,
A j

parallel to the superlattice layers. The quantized transition levels are determined from*;

the solution of the periodic square well potential problem which incorporates energy-

dependent masses and assumes a 65:35. F-point. band-discontinuity ratio. Excitonjf:

29 43effects are included in the model only for the F region using the EMA. ' For the alloy-

layers, the effects of alloy scattering are incorporated within the Coherent Phase

Approximation (CPA) via a perturbation theory calculation.

In Chapter 2 the partition method is presented and applied to bulk III-V

compounds. Included is the general k • p formalism and the derivations of the k • p energy

dispersion relations for the F. X. and L symmetry points. We also present a table of the

valence and conduction band effective masses at the F. X. and L points for each of five IH-V

compounds. GaP. GaAs. InP. InAs, and AlAs. In the next section of Chapter 2. general

considerations on the complex dielectric constant and related optical parameters, namely,

the absorption coefficient and the index of refraction, are presented. A description is also

given of the partition method used to perform the calculations of the transverse dielectric

constant. We conclude this chapter by discussing our results for the complex dielectric



constant of the five III-V compounds. The effects of alloy scattering are incorporated into

the model in Chapter -3,- with results given for the frequency-dependent absorption

coefficient of AlxGa!_xAs alloys. In Chapter 4. we present our electronic band structure

model for GaAs-AlxGaj_xAs superlattices. Band mixing is neglected and superstructure

effects are assumed to influence the particles for all energies. Included is a derivation of our

interface connection rules used to account for the discontinuities of the electronic properties

of the component superlattice materials. Results are given for the frequency and

structure-dependent index of refraction of GaAs-AlAs superlattices. In Chapter 5 the

superlattice model is modified by incorporating band mixing and considering superstructure

effects important only for energies below the superlattice potential barriers. Furthermore,

the model is extended to incorporate the influence of the F region excitons. A description of

our exciton binding energy model is also included. Results are given for the frequency-

dependent absorption coefficient and index of refraction of GaAs-AlxGa!_xAs superlattices.

A discussion is also included on the effect of the above modifications on the model presented

in Chapter 4. Finally, the models and findings presented in the previous chapters are

summed up in Chapter 6.



2. TRANSVERSE DIELECTRIC CONSTANT OF IH-V COMPOUNDS

2.1 Introduction

As discussed previously, the evaluation of the complex transverse dielectric

constant e(oj) requires a knowledge of the entire band structure of a material. Hence, it is

necessary to determine the wave functions and energy bands throughout the irreducible

region of the first Brillouin zone. A number of band structure techniques, for example,

orthogonal plane wave ' (OPW), augmented plane wave (APW). pseudopoleniial.

and linear combination of Gaussian orbitals (LCGO). have been implemented to calculate,

with varying success, the dielectric constant of bulk semiconductors. However, these

different theoretical approaches employ sophisticated computational methods which require

extended running times. Hence, with most of these models it is difficult to assess the

relative importance of band structure parameters, such as effective masses and optical"

matrix elements, in determining the value of the real part of the dielectric constant.

Furthermore, because of the complexity of these techniques, it becomes difficult to?

incorporate into these models many body effects, such as band tailing and excitons. and?
5,

compositional disorder, i.e.. alloy compounds, and also to extend these models to

heterostructures (superlattices). Consequently, previous bulk band structure techniques

cannot be adapted beyond bulk structures without requiring prohibitive computer usage

and losing their simplicity.

This prompted us to formulate a- bulk band structure technique based on the k • p
•JO

method. In this technique the band structure is generated by expanding about one or

several symmetry points. Since one of our goals is to be able to understand the optical

properties of 1II-V compounds in general and to extend our method to more complex

structures, it is desirable to have simple, analytical expressions for the energy bands and

matrix elements. Consequently', we partiiion the zone into three regions by expanding

about the three highest symmetry points. F, X. and L. For each point we use a small



number of bands in each of our k • p basis sets, therefore limiting the accuracy of the

energy band expressions to .regions surrounding the expansion points. Because of the size of

the X and L regions, it is necessary to supplement the X and L point expansions by ones

about the K and W symmetry points, also. However, because of the low symmetry

characterizing these points, it is difficult to obtain the k • p energy dispersion relations and

optical matrix elements in the volumes surrounding these two points. Therefore, for both

the K and W points, analytical expressions for the energies and matrix elements are

obtained directly from the results of nonlocal pseudopotential calculations which include

the spin orbit interaction. The nonlocal pseudopotential results are also used to fit

empirically the k • p band parameters when experimental energy gaps and masses are not

available. In this way our approach appears as a hybrid model by combining the simplicity

and flexibility of the k • p method with the accuracy and generality of the nonlocal

pseudopotential technique.

Because we have partitioned the Brillouin zone into three regions, F. X, and L. the

dielectric constant is then calculated as the sum of the contributions of these three Brillouin

zone regions. By considering each region separately, our approach engenders a physical

understanding of the parameters which influence the dielectric constant. Moreover, because

it is based on the k • p method, it is sufficiently flexible to include secondary effects and

complex structures, and it is computationally fast.

The precursor of our band structure model is an analytical partition method

39approach proposed by Cardona. He calculated €2(o>) for bulk semiconductor compounds

by decomposing €2(oj) into the contributions of a three-dimensional, critical point labeled

E0. a two-dimensional, critical point labeled Ev. and a one-dimensional, critical point labeled

E2 (see discussion in Sec. 2.4). The E0 point accounts for the absorption edge of e2(o>).

while the E! and E2 points produce the EI and E2 peak structures in e2(a>). respectively. He

proposed that the E0 absorption edge is due to band-edge transitions at F, the E! peak arises

from transitions along the eight equivalent <111> directions, and the E2 peak originates



from transitions which include or are close in energy to those at the X point. Next, for each

critical point he constructed energy dispersion relations having the dimensionality of the

points. More specifically, the 3-D E0 point was modeled by parabolic bands at F. the 2-D E^

point by valence and conduction bands which are parallel along the < 111 > direction and

parabolic in the two transverse directions, and the 1-D E2 point by valence and conduction

bands which are parallel in two orthogonal directions while parabolic in the third (since the

position of the E2 point is unknown in his model, the directions for the E2 expansions are

not specified). As can be seen from this synopsis of Cardona's model, there are similarities

between it and our partition approach. Both models split the zone into the T. X. and L

regions and use k • p theory to calculate the matrix elements at F and L. However, our

method is based on a many-band k • p approach, while Cardona's model only uses two

bands for his expansions. Furthermore, for the E2 peak Cardona uses phenomenological

arguments to arrive at a 1-D model for an unknown position in k-space. while in our

partition method the results of nonlocal pseudopotential calculations including spin orbit
'«•;

effects are used to model accurately the band structure around different expansion points
'*•'

and. especially, the k point (3/4. 1/4. 1/4) which is found to give rise to the E2..

peak. ' " Hence, our approach generalizes Cardona's model and places it on a more

rigorous and numerically accurate basis by providing analytical expressions for the energy

bands and matrix elements for any point in the zone. In the following section we discuss

the k • p method in general and derive our energy band expansions for the F, X. and L

points of bulk III-V compounds.

2.2 k • p Method and Expansions

2.2.a General Methodology

k • p band theory for III-V compounds and expansions for the F. X. and L

38 53 39symmetry points have been derived previously by Kane. Dresselhaus. and Cardona.

All three authors have discussed the F region expansion in detail, while only simplified



s

expansions were presented for the X and L points. However, in order to follow our

derivation of the X and L point expansions, it is best to understand the k • p method and to

see it applied to the simpler F point expansion. Consequently, the important highlights of

the k • p method and the F region expansion will be discussed: whereas, the reader is
TO c-j

referred to papers by Kane and Dresselhaus for details.

In terms of a complete set of basis function un (k0) at the point k0. the energies and'

— _. js
eigenvectors at any point in k-space can be obtained by solving the k • p matrix equation:

En(kJ * (k2-k0
2) 8 - + J L ( k - k 0 ) - P .+ H50'

nn m nn nn
c < = En(k)cr (1)

unit
cell

n lcn (2)

where

u_r(r) = T c ' u - r (r)
-

_
"* an n k0 (3)

In the above. m0 is the free electron mass, n and n are band indices, p is the electron

momentum, and E^Ckg) is the energy and P • is the momentum matrix element at the point

k0. Since the spin orbit interaction has a noticeable effect on the band structure of many

semiconductors, we added onto the k • p Hamiltonian the spin orbit energy Hso, which

.38consists of two terms"

Hso = (4)

where V is the crystal potential, c is the speed of light, and 9 is the Pauli spin operator.

Because the main contribution to the spin orbit interaction comes from the core region of

the atom where p is many times larger than k, we only include the k-independent spin

orbit interaction in our Hamiltonian.



In order to evaluate the dielectric constant for energies less than 6 eV, it is

reasonable to restrict the calculation to transitions between band-edge states where the

transition rates are the largest. Consequently, in performing the energy expansions about

F. X. and L we treat the band edge states exactly, i.e.. the un(k0) of Eq. (3), and incorporate

the effects of the other bands (Lbwdin slates) using a perturbation technique described by

Lb'wdin. ' These renormalizations are performed by including only those bands which

give the largest contributions. This approximation results in a slight overestimation of the

matrix elements involving these bands. This point will be discussed in more detail later in

this chapter. In all of our Lb'wdin states, we find it necessary to add d-symmetry states

onto those states of p-symmetry in order to obtain the correct energy-band curvatures.

This idea was suggested by Chadi ' who showed from pseudopotential calculations that

there is appreciable mixing of d-symmetry states into the p-symmetry states: and. in a type

of tight-binding calculation, he determined that the addition of d-symmetry states to an s-p

basis set resulted in more accurate wavefunctions and energy bands.

2.2.b f Point Expansion

The basis set includes the three p-symmetry valence bands, the lowest s-symmetry

conduction band, arid the three lowest p-symmetry conduction bands as the additional

Lbwdin states. The seven wavefunctions are

15 (5a)

Ff isc T
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15

(xc + iyc) -I- (dv% + idx
c
z)

dx
c
y)T

1 |(x< - iye) + (dy<z - idx<2)

(5b)

where we have labeled the wavefunctions using single group symmetry notation. The

superscript c signifies a conduction band wavefunction (no superscript implies a valence

band wavefunction). x. y. and z are the three orthogonal components of the p-symmetry

wavefunction. and dxy. for example, denotes one of the five spherical harmonics of the d-

symmetry wavefunctions. Each of the seven states are orthonormal and there is another

degenerate set of seven states with the spin flipped. To obtain the energy dispersion

relations for the states of Eq. (5a). we diagonalized the following renorinalized Hamiltonian

matrix resulting from the above basis set:

Vk2 -R2k**V+T5
o

kP'

0

0

0 B 'k 2_2A ,"n2k2

2 3 2m,,

kP' 0

0

0

B'k2

0 0 2m0

(6)

In Eq. (6) we chose the k vector to lie along the z-direction (by symmetry it can li«* along

any direction) and the top of the valence band is taken as the zero of energy. Ec is the band

gap at the F point. A is the spin orbit constant, the parameter P' results from the direct

interaction of the s and p wavefunctions. and the coefficients A' and B' are due to Lbwdin

renormalization involving the I"^ states and are defined similarly to L. M. and N of

Dresselhaus et al." The interaction matrix of Eq. (6) is very similar in form to the one
•70

given by Kane. The constants A. P', A', and B' are defined by

. • sw . , av av , .A = -^7?<sl|rp'-|7p-ly>



11

P' = —<is c lp jz> - (7)
m,,

Tj2 I < i s c l p z l z c > I2 , .
A = 2^ _LL_ (8)

m0 t, — tis

m0
2 E15 — Eic5

In Eq. (8). Ef. for example, is the energy of the Ff state. The Lbwdin coefficients

normally involve sums over all bands of a certain symmetry type that interact with the s-

54and p-symmetry wavefunctions; however, we chose to include only the largest terms in

the sums. The parameters Ee. A. P'. A', and B' are determined empirically by numerically

solving the eigenvalue equation in order that the k • p band structure has the correct band-

edge, energy splittings and effective masses. The value of these parameters, as well as those

for the X and L point expansions, for GaAs are listed in the Appendix. As stated

previously, the energy gaps and effective masses are either experimental values or

determined from nonlocal pseudopotential calculations which include spin orbit effects.

The pseudopotential energy gaps resemble those of Chelikowsky and Cohen: the band

edge effective masses are given at the end of this section.

2.2.c X Point Expansion

The eight X point basis states are

izT • - '
yl

Xf sc T (9a)

X-f
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X3 —7=r(ix+idyz)T (9b)

izcT

where the states listed in Eq. (9a) are treated exactly while those in Eq. (9b) are

incorporated by Lb'wdin renormalization. In Eq. (9) we chose the <100> axis to lie along

the x-direciion. Again the d-symmetry states are included in order to obtain a better

empirical fit. and the Xt wavefunction has an f-symmetry state for reasons analogous to

those discussed previously for the d-symmetry slates. The same band structure

results from the above basis set with spin down. Because the energy gaps at the X point for

III-V semiconductors are large, we find it reasonable to diagonalize two 2x2 matrices instead

of one 4x4 matrix in order to obtain the energy dispersion relations for the states of Eq.

(9a). The resulting 2x2 matrices are

-A'
2

1 . ,
TA

2m

(lOa)

-H +0

,% - E/x)'•* s'x

1/2

-1.x ' '* _ '£*'- * + k^F-CED] -f 1 |̂

. (lOb)

Equations (1'Oa) and (lOb) are for the band-edge valence and conduction bands,

respectively. In Eq. (10) we chose the z-direction as the arbitrary (neglecting the

anisotropy) perpendicular direction and the top of the valence band as the zero of energy.

kx and kz are the k vectors along the <100> and z-directions. respectively, and

k'x = kx—km . where km corrects for the Xf minimum not being exactly at the X point. km

is determined, empirically from the pseudopotential calculations. A' is the spin orbit

.constant defined analogously to A of Eq. (7) and Ef x . for example, is the relative energy of
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the Xf state. D. El. E2, F, G. H'. and I are the Lbwdin coefficients and are defined similarly

to A' and B' in Eq. (8). The parameters in Eq. (10) are fitted empirically by computer so

that the X1( X3.X5.Xic, and X3
C bands all have the correct relative position and dispersion

relations (see Appendix for their values in GaAs).

2.2.d L Point Expansion

The ten L point basis states are

L3 —=.(22— x-y)T (lla)

Lf scT

L! __(s + fxyz)T

! - (x+y+z+dxy+d«+dyz)T

(lib)
^

where the states listed in Eq. ( l la) are treated exactly and those in Eq. (lib) are

incorporated using Lbwdin renormalization. For convenience, we took the spin quantization

axis to be the <111> axis and transformed Eq. (4) into the <111> coordinate system, i.e..
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J » « -
-=• (i+j+k) is the z-axis. Using this coordinate system for the spin orbit interaction. Hs

only connects L3 states having the same spin. The basis set with spin down is degenerate

with the states listed in Eq. (11).

Similar to the X region treatment, because of the large band gap at the L point, we

diagonalized a 2x2 matrix consisting of the two upper valence bands and considered

separately the lowest conduction band. The 2x2 matrix is written as

>'
12a)

1 A'1

and the energy dispersion relation for the L/ band is

S'CEk-Eu)E =
(Eic.L-E3.L) 2(E1',L-E3

C.L)
(12b)

In Eq. (12) k, and kt are the longitudinal and transverse k basis vectors, respectively, k, is

taken along the L-F direction and kt is arbitrarily, by symmetry and neglecting the

anisotropy. taken along the L-W direction. In analogy with the X-region treatment. A" is

the spin orbit constant: E£L is the relative energy of the L/ state, for example: and R'. S', T.

U. V, and W are the Lowdin coefficients. Again, the parameters are fitted empirically so

that the L!. L2. L3. und Lf bands have the correct relative positions and dispersion relations

and their values for GaAs are listed in the Appendix.

2.2.e. Effective Masses

Table 1 lists the low temperature (5 K - 77 K) values of the band-edge effective

masses at the three symmetry points for the five III-V compounds. Presented are the

longitudinal and transverse masses for the X and L states and the density of states masses

for the F states. When experimental data are not available, the masses are calculated using

the results of nonlocal pseudopotential calculations which include the spin orbit interaction.
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Table 1: Low temperature theoretical and experimental band-edge masses at the T, X.
and L symmetry points. Each of the experimental masses is referenced. For F
only the density of states masses is given while for X and L both the longitudi-
nal and transverse masses are presented.

F,c m*

rhh m

r,h m

Fso m
L6< m,

m,

1-4.5 m/

mt

L6 m,

mt

X7
C . m,

m,

X6
C m,

m,

X7 m.

m,

X6 m/

m,

GaAs

0.0673

-0.5 10a

-0.082a

-0.154"
1.854

0.136

1.731

-0.277

1.731

-0.277
0.495

0.258

2.100

0.277

1.209

-0.744

1.209

-0.744

AlAs

0.140

-0.536

-0.087

-0.217
1.592

0.157

2.011

-0.290

2.011

-0.290
0.385

0.254

1.158

0.268

1.300

-0.659

1.300

-0.659

InAs

0.023b-c

-0.40d

-0.026d

-0.166
2.333

0.143

1.688

-0.308

1.668

-0.308
0.593

0.305

4.516

0.307

1.236

-1.109

1.236

-1.109

InP

0.077b

-0.58e

-0.12e

-0.179
2.149

0.144

2.021

-0.295

2.021

-0.295
0.566

0.279

2.772

0.278

1.341

-0.839

1.341

-0.839

GaP

0.122

-0.56'

-0.16e

-0.289
1.988

0.147

1.948

-0.278

1.948

-0.278
0.551

0.249

1.70f

0.191f

1.258

-0.628

1.258

-0.628

a Reference 57
b Reference 58
c Reference 59
d Reference 60
e Reference 61
f Reference 62
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These masses along with the energy gaps are used to determine the direct interaction and

Lb'wdin coefficients at the three symmetry points. Instead of taking the masses directly

from the energy band curvatures, a technique with a fair amount of uncertainty, the mass

* 38m at the point k0 is calculated using

I s - V - I 2

(13)
m' m° mo2 „' En(k0)-En-(k0)

where s is a unil vector in the direction of a principal axis. V ' is the gradient operator

between the states n and n' at the point k0. and the summation is over all n' *± n.

In order to test the accuracy of our masses, we calculated the conduction band

masses at F for GaAs. InP, and InAs for which experimental data are available. The masses

are 0.070. 0.075. and 0.028 for GaAs, InP, and InAs. respectively. As can be seen, our

calculated masses compare Favorably with the experimental data.

2.3 Dielectric Constant and Partition Method Formalism

The dielectric constant is calculated as the sum of interband optical transitions.

Ignoring phonon assisted transitions and the exciton contribution, the real part of the

transverse dielectric constant in the long wavelength limit is given by

( l-l + i!!£51 -T I e - P , v ( k ) l 2 _ - '
m 2 ( E - E U 4 )

where Pcv(k) is the momentum (optical) matrix element defined in Eq. (2) between the

initial and final states having wavevectors kiv and kf c. respectively, e is the electronic

charge, e is the unit polarization vector in the direction of the electric field, E£.V and Ej{c

are the initial and final states energies, respectively, and at is the frequency of the

electromagnetic field. In Eq. (14) it is assumed that the valence band is filled and the

conduction band is empty.

Because of our restriction to band-edge transitions, we have to calculate both the
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real and imaginary parts of the dielectric constant since the Kramers-Kronig dispersion

relation can be used to determine 6i(o>) given 62(o>) only when €2(<o) is known for a larger

range of energies. Consequently, we also calculate the imaginary part of the transverse

dielectric constant which can be written as

I le-P c v fk) l 2 S(E r -E r -

Equations (14) and (15) both contain a summation over energy bands and k slates. As

stated previously, we only consider transitions between the highest valence band states and

the lowest conduction band states. Consequently, for the F region contribution, we include

transitions between the upper three valence bands and the lowest conduction band, for the

X region contribution, we include transitions between the upper two valence bands and the

two lowest conduction bands, and for the L region contribution, we include transitions '
/

between the upper two valence bands and the lowest conduction band. In Figure 1 arrows

on the GaAs band structure represent the aforementioned interband transitions. In our ..

model both the L and X regions include the K and W points, even though Figure 1 showstsv

only the K point as being part of the X region. ^

As a result of conservation of momentum, kj = kf. and, thus, we replace the double

summation by a single one over the valence band wavevectors. For €2(o>) the summation is

only over k-states for which there is energy conservation between the energy of the

excitation and the energy difference between the valence and conduction bands. Therefore.

e2(oj) has contributions only from specific regions of the Brillouin zone and. thus, a

measurement of 62(o>) reveals properties specific to certain portions of the zone. On the

other hand, e^w) also allows virtual transitions, i.e.. no conservation of energy, and, thus.

all regions of the zone contribute to it. However, because of the energy denominator in Eq.

(14). the most important transitions for a specific excitation energy are those for which

there. is approximately energy conservation. Consequently, transitions having energies

which are significantly different from the excitation energy can be safely ignored, which
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region region region
LS-1605

Figure 1. Optical transitions betwen the band-edge valence and conduction bands for the
three regions, F. X, and L. for GaAs. Only these transitions are included in
our model.
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accounts for our decision to include only band-edge transitions in our model.

In order to "calculate e(o»), the summation over k-states is replaced by an integration

over the first Brillouin zone. Since we calculate the dielectric constant by summing over

the contributions of the regions around the F, X, and L points, the integration is performed

separately for each region. The integration volumes for the F. X, and L regions are

approximated by a sphere and two cones, respectively (see Figure 2). For GaAs. the

volumes of these regions, taking into account the six-fold and eight-fold degeneracies of the

X and L regions, respectively, are 8.24 X KT2. 1.35 and 4.01 A."3 for F. X. and L,

respectively. The total volume of 5.44 A~3 is less than 1% different than the actual volume

of the first Brillouin zone of GaAs.

Prior to performing the integrations for each region, it is necessary to determine

analytical expressions for the energies and matrix elements. For F we assume the region to

be isotropic and, hence, the energies are obtained directly from Eq. (6). To obtain the F

region optical (momentum) matrix elements we use Eq. (2) in conjunction with Eqs. (6)-

(8). More specifically, for the case of the transition between the heavy hole (hh) band and;

the first conduction (cond) band, the x- or y-component (by symmetry) of Pcv(k) is

bh.cond
m0N1N4.

x/2

(A'XB'XEie-E,e
s)

1/2

a,k

T7T
(A'XB'XEtf-Efc)

(E,e-E&)

1/2
 + c.kB'

T7T
(16)

where we have substituted the hh and cond band eigenvectors of the Eq. (6) matrix into Eq.

(2). In Eq. (16) Nj and N4 are the normalization constants for the hh- and cond-band

eigenvectors, respectively; at. bt. and ct are the eigenvector coefficients for the cond band:

and P'. A', and B' are the direct interaction and Lowdin coefficients, respectively, from Eqs.

For the X and L regions, the integrations and dispersion relations are calculated
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K \

Figure 2. Partition of the first Brillouin zone of a zinc-blende lattice into the I". X. and L
regions. The T region is a sphere while the X and L regions are both cones.
The K and W points are also part of the X region.
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analogously: therefore, we will only consider the case of the L region. On the zone-face

containing the L point, we expand the energies and matrix elements from the L point

towards both the K and W points. For energies closer to the L point, i.e.. up to halfway

between L and K. we evaluate Eqs. (12), while for those closer to K or W. we construct

polynomial fits to the energy bands resulting from nonlocal pseudopotential calculations

which include spin orbit effects. For the matrix elements we assume a constant value equal

to the L point matrix elements (evaluated analogously to the derivation of Eq. (16)) for

states closer to L and linearly interpolate between the two endpoint values, as obtained

from the pseudopotential results, for slates closer to K and W. Both of these matrix

element approximations are borne out by pseudopotential calculations. In a similar fashion

we expand from L. K. and W towards F. i.e.. using Eq. (12) and a constant matrix element

for the L expansion and the pseudopotential results with two matrix elements for the K

and W expansions. By symmetry, it is only necessary to consider the region between the

L-K and L-W lines. This type of structure repeats itself 8 and 12 times on the X and L

zone-faces, respectively. For simplicity, the energies and matrix elements between the L-Kp

and L-W lines are computed by linear interpolation. We also make the approximation that'

the volume between the L zone-face and the F point is to be modeled by a succession of

shrinking hexagons, assuming the symmetry on the L zone-face to exist on each of the

hexagons. For hexagons which are less than 0.65 of the distance from L to the edge of the F

region, we assume the disperson relations along L-K and L-W are also valid along the

pseudo L-K and L-W lines of each hexagon. For hexagons which "are greater than 0.65 of

the distance, the dispersion relations along the pseudo L-K and L-W lines are approximated

by linearly interpolating between the values along the L-F line and those along the K-F or

W-F lines. By comparing all of these interpolated values with those resulting from a

nonlocal pseudopotential calculation, we have determined that our linear interpolation and

shrinking hexagon schemes, in spite of their roughness, yield reasonable results.

Having obtained analytical expressions for the dispersion relations, we are able to
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obtain the energies and matrix elements at a large number of mesh points using a small

amount of computation time. The F region integration is straightforward because of its

isotropy. while for the X and L regions we integrate numerically by dividing the

irreducible volumes of these regions into approximately 32.000 rectangular cubes of

varying sizes and shapes. The sizes and shapes are varied according to the density of states

and to ensure that the integration is performed within the volume of the first Brillouin

zone. Using this method, we fill the zone with over 4.000,000 mesh points, assuring us of

satisfactory convergence and a lack of artifacts for an energy resolution of 0.1 eV. On a

Harris 800 computer, the e2(o>) curves presented in Section 2.4.a take approximately 15

minutes to generate.

Once e^w) and 62(o>) are known, the index of refraction -n(ti>) and the absorption

coefficient a(o>) can be easily determined. The index of refraction is given by

2
l/2(€l(o>)2 (17)

The absorption coefficient is related to 77(0)) and €2(&>) v'a tne relation

a= —_-_ (18)
cn(o>)

where c is the velocity of light.

2.4 Results and Discussions

2.4.a €2(o>) for Five III-V Compounds

Figures 3a-e compare our calculated ^(w) curves with the experimental data of

Aspnes and Studna. As the theoretical curves are generated using low temperature (5 K)

band structure data while the experimental data are obtained at 300 K. we have shifted the

experimental curves by 0.1 eV in order to account for this difference. Experimental data do

not exist for AlAs. .

The most noticeable feature of all of the curves is the presence of the two well
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Figure 3a. Imaginary part of the dielectric constant of GaAs. The solid and dotted-
dashed lines are calculated by the k • p and nonlocal pseudopotential methods,
respectively, while the dashed line is the experimental results. The experimen-
tal data are extrapolated to 5 K.
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Figure 3b. Imaginary part of the dielectric constant of GaP. The solid and dotted-dashed
lines are calculated by the k • p and nonlocal pseudopotential methods, respec-
tively, while the dashed line is the experimental results. The experimental
data are extrapolated to 5 K.
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Figure 3c. Imaginary part of the dielectric constant of InAs. The solid and dotted-dashed
lines are calculated by the k • p and nonlocal pseudopotential methods, respec-
tively, while the dashed line is the experimental results. The experimental
data are extrapolated to 5 K.
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Figure 3d. Imaginary part of the dielectric constant of InP. The solid and dotted-dashed
lines are calculated by the k • p and nonlocal pseudopotential methods, respec-
tively, while the dashed line is the experimental results. The experimental
data are extrapolated to 5 K.
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Figure 3e. Imaginary part of the dielectric constant of AlAs. The solid and dotted-dashed
lines are calculated by the k • p and nonlocal pseudopotential methods, respec-
tively, while the dashed line is the experimental results. The experimental
data are extrapolated to 5 K.
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known Ej and £2 peaks, as discussed previously in Sec. 2.1 in reference to Cardona's

39model. The E- peak arises from transitions occurring over a large portion of the Brillouin

zone around the L points. There is no E, peak for AlAs because the L and K point energy

gaps differ by less than 1 eV; hence, the position of the AlAs E. peak overlaps with the

low-energy slope of its E^ peak. Except for InAs and GaAs for which our theoretical

curves show a small structure due to the L point spin orbit splitting, the Ga and In

compounds exhibit unsplit E1 peaks which are broader than the experimental peaks. We

believe that this occurs mainly because of the absence of excitons in our model. Exciton

effects could have various consequences on the magnitudes of the E, peaks because they

alter both the density of states and the optical matrix elements. According to Velicky and

Sak and Hanke and Sham. excitons should sharpen and enhance the E.. peak. We

account qualitatively for their results by the following argument. Without excitons. the

Ej peak arises from transitions away from the L-F line because the band-edge conduction

and valence bands along that line have small transverse masses and, correspondingly, small

densities of states which are insufficient to support a peak. Consequently, the peak is

shifted to higher energies where the phase space is larger. Exciton effects should lower the

L gap and raise the transverse effective masses, resulting in higher densities of states along

the L-F line. Thus, the structure of the line would be reflected in the shape of the Ej peak,

i.e.. the peak would become split.

These ideas are corroborated by our theoretical results. The InAs band edge matrix

elements are a factor of two smaller than those of GaP: however. InAs has the largest E,

peak. Furthermore, its peak is the sharpest and the most centered of the four compounds.

This occurs because its transverse energy band curvature is the smallest among these

compounds: hence, the E.. peak is supported mainly by transitions occurring close to the L-

F line. However, for more precise imformation. an explicit calculation is required to

determine the overall effect of excitons on the E. peak.

As discussed in Section 2.1. the E2 peak originates from a region around the special
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k point (3/4,1/4.1/4). From our calculations we find that the density of states in this

region is more important than the magnitudes of the optical matrix elements in influencing

the strength of the £2 peak. Excitons should lower the E* peak. " A possible

explanation is that excitons could disrupt the parallel band curvature in the vicinity of the

special k point. This would lower the effective density of states in this region and.

consequently, reduce the E-y peak. The same exciton effect can account for the slight energy

difference between the experimental and theoretical curves for GaAs, GaP. InAs. and InP.

The other regions of the Brillouin zone have small contributions to the dielectric

constant in the 0 to 6 eV range. The F valley contribution is negligible because of its small

phase space as shown in the previous section. The X region contribution is small because its

phase space and matrix elements are. respectively, about a factor of three and two smaller

than those of the L region.

2.4.b Comparison with Pseudopotential
*-*sl

Figures 3a-e also compare our results with those generated using a nonlocal

pseudopotential calculation. The spin orbit interaction is not included in the
jf

pseudopotential calculations. For GaP. the effect of the omission is negligible: however, for

the other four compounds, the spin orbit interaction effectively lowers the important band

gaps by — 0.1 eV. Consequently, for these four compounds, we have shifted the S-Cco)

curves so that the L-point, energy gaps agree with the spin orbit results.

The results of our model compare favorably with both the experimental and

pseudopotential results. The magnitudes of our E. peaks are larger and more closely

approximate the experimental peaks than those determined by the pseudopotential

calculations. For GaAs. InAs. and InP, the E^ peaks calculated by the k-p and

pseudopotential methods are comparable in magnitude, but slightly shifted with respect to

the experimental £2 peaks, while for AlAs and GaP. the k-p peaks are substantially larger

than the pseudopotential peaks. The discrepancy in the magnitudes of the E. and £2 peaks
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calculated by the k-p and pseudopotential methods can be attributed to the difference in

the values of the optical matrix elements and to our linear interpolation approximation of

the off-expansion line energies as discussed in Section 2.3. As stated previously, the k-p

matrix elements involving the Lb'wdin states are overestimated due to the neglect of all but

the closest higher bands of the proper symmetry. However, we find that the band-edge

k-p and pseudopotential matrix elements differ by only a few percent. This result agrees

with the calculation of Hermann and Weisbuch who found that the T-point. band-edge,

matrix elements are insensitive to the higher band contributions. Since the band-edge

matrix elements determine the low-frequency dielectric constant, the discrepancy in the

peaks is. therefore, largely the result of our linear interpolation approximation. The

problem with this approximation is that although it provides a good average energy

dispersion relation, it sometimes produces a poor value for the density of states. This

discrepancy also accounts for the difference in the shapes of the two curves. Nevertheless,

despite the approximations involving the matrix elements and energy dispersion relations,

the results of the two models are comparable for GaAs. InAs. and InP and assert the

validity of our partition model.

2.4.c €a(0) for Five III-V Compounds

In Table 2 we give €^0) at 5 K for the five III-V compounds. We also list the

experimental values and the individual contributions of the three regions. Only the GaAs

experimental data are 5 K values: for the other four compounds the values are extrapolated

from 300 K using the GaAs €.(0) temperature dependence. The theoretical values are

uniformly low. with an average error of — 7.5%. The error is partly due to the omission of

all high-energy transitions. The errors for AlAs. InP, and GaP are small because of the

overestimation of the contributions of the virtual transitions corresponding to the E^ peak.

This effect is particularly pronounced for GaP where the strength of the E^ transitions

compensates for the small contribution from the E. transitions. For GaAs. the error results
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Table 2. Theoretical and, experimental €i(0) values at 5 K for five III-V compounds.
Also included are the calculated individual contributions of the F. X, and L re-
gions to e^O) for each of the five compounds.

Contributions of the
three regions.

Mail.

GaAs

AlAs

InP

InAs

GaP

e^OHheory

8.68

7.42

9.13

10.10

8.77

e,(0)-expt.

10.60

7.90

9.27

11.49

8.80

% error

18.1

6.1

1.5

12.1

0.4

L

6.01

5.12

6.68

7.26

6.30

X

1.25

1.16

1.12

0.94

1.21

r

0.41

0.14

0.33

0.91

0.25

also from its weak E. contribution. For InAs the error is — 12% in spite of its large E«

peak. This probably stems from the fact that its £2 peak is small and 6,(0) of this small

gap material is affected most by the neglect of higher band contributions in our model.

The valley contributions are split up according to the partition of the Brillouin zone

as presented in Section 2.3. For all materials, the L region contributes approximately 60-

70% to the total value of the dielectric constant while the F region accounts for about 5-

10%. This general trend is also confirmed for optical frequencies corresponding to the F

energy gap. Thus, the index of refraction is essentially determined by the band structure

39away from the center of the Brillouin zone, in agreement with the model of Cardona

discussed in Section 2.1.

In conclusion we have developed a general model for the dielectric constant anc.

thus, the optical parameters of III-V compounds using a hybrid approach which combines

the k-p method with a nonlocal pseudopotential calculation to partition the bulk Brillouin

zone into three regions. The results for the absorption coefficient and refractive index of

bulk III-V compounds compare well with those for other one-electron band structure

models. In contrast to other models, the partition method enables us to determine easily
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the dependence of the dielectric constant on the form of the band structure. The other main

advantage of this method is its flexibility, enabling it to analyze more complex structures

and materials, such as/alloys and heterostructures, as will be shown in Chapters 3 and 4.

respectively.
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3. EXTENSION OF THE PARTITION METHOD TO m-V ALLOY COMPOUNDS

3.1 Introduction

Because of the ability to tailor the electronic and optical properties of III-V alloy

compounds by varying the alloy composition, these compounds have seen widespread

application in such diverse optoelectronic devices as heterostructure lasers. ' ' III-V alloy

lasers and light emitting diodes (LEDs).68'69 photodetectors.11'70'71 and solar cells.72"73

Consequently, the determination of the electronic and optical properties of these compounds

as a function of composition is technologically important. The most simplistic approach to

this problem is to invoke the virtual crystal approximation (VGA). Alloy calculations

based on the VGA have been performed using the empirical and model. local

77 7X '
pseudopotential techniques and the dielectric method of Phillips. " In the VGA the

alloy is treated as a perfectly periodic crystal having an average potential at each sublattice

site, thus, ignoring the effects of fluctuations in the crystal potential and lattice site

positions caused by the random arrangement of the atoms. However, these fluctuations

cause the electrons to scatter as they traverse the lattice, leading to modifications of the

VGA electron wavefunctions. These modifications manifest themselves in a number of

phenomena, such as localized states, band tailing, mobility edges, and the variation of the

energy gaps and absorption coefficient with the alloy composition. VGA models do predict

some of these effects: however, the magnitudes of the trends are normally only correct for

very small, aperiodic potentials.

Consequently, it is necessary to resort to a theoretical model which can take the

lattice site and potential fluctuations into account. One such technique is the supercell

79method. In this approach a very large unit cell, encompassing many lattice sites, is

assximed to be representative of an average volume of the alloy. By calculating the band

structures resulting from randomly varying the potential at each lattice site in the

supercell. an average band structure is obtained which reflects the effects of alloy disorder.
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This method yields good results at the expense of large computational costs resulting from

the use of large unit cells.

The more commonly used approach, which, however, is also computationally
A A O f\ O *^

expensive and complex, is to use the Coherent Phase Approximation (CPA). ' The

advantages of the CPA are that it is valid for all alloy compositions when the aperiodicity

is small, while being applicable to all sizes of the disorder potential when the concentration

of one of the alloy components is small. The basic idea of the CPA is to replace the actual

disorder potential by an effective or coherent, complex, energy-dependent potential which,

on the average, produces the same electron scattering as the actual potential. The coherent

potential can be obtained by forcing it to follow the criterion that, on the average, an

electron propagating according to it should undergo no further scattering at each atomic

44site. Because of the computational difficulties associated with a full CPA implementation

and our desire to have a simple, intuitive, bulk, band-structure model, we chose to use a

45perturbation theory approach to the CPA. introduced by Stroud and rederived by

Baldereschi and Maschke. for calculating the band structure of GaPxAsi_x.

In Section 3.2 we implement this pertubation theory approach for calculating the

absorption coefficient of AlxGat_xAs. The results of nonlocal pseudopotential calculations

82are used as input to the perturbation expansions. Ting and Chang show that it is

necessary to add to the disorder-induced absorption, the effects due to phonon-assisted

processes. Hence, in Section 3.3 we introduce the phonon-assisted absorption model of
0-1

Dumpke et al. In Section 3.4. the two models are combined and compared with the

experimental results.

3.2 Perturbation Approach to the CPA

Both Stroud and Baldereschi and Maschke derived expressions for the

modifications of an alloy's electronic band structure as a result of disorder effects.

Stroud's calculation was based on an expansion of the real part of the CPA self-energy to
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first order in the atomic site potentials. Baldereschi and Maschke obtained the analogous

expression by calculating, via second order perturbation theory, the effects of an aperiodic

potential on a VGA electronic band structure, calculated using a local pseudopotential

approach. The expression they derived for an AXB!_XC alloy is

- ( k x ) = E ( 0 ) ( kx ) + x(l-x) 7' ' <n*-xl 8 »n ' .k" .x>l 2
•—n \ *v pA. / ^^ A-*n \ "• »A / * •" V •* *» / / "^^^^^ • -i i •! - ••! i i i 1 \J 111 " *™* , ^ . . . ^ . . . , . - ™ . \ J .X /

where x is the mole fraction of A atoms. 8 is the atomic pseudopotential difference between

atoms A and B. and En
(0)(k.x) and I n.k.x> are the VGA eigenvalues and eigenvectors.

respectively, corresponding to a state having a wavevector k and a band index n. Also

using perturbation theory, the CPA wavefunction ^n(k.x) associated with En(k.x) can be

written as

•a. (T \ i r ^ i /< \ ^" • <nJi.x 181 n'.k'.x>^n(k.x) = I n,k.x> + x(l—x) 2*
n .k

<\

(20) ?

In Eqs. (19) and (20). the VGA wavefunctions and energies are determined from a

nonlocal pseudopotential calculation. To obtain the form factors for AlxGai_xAs, for

example, we linearly interpolate between the values for GaAs and AlAs. Because there is

some latitude in fitting the pseudopotential parameters, we chose the AlAs parameters so

that they are consistent with the GaAs parameters. More specifically, since the symmetric

and antisymmetric form factors can be decomposed into the atomic contributions as shown

below.

Vs = l(VGa + VAs) (2 la)

VA = i (VGa - VAs) (21b)

the AlAs band structure is fitted such that its As form factors are nearly equivalent to

those for GaAs. An exact match cannot be obtained without sacrificing accuracy in the
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AlAs band structure. The fitted form factors for both GaAs and AlAs at 300 K are given in

Table 3.

Finally, the atomic pseudopotential difference is required.for all values of q=k—k'.

This can be seen by writing I n.k,x> in its Bloch form, unj{?)elk'~. There are two parts to

the nonlocal pseudopotential, a local part and its nonlocal correction. Since we use the

empirical nonlocal pseudopotential formalism of Chelikowsky and Cohen, the local

potential is only determined for a few selected reciprocal lattice vectors, while the energy

and momentum dependent nonlocal correction VNL is the Fourier transform of a square

well potential of the form

VNL(r.E)= £ A,(E)f,(r)P,
1=0.2

f,(r) =
1 r < R,

0 r £ R,

(22a)

(22b)

In Eq. (22), I is the angular momentum. A,(E) is the energy-dependent well depth, R, is the

well width, and P/ is a projection operator for the £th angular momentum component. We

determined the complete q-dependence of the local potential by fitting the local model

pseudopotential of Aymerich et al. so as to reproduce the form factors of GaAs and

Table 3. Pseudopotential parameters for GaAs and AlAs at 300 K. ot0 and A2 have units
of Rydbergs (Ry), )30 is unitless. and R0 and R2 have units of Angstroms.
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JJ A
AlAs. Their expression for the bare potential is

Vb(r) = ae-Bf2 sinter)/r - 2Ze2/r (23)

where Z is the number of valence electrons for the atom under consideration, i.e.. 4 for Ga.

and a. b. and c are disposable constants. Their Vb(r) consists of a repulsive core term plus

an attractive coulombic term. To obtain the pseudopotential, they screened the bare

85potential using the zero-frequency, dielectric function of Schulze and Unger corrected for
QS-

exchange through the Hubbard approximation. The complete dielectric-screening function
Of . -

€(q) can be written as

€(q) =
L2(€0 - 1 )q2 3q2/4kF

2 (24)

where €„ is the optical dielectric constant. L is the Thomas-Fermi screening length, and kf is

the Fermi wavevector.

Having evaluated Eqs. (19) and (20), it is then straightforward to obtain the CPA

energy band bowings and absorption coefficients. The bowing factors are the second term in

Eq. (19). while inserting the energies and wavefunctions of Eqs. (19) and (20) into Eq. (15)

yields €2(co) from which a(oj) follows from Eq. (18). The index of refraction 7)(o>) in Eq.

(18) is calculated by linearly interpolating between the bulk TJ(O>) values of GaAs and

AlAs. obtained from the results of the bulk dielectric constant model presented in Chapter

872. The experimental results of Casey et al. show that there is a slight downward bowing

of the refractive index relative to the interpolated value calculated above: however, within

the accuracy of our CPA model, the slight bowing can be neglected.

In evaluating 62(o») we ignored optical matrix elements Pcv between two perturbed

states, i.e.. the second term in Eq. (20). because their magnitudes are negligible compared to

the other three terms. These three terms are matrix elements between two VCA states, an

initial VCA state and a final perturbed state, and an initial perturbed state and a final VCA

state. The first term is simple to evaluate, while the last two only have contributions for
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perturbed states with wavevectors equal to those of the VGA states. Note that transitions

between different k states in the Brillouin zone are allowed because the aperiodicity

destroys the translational symmetry of the crystal and provides the required momentum

through disorder scattering.

3.3 Phonon-Assisted Absorption Contribution

As stated previously, in order to account for the experimental results below the

direct threshold it is necessary to add to the CPA contribution the added absorption due to

phonon-assisted optical transitions. Hence, for this case it is the phonons which provide the

necessary momentum for transitions between different k states. To evaluate this

S3contribution, we use the model proposed by Dumpke et al. In their model they only

considered the low-temperature phonon emission case where the main contribution to the

absorption occurs at the band edges of the initial and final states. Consequently, they

assumed parabolic energy bands and their optical and electron-phonon matrix elements

were independent of energy. These assumptions were used to model the two contributions

to the absorption process. The first contribution involves the formation of a free indirect

88exciton for which they used the results of Elliott to give

(TKo + EQX -Tta>,, - E1) (25)

where Eex is the free exciton binding energy. E1 is the indirect energy gap.U&>p is the phonon

emission energy, and Be-x is an adjustable parameter which contains density of states and

matrix element information. The second contribution describes single-particle, indirect

transitions between the heavy hole (hh). light hole (/h), and split-off hole (so) bands and

the two lowest indirect conduction bands. It is given by

<*ind = £
mvi

m

3/2 , TV,,-TV, -Ej' -F'-F )1 / 2dE1 L,; i_vj/ UL~^i

where i = 1-3 refers to the hh. fti. and so bands, respectively, j = 1-2 refers to the two
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lowest indirect conduction bands. mvi is the valence band effective mass, and mc is the

effective mass of the lowest direct conduction band. EjD is the smallest direct energy gap

for the ith valence band. Ej' gives the two smallest indirect energy gaps, and Aj1. in analogy

to Bex in Eq. (25). reflects the density of states and matrix element factors and is
OQ

determined empirically. To evaluate Eqs. (25)-(26). experimental values are used for the

energy gaps and phonon energies, the effective masses are obtained from Table 1. and Aj1

83and Be:( &
rt given by Dumpke et al. for AlAs. We assume that these empirical parameters

are approximately constant for all compositions of AlxGai_xAs since the density of states

and optical and electron-phonon matrix elements are approximately equivalent for GaAs

and AlAs.

3.4 Results and Discussions

Figure 4 shows the calculated absorption coefficient of Al0.8Ga0.2As. The solid line is

obtained using the CPA model of Section 3.2 and the dashed line results from a VGA

calculation, i.e.. use En
(0)(k,x) and I n,k.x> to calculate a(oj). The CPA curve has been

shifted by — -70 meV so that its direct energy gap. marked ED in the figure, is in

accordance with the experimental results of Monemar et al. Furthermore, in order to

compare more directly the overall shape of the theoretical and experimental curves, both

theoretical curves have been scaled by a factor of 1.1 so that the CPA curve agrees with the

experimental data for energies greater than the direct energy gap. The CPA curve is shifted

by -70 meV because our CPA perturbation model cannot account entirely for the disorder-

induced lowering of the direct energy gap. In contrast to Baldereschi et al. who

calculated a correction of +6 meV for Al().8Ga02As using the perturbation CPA model with

a local pseudopotential. we obtained a value of -15 meV with a nonlocal pseudopotential.

The disparity in the two results arises because the main contribution to the difference

between the Ga and Al potentials comes from the cores of the atoms and only the nonlocal

potential is able to take this effect into account. Our underestimation of the downward
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41

bowing probably arises from two sources: the neglect of positional disorder and the

approximate nature of second order perturbation theory. Baldereschi et al. estimated

81that the effect of positional disorder of A^Ga^As is small, while Chen and Sher

obtained an energy correction of ~ -25 meV using a sophisticated CPA approach, which

takes into consideration both positional and compositional disorders. Hence, the neglect of

higher-order CPA effects is probably the largest source of error in our model. As a final

note, because there is a large scatter in the experimental energy corrections as a function of

composition, it is difficult to judge the accuracy of the -84 meV value of Monemar et

al.90

As discussed in the previous section. Figure 4 illustrates the phenomenon that the

disorder potential allows indirect transitions to the X and L valleys, which accounts for the

long absorption tail for the CPA curve. Because the density of states of the X point is

91approximately a factor of 3 larger than that for L. the majority of indirect transitions

occurs between the F and X regions. Figure 4 also shows that disorder effects start to

become unimportant for energies larger than the direct gap and for these energies it becomes

reasonable to model the absorption coefficient by a shifted (bowing effects) VGA curve.

In Figure 5 the absorption coefficient of Al08Ga0.2As is calculated using the results

of the phonon-assisted absorption model. The dashed curve neglects exciton processes, tq.

(25). while the solid curve includes these processes. Because the model only considers

phonon-emission transitions, the dashed curve begins Ttop above the indirect energy gap.

while the solid curve begins "fltup—Eex above the indirect gap since this curve also includes

the exciton contribution. For larger energies the two curves merge, since the exciton

contribution has a weak dependence on the photon energy. Since Eq. (26) shows that

aind({i>) blows up as ~R<o —• ED. the curves are only plotted up to "Po> = 2.7 eV. The

discontinuity in Eq. (26) occurs because the expression for ail>d(o>) is derived using second

order pertubation theory which becomes invalid as~H&> -• ED, i.e.. it is necessary to include

self-energy effects in the derivation. Finally, the most important point to gather from this
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figure is that by comparing it with Figure 4. it is evident that in Al()8Ga<>.2As phonon-

assisted and disorder-assisted indirect transitions have approximately the same magnitude.

Figure 6 compares the total calculated absorption coefficient of two compositions

90ofAlxGa!_xAs with the experimental results of Monemar et al. The calculated curves

include both the CPA and phonon-assisted contributions. In the figure the solid and dashed

lines are the theoretical and experimental values for Al().8Ga0.2As at 4 K. respectively, and

the dotted-dashed and dotted lines are the theoretical and experimental values for

AlojGao.yAs at 300K. respectively. The experimental data are available only for the energy

range presented in the figure. Since Alo^Ga^As is a direct material, the theoretical curve

does not include the phonon-assisted contribution and disorder effects are barely noticeable.

As in Figure 4. the CPA contributions to the theoretical curves have been shifted and scaled

so as to enable direct comparisons with the experimental data. The factors for x =• 0.8 are

the same as those given for Figure 4 and the shift and scale for x = 0.3 are +20 meV and 1.0

90(no scaling), respectively. The energy shift is positive since Monemar et al. obtained no

disorder-induced lowering of ED. while we calculated a value of -20 meV. As discussed

above, because of the large scatter in experimental bowing values, it is difficult to ascertain

SIthe validity of the experimental value. Consequently, for comparison. Chen and Sher

calculated an energy lowering for Al03Ga0.7As of -- -35 meV.

Figure 6 shows that our theoretical results compare very favorably with the

experimental data. The only noticeable discrepancy between the calculated and

experimental curves occurs for energies around the direct gap where our neglect of direct,

free excitons becomes important. Note that these exciton effects not only raise the

magnitude of the direct contribution, but also change the shape of the curve around ED. In

Chapter 5 we will discuss a method for extending our model to include these F region

exciton effects.

In conclusion, we have extended the partition method, based on a hybrid band

structure approach, to include disorder- and phonon-assisted indirect transitions in ternary
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alloys. The disorder of the alloy has been accounted for by using a perturbative CPA

approach and the phonon contribution is incorporated using the empirical model of Dumpke
O •}

et al. In AlxGaj_xAs the contributions of disorder-assisted and phonon-assisted indirect

transitions are determined to be comparable. The results for the disorder-induced. F point,

energy-gap bowings are shown to be nearly comparable to those calculated using a more

sophisticated CPA approach. Because of the large scatter in the reported experimental F

energy gaps, it is difficult to compare the calculated values with experiment. In general the

calculated absorption coefficients of AlxGai_xAs are in good, agreement with the

82experimental data and compare well with the calculated values of Ting and Chang.

Because our method is based on a perturbation expansion, our model does not provide

correct absolute absorption values, but determines the correct relative contributions of the

indirect (disorder- and phonon-assisted) and direct transitions. Even though results are

only presented for AlxGai_xAs. our model can also provide good results for other IH-V

ternary alloys. In the next two chapters the partition method is applied to heterostructure

materials.
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4. DIELECTRIC CONSTANT AND REFRACTIVE INDEX OF m-V BASED MQWs

AND SUPERLATTICES

4.1 Introduction

9 92 31-34Recently, there has emerged a number of laser and optoelectronic devices

which would benefit from a knowledge of the refractive index of MQWs and superlattices.

Equation (17) shows that TJ(II>) depends on both the real and imaginary parts of the

transverse dielectric constant. Because we are mainly interested in low-frequency

applications. 62(
w) «€1(u>). Eq. (17) reduces to

. (27)

In contrast to the absorption coefficient which selects out specific portions of the Brillouin

zone, the refractive index includes transitions from all regions of the zone. Consequently, a

useful one-electron superlattice band structure model must be accurate throughout the

zone, be efficient, and be extendible to include many body effects such as excitons, band

tailing, and alloy disorder.

There exists in the literature a number of superlattice band structure models which

|c 20 25 27-28
can be used to calculate the low-frequency absorption coefficient. ' ' ' ~ As stated

18 25in Chapter 1, the majority of these models are inaccurate at the zone edges ' or are

computationally complex. * In the past few years, a number of band structure models
_ 30

based on the k -p method have been introduced which do not suffer from the above

problems. "" ' ~ In this chapter the superlattice ic -'^p approach suggested originally by

23 28Leburton and Hess and extended by Kahen and Leburton is developed and applied to

GaAs-AlxGai_xAs MQWs and superlattices.

In Section 4.2 a review of the different superlattice k • p approaches is made and the

merits of the different models are discussed. We give an account of our superlattice model,

based on the partition method, in Section 4.3. Results are presented in Section 4.4 for the

structure and frequency-dependent refractive index of GaAs-AlAs superlattices. Because it
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is necessary to include excitons in the superlattice model in order to have a reasonable

representation of a(o>), we have postponed an account of the absorption coefficient until the

next chapter where excitons are introduced into the model.

4.2 Superlattice k • p Band Structure Models
_ 00

As discussed in Section 2.2.a. using the k • p approach the entire band structure

can be obtained by expanding about one or several symmetry points. The advantages of

using several expansion points are that fewer and less complex basis sets can be employed

to perform the expansions. Leburton and Hess calculated the dielectric constant of long

period GaAs-AlAs superlattices by splitting the constituent material Brillouin zones into

the F. X. and L regions. For the F region, a simplistic k • p expansion was used and

superstructure effects were accounted for within a tight binding approach based on the

21 95 95 ' ••envelope-function approximation. ' The Kronig-rPenney model was used to calculate

the superlattice. miniband. energy positions and widths. A crude VGA approximation was

made for the contributions of the X and L regions. The results of Leburton and Hess

were correct qualitatively in that the resulting superlattice dielectric constant was
»

structure dependent, showed a polarization effect, and exhibited fine structure due to the tf

quantized F region contribution.

93Tsu and lorriatti calculated the longitudinal dielectric constant of GaAs-

AlxGat_xAs MQWs also by splitting the Brillouin zone into the F. X. and L regions. They

improved the model of Leburton and Hess by considering quantization effects at the F. X.

and L points only for energies below the superstructure potential barriers at each of the

symmetry points. These energies were calculated by performing simplistic k • p expansions

about each of the symmetry points, i.e.. effective-mass expressions, while a crude VGA

approach was used for energies above the potential barriers. Since their model is a

simplistic version of the one discussed in this chapter, it is pointless to discuss the merits of

their model.
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94Mailhiot et al. calculated the electronic band structure of a GaAs-AlAs

21superlaltice within the envelope-function approximation. The energies and the

propagating and evanescent envelope wavefunctions of the constituent superlattice

materials were obtained by performing k • p expansions about the respective F symmetry

points. The F-point basis sets were determined using the results of local pseudopotential

calculations. Similar to our k • p approach, their technique avoids the problems inherent in

the pure tight binding and pseudopotential methods. However, since their model neglects

nonlocal, as well as spin orbit interactions, the bulk band structures obtained by their

model are inferior to those obtained using our hybrid band structure approach. It should

also be noted that these effects cannot be included in their approach, since a nonlocal band

structure cannot be obtained by performing a k • p expansion about a single symmetry

point. Consequently, the accuracy of their technique is limited to a small region of the

zone and, thus, can only be used to determine accurately, for example, the F region

97absorption coefficient. In order to improve their model, it is necessary to resort to our

method of expanding about several symmetry points.

4.3 Electronic Band Structure Model of [ 100] Superlattices

4.3.a Envelope-Function Approximation

In long period superlattices. the periodic variation of the band gap produces

quantization of the electronic states which results in the formation of minibands which are

superimposed upon the bulk band structure of the constituent materials. We account for

this band modulation, assumed to be in the z-direction. by quantizing the z-component of

'- 95the wavevector k which results in a tight binding superlattice wavefunction of the form.

^-=e i f | l^ 1 !*^(z) lu t>.- ' • (28)

where Kz is the superlattice traveling wavevector in the z-direction. ?n and kM are the

position coordinate and wavevector in the plane parallel to the superlattice layers. !u^> is
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the periodic part of the bulk Bloch state, and <t>ji (z) is the super-lattice envelope

wavefunction of the jlh quantized state whose periodic part is found from the solution of

the periodic square-well potential problem, as described in Section 4.3.b. Equation (28) is

derived by assuming that there is no mixing between valence-band, envelope

wavefunctions ~ (see Section 4.3.c) and the superlattice periodicity acts only upon the

envelope wavefunction in the z-direction. Therefore, u^(r) is unchanged from its bulk

value, as given in Section 2.2, and the superlattice band structure differs from the

corresponding bulk material band structure only in the quantization direction.

In line with the above approximations, we assume the following simplified, tight-

95binding expression for the energy dispersion relation of the minibands in the z-direction

Ej(Kz) = Ej-l-(-l)JWjCos(Krd) (29)

where Ej and Wj are the midband energy and energy width of the jlh miniband.
*>

respectively, and d is the period of the superlattice. The superlattice minib.and energy

disperson relation E^L(kx,ky.Kz) is calculated by adding Eq. (29) onto the bulk relation^

EB(kx.ky.kz) and quantizing the kz-wavevector. We obtained the superlattice optical matrix

element MSL between the valence and conduction bands by quantizing the z-component of

the k vector in the bulk matrix .element expression MB. which is discussed in Section 2.3.

Hence,

EB(kx.ky.kz) - Ei(kx.ky.Kz) = EB(kx.ky.k j) + AEj + (-l)JWjCos(Kzd) (30a)

MB(kx.ky.kz) - MSL(kx.ky.kj). (30b)

Here AEj is the shift in the energy of the j'h level resulting from the carrier confinement.

The values of Wj and AEj are determined using the interface connection rules described

below and kj = [2( j—l) -f l]7r/2d. By applying Eqs. (30) at the three symmetry points. F.

X. and L. we obtained the quantized electronic band structure presented in Figure 7. Since

K and W are low symmetry points, the effects of quantization are negligible for the
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Figure 7. Band structure of GaAs and the effect of quantization on each of the sym-
metry points.
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contributions coming from these regions. Therefore, these contributions are treated in a

mean-field approximation where the energy and matrix element dispersion relations are

approximately equal to the compositionally averaged bulk alloy values. These alloy values

are calculated using the VGA model presented in Section 3.2.

Superstructure effects also influence the evaluation of the I e • Pcv I 2 term in Eqs.

(14)-(15). which give the expressions for e^o;) and €2(&>). respectively. The e factor takes

into account the consideration that it is necessary to average over all polarizations of the

optical excitation. For bulk materials, on account of their isotropy. all polarizations are

equivalent and this term is equal to

l e - P c v l 2 = I(P
2 + Py

2 + Pz
2) (31)

where px is the x-component of P ', defined in Eq. (2). However, for superlattice

structures the symmetry is lowered by the superstructure layering which causes one

direction, i.e.. the z-direction. to become preferred over the other two. This asymmetry

leads to two distinct polarization terms which can be combined into one expression

. I e • Pcv I - = 1(1 - POL)(px
2 + py

2) + (POL)pz
2 (32)

where POL is one or zero for the electric field polarization being perpendicular (TM) or

parallel (TE) to the superlattice layers, respectively.

In this chapter, we assumed a superlattice model for which superstructure effects

are assumed to be operative at I". X. and L for all particle energies. Hence, we use Eqs. (30)

and (32) for all energies. In the next chapter we find that a better approximation is to use

an approach which combines both superlattice (Eqs. (30) and (32)) and isotropic-alloy

(VGA model and Eq. (31)) electronic band structure models.
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4.3.b Interface Connection Rules

At each symmetry point the envelope wavefunction $£ (z) and the miniband

parameters. Wj and Ej. are obtained through the use of connection rules which account for

the difference in electronic properties of the two constituent superlattice materials. In

general, these connection rules involve continuity conditions for the wavefunctions of the

two materials at the boundaries between them. ' In our approach, we assumed the

continuity of the entire wavefunction and its derivative at the interfaces: however, since

the GaAs-AlxGai_xAs junction is not abrupt, we averaged these relations over the volume

of a unit cell to obtain

- | * A > = <X B I - l * B > (33b)
dz dz

where for each material A and B. W> is the total wavefunction, and IX > is the local

wavefunction. If B is the barrier material on the right-hand side of the heterojunction. the

two A material wavefunctions can be written as

\ (34a)

I X A > = _ ( l u / > + Iu4r>) (34b)
N/2

where I u^-> is the time reversed state of I u^>. and C£ and C£ are the amplitudes for

the forward and backward propagating waves, respectively. The transmitted

wavefunctions in material B are.

l l c ' 'zlu i r
B> (35a)

I X B > = \ u f > . (35b)

where k2' has an imaginary component if the energy of the particle is smaller than the
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potential barrier height. Note that in agreement with the assumptions underlying the

derivation of Eqs. (28)-(29), Eqs. (33)-(35) also do not include the effects of mixing

between quantized bands having comparable energies.

By using the orthogonality conditions between time reversed states, <U£l u_£> = 0

and <uj l — I u_j> = 0. and the expressions for I uj> in each material (see Section 2.2) in

Eq. (33), it is easy to obtain the following conditions on the envelope functions FA and FB

at the position of the interface at z = za

FA(z = z0) = FB(z = z0) (36a)

d mB(E) dz
(36b)

where

1
TnlET

1
m0

<ur 1 — |UTT>
1+ . k dz

ikz(E)
(37)

and we have indicated explicitly that kz in Eqs. (34)-(35) is energy dependent. To derive'

the above we set kx = ky = 0 (since we ignore band mixing) and defined FA and FB by

:^eikl* + CA e"ikjZ
(38a)

FB(z) = CBeik*z (38b)

Equation (36) gives the normal connection rules within the envelope-function

21 98approximation. ' except that the masses are energy dependent in both materials to

account for the effects of non-parabolicity. Because the non-parabolicity effects at the X

and L points are weak in comparison to those at F. for the X and L region minibands. we

used the band-edge limit of Eq. (37). i.e., the effective mass value, for all energies (see

Table 1).

By applying the energy-dependent connection rules to a periodic superstructure, we
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obtained the following relation, which is analogous to that of Bastard and Sai-Halasz et

98al.. except that now the masses are energy dependent

cosKzd = coskz
ALz cosk2

BLB - Qsinkz
ALzsinkz

BLB (39a)

Q = I
kAmB(E) kBmA(E)

kz
BmA(E) kAmB (E)

(39b)

Here Lz and LB are the well and barrier widths of materials A and B. respectively, d =

LZ + LB, and kz
A and kz

B are the energy-dependent wavevectors of Eq. (37). In order to

evaluate Eq. (39) it is necessary to determine the energy-band offsets at the F. X. and L

symmetry points. Figure 8 gives these offsets for a GaAs-AlAs interface at 300 K assuming

42a 65:35, F-point. band-discontinuity ratio. The energy levels in Figure 8 are obtained

using experimental data, when available: otherwise, they are estimated from nonlocal

pseudopotential calculations which include spin orbit effects.

Equation (39) yields values for Ej and Wj of Eq. (29). By solving the periodic

potential problem used to obtain Eq. (39), we also obtained an expression for the periodic

part of <J>ii7(z)

(c')cos(kA(E)z) ' Iz l <L z /2

(40a-b)
exp(-Kz

B(E)z) Lz/2 < I z I < Lz/2 + L8/2

where Eq. (40a) is valid in material A (the well) and Eq. (40b) is valid in material B (the

barrier). In the above we assume z = 0 is at the middle of the well and c'. a normalization

coefficient, and KZ
B. a complex wavevector. are both determined using the continuity of g(z)

and its derivative at z = Lz/2.

4.3.c Valence-Band Mixing Effects

Recently, there has been a flurry of activity concerned with valence-band mixing

effects which produce, in the direction parallel to the superlattice layers, symmetry

exchanges and repulsion effects between the bands."'" These authors ~ show that
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Figure 8. Energy-band offsets at 300 K at each of the main symmetry po\nts for a
GaAs-AlAs superlattice. The energy levels are calculated assuming a 65:35
F-point. band-discontinuity ratio. Each level is marked with the appropriate
double-group-symmetry notation.
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mixing effects in GaAs-AljGa^As superlattices between the /h and hh quantized, energy

bands become important when the energy separation between the bands are on the order of

10 meV. In this chapter Eqs. (28)-(30) and (33)-(37) are derived by neglecting these

effects. Therefore.'for some structures these equations are valid, while for others the model

must be modified. In the next chapter we show that these equations can be retained if we

modify the masses of the hh and Ih bands so as to account empirically for the position of

the bound exciton peaks. Using the variational. band-mixing model of Altarelli. it is

straightforward to include these effects in our model in a more rigorous fashion.

4.4 Results and Discussions

Figure 9 gives the contributions of the I", X and L regions to the real part of the

dielectric constant of a GaAs-AlAs superlattice at "Hoi = 1.5 eV for light being polarized

parallel and perpendicular to the superlattice layers (solid and dashed lines, respectively).

Values, are presented as a function of the period d=LB+Lz for a mole fraction

X=LB/(LZ+LB) of ALAS of 0.3. The superlauice quantization axis is in the [100] direction.

Notice the large L contribution with respect to the F and X contributions. As already

mentioned in Section 2.4. this results from the combined effects of large densities of states

and momentum matrix elements, and small energy gaps present in the L region. The L

contribution is approximately independent of the period because the superlattice

quantization axis is not aligned with any of the principal axes and. thus, it is approximately

equal to its bulk alloy value. Hence, in agreement with the experimental findings of Laidig

99 :

et ah. the effect of the superstructure is only weakly felt at L. The L contribution is

isotropic since the x. y. and z directions are all equivalent for the [ i l l ] direction.

Therefore, for a superlattice grown along the [100] direction, the polarization of the L

valleys, as an average over the three orthogonal directions, vanishes in analogy to the bulk

case.

The F and X contributions both increase as a function of the period. The superlattice
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Figure 9. Structure dependence of the I". X. and L region contributions to the real part of
the dielectric constant of a GaAs-AlAs superlattice atTUu = 1.5 eV. The mole
fraction of AlAs in the structure is X = 0.3 and a0 is the lattice constant. The
solid and dashed lines are for parallel and perpendicular polarizations, respec-
tively. Note that the L region contribution is isotropic.
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structure influences the dielectric constant by determining both the position and .miniband

width of the lowest quantized energy levels. Each are inverse functions of Lg and Lj. It

can be easily determined that the miniband widths have a negligible effect on the dielectric

constant. Therefore, the important factor is the lowering of the quantized levels which

results in an increase in €. with the period. The peaks on the parallel F polarization curve

correspond to the first electron-heavy hole and electron-light, hole transitions. Ej(e-hh) and

E.,(e-lh). respectively. For perpendicular polarization only Ej(e-lh) is present since the

symmetry of the heavy hole stale precludes momentum matrix elements in the

quantization direction, i.e.. for the heavy hole band, P^PV and pz
2 = 0 and use Eq. (32).

Polarization effects at T occur because the heavy hole transitions which are responsible for

the strong coupling between the F conduction and valence bands are absent for

perpendicular polarization.

The X contribution is a weak function of the period because only the conduction

band is quantized (we ignored the very small offset between the two valence bands as

shown in Fig. 8): and. in comparison with the F point conduction band mass, both the

transverse and longitudinal conduction band masses are large and, thus, rather insensitive

to the confinement. Hence, in analogy with the L contribution, the X region dielectric

constant assumes approximately its bulk alloy value. For the X region the band-edge,

optical matrix elements are also appreciable only for light polarized along the x and y

directions, i.e.. similar to the situation for the e-hh transition. However, two of the valleys

have the superlattice quantization axis parallel to the z-component of the optical matrix

elements while the other four valleys have the quantization axis aligned along the y-

component of the matrix elements. Hence, perpendicular polarization (the quantization axis

is perpendicular to the layers) is favored by four of the six X valleys, which accounts for

the reverse polarization trend for the X valley contribution.

In Figure 10 we compared our results for the normalized index of refraction of a

GaAs-AlAs superlattice with the experimental data of Suzuki and Okamoto. Our results
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Figure 10. Normalized index of refraction of a GaAs-AIAs super lattice as a function of
energy. The solid and dot-dashed lines are the theoretical and experimental
parallel polarization values, respectively, and the dashed curve gives the
theoretical perpendicular polarization values. The arrows mark the positions
of the quantized F valley transitions, e-hh(j) corresponds to a transition
between the jlh level of the heavy hole band and the jlh level of the lowest con-
duction band.
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are for parallel and perpendicular polarizations, solid and dashed lines, respectively, while

the experimental data are for parallel polarization, dotted-dashed line. The superlattice has

a well and barrier thickness of 62 and 27 A. respectively, and, consequently, X = 0.3. The

experimental data are only available up to Tfa> = 1.8 eV. Because we have neglected band

transitions larger than 6 eV in our model, the results for the bulk GaAs index of refraction

JB 7

are == 7% smaller than the experimental values.' ' For most optical transitions the influence

of the higher bands can be described by a constant factor. Therefore, we used a

normalization procedure which enabled us to remove this constant contribution and focus

only on the band-edge transitions. Consequently, in order to compare directly our results

with the experimental data, the theoretical and experimental T)(O>) values given in Figures

10 and 11 are normalized with respect to the theoretical and experimental bulk GaAs index

of refraction values at "Ho> = 1.5 eV. respectively. In the figure the arrows indicate the

quantized. F-point. valence band-conduction band transitions which produce the fine

structure on the theoretical parallel polarization curve. The peaks on the theoretical

perpendicular polarization curve are the result of the corresponding light hole and split-off

hole transitions indicated on the parallel polarization curve. As discussed previously, there

are no heavy hole transitions for perpendicular polarization and the dielectric constant is

larger for parallel polarization. However, notice that the anisotropy vanishes around 2.3 eV

due to the falling off of the F contribution and the isotropy of the L contribution.

As can be seen from the figure, our results compare favorably with the

experimental data, there being less than a 2% discrepancy between the two parallel

polarization curves. Our Ej(e-hh) peak is shifted to higher energies by = 8 meV and is

slightly larger. The slight shift is probably the result of our neglect of exciton effects.in

this model. Both the E.(e-lh) and E^Ce-hh) peaks are absent from the experimental data.

The light hole transitions are barely noticeable on our parallel polarization curve, being

weak and overshadowed by the neighboring e-hh transitions; consequently, they might be

difficult to observe experimentally. We do not know why the E(e-hh) peak is absent from
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the experimental data. However, in general the data verify the validity of our superlattice

model.

In Figure 11 we show the normalized index of refraction at 1.5 eV for a range of

GaAs-AlAs superlattices. Again, the solid and dashed lines are for light being polarized

parallel and perpendicular to the superlattice layers, respectively. Also shown in the figure

87are the normalized experimental alloy values corresponding to four of the five

superlattice compositions (there are no data for X = 0.6). As in Figure 10. the main peaks

on the curves correspond to the quantized, F-region transitions. All of the parallel

polarization curves exhibit the Ej(e-nh) peak while the X = 0.1 and 0.2 curves also show

the E2(e-hh) peak. Again, for perpendicular polarization, the peaks are due to the Ej(e-lh)

transition. The E^Ce-lh) transition also contributes to the parallel curves; however, it is,

barely noticeable, being overshadowed by the neighboring E|(e-hh) peak as in the previous|>

figure. For both polarizations the peaks become larger and narrower up to X = 0.3. after;?

which they become smaller. These effects can be explained by the following mechanisms.;«

For small X values the peaks are broad because a large change in the period is required toj:

modify the superlattice characteristics which resemble those of bulk GaAs. Additionally;"

the effects of quantization are weakly felt for these structures, which results in shallower

peaks. For larger X values, the superlattice properties are a stronger function of the period,

which produces sharper peaks: however, with increasing AlAs content, the peaks become

shallower because the AlAs T region contribution is approximately a factor of seven times

smaller than that of GaAs (see Table 2).

A characteristic feature of all of the curves is the shift in the peak positions for

increasing AlAs content. For any mole fraction x. the energy of an optical transition

increases as a function of the barrier width, but decreases more rapidly with the well

width: consequently, the transition energies are the largest for small-period super-lattices

because of the strong confinement. Therefore, as the period d increases for constant X. the

transition energy decreases (weakening confinement since Lz increases) and a peak occurs
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Figure 11. Structure dependence of the normalized index of refraction at 1.5 eV for a
number of GaAs-AIAs superlattice structures. The solid and dashed lines are
for light being polarized parallel and perpendicular to the layers, respectively,
and a0 is the lattice constant. The arrows on the left-hand side of the figure
mark the positions of ihe normalized experimental alloy values for the indi-
cated mole fractions X of Al. The mole fractions given on the right-hand side
of the figure belong to the adjacent parallel polarization curve, whereas for
perpendicular polarization, the indicated mole fractions correspond to the
curves in descending order.
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when the energy crosses the 1.5 eV level. Also, as X increases for a constant value of the

period, the transition energy increases since LB is increasing while Lz is decreasing (AlAs

has a larger band gap than GaAs). Therefore, larger Lz values, i.e.. the shift in the peaks

for increasing X. are required to reduce the transition energy to the value of 1.5 eV. This

explains why the curves with the smallest barrier values. X = 0.1 and 0.2, also contain the

E2(e-hh) transition and why the X = 0.6 curve for perpendicular polarization does not

exhibit the EjCe-^h) transition.

The curves also show that there is a strong birefringence which weakens with

increasing AlAs content. The reduction in anistropy occurs because of the smaller AlAs F

region contribution, as explained previously. The large birefringence arises because of the

large difference between the F region parallel and perpendicular €L(a>) contributions, as

shown in Figure 9. In the next chapter, we will show that, in actuality, the birefringence in

this model is overestimated due to our neglect of band mixing and our assumption that

superstructure effects occur for all energies (see Section 4.3.a).

The most important point to notice in Figure 11 is the positions of the alloy index of

refraction values relative to those of the super-lattices. For parallel polarization it can be

seen that the difference between the alloy and superlattice index of refractions increases

with X and with LB. i.e.. with the period. The later trend is in agreement with the

100experimental findings of Suzuki and Okamoto and confirms the conjecture of Holonyak

g
et al. about the difference between the index of refractions of a superlattice and its

corresponding alloy. Figure 11 also shows that this difference is largest at the quantized

transition energies. Because the model presented in this chapter neglects exciton effects and.

as stated above, has some inherent problems, we cannot take seriously the exact differences

between the superlattice and alloy index of refractions. However, the general trends

discussed above are correct. Furthermore, since it requires only a small index difference to

achieve optical waveguiding (require An — 0.0063 assuming a symmetric AlGaAs planar

waveguide with a thickness of 2 /j.m and TTo» = 1.5 eV). the figure shows that
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waveguiding is optimized at the quantized transition energies.

In summary, the band structure partition method that we developed for studying

the optical properties of III-V binary and ternary compounds has been shown to be

successful also for superlattices. The quantization of the electronic states caused by the

superstructure has been incorporated into our model within the envelope-function

— _ 94approximation. Unlike the superlattice k • p approach of Mailhiot et al.. which is limited

to calculating the absorption coefficient over a limited frequency range, our method is

capable of calculating both the absorption coefficient and refractive index over an extended

range of energies. Because our model is based on the partition method, we are able to get

good insight into the influence of both the band structure and superlatlice parameters on the

values of the superlattice optical parameters. An additional virtue of our approach is its

flexibility, which enables us to modify easily the model so as to incorporate excitons and

band mixing, as will be shown in the next chapter.
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5. EFFECT OF EXCITONS ON THE OPTICAL PROPERTIES OF SUPERLATTICES

5.1 Introduction

In the last few years there has been an increasing interest in the properties of

excilons in superlattices and multiple quantum wells. • As discussed briefly in

Chapter 1, the interest stems principally from the phenomenon that exciton resonances are

clearly observable at room temperature, while in bulk semiconductors the resonances are

barely noticeable at 300 K. This effect has been attributed to the quasi-two-dimensional

character of the excitons in quantum wells which enhances the exciton binding energy and

localization while having a small effect on the longitudinal optical (LO) phonon

broadening. Because the 2-D exciton peaks can be modulated simply by the application of

an electric field. a number of room-temperature, optical devices have been demonstrated

which . utilize an electroabsorptive effect. Concomitantly. there have beeri"

numerous theoretical papers devoted to understanding the low-energy exciton absorption

spectra, with and without electric fields. By taking the Kramers-Kronig

transformation of the imaginary part of the dielectric constant. €2(o>). it follows that the.

strength of the 2-D excitons should also have an appreciable effect on the real part of the

dielectric constant, €[(o*) and. thus, on the low-frequency index of refraction. This

proposition is borne out experimentally. Consequently, this has led to the proposal

and demonstration of a number of quantum well devices, such as superlattice lasers which
Q

are monolithically integrated into higher gap cavities via impurity diffusion, optical-

11 • 1/i

intensity controlled MQW switches. and MQW phase modulators. Therefore, the

knowledge of the index of refraction including the excitonic contribution is technologically

important.

In this chapter we extend the superlattice band structure model of the previous

chapter by including the exciton contribution for the transitions originating around the F

88symmetry point. Both the bound and continuum excitons are modeled using the EMA.
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Since we will only be calculating the low-frequency optical properties of superlaltices, i.e.,

"Ro> < 2 eV. exciton effects at the edges of the Brillouin zone can be neglected as a first

approximation because they only affect the overall magnitude of the index of refraction.

In the following section we describe the manner in which the F-region, excitonic

contribution is added to the superlattice model of the previous chapter. In addition to

exciton effects, the superlattice model is also modified to incorporate band-mixing effects

and a hybrid, superlattice-alloy. electronic band structure approach. These changes are also

discussed in Section 5.2. Section 5.3 is devoted to describing the variational approach we

used to compute the ground state exciton wavefunctions and energies. In the final section,

results are given for the frequency-dependent absorption coefficient and index of refraction

of GaAs-AlxGa!_xAs superlattices. Emphasis is given to comparing these results with those

obtained using the superlattice model of the previous chapter.

5.2 Modified Superlattice Electronic Band Structure Model

In the previous chapter, € t(w) is calculated directly from the band structure results;

however, when excitons are included in the model it is necessary to derive e^o)) by taking

the Kramers-Kronig transformation of ^^

«,(«) = 1 + 2. P / -E ̂ ^ . (41)TT J
n p2. '—-^2

In the above. P denotes the principal value, and we have written the transformation in

terms of energy instead of the usual form of using frequency as the variable.

Our F region model of 62(o>) has a bound and a continuum contribution for which

5 88 105we transformed the two parts, separately. The bound part is given by ' '

, N ip nn / .-> \62J}(a») = — — £ (42a)
m0-or „

fn = I 0n(r=0) 1 2 1 e-Pev(kn) I 2 . (42b)
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The summation is over the bound exciton peaks where each peak is described by a Lorentian

function with a half width at half maximum of yn and an oscillator-strength fn. Exn and

0nCr) are the ground state exciton energy and envelope function for the nlh peak,

respectively, where r is the coordinate of relative motion between the electron and hole.

Both <£nCr) and Ex•_„ are calculated using a modified version of the variational approach of

Greene et al. (see next section) and yn is determined empirically. Finally. Pcv(kn) is the

momentum matrix element between the valence and conduction bands evaluated at the

point in k space from which the nlh exciton peak originates, assuming the F region to be

spherically symmetric. Substituting the expression for €2.B(a>) into Eq. (41) we obtain

= Jnf-TfT^T L* '«
-2

(Exn--
Un . if ,,, _, \ . "Hw ,+ --(Ex.n-Tta>) + __ - 1

Because the first two terms in the large brackets are generally small compared to the
^

->\

complicated third term, we evaluated them in the limit as yn -» 0.

For the continuum part, we scaled the imaginary dielectric function €2F(o>).

calculated assuming free electron-holes, i.e., the one-electron contribution, by a two-

dimensional Sommerfeld factor

€2.c(<«j) = £ €2Fn(oj)

106

COSh(7TO(n)

Tto-EC.n

1/2

(44a)

(44b)

where to the nth exciton peak there corresponds the nlh continuum contribution described

by an effective exciton Rydberg factor Ru. a continuum energy Ec n. and a free electron-hole

dielectric function €2_F-n(a>). Because of the presence of the energy-dependent Sommerfeld

factor in the expression for €2C(o>), we obtained G ic(ai) by numerically integrating Eq. (41).

Besides adding exciton effects to the model of Chapter 4. in this chapter we also
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employed a hybrid, superlattice-isotropic-alloy. electronic band structure approach (see

Section 4.3.a). More specifically, we used Eq. (32) and a superlattice band structure for

small energies while using Eq. (31) and an isotropic-alloy band structure, within the VGA

(see Section 3.2). for larger energies. As a first approximation we assumed the change in

properties occurs at a single energy instead of gradually over a range of energies. For the

transition energy we chose the top of the electrons' superlattice barrier potential.

In addition to the change to an alloy model for larger energies, we also assumed that

exciton effects disappear above the electron barrier and empirically fit the well material hh

and Zh masses such that the n=l hh and Ih exciton peaks, respectively, agree with the

experimental values while taking strain effects into account. The first assumption

follows from our hybrid approach approximation since exciton effects are negligible for

bulk materials at 300 K. The second assumption is given support by Mann et al. who

find experimentally that in order to fit their magneto-absorption data for single GaAs-

AlxGa^As quantum well structures, they had to use hh and lb masses of approximately

1.0 and 0.2. respectively, for well thicknesses of — 100 A and Al barrier contents of — 0.3.

They justified theoretically these large masses by invoking band-mixing effects which give

rise to strong non-parabolicities. In the model of the previous chapter for all superlattice

structures, we used well material hh and Zh masses at k = 0 of 0.51 and 0.082. respectively.

i.e.. the experimental GaAs 4 K masses.

Consequently, in this empirical fashion we took band-mixing effects into

consideration. Note that as discussed in Section 4.3.c, band mixing includes both band

repulsion and symmetry exchanges. However, as will be shown in Section 5.4, we obtained

good agreement with the experimental data by only including band repulsion effects.
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5.3 Exciton Variational Model

A number of authors have calculated the binding energy of Wannier excitons in

quantum wells. This has been attempted variationally. ' perturbatively, and using

a combined variational-perturbative technique. In this section we extend the variational

approach of Greene and Bajaj by making it valid for periodic superstructures and having

all of the parameters material and energy dependent. Because our approach is very similar

to theirs, in the following we will concentrate only on the important highlights and

subtleties of the calculation.

In bulk III-V compounds the F -region, Wannier exciton can be described within the

framework of the 6x6 k -p Hamiltonian matrix of Luttinger and Kohn. Because the

spin orbit splitting in AlxGa1_xAs systems is much larger than the binding energy of the

exciton. the Hamiltonian reduces to a 4x4 matrix consisting of the spin up and spin down,

hh and ih excitons. In a superlattice the degeneracy of the hh and /h becomes lifted and the;

approximation is made that the hh and lh exciton systems are approximately

independent. Furthermore, because the coulomb interaction does not mix spin states. the^.

4x4 Hamiltonian can be further reduced to 4 separate effective mass equations.

In a superlattice. the growth direction, i.e.. the z-direction. becomes distinct from

the other directions and. thus, it is natural to express the exciton Hamiltonian using
CO

cylindrical coordinates. Consequently, within the EMA, the Hamiltonian for the hh or ih

exciton is iven b

-Ti2 IjLpA + JLJl
p ap ap P arf>2

2me

_ J?L JL - f + Vew(zJ + Vhc>(zh)

where me and mh are the energy-depender.t electron and hole masses in the z-direction.

respectively. M is the energy-dependent, electron-hole, reduced, effective mass in the x-y
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plane, €0 is the static dielectric constant. 7e, for example, is the electron coordinate, and p. <f>,

and z=ze—zh are the relative, electron-hole coordinates in the cylindrical coordinate system.

For simplicity we assumed the masses are isotropic and obtained their energy dependence

from the results of the periodic square-well potential problem discussed in Section 4.3.b.

Since Eq. (45) is applied in both well and barrier materials, both the masses and €0 are

material dependent. The potential wells for the electrons. Vew (ze) and holes. Vhu(zh) are

represented by

0 I z, I < Lz/2
Vew(ze) = Ve • L/2 > I z. I > Lz/2

(46a)

° ' Z ' l < L z / 2 (46b)
Vh L/2 > I zh I > L2/2

where we have chosen the origin of the coordinate system to be at the center of the GaAs

well. The values of V, arid Vh are determined for arbitrary Al barrier content in a manner

analogous to that used for obtaining Figure 8. In formulating the exciton problem for long

period superlattices, we found that it is only necessary to consider a single period, as in Eqs.

(46). since there is negligible overlap between exciton wavef unctions from adjacent wells.

For the exciton wavef unction, assuming Heh is dominated by the single-particle"

interactions, we used the trial form suggested by Greene and Bajaj

^ex = Se^Ze^gl/Zli^^P'Z'^) (47)

where g(z) is given by Eq. (40) for which kz and K2 for the electron and hole are obtained

in the manner described following those equations. The wavefunction h(p.z.0) describes

the internal motion of the exciton and is written as

h(p.z,<£) = (l+az2)e~6<^"l'z ' • • (48)

where a and 8 are variational parameters. Their values are obtained by minimizing the

expectation value of H. h
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L/2 L/2 co

dZe / dZh /

. (49)
L/2 L/2 co

dzc f dzh
-L/2 -L/2 0

In order to speed up the process of minimizing Evar, we used the approach proposed

by Kinoshita. Once Evar is determined, the ground-state binding energy of the exciton

Ex is obtained by subtracting from Evar the energy resulting from the periodic square-well

potential problem discussed in Section 4.3.b. To calculate €2.B(w). Eq. (42). it is also
so

necessary to determine 0(7=0). By definition 0(7) is equivalent to h(p.z.0). Hence, by

normalizing h(p.z.0) in the manner shown for ¥ex in Eq. (49) and evaluating it at 7 = 0. we

obtained

0(7=0) = 41 (50)

-"*:

where we have made the approximation in normalizing h(p.z.0) that since it rapidly goes to

zero within the barrier material, we can take — as equal to infinity. 4

5.4 Results and Discussions

The absorption coefficient of a GaAs-A10 5Gao.sAs superlattice with a well and

barrier thickness of 85 and 80 A. respectively, is plotted in Figure 12. The results are given

for light being polarized parallel to the superlattice layers. The solid and dotted-dashed

lines are the theoretical and experimental values, respectively. As in Figure 10. the

arrows indicate the quantized. F-point. valence band-conduction band transitions which

produce the fine structure on the theoretical curve. Since the experimental data have

arbitrary units, the data are multiplied by a constant factor such that the two second

electron-heavy hole peaks. £3 (e-hh) coincide. The theoretical curve is calculated using k =

0 ^h and hh masses of approximately 0.091 and 0.34. respectively. The values of y which

are used to fit the five main peaks are ^ 1,1.3.3. and 9 meV. respectively, while the

calculated binding energies E0 are *= 10.10.11.11 and 14 meV. respectively. As can be seen
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Figure 12. Relative absorption of a GaAs—Al,)5Ga0 5As super-lattice for parallel polariza-
tion at 300 K. The solid and dotted-dashed lines are the theoretical and exper-
imental values, respectively. The arrows mark the positions, relative to the
theoretical curve, of the F valley transitions, e-hh(j) corresponds to a transi-
tion between the jth level of the heavy hole band and the jth level of the lowest
conduction band.



73

from the figure, our peak positions agree reasonably well with the experimental data, the

only discrepancy coming from the E2(e-/h) peak. The error could result from the use of

isolropic masses. Since an anisotropic mass would change both the binding energy and the

continuum position, it is difficult to ascertain qualitatively the overall effect. The sharp rise

in the experimental curve for energies greater than =^'].75 eV is due to an experimental

artifact. Overall, this figure demonstrates the flexibility of our dielectric constant

model to incorporate exciton effects and shows the accuracy of our interface connection rule

and excilon binding energy models.

104In Figures 13a-c we present some theoretical and experimental values for the

index of refraction of a GaAs-Alo3Ga07As superlattice at 300 K for both parallel and

perpendicular polarizations. The superlattice has a well thickness Lz of 70 A and a barrier

thickness LB of 75 A. In Figure I3a we compare the index of refraction results of our

previous model, i.e., the model of Chapter 4. for parallel and perpendicular polarizations,

dashed and dotted-dashed lines, respectively, with those of our current model, i.e.. the

model of this chapter, without the inclusion of excitons, also for parallel and perpendicular

polarizations, solid and dotted lines, respectively. To account for the neglect of excitons at

the zone edges and also the neglect of non-band-edge transitions in our model (see Section

2.3). we added the same constant value to each of the theoretical curves so that for parallel

polarization at"Ifa> = 1.416 eV. the results of our complete model given in Figure 13c agree

with the experimental data. Note that this is in contrast with our normalization scheme

discussed in the previous chapter in which we multiplied by a constant factor (see Section

4.4).

As discussed in Section 5.2. in our previous model we used k = 0 ih and hh masses

104of 0.082 and 0.51. respectively, while we fit the n=l photoluminescence peaks of the

GaAs-Al(UGa0.7As superlattice of Figure 13 using k = 0 Ih and hh masses of 0.23 and 0.50.

respectively. These masses yield exciton binding energies of approximately 12 meV and 17

108meV, respectively. We noted in Section 5.2 that Mann et al. found Ih and hh masses of
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Figure 13. Index of refraction of a GaAs-Al,)3Ga0.7As superlattice. In (a) the dashed and
dotted-dashed lines are the results of our previous model (no excitons) for
parallel and perpendicular polarizations, respectively, while the solid and dot-
ted lines are the results of our current model (no excitons) for parallel and
perpendicular polarizations, respectively. In (b) and (c) the dashed and
dotted-dashed lines are the experimental results for parallel and perpendicular
polarizations, respectively, while the solid and dotted lines are the results of
our current model for parallel and perpendicular polarizations, respectively.
In (b) these lines include the continuum exciton contribution and in (c) they
include .both the continuum and bound exciton contributions.
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approximately 0.20 and 1.0. respectively, for similar superlattice structures. Hence, we

have experimental support,for our empirical ^h mass: however, we cannot account for the

discrepancy in the hh masses. Nevertheless, in.spite of this difference, our ih and hh excilon

108binding energies agree very well with those of Mann et al. Note that we used smaller

masses to fit the experimental absorption peaks in the previous figure. Hence, band mixing

effects vary from one structure to another as a result of the different energy separations

between the quantized valence bands.

In Figure 13a the peaks on the parallel polarization curves correspond to the

quantized e-hh(l) and e-ih(l) transitions, while as in Figure 9 for perpendicular

polarization, only the e-Zh(l) is present. Because the hh masses are the same for the two

models in this figure, the energy positions of the hh peaks are equivalent, as opposed to the

Ih situation, where due to differing Ih masses the peaks are separated, with the peak having

the heavier Ih mass occurring for smaller energies. The most important point to note from

this figure is the large difference in the birefringence between the two models which mainly

arises from the difference in Ih masses, while the different handling of the polarizations.'as

discussed in Sections 4.3.a and 5.2. has a noticeable but smaller effect. Because the

quantized hh transitions do not contribute to perpendicular polarization, a large difference

in the density of states between the hh and ih bands, i.e.. a small Ih mass, is reflected by a

large birefringence. However, by terminating the superlattice polarization above a certain

energy, one allows the hh band to contribute to perpendicular polarization, thus reducing

the birefringence. This polarization change also reduces the magnitude of the hh matrix

elements, as can be seen from Eqs. (31) and (32) and noting that for the hh band. px
2 — pf

and pz
2 = 0. This phenomenon accounts for our previous model having a larger parallel

contribution in comparison with our current model.

In Figure 13b we compare the results of our current model, including only the

continuum exciton contribution, with the experimental data. Again, for the current

model, parallel and perpendicular polarizations correspond to the solid and dotted lines.



76

respectively, and for the data, parallel and perpendicular polarizations correspond to the

dashed and dotted-dashed lines, respectively. The experimental data are only available for

the energy range presented in this figure. Note that in comparison with the previous figure,

the continuum exciton contribution increases the calculated birefringence and raises the

overall strength of the index of refraction because of the Sommerfeld factor given in Eq.

(44a). However, as can be seen from Figure 13c. the sharp rises in the experimental data

correspond to bound excilon peaks. The curve notation in Figure 13c is analogous to that in

Figure 13b. and in Figure 13c we have also included the bound exciton contribution in the

model. By comparing Figures 13b and I3c. one sees that the bound peaks rise more quickly

and have a larger magnitude than the continuum peaks because exciton effects are stronger

for the bound case. The two figures also show that the bound exciton contribution increases

the birefringence and for parallel polarization, for example, causes the appearance of four

sets of peaks instead of two. i.e.. bound and continuum peaks for e-hh(l) and e-ih(l).

Most importantly. Figure I3c gives support to the validity of the new index of

refraction model presented in this chapter by the very good agreement between the

theoretical and experimental curves. The only adjustable parameters in the model are the

hh and /h masses, which we fit to obtain the correct energy for the n=l exciton peaks, and

the Lorentian broadening parameter y. which was chosen to obtain good agreement between

the two parallel polarization curves while being in line with the experimental estimates. To

fit the data we used y - 3.5 meV. As stated previously, the. Lh mass and the ih and hh
f 1 AC

binding energies are in excellent agreement with the experimental values of Mann et al..

while the value for y is very close to the suggested experimental value of Chemla et al. of

approximately 3 meV. Hence, our model also gives good results with no adjustable

parameters.

There are a couple of other interesting features to gather from Figure 13c. The

sharp decrease in the exciton peaks is the result of the Kramers-Kronig transformation of

the quasi-2-D. exciton. absorption peaks which resemble broadened, energy-delta functions.
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Experimentally, this effect might be difficult to detect due to strong absorption around the

peaks causing the loss of signal in this energy range. The slight dip in the theoretical

parallel polarization curve for"Ho> — 1.485 eV is due to the contribution of the bound Ih

exciton peak, which is decreasing in this energy range. Again, as a result of absorption

effects, this dip is probably not experimentally resolvable. The final point is that comparing

100Figures 10 and 13 we see that the experimental data of Suzuki and Okamoto do not

exhibit bound exciton peaks. We cannot account for this disparity.

In conclusion, we have modified the superlattice model of the previous chapter. Ih

addition to the inclusion of both the bound and continuum exciton contributions for F

region transitions, we incorporated an empirical, band-mixing scheme and calculated the

absorption coefficient and index of refraction using a hybrid approach which combines

superlattice and isotropic-alloy. electronic band structure models. Overall, our calculations

are in very good agreement with the experimental a(o>) and T)(O>) data and show" the

accuracy of our new model of the optical properties of superlattices and MQWs. Because

our model includes band mixing empirically, we are not able to predict the fine structure in

^ cthe absorption coefficient, as was done by Chang and Shulman . However, overall; our

calculated a(ci*) curves agree well with their results and. unlike their approach, which is

limited to small regions of the Brillouin zone, we were able to calculate accurately the

index of refraction.
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6. CONCLUSIONS

The goal of this thesis has been to obtain a-working model for the optical

parameters of long-period GaAs-AlxGai_xAs superlaltices and MQWs. Our motivation has

been the recent development of numerous heterostructure devices whose optimization

necessitates a knowledge of the refractive index, which cannot be calculated using existing

superlattice models. Prior to calculating the properties of superlattices. it was necessary to

develop optical models for both binary and ternary III-V compounds, which are used as

inputs to the superlattice model. This required a bulk model which is simple but accurate,

and flexible so that it can easily be extended to heterostructures. To accomplish this we

have introduced a bulk band structure model based on a hybrid approach which combines

the k • p and nonlocal pseudopotential techniques and partitions the bulk Brillouin zones

into the I", X. and L regions. The optical properties were calculated as the sum of the

contributions of each region.

Our results for the optical properties of bulk III-V compounds are consistent with

other one-electron band structure techniques. Because the partition method is based on the

k • p approach, our model has several advantages over the other techniques. They are

computational speed, flexibility, and ease of interpretation, i.e.. our model engenders a

physical understanding of the parameters which influence the dielectric constant. For

example, we have found that except for optical absorption in the vicinity of the T gap. most

of the optical properties of bulk materials, especially the index of refraction, are essentially

determined by the electronic structure around the L point, rather than at the center of the

Brillouin zone.

For ternary alloys both disorder-assisted and phonon-assisted indirect transitions

have been incorporated into the model. The disorder of the alloy has been accounted for by

using a straightforward, perturbative. CPA approach which only includes the effects of

compositional disorder. The results for the disorder-induced. T point, energy-gap bowings
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are shown to be nearly comparable to those calculated using a more sophisticated CPA

approach. In general the ..calculated absorption coefficients of AlxGaj_xAs are in good

agreement with the experimental data and compare well with existing alloy absorption

models.

With this foundation we have formed our superlattice model based on the

envelope-function approximation. In addition, the model incorporates band mixing

empirically and F-region, exciton effects. In general the results of our model for the

absorption coefficient and index of refraction of GaAs-AlxGaj-xAs superlattices are in good

agreement with the experimental data. Band-mixing effects, which produce changes in the

hh and ih masses, are shown to have an important effect on the values of the optical

parameters. Furthermore, superstructure effects are not present for all energies, but

rapidly decrease for energies larger than the height of the potential barriers. The anisotropy'

and structure dependence of the refractive index are determined to result mainly from the"-.

F region because of its small conduction band mass, while the outer regions (X and L) of

'•*?the Brillouin zone provide contributions which are similar to the corresponding alloy'-'

values. In comparison with the index of refraction of the corresponding AlxGai_xAs alloy/*

characterized by the same average mole fraction X of Al. our results indicate that the

superlattice index of refraction values attain maxima at the various, quantized, exciton-

enhanced. transition energies. Consequently, the waveguiding and reflectance properties of

optoelectronic devices which incorporate superlattices can be improved by tailoring the

structure to the chosen optical frequency. In sum. we have accomplished our task, of

obtaining an accurate model of the refractive index of GaAs-AlxGai_xAs superlattices

which can be used to improve existing optoelectronic devices.
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APPENDIX. GALLIUM ARSENIDE £ • ? PARAMETERS AT 4 K

F Region Parameters

A'
B'
P'
A
Ec

Value

-28.0 eV-A2

-22.0 eV-A2

111.5eV-A
0.341 eV
1.52 eV

X Region Parameters

D
El
E2
F
G
H'
I

A'

E5.x
E3.x

Value

0.30 eV-A2

-11.0eV-A2

6.2 eV-A2

-0.25 eV-A2

0.0 eV-A2

-24.3 eV-A2

4.2'eV-A2

0.125eV
14.85 eV
5.27 eV
4.93 eV
-0.06 eV
-3.99 eV

0.104 A"1

L Region Parameters

S'
T
U
V
w
A"

.
E3.L
EI.L

Value

-17.3eV-A2

13.8 eV-A2

-9.0 eV-A2

3.5 eV-A2

0.0 eV-A2

13.5 eV-A2

0.22 eV
8.67 eV
6.69 eV
3.02eV
-0.11 eV
-5.55 eV
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