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THEbRETICAL STUDY OF THE TRANSVERSE DIELECTRIC
CONSTANT OF SUPERLATTICES AND THEIR ALLOYS
Keith Brian Kahen. Ph.D.
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In this thesis the optical properties of 11I-V binary and terﬁayy compounds and
G_aAs-Aleal_xAs superlattices are determined by calculating the real and imaginary parts
of the transverse dielectric constant. &(w) =€ (w) + i€)(w). Emphasis is given to
determining the influence of different material and superlattice (layér thickness and Al
compositior;) parameters on the values of the index of refraction. 7{(w) and absorption

coefficient. a(w). | |
" In ordér to calculate thé optical properties of a material, it is neéessary to computé
its electronic band structure. - We accomplish this by introducing a partition band structure
'approaﬁ:h based on a combination of the X - P and nonlocal«pseudoéptential ‘techniques. In’
this approach the bulk Brillouin zone is- f)artitioned into the T, X,'and L ‘regions by
_perférming kK-P expansions about these three symmetry points. The deaﬁmges of this
‘ approach .afe that it is accurate. corﬁéutationaliy fast. .aLnalyt.ical”.' and‘ﬂexit;le. ‘These last
two properties enable us to incorporate easily into the model additional effects, such as -
disorder scatteﬁng. Which occurs for alloy materials. and excitons. Furtﬁérmore. the model
is easily extended to more cbmplex stfuctﬁres. for example. multiple quantum wells and
superlattices. The results for n() and alw) of bulk 1II-V. compounds compare well with
other one-electron band structure mbdels. and our calculations show tha} for smali
f requencieé. the inde.x of refraction is determined mainly by the contributioﬁs of the outer

regions of the Brillouin zone.

The effects of alloy scattering are incorporated into the model using a perturbative
CPA ap:proact; which only includes the influence of compositional disorder. The results for -
the disorder-induced. I' point. energy-gap bowings are shown to be nearly comparable to

those calculated using more sophisticated CPA.approaches. Furthermore. the calculated
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absorpt,ic')n coefﬁéient of Alx(_}al_,A.s is found to be in good agreemerit with the experimental
data.

- The model is extended to heterostructures by using the envelope-function
approximation. Valence-band mixing and I'-region exciton effects are alsb included in the
, model; Our results show that the anisotropy and structure dependence of the refractive
index c;f superlattices result mainly from the contribution of the I region. while the
contributions of the outer regions of the zone are rather insensitive to the superlattice
structure. The superlattice index of refraction values is determined to attain maxima at the’
various I-region. quantized, transition energies. where for certain structures the difference
between the refractive indices of the superlattice and its corresponding Al,Ga,_.As alloy
can be as large as 2%. Overall. the superlattice results.are in good dgfeement with the

available absorption and refractive index data.
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1. INTRODUCTION

Sophisticated grov;th techniques, such as Molecular Beam Epitaxy (MBE)] and
Metalorganic Chemical Vapor Deposition (MOCVD).2 have.made possible the advent of
artificial semiconductor structures called superlattices or multiple quantum wells (MQWs).
The structures consist of alternating layers of two lattice-matched solids. This layering
adds a periodic potential along the growth axis to the existing periodic lattice potential. As
the thi-cknesses of the layers decrease to values on the order of a few hundred Angstj'oms.
quantum size effects. prbduced by the increasing confinement of the electrons and holes in
the growth direction, become important and modify the properties of the structures from
those of bulk, three-dimensional materials, to those of quasi-two-dimensional strucmres.3
For instance. because of the enhancement of the exciton binding'energy in quasi 2-D
quantum 'well.s.4 exciton reson'an-ces are clearly visible at room temperature, while in bulk
semiconductors. such as GaAs. the excitons are barely. discernible at 300 K.5 Asa égcond
example. at 300 K bulk GaAs lasers opérate in the near infrared (~ 1.42 eV). while
Aleal-,As;GaAS MQW lasers can be designed to operate in the visible red region (~ 1.83
eV). ie.. _400 meV higher than the bull; GaAs value. and have improved lasing

6-7

characteristics. In fact. by modifying the composition and thickness of the layers. the

electronic and optical properties of superlattices can be modified over a considerable range.8
For these reasons. MQWs and superlattices have become technologically important in both

7.9-11 12

optoelectronics and microelectronics.

As a result of the many device applications of superlavttices. their optical and

electronic properties have been studied extensively both experimental-lqu'g-w

and
. 8.10.17-28 . . . .

theoretically. The major thrust of this research has focused on properties derived

from electronic transitions originating around a region surrounding the I' symmetry point.

This has occurred for two reasons: devices frequently operate just abc.ve the I' energy gap.

and theoretical models of the T region usually are straightforward and analytically simple.



An example of the latter is exciton effects which can be described simply within the

Effective-Mass Approximation (EMA) for T region transitions. while for Brillouin zone-

edge transitions it becomes necessary 1o implement a many body a):)proach.29

Recently, there has been suggested and demonstrated a number of optoelectronic

devices based on the properties of the index of refraction of long period, i.e.. > 100 A.

9-10,30-34 -

superlattices and multiple quantum wells. A few examples of these devices are

superlattice lasers which are monolithically integrated into higher-gap cavities via impurity

32,33

diffusion.9 electro-optic and optical-intensity controlled MQW switches,
3

and MQW

phase modulators. 4 As a result, the index of refraction of superlatticés-arid MQWs has

_become a technologically important parameter. However, unlike the absorption coefficient :
which only excites specific regions of the Brillouin zone. the index of refraction depends on
transitions originating from all points of the Brillouin zone. Although most band structure

models can describe the I' region properly, they.cahnot calculate the index of refraction

because of either amalytical'wv'llg’25 or computationalu'zo'z? difficulties. More.

specifically. the tight binding method!3-19:23

difficulty describi_hg the structure at the edges of the Brillouin zone.35'3.6 making

quéstionable optical models in these regions: On the other hand, the pseudopot'emial

17.20.27

technique is excellent for short period, i.e.. a few layers. superlattices. but has .~

severecomputationa.l problgms for long—period>superla‘ttices”on accou'nt‘of the inversion of .
Very: large matrices. Furthermore. because -of the complexity of the pseudopotential
- technique, knany electron effects. suchras alloy scatter.ing. e-xcitonA effects and band tailing,
are very difficult to incorporate into thése models. |

28 Gased on a partition

Consequently. .a superlatticc band structure - model
approach~37 was developed for caiculating’ the optical prbperr.ies of long-period
heterostructure materials. More specifically, the model calculates the real and imaginary

parts of the transverse dielectric constant, &w) = €,(w) + i€x(w), from which all of the

optical properties of materials can be easily determined. Hence, the index of refraction. in

is valid for long-period superiattices, but has



addition to the absorptivc.m coefficient. can be computed using this model. Unlike previous
techniques for long-period.superlattices. the computed band structures are accurate at .the
zone edges, and the calculations require 2 comparatively small amount of computation
time.28 Furthermore. the effects of alloy scattering and excitons are easily incorporated
into the model. |

In this thesis the éuperlattice band structure model based on thf;» partition method is
presented in detail. The following is a summary of the model. In the partition method the
and ndnlocal pseudopotential40 techniques are used to partition the Brillouin
zones of the constituent superlattice materials into the I'. X. andlL regions, and to
determine the bulk energy band and matrix element dispersion re_lations; Superstrucfure
effects are incorporated into the model within the envelope-function apprcximation.21
Band-mixing effects are neglected at first, as are superstructure effects for Wavevectors,

2

parallel to the superlattice iayers. 4 The quantized transition levels are determined from::

the solution of the periodic' square well potential problem which incorporates energy-,

41

dependent masses = -and assumes a 65:35., I'-point, band-discontinuity ratio.*2 Excitoni-
. : T

effects are included in the model only for the T region using the EMA.29"43 For the alloy-:
layers. the effects of alloy scattering are incorporated within the Coherent Phase '
Approximation (CPa)* viaa perturbation theory calculation. 3748

In Chapter 2 the partition method is presented and applied to bulk III—V
compounds. Included is the general k - P formalism and the derivations of the K - P energy
dispersion‘relatio'ns for the I', X. and L symmetry points. We also present a table of the
valence and conduction band eﬁ'e&ive masses at the I'. X, and L points for each of five I1I-V
compounds, GaP. GaAs. InP. InAs. and AlAs. In the next section of Chapter 2. general
considerations on the complex dielectric constant and related optical parameters; namely,
the absorption coefficient and the index of refraction, are presented. A description is also

given of the partition method used to perform the calculations of the transverse dielectric

constant. We conclude this chapter by discussing our results for the complex dielectric



constant of the 'ﬁve.III—V compounds. The effeéts of alloy scattering are incorporated into
the model inA Chapter -3, with .results given for the f requency_-depeﬁdent absorption _
4coeﬁicient of Al,Ga;_,As alloys. In Chépter- 4, we present our elecironic band structure
model for GaAs-AlGa,_, As superlattices. Band mi'xing‘i.s neglected and superstrﬁcture
effects are assumed to influence the particles for all energies. Included is a derivation of our
interface connection rules used to account for the discontinuities of the electronic properties '
of the component superlattice materials. Results are given for the frequency ‘and
structure-dependent index of refraction of GaAs-AlAs supeflattices. In Chapter 5 the
superlattice model is modified by incorporating band n_lixing and considering superstructure
effec;é important only for energies below the superlattice potential barriers. Furthermore,
the rﬁodel is extended to incorporgte ‘the influence of the I region excitons. 4\ description of
our exciton binding energy model is also included. Results are gi\)en for the frequency-
dependent absorption coefficient and index of réfrattion of GaAs—AIxGa,-xAs 'superlattices..
A discuéSion is also inciuded on the effect of the above modifications on the model preseh-ted
in Chapter 4. Finally, the mo‘dels and findings presented in .the previous chapters are

summed up in Chapter 6.



2. TRANSVERSE DIELECTRIC CONSTANT OF III-V COMPOUNDS

2.1 Introduction

As discussed previously. the evaluation of the complex transverse dielectric
“constant €(w) requires a knowledge of the entire band structure of a material. Hence, it is
necessary to determine the wave functions and energy bands throughout the irreducible
region of the first Brillouin zone. A number of band structure techniques, for example.
orthogonal plane wave? 748 (opw), augmentéd plane wave?? (APW), pseudopotentia1.40
and linear éombination of Gaussian orbitals®C (LCGO). have been implemented to calculate.
with varying success, the dielectric constant of bulk semiconductors. However, these
different theoretical approaches employ sophisticated computational methods which require
extended running times. Hence. with most §f these models it is difficult to assess tﬁe

relative importance of band structure parameters. such as effective masses and optical~

.

matrix elements. in determining the value of the real part of the dielectric constant.’

Furthermore, because of the complexity of these techniques. it becomes difficult to?f

o 4

(2

incorporate into these mbdels many body effects, su;:h as band tailing and excitons. and*
compositional disorder, i.e.. alloy compoﬁnds. and also to - extend these models tos‘
heterostructures (superlattices). Consequently. previous bulk band structure techniques
cannot be adapted beyond bulk structures without requiring prohibitive computer usage
and losing their simplicity.

This prompted us to formulate a bulk band structure technique baseq on the k - P
method.38 In this technique the band structure is generated by expanding about one or
several( symmetry points. Since one of our goals is to be able to understand the optical
properties of 1II-V compounds in general and to extend our method to more complex
.structures, it is desirable to have simple, analytical expressions for the energy bands and

matrix elements. Consequently. we partition the zone into three regions by expanding

about the three highest symmetry points. I', X. and L. For each point we use a small



number of bands in each of .our K - P basis sets, therefore limiting thé acchfacy of the
energy band expressions to-regions surfound'mg the expansion points. Because of the size of
the X and .L regions, it is ﬁecessary to supplemém_ the X and L poiﬂt expansions by ones
about the K and W symmetry points, also. However. because of the low symmetry
chafacterizin‘g these points. it is difficult to obtain the k ‘P energy dispersion relations and
optical matrix elements in the volumes sﬁvrrounding these two points. Therefore. for both
the K and W points, analy{ical expre§sions for the energies and matrix elements are
obtained directly from the results of nonlocél pseudopoteﬁtial ‘calcula}ions which include
the spin orbit interaction. The nonlocal pseud_opotential results are é;lso used to fit
empirically the k - P band pafameters wﬁen experimental énergy.v gaps and masses are not °
available. In this way our approach appears as a hybrid model by combining the simplicity
and flexibility of the k - method wii'th' the accuracy and generality of 'the nonlocal
. pseudopotential technique.’
| Because we have partitioned the.Brillouiﬁ zone into three regions. I'. X, and L. the
dieléctric constant is then calculated as the sum of the contributions of these three Brillouin
zone regions. ‘By considering each regionlseparately. our approach engenders a physical
understanding-of the parameters which influence the dielectric constant. Mo_redver. because
it is based on the K - § method. ii is sufficiently flexible to include-secdnda:'y effects and
complex structures. and it is computationally fast.

The precursor of our band structurte"model is a-n‘ analytiéal partition method
approéch proposed by Cardona.39 He calculated €3(Q)"f0r b\‘xlk semicor‘\ductor compounds
by decomposing €x(w) into the contributions of a thre&di@ensional. critical point labeled
E,°’ a th—dimensional. critical point labeled E,. and a one.-dime-nsional. cri,ticél .poin_tvlabeled
E, (see discussion in Sec. 2.4). The E, point accounts for the absorption edge of exw).
while the E, and Eg points p‘-roduce the E, and E, peak structures m eg(w), respectively. He
proposed that the E, absorption edge is due tdband—edge transitions at I', the E, peak arises

from transitions along the eight equivalent <111> directions, and the E, peak originates



from transitions which include or are close in energy to those at the X point. Next, for each
critical point he constructed energy dispersion relations having the dimensionality of the
points. More specifically. the 3-D E, point was modeled by parabolic bandé atT.the2-DE;
point by valence and conduction bands which are parallel along the <111> direction and
parabolic in the two transverse directions. and the 1-D E, point by valence and conduction
bands which are parallel in two orthogonal directions while parabolic in the third (since the
position of the E, point is unknown in his model. the directions for the E, expansions are
not specified). As can be séen from this synopsis'of Cardona’s model. there are similarities -
between it and our partition approach. Both models split the zone into the I', X, and L
regions and use Ei ‘P theory» to calculate the matrix elements at I' and L. However, our
method is based on a many-band K- P approach. while Cardona’s n“xodel only uses two
bands for his expansions. Furthermore. for the E, peak Cardonabuses phenomenological
arguments to arrive at a.1-D model for an unknown position in k-space, while in. our.
partition method the results of nonlocal pseudopotential calculations’ including spin ‘orbiitm

hs

effects are used to model accurately the band structure around different expansion points _

.

and, especially. the k point (3/4. 1/4. 1/4) which is found to give rise to the E .
37.51-52 . . : : |
peak. Hence. our approach generalizes Cardona’s model and places it on a more
rigorous and numerically accurate basis by providing analytical expressions for the energy
bands and matrix elements for any point in the zone. In the following section we discuss
the k - P method in general and derive our energy band expansions for the I', X. and L

points of bulk III-V compounds.
2.2 k - p Method and Expansions

2.2.a General Methodology -

k-P band theory for III-V compounds and expansions for :Lhe . X. and L
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symmetry points have been derived previously by I'\'ane.38 Dresselhaus.”~ and Cardona.

All three authors have discussed the I' region expansion in detail., while only simplified



expansions were presented for the X and L points. HO\\'/ever,‘in; order to follow our
derivation of the X and L poiht expansions. it is best to understand the K - P method and to
see it applied to the simpler I' point expansion. Conseciuently. the important highlights of

the k - P method and the T region expansidn will be discussed: whereas, the reader is

38

referred to papers by Kane™" and Dressélhaus53 for details.

In terms of a complete set of basis function u, (X,) at the point K. the energies and’

eigenvectors atl any point in E-space can be obtained by solving the k- P matrix equation:38

AN | S P o
Z; E.(k,) + (k2 - k2) § -+ (k=Ko P o +H® e =Ey(Kk)eq, (1)

N 2m, m,
P D | .
P .= u{l ug (TP un'i-o(r) a7 ' 2)
) celll '
where
u (7 = Z,_cn,n u fo(?')' - _ _ o 3
. n . . .

~ In the above. m, is the free electron mass. n and n’ are band indices. P is the electron

momentum, and E.(k,) is the energy and ﬁm;l is the momentum matrix element at the point

K,. Since the spin orbit interaction has a noticeable effect on the band structure of many

semiconductors. we added onto the K- P Hamiltonian the spin orbit energy H®*, which

consists of two terms38

HSO -
4mic?

(\'7‘V>?§)+(€7'in)-e - - (4)

where V is the crystal potential. ¢ is the speed of light. and & is the-Pauli spin operator.
Because the main contribution to the spin orbit interaction comes from the core region of
the atom where P is many times larger than K. ‘we only include the k-independent spin

orbit interaction in our Hamiltonian.



In order to evaluate the dielectric constant for energies less than 6 eV, it is
reasonable to restrict the qaléulation lo transitions between band-edge states where the
transition rates are the largest. Consequently. in performing the energy expansions about
I'. X.and L we treat the band edge states exactly, i.e.. the u,(k,) of Eq. (3). and incorporate
the effects of the other bands (Lowdin states) using a perturbation technique described by
L'ci\:vdin.38'54 These renormalizations are performed by including only those bands which
give the largest contributions. This approﬁimation results in a slight overestimation of the
matrix elements involving these bands. This point will be discussed in more detail later in

“this chapter. In all of our Lowdin states. we find it necéssary to add d-symmetry states
onto those states of p-symmetry in order to obtain the correct energy-band curvatures.

3533 who showed from pseudopotential calculations that

This idea was suggested by Chadi
there is appreciable mixing of d-symmetry states into the p-symmetry states: and. in a type
of tight-binding calculation, he determined that the addition of d-symmetry states to an s-p

basis set resulted in more accurate wavefunctions and energy bands.

2.2.b T Point Expansion

The basis set includes the three p-symmetry valence bands. the lowest s-symmetry
conduction band., and the t.hree lowest p~symmetry conduction. bands as the additional

Lowdin states. The seven wavefunctions are

1 .
- (x+ iyl
32 Y .
1‘15 ZT N (Sa)

_}2.(;: — iyl

rf i1
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-% (x¢ +iy9) + (dg, +idg,) ]l
1 o ' '
Ifs { —=(25+ dg )1 : ' ek
15 \/5 Yoo ] , : . 3( )
-y + @ - e

where. we have labeled the wavefunctions using single group symmetry notafion. The
superscript ¢ signifies a conduction band wavefunction (no superscript implies a vaience
band wavefunction), X. y, and z are the three orthogonal components of the p-symmetry
wavefunction. and dyy. for example. denotes one of the five spherical harmonics of the d-
symmetry wavef unctAions. Each of the seven states are orthononﬁal and therev.is another
degenerate set of seven states with the spin flipped. To obtain the energy dispersion.
relations for the states of Eg. (5a), we diagonalized the following renormalized Hamiltonian

matrix resulting from the above basis set:

Ec+ A'zkz +§_1‘_ 0 34 0
e E’l.(_z.—-z_'Aﬁ-Ez_ki 1 \/EA
0 2 3 2m, 73 0 "
, - (6)
0 | . ° Ek_z-l-ﬁ
' 0 0 2 2m,

In Eg. (6) we chose the k vector td lie along the z—diréction (by symmetry it-can lie along
any directipn) and the top of the valence band is 1aken as the zero of energy. E. is the band
ga§ at th I'-point. A is the spin orbit constant. the paraméter P’ resuh.s from the diract
interaction of the s and p wavefunctions, and the coefficients A" and B’ are due to Lowdin
;ex;iormalization involving the I'{; states and are defined similarly to L. M, and N of
Dresselhaus et al_.56.T.he interaction matrix of Eq. (6) is very similar in form to Lhé one

given by Kane.>8 The constants A. P, A", and B’ are defined by

N Y V-
-~ 4m2c? gx ay

pxly>
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p=1 <is‘lp,lz> . (7)

0

oo T I<isiplz> 12 @)
- 2 c _FC .
my, El EIS

_ n? | <xlp,lidg> 12

2 . - ¢
mg, Eys —Efs

‘In Eq. (8). Ef. for example, is the energy of the I'{ state. The Lowdin coefficients
normally involve sums over all bands of a certain symmetry type that interact with the s-

and p-symmetry wavef unctions:‘s4

however, we chose to include only the largest terms in
the sums. The parameters E.. A, P'. A", and B’ are determined empirically by numerically
solving the eigenvalue equation in order that the K- P band structure has the correct band-
edge. energy splittings and effective masses. The value of these parameters. as \.Jvell as those
for the X -and L point expansions. for GaAs are listed in the Appendix. As statgd
~ previously. the energy gaps and effective masses are either experimental values or
determined -from nonlocal pseudopotential calculations which include spin orbit effects.

40

The pseudopotential energy gaps resemble those of Chelikowsky and Cohen; = the band

edge effective masses are given at the end of this section.

2.2.c X Point Expansion

The eight X point basis states are
izl -
vyl

X§ st (9a)



12>
X5 2 (ix+id ) R o | | _ : | : ' (éb)
oe o |

iz’T

ye1:
where the States listed in Eq. (9a) are treated exaétly while - those in Eq. (9b) are
 incorporated by Lowdin renormalization. In Eq. (9) we chose the <106> axis to lie along
the x-direction. Again the d-symmetry states are included in order to obtain a better
empirical fit, and the X, wavefunction has an f-symmetry state for reasons analogous to
those discussed previously for the d-symmetry states. 35.55 .The same band structure.
results from the above basis set with spin down. Because the energy gaps at the X point for
HI-V semiconductors are large. we find it reasonable to diagonalize two 2x2 matrices instead

of one 4x4 matrix in order to obtain the energy dispersion relations for the states of Eq.

(9a). The resulting 2x2 matrices are

’[(El)+—(E2)] + K 1,
2m,, D) . )
’ (10a)
1. 2k
=4 —k H+D+_—-
2 2 ¢ ) 2m,
B+ Loki s Lex 2 e, - £, |
ESx+ gDk{ + 7.: ~H +G) + 21 = Ky | l
o V2 o : .2 .2 (IOb)
F(Ef, - ES,) . ¢ 4 (E1XEs, = Ef K 4 + K AF~(ED)] + Nk, + k2
* T 1x NEf, - Eso —Im,

Equations (10a) and | (10b) are for .t‘he band-edge valence and- condﬁction bands.
respectively. In Eq. (10) we chose the z-direction as the arbitrary (neglecting thé )
anisotropy) pérpendiéular diréction and the top of the valence band as the zero of energy.
Ky .and >kz are the .k vectors along the <100> Vand z-directions. respectively. and
kx = ky—Kkn. Where k., corrects for the X{ minimum nét being'exactly'ai the X point. | Km
is determined. émpirically from the psgudopqtentia»l cal¢ulations. A’ is the spin orbit

constant defined analogously to A of Eq. (7) and E{,. for exz;mple. is the relative energy of
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the X§ state. D, E1, E2, F.G. H', and ] are the Lowdin coefficients and are defined similarly

to A" and B" in Eq. (8). The parameters in Eq. (10) are fitted empirically by computer so

that the X, X;.X;.Xf, and X{ bands all have the correct relative position and dispersion

relations (see Appendix for their values in GaAs).

2.2.d L Point Expansion

L

L

L

. L

The ten L point basis states are

I (x=y)1
3 \/-2- =y

3 T/l-_g(zzfx—y)l‘

£ s

. .._}_.(s + £yt

V2

1 * ,
! 72-(x+y+z+dxy+‘dxz+dyz)T

—\/i—i-(x‘—y%d;z—d,fz)T

3
%12.(22‘—x°—y‘+2d,§,;—d§z—dx‘z)T

x4y +2°+ds,+dGHd ST

s ¢
N3

1 (2d5—d5—d o)

78:- .22 xZ y2

—\7i_2—(dx°z—d;z)T .

where the states listed in Eq. (11a) are treated exactly

(11a)

(11b)

and those in Eq: (11b) are

incorporated using Lowdin renormalization. For convenience, we took the spin quantization

axis to be the <111> axis and transformed Eq. (4) into the <111> coordinate system. i.e.,
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) O T e . . . o . '
7 (i+j+K) is the z-axis. Using this coordinate system for the spin orbit interaction. Hj,

only connects L; states ha;/ing t.he same spin. The basis set with spin down is degengrate
with the stateévlisted in Eq. (11).

“Similar to .‘hé X region treatment, because of the large band gap at the L point. we
diagonalized a 2x2 matrix con'sisting‘ of the two upper valence bands and considered

separately the lowest conduction band. The 2x2 matrix is written as -

1 2.2 1 2 1 2 1 . . l ”
o TR g TR+ kAT 2V 4
1,0 | sEn-E ||
—A” 1 24,2 1 2 2 1 1 1 \/"+W’ . —_-—l,l-,:-_l-,l._-
2 T K TR T Ut VY T D
- and the energy dispersion relation for the L{ band.is
o , e A IS(EfL=E )  R(Ef-Es.)
E = E{ + = TPKk2+ L K2(R'+S )4k |2 —LL 1L L7 2L (12b)
2m° 2 (Ef']_“E;;_L) Z(EICL-EJCL)

In Eq. (1:2) k, and k, are the longitudinal and transverse k'basis vectbrs.‘respe_ctively.. Kk, isv
“taken along the L-T direétidn and k, is. arbitrarily. by symmetry .and neglecting the
anisotropy. takeﬁ along the‘ L-W. direction. In analogy with the X-region ireatmem. A" is
the spin orbit constant; Ef is the relative energy of the Lf state, for example: and R". S, T,
- U.V.and W are the Lowdin coefficients. Again. the parameters are fitted empirically so
that'the L, L,. L,, and L bahds have the correct relative positions and dispersion rélations .

and their values for GaAs are listed in the Appendix.’

2.2.e. Effective Masses

Table 1 lists the low temperature (5 K = 77 K) values of ihe band-edge effective
masses vat.the three symmetry poin;s fbr the five III-V compounds. Presented are the
longitudinal and transverse masses for thé X and L states and the density of states masseé'

for the I states. When experimental data are not available, the masses are calculated using

the results of nonlocal pseudopotential calculations which include the spin orbit interaction.



- Table 1:
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Low temperature theoretical and experimental band-edge masses at the I', X,
and L symmetry points. Each of the experimental masses is referenced. For T
only the density of states masses is given while for X and L both the longitudi-
nal and transverse masses are presented.

GaAs AlAs InAs InP GaP
I'f m 0.0672 0.140 | 0.023%¢ | 0.077° 0.122

Tyy m | —0.510° | -0.536 | —0.40¢ | —0.58° | —0.56°
Tw m | —0.082° | -0.087 | —0.026¢ | —0.12¢ | —0.16°

I'sy, m —0.154* | -0.217 | -0.166 -0.179 | -0.289
L§ m, | 1.854 1.592 2.333 2.149 1.988.

m, | 0136 | 0157 | 0143 | 0144 | 0.147
Ls m | 1731 | 2011 1688 | 2.021 | 1.948
m | 0277 | 20290 | -0308 | -0295 | -0.278
L, m, | L731 | 2011 | 1668 | 2.021 | 1.948 | .

m, | 0277 | -0.290 | -0.308 | -0.295 | -0.278 ¥
X5 m, | 0495 | 0385 | 0593 | 0566 | 0.551

m, | 0258 | 0254 | 0305 | 0279 | 0.249
X¢ m, | 2100 | 1.158 | 4.516 | 2.772 | 1.70f
m, | 0277 | 0268 | 0307 | 0278 | 0.191
X, m, | 1209 | 1.300 | 1236 | 1.341 | 1.258
m, | 20744 | -0.659 | -1.109 | -0.839 | -0.628

e my 1.209 1.300 1.236 1.341 1.258

m, | -0.744 -0.659 -1.109 -0.839 | -0.628

a Reference 57
b Reference 58
¢ Reference 59
d Reference 60
e Reference 61
f Reference 62



16

These masses along with the energy gaps are used to determine the direct interaction and
Lowdin coefficients. at the three symmetry points. Instead of taking the masses directly

from the energy band curvatures. a technique with a fair amount of uncertainty. the mass

m at the point k, is calculated using38 |

. : 2 ]gv ,|2 , :
a1 w5V, - an

m m, 1':102 o En(r\:o)—Enl(Eo)

where s is a unit vector in t'he direction of a principal axis. vnn' is the gradient operator
‘-;etween the states n and n’ at the point ko..and the summation is over all n #n.

In order to test the accuracy of our masses. we calculated the conduction band
masses at I’ fc;r GaAs. InP. and InAs for which experimental data are available_.: The masses
are 0.070, 0.075. and 0.028 for GaAs, InP, and InAs, respectively. As can be seen. our

calculated masses compare favorably with the experimental data.

. 2.3 Dielectric Constant and Partition Method Formalism
The dielectric constant is calculated as the sum of interband optical transitions.
Ignoring phonon assisted transitions and the exciton contribution, the real part of the

transverse dielectric constant in the long wavelength limit is given bye'3

: 2 . 18P (k)12 . -
ew)=1+ ____8'ﬂe32ﬁ Z ev(k) .
mo —k.i,Ef,C,V

.(E-k.f.c— _Ei.v )[(E;fc—EE|v )2 —ﬁzw;,]

w’her_e.Pcv(E) is the. momentum toptical) matriﬁ( element defined in Eq;V(Z) betweeh the
initial and' final states having '\va\'/eVectors Ei_v ahd E;'c. respectively; e is the éléctronic
Charge. e is the unit polarizz{tion vec@r in the direction of the electric field. E*,;i'v and E;f‘c
are the initial and final states energies. respectively, and w is the frequency of. the -
electromagnetic ﬁeld.‘ In Eq. (14) it is assumed that the valence béhd is filled and the
conduction band is empty.

- Because of our restriction to band-edge transitions, we have to calculate both the

(14) |
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real and imaginary parts of the dielectric constant since the Kramers-Kronig dispersion-
relation®3 can be used 10 determine €)(w) given €,(w) only when €,(w) is known for a larger

range of energies. Consequently. we also calculate the imaginary part of the transverse

dielectric constant which can be written as63
(w) = dme? 18P (k)12 8(E: ~Ex —Tw) .
Elw) = —— L 1ePalk Ko, T he) (15)
my, Kikgov ’ ' .

Equations (14) and (15) both contain a summation over energy bands and K states. As
stated previoﬁsly, we only consider transitions between the highest valence band staies and
the lowest conduction band states. Consequently, for the I region contribution. we include
transitions between the Qpper three valence bands and the lowest conduction band. for the
X region contribution. we inclu&e transitions between the upper two valence bands and the
two lowest conduction bands. and for the L region contribution. we include transitions ’
between the upper two valence bands and the lowest conduction band. In Figure 1 arrows”
on the GaAs band structure represent the aforementioned interband transitions. In ouAr::.:;_.
model both the L and X regions include the K and W points, even though Figure 1 shows:,
only the K point as béing_part of the X region. N
As a result of conservation of momentum. k; ='Er. and, thus, we replace the double
summation by a single one over the valence band wavevectors. For €,(w) the summation is
only over K-states for which there is energy conservation between the energy of the
excitation and the energy difference between the valence and conduction bands. Therefore. .
é-(w) has contributions only from specific regions of the Brillouin zone and. thus. a
measurement of €;(w) reveals properties specific to certain portions of the zone. On the
other hand. €,(w) also allows virtual transition.s. i.e.. no conservation of energy, and, thus.
all regions of the zone contribute to it. However. because of the eﬁergy denominator in Eq.
(14). the most important transitions for a specific excitation energy are those for which
there .is approximately energy conservation. Consequently. transitions having energies

which are significantly different from the excitation energy can be safely ignored. which
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-Figure 1. Optical transitions betwen the band-edge valence and conduction bands for the
three regions, T, X. and L. for GaAs. Only these transitions are included in
our model. '
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accounts for our decision to inciude only band-édge transitions in our model.

In order tocalculate €(w). the sun.imation over k-states is replaced by an integration
over the first Brillouin zone. Since we calculate the dielectric constant by summing over
the contributions of the regions around the I', X, and L points, the integration is performed
separately for each region. The integration volumes for the I'. X, and L regions are
approximated by a sphere and two cones. respectively (see Figure 2). For GaAs. the
volumes of these regions, taking into account the six-fold and eight-fold degeneracies of the
X and L regions. respectively, are 8.24 X 1072, 1.35 and 4.01 A-3 for T. X. and L,
respectively. The total volume of 5.44 A3 is less than 1% different than the actual volume
of the first Brillouin zone of GaAs.

Pt;ior to performing the integrations for each region. it is necessary to determine.
-analytical expressions for the energies and matrix elements. For I' we assume the region to
be isotropic and. hence. the energies are obtained directly from Eq. (6). To obtain the I'
region optical (momentum) matrix elements we use Eq. (2) in conjunction with Egs. (6)-
(8). More speciﬁcﬁlly. for the case of the transition between the heavy hole (hh) bahd andj}-

the first conduction (cond) band. the x- or y-component (by symmetry) of P (k) is

(A )B')Ef—Ef) |*?

m,N,N,. |a,P ak
Pl;(h.cond(i) = b : + -

Rii 2 232 (Eys~Efs)
ak  [(ADBNEs—Efy) |2 c)kB’ (16)
W (Ef=ES5) V2

where we ha\}e substituted the hh and cond band eigenvectors of the Eq. (6) matrix into Eg-
). In Eq. (16) N, and N, are the normalization constants for the hh- and cond-band
eigénvectors. respectively: a,, b). and ¢, are the eigenvector coefficients for the cond band:
and P'. A, and B’ are the direct interaction and Lowdin coefficients. respectively. from Egs.

(7)-(8).

For the X and L regions. the integrations and dispersion relations are calculated
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Figure 2. - Partition of the first Brillouin zone of a zinc-blende lattice into the I'. X. and L
' regions. The T region is a sphere while the X and L regions are both cones.
The K and W points are also part of the X region.
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analogouslyi therefore, we will only conéider the case of the L region. On the zoné—face
containing the L point. we expand the energies and matrix elements frovm the L point
towards both the K and W points. For energies closer to the L point. i.e., up to halfway
between L and K. we evaluate Egs. (12). while for those closer to K or W, we construct
polynomial fits 1o the energy bands resulting from nonlocal pseudopotential calculations.
which inélude spin orbit effects. For the matrix elements we assume a constant value equal
to the L point matrix elements (evaluated analogously to the derivation of Eq. (16)) for
states closer to L and linearly interpdlate between the two endpoint values. as obtained
from the pseudopotential results. for states closer 1o K and W. Both of these matrix
element approximations are borne out by pseudopotential calculations. Ina §imilar fashion
we expand from L. K. and W towards T, i.e.. using Eq. (12) and a constant matrix element
for the L expansion and the pseudopotential results with two matrix elements for the K
and W expaﬁsions. By symmetry. it is only necessary to consider thg region between the
L-K and L-W lines. This type of structure repeats itself 8 and 12 times on the X and L
zone-faces. respectively. For simplicity. the energies and matrix elements between the L—K;;*
and L-W lines are computed by linear inte;pol#t.ion. Wé also make the approximation tha;;
the volume between the L zone-face and the I point is to be modeled by a succession of
shrinking hexagons. assuming the symmetry on the L zone-face to exist on each of the
hexagons. For hexagéns which are less than 0.65 of the distance from L to the edge of the I’
region. we assume the disperson relations along L-K and L-W are also valid along the
pseudo L-K and L-W lines of each hexagon. For hexagons whichare greatér than 0.65 of
the distance, the dispersion relations along the pseudo L-K and L-W lines are approximated
by linearly interpolating between the values along the L-T line and those along the K-T" or
W-T lines. By comparing all of these interpolated values with those resulting from a
nonlocal pseudopotential calculation. we have determined that our linear interpolation and
shrinking hexagon schemes. in spite of their roughness. yield reasonable results.

Having obtained analytical expressions for the dispersion relations. we are able to
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'obtéin the energies and matrix elements at a large number of mesh points u‘sing a small
amount of computation time. The I' region integration is straightforward because of its
isotropy. while for ‘the X and'L regions we integrate numerically by dividing the
irreducible volumes of these regioﬁs into approximately 32.000 rectangular cubes of
varying sizes and shapes. The sizes and shapes aré varied according to the dehsity of states
and to ensure that thé integration is performed within the volume of the first Brillouin
zone. Using this method. we fill the zone with over 4,000,000 mesh points. assuring us of
“satisfactory convergence and a lack of artifacts for an energy resolution of 0.1 eV. On a
Harris -800 computer. the €;(w) curves presented in Section 2.4.a take approximafély 15
fninutes to generate. -

Once €,(w) and €x(w) are known, the index of refraction M(w) and the absorption

coefficient aw) can be easily determined. The index of refraction is given by63
o €,(@) , . o w2 ' , | -
Nw) = 5 + 1/2(6,(w)? + ex(w)?)12]| . S . _(17)

The absorption coefficient is related to N(w) and €x(w) via the relation®3

(u'éz((l.))

a= =T (18)

where ¢ is the velocity of light.
2.4 Results and Discussions

2.4.a e>(w) for Five [1I-V Compounds .
Figures 3a-e compare our calculated’ez(u)) curves with the experimema'lbdata of

Aspnes and Studqa.6

4 As the theoretical curves arz generated usin’g low temperature (5 K)
band structure data while the experimental data arz obtained at 300 K, we have shifted the
experimental curves by 0.1 eV in order to account for this difference. Experimental data do

not exist for AlAs.

The most noticeable feature of all of the curves is the presence of the two well
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data are extrapolated to 5 K.
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tively, while the dashed line is the experimental results. The experimental
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known Ei and. E2 ;.J-eaks,vas disc‘ussed previously in Sec. 2.1 in. reference to Cardona’s
model.3? The E; peak arises from transitions occurring over a large pdrtiop of the Brillouin -
- zone around the L points. There is no E1 peak fc;r AlAs because the L and K point enérgy
gaps differ by less than 1eV; he.nce; the position of the AlAs E1 peak overlaps with the
low-energy slope >of its E2 peak. Except for InAs and GaAs for which our theoretical
curves shdw a small structure due to the L point spin orbit splitting, thve Ga and In
compounds exhibit unsplit E; peaks which are broader than the experimental peaks. We
.believe that this occurs mainly becaﬁse of the absence of excitons in our model. Exciton
effects could have various consequences on the m’aghitudes of the‘ El‘ peaks because they -
alter both the density of states and the optical matrix elements. According to Velicky and
Sak65 and Hanke and Sham.66,excitons should sharpen and enhance the E1 ‘peak. We
account qua_]itatively for their results by the following argumeﬁt. Withcut. éxcitons. the .
E1 peak arises from ‘transitions away from the L-I line because. the band-edge conduction
and valence b_and§ along that line have small transverse masses arid. correspondingly. small ‘
dens.ities‘of states which are insufficient to sﬁppor; a peak. Céhsequently.' the pegk is.
shifted to higher energ'i'es- where thé phase space is larger. Exciton effects sho'ul_d lower the
L gap and raise the transverse effective masses, resulting in higher densities of siates albng
the L-T line. Thus. the structure of the line would be reflected in the sh’ape of the E; peak,
i.e;. the péak would become split. |

These ideas are corroborated by our theoretical results. The InAs band edge matrix
elements are a f actéf" of two smaller than those of (_}aP; however, InA.s has the largest El
peak. Furthermore. its ‘peak is the shari)eét'and the mos:t centered of the .four compounds.. |
This occurs because its transverse energy band curvature is thv;a smallest among these -
compounds: hence, the Ei peak is supported mainly.by ;ransitions occurring close to the L-
I line. Howevér. for more precise imformation. an explicit calculation is required to

determine the overall effect of excitons on the E1 peak.’

As discussed in Section 2.1, the E2 peak originates from a region around the special



29

K point (3/4,1/4.1/4). From our calculations we find that the density of states in this
region is more important than the magnitudes of the optical matrix elements in influencing

the strength of the E, peak. Excitons should lower the E, peak.65‘66

A possible
explanation is that excitons could disrupt the parallel band curvature in-the vicinity of the
special kK point. This would lower the effective density of states in this region and.
consequently, reduce the E2 peak. The same exciton effect can account for the slight energy
difference between the experimental and theoretical curves for GaAs, GaP. InAs, and InP.
The other regions of the Brillouin zone have small contributions to the dielectric
constani in the O to 6 eV range. The I valley contribution is negligible because of its small
phase space as shown in the previous section. The X region contribution is small because its

phase space and matrix elements are, respectively, about a factor of three and two smaller.-

than those of the L region.

2.4.b Comparison with Pseudopotential

Figures 3a-e also compare our results with those generated using a nonlocal’;j:
pseudopotential calculation. = The spin orbit interaction is not included in the‘??
pseudopotential calculatioﬁs. For GaP. the effect of the omission is negligible:_however. form":.
the other four compounds. the spin orbit interaction effectively lowers the important band -
gaps by ~ 0.1 eV. Consequently, for these four compounds. we havé shifted the €5 (w)
curves so that the L-point, energy gaps agree with the spin orbit resultg. |

The results of our model compare favorably with both the experimental and -
pseudopotential results. The magnitudes of our E1 peaks are larger and more closely
approximate the expérimemal praks than those determined by 'Lhe' pseudopotential
calculations. For GaAs. InAs. and InP, the E, peaks calculated.by the kKF and
pseudopotential methods are comparable in magnitude. but slightly shifted with respect to

the experimental E2 peaks. while for AlAs and GaP, the E-b’ peaks are substantially larger

than the pseudopotential peaks. The discrepancy in the magnitudes of the El and E2 peaks
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calculated by the E-b’ and pseudopotential methods can be at‘tributed ts the diﬁ'erence.in '
the valuesbo_f the optical matrix elements and 10 our linear interpolation dpproximation of
the off-expansion line energies.as discussed in Section 2.3. As staied previously. the 'E'-ﬁ
_mz{txjix elements involving the Lowdin states are overestimated due to the neglect of all but
the closest higher bands of the proper symmetry.b'7 However, we find that the band-edge
kP and pseudopotemia_l matriX elements di'ffer by only a. few percent. This result agrees
\yitt} the calculation of Hermann and Weisl::l.1ct167 who found that the I'-point, bénd-edge.
matrix elements are insensitive to the higher band contributions. Since the band-edge
matrix elements determine the low-frequency dielectric cénstant. the discrepancy in the
peaks is. therefore, largely the result of our linear interpolation .spproximatiqn. The
problem with this approximation is that although it. provides a good a'verage, energy -
dispersion relation, it sometimes produces a poor value for thé density of states. This
. discrepansy also accounts for the difference in the shapes of the wo cqrves; Neveriheless.
despite the aﬁproximations involving the matrix elements and energy dispersion relations.
the results of the two models are comparable for GaAs. InAs. and InP and assert the

‘validity of our pai‘tition model.

2.4._c €,(0) for Five IlI-V Compounds

| In vlTable 2 ‘we give el(O) at 5 K for tﬁé five III-V comp_ouﬁds. We also list the
éxpe’:-imental values and the individual contributions of the three regions. Only the GaAs.
exéeri;xxsﬁtsl data are 5 K values: for the other four compounds the values are e.xtrapolated
from 300 K using the GaAs ell(O) temperatureb dependence. The theoretical valﬁes are
urixlit"ormly '.low. with an average error of ~ 7.5%. The error is partly due 10 the omission of
aﬁ high-energy traﬁsiiions. The errors for AlAs. InP, and GaP are small because of the
o;(erestimation of the comribﬁtions of t.he virtual transitions corresponding to ;h'e E2 peak.

This effect is particularly pronounced for GaP where the strength of the E2 transitions

compensates for the small contribution from the E1 transitions. For GaAs, the error results
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Table 2.  Theoretical and, experimental €,(0) values at 5 K for five III-V compounds.
Also included are the calculated individual contributions of the I', X, and L re-
gions 1o €,(0) for each of the five compounds.

Contributions of the
three regions.

Matl. | €,(0)-theory | €,(0)-expt. | % error L X r

GaAs 8.68 10.60 18.1 6.01 | 1.25 | 0.41
AlAs 7.42 7.90 61 |512| 1.6 | 0.14
InP 9.13 9.27 1.5 | 6.68 | 1.12 | 033
Inds | 10.10 1149 121 | 726 0.94 | 0.91
GaP | 8.77 8.80 0.4 |630] 121 | 025

also from its weak El contribution. For InAs the error is ~ 12% in spite of its large E1
pegk. This probably stems from the fact_that its E2 peak is small and ei(O) of‘this small
gap material is affected most by the neglect of higher band contributions in our model.

" The valley contributions are split up according to the partition of the Brillouin zone
as presented in Section 2.3. For all materials. the L region contributes approximately 60-
iO% 1o the total value of the dielectric constant while the T region accounts for about 5-
10%. This general trend is also confirmed for optical frequencies corresponding to the I’
energy gap. Thus. the index of refraction is essentially determiued by the band structure
away from the center of the Brillouin zone, in agreem'em with the model of Card:)na39
discussed in Section 2.1.

In conclusion we have developed a general model for the dielectric constant anc.
thus, the ofnical parameters of H-v compounds using a hybrid approach which combines
the E-b‘ method with a nonlocal pseudopotential calculation to partition the bulk Brillouin
zone into three regions. The results for the absorption coefficient and' refractive index of

bulk HI-V compounds compare well with those for other one-electron band structure

models.  [n contrast to other models. the partition method enables us to determine easily
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" the dependence of the dielectric constant on the form of the band structure. The other main
advantage of this method is its flexibility. enabling it to analyze more complex structures
and materials, such as-alloys and heterostructures. as will be shown in Chapters 3 and 4.

respectively.
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3. EXTENSION OF THE PARTITION METHOD TO III-V ALLOY COMPOUNDS

3.1 Introduction

Because of the ability to tailor the electronic and optical properties of III-V alloy
compounds by varying the alloy composition. these compounds have seen widespread
application in such diverse optoelec‘tronic devices as heterostructure lasers.2'6'7 III-V alloy
)_68—69 11,70-71 72-73

lasers and light emitting diodes (LEDs and solar cells.

photodetectors.
Consequently, the determination of Lhe electronic and optical properties of these compounds
as a function of composition is technologically important. The most simplistic approach to

).74

this problem is to invoke the virtual crystal épproximation (VCA Alloy calculations

based on the VCA have been pertormed using the empirical75 and model.76

local
pseudopotential techniques and the dielectric method of Phillips.7'7’78' In the VCA the
alloy is treated as a perfectly per'iodici crystal having an average potential at each sublattice
site. thus, ignoring the effects of fluctuations in the crystal potential and lattice site
positions caused by the random arrangement of the atoms. However. these fluctuations
~ cause the electrons to scatter as they traverse the lattice. leading to modifications of the
VCA electl;on wavefunctions. These modifications manifest themselves in a number of
phenomena, such. as localized states. Sand tailing, mobility Aedges. and the variation of the
energy gaps and absorption-coeﬁiciem; with the alloy composition. VCA models do predict
some of these effects: however. the magnitudes of the trends are normally only correct for
| very small. aperiodic potentials.

Consequently. it is necessary to resort to a theoretical model which can take the
lattice site and potential fluctuations into account. One such téchnique is the supercell
methc»d.79 In this approach a very large unit cell. encompassing maﬁy lattice sites, is
assumed to be r2presentative of an average volume of the alloy. By éalculating the band
structures resulting from randomly varying the potential at each lattice site in the

supercell. an average band structure is obtained which reflects the effects of alloy disorder.
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This methéd yields goc;d results at the expense 6f large computational costs resulting from
the use of large unit cells. -

The more commonly Vused approach. which, however. is also coﬁ:putationally
éxpensive and complex. is to use the Coherent Phase Apprbximation (CPA_).M'SO"82 The
advantages of the CPA are that it is valid for all alloy'compositions when the aperiodicity
is small, while being applicable o all sizes of the disorder potential wheﬁ the concentration
‘of one of the-alloy components is small. The basic idéa of the CPA is to replaée the actual
disorder potential by an effective or coherent, complex.'energy—deperident potential which,
on the average. produces the same electron scattering as the actual potential.. The coherent
potential can be obtained by forcing it to follow the .criterion that, on thé average. an
electron propagating accoraing to it should undergo no further scattering at each atomic
site._44‘ Because of the computational difficulties associated with a full CPA implementéfion ‘
and our .desire to have a simple, intuitive, bulk, band-structure model. we chose to-use a
perturbation theory approach to the CPA, introduced by Stroud45 and rederived by
Baldér&chi’and Masc:hke.46 for ‘calculatiﬁg the band structure of GaP,Asy_,.

In Section 3.2 we implement this pertubation theory. appfoach for calculatihg the
ab‘so'rption coeﬁicierﬁ of Aleal_,‘As. The results of nonlocai pseudopotential calculations

are used as inpuf to the perturbation exp.ansions. Ting and Chang82

show that it is
necessary to add to the disorder-induced absorption. the effects due to phonon-assisted
processes. Hence. in Section 3.3 we introduce the phonon-assisted absorption model of

Dumpke et 183 1 Section 3.4. the two models are combined and compared with the

experimental results.

© 3.2 Perturbation Approach to the CPA

Both Stroud45

and Baldereschi and Maschke46 derived expressions for the
modifications of an alloy's electronic band, structure as a result of disorder effects.

Stroud's45 calculation was based on an expansion of the real part of the CPA self-energy to -



35

first order in the atomic site potentials. Baldereschi and '.\"Iaschke46 obtained the analogous
expression by calculating. via second order perturbation theory. the effects of an aperiodic
potential on a VCA electronic band structure, calculated using a local pseudopotential

approach. The expression they derived for an A,B,_,C alloy is

- - . s by ., [ ad] 2
E,(RK.x) = EO(Fx) + x(1—x) Y '~ JSnkx1dink x> (19
: 'y E(Kx)—EM(K x)

where x is the mole fraction of A atoms. 8 is the atomic pseudopotential difference between
atoms A and B. and E{”(k.x) and In.k.x> are the VCA eigenvalues and eigenvectors.
respectively, corresponding to a state having é wavevector k and a band index n. Also
using perturbation theory. the CPA wavefunction ¥ (Kk.x) associated with E,(k.x) can be

written as

[ - -
. | <nk.x18!n" k' x>
)»

¥, (k.x) = Inkx> + x(1-x) - =
| "E | EORX)-E(R x)

kx> (20)

In Egs. (19) and (20). the VCA wavefunctions and energieé are determined from a
nonlocal pseudopotential calculation. To obtain the f orrﬁ factors for Al,Ga,_.As. for
example. we linearly interpolate between the values for GaAs and AlAs. Because there is
some latitude in fitting the pseudopotential parameters. we chose the AlAs parameters so
that they are consistent with the GaAs parameters. More speciﬁcally. since the symmetric

and antisymmetric form factors can be decomposed into the atomic contributions as shown

below.
VS = %(VGa + VAs) ‘ (21a)
VA = (VO - V) | (21b)

the AlAs band structure is fitted such that its As form facrors are nearly equivalent to

those for GaAs. An exact match cannot be obtained without sacrificing accuracy in the
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AlAs band’ structure. The fitted form factors for both GaAs and AlAs at 300 K are given in .
Table 3. |

Finally, the atomic vpseudopot'ential difference is required.for all values of ﬁ=i—‘ﬁ'.
This can be seen by writing.v InKk.x> in its Bloch form. u i (T 7 There are two parts to
the nonlocal:pseudopotemial. _é local .part and its nonlocal correction. Since we use the

empirical nonlocal pseudopotential formalism of Chelikowsky and Cohen.‘w

the local
pot'em'ial is only determined for a few selected reciprocal lattice vectors, while the energy

and momentum dependent nonlocal correction Vy is the Fourier transform of a square

well pbtential of the form

VB = T AMER, | -  (222)
=02 ) .
1 r< R[ ’ _ "

In Eq. (22), ! is the angular momentum. A/(E) is the energy-dependent well depth, R, is the
well width, and P, is a projvection operator for the {'" angular momentum component. We
determined the complete g-dependence of the local potential by fitting the local model

pseudopotential of Aymerich et al.84 so as to reproduce the form factors of GaAs and

Table 3. Pseudopotential parametérs for GaAs and AlAs at 300 K. «, and A, have units
of Rydbergs (Ry). B, is unitless. and R, and R; have units of Angstroms.

Form Factors (R,) | ~ Lattice
~“Compound || VS(vV3) | VS(VB) | VS(VID) | VA(Y3) | VAV vA_(\i’/ﬁ)v "Contant (2)

GaAs -0.2204 | 0.0225 | 0.0621 | 0.0458 0.0317 | 0.0058 5.65
AlAs -0.2010 | 0.0348 0.0700 0.0525 0.0327 -0.0029 5.65

Nonlocal Parameters (square well)

Cation Anion
Compourd a, B, R, A, R, a, B. R, A, R,
GaAs 0.0 0.0 | 0.0 0.126 | 1.22 /0.0 | 0.0 | 0.0 2.285 | 1.22

I
i
AlAs -0.03 | 0.0 | 1.27 | 0.013 | 1.21 || 0.053 | 0.0 | 1.06 | 2.087 | 1.21
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AlAs. Their expression for the bare potential is84

Vi(r) = ae B sinlcr)/r — 2Ze¥/r ' (23)

where Z is the number of valence electrons for the atom under consideration, i.e.. 4 for Ga,
and a. b, and ¢ are disposable constants. Their Vi (r) consists of a repuléive core term plus
an attractive coulombic term. To obtain the pseudopotential, they screened the bare
potential using the zero-frequency, diélectric function of Schulze and Ungex'85 corrected for
exchange through the Hubbard approximation.s_6 The complete dielectric-screening f unctiqn

€(q) can be written as®

€—1
1+ L¥e, — 1)g°

1

eqd=1+
4 1 + 3q%/4k¢

(24)

where €, is the optical dielectric constant, L is the Thomas-Fermi screening length, and kg is
“the Fermi wavevector.

Having evaluated Egs. (19) and (20). it is then straightforward to obtain the cpPa
energy band bowings and absorption coefficients. The bowing factors are the second term in
Eq. (19). while inserting the energies and wavefunctions of Egs. (19) and (20) into Eq. (15)
yields €;(@) from which a{w) follows from Eq. (18). The index of refrﬁctiqn T(w) in Eq.
(18) is calculated by linearly interpolating between the bulk (@) values of GaAs and
AlAs, obtained from the results of the bulk dielectric constant model presenfed in Chapter
2. The e#perirﬁemal results of Casey et al.87 show that there is a slight downward bowing
of the refractive index relative to the interpolated value calculated above: however. within
the accuracy of our CPA model. the slight bowing can be neglected.

In evaluating €;(w) we ignore'd optical matrix elements P., between two perturbed
states, i.e.. the second term in Eq. (20). because their magnitudes are negligible compared to
the other three terms. These three terms are matrix elements between two VCA states. an
initial VCA state and a final perturbed state. and an initial perturbed state and a final VCA

state. The first term is simple to evaluate. while the last two only have contributions for

s
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, : , ) :
perturbed states with wavevectors equal to those of the VCA states. Note that transitions

between different k states in the Brillouin zone are allowed because the aperiodicity
.destroys the translational symmetry of the crystal and provides the required momentum

through disorder scattering.

3.3 Phonon-Assisted Absorption Contribution

As stated previously, in order to account for the experimental results below the
diréct threshold it is necessary to add to the CPA contribution the added abs;orption due t0
ph;ﬁon-_assisted optical transitions. Herﬁ:e. for this case it is the ph:onons which provide the
necessary momentum for t.fansitions between different k states. To evaluate this
contributicn. we use the model proposed by Dumpke et ;11.83 “In their modei théy_ only» :
' >con.sider_ed the low-temperature phonon emission case where the >_main contribution to the
~ absorption occurs at._.the bahdvédge's of the initial and final states. Conséqugmly. they
assumed parabolic energy bands and their optical and electron—phonbn ‘matrix e'lgmehts
were independent‘of energy. Theseiasu'mptions were uéed to model the two.contribut’ion's.
to the absorption process. The first contribution involves the formation of a free ind"irect '

exciton for which they used the results of Elliott to give88

_ ex
- ey =

(Tw + Ex —Tw, —E') ' . - (25)

where E,, is the free exciton binding energy. E! is the indirect energy gap. flw, is the phonon

"

-emission energy. and B, is an adjustable parameter which contains density of states and
matrix element information. The second contribution describes single-particle. indirect

transitions between the heavy hole (hh). light hole ({h), and Split-oﬁ' hole (so) bands and

-

the two lowest indirect conduction bands. It is given by

3/2 Tor-Tu,~E .} .
Ajl P (Evi)1/2(ﬁw-ﬁwP—Ejl—‘Evi)“2 dEv"

Te 4 Fiw—(1+myy/m,)E,~EDPJ

my;

(26)

m

3 2 -
Uing = Z Z
i=1 j=1

where i = 1-3 refers to the hh. [h, and so bands. respectively, j = 1-2 refers to the two’
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lowest indirect conduction bands. my; Iis the valence band effective mass. and m, is the
effective mass of the lowest direct conduction band. EP is the smallest direct energy gap
for the i'" valence band. E/ gives the two smallest indirect energy gaps. and A}, in analogy
to B, in Eq. (25). reflects the density of states and matrix element factors and is
determined empirically. To evaluate Egs. (25)-(26), experimental valuesS? are used for the
energy gaps and phonon energies, the effective masses are obtained from Table 1, and Ajl
and B,, are given by Duxﬁpke et al83 for Alas. We assume that these emi)irical parameters
are approximately constant for all compositions of Al,Ga;_ As sinceAthe density ‘of states
and optical and electron-phonon matrix elements are approximately equivalent for GaAs

and AlAs.

3.4 Results and Discussions
Figure 4 shows the calculated absorption coefficient of AlggGagAs. The solid line is
obtained using the CPA model of Section 3.2 and the dashed line results from a VCA

calculation. i.e.. use E{(K.x) and I nXk.x> to calculate adw). The CPA curve has been

shifted by ~ -70 meV so that its direct energy gap. marked EP in the figure, is in
accordance with the experimenial results of Monemar et al.9o Furthermore, in order to
compare more directly the overall shape of the theoretical and experimental curves. both

theoretical curves have been scaled by a factor of 1.1 so that the CPA curve agrees with the

experimental data for energies greater than the direct energy gap. The CPA curve is shifted
by -70 -meV because our CPA perturbation model cannot account entirely for the disorder-

75 who

induced lowering of the direct energy gap. In contrast to Baldereschi et al.
calculated a correction of +6 meV for Al 3Gay,As using the perturbation CPA model with
a local pseudopotential. we obtained a value of -15 meV with a nonlocal pseudopotential.
The disparity in the two results arises because the main contribution to the difference

between the Ga and Al potentials comes from the cores of the atoms and only the nonlocal

potential is able to take this effect into account. Our underestimation of the downward
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bowing probably arises from two sources: the neglect of positional disorder and the

75

approximate nature of second order perturbation theory. Baldereschi et al.”~ estimated

that the effect of positional disorder of Al,Ga,_,As is small, while Chen and Sher81
obtained an energy correction of ~ -25 meV using a sophisticated CPA -approach, which
takes into consideration both positional and compositional disorders. Hence, the neglect of
higher-order CPA effects is probably the largest source of error in our model. As a final
note. because there is a large scatter in the experimental energy corrections as a function of
composition.75 it is difficult to judge the accuracy of the -84 meV value of vMonemar et
al.90

As discussed in the previous section. Figure 4 illﬁstrates the phenomenon that the
disorder potential allows indirect transitions to thev X and L valleys. which accounts for the
1ong absorption tail- for the CPA curve. Because the density of states of the X point is
approximately a factor of 3 larger than that for L.91 the majority of indirect transitions
occurs between the I' and X region§. Figure 4 also shows that disorder effects start to
become ﬁnimportant for energies larger than fhe direct gap and for these energies it becomes
reasonable to model the absorption coefficient by z; shifted (bowing effects) VCA éu’_rve.

In Figure 5 the absorption coefficient of Al gGagzAs is calculated using the results
of the phonon-assisted absorption model. The dashed .curve neglects exciton processes. £q.
(25). while the solid curve includes these processes. Because the model only considers
phonon-emission transitions. the dashed curve begins Tiw, above the indirect energy gap.
while the solid curve begins fiw,—E.« above the indirect gap since this curve aiso inciudes
the exciton contribution. For larger energies the two curves merge, since the exciton
contribution has a weak dependence on the photon energy. Since Eq. (26) shows that
ajq(w) blows up as Tiw — EP. the curves are only plotted up to Tw = 2.7 eV. The
discontinuity in Eq. (26) occurs because the expression for cnilw) is derived using second
order pertubation theory which becor‘neS invalid as iw — EP, i.e., it is necessary to include

self-energy effects in the derivation. Finally, the most important point to gather from this
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figure is that by comparing it with‘ Fi‘gure 4, it is evident that in Al,gGa,,As phonon-
assisted and disorder-assisted indirect transitions have approximately the same magnitude.

Figure 6 compares the total calculated absorption coefficient of two compositions
of A1,Ga,_,As with the experimental results of Monemar et a1.90 The calculated curves
include both the CPA and phonon-assisted contributions. In the figure the solid and dashed
lines are the theoretical and experimental values for Al gGa, >As at 4 K. respectively, and
the dotted-dashed and dotted lines are the theoretical and experimental values for
Aly3Gag 7As at 300K, respectively. The experimental data are available only for the energy
range presented in the figure. Since Aly3Gay7As is a direct material, the theoretical curve
does not include the phonon-assisted contribution and disorder effects are barely noticeable.
As in Figure 4. the CPA contributions to the theoretical curves have Been shifted and scaled
SO as to enable direct comparisons with the experimental data. The factors for x = 0.8 are
the same as those given for Figure 4 -and the éhif t and scale for x = 0.3 are +20 m'eV and 1.0
(no scaling). respectively. The energy shift is positive since Monemar et 31;90 obtained no
disorder-induced lowering of EP, while we calculated a value of -20 meV. As discussed
above. because §f the large scatter in experimental bowing values, it is diﬁicuit 10 ascertaiﬁ
the validity of the expérimental value. Conseq{xemly, for compar'ison. Chen and Sher81
_ calculated an energy lowering for Aly3Gay1As of ~ -35 meV.

Figure 6 shows that our theoretical results 'compax;e very favorably with the
experimental data. The only noticeable discrepancy betweeﬁ the calculated and
experimental curves occurs for energies around the direct gap where our neglect of direct.
free 'excitons becomes important. Note that these exciton effects not only raise the
magnitude of the direct contribution, but also change the shape of the curve around EP. In
Chapter 5 we will discuss a method for extending our model to include these ' region
exciton effects.

In conclusion. we have extended the partition method. based on a hybrid band

structure approach. to include disorder- and phonon-assisted indirect transitions in ternary
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alloys. The disorder of the alloy has been accounted for by using a perturbative CPA
approach and the phonon contribution is incorporated using the empirical model of Dumpke
el al.83 In Al,Ga;_,As the contributions of -disorder-assisied and phonon-assisted indirect
transitions are determined 10 be comparable. The results for the disorder-induced. I' point.
energy-gap bowings are shown to be nearly comparable to those calculated using a n;ore
sophisticated CPA approach. Because of the large scatter in the reported experimental T
energy gaps. it is difficult to compare Lhé calculated values with experiment. In general the
calculated absorption coefficients of Al,Ga;_,As are in good, agreement with the
experimental data and compare well with the calculated values of Ting and Chang.82
Because our method is based on a perturbation expansion. our model does not provide
" correct absolute absorption values. but determines the correct relative contributions of the
indirect (disorder- and phonon-assisted) and direct transitions. Even though results are
only presen.ted for Al,Ga,_,As. our model can also provide good results for other III-V

ternary. alloys. In the next two chapters the partition method is applied to heterostructure

materials.
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4. DIELECTRIC CONSTANT AND REFRACTIVE INDEX QF TI-V BASED MQWs

AND SUPERLATTICES

4.1 Introduction

9.92 31-3

Recently. there has emerged a number of laser” "~ and optoelectronfc 4 devices

which would benefit from a knowledge of the refractive index of MQWs and superlattices.
Equation (17) shows that n{w) depends on both the real and iméginary parts of the
transverse dielectric constant. Because we are mainly interested in lbw-frequency '

applications, €,(w) << €,(w). Eq. (17) reduces to

nw = Jeal@ . ) B | 27

In cont.rast tb the absorption coefficient which selects out specific: portipns_ of the Brillouin
zone. the refractive index includes transitions from all regioné of the zone; Consequently, a
useful one-electron superlattice band s‘tfucture model must be accurate thfoughout the .
 zone. be efficient. and be extendible to include many body effects such as excitons, bénd
tailing. and alloy disorder. |

There exists in the literature a number of superlattice band structure models which

can be used to calculate the low-frequency absorption coefficient. 18-20.25.27-28 As stated

18.25 or 2

~in Chapter 1, the majority of these models are inaccurate at the zone edges re

computationally complex.zo‘27 In the past few years. a number of band structure models

based on the k - P method38 have been introduced which do not suffer from the above

23.28.93-94

problems. In this chapter the superlattice kK P approach suggested originally by .

8

‘Leburton and HesszB‘and extended by Kahen and Lebu'r_ton2 is developed and applied to
GaAs—AleGal;xAs MQWs and superlattices. | |

In Section 4.2 a (eview of the different superlattice k- f)’ approaches is made and Lhé
merits of the different models are discussed. We give an account of our superlattice model.

based on the partition method. in Section 4.3. Results are presented in Section 4.4 for the

structure and frequency-dependent refractive index of GaAs-AlAs superlattices. Because it
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is necessary to include excitons in the superlattice model in order to have a reasonable
representation of a(w). we have postponed an account of the absorption coefficient until the

next chapter where excitons are introduced into the model.

4.2 Superlattice K - P Band Structure Models

As discussed in Section 2.2.5. using the K - P approach38 the entire band structure
can be obtained by expanding about one or several symmetry points. The advantages of
using several expansion points are that fewer and less complex basis sets can be employed

to perform the expansions. Leburton and Hess23

calculated the dielectric constant of long
period GaAs-AlAs superlattices by splitting the constituent material Brillouin zones into

~ the T, X, and L regions. For the T region. a simplistic k - P expansion was used and

superstructure effects were accounted for within a tight binding approach based on the

envelope-function approximation.'u'95 The Kronig-Penney mode195 was used to calculate

the superlattice. miniband. energy positions and widths. A crude VCA approximation was
made for the contributions of the X and L regions. "I'He results of Leburton and Hess2>
were correct qualitatively in that the resulting superlattic;e‘ dielectric - constant was
structure depeﬁdent. showed a polarization effect, and exhibited fine structure due to the
quantized T regién‘ contribution.

Tsu and lorriatti®> calculated the longitudinal dielectric constant of GaAs-
AlGa,_,As MQWs also by splitting the Brillou-in zone into the I'. X. and L regions. They

improved the model of Leburton and Hess®>

‘by considering quantization effects at the I'. X,
and L points only for energie§ below the superstructure potential barriers at each of the
symmetry points. These enérgies were calculated by performing simplistic K - § expansions
about each of the symmetry points. i.e.. effective-mass expressions. while a crude VCA
approach was used for energies above the f)otential barriers. Since their model is a

simplistic version of the one discussed in this chapter, it is pointless to discuss the merits of

thetr model.
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94

Mailhiot et al. calcdlated the electronic band structure of a GaAS-AlAS

superlattice within the envelope-function approxin'xation.21

"The energies and the
'prophgating' and evanescent envelope wavefunctions of the» constituent superlattice
materials wex"ev obtained by performing K- P expansions about the respective I' symmetry
points. The I'-point basis sets were determined using the results of loca'l pseudopotemiai
caiculations, Similar to our k - P approach, their technique avoids the problems inherent in
the pure tight binding and pseudopotential methods. However, since their mddel neglects
nonlocal. as well as spin orbit interactions, the bulk band structures obtained by their
model are inferior to those obtained using our hybrid band structure approach.- It sﬁould
also be noted that these effects cannot be included in their approach. since i,nonlocﬁl band
structure cannot be obtained by performing a k- P expansion about a isingle symmetry
poi.m.96 Conéequently. the accuracy of their technique is limited to a small région of the.
zone and. thus, can only be use_.d‘ to determine acéurately. for example. the I' region
a»bsorption coevfﬁcien.t.gTIn order 10 imvprove théir model. Vit is necesszvx'ryv.to resort 'LQ our

‘method of expanding about several symmetry points.
4.3 Electronic Band Structure Model of [100] Superlattices

43.a Envelope—Fq;acfion Approximation’

In long period superlattices. the periodic variation of the-band gap produées
‘quantization of the eléctronic states Whiéh results in the formation.of minib%mds which are |
sﬁperimposed upon the bulk band structure of the constituent materials. We account for -
this band modulation, assumed to be in the z-direction. by quantizing the z-component of

the wavevector k which results in a tight binding superlattice wavefunction of the form.95

‘F;:eii"'?“@{:(z)lu‘—() S o » ) (@28)

where K, is the superlattice traveling wavevector in the z-direction, T, and k, are the

position coordinate and wavevector in the plane parallel to the superlattice layers, lug> is -
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the periodic part of the bulk Bloch state. and @ﬁz(z) is the superlattice envelope

wavefunction of the j'® quantized state whose periodic part is found from the solution of
the periodic square-well potential problem, as described in Section 4.3.b. Equation (28) is
derived by assuming that there is no mixing between valence-band, envelope
wavefuncticmszd'-»25 (see Section 4.3.c) and the superlattice period.icity‘ acts only upon the
envelope wavefunction in the z-direction. Therefore, ui{r) is unchanged from its bulk
value. as given in Section 2.2, and the superlattice band structure differs from the
corresponding bulk material band structure only in Lh’e quantization direction.

In line with the above approximations, we assume the following simplified. tight-

binding expression for the energy dispersion relation of the minibands in the z—direction95

E(K,) = E; + (=1)iW cos(K,d) ' (29)

where E; and W,; are the midband energy and energy width of the it mi'niband‘L
respectively. and d is the period of the superlattice.' The superlattice miniband energy
disperson relation Ed(k,k,.K,) is calculated by adding Eq. (29) onto ‘the bulk relatio_rr;_
Eg(kx.ky.kz) and quantizing the k,-wavevector. We obtained the.superlattice optical matrix'

element Mg, between the valence and conduction bands by quantizing the z-component of

the k vector in the bulk matrix .element expression Mg, which is discussed in Section 2.3.

Hence,
Ealkeky.kp) = Edi(k,ky.K,) = Eg(ky.ky k) + AE; + (=1)iW cos(K,d) (30a)
Mp(ky.kyK;) = Mg (kyeky k). (30b)

Here AE; is the shift in the energy of the i'® level resulting from the carrier confinement.
The values of W, and AE; are determined using the interface connection rules described
below and k; = (2(j—1) + 1]m/2d. By applying Egs. (30) at the three symmetry points. I',
X. and L. we obtained the quantized electronic band suructure presented in Figu.re 7. Since

K and W are low symmetry points, the effects of quantization are negligible for the
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Figure 7. Band structure of GaAs and the effect of quantizatioh on each of the sym-

metry points.
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- contributions coming from these regions. Therefore. these contributions are treated in a
mean-field approximation where the energy and matrix element dispersion relations are
approximately equal to the compositionally averaged bulk alloy values. These alloy values
are calculated using the VCA model presented in Section 3.2.

Superstructure effects also influence the evaluation of the le- P12 té;'m in Egs.
(14)-(15). which give the expressions for €;(w) and €,(w), respectively. The e factor takes
into account the consideration that it is necessary to average over all polarizations of the
optical excitation. For bulk materials. on account of their isot;ropy. all polarizations are

equivalent and this term is equal to

18- P, |.2=§(p3+py2+p,2) (31)

where p, is the x-componerit of pnn" defined in Eq. (2). However. for superlattice

structures the symmetry is lowered by the superstructure layering which causes-one
direction. i.e., the z-direction. to become preferred over the other two. This asymmetry

leads to two‘distinc‘t polarization terms which can be combined into one expression
1a-P, %= %(1 ~ POL)(p? + pg) + (POL)pZ (32)

~where POL is one or zero for the electric ﬁeid polarization being perpendicular {TM) or
parallel (TE) to the superlat-tice layers. respectively.

In this chapter. we assumed a superlattice model for which superstructure effects
are assumed to be operative at ', X. and L for all particle energies. Hence. we use Egs. (30)
and (32) for all energies. In the ﬁext chapter we find that a better approximation is to use
an approach which combines both superlattice (Eqs. (30) and (32)) and isotropic-alloy

(VCA model and Eq. (31)) electronic band structure models.
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4.3.b Interface Connectibn Rules

At each symmetry point the envelope wavefunction ®¢(2z) and the miniband

" parameters. W; and E;, are obtained through the use of connection rules which account for
the difference in electronic properties of the two constituent superlattice materials. In
general, these connection rules involve continuity conditions for the wavefunctions of the

21,2224 In our

two materials al the boundaries between them. approach, we assumed the

continuity of the entire wavefunction and its derivative at the interfaces: however, since
the GaAs-Al,Ga;_,As junction is not abrupt. we averaged these relations over the volume

of a unit cell to obtain

<XAI¥,> = <Xgl ¥p> | o - - (33a)
o d v 4 - - |
<XAl.d_z.I‘IfA> = <Xgl—|¥g> _ (33b)

dz
~where for each material A and B. I¥> is the total wavefunction, and IX> is the local

wavefunction. If B is the barrier material on the right-hand side of the heterojunction, the

two A material wavefunctions can be written as

T, > = MY C,:'eikzz bud> + Cre ™ #| ul-> - (34a)
I'XA>=_\/1=2_;(luf>~+ lufe>) ' ' (34b) -

‘where | u’> is the time reversed state®?

of | uf> and C; and C, are the amplitudes for
-the forward and . backwar"‘d" propagating waves,  respectively. The transmitted

wavefunctions in material B are,

I Wg> = eik‘x*ikyycgei"z ) u’;B> ' , ’ . , (352)

IXg> = lul> o , (35b)

where k, has an imaginary component if the energy of the particle is smaller than the
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potential barrier height. Note that in agreement with the assumptions underlying the
derivation of Egs. (28)-(29). Egs. (33)-(35) also do not include the effects of mixing
between quantized bands having comparable energies.

By using the orthogonality conditions between time reversed states, <uplup>=0

and <ug! g_ lu_z> = 0. and the expressions for |uy> in each material (see Section 2.2) in
z )

Eq. (33). it is easy to obtain the following conditions on the envelope functions F, and Fg

at the position of the interface at z = z;

Fao(z = 2,) = Fglz = 2,) _ - * (36a)
1 dFy _ 1 dFg : -
D a T m® e (366)
where
<ug | i Fug>

=1 1+ dz
m(E) m, " ik,(E)

and we have indicated explicitly that k, in Egs. (34)-(35) is energy dependent. To derive’

the above we set ky =k, =0 (since we ignore band mixing) and defined F, and Fg by

Falz) = _\;_3_ Cie's + Cre™ | | (382)
Fa(z) = Cge™2? . - | (38b)

: Equation (36) gives the normal connection rules within the en\-/elope-function
approximation .21 98
account for the effects of non-parabolicity. Beca-use the non-parabolicity effects at the X
and L points are weak in comparison to those at I'. for the X and L region minibands. we
used the band-edge limit of Eq. (37). i.e.. the effective mass value, for all energies (see

Table 1).

By applving the energyv-dependent connection rules to a periodic superstructui'e. we

an

'~

except that the masses are energy dependent in both materials to
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obtained the following relation, which' is analogous to that of Baétardzl

al.,98

and Sai-Halasz et

except that now the masses are energy dependent

cosK,d = cosk,*L, coskLg — Qsink*L;sink BLg (39a)

1 szmB(E) szmA(‘E)
7 [KEmn(E) | KAmg(E)

_ Here | ax;\d Ly are the well and barrier widths of materials A and B. respectively. d =
Lz + Lg. and kA and k2 are the energy-dépendent wavevectors of Eq. (37). In order to
evalﬁate Eq. (39) it is necessary to determine the energy-band offsets at the I, X, and L
symmetry points. Figure 8 gives these offsets for a GaAs-AlAs interface at 300 K assuming
a 65:35, I'-;ﬁoint. band-discontinuity ratio.*2 The energy levels in Figure 8 are obtained -
using experimental data. when available: otherwise. they are estimated from nonlocal
pseudopot'emial calculations 'whiéh include spin orbit effects. |

Eqﬁation (39)‘yields values for E; and W; of Eq. (295. By solving the periodic -
potential problem used to obtain Eq. (39). we also obtained an expression for the periodic
part offbﬁz(z)

- (os(kA(E)z) 1zl < Lz2

g(2) = (40a-b)

exp(—KXE)z)  Lz/2 < 1zl < Ly/2 + Lg/2
where Eq. (40a) is valid in material A (the well) and Eq. (40b) is valid in material B (the

‘barrier). In the above we assume z = O is at the middle of the well and ¢’. a normalization
coefficient, and K2, a complex wavevector, are both determined using the continuity of g(z)

and its derivative at z = Lz/2.

4.3.c Valence-Band Mixing Effects
Recently. there has been a flurry of activity concerned with valence-band mixing

effects which pfoduce. in the direction parallel to the superlattice layers. symmetry -

24-25

' : 24~
. exchanges and repulsion effects between the bands.“4 25 -These authors show that



55

A G_aAs

'“L"s';;._q 71 Ls==—-1.79

L4,5

Lg=—

Figure 8.

N N N

AlAs GaAs AlAs GaAs AlAs

To——246 x .0

Xgmommes1.90 Xy=eer.95 -

—1.22
1.44

Tg———=1.42 - Rg—16T"
Fgm——0.0
r 0.34
[ [ge——_0.56
I g——=_0.83
L45 e ~2.04
Ls—'._"—231
Xy-3.00%7 —2.99
Xg——-3.13X4 -3.13
LP-2542

Energy-band offsets at 300 K at each of the main symmetry points for a
GaAs-AlAs superlattice. The energy levels are calculated assuming a 65:35
I'-point. band-discontinuity ratio. Each level is marked with the appropriate
double-group-symmetry notation.
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. .

| mixing effects in G_aAs-Aleal_'.xAs sﬁperl;ntices between the /h and hh quantized. energy
bands become important when the energy separation between the bands are on the order of
10 meV. In this chapter Egs. (28)-(30) and (33)~(37) are derived by neglecting these
effects. Therefore. for some structures these equations afe valid, while for others the model
must be modified. In the next 'chépter we show that these equations can be retained if We_
mpdify the masses of the hh and !h bands so as to account empirically for the position of
the 'bound exciton peaks. Using the variétional. band—miking model of ‘Alt_arelli.u it is

v straightforward to include these effects in our model in a more rigorous fashion.

4.4 Results and Discussions

Figure 9 gives the contributions of the T, \ and L regions to the real part of the
dielectric constant of a GaAs-AlAs superlattice at iw = 1.5 eV for light being ‘pola‘rized
rparallel'and perpendicular to the superlattice layers (soiid and dashed lines. respectively)_.-
Values are presented as a fgnc{ion of the period d=Lg+L; for a ‘mole fraction
Ax.-—-LB/(Lz'+LB) of AlAs of 0.3. The superlattice quantiz#tion axis is in the [100] direction.
Notice the large L contribution with respect to the I' and X contributions.- As already
meniioned in Section 2.4, this résults from the comb'm?d effects of large densities of states
and mbmentuﬁx ﬁnatrix elements, and small energy gaps‘ present in the L vregion. The L
contribution is approximately independent o'f the period because the . superlattice .
quantization axis is not aligned with any of the principal axes and. thus. it is approximately
equal 1o its bulk alloy value. Hence. in agreémém with the experimen_tai ﬁndings éf_L#idig

et al..99

thé effect of the superstructure is only weakly fiélt at L. The L contribution is
isotropic since the X. y. and z directions are__‘all equivalent for the [1_11] direction.
. Therefore, for a sﬁperlattfc'e grown along the [100] direction. the polafization of the L
: vaileys. as an average vov‘er the three orthogonal directions, vanishes in analogy to the bulk

case.

The I and X contributions both increase as a function of the period. The superlattice
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Structure dependence of the I', X. and L region contributions 1o the real part of
the dielectric constant of a GaAs-AlAs superlattice at Tiw = 1.5 eV. The mole
fraction of AlAs in the structure is X = 0.3 and a, is the lattice constant. The
solid and dashed lines are for parallel and perpendicular polarizations. respec-
tively. Note that the L region contribution is isotropic. -~



58

structure influences t‘he dielectric consﬁant by deterﬁining both the position and .minibaﬁd '
widtb of the lowest quantized energy levels. Each are inverse funciions of Lgand L. It

can be easily determined that the miniband widths have a negligible effect on‘the dielectric

constant. Therefore, the important factor is the lowering of the quantized levels which

results in an increase in €, with the period. The peaks on the.paral.lel T polayiz;ni_on curve

corréspond to the first electron-heﬁ‘«y hole and electron-light hole transitions, E,(e-hh) and

' El‘(e-lh), respéctively. For perpendicular polarizationl only El_(e-lh) is present since the

symmetry of the heavy hole state precludes momentum matrix elements in the

quantization direction. i.e.. for the heavy hole band. p?=p; and p; = O- and use Eq._(32).v
Polarization effects at T occur becauée the heavy hole transitions which abre responsible for

the strong coupling. b¢tween~ the T conduction and. valence bands are absent for g
perpendicular pql’ax;ization.

Tﬁe _X cbntfibmion is a weak function of the period because only the conduction

baﬁd is.quantizéd (we ignored the very small offset between the two valence bands as
'sh'own in Fig. 8)£ and. in comparison with the I' point cdnauciioh band mass. both the.
transverse and longitudinal conduétion band masses are large and. thus. rather insensitive
to the confinement. Hence. in analogy with the L contribution. the X region dielectric
constant assumés approXimately its bulkvailoy value. For the X region the band-edge,
optical matrix elements are also appreciable only for light polarized along the x and y
directions. i.e., similar to the situation for the e-hh transition. However, two of the Qaileys
ha»ve._'the superlattice quantization axis parallel to the z-component of the optical matrix
elements while the other four valleys have the quantization axis aligned aloﬁg the y-
componant of the matrix elements. Hence. perpendicular polarizati'on (the quantization axis
is perpendicular to the layers) is favored by four of the six X valleyé. which accounts for
the reverse polarization trend for the X valley contribution.

In Figure 10 we compared our results for the normalized index of refraction of a

GaAs-AlAs superlattice with the experimental data of Suzuki and Okarnotlo.loO Our results
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Figure 10. Normalized index of refracticn of a GaAs-AlAs superlattice as a function of

energy. The solid and dot-dashed lines are the theoretical and experimental
parallel polarization values, respectively, and the dashed curve gives the
theoretical perpendicular polarization values. The arrows mark the positions
of the quantized T valley transitions. e-hh(j) corresponds to a transition
between the j'® level of the heavy hole band and the j'® level of the lowest.con-
duction band. )
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~are for parallel and perpendicular ﬁolrarizations. solid and dashed lines, respectively, while

the experimental data are for parallel polarization. dotted-dashed line. The superlattice has
a well and barrier thickness of 62 and 27 &, respectively. and, consequently, X = 0.3. The
experimental data are only available up to Hw = 1.8 eV. Because we have neglected band

transitions larger than 6 eV in our model. the results for the bulk GaAs index of refraction

are = 7% smaller than the experimental values.8 For most optical transitions the influence

of the higher bands can be described by a constant factor. Therefore, we used a

normalization procedure which enabled us to remove this constant contribution and focus

only on the band-edge transitions. Consequently. in order 10 compare directly our results -

with the experimental data, the theoretical and experimental n(w) values given in Figures
10 and 11 are normalized with respect to the theoretical and experimental bulk GaAs index-

of refraction values at fiw = 1.5 eV, respectively. In the ﬁgﬁ're the arrows indicate the

‘quantized. T-point, \ialence_ band-conduction band transitions which produce the fine

structure on the theoretical parallel polarization curve. The peaks on the theoretical

perpendicular polarizziiion curve are the result of the corresponding light hole and split-off

hole transitions indicated on the parallel polarization curve.- As discussed previously, there

are no heavy hole transitions for perpendicmaz_' polarization and the dielectric constant is:

lvarger for parallel polarization. However. notice that the anisotropy vanishes around 2.3 eV
due to the falling off of the I' contribution and the isotropy of the L contribution. -
As can be seen from ‘the figure, our results compare favorably with the

experimentél data.. there being less than a 2% discrepancy between the two parallel

polarization curves. Our E,(e-hh) peak is shifted to higher energies by = 8 meV and is

| slightly larger. The slight shift is probably the result of our neglect of exciton effects in

this model. Both the Elb(e-lh) and E,(e-hh) peaks are absent from the experimental data.
The light hole transitions are barely noticeable on our parallel polarization curve. being
weak and overshadowed by the neighboring e-hh transitions; consequently, they might be

difficult to observe experimentally. We do not Know why the Ez(e—hh) peak is absent from
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the experimental data. However, in general the data verify the va.lidity of our superlattice
model.

In Figure 11 we show the normalized index of refraction at 1.5 eV for a range of
GaAs-AlAs syperlattices. Again, the solid and dashed lines are for light being polarized
parallel and perpendicular to the superlattice layers, respectively. Also shown in the ﬁguxje
are the normalized experimental alloy valuesm, corresponding to four of the five
superlattice compositions (there are no data for X = 0.6). Asin Figu're 10. the main peaks
on the curves corresi:ond to the quantized, I'-region transitions. All-of the parallel
polarization curves exhibit the E,(e-hh) peak while the % = 0.1 and 0.2 curves also show
the E,(e-hh) peak. Again. for perpendicular polarization. the peaks are due to the E,(e-1h)
transition. The El(e-lh) transition also contributes to the parallel curves; however, it is:
barely noticeable. being overshadowed by the neighboring El(e-hh) peak as in the previousgg
figure. For both polarizations the peaks become larger and narrower ué to X' = 0.3, afteri
which they becomé smaller. Theée effects can be explained by the following mechanisms. -
For small X values the peaks are broad becat;se a large change in the period is required tos-
modify the superlattice characteristiés which resemble those of bulk GaAs. Additionally:’
the effects of quantizvationA are weakly felt for these structures. which results in shallower
peaks. For farger. X values. the superlattice properties are a stronger function of the period.
.which produces sharper”peaks:‘ however, with increasing AlAs content. the peaks become
sbhalvlower because the AlAs [ region coﬁtributio_n is approximateiy a factor of 'seven times
smaller than that of GaAs (see Table 2).

. A characteristic feature of all of the curves is the shift in the peak positions for
increasing AlAs content. For any mole fraction X. the energy of an optical transition
increases as a function of the barrier width, but decreases more rapidly with the well
width: consequently, the transition energies are the largest for small-period superlattices
because of the strong confinement. Therefore. as the period d increases for constant X. the

transition energy decreases (weakening confinement since L; increases) and a peak occurs
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Figure 11. Structure dependerice of the normalized index of refraction at 1.5 eV for a
number of GaAs-AlAs superlattice structures. The solid and dashed lines are
for light being polarized parallel and perpendicular to the layers. respectively,
and a, is the lattice constant. The arrows on the left-hand side of the figure-
mark the positions of the normalized experimental alloy values for the indi-
cated mole fractions X of Al. The mole fractions given on the right-hand side
of the figure belong to the adjacent parailel polarization curve, whereas for
perpendicular polarization, the indicated mole fractions correspond to the
curves in descending order.



63

when the energy crosses the 1.5 eV level. Also. as % increases for a constant value of the
period. the transition energy increases since Lg is increasing while L7 is decreasing (AlAs
has a larger band gap than GaAs). Therefore. larger L, values, i.e., the shift in the peaks
for increasing X. are réquired to reduce the transition energy to the value of 1.5 eV. This
explains why the curves with the smallest barrier values. X = 0.1 and 0.2, also contain the
E;(e-hh) transition and why the X = 0.6 curve for perpendicular polarization does not
exhibit the E,(e-(h) transition.

The curves also show thét there is a strong birefringence-which weakens with
increasing AlAs content. Thé reduction in anistropy occurs because of the smaller AlAs T
region comribgtion. as explained previously. The large birefringence arises because of the
large difference between‘ the .I‘ region parallel and perpendicular €,(w) contributions. as
shown in Figure 9. In the next chapter. we will show that. in actuality, the birefringence in |
this model is overestimated due to our neglect of band mixing and our assumption that
superstructure effects occur for ail energies (see Section 4.3.a).

The most important point to ﬁotice in Figure 11 is the positions of the alloy index o‘f'
refraction valuesl relative to those of the superlattices. For parallel polarization it can be
seen that the diﬁferf:ﬁce between the alloy and superlattice index o.f refractions increases.
with ¥ and with Lg. i.e.. with the period. The later trend is in agreexnem.(wit.h the
experimental findings of Suzuki and Okamotoloo and confirms the conjecture of Holonyak
et al.? about the difference between tﬁe index of refractions.of a superlattice and its
corresponding alloy. Figure 11 also shows that this difference is largest at the quan;ized
transition er;ergies. Because the model presented in this chapter neglects exciton effects and.
as stated above, has some inherent problems. we cannot take seriously the exact differences
between the superlattice and allgy index of -refractions. However. the general trends
discussed above are correct. Furthermore,. since it requires only a small index difference to
achieve optical waveguiding (require An ~ 0.0063 assuming a symmetric AlGaAs planar

).101

wav‘eguide' with a thickness of 2 um and Tw = 1.5 eV the figure shows that
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waveguiding is optimized at the quﬁqtized transition energies.

’ In(summary. the baﬁd structure pdrtition method that we developed for studying
_ihe optiéal éroperties of III-V binary and iernary compounds hés been shown to be
successful also for superlattices. The quantization of the electronic states caused by the
superstructure 'hag_ been iﬁcorpo;-ated int;o our mgdel within the envelope-f unctyion
approxirr.zazion.' Unlike the superlattice X - § approach of Mailhiot et al..94 which is limited
to calculating the absorption éoeﬂicieni over a limited frequency rangé. our method is
capable of calculating l')oth the absorption coefficient and refractive index over an extended
range of energies. Because our model is based on the partition method. we arg’ able to get '
good insight into the influence of both the band structure and superlattice parameters on the
values of the superlattice optical parameters. An additional virtue of our' approach is its

flexibility, which enables us to modify easily the model so as to incorporate excitons and

band mixing, as will be shown in the next chapter.
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S. . EFFECT OF EXCITONS ON THE OPTICAL PROPERTIES OF SUPERLATTICES

5.1 Introduction

In the last few years there has been an increasing interest in the properties of

excitons in superlattices and multiple quantum wells. 3326,

As discussed briefly in
Chapter 1. the interest stems principally from the phenomenon that excitdn resonances are
clearly observable at room temperature, while in bulk semiconductors the resonances are
barely‘ noticeable at 300 K.° This effect has been attributed to the quasi-two-dimensional
character of the excitons in quantum wells which enhances the exciton binding energy and
localization while having a small effect on the longitudinal optical (LO) phonon
broadening.5 Because the 2-D exciton peaks can be_moduiated simply by the application of

10, number of room-temperature, optical devices have been demonstrated

an electric field.
which . utilize an electroabsorpt'ive effect, 10:102-103 Concomitan‘tly. there have be.e;f:
numerous: theoretical papers devoted to uﬁderstanding. the low-energy exc.iton absorptior: .
spectra, with and without - electric fields.10-29 By taking the Kramers-Kronig -
trarxsformat.iorx-63 of the imaginary‘part of the dielectric constant, €;(w). it follows that the.
strength of the 2-D excitons should also have an appreciable effect on the real part of the
dielectric constant, el(.m)' and. thus. on the low-frequency index of refx;action. This
proposition i§ borne out e:ltpex-imentally.:;l’IO4 Coﬁsequently. this has led to the proposal
and demonstration of a number of quantum well devices. such as superlattice lasers which -
are monolithically integrated into higher gap cavities via impurity dit.’fusion.9 optical-

intensity controlled MQW switches.33

and MQW . phase modulators.3* Therefore. the
knowledge of the-index of refraction including .the excitonic contribution is technologically
important. ,

In this chapter we extend the superlattice band structure model of the previous
chapter by including the exciton contribution for the transitions originating around the T

symmetry point. Both the bound and continuum excitons are modeled using the EM.-\.88
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Since we will only be calculziting the low;frequency optical properties of superlattices, i.e..
Tiw < 2 eV, exciton effects at the e.dges of the. Brillouin zone can be neglected as a first
approximation because they only affect the overall magnitude of the index of refraction.

In the following section we describe the manner in which the I'-region. excitonic
contribution is added to the superlattice model of the previous chapter. In addition to
exciton effects. the superlattice model is also modified to incorporate band-mixing effects
and a vhybrid. superlattice-alloy. electronic band structure approach. These changes are also
-discussed in Section 5.2. Section 5.3 is devoted to describing the variational approach we'
used to compute the gro?nd state exciton wavefunctions and energies. In the final section,
results are given for the frequency-dependent absorption coefficient and index of refraction
of GaAs-Al,Ga,_,As superlattices. . Emphasis is given to comparing these results with those

obtained using the superlattice model of the previous chapter.

5.2 Modified Superlattice Electronic Band Structure Model
In the previous chapter, €;(w) is calculated directly from the band structure results;
however. when excitons are included in the model it is necessary to derive €,(w) by taking ‘

the Kramers-Kronig transformation of ez(w)63

(41)

In the above. P denotes the principal value. and we have written the transformation in
terms of energy instead of the usual form of using frequency as the variable.

Our T region model of €;(w) has a bound and a continuum contribution for which

we transformed the two parts. separately. The bound part is given by5'88’105

4‘”82 Y‘ fn)’n

€ glw) = - >
*8 “mgw? 7 [(E—E, )2 +v2)

(42a)

f, = 10,(F=0)121eP, (k)% . , . (420)
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The summation is over the bound exciton peaks where each peak is described By a Lorentian
function wit.h a half width at half maximum of y, and an oscillator-strength f,,. E,, and
®,(T) are the ground state exciton energy and envelope function for the n'® peak,
respectively, where T is the coordinate of relative motion between the elect.-ron and hole.
Both ¢,(T) and E,, are calculated using a modified version of the variational approach of
Greene et al.20 (see next section) and ¥y, is determined empirically.5 Finally. P.(K,) is the
momentum matrix element between the valence and conduction bands evaluated at the

point in k space from which the n'* exciton peak originates, assuming the I region to be

spherically symmetric. Substituting the expression for €; g(w) into Eq. (41) we obtain

41re 1
€ f, +
1) = Z E E,  +Tw
' /T E2 +y2)V2 ' .
Ya ( %.0n Yn) + w (Ex “—Tiw) + Tw 1 o (43)*
(Ego=~Tw)?+y2 Tw Ya Eva

Because the first two terms in the large brackets are generally small compared to the

=
ok

~complicated third term. we evaluated them in the limit as y, = O.

For the continuum part. we scaled the imaginary dielectric function €;g(w).

calculated assuming free electron-holes, -i.e.. the one-electron contribution. by a two-

dimensional Sommerfeld f actor106
1ra ’
€ € - 44a) -
2c(@) = T earale) gy | | (
R, 172
= |- 44b
a ‘nw—'_EC.n ( )

where to the n'" exciton peak there corresponds the n'® continuum contribution described
by an effective exciton Rydberg factor R, a continuum energy Ec,,. and a free electron-hole
dielectric function €, ¢, (w). Because of the presence of the energy-dependent Sommerfeld
factor in the expression for €, c(w). we obtained €, -(w) by numerically integrating Eq. (41).

Besides adding exciton effects to the model of Chapter 4. in this chapter we also
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employed a hybrid. superlattice-isotropic-alloly. electronic band structure approach (see
Section 4.3.a). More specifically, we .uséd Eq. (32) and a superlattice band structure for
small energies while using Eq. (31) and an isotropic-alloy band structure. w'it.hin the VCA
(see Section 3.2). for larger energies. As a first approximation we assumed the change in
properties occurs at a single energy instead of gradually ov'er a range of energies. For the
transition energy we chose the top of the electrons’ superlattice barrier potential.

In addition to the change to an alloy model for larger ehergies. we also éssumed that
exciton effeéts disappear above the electron barrier and empirically fit the well material hh
and [h masses such that the n=1 hh and [h exciton peaks. respectively, agree with the

107

experimental values while taking strain effects into account. The first assumption

follows from our hybrid approach approximation since exciton effects are negligible for

3 108 who

bulk materials at 300 K.” The second assumption is given support by Mann et al.
find experimentally that in order to fit their magneto—absofptiqn data for single GaAs-
Al Ga;_(As quan'tumv well structures, Lhey had to use hh and {hy masses of épproximately
10 and 0.2, respectively, for well thicknesses of ~ 100 A and Al barrier contents of ~ 0.3.
They justified vt.l‘xeoretically these large masses by invoking Eahd-mixing_ effects which give
rise to stroﬁg noh—parabolicities. In the model of the previous chapter for all superlattice
structures, we used well material hh and (h masse§ at E_= 0 of 0.51 and 0.082, respectively.
i.e., the experimental GaAs 4 K masses.57.

Consequently. in this empirical fashion we toék bahd—miginé' effects into
consideration. Note that as discussed iﬁ Section 4.3.c, band mixing includes both band

repulsion and symmetry exchanges. However, as will be shown in Section 5.4, we obtained

good agreement with the experimental data by only including band repulsion effects.
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5.3 Exciton Variational Model
A number of authors have calculated the binding energy of Wannier excitons in

26,109 110

quantum wells. This has been attempted variationally. perturbatively,

and using
a combined variational-perturbative Lechnique.]11 In this section we extend the variational
approach of Greene and Bajaj26 by making it valid for periodic superstructures and having
all of the parameters material and energy deper:dent.T Because our approach is very similar
to theirs. in the following we will concentrate only on the important highlights and
subtleties of tﬁe calculation. |

In bulk HI-V compounds the ['-region, Wannier exciton can be described within the
framework of the 6x6 k - P Hamiltonian matrix of Luttinger and Kohn.!12 Because the
'spin orbit splitting in Al,Ga,_,As systems is muc;.h larger than the binding energy of thg
exciton, the Hamiltonian reduces to a 4x4 matrix consisting of the Spin- up and spin dow.r},f,

hh and (h excitons. In a superlattice the degeneracy of the hh and (h becomes lifted and the;

approximation is made that the hh and (h exciton systems are approximately

independem.113 Furthermore, because the coulomb interaction does not mix spin states. the; -

4x4 Hamiltonian can be further reduced to 4 separate effective mass equations.
In a superlattice. the growth direction. i.e.. the z-direction. becomes distinct from
the other directions and. thus, it is. natural to express the exciton Hamiltonian using

88

cylindrical coordinates. Consequently, within the EMA,®® the Hamiltonian for the hh or (h

- exciton is given by

_-m 1 g 9 .1 | mo§
Hop = 5— |= == P o= + =3 -
SO TR Pl T FR 8% | 2m. g2/
S L v )4 V) (45)

where m, and m, are the energy-dependert electron and hole masses in the z-direction,

respectively. u is the energy-dependent. electron-hole. reduced. effective mass in the x-y
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'plane,veo is the static dielectric constant, T, foi- example, is thé electron coordinate, and p., ¢.
and z=z,—z, are the relative, electron.-hole' coordinates in the cylindrical coordinate system.
For simplicity we assumed the masses are isotrbpic and obtained their energy-dependénce
from the results of the periodic square-well potential problem discussed in Section 4.3.b.
Since Eq. (45) is applied in both well and barrier materials. both the masses and €, are
material -dependent. The potential wells for the electrons. V, (z.) and holes, V,.(2z;,) gre

represented by -

0 |Zel <Lz/2

_ | 46

Vw(z,_,) T Ve L2> 1zl > 12 ' e
- - (460

th(zh) Vh L/2> | 2y I > Lz/2 ( )

where we have chosen the origin of the coordinate system to be at the center of the GaAs

well. The values of V, and V, are determined for arbitrary Al barrier content in a manner

analogous to that used for obtaining Figure 8. In formulating the exciton problem for long

period supeflattices. we found that it is only necessary to consider a single period. as in Egs.
' (46), since there is negligible overlap between exciton wavefunctions from adjacent wells.

For the exciton wavefunction. assuming H,, is dominated by the single-particle™

interactions. we used the trial form suggested by Greene and Bajaj26

V.o = 2(2.)g0(zs)h(p.2.8) S | (47)
where g(z) is given by Eg. (40) for which k, and K, for the electron and hole are obtained
in the manner described following those e_q'uations. The wavefunction h(p.z.¢) describes
the intérnal motion of the exciton and is written as

h(p.z.p) = (1+az)e s+ I | v (48)

where o and 8 are variational parameters. Their values are obtained by minimizing the

expectation value of H.,
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L/ L2

“ *
f dze f dzh fpdp‘yexHWex
-L/2 -L/2 0
E.;f =
a L2 L2 w T, (49)
f dze f th fpdpq,exq,ex
=L/2 -L/2 0

In order to speed up the proéess of minimizing E,,,;. we used the approach proposed
by Kinoshita.114 Once E,,; is determined. the ground-state binding energy of the exciton
E, is obtained by éubtracting from E,,, the energy resulting from thé periodic square-well
potential problem discussed in Sectioﬁ 4.3.b. To calculate €;g(w), Eq. (42), it is also
necessary to Aetermine ¢(T=0). By deﬁniti.on #(7) is equivalent to l'x(p.z.tz‘>).88 Hence. by
hormalizing h(p.z.¢) in the manner shown for ¥, in Eq. (49) and evaluating it at T = 0; we
obtained |

$F=0)= 5 o - (50)
A&

where we have made the approximation in normalizing h(p.z.¢) that since it rapidly goes to

zero within the barrier material. we can take 5 as equal to infinity. : &

5.4 Results and Discussions

The absorption coefficient of a GaAs-Al;sGapsAs superlattice. with a well and
barrier thickness of 85 and 80 . respectively, is plotted in Figure 12. The results are given
for light being polarized parallel to the superlattice layers. The solid and dotted-dashed
lines are the theoretical and experimemi.ll115 values, respectively. As in Figure 10. the
arrows indicate the quantized, I-point. valence band-conduction band transitions which
produce the fine structure on the theoretical curvé. Since the experimental data have
arbitrary units, the data are multiplied by a constant factor such that the two second
electron-heavy hole peaks. E, (e-hh) coincide. The theoretical curve is calculated using K=
0 (h and hh masses of approximately 0.091 and 0.34, respectively. The values of y which
are used to fit the five main peaks are = 1,1.3.3. and 9 meV. respectively. while the

calculated binding energies E, are = 10.10.11.11 and 14 meV. respectively. As can be seen
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from the figure, our peak positions agree reasonably well with the experimental data, the
. only discrepancy coming from the Ej(e-/h) peak. The error could result from the use of
isotropic masses. Since an anisétropic mass would change both the binding energy and the
continuum position, it is difficult to ascertain qualitatively the overall effect. The sharp rise
in the experimental curve for energies greahter than =-1.75 eV is due to an experimental

116

artifact. Overall. this figure demonstrates the flexibility of our dielectric constant

model to incorporate exciton effects and shows the accuracy of our interface connection rule
and exciton binding energy models.

104 for the

In Figures 13a-c we present some theoretical and experimental values
index of refraction of a GaAs-Al,;Gag;As superlattice at 300 K for both parallel and
perpendicular polarizations. The superlattice has a well thickness Lz of 70 A and a barrier
thickness Lg of 75 A. In Figure 13a we compare the index of refraction results of our
previous modgl. i.e., the mddel of Chapter 4, for parallel and perpendicular polarizations.
dashed and dotted-dashed iines. respectively, with those of our current model. i.e..:the
model of this chapter, without the inclusion of excito.ns. also for parallel and perpendiculér
polarizations,.solid and dotted lines. respectively. To account for the neglect of exciton§ at
the zone edges and also the neglect of non-band-edge transitions in our model (see Section
2.3), we a&ded the same constant value to each of the theoretical curves so that for parallel
polarization at Tiw = 1.416 eV. the results of our complete inodel given in Figure 13c agree
with the experimental data. Note lhat this is in contrast with our normalization scheme
discussed in the previous chapter in which we multiplied by a constant factor (see Section
4.4).

As discussed in Section 5.2, in our previous model we used k = 0 [h and hh masses

104 of the

of 0.082 and 0.51. respectively. while we fit the n=1 photoluminescence peaks
GaAs-Aly 3Gag 2As superlattice of Figure 13 using k = 0 [h and hh masses of 0.23 and 0.50.

respectively. These masses yield exciton binding energies of approximately 12 meV and 17

meV, respectively. We noted in Section 5.2 that Mann et al.lo8 found (h and hh masses of
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Index of refraction of a GaAs-Al, ;Ga, ,As supéi'lattice.
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In (a) the dashed and
dotted-dashed lines are the results of our previous model (no excitons) for
parallel and perpendicular polarizations, respectively, while the solid and dot-
ted lines are the results of our current model (no excitons) for parallel and
perpendicular polarizations, respectively. In (b) and (c) the dashed and
dotted-dashed lines are the experimental results for parallel and perpendicular
polarizations, respectively. while the solid and dotted lines are the results of
our current model for parallel and perpendicular polarizations, respectively.
In (b) these lines include the continuum exciton contribution and in (¢) they
include both the continuum and bound exciton contributions. .
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approximately 0.20 and 1.0. respectively. for similar superlattice structures. Hence. we
have experimental support for our empirical [h mass: however, we cannot account for the
discrepancy in the hh masses. Nevertheless. in.spite of this difference. our (h and hh exciton

binding energies agree very well with those of Mann et 31.108

Note that we used smaller
masses 10 fit the experimental absorption peaks in the previous figure. Hence, band mixing
effects vary from one structure to another as a result of the different energy separations
between the quantized valence bands.

In Figuré 13a the peaks on the parallel polarization curves correspond to the
quantized e-hh(1) and e-lh(1) transitions. while as in Figure 9 for perpendicular
polarization. only the e-lh(1) is present. Because the hh masses are the same for the two
models in this figure. the energy positions of the hh peaks are equiAvalent. as opposed 1o the A
' th siiuation. where due.to differing (h masses the peaks are separaied. with the peak haVi’x:;g

the heavier (h mass occurring for smaller energies. The most important point to note from
this figure is the large difference in the bibref ringence between the two modéls w.hich mainly
arises from the difference in [h masses. while the different handling of the polarizations. ‘as
discussed in I.Sections 4.3.2 and 5.2. has a noticeable but smaller effect. Because tixe
“quantized hh transitions do not contribute t§ perpendicular polarization. a large difference
in the density of states between the hh and (h bands. i.e.. 2 small [h mass, is reflected by a
large birefringence. However, by terminating the Superlattice polarization above a certain
energy. one allows the hh band to contribute to perpendicular polarization. thus reducing
the birefringence. This polarization change also reduces the magnitude of the hh matrix
elements. as can be seen from Egs. (31) and (32) and noting that for the hh band. p2 ~ py
and p? = 0. This phenomenon accounts for our previous mode! having a larger parallel

contribution in comparison with our current model.
In Figure 13Ab we compare the results of our current model. including onl? the

104

continuum eXciton contribution. with the experimental data. Again. for the current

model. parallel and perpendicular polarizations correspond to the solid and dotted lines,
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respectively. and for the data, parallel and perpendicular polarizations correspond to the
dashed and dotted-dashed lines, respectively. The experimental data aré only available for
the energy range presented in this figure. Note that in comparison with the prévious figure,
the continuum exciton contribution increases the calculated birefringence and raises the
overall strength of the index of refraction because of the Sommerfeld factor given in Eq.
(44a). Howevér. as can be seen from Figure 13c. the sharp rises in the experimental data
correspond to bound exciton peaks. The cﬁrve notation in Figure 13c¢ is analogous to that in
Figure 13b, and in Figure 13¢ we have also included the béund excito'n contribution in the
.model. By comparing Figures 13b and 13c, one sees that the bound peaks rise more quickly

- and havg a larger magnitude than the continuum peaks because exciton effects are stronger

for the bound case. The two figures aiso show that the bound exciton contribution increases

the birefringence and for parallel polarization. fér example. causes the appeé.rance of four

sets éf peaks instead of two. i.e.. bound and continuum peaks for e-hh(1) and e-{h(1).

Most ixﬁportantly. Figure 13c gives support to thé validity of the new index of
refraction model pi'esen_ted in this chapter by the very good agreement between the
_ ,the'oretical- and experimental cufves. The only adjustabieparafnet.efs in the model are the

hh and [h masses. which we fit to obtain the correct energy for the n=1 excitoﬁ peaks. and -
| the Lorentian broadening parameter y. which was chosen to obtain good agreement between
the two parallel polarization curves while being in line with the experimental estimates. To
fit the data we uéed y =35 méV. As stated pre_viously.’the‘ (h mass and the (h and hh
binding energies are in excellent agreement with the experi-mentaljvalues of Mann et al..lo8
\yhile the value for y is véry close to the suggésted experimental ;alue of Chemla et al.” of
approximately 3 meV. Hence. our model also gives good results with no adjustable -
parameters.

Thgre are a <-:oup1e of other interesting features to gather from Figure 13c. The
sharp decrease in the exciton peaks is the result of the Kramers-Kronig transformation of

the quasi~-2-D. exciton, absorptioh peaks which resemble broadened. energy-delta functions.
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~ Experimentally. this effect might be difficult 1o detect due to strong absorption around the
peaks causing the loss of ‘signal in this energy range. The slight dip in the theoretical
parallel polarization curve for iw ~ 1.485 eV is due to the contribution of the bound (h
exciton peak, which is decreésing in this energy range. Again, as a result of absorption

effects, this dip is probably not experimentally resolvable. ‘The final point is that comparing

100

Figures 10 and 13 we see that the experimental data of Suzuki and Okamoto do not

exhibit bound exciton peaks. We cannot account for this disparity.

In conclusion. we have modified the superlattice model of the previous chapter. In
addition to the inclusion of both the bound and continuum exciton contributions for T
region transitions, we incorporated an empirical, band-mixing scheme‘ and calculated the
absorption coefficient and indéx of refrat:tibn .using a hybrid approach which combines
superlattice and isot'ropic-alloyl. electronic band structure modeis. Overall, our calculations
are in very good agreement with the experimental a(w) and T{w) data and show: the
accuracy of our new model of the optical properties of superlattices and -MQWs. Because
- our model includes band mixing empirically, we are not able to predict the fine structure in
the absorption coefficient. as was done by Chang ana Shulman 2°. However, overall:our
calculated a{w) curves agree well with their results and. unlike their approach. which is

limited to smal'! regions of the Brillouin zone. we were able to calculate accurately the

~ index of refraction.

o
YN
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6. CONCLUSIONS

~ The goal of this .thesis has been to obtain a- Qorkihg model for the optical

parameters of long-period GaAs~Al,Ga;—4As superlattices and MQWSs. Our motivation has
been the recent development of numerous heterostructure devices whose optimization
necessitates a knowledge of the refractive index, which cannot be calculated using existing
superlattice models. Prior to calchlating the properties of superlattices. it was necessary 1o
develop optical models for both binary and ternary III-V compounds. which are used as
inputs to the superlattice model. This required a bulk model which is simple but accurate,
and flexible so that it can eésily be extended 1o heterostrﬁctures. To accomplish this we
iaave introduced a bulk band structure model based on a hybrid apprc;ach which combines
the K - P and nonlocal pseudopotential techniques and partitions the bulk Brillouin zones
, info the I', X, and L regions. The optical properties were calculated as the sum of the
contributions of each region. |

Our resulté for the optical ﬁropertios of bulk HI-V compounds are consistent witAh :
other.one-electron band structure techniques. Because the part]ition method is based on the
K- P approach. our model has several advantages over the other techniques. They are
compuia'tional speed flexibility, and ease of interp;etation_. ie.. our médel engende}s a
‘physical understanding of the parameters which influence the dielectric constant. For;
example, we have found that except for optical absorption in the vicinity of the I gap. most
of the dptical properties of bulk materials. especially t.he index of refraction. are essentially
determined by the electronic structure around the L point, rather than at the center of the
Brillouin zone.

For térnary alloys boeth disorder-assiged and phonon-assisted indirect transitions
have been incorporated into ihe model. The disorder of the alloy has been accounted for by
using a straightforward. perturbative, CPA approach which only includes the effects of

compositional disorder. The results for the disorder-induced. I' point. energy-gap bowings
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are shown 10 be nearly comparable to those calculated using a more sophisticated CPA:
approach. In general the .calculated absorption coefficients of Al,Ga;_,As are in good
agreement with the experimental data and compare well with existing alloy absorption
models. |

With this foundation We have formed our superlattice model based on the
envelope—funciion approximation. In addition, the model incorporates band mixing
empirically and I-region, exciton effects. In general the results of our model for the
~ absorption coeﬁ;xcient and index of refraction of GaAs-Al,Ga,_,As superlattices are in good
agreement with the experimental data. Band-mixing effects. which produce changes in the
hh and {h masses, are shown to have an important effect on the values of the optical
parameters. Furtﬁerméré. superstructure effects are not >present for all énergies.»but_
rapidly decrease for energies larger than the height of the potential barriers. The anisotropy ~’
and strﬁcture dependence of the refractive index are determined to result mainly from the®

I region because of its small conduction band mass. while the outer regions (X and L) of

. &,
the Brillouin zone provide contributions which are similar to. the corresponding alloy*

values. In comparison \;/ith the index ofArefraction of the corresponding Al,Ga,_,As alloy,zf?
characterized by the same average mole fraction X of Al our resuits indicate that theA
superlattice index of refraction values atlain maxima at the various, qﬁantized. exciton-
enk}anced.- transition energ'ies. Conseguently, the waveguiding and reflectance properties of
optoelectronic devices which incorﬁorate superlattices can be improved by tailoring the
structure to thé chosen optical frequency. In sum, we have accomplished' é)ur task of
obtaining an accurate model of Lhé refractive index of GaAs-Al,Ga,.,As superlattices

which can be used to improve existing optoelectronic devices.
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* APPENDIX. GALLIUM ARSENIDE & - p PARAMETERS AT 4K

I’ Region Parameters

~

B o

e

X Region Parameters
.
El
E2

)

Value

-28.0eV-A2
-22.0eV-A2
111.5eV-A
0.341 eV
1.52 eV

Value

0.30 eV—-A42

-11.0eV=-42
6.2 eV~A2

-0.25 ev—-42
0.0 eV-3A2

- 243 eV-4A2

4.2 eV—-A2
0.125 eV
14.85 eV
527 eV
4.93 eV
-0.06 eV
-3.99 eV

0.104 4!

Value

.17.3eV—-4§2

13.8 eV—=A2

-9.0eV-32

3.5 eV—A2

0.0 eV—-A2

13.5 eV—=42
0.22 eV
8.67 eV
6.69 eV
3.02eV
-0.11 eV
-5.55eV
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