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Abstract

The impulsive noise associated with helicopter flight due to Blade-Vortex Inter-

action, sometimes called blade slap is analyzed especially for the case of a close

encounter of the blade-tip vortex with a following blade. Three parts of the phe-

nomena are considered: the tip-vortex structure generated by the rotating blade,

the unsteady pressure produced on the following blade during the interaction, and

the acoustic radiation due to the unsteady pressure field.

To simplify the problem, we confine our analysis to the situation where the

vortex is aligned parallel to the blade span in which case the maximum acoustic

pressure results. The 2-dimensional incompressible flow is assumed with uniform

motion of the blade. The tip-vortex is modelled so that the circulation near the

tip is rolled into a concentrated vortex and the extreme case of the interaction

is studied when the following blade cuts through the center of this vortex core,

which is turbulent and viscous. It is further assumed that, during the interaction,

there is no distortion of the vortex path or of the vortex itself ; in other words

the interaction occurs only through the boundary condition on the blade giving

an unsteady pressure on the blade surface, the usual assumption for gust analysis.

Acoustic radiation due to the interaction is analyzed in space-fixed coordinates

and in the time domain with the unsteady pressure on the blade surface as the



source of chordwise compact, but spanwise non-compact radiation. Maximum

acoustic pressure is related to the vortex core size and Reynolds number which

are in turn functions of the blade-tip aerodynamic parameters.

Finally noise reduction and performance are considered. Some reduction in

noise may be achieved by modification of the blade-tip shape but at the expense

of reduced aerodynamic efficiency.
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Chapter 1

Introduction

The tip vortex for many years has been the subject of research and is important

to the generation of the lift and drag of the wing and the downwash at the tail

of an aircraft. In addition research on the tip vortex has been stimulated by

the concern that the tip vortex of a large aircraft might be hazardous to smaller

following aircraft.

Recently, interest has been increased in the tip vortex produced by a rotating

blade not onl because its path and core size are related to the prediction of the

rotor blade performance but also because the vortex encounters the following blade

or the tail blade periodically, and causes the one of the primary sources of vibration

and impulsive noise, sometimes called " blade slap", in certain flight conditions

for helicopters.

During the interaction with the blade, there will be fluctuation of the flow

around the blade and generation of acoustic waves radiating to the far field. It is

also expected that the strength and the structure of the vortex become important

factors during the interaction especially for the close interaction with the blade.

The objective of this thesis is the calculation of the unsteady loads and the



acoustic field, arising from the interaction, with the rotor vortex described in

terms of tip balde aerodynamic parameters, which are directly related to the per-

formacne, blade tip design and noise reduction.

To analyse this blade vortex interaction, three parts of the phenomena must be

considered; the tip vortex generated by the blade, the unsteady pressure produced

on the following blade during the interaction, and the acoustic radiation due to

this unsteady pressure field. The vortex is concentrated in a single curved filament

whose core is viscous and turbulent, and during the interaction with the following

blade, the vortex and vortex path are distorted and sometimes a secondary vortex

is generated at the surface of the blade. Meanwhile the pressure on the surface

becomes unsteady due to the change of local instantaneous angle of attack, the

generation of the trailing vortices and the acceleration of the flow. This disturbed

flow and fluctuating pressure on the surface generate the source of the acoustic

wave propagating to the far field.

Three extreme case of blade vortex interaction can be considered as shown in

Figure 1 ; first, the vortex filament is parallel to the blade span, secondly ; the

vortex is perpendicular to the span such that the filament direction is parallel to

the blade chord ; and finally, the filament direction is perpendicular to both the

blade chord and span, as happens during a main rotor vortex and tail rotor blade

interaction. Only the first case of parallel interaction is analyzed in this thesis.

In the next section, a general background is presented briefly for the flow

interaction, aeroacoustics, tip vortex and helicopter noise. Previous work on the

blade vortex interaction are reviewed in the following section. The problem and

the approach of this thesis are described in the final section in this Chapter.



In Chapter 2, from the general aeroacoustic equation for a moving body, linear

parts of the equation ( i.e. monopole and dipole sources) are reformulated including

the effect of a moving observer using the kinematic relation between time and space

variables.

In Chapter 3, a detailed analysis is given for the rotor tip vortex, the unsteady

loads during the interaction and the acoustic pressure due to the unsteady load.

The noise-performance trade off is also discussed.

In the subsequent chapter, some results are presented and discussed for the

vortex velocity, profile, the unsteady lift and acoustic signal, and the effect of the

• vortex structure and observer position. Noise reduction for various tip circulation

shapes is included.

Conclusions arising from the results are summarized in Chapter 5.

Finally, several suggestions for further research on the blade vortex interac-

tion are made particularly regarding the unsteady compressiblity, noncompact-

ness, nonlinearity and vortex generation.



1.1 Background

1.1.1 Flow Body Interaction

The vortex moving toward the blade can be considered as a convecting disturbance

to a body. Generally, the convecting disturbances in the flow cause fluctuations

of the flow around the body and at the body surface during the interaction, and

this unsteady fluctuating flow causes unsteady forces on the body surface and the

generation of acoustic waves propagating to the far field.

This phenomena occurs in a variety of situations in flight vehicles : ; aircraft in

an atmosheric gust, manuvering missile configurations and canard wing aircraft,

fans and compressors in a turbo engine or counter rotating propellers, as well as

in helicopters flight.

The convecting disturbance may be turbulence in the atmosphere or wind

tunnel, turbulence in the jet or wake, oscillatory flow in the mixing layer, a single

concentrated vortex such as a wing tip vortex or starting vortex, or an incident

acoustics wave or blast wave. The main flow may be uniform or nonuniform.

And the body may be an airfoil, plate, edge, corner or plane normal to the flow

direction.

As summarized by Rockwell'*', during the interaction, several kinds of complex

phenomena can be expected , which are difficult to analyze : secondary vortices or

instability waves may be generated, laminar - turbulent transition may be triggered

and the incident acoustic wave may amplify these fluctuations.

However, for the case of a small disturbance due to the interaction, the velocity

field may be split into the vorticity field representing the oncoming disturbance



and the potential field representing the disturbed field''1''. The potential field is

directly related to the pressure field on the body surface and to the acoustic wave

at the far field. The vorticity field may be distorted or not during the interaction

depending on the flow and body conditions. Whether distorted or not, the two

fields are coupled at the body surface to satisfy the impermeable conditon of the

body surface, which condition makes the streamlines of the flow distorted'*"' as

shown in Figured. The above mentioned concept has been used in conventional

gust theory'"' and is analogous to the rapid distortion theory of turbulence'"'.

1.1.2 Aeroacoustics

For the acoustic field associated with the flow-body interaction, the above the-

ory can be used'**' and extended for strong interactions. Alternatively Lighthill's

acoustic analogy approach' ' can be used ; this was originally developed to de-

scribe the acoustics generated by a fluctuating fluid flow occupying a limited part

of a very large volume of fluid of which the remainder is at rest. The problem of

jet noise'12' represented by a quadrupole source in uniform acoustic medium at

rest was treated in this way by Lighthill.

Curle'l^' extended the analogy for the presence of the body fixed in the flow or

vibrating about a mean surface by using Kirchhoff's formula. He showed that the

body effect, including the reflexion and diffraction at the surface, can be incorpo-

rated into dipole sources and these dipole sources become increasingly important

for flows of low Mach Number.

Ffowcs-Williams and Hawkings' ' generalized the theory for the moving body

in an acoustic medium at rest represented by moving monopole sources in addition



to the dipole and quadrupole sources. For the monopole and dipole sources, his

theory is the generalization of Lowson's acoustic theory'• ' for moving acoustic

singularities.

For the problem of body fixed in the uniform flow, a Lorentz-type of

transformation'*"' can be used to obtain the acoustic field as shown by

Blokhintsev'1'1. For the varying acoustic medium, as for a shear flow, the acoustic

analogy was reformulated by Phillips'^' and Lilley'^' to account for the source

convection and the sound refraction.

1.1.3 Tip Vortex

The tip vortex, as the result of previous research, may be described as follows :

Streamwise vorticity sheds from the trailing edge of the wing to form a continuous

vortex sheet which rolls up into a concentrated tip vortex and this tip vortex

remains for long distances behind the wing until it decays and finally becomes

unstable as shown in Figure 2. The concentrated vortex has a viscous region near

the center of the core, a turbulent region for most of the core and potential region

outside of the core.

The assumption that the vortex sheet remains flat has been generally accepted

in the calculation of the lift of high aspect ratio wing, i.e, the well known lifting

line theory of Prandtl. However, in the calculation of the downwash at the tail

of an aircraft'2**', the assumption is too restricted especially for low aspect ratio

aircraft because the sheet rolls up quickly within a chord length from the trailing

edge. So researchers has been interested in the rate of roll up I22'1'25' and the

core dimensions of the vortex. It is known that the vortex sheet rolls up quickly



for a low aspect ratio wing at large angle of attack'34', and that the circulation

of the vortex increases to the maximum circulation at the root of the wing if the

vorticity shedding from the wing is assumed completely roll up.

Prandtl'^Ol calculated the vortex core size with the assumption of solid rotation

in the core and potential flow outside of the core, using that the relation between

rotational kinetic energy in the wake and the induced drag. Based on the calcula-

tion, the core size is 0.086 of a span length'^"' for the elliptic loading distribution.

Spreiter and Sacks'^' used the same assumption and caculated more carefully

and showed that the size is around 0.078 of the span length. Due to the simple

model of the uniform vorticity core, Donaldson'^'! pointed out that the core size

is overestimated and the peak velocity is underestimated. And he showed that

the Betz theory'^' predicts the overall velocity profile of the vortex reasonably

well. Betz developed the theory with the assumptions of conservation of vorticity,

angular momentum and second moment of inertia in the circulation between the

wing and the vortex. However due to the inviscid theory of Betz, the velocity at

the center becomes singular for elliptic loading and there is an ambiguity in the

core size in general.

With the advent of large aircraft, the research'^' on a more detailed vortex core

structure and the" decay of the vortex became important and Squire'^' obtained

a solution for the turbulent viscous vortex with the assumption of constant eddy

viscosity by using the Lamb's solution'^"' for the laminar core. He showed that

the turbulent core decays faster than the laminar vortex. For the structure of the

vortex, Hoffman and Joubert^*' obtained the log law profile of the circulation

in the inner region of the vortex by applying the mixing length theory to the



vortex. The profile was also confirmed with experiment data. Saffman'3^1'3'*', and

Govindarju and Saffman'33' tried to explain the general properties of the turbulent

vortex core without a specific turbulence model ; they characterized the vortex

in terms of possible overshoot in circulation profile, rate of decay of maximum

velocity and slow decreasing function of Reynolds Number. They'33' also pointed

out that some data measured for the maximum circulation of the vortex is only

half of the circulation at the root of the wing. Detailed properties of the turbulent

vortex were shown by Iversen' ^L He calculated the angular momentum equation

numerically with a variable eddy viscosity along the radial distance and showed

the constant behavior of the core and no overshoot at large Reynolds Number.

Philips'3"! estimated the Reynolds stress based on the velocity profile obtained by

matching the log law of Hoffman and Joubert near the peak velocity and inviscid

profile at outside of the core obtained by Moore and Saffman^"' for the initial

stage of roll up.

In mostof the above analysis, the axial velocity is not considered, however, it is

believed that it becomes important in instability of the vortex and in calculation

of the drag. Bachelor!37' calculated the drag due to the axial velocity defect as

well as due to the rotational vortex for the laminar case with a solid rotation core

modeh Recently, Roberts' ' showed that the axial velocity has an influence on

the initial persistence of the concentrated vortex and on its subsequent decay. He

explained that this is due to the balance of the turbulent diffusion by a radial

inflow caused by the acceleration of the flow in the core. He also obtained the

velocity profile by solving the turbulent diffusion equation in closed form.



1.1.4 Helicopter Noise

Helicopter noise, together with propeller noise, has been recognized as important

because of the environment problem during flight close to residential areas or in

cities and because of the interior noise in civil helicopters. In addition, helicopter

noise is significant in the eariler detection during day and night operations of

military helicopters. So the understanding of the noise source mechanism and the

determination of parameters which can reduce noise and influence on the blade

design within the restriction of good performance are of current urgent interest.

There are two kinds of helicopter noise in general ; discrete noise and broad

band noise in the frequency spectrum as summarized by Lowson'4"' and later

by George'^]. The discrete noise, having fundamental frequencies according to

the blade passage frequency and its harmonics as shown in Figure 4, is due to

the rotational steady loads'44', azimuthly varying loads'4'', volume displacement

of air!45' by the high speed rotaing blade'48'1'97' and blade vortex interactions.

Especially, the noise due to the thickness, and the blade vortex interaction, called

the impulsive noise'9'', have a large number of harmonics and the signals are

observed impulsively in time as shown in Figure 5. The thickness noise is mainly

due to the rotation of the blade causing the propagation of a crescent shaped

wave or local shock from the rotating blade tip'^' to the far field for a high speed

rotor. The blade-vortex interaction noise is mainly due to the rapid load variation

during the interaction. The broad band noise, observed between the harmonics

in discrete noise and at the high frequency band above around 500 Hz, is due

to the turbulence in the boundary layers, the vortex shedding at the tip and the

inflow of the atmospheric turbulence causing the high frequency trailing noise' '



and low frequecy interaction noise'"'. Both the discrete and broad band noise

are important. However, considering the threshold of hearing and atmospheric

attenuation for far distances'54', the band width in the range 250 to 500 Hz is the

most annoying.
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1.2 Review of Previous Work

This blade vortex interaction phenomena was first studied by Leverton and

Taylor' 1 experimentally using a rotating blade and two opposed airjets to simu-

late the tangential velocity profile of the vortex. Using the theory of nonuniform

flow past a thin airfoil formulated by Von Karman and Sears'58', Sears''5' treated

the line vortex as a gust where the vortex is forced to move parallel to the blade

span with a displacement of half of the chord height ; Sears calculated the acoustic

signal by using a dipole source to represent the unsteady force on the surface.

The restriction to the forced vortex was relaxed by Parthasarathy and

Karamcheti''"' to analyze the unsteady field due to the interaction between the

blade and a free vortex, whose path is disturbed by the blade during the inter-

action from the initial height of half chord, and they calculated the quadrupole

effect corresponding to the acoustic sources in the flow field.

Widnall' ' formulated an acoustic model for an oblique forced vortex using the

quasi 2-D unsteady aerodynamics for an oblique sinusoidal gust in incompressible

and subsonic compressible flow obtained by Johnson' ' and Filatos '™. The

Fourier transform of the velocity of the vortex and the pressure field was used

to analyze the acoustic farfield and the viscous core in the potential vortex was

treated by using an effective distance between the center of the vortex and the

blade. Further, the Betz inviscid vortex model'2 ' was used'80' to relate the vortex

core to the tip loading shape. Filatos' ' also studies the blade loads and the noise

due to interactions with an array of equally spaced oblique vortices.

For the high speed rotor, noncompactness becomes important especially for

11



high frequency tones, where the acoustic wave length becomes smaller than the

characteristic body length i.e. chord length. For this reason, high frequency ap-

proximate unsteady subsonic theories for the sinusoidal gust were developed by

Adamczyk''*' and Amiet'"9' separating the problems at the leading edge and the

trailing edge as proposed by Landahl'"^'. The theories were accurate for gust

wave length A < xl^a times chord length, when compared to the exact solution

obtained by Graham'""' using the similarity rules ; these were extended by Mar-

tinez and Widnall'81'''8^', including the acoustic field, for subsonic trace speed

MIT — MOO/sin A < 1> where A is the oblique angle of the vortex. Kerschen'84' ex-

tended the acoustic theory for Mtr > 1 and studied the steady loading effect'83' to

the unsteady fields by using the rapid distortion theory generalized by Hunt'9' and

Goldstein' '. To study the vortex tail rotor interaction, Amiet'85' developed the

unsteady response function for a delta function gust, which was done by Meyer'"4'

for incompressible flow, and explained the effect of noncomp act ness on the acoustic

field by using the dipole source.

With the recent development of the numerical schemes, a number of researchers

have studied the nonlinear effect due to the the vortex induced shock at transonic

speeds'88'1'89'''90' and due to the distortion of the vorticity field at low Reynodls

Number'91'. Others'9 ' have tried to predict the noise of a full scale rotating blade

using the Ffowcs-Williams and Hawkings equation'14' with the measured unsteady

aerodynamic pressure on the surface' '. Several full scale measurements of the

noise, measured at the helicopter'9^' or other aircraft moving with the same speed

of the helicopter' ' or a fixed location of the observer^95!''96', have been reported.

Small scale rotating blade experiments' ' from the acoustic wind tunnel were also

12



conducted and the signals were compared with those in full scale measurement.

13



1.3 Statement of the Problem

Prediction of the unsteady pressure and noise generated by the blade vortex in-

teraction in full scale is beyond from accurate theoretical method'92'. Even ex-

periments using small scale models are difficult due to the lack of correct scaling

parameters. This is because the phenomena depend on the flight operating con-

ditions and blade geometry which in turn depend on the vortex strength and

structure, its position before the interaction, and its path during the interaction

as well as the Mach Number and Reynolds Number of the rotating blade. In con-

trast to the fixed wing, research on the rotor vortex structure'40' is less complete

and quantitative data'4*'''4^1'4^' is very limited.

In previous anaysis, the above mentioned works used a point vortex or an

inviscid vortex which has a singularity at the center of the vortex core. Since the

vortex strength and structure become important for the case of a close encounter

with the following blade'8"' in certain flight condition as shown in Figure 7, a

more realistic vortex should be used.

It is attempted here to study the effect of the turbulent viscous vortex core on

the unsteady loading and the acoustic pressure field. The vortex is described in

terms of the Reynolds Number, F/i> and the turbulent vortex size , r0, where F is

the constant circulation out side of.the vortex core. To complete this phenomena,

the vortex strength and structure are determined from the blade tip aerodynamic

parameters.

To simplify the problem, the situation is considered where the vortex filament

generated from the rotating tip is aligned parallel to the following advancing blade

14



as shown in Figure 7 ; in that situation the maximum acoustic pressure due to

the interaction is observed '^' because of the large interaction area and in-phase

radiation'*^]. Even with the assumption of 2-D aerodynamics, the flow is too

complicated to analyze completely as indicated in the experiment done by Ziada

and Rockwell^' and recently by Yu'^^'aand Mandella, Moon and Bershader'*^'

; thus it is assumed that during the interaction the vortex path and the vorticity

field are not distorted when the vortex is cut by the following blade. The blade

is assumed thin compared to the turbulent vortex size and thick enough to avoid

separation at the leading edge. This is the linear assumption used in conventional

gust theory and rapid distortion theory of turbulence. The flow is assumed in-

compressible for the interaction in the middle of the span as shown in Figure 7.

Even though compressible effects become important for the high frequency region,

there is no significant effect of the compressibility as shown by Graham'66', for the

disturbance wave length A greater than one and half of the chord length at Mach

Number around 0.4.

Acoustic pressure is calculated in space fixed coordinates and reception time

domain, whereas the source is described in the body fixed coordinate and emission

time domain. The source is assumed chordwisely compact for the above conditions

where the significant disturbance wave length is larger than the chord length at

moderate Mach Number around 0.4. (Consider that the observed acoustic wave

frequency containing most of the energy due to the blade vortex interaction is from

zero to 750 Hz' ' " ' ' where the most significant acoustic wave length is around

1m and that the most annoying frequency is around 250 to 500 Hz as shown in

Figure 6.) However, the source is assumed spanwisely finite i.e., noncompact,
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where the retarded time (inferences exist between elements along the span length';

Thus the noncompact source will influence effects the signal for an observer either

fixed or moving with the same velocity of the source.

Based on the analysis discussed above, the trade-off between noise and perfor-

mance is determined by varying the shape of the blade tip circulation.
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Chapter 2

Aeroacoustic Formulation

The acoustic analogy approach to determining the sound generation due to the

fluid motion in an atmosphere at rest was introduced by Lighthill. The induced

acoustic field is determined from the prescribed nonlinear flow as a quadrupole

source in the wave equation. This approach was extended by Curie to include

the body surface effect. For a surface in arbitrary motion, Ffowcs Williams and

Hawkings'^' derived the equation by using generalized functions under the as-

sumption of an impermeable surface. The solution shows the Doppler factor due

to the surface motion derived in the time domain. The Doppler shift in frequency

due to the source motion is not shown explicitly. However the time and space

relation used in the solution implicitly contains the Doppler shift. Moreover, the

Doppler shift due to the observer motion, which was not discussed in the above

approaches, can be derived from the time and space relation with the source and

observer in arbitrary motion. In this chapter, the Ffowcs-Williams and Hawkings

aeroacoustic equation will be discussed with the more general surface conditions.

The effect of both the source and observer motion will be discussed more specif-

ically with alternative expressions for the thickness term and the dipole term.
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These are additional to the quadrupole term and are due to the surface motion .

2.1 General procedure for the aeroacoustic
equation and solution

The general compressible and viscous flow motion can be expressed in the Navier-

Stokes equation as follows.

Continuity equation

Momentum equation

d t d Xi d X:

where

p density of the fluid

u,- velocity of the fluid in t direction

p pressure of the fluid

m mass change rate in the fluid element

/ body force in the fluid element

8ij Kronecker delta (6,7 = 0, t ^ j 5,7 = 1,» = j)

T,-,- viscous stress tensor r,-y = u, (I2*- + -£*- — \6
f ' \ OX j O2 i O

18
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The surface in motion should satisfy the following equation

where the surface is defined by the equation

/(**, * ) = < >

and v,- is the velocity of the surface.

The above continuity and momentum equations are valid in the fluid, that is,

outside of the surface /(z,-,£) = 0. Thus, if there is a body, the equations outside

of the body surface can be expressed by using the Heaviside function defined as

H(f] = 0 /<0 (2.5)

= 1 />0 (2.6)

where /(z,-, t) > 0 is for the outside of the surface and /(x,-, t) < 0 is for the inside

of the surface.

The interesting quantity here is the perturbed density (p — p0)H(f) where p0

is the density in the medium. The continuity equation (2.1) becomes as written

below for the region outside of the surface, after multiplying equation (2.1) by

(2.7)
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where 6(f) is the delta function having zero value except at / = 0, that is, at the

surface.

With the same procedure, the momentum equation (2.2) becomes

d d

dt dxj
at

f pfiH (2.8)

The above equations can be obtained by using the properties of the Heaviside

function described in Appendix A.I. and by using the equation of the surface

motion (2.3).

From the two equations (2.7) and (2.8), the aeroacoustic equation can be ob-

tained by the following procedures :

Take the operator Jj for the continuity equation (2.7) and the divergence j^-

for the momentum equation (2.8). Add the two equations and substract a2
0-j^s in

both sides of the combined equation. Then the aeroacoustic wave equation is

where

TH = puiu; + {p - a2
0(p - Po)}Si}- - TH (2.10)
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- Vi)} (2.11)

Qi = poVi + p(vi-v f) (2.12)

Tij is the Lighthill quadrupole strength and F^ is the dipole strength and Qi}- is

the monopole strength.

The above inhomogeneous wave equation is nonlinear and there is a term in-

cluding the dependent variable (p - p0] in the right hand side. However if the

right hand side is considered as the source term prescribed beforehand , the wave

equation behaves like a linear inhomogeneous equation with the sources in motion.

The solution of the equation (2.9) can then be easily obtained as following :

t JT K ayioyj

L L ̂  (w J£^*''> - *(/>>/<(*.'))
L L iLTr (w$i*<*>

(2.13)

where R is the relative distance between the source and the observer

. R =| x,- - y,-1 (2.14)

and g is the function describing the space and time relation as below

T-t + — (2.15)
«rt
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The coordinate a;,-, t is the position and time of the observer and the coordinate

y,-, T is the position and time of the source in the space fixed coordinate as shown

in Figure 8, where the observer and source may be in motion or fixed. The

coordinates have the following relationship :

(2'16>

By using the above relation and by taking the partial integration over space y,-

for quadrupole and dipole terms and time T, the solution (2.13) becomes

^-_jy /rj(H(f)Tii(yi,r})6(g)dyidr

t L L i (s(f)WiFii(yit r} ~ H(f]pfi(yi>

(2.18)

In the solution , the sources are defined in the space fixed coordinate y,-. How-

ever it is useful to specify the sources in the body fixed coordinate 77,- moving with

the velocity u as shown in Figure 8 such as

y,- = rn + JT Vi(rn, r'}dr' (2.19)

The volume changes of fluid element in the two coordinate system gives
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dyi = diji (2.20)

The volume integration for the dipole term including F,/ and the monopole

term including Q,- in the above equation can be changed into a surface integration

and the time integration over T in the solution can be carried out by using the

properties of the generalized function described in Appendix A.2.

From equation (2.15) , (2.14) and (2.19), g has the following form for both the

source and observer in arbitrary motion

R
= T - t + — (2.21)

where

R = |x,--y.-|

= | x? + f ''^(xitt'}de - * - f Vi(T')dT' | (2.22)

v is the velocity of the body and v° is the velocity of the observer and x° is the

initial position of the observer.

Then

dr dr aa

(2.23)

where Mr is the source Mach component in the direction to the observer as shown

in Figure 8. The above relation depends on the source velocity v,- explicitly
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whereas the observer velocity v° is implicitly related in the relative distance |

z; — y* | between the source and the observer.

Thus, the final form of the solution (2.13) becomes as given below by using the

equations (A.6),(A.8),(2.20) and (2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

dx,

d

—— / '_! . drji
idxjJv? [4ira0R\ 1 - Mf |J re

/ F Pfi(r)i,re) ] ,
- I =—; i an,-
:,-yv, [47ra0J2| l-M r | J f f

3< /VF L45ra0J2| l - A f r | j r<
 l7'

\ -M r

/,-Q,-(»7,-,re)

dS

£. / W»-i«?«-.r«J ds
d t J s [ 4 i r a 0 R \ l - M r \ \ r t

where /,- is the outward normal direction to the surface S defined as

df/dr,i (2.29)

Vp is the volume actually occupied by the fluid, 5 is the surface of the body and

the integrands are evaluated in the body fixed coordinate iji and at the emission

time re defined in (A.9) and (2.21).

The above expression for the acoustic solution is the general form including the

quadrupole term, T,-;- and the dipole term, F,y and the monopole term, sometimes

called thickness term, Q,-y and terms of mass change and body force. The surface is

not necessarily impermeable, that is, which normal velocity /,-w,- is not necessarily

the same as the normal velocity of the fluid /,-u,-. The body and the observer can
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be in arbitrary motion. However, this is restricted to a homogeneous medium at

rest.

For the case of the moving surface considered here, the monopole and dipole

terms dominate the quadrupole term at the relatively low Mach Number. The

source strength F,/ and Q,- in (2.11) and (2.12) can be simplified for the rigid surface

such that (u,- — v,-) = 0. In the following section, the alternative useful expressions

for the monopole and dipole terms for the rigid surface will be discussed in the

case of no mass change and no body force in the fluid. The kinematic relationship

between the time and space for both the source and observer in arbitrary motion

will be also discussed.

2.2 Kinematic Relationship between the Space
and Time

From equation (A.9) and (2.21), the time and space relation between t, re and R

becomes

(2.30)

where

R =| x? + /' «.(*,-, t')dt' - ft - j" v(f,it T')dr' | (2.31)

Then the relation between the time scales in emission time re and in reception

time t can be obtained from the following
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K a0 K a0

Thus

0re 1 - Ri/R • vf/a.

dt dt a0

*i»^ (2.32)v '

dt 1 - RijR • Vi/a0

= -1-Aff
l-M r

(2.33)

The relationship between the time scales of the equation (2.33) can be related

to the conventional Doppler shift in frequency as follows for the special cases that

the motions of the source and the observer is in the same straight line or the

velocities of the source and the observer is the same.

In that cases, 9f- is constant, so

<2'34>

where C\ is constant.

For a simple harmonic source, the source is described in the emission time

domain re as

h = heiu'T' (2.35)

where ue is the source frequency.

This source will be observed in the reception time domain t in the form below

26



P = [pe*"r'lr.=i-*/.. (2.36)

By using the equation (2.34), the pressure p will be

( \-M° . a

"•7=H^-|=p = pe V ' >-«' '-« •« / (2.37)

From the above equation, the observed frequency u0 becomes

1 -M°

which is the conventional Doppler shift in frequency.

The above relation in frequencies comes from the kinematic relation in time

and space (2.30). ( The relation can be also obtained from Figure 9 for the special

case of linear motion). It can be said that both the observer and source motion has

an effect in frequecy , but only the source motion has an effect on the amplitude

through the factor | 1 — MT \ in equation (2.23) and (2.24). In other words, the

observer in motion just collects the wave information already accumulated due to

the source in motion but differently from the stationary observer in frequency.

2.3 Alternative expressions for the monopole
and the dipole terms

2.3.1 Monopole term

The monopole term in equation (2.13) becomes as shown below by using (A.3)
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a

Hereafter, (p — p0), itself, represents the density fluctuation in the outside of

the surface.

Using equations (A.8) and (2.23) and taking the partial integration over the

time r as done in (2.18), equation (2.39) becomes

&_( r Po{i-H(f}}
dt*JvB [4ira2

0R\ 1 - M, |_
(2.40)

where VB is the volume occupied by the body, that is, the volume inside the

surface.

The above expression is useful especially for the case of compact source. In

that case, equation (2.40) becomes

which shows that the strength of the monopole is the same as the displaced air

mass p0VB having the same volume of the body.

From the original expression in (2.24) it is hard to describe the compact source

strength because the strength of the monopole in (2.24) is expressed in terms of
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the normal velocity of the surface having the positive value in the front of the body

and the negative value in the rear of the body for the closed surface. This situation

occurs also in describing the thickness effect in aerodynamics. The thickness effect

can be represented by the distribution of sources and sinks at the surface of the

body ; or it can be represented by a doublet distribution'7' 1 for which the direction

vector is opposite to the direction of the uniform flow for an axisymmeric body,

or a single doublet for which the strength is related to the area for a cylindrical

body and related to the volume for a sphere.

Unlike the stationary monopole source, which has no directional pattern for

a compact source, the moving monopole source has a directional pattern in the

direction of the source. This means that the source representing the effect of the

thickness in motion has the property of a dipole source whose direction is the same

as the direction of motion, as in the case of the aerodynamics explained above.

The equation (2.41) was used in the calculation of the acoustic pressure due

to the rotaing body in the paper by Wright and Lee'49' even though the equation

was derived in different way'^ '. It turned out that there is no difference between

the chordwise compact source and the noncompact source up to Mach Number^

0.7.

The more useful expression can be obtained by changing the time derivative in

t into Te having the same variable inside [ ] in equation (2.40) or (2.41) such as

w ^ dre d fdre d \ 1 PoVB ] \

Using the equation (2.33) for ^, the density in equation (2.42) can be calcu-
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lated in the emission time rt domain as

^ I-M; a (\-M°T a \ i PovB 1 \
*') = TTJ£*T (T^^ l«=jSi£*T] J

ln .(2'43)

The density in the observer time i domain can be transformed by using the

time and space relation of the equation (2.30). In the case of the nbncompact

source, the density can be also calculated from the equation (2.40) with the same

procedure used in the case of compact source.

2.3.2 Dipole term

The dipole term in the solution (2.13) is

4xa0R I 1 - MT

ds

For the moving body, it is convenient to change the space derivative in the above

equation to a time derivative. First, let's consider the compact source. Then the

equation becomes

where

(2.46)

Using the following relation for arbitrary function F(xi, re(z,-,£)) =
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(2.47)

where the subscript t in ( )< indicates that the variable t held constant, equation

(2.45) becomes

d •

From equation (2.30), f^-J in the above equation can be obtained as

**\dxij t R a 0 \ i - M , \

The equation (2.45) has two terms : the first term has the space differentiation

and the second term has the time differentiation. The first term becomes

F• 1 1 dR F F- d1 ' • • I 1 \jf I fr> Kf\\-— — \ l - M , \ (2.50)
d x i [ R \ l - M r \ \ r t R * d x i \ l - M r \ R dx,

' Fi

R2 ( R | 1 - Mr | V R R 'J \ \ l - M T

where

dR

d , „ ., .

f (2-51)
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The second term becomes

d F(xi,r(xi,t}} dre\ 1 d 1 dF<
drt R I 1 - Mr

R | 1 - Mr |
2 R R | 1 - Mr |

2 drt

where

^ '

= ->. (2-55)
U If li

4

Combining (2.50) and (2.53), the equation (2.45) becomes

- + 0(R~2) (2.56)

where O(R~2) is the second order for the distance R , which can be negligible for

far field condition and for unsteady force Fi(Te).

For the noncompact source, it will be

(2.57)

This final form will be used to calculate the acoustic field due to the blade

vortex interaction considered here. The unsteady load due to the interaction will

be analyzed in the following chapter with the tip vortex model determined from

the blade tip geometry.
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Chapter 3

Analysis

3.1 Rotor Tip Vortex

The most significant interaction between the rotor tip vortex and the following

blade occurs in forward and descending flight of the rotorcraft. In that case, it

is expected that the tip vortex core structure becomes an important factor in

analyzing the interaction. It is observed that the tip vortex quickly rolls into a

concentrated vortex and persists for many span lengths before it decays (as in

the case of the fixed wing tip vortex). However, because of the unsyrnmetric

disribution of circulation toward the tip and the unrolled inboard vortex sheets of

the rotor blade as shown in Figure 10, the rotor vortex is more complicated to

describe. Thus, for simplicity, the rotor vortex is modelled as an equivalent rotor

tip vortex pair, i.e., a tip vortex with an equivalent inboard counter vortex of the

same strength, which replaces the unrolled inboard vortex sheet. The curvature

of the vortex filament is neglected locally during the formation of the vortex and

the oncoming velocity near the tip is assumed equal to the velocity at the position

of the maximum circulation on the span. With this tip vortex model, the vortex

core structure and strength are related with the tip aerodynamic parameters and
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are determined by following the general approach used by Spreiter-Sacks'^' for

the potential part and by Roberts'^"' for the turbulent viscous core. Once the tip

vortex is determined, it is assumed that the vortex persists until it decays. The

position of the vortex in general depends on the span disribution of circulation .

3.1.1 Relation between tip aerodynamic parameters and
vortex core

Consider a rotor blade of radius R> rotating with an angular velocity fi in a stream

of uniform velocity UQO. The blade will have a point of maximum circulation at

a radial distance Rm. With the assumptions of an equivalent tip vortex, it is

convenient to consider the lift and drag on the rotor outboard of the radius

Thus,

Ltip = p(nJ2»)2CLIA, (3.1)

where At is the area of tip outboard blade. And the velocity of the blade at the

radius Rm will depend on the azimuthal angle ^ ; i.e.,

(3.2)

so that the lift coefficient Cu will in general depend on (Uoo/CiRm) sin^. Alterna-

tively, the lift can be expressed as the integral of the distribution of tip circulation

Tt around the blade; i.e.,

Ltip = p(SlRm) . (R - Rm)Tm G td(--—) (3.3)
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where Fm is the circulation at R^ and Gt = Tt/Tm and the origin of y coordinate

is located at Rm as shown in Figure 10. From this alternative expression of lift

and the equation (3.1), it can be seen that

0.4)

where

st = I GtcJo 2A, At

The quantity st represents the load characteristic of the tip segment of the blade

and ARt is the equivalent aspect ratio with equivalent span length of 2(R — Rm]-

With the' assumption of the equivalent tip vortex the drag near the tip can be

obtained locally from the conservation of the linear momentum in the cylindrical

control volume encompassing the equivalent blade of the spanlength 2(R— Rm) as

shown in Figure 12. Neglecting the contributions of the viscous shear stress on

the control surface, the force on the blade is

F= -f tpv (v -n )dS - J fpndS (3.6)

where v is the flow velocity vector which components are u, v and w in x, y and z

directions, respectively and p is pressure and n is unit normal vector on the control

surface S. The z direction force, corresponding to twice the blade tip drag, is
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D= II (Pi - P2 + puS - puf)dS2 -If pu3vrdS3 (3.7)
• J J St J JSt

where subscript ,=1,2,3 represent the quantities on the control surfaces and subscript

r represents flow quantities on the radial direction of surface £3. Si and S2 are the

surfaces normal to the x direction, which have same areas, and 53 is the cylindrical

surface. In the surface 5^, the flow is assumed uniform with ut = Um, vt = Wi = 0

and the surface S2 is assumed Trefftz plane where tu2 is the twice w at the blade
t

trailing edge. For a cylindrical surface of infinite radius, the term involving vr is

negligible. By introducing the total head H in incompressible flow, the equation

(3.7), then, becomes as below.

D = H1-H2 + £K2 - u2
2) + §(t>2

2 + w2*}dS2 (3.8)
L Z

where

H = p + \p(v? + v2 + u;2) (3.9)
L

Assuming that the terms involving the differences in H and u between Si and 52

planes are mainly due to the viscosity in axial direction x, the last term, which is

related to the rate of formation of rotational energy in 52 plane, can be defined as

the lift- induced tip drag £>,'»• Thus,

(3.10)

where
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and the induced drag coefficient CDn is, in general, a function of (U^/tlRm) sin if}.

If the kinetic energy is conserved until the vortex rolls up completely as assumed

by Prandtl'* ' or Spreiter and Sacks' ' in the fixed wing case, equation (3.10)

becomes

Jpot

where

Di= I I ^p(v* + w*)dS + 2 r \pvfrirrdr (3.12)
J Jpot. 2 Jo 2

„ = (3.13)

The rotational energy has two parts ; one from the potential part outside of the

equivalent tip vortices and the other from the vortex cores of radius r0. The vortex

core structure is assumed not affected by the vortex pair, so it becomes a circular

flow. The vorticity in the core is assumed a function of the radial distance r rather

than a constant of solid rotation as assumed by Prandtl or Spreiter and Sacks,

where the vorticity f = ^dT/dr. The strength of the point vortex, T0, is assumed

the same as the maximum circulation on the blade, Fm, which is actually almost

90% of Fm as determined from the experimental data of Tung'42'.

The surface integral of the potential part can be transformed into a line

integral'24' by means of the Gauss thorem with the potential function <£, then
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where n is the unit normal vector to the contour of integration following the

circular core vortex and a branch cut placed between the vortex pair as illustrated

in Figure 12. It is assumed that the line integral at the far distance is neglected.

The potential function <f> is considered as a two dimensional vortex pair in the

Trefftz plane as

- tan'1 ^— ) (3.15)j ^ '2* y-rd

where the origin of y coordinate is the center of the vortex pair and r<j is half of the

separation distance of the point vortex pair. After integation along the branch cut

for the potential part (no contribution results from the circular contour of vortex),

equation (3.12) becomes, using equation (3.13) for vg :

where rd is determined by using the conservation of centroid of the vorticity

rd = (R - Rm) y - d y = (R- Rm)st (3.17)
•Jo ay

By combining equations (3.1), (3.4) and (3.10), equation (3.16 ) can be ex-

pressed in terms of the tip aerodynamic parameters s t,e t

et \ r0

where et is the tip aerodynamic efficiency
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Dit

Then, r0, the radius of the turbulent vortex core, is expressed in closed form

as below

Thus, the relation between the tip aerodynamic parameters; s<, et, (R —

and Fm(= F0), and one of the vortex parameters, r0 has been obtained in equation

(3.20 ). Finally, r0 will be determined by evaluating the integral in equation (3.20)

as shown in the equation (3.47) in the following section.

3.1.2 The turbulent viscous vortex core

For large distances from the vortex center, the tip vortex behaves like a point

vortex of constant strength F0. Near the center of the vortex , where the turbulent

and viscous effects are significant, the vortex core can be described as a circular

axisymmetric flow in space fixed cylindrical coordinate (r, 6, x) as shown in Figure

11. The assumptions are made that the tip vortex core structure is not affected

by the inboard blade vortex sheet and the curvature of the vortex filament is

neglected.

With the further assumptions that the flow is incompressible with constant

kinematic viscosity and the the axial gradient is smaller than the radial gradient,

the flow in 0 direction in the vortex core can be expressed as follows :
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D v,ve] d \ (dve v$\] 2fji \dve ve]

» + — - r " : " 7 " ( '

where

D d d d . ox— = hu—- + vr— (3.22)
Dt dt dx dr v '

and u, v r,v0 are the velocities in z, r, 9 directions respectively.

The continuity equation is

f j l+ !£(,*)-0 (3.23)

For turbulent flow, the velocities are decomposed into mean values and turbu-

lent components

u = u + u'

vr = vr + v'r (3.24)

v'

Substituting these velocities into equation (3.21 ) and using the continuity

equation, we can obtain the equation for turbulent flow. Taking the mean and

dropping for the mean values , equation (3.21) becomes

\D_ VrVe] _ d_ I" fdvg vg\\ 2i/ \dve vg\ l_d_,-rr 2^ _d_(~rr\
[Dt r J dr [ \ dr r )\ r [ dr r J r2 dr T 9 dx 9

(3.25)
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where v is the kinematic viscosity v = p/p.

From the above equation, we can obtain the transport equation for circulation

F in the core representing the angular momentum, rvg, as follows :

where

T = 2Krv9 (3.27)

The last two terms, including Reynolds stresses v'rv'e and v!v'e, represent the tur-

bulent effects on the angular momentum in the core. The solution of the equation

(3.26) can not be obtained without the knowledge of the two Reynolds stresses.

However, an approximate solution which represents the main characteristics of the

turbulent effect can be obtained if equation (3.26) is modified into an appropriate

form such that the two terms including the Reynolds stresses are replaced by an

eddy viscosity term as follows :

where e is the eddy viscosity in the vortex core which is assumed variable in the

radial direction.

The left hand side is the convective term and the right hand side is the viscous

and turbulent diffusion term where the turbulent effect is much larger than the
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viscous effect in high Reynolds Number flow. The eddy viscosity e, which has

the dimensions of length times velocity, is modelled such that the length scale is

assumed to be propotional to the radial distance r ; this is different from other free

turbulent flows of constant length scale as pointed by Hoffmann and Joubert^l.

The velocity scale is assumed to be the radial gradient of the angular momentum.

Thus, the eddy viscocity e may be written as

(3.29)

where k is a constant which will be determined later in Section .

The eddy viscosity tends to be zero toward the center of the core , where kinematic

viscous is dominant, and also toward the outer turbulent vortex core boundary

where the circulation assumes the constant F0 of the potential flow. The eddy

viscosity model is used throughout the turbulent viscous vortex core ; this form

becomes the same as the eddy viscosity obtained by Roberts'^' from the relations

formulated by Hoffman and Joubertt31' in a way analogous to the traditional

mixing-length theory of Prandtl.

When equation (3.29) is substituted into (3.28), it becomes

ar - ar ar _ a / fc2ar ian
"TTT ~\~ M—h Vf-r— — r I \y + r— - ) — I (3.30)
at ox or or \ 2x or r or J

This equation must be solved for F subject to appropriate boundary conditions

and using suitable approximate expressions for the convective velocities u and vr.

In the axial direction, the velocity u varies due to viscous retardation and

inviscid acceleration or deceleration such that the axial velocity u of the air just
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behind the trailing edge of the moving blade tip would be the same velocity of

the tip blade and it will return to ambient conditions (i.e., zero velocity) in a-

characteristic time T after passage of the blade. It is assumed that the vortex core

persists up to time T (neglecting the initial time to roll up) and it will decay after.

The average axial velocity in the plane normal to the centerline of the vortex core

is approximated to vary proportional to a power of time, t, nondimensionalized by

T, thus :

n (3-31)

The radial velocity vr in the core, is then determined from the continuity equation

(3.23) after rewriting the axial variation in terms of the time such that x = Ut

n-1 r

This inward radial veocity balances the outward turbulent viscous diffusion such

that the vortex persists until the axial velocity becomes zero. The zero axial

velocity after the time T results in no radial inflow with exponent n = 0 in (3.31)

and (3.32). Then, there is only radial diffusion which causes a spreading of the

vortex core and a decay in tangential velocity.

With the above expressions for u and vr, equation (3.30 ) becomes, after rewrit-

ing the axial variation in terms of time such that x = Ut,

T T ( t \ n d G n ft V"-1* rdG Jk2ro d (. dG. ldG
u (T) W ~ U2 (T) T^ = ̂ TlTr (c + r^r^
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where G(r, t) is the nondimcnsional circulation in the core G = T/T0 and c is a

nondimensional parameter related to the inverse to the Reynolds Number, Re,

based on the outer constant circulation T0 in the vortex, :

Re is also related to the Reynolds Number Ret for which the characteristic length

is based on the blade tip chord. By using the equation (3.4),

Re = R e t - — (3.35)
Sj

where

(3.36)

(for a typical rotor blade c ~ 0.01 and Re ~ 105 ).

The equation (3.33) can then be solved for nondimensional circulation G(r, t)

in the core with the boundary conditions that the circulation is zero at the center

of the core ; (7(0, t) = 0, and the core merges with the potential solution, i.e.,

constant circulation F0, at the radial distance r0(t) ; G(r0,t) = 1. The initial

condition for the decay period is given as the circulation profile at time T obtained

in the persistence period.

Approximated self similar solution

The circulation profile r(£,r) is assumed similar. Then, the partial differential

equation can be transformed into an ordinary differential equation by introducing
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a self similar variable

With this variable the equation can be written

f G'V

where

irTTr^CT^ / t \2m+n —1
(3.39)

To be similar, the parameter ft should be independent of i and the exponents

m and n should satisfy the relation 2m + n — 1 in the equation (3.39 ). In the

persistence period, n = 1 , so m = 0 and r0(t) = r0(0) = r0(T). Similarly, in the

decay period, n = 0 so m = 1/2 and r0(t] = r0(T}(t/T}^.

The second order differential equation (3.38) , which is nonlinear, can be solved

by an approximate method for small c with the boundary conditions

G(0) =0 ;z = 0 (3.40)

G(\] =1 ;z= 1 (3.41)

In the limiting case c = 0, the equation (3.38) is reduced to

(G'2)' + 4/?2G' = 0 (3.42)
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The solution subject to the boundary conditions (3.40) and(3.41) is

G = (1 + p)z - /3V (3.43)

The approximate solution for c <§; 0 can be obtained after integration of equation

(3.38) by seeking a solution in the form of a power series in small c.

After integration, the equation (3.38) is reduced to

— + G'2 + 4/?2G = Ci (3.44)
z

where Ci is constant to be determined later after applying the boundary condition

at z = 1 in (3.41 ).. The solution in the following form is tried by stretching the

independent variable z and the dependent variable G for the nonlinear problem

such that ;

- - - (3.45)

where

1 = ̂  (3-46)

The independent variable z2 instead of z is considered because of the behavior of

the smooth variation of the even function charateristic of G across z = 0. The

only valid value of the exponents p and q are p = 1 and q = 2. The solution G

with the boundary condition at z = 0 in (3.40) is ( see Appendix B )
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G = c Y - 1 - lnK - c2 - (dt, -7 l*n (3.47)

where

y _ Vl + «?1, + l| n _ £ (3 48)

For z ^> c, near the outer boundary, this solution behaves as

G * JC[z - p2z* (3.49)

and for z -C c, near the center of the core,

z2

G » 2 — (3.50)
C

The constant Ct is determined by appling the boundary condition G(l) = 1 in the

equation (3.47), which becomes

(3.51)

Then, the solution for z 3> c in (3.49) becomes the same as that obtained for

c = 0 in equation (3.43). The arbitrary parameter /? can be now determined by

imposing the condition that the core smoothly merges with the potential solution

G = G0 ; G'(l) = 0, upon the solution in (3.47), giving

P = 1 + O(c) (3.52)
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The solution G(z] obtained will be used to determine the turbulent core ra-

dius r0 in the equation (3.20) and the characteristics of the vortex core including

the tangential velocity profile vg in the persistence and decay periods, and the

persistence time T.

3.1.3 The characteristics of the rotor vortex

The main parameters that characterize the vortex velocity or circulation profiles

are the radius of the turbulent core r0 and the nondimensional quantity c (which

is related to the inverse to the Reynolds Number), which are in turn related

to the tip aerodynamic parameters ; the tip circulation shape function st, the

tip aerodynamic efficiency et, the maximum tip circulation Fm and the distance

from the tip to the position of the maximum circulation R — Rm. The additional

parameters that characterize the vortex are the maximum velocity in the core V*,

the radius of the maximum velocity r*, the circulation F* at the radius r* and the

persistence time T.

1) The turbulent radius r0 is now determined from (3.20) and (3.47).

In the persistence period , t < T, r0 is constant with time

r0(t] = r0(0) = r0(T] = (R - Rm)st/ sinh - h(c) (3.53)
\ et )

In the decay period, t > T, r0 increases with time

r0(t) = (R- R^stl sinh - - h(c} • (3.54)

where h(c) is the nondimensional rotational energy in the core
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(3.55)

The integral &(c) is independent of the tip aerodynamic parameters but is generally

a function of c because G obtained in (3.47) is a function of c such that the radius

r0 decreases with increasing the Reynolds Number. However, in the case of high

Reynolds Number c <S 1 the value can be approximatly obtained as ^ by using

the G in (3.49) and ft = 1 in (3.51). Then, the vortex varies directly as (R - Rm)

which is a variable quantity depending on azimuthal blade position ( unlike the

fixed wing) and it is also related to the shape of the tip circulation as s t,e t.

2) The tangential velocity of the vortex can be expressed as follows.

In the persistence period,

In the decay period,

r ^ W ( i ) " (3-57)

where the velocity function V(z] is defined as below by using G in (3.47) with

/ 5 = 1 :

V(Z) = G(z)/z

= c (Y- l - lnY/2 ) / z - z + c 2 (Y\nY) /4z , z<l (3.58)

l/z , z > 1

where Y is given in (3.48) with C: = 4 and (3=1.
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The velocity function can be approximated in a simple forms as shown in

Figure 13 :

V(z) =2z/c , z«z*

= 2 - z , z" < z < \ (3.59)

= 1/z , z > 1

where z* is the position of the maximum value of V(z).

Near the center of the core, z <£ z*, the viscous effect is dominant as in a the

laminar sublayer. For z > z*, the turbulent effect is dominant up to z = 1 , and

the vortex behaves as point vortex for z > 1. .

.3) The location of maximum V is found by differentiation of V(z). For c -C 1,

and

r* = r0(<K (3.61)

The maximum velocity function V* is

(3.62)

which shows that V* tends to be constant as c becomes small, that is, the Reynolds

Number increases, whereas in laminar case V* increases as the Reynolds Number
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increases.

The maximum circulation function G* is

(3.63)

which shows, G* decreases as the Reynolds Number increases, whereas in the lam-

inar case G* is constant.

4) The persistence time T can be determined from equation (3.39) with /? = 1

7rr0(0)2 7rr0(0)2 2AR,st

4*»r. 4** tf ^ ' '

Thus, the number of revolution for which the tip vortex persist is:

rn i R
2?r 4&2 RmCLt sinh2 (4s2/e2 -

(3.65)

which is a function of the shape of the tip circulation and the Reynolds Number

(through c).

In the decay period, the rate of the diffusion can be obtained by differentiation

of r0(t) with t such as ;

(3.66)
dt 2T

The constant k of the eddy viscosity in (3.29) can be obtained from the expres-

sion of T with the assumptions that it is universal for the different flows and is
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independent of Reynolds Number. In the fixed wing case, the persistent distances

(d = TU) are measured in many references^'''3"*). Then, the correlation between

T of equation (3.64) for high Reynolds Number and the experimental data gives

k = 0.06.

So far, the rotor tip vortex has been defined and described in terms of the tip

aerodynamic parameters. In the next section, the interaction between the rotor

vortex and the following blade will be described especially when the maximum
/

acoustic pressure is observed. Typically, the interaction is observed in l| revo-

lutions of the vortex as shown in Figure 7. In that case, the vortex can be in

the persistence or decay period, depending on the tip aerodynamic parameters as

shown in equation (3.65).
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3.2 Unsteady Loads During the Interaction

With the tip vortex defined in the previous section, the unsteady field due to

the interaction with the following blade is analyzed in the situation where the tip

vortex is aligned parallel to the following blade span as shown in Figure 7, for

which the maximum acoustic pressure is observed. The interaction is simplified

such that the vortex is straight and stationary and the blade is moving with the

uniform velocity Ui within the finite region of the interaction as shown in Figure

14. Thus, the interaction can be considered as two dimensional at each section of
s.

the blade span, neglecting the tip effect. The unsteady flow during the interaction

will be described under the assumption of no distortion of the vortex path or of the

vortex core. Even though the vortex is turbulent and viscous, it is assumed that the

flow around the airfoil is a potential flow during the interaction. These assumptions

mean that the vortex is forced, not free ; the vorticity field of the vortex core

and the disturbed irrotational field, including the flow around the blade, and the

acoustic pressure in the far field are coupled only through the surface boundary of

the blade as explained more generally by Kovasznay' ' and Goldstein' '. This is the

same assumption as for traditional gust theory' °'. Thus the vortex behaves like a

convecting wave. These concepts were visualized by Rogler' ' ,as shown in Figure

3, in the problem of the interaction of a vortex array, representing a turbulent

flow, with a semi-infinite plate. The stream function representing the vortical

fields is not distorted but the stream function when combined with the disturbed

irrotational field, satisfying the boundary condition of no flow through the solid

boundary, is distorted to give a vortex on either side of the plate. This flow pattern
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is in general agreement with the experiments of Y u ' ' in the extreme case for

which the center of the vortex core meets the blade. Within these assumptions,

only the normal component of the vortex velocity on the blade surface is important,

especially in the case of zero angle of attack between the convecting flow and blade.

In general, the assumptions are valid when the normal component of the velocity is

small compared to the convecting velocity and the rate of the diffusion in equation '

(3.66) in Section 3.1.3 is less than the convecting velocity ; i.e. when the interaction

occurs in the diffusion period of the vortex. The flow near the blade is assumed

incompressible in calculating the unsteady pressure on the blade surface in this

section whereas the air is assumed compressible to obtain the acoustic pressure at

the far field in the next section.

3.2.1 Unsteady loading on the surface

The governing equation for the incompressible small disturbance potential fuction,

6, in the blade fixed coordinate is

VV = 0 (3.67)

The linearized boundary condition for the thin airfoil that there is no flow across

the surface becomes as below

56
- = -w,(x - Ubr) \ x \ < b z = 0 (3.68)

where wg is the normal component at the blade surface of the velocity of the vortex
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convecting with the velocity C/j and r is time. The combined velocity wa and the

normal component of the disturbed velocity at the surface becomes zero.

The perturbed pressure is given by the linearized unsteady Bernoulli equation

and the unsteady lift can be obtained by integration of the pressure difference

between the upper and the lower surface along the chord

/•*
L(r] = - I Pu(x,T) - pL(x, r}dx (3.70)

J — b

To evaluate the lift due ot the vortex interaction, it is useful to consider an

oscillating blade in the uniform flow with the boundary condition that the flow at

the surface moves with the same velocity of the blade :

|*|<t , = 0 (3.71)
dz dr dx

where zt>(x, T] is the motion of the blade having zero thickness and tUi(z, T) is

a convenient shorthand for equation (3.71). For a simple harmonic motion of a

blade,
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(3.72)

Using the conservation of circulation in the flow field (i.e. the shedding vorticies

in the wake and the changing circulation around the blade) and assuming that

the vorticies convect with the free stream velocity C/j , the pressure distribution

on the blade in the simple harmonic case was obtained by Schwarz'"^' in the

following form ( which can be obtained also by using the conditions of no pressure

discontinuity across the wake, and at the trailing edge, i.e. Kutta condition) :

(3.73)

where Ap is the spatial part of — (pu — PL] and x* is the nondimensionalized space

x/b ,and k is the reduced frequency of oscillation defined as

0.74)

From the result for the simple harmonic motion of the blade, the loading due

to the gust can be obtained by comparing the boundary condition on the surface

in (3.68) and (3.71). First, for a sinusoidal gust, the boundary condition becomes
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= —wg(x -

<T-*W (3.75)

where wg is the magnitude and cj is the frequency of the sinusoidal gust convecting

with the velocity Ub. Comparing (3.72) and (3.75),

(3.76)

The pressure distribution on the blade due to the sinusoidal gust can then be

obtained from (3.73) by using the above relation for uJj.

Next, for a sharp-edged gust (step gust), known as the Kiissner problem, the

lift can be obtained by taking the Fourier transform of wg(x — UI,T) of the step

gust' ', which is

oo

_oe-,fce-,fc** /3?7)

tu>

where tw0 is the magnitude of the step gust.

Then,

(3.78)

and from (3.70) and (3.73) , the lift for the step gust becomes
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L(t) = -L r° [& r Ap(pUb, k, x\ -wg(u)dx"] eMrdu (3.79)
27T J-oo L J-l J

and may be expressed as follows

L(s) = 2irp0Ubbw04>(s) (3.80)

where

1 roo .QftWM'-1)
; dk (3.81)

which is the lift response function for the step gust, called the Kiissner function!56'

and

= C(k)[J0(k)-iJ1(k)] + J1(k) (3.82)

which is the lift response function due to the sinusoidal gust, called the Sears

function!60!'!61! and

C(k}= -... x >
( 2 > (3.83)v ; ' - 2 ' x v '

which is related to the lift due to the oscillating blade in the uniform flow, called

the Theodorsen function'55!.

Jn is the Bessel function of the first kind of order n and H^ is the Hankel function

of the second kind of order n. The variable s is the nondimensionalized time defined

as
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S = ^y- (3.84)

For the vortex gust, the lift due to the interaction can then be obtained by

using the Duhamel's integral with the Kiissner function in the time domain. Thus,

L(s) = 2npUb \wa(QU(s) + f W^ Ms - a}da\ (3.85)v ' "v /rv ' Jo da v . v '[

where a is the dimensionless time at the leading edge.

Here, the normal velocity of the vortex gust on the surface, wg, becomes the

tangential velocity of the vortex if the blade cuts through the center of the vortex

core. After the transformation of the coordinate system between the vortex fixed

coordinate and the blade fixed coordinate as shown in Figure 14, the velocity wg

becomes

and the gradient of the gust velocity is

<tv>M _ ro 6 (x0-ab\
~da~ ~ ~2^r~0 ' 7j \~^~) ('

where V is the vortex velocity function of (3.58) in Section 3.1.3 and x0 is the

initial distance between the center of the vortex and the leading edge of the blade.

As shown in Figure 17, the gradient of the gust velocity depends on the turbulent

vortex size, rlt the laminar sub core radius, r* and the gradient at the center of

the core 2/c.
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The lift in (3.85) can be evaluated easily analytically or numerically if the

Kussner function, which needs an integration for the whole range of frequency as

shown in equation (3.81), can be approximated in a simple analytical form.

3.2.2 Behavior of the Kussner Function

The function is shown in Figure 15. It shows that for this step gust there is a

time lag in the lift to have the asymtotic value. This time lag results from the

wake contribution to the lift and the virtual mass effect due to the acceleration of

the flow in addition to the effective change of the angle of attack due to the gust.

The approximate form of the Kussner function can be expressed in a series of

exponential terms'" ' as follows

V(«) = 1 - 0.5e~0-13f - 0.5e~* (3.88)

This is valid for the whole range of s in general. A more accurate form can be

obtained by using the asymtotic expression of the function near the origin'^',

s < 2, (the time required for the front of the step gust passing the chord), as

follows

Comparing (3.88) with (3.89) near the origin, there is no significant difference in

unsteady loading as shown in Figure 15. But if this loading acts as the acoustic

source, a significant difference occurs near the origin because it involves the gra-

dient of the Kussner function -f^, which might be called the acoustic response
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function for a step gust.

Then for s < 2,

2s /ll 3 1 5 1 , 7 23 ,\
= \ / — ( 1 « s ) (3.90)V TT V2s 212 296 213440 / V 'ds

and for s > 2,

f \ ' — n ^ A 1 *%a—0.13(*—0.1) i f\ ca—(*—0.1) /o Ql A~ — U.il U.J.OC ~t~ U.OC I O.^/X I
as

The gradient of the fuction has an integrable singularity at the origin and the

expontial terms are modified to give a smooth function. This is shown in Figure

16.

The exact form of the gradient of the function is from equation (3.81)

(3.92)
ds

3.2.3 Evaluation of the lift

The lift in (3.85) can be easily evaluated in the time domain with the approximated

Kiissner function in the previous section and the vortex velocity function V in

Section 3.1.3.

Analytic Evaluation

First , with the simplest form of the Kiissner function of (3,

1>(s) = 1 - 0.5e-°-13' - 0.5e-
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and the approximated velocity function (3.59) in Section 3.1.3, the integral (3.85)

can be calculated analytically. The velocity function V is transformed in the time

domain with the relation used in (3.86), i.e.,

Z=L = ^—Til = ±»—— (3.93)
r0 r0

where x0 is initial distance between the vortex center and the leading edge.

The transformed approximate velocity function V(s) is as shown below in each

of five time periods. The velocity in the turbulent region and in the sublayer region

on the vortex core are approximated by linear functions.

Vx(s) = -jfZa So < s < st (3.94)

V2(s) = -2 + 2^ «i < s < s2 (3.95)

V3(s) = f2t=£* «2 < s < s3 (3.96)

V4(s) = 2+^ 5 3 < 5 < s 4 (3.97)

F5(s) = =«-r s 4 < s (3.98)
* * \ / X n — 8 0 1 — \ /

where

/I- •• «• ••* «• 1 ••* **• | _
^ *0 'o *0 ' *0 * ' *0 i ^o /« VN^.\so = 0,5l = —£—, s2 = —-—,s3 = —-—,s4 = —-— (3.99)

Because of the discontinuity in the gradient of the above approximated velocity

function, the integration in (3.85) should be calculated for each period and it
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should be added up to s to get the accumulated effect. Thus, the lift at s in

s.-i < s < Sf becomes :

(3.100)

The integration in each period is simple because of the constant gradient of the

velocity except for the potential region which reqires the Exponential Integration

functions ^i(or) and J£,-(a) as shown in Appendix C. The general form of the lift

can be expressed as below

P2(s)e-°-13' + P»(s)e-] (3.101)

where P,-(s),i = 1,2,3 are tabulated in Table 1.

The lift becomes zero as s —» oo, which can be checked with the asymtotic

value of the Exponential Integration function in PZ(S) and PS(S) in s > s4. As

shown in Figure 18, Ei(a) diverges as s -* oo in the form :

Ei(a) = ["*-<& a > 0 (3.102)
J -00 t

) (3.103)

whereas /(or) converges. So, the expression for the lift becomes zero
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e-'l-WEi [p(s - y)] -> 0 s -* oo (3.104)

where p is positive.

For the case of a discontinuity in the velocity function, the gradient becomes in-

finite. In that case, the integration should be evaluated by the superposition of the

regions having finite gradient with proper initial conditions at each discontinuous

region.

Numerical Evaluation

A more accurate evaluation of the lift can be done numerically with the more

refined Kiissner form of (3.89) for s < 2 and the complete form of the vortex

velocity function V of (3.58) in Section 3.1.3. The integration in (3.85) should be

calculated at each time s in the a domain. As shown in Figure 17, it is convenient

to shift the coordinate a such that wg has a symmetric form. Then, the integration

in (3.85) is equivalent to the following :

In discretized form, it becomes

(3.106)
n=l

where

(3.107)
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1 6

N b

and

(3.108)

To calculate the integral more effectively, the coordinate x Is discretized nonuni-

formly such that near the sublayer region of the core Ax is small and in the poten-

tial region Ax is large. For the large intial distance (x0 — * oo), the initial condition

in (3.85) is neglected (wg(Q) ~ - — » 0). In that case, numerical calculation is done

for finite x0 and the residual part (—00 < x < — x0) is done analytically , where

the velocity function (V = |) is that for the potential region. Then, the residual

part of the lift is

Lfl(s) ~ °° — T 1 ~ O.Se-0'13^-10/*' - Q.Se-l*+-"M dx (3.109)

It becomes

).13^) e-°'13'+0.5 ^--e

(3.110)

where

roo Q-X
I dx (3.111)

Jk X

(3.112)
a a2 a3
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which shows XH(s).can be negligible for relatively large value of x0/b.
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3.3 Acoustic Pressure

The acoustic pressure for a moving body in the presence of the vortex can be

obtained by using the Ff owes- Williams and Hawkings equation in the medium at

rest and by assuming the nonuniformity is confined to the sources ( i.e., constant

acoustic propagating speed). The signal is analyzed in space-fixed coordinates and

the sources are described in body-fixed coordinates. The equation has monopole,

dipole and quadrupole sources corresponding to thickness, surface pressure fluctu-

ations and unsteady flow fields. Here we consider only the dipole source because,

assuming a thin airfoil and low mach number, we can neglect the monopole and

quarupole terms. As explained by Curie' ̂  , the dipole source in the equation

represents the effect of the scattering due to the body for long wave lengths of the

signal compared with the body size ; then the source can be related to the total

force on the surface. Actually the observed acoustic signature during the blade -

vortex interaction contains all frequencies but considering that most of the energy

comes from the lower frequencies' ' • ' ' , a chordwise compact source can give the

basic property of the signal. In the case of a large but finite source region where

the tip vortex and the following blade interact , a spanwise noncompact source

is more appropriate. The acoustic pressure is analyzed in the simplified situation

such that a finite unsteady dipole source, whose strength is related to the unsteady

load, moves linearly.

The inhomogenous wave equation with a moving dipole source is
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where a0 is the constant speed of sound in the medium at rest, Ft] is the dipole

strength defined in (2.11), and / is a function of the body surface.

The solution of the acoustic pressure p in 3-D space is

Ft}n} dS(f)) (3.114)

where p is related to p with the isentropic relation p = a?0(p — p0}.

The relative distance between the observer fixed and the source in linear motion

with the velocity U is

R = \ x - i U r e - f j (3.115)

where x0 is the initial observer location in the space-fixed coordinates and rj is the

source positions in the blade-fixed coordinate as shown in Figure 19.

x = (3.116)

(3.117)

The source is evaluated in emission time re defined as

R(Te,x,rj)
Te — I ; (3.118)

The above time relation is related to the Doppler shift due to the relative motion

between the source (fj) and the observer (z) and

1

1 - M • R/R
(3.119)
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is the Doppler factor in amplitude due to the moving source.

3.3.1 Far field approximation

The solution can be expressed in terms of a time derivative instead of a space

derivative by using the relation of (3.118). For the far field, it can be approximated

as in equation (2.57)

dS(fj) (3.120)

where /,- is the force on the blade.

Neglecting the time variation of R along the source region and the drag force

effect, the acoustic pressure can be written as follows for a chordwise compact,

but spanwise noncompact, source

where R* is the distance from the observer to the center of the source and /3 is

half of the source distance in the spanwise direction rjz as shown in Figure 19. For

a rectilinear moving source, the emission time re is obtained as shown below :

r° ~ ? T 3 (3'122)

The + sign is for the source moving toward the observer.

The acoustic pressure is composed of two parts; a directivity function for a

point source defined as
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D= - . — (3.123)
JZ- |1-M.£ | '

and an integral along the spanwise source direction for a noncompact source.

The integrand of the time variation of the lift in the integral can be obtained

as below by using the Duhamel integration of the gradient of the Kussner function

^^, defined in (3.90) and(3.91) in Section 3.2.2, ( which represents the acoustic

response function for the step gust)

,3,24)

The acoustic pressure also depends on the gradient of the gust -jjj- which is a

function of r0 and c as shown in Figure 17. The schematic diagram for the

Duhamel integration is shown in Figure 20, where the contribution of the gradient

at the center of the core is large because of the delta-function-like acoustic response

function ^~. The contribution to the integral along the span of equation (3.121)

comes from two factors: one from the lift variation along the span, which is zero

in our 2-D approximation in the calculation of the unsteady loads , and the other

from the emission time variation along the span as seen in equation (3.118)^

3.3.2 An alternative form for a spanwise noncompact
source

The acoustic pressure for a noncompact source expressed in the form of (3.121)

can be interpreted such that the acoustic pressure observed at x and t is the

accumulated pressure of the multiple compact point sources emitted at the same

time re but having different propagation times R(re ,x,f))/a0 depending on the
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position of the sources fj as in (3.118). And it has an integral for which the

variable r)z is different from the variable of the integrand of the gradient of the

unsteady lift expressed in term of re The difference in the variables makes the

integration sometimes difficult to evaluate. An alternative form of the acoustic

pressure'86' can be considered which has the same variables for the integrand and

the integral as follows :

For fixed z and t, drj3 in equation (3.121) can be written

(3.125)

Then, equation (3.121) can be written, after changing the varable r)Z to re, as

- t -r.- dr j & I i „ M .
(3.126)

where T+ and T~ are rt at 773 = /3 and — /3, respectively in equation (3.122).

The quantity ^ can be obtained by differentiating the time relation (3.118) with

rt and using (3.115), i.e.,

(3.127)
a0dre

where

Then,
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f-g-'-i*
and ^ becomesor,

—— = ——^ (3.130)

Thus, the acoustic pressure p(x, t] can be written as

-L(re) dre (3.131)
4*0. r dr v e^ I i _ M- 4 I (Rz - «,) V '

where

R-M = Ri-Ubr e (3.132)

'2 f "D TT — \2 U2 Ao 10O^• — l-*^i — Ub'c) — -**2 ^o.iooj

R = t-̂ - (3.134)
O-o

Neglecting the time variation in the point source directivity part as in equation

(3.121) for the far field , it becomes

(3.135)

With nondimensional variables,

('' d T( - i-- / - L[S) - — 03
» A.- 9s

(3.136)
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where RI and R% are nondimensionalized by the semichord 6, and t is nondimen-

sionalized by b/U^ and

(3.137)

The acoustic pressure expressed in (3.131) or (3.135) can be interpreted such that

the the acoustic pressure observed at x and t is the accumulated pressure emitted

at different times re depending on the source position t/3 but having the same

propagation time R(Te,x,rj)/a0.

The forms derived here are useful in the evaluation of the integral because the

integrand is a direct function of the variable 5. It will be used in the calculation

of the acoustic pressure especially when the observer is far off the center of the

source. In that position, the observer can easily detect the effect of the spanwise

noncompactness of the source having relatively large aspect ratio.

3.3.3 Interference of the spanwise non-compact source

The compactness and the noncompactness depend on the characteristic time of

the acoustic signal and the source dimensions. In most cases, there is no clear

relationship between the charateristic time of the acoustic signal, which is not a

simple harmonic signal, and the source dimensions whether the source is compact

or noncompact. To visualize this relation, it is useful to consider a point source

signal and to interpret the signal due to the noncompact source as the result of

the interference of multiple point source signals.
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Consider a point source signal, first, which can be represented as dL(s)/ds in

the emission time domain s as shown in Figure 21 neglecting the point source

directivity function.in equation (3.123). In the emission time domain, the lift L(s)

can be the one measured or computed for each span location. The acoustic signal

really observed is the one in the reception time domain ? as shown in Figure 21 (b)

which can be obtained after transformation from the emission time domain with

the time relation t = Te+R(re, r/3)/a0. The amplitude is the same for corresponding

t and T but the width dt reduced for the source moving toward the observer. Then

the noncompact source signal can be obtained by summing the point source signals

in the reception time domain t with the delayed time A£ due to the different source

positions y for each signal as shown in Figure 21(c). This delayed time related to

the source dimension causes interference, which contributes to the amplitude in

a destructive way and alsp changes the directivity pattern from the point source

directivity.

The interference is closely related to the ratio of Ai and dt, where the width

of the signal, dt, depends on the strength and the strucure of the vortex and the

maximum delayed time between the ends of the source region, AiTO03, depends on

the observer position, as shown in Figure 22. If the observer is far from the plane

of symmetry of the source, greater interference is expected, but if the observer

is in the plane of symmetry of the source, there is small interference where the

maximum acoustic pressure is observed ; then the source can be approximated as

a point source to evaluate the maximum acoustic pressure in this simple geometry.

The effective ratio of A£ and dt can be estimated from a simplified point source

signal and its spectrum as shown in Figure 23. Assuming the signal is periodic, it
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can be expanded into a Fourier series having a basic period, T0 and a fundamental

frequency, u0 = 2ir/T0. Then, the signal /(£) can be written as

(3.138)
n=— oo

where

T°2 (3.139)
O -To/2

For the simplified signal of a generalized sawtooth function, the Fourier coefficient

F(nijj0] is

1 — a

where A is the peak amplitude and pt is the solidity defined as dt/T0. As shown

in Figure 23, the amplitude of the nth harmonic | F(nu0) \ decreases toward the

higher harmonic as (np t)~2 .

Assuming that the spectrum begins to decay significantly at npt = N, the

corresponding harmonic is

ne = — (3.141)
Pt

which becomes higher for smaller /?<, that is, narrower the width dt. The corre-

sponding frequency is

—w0 (3.142)
Pt
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Thus, the corresponding period is

T —J-ne —
27T

N

4
N

(3.143)

This period Tne can be the characteristic time of the acoustic signal and the con-

tributions of the waves for. which periods are less than Tne is small. From Figure

23, it is seen that N = 1. Thus from equation (3.143), Tne = dt.

Thus, if dt is much greater than the time due to the delay in the source,

A£, there will be no interference between the signals as for a point source. Or

interference will occur approximately when Ai > dt/4.

3.3.4 Evaluation of the Acoustic Pressure

For the noncompact source or the point source, the acoustic pressure depends on

the lift variation with time dL/ds due to the vortex interaction.

Point source

For the point source, the acoustic pressure can be described as shown below from

equation (3.121)

= __ _
P ~ *

M2/3
R* b

dL(s)
ds

(3.144)

The directivity function D expressed in terms of directional angle is
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sin 9
* • (3'145)

where

RI = R* cos 6 cos #

R-i = R's'me (3.146)

R3 = R* cos 0 sin 0

This directivity function evaluates the effect of the observer position located in

the far field with the same radius from the initial source position rather than from

the moving source position as shown in Figure 33.

From the general expression for lift L(s) in equation (3.101) in Section 3.2.3,

the lift variation can be obtained as

= Qi(a) + <?2(s)e-°-13' + Q3(s)e- (3.147)

where Q,-(s),t = 1,2,3 are tabulated in Table 2.

From this expression, the maximum acoustic pressure can be obtained by dif-

ferentiating the pressure with time. Differentiating -j^L(s) between s2 and s3 ,

the pressure increases monotonically and differentiating it between s3 and s4, the

pressure decreases monotonically. So the maximum pressure occures at s = s3 and

the maximum pressure in nondimensional form is

b
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.0.5A,--*,~^1(*1Te/6)-e-*'T (3.148)

where

, ( 1 M 2/3 PUbbTc (3'149)

and ki = 0.13 and &2 = 1.

For the extreme case c = 0, (after series expansion of terms including ef^ for

small c)

7 - X>5*. f (l - ~) e-*"°/> + 4 - A, *,• (3.150)
• o -= L \ K \ ' o J • °

which gives a finite value of the maximum acoustic pressure.

As mentioned before, a more accurate results can be obtained by using the

acoustic response function of (3.90) in Section 3.2.3 for s < 2. In this case, we

need numerical integration as in the case for the evaluation of the lift of (3.106)

in Section 3.2.3 except near s = x0/b which has a singularity in acoustic function.

This can be done by analytic integration for s < 6 with the linearization of the

gradient of the vortex velocity -j£- for small e and numerical integration for s > e

as below

dL(s) ^ dwg dip x0
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where

X0
XN = 3- — + €

(3.152)
.=1

€ <

The analytic part I( is

where a and 6' are the coefficient of the linearized velocity function such that

and

w fa ax + b'

L» I i Z0 \ i / Z0 \6 = a ( -s+—) + w g ( s -—)

y = s -x-^- . (3.154)
o

The residual problem for x0 —+ oo can be neglected as in the case of the evaluation

of the unsteady lift in (3.110) in Section 3.2.3.

With this more accurate acoustic function it turns out that for the extreme

case of c = 0 the acoustic pressure has peak value of infinity. This is different

result from the finite value of (3.150) which is obtained by using the approximate
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acoustic function. The infinite value is due to the discontinuity in the vortex

velocity wg for the case c = 0, in which case the velocity can be obtained by

superposition of the simple velocity function including the sharp edged gust. The

corresponding acoustic pressure to the sharp edged gust is the acoustic function

defined as (3.90) in Section 3.2.2 which has the infinity at the origin. Thus, the

acoustic pressure for this case c = 0 has the infinite peak value.

The signal evaluated is in the emission time domain s and its numerical values

are obtained at nonuniformly divided intervals of s as in the case for the evaluation

of the unsteady lift to calculate efficiently. The signal in the reception time domain

t is then obtained after the transformation of the numerical value of the pressure

by using the time relation :

Noncompact source

From the results of the point source, the pressure for the noncompact source can

be obtained from equation (3.121) or (3.136) depending on the observer position.

If the observer is near the plane of symmetry of the source, equation (3.121) is

more efficient in calculation because the results converge after the summation of

relatively few delayed point source signals. The process of the calculation is the

same as shown in Figure 21. The practical problem comes from the fact that each

point source signal in the reception domain ? has numerical values at nonuniform

time intervals of t ( due to the nonuniform intervals in the emission time domain s
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and its transformation to the reception time domain through its own time relation

depending on the source position ). This causes the difficulty in numerical sum-

mation of the point source signals. The problem can be solved by revaluation

of the numerical values of the point source at uniformly distributed values of 7

close enough to pick the peak value of the signal. This requires the interpolation

of the values nonuniformly distributed . Once it is done, the summation of the

delayed point source signals is easy for the case that the results converge quickly

with relatively few point source signals.

For the case which requires many source.signals to converge, the other form

of (3.136) is more efficient in the evaluation of the acoustic pressure as in the

case where the observer is far from the plane of the symmetry. In this case, the

accumulated acoustic pressure at each value of t , coming from different source po-

sitions and emission times, is evaluated by integration of the integrand from s~ to

s+ numerically in the emission time domain s, so it does not require interpolation

to sum the signals. This method has its own problem especially when there is a

small interference effect between the sources ( In order to include the peak value

of the acoustic pressure the pressure should be evaluated at each small range of £,

which-requires a lot of integration ).

In both methods, to get the directivity effect of the peak acoustic pressure

due to the interference of the noncompact source in addition to the point source

directivity function D of the equation (3.145) , the geometric relations between

the distance R and the directional angles in (3.146) are used in the time relation

of (3.155) for the time transformation and in the integrand of (3.136).
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3.3.5 Moving observer and moving source

So far only for the moving source, which cause the Doppler shift and Doppler

factor, has been discussed. If the observer is also moving, the time relation related

to the Doppler shift in (3.118) is changed, that is, the relative distance R between

the observer and the source is changed according to

(3156)

where

- Urt}i + R2j + Rzk | (3.157)

and V is the velocity of the observer moving at the same direction of the source.

So the time relation of (3.155) is changed such as

t = Te(l-M0M)+M0 —
do

\ l -Af*
(3.158)

and s+ and se in the equation (3.136) are changed after substitution of RQ + Vt

instead of RI in equation (3.137).

The above time relation is reduced to R2 = #3 = 0 to

, (l-M)re + £

(l-M,)

82



, which becomes'the same as (2.34) with C\ = — fj-yi:^.

The acoustic pressure for a point source or a noncompact source can then

be evaluated for a moving source and a moving observer by following the same

procedure of the previous subsection with the time relation (3.158). In this case,

the directivity function can determine the effect of the observer position which is

moving at the same velocity of the source, that is, located at the same radius from

the moving source rather than from the initial position of the source.
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3.4 Noise Reduction and Performance

From the previous section, it is known that the acoustic pressure at the far field

depends on the delta-like acoustic response function and the gradient of the vortex

velocity at the surface for given source and observer motion. The gradient is

directly related to the vortex size r0, which can be expressed in terms of the blade

tip aerodynamic parameters, and is also related to the Reynolds number Re via the

nondimensional parameter c. In general, the amplitude of the acoustic pressure

is reduced for larger vortex size and lower Reynolds Number. However, a lower

Reynolds Number corresponds to a lower maximum circulation along the blade

span Fm, which is one of the primary parameters in blade performance. So, with

fixed Reynolds Number, the acoustic pressure may be reduced by increasing the

vortex size.

As illustrated in Figure 24, several methods can be considere' ' to increase

the vortex size. The first group of methods is the modification of the tip shape,

the second group is the attachment of the vortex dissipator to the tip, and the

third group is the injection of air from the tip. The injection of air at the tip

along the center of the vortex accelerates the axial flow near the vortex core. At

the same time, this also reduces the inward flow at the beginning of the formation

of the vortex, which reduces the persistence time T. Then there is only outward

diffusion near the core and when the vortex encounters the following blade after

time t, the vortex size increases from the initial size r0(t = 0) to r0(Q}\JTJt due

to the diffusion as expressed in equation (3.54) in Section 3.1.3. Practically, the

alignment of the direction of the injection with the center line of the vortex core
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is not easy and this also require additional power to inject the air. The vortex

dissipater considered in the second group also promotes the earlier diffusion of the

vortex core. However, this increases the form drag at the tip. And the two kinds

of the methods explained requires the additional analysis to describe the detail

relationships between the parameters related to the amount of the air injection or

the geometry of the dissipator and the vortex core. So the first group of methods

( increasing the vortex size by modification of the tip shape ) is considered now

because the relationship between the initial vortex size and the tip aerodynamic

parameters is already defined in equation (3.53) and (3.55) in Section 3.1.3 as

(3.160)

As shown in the above equation, the vortex size increases with the distance between

the position of the maximum circulation along the span and the blade tip, i.e.,

(R — Rm). However, the larger distance a loss of lift considering that the lift

is weighted toward the tip due to the rotation of the blade. So the analysis is

restricted for the given distance (R — Rm) in addition to the given maximum

circulation Fm, which is mentioned before. Then the remaining parameters are

the tip loading factor s< and the tip aerodynamic efficiency et, which are directly

related to the circulation shape near the tip. Before further analysis, it is assumed

that the tip circulation shape normalized by the maximum circulation Fm and the

distance (R — Rm) are almost constant during one blade revolution. For forward

flight of a helicopter with low advance ratio and tip shape fixed, there is a resonable

approximation even though in practice FTO and (R — Rm) depend on the azimuth
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angle ̂ >.

3.4.1 Modification of the tip circulation shape -

To make the anaysis simple, consider the effect of the modification of the tip cir-

culation shape rather than the tip blade shape itself. And consider the normalized

tip circulation shape expressed in terms of the angle 9 rather than y ( for which

the origin is the position of the maximum circulation) as follows

where

and

G(y) = p-
A.m

= G(B)

= cos 9

0 < y < l

\

(3.161)

(3.162)

(3.163)

(3.164)

(3.165)

The general tip circulation shape should satisfy the following boundary condi-

tions

G(0) = 0

3'{?) = 0

(3.166)

(3.167)
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The circulation shape considered here, which satisfies the above conditions, is the

form of the power of the sine function :

(3.168)

This function represents the elliptic loading if p = 1 as shown in Figure 37(a) and

the rectangular loading if p = 0.

The loading factor s< is then obtained as follows

/•i
st = I G(y}dy

Jo

= r(smQ}pJflde (3.169)
Jo

If p is an odd integer

and if p is an even integer

If p is natural number rather than integer

. r ( f n

where F(z) is the Gamma function having property
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(3.173)

To calculate the aerodynamic efficiency et, it is convenient to expand the cir-

culation function (3.168) into Fourier sine series :

G = (sin 9}p = £ Am sin m9 (3.174)

where m should be odd integer to satisfy the conditions of (3.166) and (3.167).

The coefficients Am is obtained as follows

7T JO

where

/"*/ sin mQ sin kQdO = 0 ,, m ^ k
Jo

- ,

(3.175)

(3.176)

(3.177)

If p is integer and odd number, the coefficient Am is obtained from (3.175) and

(3.174) as follows

(-1)
0-1 -('.)'s\n(p -2)6 (3.178)

where I I is the binomial coefficients defined by

(:)= (3.179)
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For example, if p = I, AI = 1 and if p = 3, AI = | and A3 = — i.

If p = 0, the coefficient Am can be directly obtained from equations (3.175)

and (3.174) as shown below

Am = ~ (3.180)

If p is integer and even number or natural number, the coefficient Am is

4 rf
Am = - I (sin0)psinm0<£0

IT Jo

f ^1 (2COS0)"-1 - ~ (2COS0)"1-3 + ~ (2cos0)m-5 ---- d9
[ \ 1 J \ L ) J

A + /2 + /3 + --- (3.181)

where

/. = l(-i)f- lf m~1' } ['(smey+^coser-v-v
7T \ » — 1 / Jo

- 4r n^^-Qom-^i^f + i^f-t + i) '
~ ;r( 1} t-i 2 (3'182)

From the coefficients Am obtained, the aerodynamic efficiency et is easily ob-

tained from the well known expression' *' as below

(3-183)

and

St = A^ (3.184)
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Typical values are et = 1 and st = f for elliptic loading and et = 0 and st = 1

for rectangular loading.

Thus the radius of the vortex size r0 can be obtained from the equation (3.160)

by using the above expressions of et and s( for the normalized circulation shape

(3.168) as below :

ro(0)
R-

(3.185)

The nondimensionalized vortex size r0/(R — Rm) is 0.3488 for elliptic loading and

0 for the extreme case of rectangular loading (in which case the tip vortex is point

vortex and the induced drag, which is related to the rotational energy of the tip

vortex, is infinite).

From the analysis done so far, the acoustic pressure due to the blade vortex

interaction can be calculated for the tip circulation shape considered here, and

the relation between the noise reduction and the corresponding tip aerodynamic

efficiency, which is one of the parameters of the performance, can be obtained for

the various circulation shapes, that is, for various powers of the sine function of

equation (3.168).
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Chapter 4

Results & Discussion

From the previous analysis, we find that the unsteady lift and the acoustic pressure

are closely related to the slope of the vortex velocity, which is a function of the

vortex turbulent core size r0 and the nondimentional parameter c ( inverse to

Reynolds Number Re}.

The vortex velocity profile has been computed and compared with the avail-

able experimental data. Unsteady lift and acoustic pressure are calclulated and

variation of maximum acoustic pressure is found in terms of the parameters rt and

c. The noise/performance trade-off for blade tip loading shape is also discussed.

Vortex Velocity Profile

The general vortex velocity profile along the radial distance r from the center of

the vortex core is shown in Figure 13, based on equation (3.58). The distance r

and the velocity vg are nondimensionalized by the turbulent core radius r0 and by'

the potential velocity at r0) that is, T0/2irr0} respectively.

The specific vortex structure is calculated and compared with the experimental

data obtained by Tung'42) and Ballard'43! for a blade having AR = 13.7 and R =
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1.05m in the hovering condition. The experiment results are shown in Figure 25

and Figure 26, respectively. In Figure 25, Tung's data measured by hot-wire show

the fluctuating velocity after the peak value, indicating the turbulent behavior of

the flow, and shows a smooth variation of the velocity in the potential region and

near the. center of the laminar core. The circulation in the potential region seems

to be constant and its value is almost the same as the maximum circulation on the

blade. In Figure 26 , Ballard's data measured by a laser velocimeter are shown

with the circulation along the blade span.

First, Tung's data is compared with the present theory and it is shown in

Figure 27. Both the velocity and circulation profiles of the vortex show good

agreements with experiment in general, even though the maximum velocity and

its position are underpredicted. In the experimental data, the circulation of the

vortex T0 is almost 90% of the maximum circulation at the blade Fm. The velocity

profile predicted with the present analysis is also compared with that predicted

with the Betz and the Spreiter and Sacks analysis for the persistence region in

Figure 2. In the case of Betz theory ( modified by Donaldson' '), it shows

generally good agreement outside of the core. Near the center of the core the

present analysis is more realistically represents the turbulent viscous core whereas

the Betz vortex has infinite velocity, especially for the elliptic tip loading. In the

case of the Spreiter and Sacks theory, the maximum velocity is finite but the its

position is overpredicted because of the solid rotation model of the core.

It is assumed that the vortex at ^ = 65.4° is in the persistence period based

on the estimation from equation (3.65) that the vortex presists until T/» = 150° for

these conditions. And the distance from the location of the maximum circulation
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to the tip, (R — Rm), is taken as 4.4% of the blade span length, R. The value is

obtained from the comparision between the measured circulation near the center

in Figure 25 ( which corresponds to G(r/R) = 130 • r/R ) and the simplified

expression of the circulation ( G(z) = V(z)z = 2z - z* where z = r/r0 and

V(z) = 2 — z ) from equation (3.59). From the two expressions for the circulation

, r0 becomes 0.015472. Assuming the tip circulation is elliptic, r0 = 0.349(72 — Rm}

from equation (3.53). Then (R — Rm) becomes 0.0445 by comparing the two

expressions for r0.

In terms of the blade geometry, the radius of the turbulent core r0 = 0.4226

( where 6 is the half of the chord length) and the diameter of the core is 3.5

times the maximum thickness of the NACA 0012 airfoil. The maximum velocity

vg is almost 40% of the rotating tip speed FIR. Reynolds Number based on the

circulation in the potential region, Re = T0/i>, is 2.0xl05.

Next, Ballard's data are compared with the simplified equation of the vortex

in equation (3.59). The vortex just behind the trailing edge in Figure 26 seems

to be not completely rolled up and the vortex at rf> = 180° is assumed in the

persistence period ( the vortex persists untill almost two blade revolutions from

equation (3.65), which is longer than the Tung's vortex because the maximum

circulation is lower and the distance (R — Rm] is larger). Taking (R — Rm) = Q.lR

from the Figure 26, r0 = O.Q35R for Re = l.OilO5. Then, the position of the

maximum velocity r* = 0.18r0 = 0.007J? from equation (3.60), which seems to be

smaller than that obtained from the data. However, the trend in equation (3.59),

that the radius r* becomes larger for a larger r0 and a lower maximum circulation

T0 ( i.e., higher c ), is as expected comparing the data obtained by Tung with
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the data by Ballard. The gradient of the velocity, nondimensionalized by the tip

speed, in the turbulent region seems to be 3.75 in Figure 26 and is 3 from equation

(3.59), and the maximum velocity is around 20% of the tip rotational speed both

in the data and the simplified expression V(z) = 2 in equation (3.59) ; this is

considered to be good agreement.

From the comparisons with the experiment data for the two cases, the present

theory seems to give a reasonable estimate on the velocity of the tip vortex. It

should be also mentioned that the maximum velocity of the vortex is around

20 ~ 40% of the rotating tip speed in these cases. But if the position of maximum

circulation (R — Rm] is shifted toward the root, the maximum velocity of the vortex

can be reduced substantially.

Unsteady Lift and Acoustic Signal

Typical nondimentional unsteady lift and acoustic signal for the vortex gust are

plotted in Figure 28. It is observed that the lift calculated from equation (3.101)

is similar to the vortex velocity profile because the negative velocity of the vortex

contributes to the change of the effective angle of attack at the blade surface,

which results in a negative lift at the beginning of the interaction. It is shown

that the vortex velocity is symmetric at the surface but the lift is unsymmetric

due to the behavior of the Kiissner function as shown in Figure 15 ( It introduces

a time lag near the origin of the function due to the shedding vortices and the

apparent mass effect ).

The acoustic signal shown in the Figure2S(b) is for the part of the lift variation

in equation (3.147), which is unaffected by the location of the observer. The signal
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is calculated for a point source in the emission time domain s and it is similar to

the slope of the vortex velocity profile because the acoustic function in equation

(3.90) acts like a delta function which assumes the value of the slope during the

integration in equation (3.124). So the amplitude of the peak acoustic pressure is

related to the slope of the vortex at the center of the laminar sub core, 2/c and the

width of the signal is related to the radius of the laminar core size, r*. The signal

is also distorted due to the time lag in the acoustic function as in the Kiissner

function. From the acoustic point of view, the unsteady lift acts as a strength

of the source and its slope is directly related to the amplitude and width of the

acoustic signal through the vortex structure.

Reynolds Number and Vortex Size Effect

It is expected that both the peak unsteady lift and acoustic pressure decrease with

increasing turbulent vortex core size r0 and smaller Reynolds Number(J2e = T0/v)

because the gust function is T0/2irr0 • V(cr/r0) in equation (3.86). But the acoustic

pressure is more sensitive to the slope of the core 2/c(~ Re) shown in Figure 20,

because again the behavior of the delta function, like the acoustic function, varies

as the slope of the laminar core 2/c.

In Figure 29, the nondimensional acoustic pressures for a point source, calcu-

lated numerically based on the equation (3.151), are shown for two different values

of turbulent vortex radius r0) nondimensjonalized by the half of the chord length

6, with the fixed value of c and in the emission time domain s ( where s = 2 is the

time required to pass through the chord). The different values give the different

peak amplitude and width. Approximately, half of the value"of the vortex size
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gives twice the value of the peak amplitude and half of the width, giving a sharper

shape to the signal. This sharpened shape contributes to the higher frequencies of

the acoustic pressure , as explained in Section 3.3, which are more annoying than

the lower frequencies. So the quantity of interest here is the peak amplitude of

the acoustic pressure, which is related to the shape of the signal. In Figure 30,

the acoustic pressures are shown for the different values of c , inversely related to

the Reynolds Number, with fixed vortex size r0. It is shown that the lower value

of c gives the higher amplitude but the width is unchanged, which also makes the

shape sharper. Considering that the pressure is nondimensionalized by a quantity

involving T0 (~ 1/c), the pressure ( not nondimensionalized ) is more senstive to

the value of c.

For the peak acoustic pressure, the effects of the Reynolds Number and vortex

size are shown in Figure 31. This shows that the peak acoustic pressure increases

for the smaller vortex and the higher Reynolds Number. For this nondimension-

lized peak acoustic pressure, it seems that the pressure becomes infite for the

infinite Reynolds Number partially due to the property of the vortex and the be-

havior of the point source in the incompressible flow. However, the pressure will

remain finite for the noncompact source due to the interference effect between the

sources.

Noncompact Source and Observer Position Effects

The results so far are for a point source and plotted in the emission time domain

because it is not necessarily to introduce the time relation in equation (3.118) (

which makes the analysis simple) and the amplitudes are not changed between
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the reception time domain, t , and the emission time domain , T , (as explained

in Section 3.3 for a point source). The observer position is not considered in the

results. However, for the noncompact source, the signal should be plotted in the

reception time domain and the observer position should be considered as shown

in equation (3.121) or (3.131).

In Figure 32, the effect of the observer position on the acoustic pressure at the

far field in the reception domain is shown for the spanwise noncompact source.

The positions in the x\ and x2 directions are fixed as 5006 and the position in the

z3 direction ( spanwise direction) has the values 0,1006 and 5006 for the spanwise

source size of 206. In the figure, the effect of the position on amplitude and width

of the signal for the fixed c and r0 are shown. For the position at RS — 0, equation

(3.121) is used because of the small interference between the sources and for the

positions at RZ = 1006 and 5006, equation (3.131) is used. In both equations, the

directivity function defined in (3.123) is not considered yet. So these effects in

amplitude and width are mainly due to the interference of the noncompact source

resulting from the integration in equation (3.121).

In the case when the observer is in the plane of the symmetry of the source,

that is R3 = 0, the peak amplitude is 17 in Figure 32 ; this value would be 20

if there were no interference for the source size of 20 ( nondimesionalized by 6 )

because the peak amplitude of the point source for unit nondimensionalized source

size is 1 in Figure 29 for c = 0.01 and r0 = 4. In the case when the observer is far

off the symmetry plane, for example R3 = 5006, the width of the signal becomes

the order of the actual size of the source. Actually, the width in the reception time

domain is almost the same as the time delay due to the source size, which is less
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than the actual size of the source. This is explained in Section 3.3 ; the maximum

time delay A£TOOZ (for a source Mach Number M = 0.5 and the same distance and

source size) in Figure 22 is around 6, which is almost the same as the width of

the signal, 6, in Figure 32.

Directivity Pattern for the Peak Amplitude in the Acoustic
Pressure

To obtain the directivity pattern of the peak acoustic pressure, the observer po-

sition is expressed by the angles 0,$ and the distance R* between the center of

the source and the observer as defined in equation (3.146) and shown in Figure

33. The distance R* is taken as 7146 corresponding to RI = 500b,R2 — 5006

and R3 = 1006. Considering that the source is moving and the source strength

, i.e., the unsteady lift, is a function of time, it is more reasonable to calculate

the acoustic pressure for the moving observer with the same velocity as the source

and having the same distance R* from the moving source in all directions. As

shown in Figure 34, the interference effect ( the directivity function in (3.145) is

not considered yet) due to the noncompact source is the same in the 9 direction

in the plane of the symmetry for the moving observer because the time interval in

reception domain is the same as the interval in emission domain in all directions,

that is, Qjf- = 1 in equation (2.33) for the moving source and moving observer with

the same velocity. This time relation is one of the primary factors in the process of

interference as explained in Section 3.3. On the other hand, the interference effect

for the fixed observer depends on the 6 direction in Figure 34 because ^jf = ^M

for M° = 0 in equation (2.33), that is, even though in the emission time domain
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the time scales of the signals are the same, the time scales in the reception time do-

main are different, depending on the location of the observer. However, as shown

in the figure (not scaled), the effect of the moving observer is small for far field

locations of the observer.

The total directivity patterns for the peak amplitude including the directivity

function defined in equation (3.145), in addition to the interference effect men-

tioned so far are shown in Figure 34,35 and 36 for V = 0,7r/6 and ?r/3 (^ is

defined in Figure 33). As shown in Figure 34, at the plane of the symmetry of

the source, the directivity pattern for the noncompact source is almost the same

as that as the point source because of the small interference. However, for the

plane at ^ = Tr/6 in Figure 33, there is a large difference in the directivity be-

tween the noncompact source and the point source, as shown in Figure 35. This is

mainly because the interference in the noncompact source in different 6 directions

is different even though the time scales are the same since both the source and

observer are in motion with the same velocity. At 6 = w/2 in the $ plane, the peak

amplitude of the nonocompact source is the same as that for the point source, as

in the case of if> = 0 because the interference is the same and is small. The pattern

in V* = *r/3 is almost the same as the pattern in t/> = ?r/6 as shown in Figure 36.

In summary, the directivity patterns of the peak acoustic amplitude are more

.concentrated in the plane of the symmetry compared to that of the point source.

In that plane, the maximum peak acoustic pressure is observed and the value is

almost the same as that of the point.source.
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Noise Performance Trade-Off

To reduce this maximum peak pressure , we need to reduce the vortex size r0 and

Reynolds number Re as shown in Figure 31. As explained in Section 3.4, one

method would be to increase the distance, (R — Rm) between the location of the

maximum circulation and tip, because r0 and Re both are directly related to it

from equations (3.53) and (3.36). For given R, reducing R^ would result in a loss

of lift near the tip which is proportial to (f)^)2 with the same lift coefficient.

The other method would be to change the tip loading shape which is related to r0

for the fixed value of (R — R^) and F0.

Here, the influence of blade loading on the noise and performance has been

studied for variations of the circulation shape of the form F/F0 = (sinfl)2"*"1

(m = 1 elliptic loading) as shown in Figure 37(b). For large values of m, the core

radius, nondimensionalized by (R — Rm), increases and there is reduction of noise

compared with the elliptic loading, but the tip loading relief also gives a reduction

in the tip efficiency, defined in equation (3.183), as shown in Figure 37(c). By

relating these two effects through the values of r0 and c, Figure 38 is plotted. It

shows that a maximum noise reduction of 5dB in the peak amplitude ( which is

related to the high frequency annoying noise) is obtained for m = 2 with 25% loss

of tip efficiency and a noise reduction of 3dB with 5% loss of efficiency. For the

triangular loading there is more than SdB reduction in noise but also more than

30% reduction in tip aerodynamic efficiency.
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Chapter 5

Conclusions

The blade vortex interaction, where the turbulent viscous core is cut by a following

blade, is analyzed under the assumptions that no distortion of the vortex path and

no distortion of the vorticity of the core takes place during the interaction. From

the analysis and results, several conclusions can be drawn as follows:

(1) The detailed vortex structure, including the viscous and turbulent core

generated by the rotor tip, can be approximately predicted with a simple turbulent

core model and equivalent tip model. The size of the viscous core is of the order

of the thickness of the blade and the size of the turbulent core is 3~5 times the

blade thickness in the hovering case.

(2) The interaction between a vortex core and a following blade is analyzed

in the time domain , and a simple relation between the vortex structure and the

unsteady pressure signal, using a gust analogy, is developed.

(3) Acoustic pressure is obtained by introducing the acoustic response function

for the step gust with a chordwise compact source. It shows that the spanwise

non-compact source gives a sizable effect when the observer is off-center of the

source because of the large interference effect.
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(4) Maximum acoustic pressure varies with Reynolds Number( T0/v ) and

vortex size, which is related to the tip loading distribution. The effect of a moving

observer seems to be not significant in this blade vortex interaction.

(5) Shape modification of the tip gives a maximum reduction of 6 — 8dB in-

cluding the triangular loading ; a reduction of 3dB in maximum acoustic pressure,

compared with the elliptic loading, can be achieved for 5% loss in aerodynamic

efficiency.

For the extreme case of the rotor tip in which the blade passes through the

vortex core, the chordwise non-compact source should be considered to obtain the

correct high frequency effects. In the following remarks three limitations of the

analysis are dicussed ; namely unsteady compressibility , noncompactness and the

nonlinearity during the interaction. The vortex generator is also discussed. ( In

the problem, three length scales are involved ; the wave length of the disturbance

gust, the charateristic length of the body and the wave length of the acoustic

signal observed.)
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Chapter 6

Final Remarks

Unsteady Compressiblity

The exact linear unsteady compressibility effect is discussed by Graham'66' for

a purely sinusoidal gust. It shows that the effect, both in amplitude and phase,

increases as the Mach number and the frequency increase. The linearized solution

is still valid when the Mach Number becomes one if the frequency is sufficiently

high'6 I , whereas the solution becomes singular for the low frequency as in the

case of linear steady compressibility. Low frequency approximate solutions were

obtained by Amiet'6°', Kemp and Homicz'6''. For the delt^ function gust, as

shown by Amiet'°^', the trend of the effect is similar to that for the purely sinu-

soidal gust because the delta function has the same amplitude for low and high

frequencies ( by definition). However, the effect of compressiblity is reduced for

the step gust' ', compared to the above gusts, because the amplitude of the high

frequency in the step gust is reduced.

Thus, it is expected that the compressibility effect on the unsteady lift decreases

more for the vortex gust, ( which is regular at the center of the vortex) because

the amplitude of the high frequency reduces faster than that for the step gust.
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The effect of compressibility for the point vortex passing beneath at the half

chord height was shown by Adamczyk'71'. and it would be useful to consider

the above mentioned effects to determine the compressibility effect for the blade

vortex interaction.

Noncompactness

The noncompact effect on the acoustic source appears when the characteristic

length of the body is larger than the wave length of the acoustic wave radiated. For

a purely sinusoidal gust, it seems that the effect of the noncompactness increases

as the Mach Number and the frequency increase. However, assuming that the

unsteadyness of the pressure near the leading edge dominates that near the trailing

edge as used in high frequency analysis, the contribution to the total unsteady

lift is confined at the small area near the leading edge. Then, the characteristic

length to be used in the criteria for noncompactness should be the length of the

small area in chordwise sense, which is much less than the geometric chord length

usually used for the criteria. Therefore, it is expected that the critical frequency

for noncompactness is reduced for the sinusoidal gust.

For the vortex gust, the contribution of the high frequency is reduced as in the

case of the unsteady lift and the contribution of the high frequency to the farfield

acoustic pressure is reduced because the acoustic pressure varies inversely with

the frequency.

It is also expected that the effect is reduced more in the downstream direction

because the observed frequency decreases due to the Doppler shift in frequency

when the body is fixed in the wind ( as in the acoustic wind tunnel) or for a the
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moving body with fixed observer. The effect is opposite for the upstream direction

even though there is no difference between upstream and downstream for the body

and observer moving with the same speed. The noncompactness in the upstream

and downstream directions becomes more serious for the case of the interaction in

cascade flow, and in the confined walls as in the case of fans and compressors of a

turbo engine'*^', whereas it is less severe for the single vortex blade interaction.

Although a clear criteria has not been given here for the effects of unsteady

compressibility and noncompactness, the above comments for the blade vortex

interaction are of interest.

Nonlinearity

The assumptions, used for the linear analysis, of the splitting of the velocity field

into rotational and irrotational components, and the assumption of no distortion

of the vorticity field or the vortex path, are valid for the case where maximum

normal component of the gust velocity at the body surface is much less than the

convecting velocity and where the thickness of the body is small compared to

the wave length of the gust and large enough for no separation at the leading

edge. In that case, the linear theory works well'*™ and it is known that splitting

of the oncoming vortex by the body is the phenomena observed in experiments.

For the nolinearity due to the thickness of an airfoil and the amplitude of a step

gust velocity, Giesing'™] showed that there is no significant effect on the Kiissner

function for the 8% thick von Mises airfoil and for the gust velocity having 50%

of a convecting velocity.

However, for a free vortex interaction, the vortex path is distorted because of
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the potential field of the vortex ; this is not to be expected for atmospheric gust a

purely sinusoidal gust, a gust simulated by air injections and a weak blast wave.

So, to predict the unsteady field quantitatively and to show the generation of the

secondary vortex sometimes observed, the nonlinear and viscous effects should be

considered. The quadrupole effect due to the nonlinearity in the flow field, which

would be the same order as the dipole, and the transonic effect, vortex induced or

not should be also considered in the case of higher compressible flow. Even in the

incompressible case, the development of the prediction scheme for high Reynolds

Number flow with reasonable vortex core is desirable.

The reasons for the large variation at the leading edge of the blade, observed in

the data from the large scale experiments both at low and high Maeh Number' ',

are still not revealed. It might be due to the high frequency effect discussed in

the high speed linear theory or the forward propagation of the shock'88' or the

distortion of the vortex and vortex path.

Vortex Generator

In addition to those for the interaction, it is of interest to comment on the vortex

generator since the vortex strength and structure are important factors for the

interaction. In the measurement of a vortex flow, it is very useful to measure

both quantities for the vortex and the vortex generator whether it is fixed or

rotating (,i.e. maximum circulation and its position, circulation distribution and

aspect ratio of the generator) because they are important parameters to predict

the vortex profile and to determine the distance of fully roll up vortex before the

interaction ( the maximum circulation distance is changed for different tip shapes
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and tip speeds in the casa of the rotating blade). It should be also pointed out

that for a two dimensional vortex, generated by an oscillating airfoil or an airfoil

in impulsive motion, that the behavior is different from the tip vortex because of

no axial velocity in the 2-D vortex. However, it might simulate the tip vortex in

the decay stage where the axial velocity is negligible.

Care should be taken in comparing the vortex theory, which usually assumed

full roll up of the core, with the experiment data because sometimes it is observed

that the maximum circulation of the concentrated vortex is half of the circulation

at the root of the generator'^'.
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Appendix A

A.I

The Heaviside function has the following properties

dH(f)
df

(A.I}

where F is an arbitrary function and 8(f) is the delta function having zero value

except at / = 0, that is, at the surface.

Using the equation of the surface motion and the above properties, the follow-

ings can be obtained

dH(f) = dH(f) df
dt df dt

(A.3)
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and

*£T- (A-4)df dxi V '

4^- (A-5)9x,- v '

A.2

The volume integration having the delta function in the integrand can be changed

into the surface integration

where 5 is the surface of the body in the motion defined as

r ) = 0 (A.7]

The time integration having the delta function, as shown below, in the integrand

can be carried out as

where T\ is the t th root ofe

= 0
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Appendix B

The equation is

cG'
G1' + 4ft2 G = (B.I)

with the boundary condition

G = 0, (B.2)

An approximate solution in the following form is tried

G = c •• go + < (B.3)

where r\ is a stretched coordinate given by

1 = (5.4)

Substitution into the equation gives equations for <7o(»/) and gi(rj), i.e.

(B.S)
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(5.6)

From equation (B.5)

(5.7)

After integration, the solution for g0 satisfying the boundary condition is obtained

as

From equation(B.6)

Using (B.8) and (B.7), the above equation becomes

J
g = _

1 (5.10)

,which can be integrated to yield
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Appendix C

0 < s <

where

i>(s) = 1 - 0.5e~°'13' - 0.5c~*

a-a = 1 - 0.5e-°-13'e°-13<T - 0.5e-V

+ -I- + 0.5 __eo.13^_ - .
6 /o (a - ^)2 J [ Xo b Jo (a-

. r -
b Jo (a-
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where

io 'o c r -Y

< 3 <

Sl < S <
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/" ^
Jo (x0 -

+
f 2
I -- ^(s-J»i c r0

- 0.5- - /' e"da\ e~'
cr0J,, \

/

•» 6
^>(s —

1 Tn

-- 0(5 —
J*t c r0

ias - -1 +

— / — ̂ (s — <r)d<r
y»3 r0

+ 0.5- ' e - a e0.5- /' e°-1
ro J**

•3

84 < S < S5

ro

/

•a 2 6 /'4 6 /• — 6r0-- ip(s-cr)dff- — ijj(s-a]d<r+ I - - —rjj(s - a)dcr
-t cr0 y«3 r0 J t t(x 0 — ffb)*

.-0.13*
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where

where
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Appendix D

—^- = fracdL(s}as
ds

0 < s <

dPM
ds

= -oM
6

= |_Pl(s) + f PM - 0.13ft(-) e-°-13' + Ur-ftM - ft(

r0 e
t~"r

6 2-
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Si < 3 < S2

3 < S3

S4 < 5 < S

ds
b_ dP2(s] = dP3(s)
r0' 3s 9s

= 0

2 6
3s cra ' ds ds

= b dP2(s) = dPz(s) =

ds ds

ds
= 0,

b ' - f - s
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(b)

Figure 1: Limiting cases of blade vortex interaction
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III decay stage

IV unstable stage

Figure 2: Stages in develoment of tip vortex
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Figure 3: Flow visualization during the vortex body interaction (a) plate'10' (b)
sharp edge'2' (c) blade leading edge'100'
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Figure 4: Spectrum for helicopter noise (UH-1A, Tiedown Thrust 600Ib, Tip
Velocity 720ft/sec, Microphone distance from source 200ft)
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Figure 5: Impulsive noise signal
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Figure 6: Spectrum of rotational noise^' (a) with blade vortex interaction (b)
with tip vortex eliminated (UH-1H, 1.5 g left turn, /i = 0.24, 120mph )
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Figure 7: Trajectories of rotating tip vortex'^'l (a) side view (b) plan view
ti = 0.164
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Figure 8: Space and time coordinates
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Figure 9: space-time diagram for a moving source and observer
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r0 Turbulent Core

r* Laminar Subcore

Figure 10: Relation between the spanwise circulation and tip vortex

0 r

Figure 11: Tip vortex geometry
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Figure 12: Equivalent tip vortex system
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Figure 13: Vortex velocity distribution
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Figure 14: Coordinate system of the blade during interaction
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Figure 15: Kiissner function
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Figure 16: Gradient of the Kiissner function
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Figure 17: Profile of the converting vortex velocity gradient at the leading edge
(center shifted by x0/b)
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Figure 18: Exponential Integration function
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Figure 19: Coordinate of the moving source
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Figure 20: Schematic diagram of the Duhamul's Integration for acoustic signal
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Figure 21: Interference process of the spanwise noncompact source
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Figure 22: Variation of delayed signal time with observer position
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Figure 23: Simplified model signal in time domain and its spectrum
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Figure 24: Various tip configurations'^
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Figure 25: Experimental data for rotor tip vortex'^'
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Figure 27: Vortex core velocity profile comparition (a) circulation profile (b) tan-
gential velocity profile
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Figure 28: Typical variation of unsteady lift and acoustic signal
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Figure 29: Variations of signal with vortex size
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Figure 30: Variations of signal with Reynolds Number (F0/i/)
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Figure 31: Effects of Reynolds Number T0/i/ and turbulent vortex size r0 on
maximum acoustic pressure
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Figure 32: Variations of signal with observer position
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Directivity Pattern of Peak Acoustic Pressure
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Figure 33: Observer positions in the spherical coordinates
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Directivity Pattern of Peak Acoustic Pressure
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Figure 34: Peak acoustic pressure in the plane of symmmetry
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Directivity Pattern of Peak Acoustic Pressure
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Figure 35: Peak acoustic pressure in the plane ^ = Tr/6
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Figure 36: Peak acoustic pressure in the plane if) = 7T/3
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Figure 37: (a) Tip circulation profile (b) Variation of r0/R - #„» and Ap(dB) with
tip-loading parameter m (c) Variation of tip efficiency with tip-loading parameter
m
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Figure 38: Trade off between noise reduction and aerodynamic efficiency for vari-
ous m.
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