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ABSTRACT

An analysis of the 1lift augmentation due to a thin jet of air issuing from a
slot along the leading edge of a delte wing is presented. Thas problem is
treated with an extension of the method of Brown and Michael, representing
the separated flow on the lee side of the wing by z pair of concentrated
vortices and corresponding feeding sheats. It is assumed that the jet
is not affected by Coanda forces. The analysis produces qualitative agree-

ment with experimenrs,
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NOMENCLATURE

ving semi-span

Jet momentum coefficient

= casf - isinf; complex unit vector in direction of ejection
universel functions in lift cocefficient expressions
resultant force on singularity systenm

force on connecting vortex sheet

force on vortex

2 -1

constant in lift augmentation expression

jet momentum flux per unit length

exponent in 1ift augmentation expression

free stream velocity

veloecity at center of vortex

complex potential in cross-flow plane

angls of attack

engle of ejection with respect to the span, positive downward
half apex angle

vortex intengity

jet £luid density

free stream fluid density

complex representation of physical cross-flow coordinates
complex repraesentatfon of transformed coordinates

0y, 8, vortex equilibrium location

indicates complex conjugate
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A thin jet of air ejecting from a slot along the leading edge of a delta wing
alters the equilibrium position of the vorticity system on the wing upper
surface, causing a change in the pressure distribution, which results in lift
augmentation.

-The jet may leave the wing surface in two different ways, as shown in Fig. la
and 1b. In one mode, the jet may leave the wing surface with a direction
deternined by the orientation of the slot alonas, the jet never attaching to
the wing surface. This mode will be called detached blowing. In another
mode, the jet may leave the surface in a direction determined through its
contact with the wing surface. This mode will be called tangenti&l blowing,
with the reorientation of the jet after it leaves the slet being caused by
Coanda forces,

In this work only the first form of blowing will be considered, a case for
which an inviseid formulation can be postulated. The problem in coniesal
symmetry with bleowing in the direction tangent to the wing the span, was

,2' who based his analysis on Smith’s3 description of the

solved by Barsbyl
separated flow about a conical, flat delta wing. Although Barsby enalyzed
both flat and cambered wings, hnis procedure didn’'t reveal the analytical
relationships between the different paremeters, nor was the angle of ejection
an independent veriable. His results are {in qualitative eagresment with
experiments reported by Trebble®.

The objective of this report is te conduct a first investigation of the
effect of the engle of ejection as an additional parameter, in & much simpler
mathematical framework than that used by Barsby, and te infer plausible
scaling laws between the wing and jet parameters. Parallel to this study,
two additional efforts are under way at Stanford; a more extensive, fully
non-linear analysis of this problem is being ccnducted, and an experi-
mental pnase is planned to enlarge the presently quite poor data base. To
achieve the objectives of this study, the theory first proposed by Brown and
Michaeld is extended to account for blowing at an arbitrary engle with the
span. In this approach the separated flow on the wing is represented by a
pair of vortices connected to the leading edges by straight vortex sheets, as

ghown in Fig. 2. Brown and Michael sclve the problem in the cross-flow

1




plana by requiring that the forces, but not the moments, acting on the
singularity system should be in equilibrium. This method leads to a
complex-valued, implicit equation for the equilibrium position of the
singularity system. -Once the equilibrium position is established, the vortex
and sheet intensities are determined from ths tangency condition at the
ieading edga, and with this the 1lift {s readily obtained.

The procedure developed here follows the same steps, oxcept that the
force-balance condition is altered to account for the momentum ejected from
the wing, at a given angle with the span. The implicit relationship for
the equilibrium position of the singularity system'in thig case differs frem
that of Brown and Michael’s in that it contains a source term, proportional
to the momsntum intensity of the jet. ' '
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HATHEMATICAL HODEL

In ordsr to determine the condition for equilibrium of the singularicy
system, consider the cross-flow plsne with the control volume shown in
Fig. 3. The resultant force acting on the singularity system must balance

the momentum transfer through the volume walls.
F = jpjvv-ndA' : eY)

Assuming that the momentum associated with the jet aligns itself with the
direction o¢f the core within the control volume, and. interpreting F as a

complex quantity, Eq. (1) becomes

P o= -mey | | (2)

Here F must be the sum of all the aerodynamic forces acting on the
singularity system. Expressions for these forces are dérived in the complex
plane, with the force vectors represented as complex numbers. In the complex
representation of the cross-flow plane the wing span is defined on the real

axis, as shown in €fig. 4. Egq. 2 is now rewritten

F, + F, = =138 _ ) (3

The force écting on the feeding sheet is, to first order

F

- 1p\7w%§(00 -a) (4)

The force acting on the main vortex is

F

e = 1p(vyVee—2t)r (5)
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whers v, is the velocity induced at the main vortex position by the disturb-
ance potential- produced by the wing and the rest of the singularity system.
Substituting Eqs. (4) and (5) iatc Eq. (3) we find

vy o= VB2 .1y - iDe; (6)

To compute v, we make use of the transformation

8 = Jo% - a N

which maps the cress-flow plane into a plane where the wing is represented by
a slot elong the imaginary axis, as illustrated in fig. 4. In the

transformed plane the resultant complex potential is

we) - -%mgHi- - 1Vgab . (8)

The conjugate of the welocity induced at the locastion of the rcight-hand

vortex 1s determined from the limit

“ - dwdg 4T
d¢ dg = 2x{c - a,)

vy = lim
o 3 o,

(9)

vhere the second term in the right-hand side represents the wvelocity induced
by the vortex under consideration.
Carrying out this limit and intreducing v, in Eq. (6) we find the following

implicit expression for the vortex equilibrium position

I‘P l 1 l KW az - : .2:;..9. - - "E“J."
27 [504 T Go8,  Gob,  8,% 200‘49;’]”*’ = (55 b FRred 19
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The requirement that the velocity at the leading edge be finite yields

27V 0 -
r

|
)

" %o | (11)
Introducing now the following definition of the jet momentum coefficient:

2oy |
C“ 'p_V.,,‘a (12)

With Egs. (11) and (12) the equilibrium condition beccomes

1 .1 8% - 242 efl . 173729
[9;2 + 850, oo?o 20,%8,° ]Uo - 1;[Fo+ Fo} —;}. i 1]
a c,f1 . 112
= I ofla,t ?”c} & (13)

The term in the right-hand side contains the blowing information.
Let’'s consider the expression for the 1ift coefficient derived by Brown and
Michael

C, = %§5a9°§° + 2%ac (14)

The first term on the right-hand side represents the vortex 1lift, a non
linear function of a, and the second term represents the linear part of
the lifr, that which would be produced by the wing in the attached flow
case. To assess what form Eq. (14) will take in our case, we notice that
the apex angle, angle of attack, momentum coefficient appear in two groups
in Eq. (13), wnhile the direction of blowing, B, appears through the defini-
tion of e;. Since the product §,4, is obtained by solving Eq. (13), the lift

coefficient will take the following form

oL - _,,e,:f(é,gf;,,a) + 2rae : (15)
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In this expression f represents a univefsal functicn of its arguwents, and
is not given analytically since no exact analytic solutien of Eq. (13) is
possible. For some limiting values of the arguments, however, analytical
approximations to Eq. (13) are possible. Notice that the blowing information
appears in the group Cp/az. This dependence could be helpful in arranging
the problem parameters when conducting experiments.

To obtain such limiting forms consider filrst the approximation to the lift
coefficient in the absence of blowing, as obtained by Brown and Michael
through linearization of Eq. (13)°

e L kase)*’? - (16)

€

M2
]

Hence, the condition that the no-blowing case should revert to Egq. (16)
gives
Gy, 2ra

5/3 : '
= 2+ ky(e/O) [g(c#/a%,ﬁ> + 1] an
Here g is another universal functien of its arguments. To anzlyze the form
of g for small values of its argument, we will consider the case of g = 0.
It can be shown numerically that g is regular for Cp/ea®* -+ 0. Expanding g in

Cu/e?, we ge the following liminting form, valid for small C“/‘a2 and § = 0:

113

ACy, = k(e/a) C” ' (18

where k has been redefined as a constant to be determined from experiments.
The constraint imposed on blowing intensity in order for Eq. (18) to be
applicable guarantees that no singularity at zero angle of attack will occur.
Verification of Egq. (18) would require extremelly small blowing intensities.

For mo&erate values of C#/az, and within a range of such values, a convenient
representation is obtained by expressing the function in Egq. (17) as a power

of its argument, this leads to

1/3 (5/73-2p)
€ >3

aC; = k Cy (19)
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Experiments* have shown that the 1lift grows slowly for increasing e at
moderate blowing intensity; this fact imposes the constraint p < 5/6.

It can also be shown, by numerical evaluation of the function g, that the
dependence on angle of ejection is rather weak for 8 < 30°, so that Eqs.
{18y and (19) can also be considered a good approximation for small ejection

angles.
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- RESULTS AND DISCUSSION

Fig. 5 shows the comparison between theory and the ~xperimzntal results
of Trebblea, currently the only available socurcc of experimental inform:tion.
in this case the angle of ejection is equal to =zero. The calculations
reproduce the correct trend, but they produce valuec significantly lowcr
that the measurements. In contrast, Barsby’s theoretical results were
significantly higher than thes measurements. The discreparcies betwe:n the
resent method and the experiments are mnst likely due to the oversimplifying
assumptions of the model, which make it intrinsically weak.
Figs. 6, 7, 8 and 9 illustrate the increment of lift coefficient in carpet
form, for different angies of ejection and the same apex angle. The angie of
ejection is considered positive downward. It can be seen that the influence
of ejection angle on the aerodynamic compouent of the 1lift is quite small Jor
angles less than 30°. Foxr the same inclination with respect to the span, the
jet pointing upward causes more deterioration of 1lift gain.
The measurements presented in Ref. 4 didn’t lend themselves to an accurats
evaluation of the exponent'p in Eq. (19). However, using the healthiest
part of such data, & preliminary assessment was made; it was found tha. for
Cy in the range .1 to .175 the estimsted value of p from the uxponert of « in
Eq. (19) was about .77, while the value of p from the exponent of C, was in
the range .7 to .75.
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The problem of blowing from the leading edges of a slender delta wing has
besn analyzed using a generalizaticnt of the wortex-ceounecting-sheset: model
for the separated flow on the lee side of the wing. The results lead to the
following observations: ]

Blowing from :hé leading edges of & slender delta wing causes an increment
of lifc, beyond the vertical component of ejected momentum. Both theory and
experiments suggest that with blewing coefficients of about 0.05, gains in
1ift of the order of 30% are possible. This lift improvement is rather
insensitive to small wvalues of the angle of ajection. For ejection angles of
up to 30° there is little effect on lift augmentation. The aerodvnamic
component of 1ift augmentation deteriorates more quickly as function of
angle of ejection in the case of downward ejection. It appears that the
optimum angle of ejection is about 0°,

The theory reproduces the same trends as the ones shown by the only availsble
source of experimental information. However, it underpredicts the 1lift gain
by about 30%.

The theory suggests a way of grouping the different non-dimensional quanti-
ties of the problem, in such a manner that the non-linear part of the
1ift becomes & function of ex, ¢/a, and C“/az. Since the angle of attack
appears in more than one non-dimensional group, chacking this conclusion
would requiie cecnducting experiments with wings of differe.t a@ax angles.
It is expectad that this particular way of grouping the wing <=3 v pavamet-
vrs will reduce considerably the size of the matrix oi &0 2xperimental
proggram.

Results indisate that for small values of C“/cz2 the 1ift gain is a linear
function of blowing intensity.

For small walues of af¢ and ejection angles of less than 30°, the 1ift

gain due to tlowing 1s expected to scale in the following form:

LCy,

= - k(a/c)sl!

B(C,/a?)



When both a/¢ and Cp/a2 are small, the scaling takesz the form:

172

aACy, = k{c¢/e@) Cy

For moderate Cﬂ/a2 the following arrangement could bs used for fitting
experiemtnal data: '

2 173 (343-2p) @

p < 5/6

&Although the exponent p i3 not independent of blewing setting, such an
arrangement csuld still be helpful in conducting a best £it withing a range
of blowing intensity. '
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Fig. 1 Detached and tangentisl blowing schemes.

Fig. 2 Brown and Nichasl model.
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Fig. 3 Jet sheet contrel volume.
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Fig. & Comformal transformation of cross-flow plane,
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by Trebble®. theory.
) 0.820
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o -——= 0410
} 1 L
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2 .
Cu/a

Fig. 5

Comparison of theory and experiment, ¢ = 20°.




s T SR T TR M ST VRN ST T s T T - o A AR
e SN TR R SRR N S SR SRR
B SR », PR e . - . . E3

i

0.30 | 50,408
025 40

0.20}- 3.0/ \ 0.6

¢, /a? \ aye

ACL 0.15

0.10

0.05

0.C

Fig. 6§ Perxformance plot.
€ = 20°

14




.-
e

51

"rao7d sousmrogaeg

¢t 333

00

SO0

oL0

020

00

Sy




ACL

0.20

0.15

0.10

0.05

0.0

Fig. 8

Performance plot.
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Fig. 9 Performance plot.
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